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ABSTRACT

In an era marked by the omnipresence of wireless communication, the need for excep-
tional connectivity has experienced an unprecedented surge. The evolution towards
Sixth-Generation (6G) networks has not only emphasized ubiquitous communica-
tion but also demanded remarkably high data rates and reliability, setting the stage
for revolutionary advancements. The impending landscape of communication tech-
nologies, such as Vehicular Ad-hoc Networks (VANETs), presents unique challenges
and opportunities, compelling a paradigm shift in wireless connectivity strategies.
This study addresses the challenge of enhancing wireless connectivity by presenting
an innovative solution for Unmanned Aerial Vehicles (UAVs) as base stations (BS),
thereby exploring the concept of UAV-BSs. This study provides a Mixed-Integer
Non-Linear Programming (MINLP) energy-efficient optimization model to position
UAV-BSs based on real-time demand and network conditions adaptively. Traditional
optimization methods often face challenges in handling the complex and dynamic
nature of UAV-BSs deployment. To overcome this limitation, a novel algorithm
combines the strengths of the JAYA, a population-based optimization algorithm in-
spired by social behavior for solving mathematical optimization problems, and the
K-means clustering technique. Through extensive experimentation and compara-
tive analysis, the performance of the optimization model and the enhanced JAYA-
based algorithm is evaluated, showcasing their effectiveness in maximizing network
coverage and connectivity while minimizing the power consumption of UAV-BSs.
The results demonstrate that this approach outperforms other methods regarding
UAV-BS placement accuracy, lower power consumed by UAV-BSs, packet loss rate,
and latency. Furthermore, the algorithm exhibits adaptability to varying network
conditions, making it a valuable tool for optimizing UAV-BS locations in dynamic
environments.
Keywords: UAV/drone placement problem. Non-linear optimization problem. Op-
timization algorithms. Wireless connectivity.



Posicionamento energeticamente eficiente de Estações-Base Montadas
em VANTs para melhoria de conectividade em redes sem fio

RESUMO

Em uma era marcada pela onipresença da comunicação sem fio, a necessidade de
conectividade excepcional sofreu um aumento sem precedentes. A evolução para as
redes de sexta geração (6G) não só enfatizou a comunicação onipresente mas também
exigiu taxas de dados e confiabilidade extremamente altas, preparando o terreno para
avanços revolucionários. O cenário iminente O cenário iminente das tecnologias
de comunicação, como as redes ad-hoc veiculares (VANETs), apresenta desafios
e oportunidades oportunidades únicas, exigindo uma mudança de paradigma nas
estratégias de conectividade sem fio. Este documento aborda o desafio de aprimorar
a conectividade sem fio, apresentando uma solução inovadora para veículos aéreos
não tripulados (UAVs) como estações de base (BS), explorando assim o conceito de
UAV-BS. Este estudo apresenta um modelo de otimização com eficiência energética
de programação não linear de inteiro misto (MINLP) para posicionar os UAV-BSs
com base na demanda em tempo real e nas condições da rede de forma adaptativa.
Os métodos tradicionais de otimização tradicionais geralmente enfrentam desafios
para lidar com a natureza complexa e dinâmica da implantação de UAV-BSs. Para
superar essa limitação, um novo algoritmo combina os pontos fortes do JAYA , um
algoritmo de otimização baseado em população inspirado no comportamento social
para resolver problemas de otimização matemática, e a técnica de agrupamento K-
means. Por meio de experimentos extensivos e análise comparativa, o desempenho
do modelo de otimização e do algoritmo aprimorado baseado no JAYA é avaliado,
demonstrando sua eficácia em atingir os objetivos de maximizar a cobertura e a
conectividade da rede e, ao mesmo tempo, minimizar o consumo de energia dos
UAV-BSs. consumo de energia dos UAV-BSs. Os resultados demonstram que essa
abordagem supera outros métodos em termos de precisão de posicionamento de
precisão, menor consumo de energia pelos VANTs-BSs, taxa de perda de pacotes
e latência. Além disso, o algoritmo apresenta adaptabilidade a condições de rede
variáveis, o que o torna uma ferramenta valiosa para otimizar a localização de UAV-
BSs em ambientes dinâmicos.

Palavras-chave: Problema de posicionamento de UAV/drone. Problema de otimi-
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1 INTRODUCTION

With the advent of Sixth-Generation (6G) networks aiming to establish per-
vasive wireless connectivity worldwide, there arises a considerable challenge to meet
the escalating demands for high-quality and ubiquitous wireless services within cur-
rent cellular networks. Unmanned Aerial Vehicles (UAVs) exhibit exceptional flex-
ibility, mobility, and advantageous line-of-sight channels, thereby enhancing terres-
trial communications in the context of 6G networks. The emergence of UAVs as
a technology capable of delivering seamless wireless connectivity becomes pivotal,
especially in scenarios where conventional ground-based Base Stations (BSs) might
encounter limitations in providing efficient coverage and capacity. Instances of such
scenarios encompass emergency communications and responses to natural disasters
in densely populated urban areas. UAV-BS can play both complementary and,
enabling roles in 6G networks.

• Complementary Role: In this view, the work leveraging UAV-BSs is seen as
complementary to 6G. It enhances and extends the capabilities of 6G networks
by addressing specific challenges and limitations encountered by traditional
ground-based infrastructure. While 6G aims for pervasive wireless connectiv-
ity worldwide, it may face obstacles in achieving this goal in certain scenarios,
such as densely populated urban areas or during emergency situations. The
use of UAV-BSs in such scenarios provides an additional layer of flexibility and
mobility, enabling the network to adapt and respond to dynamic conditions ef-
fectively. By deploying aerial relay nodes-mounted BSs, this work contributes
to extending coverage, enhancing capacity, and improving the quality of wire-
less services in areas where conventional infrastructure may struggle to meet
demands. This augmentation of 6G capabilities through UAV-BS technology
ensures that the promises and objectives of 6G can be fulfilled more compre-
hensively and efficiently.

• Enabling Role:

In contrast, the enabling role perspective considers the integration of UAV-BS
technology as foundational to the very concept of 6G itself. It views UAV-BSs
not just as supplements to existing infrastructure but as essential components
that enable the realization of pervasive wireless connectivity worldwide. In
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this view, UAV-BS technology addresses the fundamental challenges and re-
quirements of 6G networks, playing a crucial role in shaping their architecture
and capabilities.

By leveraging UAVs to deploy UAV-BSs, this study becomes integral to es-
tablishing and maintaining seamless wireless connectivity, particularly in scenarios
where conventional infrastructure is insufficient or impractical. UAV-BSs provide
unique advantages such as enhanced mobility and line-of-sight channels, which are
essential for overcoming obstacles and ensuring reliable communication in diverse
environments. Therefore, the integration of UAV-BS technology is not merely com-
plementary but pivotal in achieving the overarching objectives of 6G networks. This
work’s contribution to 6G lies in its ability to leverage UAV-BSs effectively to opti-
mize throughput, enhance coverage, and manage energy constraints. Whether seen
as complementary or enabling, the integration of UAV-BS technology aligns with
the goals and promises of 6G networks, ultimately facilitating the realization of
pervasive wireless connectivity worldwide.

One of the paramount challenges in this domain is the efficient deployment
of aerial relay node-mounted BSs, which requires optimizing throughput while man-
aging the stringent energy constraints inherent to UAVs (PEREIRA et al., 2023;
PASANDIDEH et al., 2022).

This chapter serves as an introduction to the thesis, setting the stage for
the exploration of UAV positioning in wireless networks. Section 1.1 contextualizes
the research, providing the background and context necessary to understand the
scope of the study. It may cover details such as the evolution of wireless networks,
the emergence of UAVs as BS, and the challenges associated with their optimiza-
tion. Section 1.2 shows the primary goals of UAV-BS placement problem, including
maximizing coverage, minimizing signal interference, optimizing network capacity,
ensuring Quality of Service (QoS), and reducing power consumption. Section 1.3
outlines the specific research problems addressed in this thesis. It details the chal-
lenges and gaps in current methodologies, potentially encompassing issues related to
connectivity, coverage optimization, power consumption, and other pertinent aspects
of UAV-BS deployment in wireless networks. Section 1.4, focuses on the problem
statement and research motivation, identifying gaps in current UAV-BS placement
strategies and examining real-world applications and industries benefiting from opti-
mized UAV-BS deployment. It discusses the potential impact of enhanced UAV-BS
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placement on network performance, coverage, and reliability. Additionally, Section
1.5 delves into the motivations driving this research, elucidating the objectives, goals,
and intended contributions. Lastly, Section 1.6 provides an overview of the thesis
structure, outlining the subsequent chapters and their respective contents.

Throughout this thesis, the emphasis lies on utilizing optimization method-
ologies to strategically position UAVs as BS, enhancing network coverage, improving
wireless connectivity, and addressing the critical aspect of power consumption opti-
mization, thereby contributing to the advancement of wireless network technologies.

1.1 Contextualization

In recent years, designing the collaborative systems of UAVs commonly
known as drones have become a major research topic in different areas, especially in
robotics and artificial intelligence (AI) (SULTAN et al., 2021; CHEN et al., 2018).
Based on available statistics1, the worldwide commercial UAV market size is grow-
ing. Around 1.1 billion dollars were invested in the aerial guided system industry in
2020. The global commercial UAV market is expected to reach 58.4 billion dollars
in 2026. The significant investments in the aerial guided system industry shows that
UAVs are becoming more common in all-day applications.

Recently, different civilian and military applications have been implemented
using multi-UAV systems in which there is a swarm or formation of small UAVs. This
approach brings together the concept of Flying Ad hoc Network (FANET) of UAVs
which allows a group of UAVs to communicate and cooperate towards completing
their mission without human intervention. To accomplish their missions, the swarm
of UAVs moves freely in the environment using different types of mobility models,
which is an aspect that takes into account both the dynamics of the UAV network
and the physical characteristics of the UAV platforms. It is important to notice that
this study refers to the word "FANET" as a network of UAVs (UAV-FANETs) and
uses FANETs, UAV networks, UAV-networked systems, UAV-based networks, and
networked UAV-systems interchangeably referring to the same concept.

Not only the continuous advance of the hardware has drastically impacted
the FANETs of UAVs, but also the development of software, in particular in the
area of AI, has been crucial ( Garaffa et al., 2021). This advance benefits FANETs

1https://www.statista.com/statistics/1117058/global-commercial-drone-investments/
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used in different application domains. As the FANETs become more intelligent,
they manage to interact and make part of other systems, such as Cloud-based ones
and IoT Systems. In addition to the existing challenges in traditional FANETs,
new issues arise, such as bottlenecks, latency due to centralized processing, lack
of offline processing, and security issues. In this context, Machine Learning (ML)
approaches offer promising models in the AI domain to address these challenges with
deep learning and reinforcement learning-based solutions.

As FANETs have been adopted by many industries, a deep insight into chal-
lenges, and perspectives in FANETs are important subjects that need to be studied.

One of the paramount challenges in this domain is the efficient deployment
of aerial relay node-mounted BSs, which requires optimizing throughput while man-
aging the stringent energy constraints inherent to UAVs (PEREIRA et al., 2023;
PASANDIDEH et al., 2022). The UAV-BS placement problem, which is to deter-
mine the optimal locations for deploying UAV-BSs to achieve specific objectives, such
as maximizing coverage of an area/ number of served users (Fahim; Gadallah, 2020),
(ZAHEDI et al., 2020), (Akram et al., 2020), (SHAKOOR et al., 2021), (CHERIF et
al., 2020), (Chaalal; Reynaud; Senouci, 2020), (TAREKEGN et al., 2022), (WANG
et al., 2022), (DAI et al., 2022), (WU et al., 2022); improving wireless connectiv-
ity between UAV-BSs and ground nodes (Fahim; Gadallah, 2020) (ZAHEDI et al.,
2020) (Akram et al., 2020) (SHAKOOR et al., 2021) (CHERIF et al., 2020) (Chaalal;
Reynaud; Senouci, 2020), (TAREKEGN et al., 2022), (WANG et al., 2022), (DAI
et al., 2022), (WU et al., 2022),(SHAKOOR et al., 2021), (Zhang; Ansari, 2020)
(Zhong et al., 2020), (Vashisht; Jain; Mann, 2019), (Cicek et al., 2020), (Guo et al.,
2019), and (YOU et al., 2020); minimizing travel time between points; maximizing
network profit (Cicek et al., 2020); and the spectral efficiency of the whole system
(Guo et al., 2019).

Numerous research studies have explored the application of UAV-BSs to en-
hance wireless communication by examining UAV-BS deployment strategies and
resource allocation schemes (Fahim; Gadallah, 2020)-(YOU et al., 2020). However,
several ongoing challenges and constraints persist in the realm of UAV-BS placement.
This problem centers on identifying the most advantageous positions for deploying
UAVs as BS to attain particular goals, including the maximization of coverage, min-
imization of signal interference, optimization of network capacity, enhancement of
QoS metrics, and reduction of energy consumption.
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1.2 Goals

UAVs utilized as BSs have emerged as a prominent solution for enhancing
wireless communication networks. The placement of UAV-BS involves strategically
positioning these aerial units to achieve various objectives related to network per-
formance. The primary goals encompass maximizing coverage, minimizing signal
interference, optimizing network capacity, ensuring QoS, and reducing power con-
sumption, as described in the following:

• Maximization of Coverage: One of the fundamental objectives in UAV-BS
placement is to maximize the coverage area of wireless networks. This involves
a meticulous process of identifying strategic positions for UAV-BS deployment
to ensure extensive and efficient coverage for network users. The goal is to
establish an optimized spatial arrangement of UAV-BS units that effectively
extends the coverage footprint, reaching a larger geographical area while main-
taining reliable connectivity and communication services (MOZAFFARI et al.,
2019a). Achieving comprehensive coverage entails a multifaceted approach;
Geospatial Planning, User Distribution and Density, Signal Propagation and
Quality, and Dynamic Adaptability.

• Minimization of Signal Interference: Another critical aspect of UAV-BS place-
ment is the reduction of signal interference within the network. Identifying
optimal locations for UAV-BS helps minimize interference, thereby enhancing
the reliability and efficiency of communication links (AL-HOURANI; KAN-
DEEPAN; JAMALIPOUR, 2014a). Signal interference poses a significant
challenge in wireless communication systems, affecting the quality and reli-
ability of transmissions. By strategically locating these aerial base stations,
engineers aim to reduce Co-Channel interference, mitigate Multi-Path effects,
and address interference from external sources.

• Optimization of Network Capacity:

Effective placement of UAV-BS aims to optimize the network capacity, ensur-
ing efficient utilization of resources. Research focuses on deploying UAV-BS
in strategic locations to enhance the overall capacity of the wireless network
(ZENG; WU; ZHANG, 2016). By carefully selecting and situating the UAV-
BSs, the objective is to bolster connectivity, reduce interference, and effectively
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cater to varying demand densities across different areas within the network.
Furthermore, the utilization of UAV-BS enables dynamic coverage extension
and targeted support, particularly in scenarios with high mobility or areas lack-
ing traditional infrastructure. This approach not only amplifies the network’s
overall efficiency but also facilitates improved service provisioning, ensuring a
more robust and reliable wireless communication ecosystem.

• Enhancement of Quality of Service (QoS) Metrics:

UAV-BS placement also focuses on improving QoS metrics such as latency,
reliability, and throughput. Strategic positioning of UAV-BS influences QoS
parameters, ensuring a better user experience (YAN; VUCETIC; HANLY,
2019). By strategically locating UAV-BS, there is a direct influence on re-
ducing latency, enhancing reliability, and augmenting throughput, all of which
collectively contribute to delivering superior service quality within the wireless
network.

• Reduction of Energy Consumption:

Efficient UAV-BS placement contributes to reducing the energy consumption
of wireless networks. Optimal deployment strategies help in conserving energy
while maintaining network performance (WU; ZENG; ZHANG, 2018). Fur-
thermore, by optimizing deployment strategies and minimizing unnecessary
energy expenditure, such as excessive hovering or inefficient routing, networks
can achieve enhanced longevity, improved reliability, and reduced operational
expenses.

1.3 Research Problems

The investigation into solutions for the placement problem concerning UAVs
has yielded promising results and considerable benefits across various domains. How-
ever, this pursuit is not without its challenges, encompassing critical facets such as
energy-efficient deployment, dynamic environment adaptation, scalability and mo-
bility, and real-time optimization. Despite substantial progress in tackling these
challenges in recent years, several pertinent issues remain unresolved. Therefore,
this study aims to delve deeper into these persisting challenges and seeks to address
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specific research questions to further advance the field of UAV-BS deployment. The
following are the key research questions this work endeavors to explore and resolve

Research Question #1: What techniques, optimized algorithms, and data
structures can be employed to mitigate wasted power consumption in achiev-
ing optimal UAV-BS placement?

To mitigate UAV-BS power wastage in optimal placement challenges, vari-
ous techniques and algorithms have been proposed. One approach involves using
energy-aware optimization algorithms that consider UAV-BS flight paths and task
scheduling to minimize energy consumption while maintaining network coverage and
service quality (ZHONG et al., 2021). Additionally, employing efficient data struc-
tures such as spatial indexes or graph-based representations aids in quickly accessing
and processing spatial information, optimizing route planning, and reducing UAV-
BS energy expenditure during navigation and communication tasks (DING et al.,
2020). Furthermore, the implementation of machine learning-based predictive mod-
els enables proactive decision-making regarding UAV-BS movement and resource
allocation, contributing to energy-efficient deployment strategies (LYU et al., 2020).

Research Question #2: What are the adaptive algorithms or optimization
techniques that account for real-time environmental factors such as weather
conditions, terrain variations, or fluctuating user demands, aiming to opti-
mize UAV-BS placement and energy consumption without compromising on
network quality? and how can they be improved?

Adaptive algorithms and optimization techniques that consider real-time en-
vironmental factors for optimizing UAV-BS placement and energy consumption
while maintaining network quality often include dynamic programming-based ap-
proaches, reinforcement learning frameworks, and heuristic-based algorithms. Dy-
namic programming techniques adapt UAV-BS paths considering weather changes,
terrain constraints, and dynamic user demands to optimize energy consumption
and network quality (ABDOLI; AL., 2020). Reinforcement learning models, such
as Q-learning or Deep Q-networks, enable UAV-BSs to make real-time decisions
by learning from environmental feedback, allowing for adaptive trajectory planning
and resource allocation (ZHAO; AL., 2021). Additionally, metaheuristic-based algo-
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rithms, such as genetic algorithms or particle swarm optimization, iteratively adjust
UAV-BS positions based on real-time environmental data to achieve energy efficiency
without compromising network performance (NAWROCKI; AL., 2021). Improving
these techniques involves enhancing the learning capabilities of reinforcement models
with larger and more diverse environmental datasets, refining metaheuristic algo-
rithms for faster convergence, and integrating multi-objective optimization strategies
for balancing conflicting objectives in real-time UAV-BS placement scenarios.

1.4 Problem Statement and Research Motivation

In this section, the motivation is explored behind research endeavors focused
on optimizing UAV-BS deployment, driven by the ambition to transform commu-
nication networks, especially in situations where conventional infrastructure proves
insufficient or unfeasible. This field of study presents significant potential owing
to the distinctive capabilities of UAVs, offering adaptable, swiftly deployable, and
customizable communication services on demand.

1.4.1 Identification of the gaps in current UAV-BS placement strategies

The pursuit of optimizing UAV-BS placement strategies for efficient and ef-
fective communication networks remains a focal point in contemporary research. De-
spite remarkable advancements, several critical gaps and limitations persist in cur-
rent approaches. Notably, these gaps encompass challenges associated with dynamic
environmental conditions, stringent regulatory compliance, scalability concerns, and
shortcomings in adaptive resource allocation methodologies. Addressing these gaps
is crucial to unlocking the full potential of UAV-BSs in augmenting communication
infrastructures. The identification and comprehension of these limitations provide a
cornerstone for refining existing strategies and devising novel approaches in UAV-BS
placement optimization research.

• Limited Consideration for Dynamic Environmental Changes: Current place-
ment strategies often lack adaptability to rapidly changing environmental con-
ditions such as weather, wind patterns, and other atmospheric factors, impact-
ing the reliability and efficiency of UAV-BS deployment (ZHANG; AL., 2021).
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• Insufficient Adaptation to User Mobility and Traffic Dynamics: Strategies may
overlook the dynamic movement of users and fluctuating traffic demands, lead-
ing to sub-optimal placement and inadequate coverage in areas with varying
user densities (MOZAFFARI; AL., 2016).

• Inadequate Handling of Interference and Network Congestion: Current strate-
gies may not sufficiently address interference management among multiple
UAV-BSs or efficiently mitigate network congestion, affecting communication
quality and network performance (MOZAFFARI; AL., 2017).

• Scalability and Complexity of Optimization Algorithms: Scalability issues in
optimization algorithms used for UAV-BS placement strategies might arise
with an increasing number of UAV-BSs and users, impacting the computa-
tional efficiency and real-time adaptability (AL-HOURANI; KANDEEPAN;
JAMALIPOUR, 2014a).

• Energy Efficiency and Flight Duration Constraints: Strategies might not ef-
fectively balance energy efficiency while optimizing UAV-BS placement, po-
tentially leading to limited flight duration and compromised operational effec-
tiveness (MOZAFFARI; AL., 2016).

1.4.2 Real-world applications and industries benefiting from optimized
UAV-BS deployment

Optimized UAV-BS deployment has significant implications across various
real-world applications and industries. These deployments offer enhanced connec-
tivity, improved services, and novel solutions in sectors where traditional communi-
cation infrastructure might be insufficient or unavailable. In this section, some key
industries and applications are provided, benefiting from optimized UAV-BS deploy-
ment, along with explanations of how optimal placement affects these applications.

a. Disaster Management and Emergency Response:

– Application: During natural disasters or emergencies, UAV-BSs play a
vital role in establishing temporary communication networks for rescue
operations, coordination among responders, and providing connectivity
to affected areas (ZHANG; AL., 2021).
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– Impact of Optimal Placement: Efficiently positioned UAV-BSs can
rapidly establish communication links, cover affected regions, and en-
sure connectivity for emergency services and affected populations. Opti-
mal placement enhances network coverage and reliability in dynamic and
challenging environments (ZHANG; AL., 2021).

b. Precision Agriculture and Monitoring:

– Application: In agriculture, UAV-BSs enable real-time data collection,
remote sensing, and monitoring of crop health, allowing for precise and
targeted interventions (MOZAFFARI; AL., 2017).

– Impact of Optimal Placement: Strategically positioned UAV-BSs ensure
continuous and reliable connectivity, facilitating data transmission from
agricultural sensors and drones. This enables efficient data analysis and
decision-making for precision farming (MOZAFFARI; AL., 2017).

c. Telecommunications and Connectivity in Remote Areas:

– Application: In remote regions lacking traditional infrastructure, UAV-
BSs offer a means to establish temporary communication networks for
remote communities, expeditions, or events (MOZAFFARI; AL., 2016).

– Impact of Optimal Placement: Well-placed UAV-BSs extend network cov-
erage, ensuring reliable connectivity in remote areas, fostering economic
development, and enabling access to essential services (MOZAFFARI;
AL., 2016).

d. Surveillance and Public Safety:

– Application: UAV-BSs aid in surveillance, law enforcement, and public
safety by providing aerial coverage for monitoring events, crowd control,
and enhancing situational awareness (LIU; ZHANG; ZHOU, 2021).

– Impact of Optimal Placement: Optimal UAV-BS placement ensures com-
prehensive and efficient coverage, enhancing data transmission for real-
time surveillance and emergency response, thereby improving public
safety (LIU; ZHANG; ZHOU, 2021).

e. Media Coverage and Entertainment Events:
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– Application: UAV-BSs facilitate media coverage during events, concerts,
or sports, providing high-quality live streaming, enhancing coverage, and
ensuring reliable communication (MOZAFFARI; AL., 2016).

– Impact of Optimal Placement: Strategically positioned UAV-BSs enable
seamless connectivity, enhancing the quality and reliability of live broad-
casting, supporting real-time data transmission from multiple viewpoints
(MOZAFFARI; AL., 2016).

1.4.3 The potential impact of improved UAV-BS placement on network
performance, coverage, and reliability

Improved UAV-BS placement holds substantial promise for enhancing net-
work performance, coverage, and reliability across diverse applications. Optimal
positioning of UAV-BSs directly influences the overall network performance by ex-
tending coverage to underserved areas, enhancing signal strength, and mitigating
coverage gaps. A strategic deployment of UAV-BSs allows for dynamic adaptation
to user demands, enabling better load balancing, reduced interference, and improved
spectral efficiency. This enhanced placement not only bolsters connectivity but also
significantly augments the reliability of communication networks, particularly in
scenarios such as disaster response, remote area connectivity, and mission-critical
operations.

Improved UAV-BS placement significantly enhances network performance by
optimizing coverage, reducing latency, and boosting throughput. Strategic position-
ing ensures wider coverage, extending connectivity to remote or underserved areas.
For instance, in disaster management scenarios, optimally placed UAV-BSs facili-
tate real-time communication among rescue teams, minimizing response times and
enabling efficient coordination, as evidenced by (ZHANG; AL., 2021). Furthermore,
reduced signal interference and stronger signal strength from well-positioned UAV-
BSs enhance reliability, ensuring consistent connectivity, and fostering seamless data
transmission. This improved network performance is crucial not only in emergency
situations but also in applications like precision agriculture, where optimized UAV-
BS placement enables real-time data transmission for monitoring and management
practices (MOZAFFARI; AL., 2016).
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1.5 Contributions

This research study presents two pivotal contributions in the realm of UAV-
BS deployment optimization. The first and main contribution lies in formulating an
optimal UAV-BS placement model that incorporates non-linear optimization prob-
lems. This model takes into account the intricacies of power consumption, strategi-
cally placing UAV-BSs while adhering to energy constraints.

The second contribution delves into a comprehensive study aimed at solv-
ing the aforementioned mathematical model. By employing advanced mathematical
techniques and algorithms, this research explores effective methodologies to effi-
ciently solve the complex non-linear optimization problem associated with UAV-BS
placement. These contributions collectively offer a novel approach towards optimiz-
ing UAV-BS deployment by considering power consumption constraints and propos-
ing viable solutions to the resultant mathematical model, thereby enriching the
landscape of UAV-BS deployment strategies.

The contributions can be elucidated as follows:

• Formulating a robust representation of the energy-aware UAV-BS placement
problem as a Mixed-Integer Non-Linear Programming (MINLP), enabling the
simultaneous integration of diverse objectives and constraints. Unlike some of
the previous works, which neglect considerations of energy efficiency and fail
to integrate diverse objectives into their optimization models, this approach
offers a comprehensive solution. Employing MINLP, enables the simultaneous
integration of various objectives and constraints, thereby addressing critical
issues such as energy efficiency and accommodating diverse optimization goals.

• Unlike previous studies, which overlook the dynamic environmental factors,
this research incorporates a comprehensive range of constraints related to
UAV-BS rotor specifications, communication range, flying speed, as well as
environmental variables such as wind speed and direction, alongside UE specifi-
cations and other pertinent limitations. By assimilating these intricate param-
eters and restrictions into the devised model, the research ensures a nuanced
understanding of the physical capabilities of UAV-BS rotors while adhering to
communication thresholds over specified distances and accommodating diverse
flying speeds amidst dynamic environmental factors such as wind speed, and
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direction. Moreover, the model extends its scope to encompass the unique
requirements and capabilities of UEs, integrating these constraints to develop
a comprehensive framework that accurately reflects real-world conditions and
operational limitations, thereby significantly enhancing the applicability and
robustness of UAV-BS systems in dynamic environments.

• The optimization process for the suggested UAV-BS placement model involves
a meticulous examination across multiple performance metrics. These encom-
pass a comprehensive evaluation, not limited to, but inclusive of coverage,
capacity, energy consumption, and the fulfillment of QoS prerequisites. This
intricate analysis allows for a holistic approach, ensuring that the placement
of UAV-BSs is not only strategically positioned but also attuned to meet di-
verse operational needs. The optimization procedure is aimed at achieving an
equilibrium where the placement configuration significantly enhances coverage
areas, maximizes network capacity, minimizes energy usage, and concurrently
meets the stringent QoS demands essential for seamless and reliable network
performance.

• Introduction of a meta-heuristic algorithm, namely PSO, and JAYA, designed
to determine optimal UAV-BS locations. These algorithms represent innova-
tive methods in the realm of UAV-BS location optimization, promising en-
hanced performance and accuracy in finding the most suitable deployment
positions for these UAV-BSs. Contrary to existing approaches, these algo-
rithms offer innovative solutions to the optimization of UAV-BS deployment,
addressing the limitations of previous methods. By improving PSO and JAYA,
this contribution enhances the efficiency and accuracy of determining optimal
UAV-BS locations, thus offering a promising avenue for improved performance
in wireless communication networks.

• Given the absence of comprehensive datasets in the current literature, re-
quired datasets are provided for UAV-BSs. These datasets are meticulously
structured to encompass crucial features tailored to different sets of UAV-BSs.
Furthermore, both the datasets and the associated data generation codes have
been made readily accessible, aiming to offer fellow researchers invaluable,
multi-dimensional data resources for their investigations and analyses.

• The validation process of the derived analytical model involves conducting
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extensive numerical analyses that draw inspiration from Monte Carlo simula-
tions. These simulations serve to reinforce and affirm not only the applicability
but also the reliability of the model. By subjecting the model to rigorous nu-
merical scrutiny akin to Monte Carlo simulations, the aim is to substantiate its
robustness and ensure its effectiveness across various scenarios and conditions.
This validation methodology provides a comprehensive assessment, solidify-
ing confidence in the analytical model’s accuracy and suitability for practical
application.

1.6 Outline

The rest of this thesis is organized as follows. Chapter 2 delves into the
background and related work, starting with an exploration of the definition and
significance of UAV-BS in wireless communication networks. This section reviews
the historical evolution and advancements in UAV-BS technology for communica-
tion purposes, outlines principal use cases of UAV-BS placement, and provides an
overview of existing deployment strategies along with their limitations. It discusses
conventional approaches, including analytical techniques, heuristic, metaheuristic-
based approaches, and learning-based methodologies. Additionally, it highlights the
challenges and complexities involved in optimizing UAV-BS placement. Chapter 3
introduces the system model, presenting the network model, main assumptions, and
the model for UEs’ mobility. It formulates the placement problem, linearizes the
optimization problem, and proposes a PSO-based algorithm for the coverage mod-
ule model. Furthermore, it refines the placement problem formulation for improved
analysis. Chapter 4 details the proposed UAV-BS placement strategy, presenting
the designed solution, conducting a complexity analysis, and describing the data
generation process. Chapter 5 focuses on performance evaluations, outlining a sim-
ulated scenario, experimental design, results, and discussions. It includes algorithms
for reference and evaluates their performance. Finally, Chapter 6 offers a conclu-
sion summarizing the key findings and potential future research directions. It also
includes a section on publications and a comprehensive list of references citing the
sources used throughout the thesis.
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2 BACKGROUND AND RELATED WORK

Within this chapter, an in-depth foundation is laid out to facilitate compre-
hension of this thesis’s content. The opening section delves into the definition and
profound significance of UAV-BS within the framework of wireless communication
networks in Section 2.1, and exploration begins by tracing the historical evolution
of UAV technology specifically tailored for communication purposes. This historical
contextualization serves as a backdrop against which the advancements in this field
are highlighted.

In Section 2.2, an extensive overview is presented, elucidating the exist-
ing strategies for UAV-BS deployment and their associated limitations. The ex-
ploration of these strategies encompasses various categories: focusing on conven-
tional approaches employing analytical techniques, heuristic and metaheuristic-
based methodologies, and learning-based approaches. This comprehensive overview
aims to provide a nuanced understanding of the existing strategies and their respec-
tive constraints, laying the groundwork for the subsequent introduction of innovative
methodologies in this field.

Moving forward, the subsequent Section 2.3 meticulously addresses the multi-
faceted challenges and intricacies associated with optimizing the placement of UAV-
BS. This exploration involves an extensive examination of the complexities involved
in strategically positioning UAV-BS within wireless communication networks. It
delineates the technical, logistical, and operational hurdles that impede the seam-
less and efficient integration of these stations, thus forming a crucial part of the
foundational knowledge essential for comprehending the research landscape.

2.1 Definition and significance of UAV-BS in wireless communication net-
works

UAV-BSs refers to UAVs as aerial base stations in wireless communication
networks. These UAVs, commonly known as drones, are equipped with communica-
tion and networking capabilities, such as antennas, transceivers, and computational
resources to establish wireless communication links with ground devices. They have
garnered significant attention due to their mobility, flexibility, and ability to rapidly
deploy and cover areas where traditional fixed-base stations might be impractical or
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unavailable.
The significance of UAV-BS in wireless communication networks is evident

in their pivotal role, as they offer unparalleled advantages that significantly enhance
connectivity, capacity, and responsiveness within modern wireless communication
systems.

• Enhanced Connectivity and Coverage: UAV-BSs facilitate rapid deployment
in areas devoid of network coverage or struck by emergencies such as natural
disasters. By extending coverage to remote or underserved regions, they enable
connectivity for users otherwise deprived of access to communication networks
(ZENG; ZHANG; LIM, 2019).

• Improved Capacity and Throughput: In congested areas or during high-demand
events, UAV-BSs alleviate network congestion by offloading traffic, thus en-
hancing network capacity and throughput. Their provision of additional net-
work resources proves beneficial, particularly in crowded settings such as events
or concerts (MOZAFFARI et al., 2019b).

• Dynamic Deployment and Mobility: The inherent mobility of UAV-BSs allows
for swift repositioning based on changing connectivity demands. This dynamic
deployment proves invaluable in scenarios requiring temporary coverage, in-
cluding search and rescue operations, surveillance, or public events (ZENG;
ZHANG; LIM, 2019).

• Emergency Response and Disaster Recovery: During emergencies or natural
disasters when terrestrial infrastructure may be impaired, UAV-BSs swiftly
establish temporary communication links. This capability aids in facilitat-
ing coordination among emergency responders and contributes significantly to
disaster recovery efforts (ZENG; ZHANG; LIM, 2019).

• Reliable Communication for IoT and Critical Applications: UAV-BSs offer re-
liable and low-latency communication services, crucial for various Internet of
Things (IoT) applications, especially in critical sectors such as agriculture,
healthcare, and logistics (MOZAFFARI et al., 2019b; AL-HOURANI; KAN-
DEEPAN; JAMALIPOUR, 2014b).
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2.1.1 Historical evolution and advancements in UAV technology for com-
munication purposes

The historical evolution of UAV technology for communication purposes has
been marked by significant advancements in both hardware and communication
systems, transitioning from basic reconnaissance and data transmission to highly
sophisticated autonomous systems with diverse applications in military and civilian
domains. UAVs have seen a significant evolution in their technology, especially
concerning communication purposes. They have transitioned from simple remote-
controlled aircraft to highly sophisticated systems capable of performing a wide
array of tasks, including communication relay, surveillance, and data transmission.
This evolution has been shaped by various advancements in technology and the
increasing demand for efficient and reliable communication systems. Below is a
detailed exploration of the historical evolution and advancements in UAV technology
for communication purposes.

• Early Development and Military Applications: UAV technology traces its roots
back to the early 20th century, with initial developments in the form of re-
motely piloted aircraft during World War I and World War II. These early
UAVs were primarily used for reconnaissance and communication purposes,
enabling military forces to gather information and transmit data without risk-
ing human lives (BOUCHER; SILVA, 2018).

• Advancements in Communication Systems: With advancements in electronics
and communication technologies, UAVs started incorporating more sophisti-
cated communication systems. These systems included improved data links,
encryption methods, and better antennas, allowing for enhanced communica-
tion capabilities over longer distances (SINGH; SINHA, 2019).

• Integration of Satellite Communication: The integration of satellite communi-
cation greatly expanded the operational range and communication capabilities
of UAVs. By utilizing satellite links, UAVs could communicate beyond line-
of-sight and operate in remote areas without relying solely on ground-based
communication systems (IKUNO; BARROS, 2016).

• Emergence of Autonomous UAVs: Advancements in artificial intelligence and
autonomous systems led to the development of UAVs capable of autonomous
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operation. These UAVs could now execute complex communication tasks,
adapt to changing environments, and make real-time decisions, further enhanc-
ing their effectiveness in communication missions (RABBATH; KIRUBARA-
JAN, 2017).

• Applications in Civilian Sectors: UAVs have found applications beyond the
military, including in civilian sectors such as disaster management, agricul-
ture, and telecommunications. In the realm of communication, UAVs are used
for providing temporary communication infrastructure in remote or disaster-
stricken areas where conventional systems are damaged or unavailable (MERZ,
2020).

• Continued Technological Advancements: Ongoing research and development
continue to focus on improving UAV communication capabilities. These efforts
involve exploring advanced communication protocols, better integration with
5G and future networks, as well as miniaturization of communication hardware
for smaller UAVs with increased functionalities (LIU; ZHANG; ZHOU, 2021).

2.1.2 Principal use cases of the UAV-BS placement problem

The main use cases for UAV-mounted BSs placement problem can be sum-
marized as follows:

• Use Case 1: coverage enhancement for short-term events: An illustra-
tive application scenario involves addressing temporary events such as concerts
and sporting events, depicted in Figure 2.1, where a substantial surge in con-
nectivity, throughput, and data rate demands arises due to a large audience.
In such instances, investing in a complete infrastructure solely for these events
may not be cost-effective. Leveraging UAV-BSs emerges as a promising so-
lution to meet temporary communication needs. Once the event concludes,
these UAVs can return to their stations, eliminating the necessity for substan-
tial investments in fibers, antennas, and the installation of a permanent infras-
tructure. This approach provides an efficient and economical means to address
the heightened communication requirements during such events without incur-
ring extensive, long-term expenses. This scenario prioritizes accommodating
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a surge in connectivity, throughput, and data rate demands during tempo-
rary events. The primary focus in such scenarios is on providing sufficient
throughput to handle the increased communication requirements efficiently.
The temporary nature of these events means that cost-effectiveness and flex-
ibility are crucial, and the ability to quickly deploy and reposition UAV-BSs
is essential. Regarding UEs’ mobility model for short-term events such as
concerts and sporting events, where there is a large audience gathered in a
relatively confined area, the movement of UEs can often resemble queues or
organized lines rather than random patterns. Employing a mobility model
that simulates such queue-like behavior would better capture the dynamics of
UEs movement during these events, leading to more accurate predictions of
where the UAV-BSs should be positioned to optimize coverage and capacity.
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Figure 2.1 – Coverage enhancement for temporary crowded events

• Use Case 2: coverage enhancement for temporary unavailable in-
frastructure :

In unforeseen situations such as natural or human-made disasters—such as
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floods, severe storms, landslides, earthquakes, forest fires, or emergency ac-
cidents—as illustrated in Figure 2.2, terrestrial networks might suffer break-
downs, rendering them out of service due to equipment damage or power fail-
ures. Here, UAV-BSs emerge as crucial tools to swiftly and effectively restore
communication. Multiple UAV-mounted BSs can be deployed to the affected
areas, facilitating the rapid provision of temporary wireless communication
services, and aiding in the quick reconstruction of communication infrastruc-
ture. to target regions to provide temporary wireless communication services.
In this scenario, low latency and rapid deployment are critical to ensure effec-
tive communication during crisis situations. The priority here is on providing
reliable and resilient communication services to areas where terrestrial net-
works have become unavailable due to damage or power failures. In terms
of UEs’ mobility model, in emergency scenarios such as natural disasters or
accidents where terrestrial networks may be disrupted, UEs tend to move in
random directions as they seek safety or assistance. Therefore, a mobility
model such as the random way point model would be appropriate to simulate
the unpredictable movements of users during such events, enabling UAV-BSs
to dynamically adjust their positions to provide effective coverage where it is
most needed.

• Use Case 3: coverage enhancement for rural areas:

In rural and low-income areas, the absence of network infrastructure persists
due to the high expenses associated with deploying traditional network sys-
tems, coupled with the limited potential for profits. A promising solution to
bolster cellular coverage in these regions involves the utilization of UAV-BSs as
opposed to the costly terrestrial BSs. Rural areas generally lack tall buildings,
and the demand for network traffic is notably lower compared to urban areas.
Consequently, the need for frequent spatial repositioning of UAVs is mini-
mized, making continuous adjustments unnecessary. While the demand for
network traffic in rural and low-income areas may be lower compared to urban
areas, providing reliable coverage is essential. The focus here is on achieving
broad coverage with minimal infrastructure investment, making continuous
adjustments unnecessary. Throughput and coverage are important, but cost-
effectiveness and adaptability to the rural environment are paramount. In
rural areas with low population density and limited mobility patterns, UEs
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Figure 2.2 – Coverage enhancement for temporary unavailable infrastructure

may move in relatively random directions within their local vicinity. The ran-
dom walk mobility model would be suitable for capturing this behavior, as it
allows UAV-BSs to adapt to the sporadic movement of UEs while ensuring
continuous coverage over the vast rural landscape.

• Use Case 4: coverage enhancement for high data rate applications
in urban areas with lack of infrastructure:

Several emerging applications necessitate exceptionally high data throughput.
As depicted in Figure 2.3, an example is the utilization of autonomous vehi-
cles (AVs) navigating city streets, where occupants engage with augmented
or virtual reality interfaces inside the vehicle. These applications demand
several gigabytes per second of data transmission, a feat that exceeds the ca-
pabilities of the existing 5G network infrastructure. A promising solution to
meet such demanding data rate requirements involves leveraging Millimeter-
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Wave (mmWave) Beam-forming enabled UAV communications, particularly
in high-traffic scenarios. One of the promising solutions is to use mmWave
Beam-forming enabled UAV communications in such high-traffic scenarios. In
this scenario, the emphasis is on achieving exceptionally high data through-
put to meet the demands of these emerging applications. Regarding the user
mobility model, in urban areas with high data rate demands, such as those
involving AVs and augmented reality interfaces, users often move along prede-
fined routes or grids, especially in areas with dense traffic and infrastructure.
The Manhattan Grid mobility model, which simulates movement along city
streets in a grid-like fashion, would be well-suited for modeling the movement
patterns of users in these scenarios. It enables UAV-BSs to anticipate and
adapt to the predictable trajectories of high-demand users, ensuring optimal
coverage and capacity for data-intensive applications.

MIMO- UAV BS

MIMO- UAV BS

VR

Figure 2.3 – Coverage enhancement for high data rate applications in autonomous
vehicles (AVs) with lack of infrastructure

In summary, while each use case may share some common features such as the
utilization of UAV-BSs for coverage enhancement, their specific characteristics
and priorities vary significantly based on the application scenario. Through-
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Table 2.1 – The importance of latency, throughput, coverage, cost-effective, and other
factors in each use case scenario.

Use
Case

Low
Latency?

High
Throughput?

Broad
Coverage?

Economic
efficiency

Other
Important

Factors

Mobility
model

1 Yes Yes Moderate High Flexibility Queue based
mobility model

2 No Moderate High High Reliability Random waypoint
model

3 Yes Moderate High High Adaptability Random walk
mobility model

4 Yes Yes Moderate Low Compatibility Manhattan Grid
mobility model

put, latency, coverage, cost-effectiveness, and adaptability to different envi-
ronments emerge as key factors influencing the design and implementation
of UAV-BS solutions in each scenario. Table 2.1, illustrates the importance
of various factors, and the recommended mobility models in each use case
scenario.

2.2 Overview of existing UAV-BSs deployment strategies and their limi-
tations.

UAV-BSs hold promise in expanding communication coverage, especially in
challenging terrains and emergencies. Multiple deployment strategies exist for UAV-
BS, encompassing static, mobile, relay-assisted, swarm, and hybrid deployments.
Static deployment offers stability but lacks adaptability to dynamic demands, while
mobile strategies provide flexibility despite energy consumption and connectivity
issues. Relay-assisted deployment enhances coverage but faces limitations in mobil-
ity and transition. Swarm deployment provides redundancy but demands intricate
coordination. Hybrid methods offer adaptability but increase management com-
plexity. Common limitations encompass energy constraints, regulatory challenges,
spectral efficiency issues, and coordination overhead. Addressing these challenges
necessitates innovative solutions in energy efficiency, advanced protocols, trajectory
planning, and regulatory support to fully harness UAV-BS potential in communica-
tion networks (LIU; ZHANG; ZHOU, 2021), (MOZAFFARI et al., 2019a).

According to Figure 2.4, optimization of UAV-BS placement for energy effi-
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ciency involves diverse methodologies across traditional, machine learning, optimiza-
tion algorithms, and hybrid strategies. Traditional approaches such as trial and error
leverage heuristic-based strategies or grid-based searches to intuitively place UAV-
BSs in ways that efficiently cover target areas, aiming to reduce energy consumption.
Analytical methods, such as Optimization Models and Game Theory Models, em-
ploy mathematical formulations to precisely determine optimal UAV-BS placements
considering factors like coverage, interference, and energy trade-offs. These meth-
ods strive to minimize energy consumption while ensuring effective communication
coverage.

Machine learning-based techniques, including Supervised Learning (utilizing
regression and classification models), Unsupervised Learning (employing clustering
and anomaly detection), and Deep Learning (utilizing RNNs and CNNs), contribute
significantly. These approaches learn from data patterns to predict energy usage,
detect efficient spatial placements, or uncover complex spatial and temporal patterns
for optimized UAV-BS deployment, thereby enhancing energy efficiency.

Reinforcement Learning, particularly via Markov Decision Processes, allows
UAVs to learn optimal placement policies through interactions with the environ-
ment, aiming to minimize energy consumption while ensuring effective coverage.
Optimization algorithms such as Greedy Algorithms and Metaheuristic Algorithms
(e.g., GA, PSO, Simulated Annealing) explore search spaces to find near-optimal
solutions that consider energy efficiency in UAV-BS placement.

Hybrid approaches integrate traditional methods with machine learning, of-
fering a blend of mathematical precision and pattern recognition for optimal UAV-
BS placement.
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Figure 2.4 – A high-level overview of diverse approaches to optimizing energy in UAV-based communication systems.



37

2.2.1 Conventional Approaches: Analytical techniques

In this approach, a mathematical model is created that represents the prob-
lem, and the optimal solution is found by solving the mathematical equations using
optimization techniques such as linear programming, integer programming, or non-
linear programming.

In (ALZENAD et al., 2017), authors propose the UAV-BS deployment in
the horizontal dimension as a circle placement problem and a smallest enclosing
circle problem. They consider two scenarios where the UAV-BS is placed in a 2D
location and in a three-dimensional (3D) Location. The number of users covered
and the power consumed in the BSs is 16 percent. However, this can limit the flying
time of the UAV. In this paper the authors focus only on the power consumed in
the BS, adopting the energy for efficient utilization. The UAV-BS can be rapidly
deployed when a BS failure occurs because it can adjust to any kind of scenario
to provide wireless. However, this should be deployed in an area where it can
maximize the number of users covered. The solution that is achieved is to place the
UAV-BS in a way that can cover a wide range of users while using less transmit
power proposing a UAV-BS 3D method placement. The UAV is placed in a vertical
way from his horizontal which will simplify any loss of optimality. Evaluating the
proposed method for any levels of user heterogeneity, and saving power can lead to
highly heterogeneous scenarios.

In (LI et al., 2019), the authors proposed the idea of UAV relay deployment
for maximizing system energy efficiency in a Space-Air-Ground Internet of Remote
Things (SAG-IoRT) network. In a SAG-IoRT network, because access to smart
devices can not be reached by ground access networks because of strong conditions
(deserts, forests, etc) the power consumption is limited, this is why the UAV helps
connection directly with the satellites and cope with challenges for IoRT networks.
Smart devices are also distributed in remote areas to monitor or sense but this
cannot be served by ground access networks. The idea of this paper is to investigate
the energy-efficient resource for the use of Space Air Ground Internet of Things
and maximize the system energy by using some channels selection, power upLink
transmission, and UAV deployment. They divide the main problem into two sub-
problems. In the first sub-problem, the optimal sub-channel selection and power
control policy are obtained by given UAV relay deployment. In the second sub-
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problem, UAV relay deployment policy is obtained based on the first sub-problem.
Then, iterating two sub-problems to obtain the maximum system energy efficiency.
The UAV perfect placement is given by the Lagrangian method and the UAV relays
deployment by successive convex approximation (SCA).

UAV-BSs can tilt their directional antenna at an adjustable angle to serve
the GUs, however, a UAV-BS has a limited amount of available onboard power. In
(YOU et al., 2020), the authors propose an energy-efficient 3D positioning to reduce
the total energy consumption (TEC) of the UAV-Bs that is the energy required by
a UAV-BS to move from its point of origin to its 3D destination and complete the
provision of data services to all GUs in a given area. TEC includes propulsion power
and communication power. The authors solve the 2D placement problem using
the gradient descent method (GDA) The proposed simulation shows that the GDA
performs quite similarly to the comprehensive 2D search strategy in finding the ideal
UAV BS placement. Also compared to benchmark methods, the proposed antenna
tilting approach leads to significant energy savings. Extending a system model
to operate with multiple UAV-BS and considering the different wireless channel
conditions/variations and a UAV-BS trajectory problem removes some limitations
of the idea that optimal 3D placement requires different throughput requirements
and GU densities.

In (WANG; HU; CHEN, 2020), the authors examined the energy efficiency
of a DBS that provides wireless coverage for ground users (GUs). They formulate
a DBS placement problem that minimizes the average transmit power of the DBS.
The influence of the elevation angle on the additional path loss of the Air to Ground
(AtG) connection is introduced using the statistical path loss model. They first,
consider a case where the DBS allocates the same transmit power to each user.
Then a decoupling-based placement algorithm is proposed to get the optimal DBS
location. Further, if the case is considered without assuming the same transmit
power for each user, an SCA-based DBS placement algorithm is proposed to obtain
the DBS location. Simulation results show that increasing the drone altitude can
achieve the line-of-sight spread (LoS) advantage of the AtG connection, resulting in
power savings from the proposed algorithms. DBSs are extremely helpful for various
scenarios. In the event of an emergency, the ground base station may become
overloaded due to an increase in the number of users over time. It is difficult to
provide the ground infrastructure in a short time. A DBS can serve as an air access
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point to serve these transient users.
In (BABU; PAPADIAS; POPOVSKI, 2020), the authors propose to place

multiple Air Access Points (AAPs) in the target area in an energy-efficient man-
ner and serve as an airborne base station for uplink communications from a variety
of UEs. Analytically, the inter-cell interference and the energy consumption of the
AAPs are taken into account to determine the ideal energy-efficient vertical position
of the AAPs worldwide. The energy-efficient flight altitude of AAPs is determined
and the multi-level regular polygon-based placement method is used to solve the
optimal horizontal placement problem; it is presented as a circular packing problem
for maximum packing density. Finding the ideal vertical positioning of the AAPs
can be decomposed into identical and separate vertical positioning challenges for in-
dividual AAPs when considering AAPs with non-overlapping coverage areas. Since
the problem of vertical positioning of the independent AAPs has been solved, all
AAPs will float at an energy-efficient height. Here they consider an uplink orthogo-
nal communication between the associated AAP and the UEs. Future research will
expand the study to include downlink UAV communications with non-uniformly
distributed UEs and full coverage of the required range through carefully managed
overlap across AAP coverage areas.

Using UAV in AtG communication currently poses two main problems: en-
ergy consumption, and the jitteriness of the UAVs, which could be caused by airflow
and body vibration of the UAV. Authors in (WU et al., 2020) investigate secure
communication in a secured downlink AtG communication system using UAV-BS,
with consideration of security, energy consumption, and the impact of UAV jitter.
In this paper, the BS is set to simultaneously transmit a secured signal ("legitimate
signal" as in the paper) to a legitimate user and artificial noise signal to an eaves-
dropper. To achieve better power consumption while still maintaining security, a
joint beamforming design for both signals is formulated as a non-convex optimiza-
tion problem. For the worst-case scenario of UAV jittering, constraints such as the
minimum data rate of the secured channel being above a given threshold and the
maximum data rate of the eavesdropping channel being below the other thresh-
old, are considered. The experimental results demonstrate the impact of key system
parameters on power saving under secure transmission requirements and UAV jitter.

Traditionally, UAV-based communication has been impacted by weather con-
ditions. Authors in (MUTHANNA et al., 2022) propose a new approach for position-
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ing and path planning of UAV to improve the QoS, reliability, and energy efficiency in
UAV communications with consideration of the impact of the weather. A Cerebral
Long Short-Term Memory (C-LSTM) model is utilized to predict weather condi-
tions, then cell-based partitioning of emergency areas is carried out, and the A3C
algorithm is used to decide the number and position of UAVs for optimal coverage
and minimal transmission power. The path planning of UAVs is optimized using
the Mayfly Optimization Algorithm (MOA). The proposed approach is evaluated
using performance metrics such as coverage ratio, cell coverage, delay, path gain,
number of collected packets, UAV transmit power and energy consumption. The
results of the evaluation demonstrated its efficiency in improving the performance
of UAV communications in adverse weather conditions.

Authors in (GUO et al., 2022), propose UAV-BS location optimization to
deliver the required minimum bit rates to the GUs. They divide the 3D location op-
timization problem into two subproblems, the horizontal coordinates and the height
optimization subproblem. The authors optimize the horizontal coordinates by using
the CVX toolbox and converting the height optimization subproblem into the ele-
vation angle optimization problem. In this paper, authors took the average of the
sum of the transmission rate of ground node (GN) and provide the same Bit rates
to all GN in the range of UAV-BS.

In (MARANI; MIRREZAEI; MIRZAVAND, 2023) authors cover two types
of users, in this paper author increases the coverage area and rate for Downlink
Users(DU) by randomizing their movement using Gauss-Markov random moment
and using Rayleigh fading communication channel for the D2D Transmitter Receiver
pair. To achieve the requirements, the author calculates the maximum radius for the
drone using a new method based on the Global Positioning System (GPS) and then
they calculate the optimal position for the drone using a non-real-time algorithm.
It is assumed that drones know the location of users in advance therefore using this
the optimum position of UAV is achieved.

In (IQBAL; AHMAD; KALEEM, 2022) authors propose a method to opti-
mize the power consumption of drones in disaster-stricken areas to increase the per-
formance time using relay drones. In this paper, the working BS is to be assumed
to be placed at 10x times the range of the Observation UAV (O-UAV) (drone cov-
ering the area) such as if O-UAV can cover 500m then the BS is located at 5000 m.
Therefore to optimize power consumption, Relay UAV (R-UAV) is placed between
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O-UAV and BS, here author proposed the method for optimal R-UAV placement.
The authors assume that the link rates of O-UAV and R-UAV are equal to the link
rates of R-UAV and BS, thus allowing them to convert the non-convex optimization
problem into a convex optimization problem. This problem is then solved using
the Interior point polynomial algorithm, and after the simulation, it is shown that
using an optimized R-UAV position the power consumption can be reduced thus
increasing the flight time of UAV over the area.

2.2.2 Conventional Approaches: Heuristic and Methaheuristic-based ap-
proaches

Metaheuristic-based approaches are problem-solving techniques that use iter-
ative search algorithms to find optimal or near-optimal solutions to UAV placement
optimization problems. Genetic Algorithms (GA), Particle Swarm Optimization
(PSO), Grey Wolf Optimizer (GWO), Cuckoo Search (CS), and Ant Colony Opti-
mization (ACO) are powerful problem-solving techniques that can be used to solve
the UAV-BS placement problem (PASANDIDEH et al., 2022; PASANDIDEH et al.,
2023a).

In (PASANDIDEH et al., 2023a), the authors propose an improved PSO al-
gorithm to solve the DBS placement problem. They provide a MINLP formulation
problem in which the DBSs location and the optimal number of DBSs are jointly
obtained using the proposed method which is based on the integration of PSO and
K-means algorithms. A custom communication protocol (CCP) is also proposed
for data exchange between the UEs and the network controller. The proposed al-
gorithm provides a low latency and packet loss rate of UEs while maximizing UE
coverage. However, the presented mathematical model overlooks the power con-
sumption aspect of the UAV-BSs, and the examined scenarios are confined to a
restricted number of UEs.

In (YU et al., 2022), authors introduce the backhaul aware bandwidth allo-
cation and DBS placement (BROAD ) algorithm, utilizing GA to allocate available
bandwidth to UEs and determine the placement of UAV-BSs considering LOS com-
munication with the Macro Base Station (MBS). The authors propose to use Free
Space Optic (FSO) as a backhaul solution between UAV-BS and MBS. According
to (YU et al., 2022), using UAV-BS with the usual backhaul in a disaster-stricken
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area where MBS is more than 10 km away will result in low link capacity. FSO
offers data rates from Gbps to Tbps over several kilometers. However, maintaining
accurate optical alignment between the FSO transmitter at the MBS and the FSO
receiver at the UAV-BS is challenging due to potential UAV-BS movement and vi-
bration in the air. While high-precision Acquisition, Tracking, and Pointing (ATP)
systems ensure alignment, their weight accelerates UAV-BS battery drainage. To
address this, the authors suggest employing Simultaneous Wireless Information and
Power Transfer (SWIFT) technology for FSO.

In (LAI; CHEN; WANG, 2019), the authors model the UAV-BS placement
problem as a knapsack problem in the area with respect to the network traffic
requirements and UE density in the area, unlike other methods that try to cover the
maximum area using UAV-BS. In the proposed algorithm, which is designed based on
the concept of the GA, the authors have suggested different network ranges of drones
with respect to user equipment (UE) density providing them with guaranteed data
rates and reducing the transmission power. The proposed density-aware 3D UAV-BS
placement algorithm selects three random UEs and then obtains the circumference
which is the range of UAV-BS. The smaller the area higher bit rates are provided
to the UE.

The findings of (ISLAM et al., 2022) reveal that the proposed solution effec-
tively predicts vehicle traffic patterns to optimize UAV height settings. This article
employs the PSO algorithm to determine the optimal UAV deployment positions
across the entire network, taking into account factors such as vehicle density, head-
ing direction, and prior coverage data. Subsequently, PSO is iteratively applied to
ascertain the ideal number of UAVs needed to meet a predefined network coverage
threshold. The simulation results demonstrate that the proposed scheme, known
as the collaborative network coverage enhancement scheme (CONEC), significantly
enhances vehicular ad-hoc network (VANET) performance in terms of key metrics
including packet delivery ratio (PDR), hop counts (HOPs), end-to-end delay (EED),
and throughput when compared to its counterparts.

Authors in (SHAKHATREH et al., 2021) formulate the problem of optimal
placement of UAVs as air base stations to maximize the total throughput of wireless
devices. Authors find the location of the UAVs, using PSO algorithm, then the total
throughput of the UAVS is achieved using three different approaches, (1) the equal
power allocation approach, (2) the water filling approach, and (3) the modified water
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filling approach. Authors in (ABU-BAKER et al., 2023) also use the PSO and GA
for clustering wireless sensor networks (WSNs), and for optimal search with the aim
of increasing battery life, respectively.

In (OUAMRI et al., 2022), the authors address the challenge of UAV place-
ment utilizing the GWO algorithm. The primary goal of their research is to optimize
coverage. The study presents simulation results for a scenario involving 10 UAVs
and 200 UEs, yielding a reported coverage rate of 85%. However, the authors over-
look the significant factors of the blocking effect and overlap between drones, which
are crucial considerations for effective handoff mechanisms.

In (MANDLOI; ARYA, 2023), the authors explore the optimal utilization of
UAVs in scenarios characterized by damaged environments or lacking communica-
tion infrastructure. While the primary focus is on determining the ideal quantity of
UAVs, the model encompasses several distinct stages, with the optimal deployment
and placement of these UAVs representing key objectives within the research. This
paper delineates three crucial steps: the application of the k-means technique, for-
mulation procedures, and the utilization of a fuzzy-based genetic algorithm. Since
metaheuristic methods are utilized, an outline of studies employing metaheuristic
approaches to optimize power consumption in UAV-based communication systems
is provided by Table 2.2. The proposed method, illustrated in Table 2.2, considers
all these specified objectives.

Table 2.2 – Summary of key characteristics in metaheuristic-based studies

References Methods Coverage Connectivity Energy Latency

(PASANDIDEH et al., 2023a) PSO ✓ ✓ ✓

(YU et al., 2022) BROAD (Heuristic) ✓ ✓

(LAI; CHEN; WANG, 2019) GA ✓ ✓ ✓

(ISLAM et al., 2022) PSO ✓ ✓

(SHAKHATREH et al., 2021) PSO ✓ ✓

(ABU-BAKER et al., 2023) PSO + GA ✓

(OUAMRI et al., 2022) GWO ✓

This work JAYA ✓ ✓ ✓ ✓
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2.2.3 Learning-based approaches

ML-based approaches can also be used to solve UAV placement optimization
problems. In this approach, ML techniques such as Supervised and Unsupervised
Learning, Deep Learning (DL), and Reinforcement Learning (RL) are trained on
historical data to learn patterns and make predictions about optimal UAV placement
strategies.

In (NOH; JEON; CHAE, 2020), authors propose an ellipse clustering algo-
rithm for optimizing the deployment of UAVs as base stations. The algorithm max-
imizes user coverage probability and minimizes transmit power to lower inter-cell
interference by adjusting its antenna half-power beamwidth, orientation, and 3D lo-
cation to minimize path loss for cell-edge users. As simulations were carried out, the
results demonstrated that when compared to conventional algorithms, such as the
circle-packing approach, the proposed solution can achieve high system throughput
and coverage while using less transmit power. This allows an efficient deployment
of multiple UAVs while maintaining QoS for the users.

The challenge regarding UAV base station positioning increases when the
UAVs are forced to change their heights, which can affect channel conditions and
coverage. In (SHAKOOR et al., 2021), authors address this problem by jointly
optimizing UAV positioning and path-loss compensation factor, which can maximize
coverage in uplink transmission. Path-loss compensation factor is also optimized
for different heights of UAV deployment. Simulation results demonstrate that this
approach improves both range and throughput.

In (LIU et al., 2018), authors propose a novel highly energy-efficient Deep Re-
inforcement Learning (DRL) method for controlling a group of UAV base stations
while maintaining coverage and connectivity. This DRL-based method is called
DRL-EC3. This proposed method considers communication coverage, fairness, en-
ergy consumption, and connectivity to maximize a novel energy efficiency function.
The environment and its dynamics are learned, then decisions can be made with the
help of two deep neural networks. Simulations have been carried out and show that
the proposed method outperforms two commonly used baseline methods.

In (MOUSTAFA; ALYAHFOUFI; ABBAS, 2022), the authors present an
advanced multi-UAV deployment algorithm designed to optimize power efficiency
while minimizing latency. The intended application is within a hazardous industrial
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area measuring 40m by 40m, where the algorithm aims to establish communication
with 20 randomly distributed IoT devices. Unlike prior studies that focused on
singular UAV systems or a limited number of IoT devices, this paper targets the
deployment of the fewest energy-efficient UAVs necessary to efficiently communi-
cate with a larger set of IoT devices. The investigation encompasses metrics such
as the quantity of UAVs required, energy consumption per UAV, and the needs of
the IoT devices, considering each as individual parameters. To tackle this chal-
lenging optimization problem, the study introduces a real-time methodology that
leverages k-means clustering and a novel activity selection algorithm. These in-
novative approaches collectively address the NP-hard nature of the optimization
problem, offering a promising solution for practical deployment in complex environ-
ments. In in (LIU et al., 2022), a Proximal Stochastic Gradient Descent (ProxSGD)
based algorithm proposed for optimizing UAV placement in a wireless cellular net-
work scenario, considering Ground-to-Ground (G2G) and A2G access links. The
primary objective is to maximize fair coverage while minimizing energy consump-
tion, and adhering to backhaul and bound constraints. Evaluation metrics include
region coverage ratio, fairness index, and energy usage. The algorithm is tested in
a rectangular region with 106 BSs and 10201 ground samples. Monte Carlo sim-
ulations placed UAVs randomly, revealing that the coverage versus average energy
consumption converges optimally with 175 UAVs. Validation is confirmed through
the incremental increase in the region coverage ratio, affirming the optimization’s
validity. ProxSGD’s efficiency was then compared with Simulated Annealing Algo-
rithm (SAA), GA, and PSO, demonstrating superior convergence speed over these
algorithms.

In (QI et al., 2022), authors propose a resource allocation strategy in the
UAV-assisted vehicular network that also handles spectrum sharing. Factors that
affect QoS and energy efficiency such a content placement, spectrum allocation, co-
channel link pairing, and power control are optimized in this study. The authors
consider a scenario where a UAV can transmit cached content files to vehicular users
over UAV-to-vehicle (U2V) links. Simultaneously vehicle-to-vehicle (V2V) links can
reuse the U2V spectrum for safety-critical message exchanges. UAVs are assumed to
be static and on a fixed altitude. In a realistic scenario, this is rarely the case. How-
ever, it is formulated as a MINLP problem that is then solved by the utilization of
both a Hungarian Algorithm and a DDQN. The Hungarian Algorithm is employed
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to improve the convergence speed of the DDQN. Evaluation metrics include UAVs
energy efficiency in scenarios such as different numbers of vehicles, maximum trans-
mission power for U2V-UEs, and different weight values. Additionally, the change
in Q values is also used to evaluate the RL methods. They were able to significantly
improve the energy efficiency of their UAVs while proving the Hungarian Algorithm
significantly speeds up the convergence as compared to a traditional DQN method.

In (SUN et al., 2023), a UAV-Net+ is introduced to deploy and schedule a
set of UAV Base Stations. UAV-Net+ can provide high-quality connectivity while
accounting for dynamic traffic demands and UAV path planning that considers the
energy constraints. A 3D terrain is divided into a set of grid cells where the model
runs a Ray Tracing simulation to obtain Signal-to-noise ratio (SNR) values. These
are used to create a 3D SNR heat map. Since it is sensitive to a few centimeters
of error, the region is then further divided into a set of chunks whose size is larger
than a grid cell. The chunks are then selected by the next algorithm. A 3D convo-
lutional DRL-based Chunk Selection algorithm selects an optimal subset of chunks
to determine a small search space for UAVs. Then the energy-aware DRL-based
Chunk Search Algorithm considers the impact of multiple factors to determine the
long-term benefits of different task choices. This is then used to plan the paths that
can cover all the selected chunks to complete certain tasks. These tasks include
SNR measurements, providing network services and efficiently recharging. Effective
Throughput is introduced as an evaluation metric that selects grid cells that can
provide a higher throughput to each client as a candidate for UAV base station
placements. The algorithms intend to maximize the effective throughput for each
grid and select the chunks according to this metric. It is NP-hard and greedy. These
algorithms are verified in a real-world environment namely Beijing Happy Value and
it was found that UAV-Net+ outperforms similar models.

Table 2.3 summarizes the main aspects of the revised relevant related work.
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Table 2.3 – Summary of main characteristics of some of related studies

Reference Addressed Problem Centralized? Proposal

(Akram et al., 2020) To minimize UAV-BSs while maximizing served users no Classical Branch and Bound search (RINS)
(Zhong et al., 2020) To maximize users’ data-rate requirements no Genetic algorithm (GA)
(Cicek et al., 2020) To maximize network profit (throughput, latency, coverage) no Golden Section Search (GSS) algorithm

(Chaalal; Reynaud; Senouci, 2020) To maximize users’ coverage no Social Spider algorithm
(Guo et al., 2019) To maximize spectral efficiency of the system no Deep reinforcement learning algorithm (DQN)

(TAREKEGN et al., 2022) To maximize communication coverage and network connectivity yes Deep reinforcement learning (DRL)
(WANG et al., 2022) On-demand coverage with minimum power consumption yes Centralized multi-agent Q-learning

(DAI et al., 2022) Optimize coverage and utility no Multi-agent collaborative environment learning
(WU et al., 2022) To maximize average spectrum efficiency no Federated multi-agent deep deterministic policy gradient (F-MADDPG)

(ALFAIA et al., 2022) To improve service quality in regions supported by UAV-BS no Prediction machine learning algorithm
(Bozkaya; Canberk, 2020) To maximize covered users and communication quality yes Nearest neighbour weighted interpolation method

(Pan et al., 2019) To maximize data rate utility among overall users yes Successive convex optimization (SCO) and modified ADMM techniques
(Pan et al., 2018) To maximize number of covered users yes Bisection search and CCCP methods

(Vashisht; Jain; Mann, 2019) To provide continuous connectivity between various UAVs yes Grey Wolf Optimizer (GWO)
(PASANDIDEH et al., 2023a) To provide maximum user coverage with minimum latency and packet loss yes Improved k-means based PSO algorithm

This work To provide maximum connectivity and minimum power consumption yes Improved k-means based JAYA algorithm



48

2.3 Challenges and complexities involved in optimizing UAV-BS place-
ment

UAV-BS placement problem is a challenging research issue that requires fur-
ther investigation. Currently, there are several challenges and potential future re-
search directions for addressing this problem that are shown in Figure 2.5.

Future directions
for UAV-BS placement

Problem

Clear Line of Sight (LoS) 

surrounding environment: 
topography & building height

High interference

weather conditions:
 heavy winds, rain, and Fog

UAVs mobiliy

jitteriness and 
body vibration of the UAV

UAVs power constraint

lower power , 
lower bandwidth 

or range coverage

Security & Privacy

sensitive data being
 intercepted and compromise

Figure 2.5 – Future research directions for UAV-BS placement problem

One main challenge is ensuring a clear LoS between the devices. Since UAVs
usually operate at high altitudes, there can be multiple obstructions such as build-
ings, trees, or other tall structures that can interfere with the LOS, which leads to
connectivity issues (GAPEYENKO et al., 2021). Therefore, the base station place-
ment problem should consider the surrounding environment, including topography



49

and building height.
Another challenge is high interference among nodes. The frequency bands

used for UAV communication may be crowded with other wireless devices, especially
in urban areas, leading to interference and signal degradation. Not only wireless
devices, but weather can also be a source of interference. Harsh weather conditions
such as heavy winds, rain, and fog can interfere with communication and cause
connectivity issues (MUTHANNA et al., 2022). The base stations therefore should
be designed to minimize the impact of wireless interference as well as harsh weather
conditions.

In addition, another challenge is the mobility of the UAVs themselves. UAVs
are mobile and can move quickly from one point to another, therefore it can be
challenging to provide good coverage. The nature of flying UAV can also lead to
jitteriness caused by airflow and body vibration of the UAV (WU et al., 2020), which
should be taken into account.

In addition to these challenges, power constraint is another major difficulty.
UAVs have limited battery life, which means that the UAV-BS must be designed to
operate on low power consumption. It can be challenging because low-power com-
munication technologies may not have the necessary bandwidth or range coverage
required for effective communication (WANG; HU; CHEN, 2020).

The placement of UAV base stations can have significant security and privacy
implications. Therefore, it is essential to consider security and privacy concerns
when designing placement algorithms (RODRIGUES et al., 2019). Unauthorized
access to the UAV’s communication can lead to sensitive data being intercepted and
compromised. This is a matter of grave concern if the UAV-BS is being deployed in
critical applications such as security, surveillance, or defense.
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3 SYSTEM MODEL

Within this chapter, a detailed exploration of the network model delineated in
Section 3.1 is embarked upon. This model serves as the foundational framework for
the subsequent analysis and evaluations conducted in this study. It encapsulates the
intricate interconnections, node behaviors, and communication protocols essential
to comprehending the dynamics of UAV-assisted networks. Section 3.1.1 elucidates
the primary assumption that underlies and drives the investigation undertaken in
this research. This assumption acts as a guiding principle, shaping the direction of
the study and influencing the subsequent methodologies employed.

Section 3.1.2 represents a critical segment wherein various mobility models
applicable in UAV-assisted networks are systematically delineated. Each model’s
distinct characteristics, advantages, and limitations are scrutinized to underscore
the rationale behind the selection of the random walk mobility model for this study.
The inherent stochastic nature and adaptability of the random walk model align
closely with the dynamic nature of UAV-assisted networks, making it a suitable
choice for simulating realistic user mobility patterns. Furthermore, a comprehensive
justification for opting for this specific mobility model is presented, emphasizing its
relevance and applicability to the research objectives.

Concluding this in-depth exploration, Section 3.2 provides an exhaustive ex-
planation encompassing both historical and contemporary mathematical optimiza-
tion models proposed for addressing placement challenges in UAV-assisted networks.
This section meticulously dissects the objective functions and constraints embedded
within these models. It offers detailed insights into their operational mechanisms,
shedding light on the evolution of optimization strategies from earlier proposals
to current methodologies. Additionally, it examines the efficacy of these models
in addressing the complexities inherent in optimizing UAV-BS placements, thereby
providing a comprehensive understanding of their strengths and limitations within
varying network contexts.

3.1 Network Model:

The problem of determining the optimal positions remains an ongoing chal-
lenge, UAV-BSs are commonly referred to as the placement problem, which this
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study investigates. The network model comprises multiple low-altitude UAV-BSs
and a group of mobile UEs within an environment designed to simulate a dynamic
flying ad-hoc network. The mobility pattern of the UEs is governed by the Ran-
dom Walk mobility model, characterized by a varying speed range, reflecting the
unpredictable movement patterns akin to real-world scenarios.

Throughout the performed simulation, which comprises 10 discrete time steps
(T=10), each representing a unit of time, computations are performed and UAV-
BS placement is dynamically adjusted in response to evolving UEs positions and
requirements. This ensures that the placement of UAV-BSs accurately reflects real-
world scenarios, effectively capturing the dynamic mobility of UEs. For instance, at
time0, one unit of time is considered, with subsequent times representing increas-
ing duration. The time step increment, dt=1, denotes the duration of each step,
commonly expressed in seconds, minutes, or other relevant intervals. Considering
a flight duration constraint of 20 minutes for UAVs equipped with batteries lasting
between 15 to 30 minutes, the 2-minute time unit proves pivotal for realistic flight
operations, aligning with the limited mobility of commercial UAVs. This constraint
facilitates practical simulations wherein users engage in data transfer operations
within these constrained flight windows.

An important scenario demanding adaptability, reliable connectivity, and
minimal latency occurs within 6G networks during natural disasters, such as severe
storms. This situation showcases the utilization of UAV-BSs as macro cells, operat-
ing as 5G and beyond infrastructure, especially in areas that have incurred damage,
as depicted in Figure 3.1. The illustration in Figure 3.1 demonstrates that terrestrial
Base Stations (BSk) might become inoperative due to equipment damage or power
issues. In such cases, UAV-BSi can be deployed at (xUAV−BS

i,t , yUAV−BS
i,t , hUAV−BS

i,t ) at
time t. This deployment serves to enhance relief efforts and amplify radio commu-
nication capacities for UEj situated at (xUE

j,t , yUE
j,t ) within the radius of UAV-BSi,

which measures RUAV−BS
t at time t. The coordinates (xUAV−BS

i,t , yUAV−BS
i,t , hUAV−BS

i,t )
are determined using an optimization model for placement. Additionally, the opti-
mization model includes essential variables such as θUE

i,j,t, representing the elevation
angle between UAV-BSi and UEj at time t, and distUAV −UE

i,j,t , which denotes the
distance between UEj and the projection of UAV-BSi on the X-axis at time t. As
BSk is non-operational, there exists no backhaul link between UAV-BSi and BSk.
At this moment, UAV-BSi directly communicates with UEj at time t using an access
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link.
In a UAV-BS placement formulation, the elevation angle, θUE

i,j,t between UAV-
BSi and UEj significantly affects both the path Loss and data rate Constraints
within the model. The path loss between the UAV-BS and UE is influenced by
the elevation angle, with smaller angles generally resulting in reduced path loss
due to improved line-of-sight conditions. Consequently, the path loss constraint
in the model may vary depending on the elevation angle, potentially allowing for
more flexible placement of UAV-BSs to meet desired signal strength requirements.
Moreover, the elevation angle impacts the achievable data rate between the UAV-
BS and UE, as it affects the signal strength and quality. Higher elevation angles
typically lead to higher data rates due to stronger signal reception. Therefore, the
data rate constraint in the model may also be influenced by the elevation angle,
potentially enabling optimization of UAV placement to ensure adequate data rate
coverage across the network. Incorporating elevation angle considerations into the
UAV placement formulation allows for more accurate modeling of path loss and
data rate constraints, ultimately leading to improved performance and efficiency in
UAV-BS deployment.

UAV-BS UAV-BS 

Broken-BS

Broken-BS

UAV-BS

Ac
ce
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k

Backhaul link
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Backhaul link

Figure 3.1 – The deployment of UAV-BSs as resilient infrastructure in 6G networks
during natural disasters.
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3.1.1 Main assumption:

Below are the refined assumptions outlined in the proposed work:

• The operational environment for the UAV-BSs spans across an area of 2 square
kilometers.

• UAV-BSs possess varied communication ranges (RUAV
t ) and capacities.

• The data requirement rate for UEs varies at each time step, determined ran-
domly for each UE.

• Each node (comprising UAV-BSs and UEs) is assigned a unique identifier for
network distinction.

• All UEs maneuver based on a Random Walk mobility model, with speeds
ranging from 5 to 100 km/h.

• The communication setup assumes direct single-hop communication between
UEs and UAV-BSs.

• Vertical speed of UAV-BSs is assumed to remain unaffected by wind speed
and direction.

• Ground Base Stations (GBS) and the backhaul links between UAV-BSs and
BSs are not considered in this context.

Table 3.1 show the list of notations used in this work and the problem opti-
mization formulation.

3.1.2 UEs mobility model:

In UAV-assisted networks, user mobility models simulate the movement pat-
terns of users or devices within the network. These models are crucial for un-
derstanding and predicting the behavior of users, which is essential for designing
efficient network protocols and algorithms. Several user mobility models are used
in UAV-assisted networks (BOUVRY; THOMAS, 2005; BISWAS; TATCHIKOU;
DION, 2006; AKYILDIZ; WANG; WANG, 2005), including:
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Table 3.1 – Summary of sets, parameters, variables

Abbreviation Description Values
Sets
I, J , T Set of UAV-BSs, Set of UEs, Set

of Times
{2, 3, 5, 10}, {50, 75, 150},
{1, 2, ..., 10}

Scalars
w1/w2 Weight coefficients (w1 + w2 = 1) 0.5, 0.5
dt, Pc Time step, Circuit power 1, 56W
P0, P , Utip Constant P0, Transmit power,

Tip speed
38 dBm, 200

V0, ρ, τt Mean rotor induced velocity, Air
density, Normalized traffic load

7.2, 1.225 kg/m3, 1

η, Ω, R Amplifier Efficiency, Blade angu-
lar velocity, Rotor radius

2.6, 400 rad/s, 0.5 m

A, W , T Rotor disc area, UAV-BS weight,
Rotor thrust

0.79 m2, 100N , 100

c, Cr, s Blade length, Thrust coefficient,
Rotor solidity

0.0196, 0.001195, 0.05

xMin/xMax,
yMin/yMax,
hMin/hMax

Min/Max coordinates in area 0 − 2000m, 0 − 2000m, 0 −
1000m

SF P ,
∼
k Fuselage area, Thrust-to-weight

ratio
0.0118 m2, 1

Parameters
V W ind

t , θW ind
t Wind speed, Speed angle -

xUAV −BS,initial
i,t ,

yUAV −BS,initial
i,t ,

hUAV −BS,initial
i,t

Initial coordinates and altitude -

Pi, Bi,j, Pi,j Constants, Bandwidth, Transmit
power

-

RUAV
t , xUE

j,t , yUE
j,t Coverage radius, UE coordinates 400− 500m, 0− 2000m, 0−

2000m
Variables
V V ertical

i,t ,
V Horizontal

i,t

Vertical and horizontal speeds -

P V ertical
i,t ,

P Horizontal
i,t

Power consumption -

V X
i,t , V Y

i,t Horizontal speed in axes -
xUAV −BS

i,t ,
yUAV −BS

i,t ,
hUAV −BS

i,t

Coordinates and altitude -

P T otal
i,t ,

distUAV −UE
i,j,t

Total power consumption, Dis-
tance

-

θUE
i,j,t, UE

i,j,t Elevation angle, Data rate re-
quirement

-

Binary Variables
IUAV −BS

i , IUE
i,j,t UAV-BS location, UE association {0, 1}
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• Random Waypoint Model: Users move randomly within a defined area. They
randomly select a destination and move towards it at a constant speed. Once
they reach the destination, they pause for a certain period before selecting a
new destination.

• Gauss-Markov Mobility Model: Users move based on a correlated random pro-
cess. It incorporates both randomness and correlation in mobility by consid-
ering the previous position and velocity of the users.

• Group Mobility Model: It simulates the movement of users in groups or clus-
ters. Users within the same group move together, possibly following a certain
pattern or behavior.

• Nomadic Community Mobility Model: This model represents users’ movements
in a way that captures the behavior of communities or groups of users who
frequently move together but might occasionally split or merge.

• Random Walk Model: It is a widely used mobility model in network simula-
tions, emulates user movements within a specified area by employing a two-
step process. Initially, users choose random destinations within the designated
area, setting the direction and speed to reach these points. They traverse the
space at a consistent pace until reaching the targeted destination. Upon ar-
rival, users pause for a predefined duration before selecting a new random
destination to proceed towards, restarting the cycle. This model’s simplic-
ity allows it to capture diverse movement patterns, including abrupt changes
in direction and velocity, reflecting real-world scenarios where users navigate
randomly within a defined space, making it valuable for evaluating network
protocols and algorithms in UAV-assisted networks.

Each model has its own characteristics, advantages, and complexities. The choice of
a particular mobility model in a UAV-assisted network depends on various factors
such as the application scenario, required simulation accuracy, and the level of detail
needed in modeling user movements.

The Random Walk Model is selected in this study for UEs due to several
reasons:

• Realistic Representation: It provides a simple yet more realistic representation
of random movement patterns exhibited by users in certain scenarios.
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• Simulation Flexibility: The model is flexible and straightforward to implement,
making it suitable for simulating a wide range of user behaviors.

• Captures Unpredictability: In certain situations, such as in urban environ-
ments or crowded areas, users might not follow predefined paths but instead
move in unpredictable ways. The Random Walk Model can simulate such
behavior effectively.

Figure 3.2 shows the initial distribution of the UEs at time 0. Additionally, Figures
3.3, 3.4, and 3.5 illustrate the movement paths of UEs 4, 10, and 26 across 10
discrete time steps, utilizing the Random Walk mobility model. This model is
distinguished by a fluctuating speed range spanning from 5 to 100 kilometers per
hour. Additionally, the movement trajectories of all UEs involved in each experiment
are accessible for analysis.

Figure 3.2 – UEs’ distribution at time 0, experiments with 75 UEs

3.2 Placement Problem Formulation

In this thesis, two formulations for UAV-BS placement have been proposed.
Figure 3.8 shows the big picture of the previous and current mathematical opti-
mization models. The problem formulation depicted on the left side of Figure 3.8
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Figure 3.3 – The movement path of UE 4 in 10 consecutive time intervals

Figure 3.4 – The movement path of UE 10 in 10 consecutive time intervals

represents the initial model proposed in (PASANDIDEH et al., 2023a), which was
addressed using an enhanced PSO-based algorithm. On the right side, the problem
formulation illustrates the improved and currently proposed model, solved using the
JAYA algorithm. Both models share common constraints, such as those pertaining
to meeting UEs’ QoS, boundary limitations, and the assignment of UEs to UAV-
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Figure 3.5 – The movement path of UE 26 in 10 consecutive time intervals

BSs. However, the improved model incorporates additional constraints, particularly
those related to power consumption.

In this section, elaboration is provided on the initial problem placement as
documented in (PASANDIDEH et al., 2023a), which is detailed in section 3.2.1.
Following this, in section 3.2.2, the enhancements made to the model are delineated.

In this section the initial problem placement that published in (PASAN-
DIDEH et al., 2023a) is explained in section 3.2.1, then in section 3.2.2 the improved
model is explained.

3.2.1 Initial placement problem formulation

In (PASANDIDEH et al., 2023a), firstly an improved PSO-based placement
algorithm is proposed to find the minimum number of DBSs and their optimal lo-
cations. An initialization approach that estimates the initial value of the number
of DBSs is provided by employing a K-means clustering-based scheme in the PSO
algorithm to improve the performance. A custom communication protocol was also
developed for exchanging the users’ main data between users and the network con-
troller.

The initial number of required DBSs (NDBS) to start serving a set of users
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in an area can be defined as the total number of users in the network divided by
the maximum number of users that each DBS covers (PASANDIDEH et al., 2023a).
Then using intelligent algorithms, the optimal number of DBSs can be estimated.
Considering the maximum number of users that a DBS can serve, Mi,

NDBS = TotalUsers

Mi

(3.1)

Considering the sum of data rate requirements of users, T and the capacity
of the DBS, Capacity then:

Mi =
⌊

T

Capacity

⌋
(3.2)

Therefore, the optimization problem is formulated as follows:

minxdi,ydi,h,Xij

NDBS∑
i=1

M∑
j=1

E[wij]Xij (3.3)

Subject to

Rij ≥ Tj : ∀j ∈M (3.4)

∑
j∈M

Rij ≤ Capacity (3.5)

xmin ≤ xdi ≤ xmax (3.6)

ymin ≤ ydi ≤ ymax (3.7)

hmin ≤ h ≤ hmax (3.8)

NDBS∑
i=1

Xij ≤ 1 : ∀ ∈ {1, 2, ..., M} (3.9)

M∑
j=1

Bij = Bmax (3.10)

M∑
j=1

pij = Pmax (3.11)
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rdi < rmax : i ∈ {1, 2, ..., NDBS} (3.12)

The problem formulated by (3.3) aims to minimize the number of required
DBSs (NDBS) by minimizing the waiting time of the users in the queue. E[wij] is
the waiting time of user j in the queue inside the DBS i. Xij is a binary variable
(Xij ∈ {0, 1}) that determines if user j is covered by DBS i or not. A user can be
served by a DBS if horizontal euclidean distance between the user and DBS is less
than or equal to DBS’s coverage radius (rdi):

Xij =


1 if σij ≤ rdi

0 if σij > rdi

(3.13)

Constraint (3.4) indicates that QoS requirement of each user should be satisfied
which Rj is the data rate between user j and DBS and Tj is the data requirement
of user j. Constraint (3.5) shows that total data rate of all covered users served
by one DBS cannot exceed the data rate capacity of that DBS. Constraints (3.6),
(3.7), and (3.8) indicate the placement region of the 3D coordinates of DBSs which
xmin, xmax, ymin and ymax are limits of the area and hmin and hmax are the minimum
and maximum altitude of a DBS allowed to reach. Constraint (3.9) ensures that
each user should be served at most by one DBS. Constraint (3.10) and (3.11) show
the resource limitation which Bij is bandwidth allocated by DBSi for user j and pij

is transmission power allocated by DBS i for userj. Constraint (3.12) indicates that
radii of DBSs i (rdi) is no longer than the maximum radii.

3.2.1.1 Linearizing the optimization problem

The problem P , which is the constraint-based mixed-integer programming
problem, can be reformulated as:

f(xdi, ydi, h, NDBS) = minxdi,ydi,h

NDBS∑
i=1

M∑
j=1

E[wij]Xij

+Constraints.

(3.14)

where f(xdi, ydi, h, NDBS) is the unconstrained cost function and
Constraints can be shown as:



61

Constraints = Φ ∗ (
9∑

k=1
αk + (Pmax −

M∑
j=1

pij)

+(Bmax −
M∑

j=1
bij))

(3.15)

According to problem P (3.3), the constraints (3.4-3.12) contain equals signs and
comparison operators. Regarding the equals sign, a large number (Φ) needs to
be multiplied by the subtraction value of the expressions on the two sides of the
equals sign, and the result needs to be added to the cost function. In this case the
Φ ∗ (Pmax −

∑M
j=1 pij) and Φ ∗ (Bmax −

∑M
j=1 bij) are added into the cost function.

Regarding comparison operators, in this case greater than or equal to (>=) and
less than or equal to (=<) , the subtraction value of both sides of the equation is
not highly important, but satisfying the equation is essential. Thus, a new binary
variable αk is defined to determine whether the given equation is satisfied:

αk = 1 iftheequationisnotsatisfied

αk = 0 Otherwise
(3.16)

when the equation is not satisfied a penalty value should be imposed to the
cost function. Therefore (αk ∗ Φ) is added into the cost function.

3.2.1.2 Proposed PSO-Based Algorithm for coverage module model

PSO is a computational method that optimizes a problem by iterative en-
hancing the candidate solution and discovering the global optimum. In this study,
PSO algorithm optimizes the placement problem of UAV-BSs by using the sets of
candidate UAV-BSs positions called particles and moving the swarm of particles,
which represent potential solutions, around in the search-space according to simple
mathematical formulae over the particle’s position, velocity, and cost value. Each
particle’s movement is influenced by the best position the particle has experienced
(local best position) and the best position that all the particles have experienced
(global best position). Therefore, each particle (UAV-BS) adjusts its flight accord-
ing to its own flying experience and companion’s flying experience. This is expected
to move the swarm toward the best solutions (SILVA et al., 2019), (PASANDIDEH
et al., 2021).



62

However, PSO suffers from trapping in the local minimum or finding the
best global minimum in some problems. The particles are not successful to cover
the entire search space, as they are distributed randomly in initialization phase using
Gaussian or uniform distribution. It is expected that by improving the initialization
phase, the final results of PSO would be more accurate. Therefore, it is impor-
tant to improve the initial population generation phase to cover the feasible space
properly. There are some investigations that take advantage of other optimization
methods to reinforce the exploitation and exploration phases of the PSO algorithm,
such as (GARG, 2016; K.S.; MURUGAN, 2017; PSOSCALF. . . , 2018). Authors in
(DONG et al., 2012; XIANG; LIAO; WONG, 2007) try to improve the population
initialization step. In the following, the proposed PSO-Based algorithm is explained
in detail.

The first step of the PSO algorithm is to initialize the PSO parameters,
including, acceleration coefficients (c1, c2),random vectors (r2, r2) and inertia weight
(w), and the number of population (npop) which is the number of UAV-BS(NDBS).
The basic PSO algorithm randomly determines these parameters. However, they
can be initialized more accurately to enhance the PSO parameters. Regarding npop

(the number of UAV-BSs if the scheme starts with one UAV-BS it is not desirable
as the number of PSO iterations will increase. Thus a more accurate number of
UAV-BSs is needed to reduce the number of PSO iterations.The next step is to
initialize the positions of UAV-BS (particles). The initial generation is commonly
randomly generated in the PSO algorithm. However, such random initialization
suffers from less satisfactory performance. More specifically, the K-means clustering-
based algorithm can be employed to determine the initialized positions of the UAV-
BSs in the area.

The goal of the PSO algorithm is to locate the UAV-BSs in a two-dimensional
(2D) plane and find (xdi, ydi) based on the linearized optimization problem in Sec-
tion 3.2.1.1. After calculating the cost function for each particle , then current PSO
iteration time, particle’s local best, and global best are updated based on this func-
tion. Next, the velocity of UAV-BSs located at the new positions is updated and
the velocity limits (vmin and vmax) are applied. To make sure that all the particles
stay inside the search space, velocity mirror effects are avoided which means if a
particle is outside the search space, it should be moved back inside. After updating
the personal and global best of each UAV-BS, the PSO algorithm will terminate
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if the swarm meets the termination criteria. If it terminates, the optimal position
of the DBS is obtained then check if the waiting time of the users in the queue is
minimized or not. If it is not minimized, it is realized that the number of DBSs
is not sufficient, then this number is increased by one, and perform the steps from
scratch.

a) Improved population initialization phase
In the original PSO algorithm, the particles are distributed randomly in

the initialization phase. The proper initialization of the first-generation particles
can improve the performance of the PSO algorithm. A K-means-based clustering
method can be proposed as an initialization method to generate the positions of the
first-generation particles (UAV-BSs).

• k-means: More specifically, the K-means algorithm is an iterative algorithm
that tries to partition data points (users) into K pre-defined distinct non-
overlapping clusters where each user belongs to only one cluster. It assigns
users to a cluster such that the sum of the squared distance between the users
and the cluster’s centroid is at the minimum (KRISHNA; MURTY, 1999). The
centroid is the arithmetic mean of all the users that belong to that cluster.
The Cluster head or centroid, in this case, refers to the DBS.

The following problem has to be solved:

minx

T otalUsers∑
j=1

K∑
k=1

xjk ∥Uj − µk∥2 (3.17)

subject to

K∑
k=1

xjk = 1∀j (3.18)

µk =
∑T otalUsers

j=1 xjkUj∑T otalUsers
j=1 xjk

(3.19)

xjk ∈ {0, 1} ∀j, k (3.20)

Where xjk is a binary varible determines if user j belongs to cluster k (xjk = 1)
or not (xjk = 0). Uj and µk are the coordinates of jth user and the centroid
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of user j’s cluster, respectively. They are both located in Rd, where d is the
dimensional of users. Constraint (3.18) indicates that each user should be
assigned to exactly one cluster. Constraint (3.19) shows that the coordinates
of centroid of cluster k depend on values of xjk and Uj variables. The problem
(3.17) which contains these non-linear constraints can be rewritten as the
following problem:

minx

T otalUsers∑
j=1

K∑
k=1

xjk ∥Uj − yk∥2 (3.21)

subject to

K∑
k=1

xjk = 1∀j (3.22)

µk =
∑T otalUsers

j=1 xjkUj∑T otalUsers
j=1 xjk

(3.23)

xjk ∈ {0, 1} ∀j, k (3.24)

yk ∈ Rd∀k (3.25)

The problem represented in (3.21) shows that instead of minimizing the dis-
tance to centroids (µk), the idea is to minimize the distance to just any set of
points (yk) that will give a better solution based on results. It turns out that
these points are exactly the centroids. To solve the objective function, first
the values for yk variables are fixed and the optimal values for xjk variables
are found, then the values of xjk variables are fixed, and the optimal values
for yk variables are found.

The proposed algorithm is shown in Algorithm 1. As can be observed in the
algorithm, the positions of the users XU is considered as an input.

The output is the optimal position and optimal number of DBSs, respectively,
XD and NDBS∗ resulted by the proposed algorithm. After calculating the
initial value of NDBS according to (3.1), the initial positions of the particles
(UAV-BSs) are generated using the k-means algorithm. The PSO parameters
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Algorithm 1: Proposed algorithm.
Input: XU .
Output: XD and NDBS∗.

1: Calculate the initial value of NDBS according to (3.1).
2: Generate first generation:initPosDBS = k −means(NDBS)
3: repeat
4: for each particle (DBS) do
5: Initialize PSO parameters: Initialize w, c1 and c2 according

to (Paul; De; Dey, 2020), and r1, r2 and velocity
6: Calculate the Cost function.
7: Update pbest and gbest.
8: repeat
9: for each particle DBS do

10: Update velocity
11: Update DBS velocity limit.
12: Update Costfunction.
13: Update pbest and gbest.
14: until The swarm met the termination criteria;
15: XD ← gbest;
16: NDBS∗ ← NDBS;
17: + + NDBS

18: until The E[wij] is obtained;

including w, c1 and c2 are initialized according to 3.1, the remaining parameters
such as r1, r2 and velocity are initialized in line 5. Finally the personal best and
global best are updated. Then the PSO algorithm iteratively runs updating
the velocity and the velocity limit of the particles (line 11 and line 12). The
cost function is obtained by the formulation provided in (3.14) and updated
in line 13. Then PSO updates the individual local best solution of particles.
The global solution is continuously updated (line 14), as well. The repetition
finishes if the swarm met the termination criteria. Then the output of the
algorithm XD and NDBS∗ is obtained. Finally, if the E[wij], the waiting time
of userj in the queue inside the DBSi, is satisfied, the algorithm terminates,
otherwise, the algorithm run from scratch with one more DBS (NDBS + +).

The simulation results show impressive performance of the proposed PSO-based
scheme in which low packet loss and latency. It also indicates that all the users in the
considered scenario are covered by the UAV-BSs. Nevertheless, the mathematical
model put forward lacks consideration for the power consumption of the DBSs, and
the tested scenarios exclusively encompass a limited count of users.
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In light of the landscape presented, this study introduces an approach aimed
at covering power and connectivity concerns by proposing an improved optimization
model.

3.2.2 Improved placement problem formulation

Figure 3.6 provides an overview of the entire system architecture. As depicted
in this figure, the forthcoming section will delve into a comprehensive discussion of
the mathematical optimization model. This model considers various specifications,
including the UAV-BS rotor characteristics, horizontal and vertical motor speeds,
wind speed and direction, data rate requirements of UEs, and the trajectory of UEs
at each time step, and consequently provides optimal or near-optimal positioning of
the UAV-BSs across diverse experiments.

Inputs Output

UAV-BS rotor´s specifications

UAV-BS speed

Wind speed

Wind orientation

Users' data requirement

Users' positions

,

,

Near optimal coordinates

 of the UAV-BS(

(

(

(

(

(

)

)

)

)

)
), ,Mathematical

Optimization
model

Figure 3.6 – Overall view of proposed system

In this section, an optimization model is formulated. The optimization model
aims to achieve two primary objectives concurrently. The initial goal is to minimize
the power consumption related to the movement and to the communication (P Total

i,t )
utilized by UAV-BSs, and the second objective is to reduce the number of uncovered
UEs (IUE

i,j,t).

f1 =
I∑
i

T∑
t

PTotal
i,t , ∀i, t (3.26)

f2 = −
I∑
i

J∑
j

T∑
t

IUE
i,j,t, ∀i, j, t (3.27)
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minf = w1 · f1 + w2 · f2 (3.28)

w1 + w2 = 1 (3.29)

The function f1 shown in (3.26), computes the sum of the total power con-
sumption of each UAV-BS across all time steps. This function encapsulates the
objective of minimizing the overall power usage of the UAV-BSs throughout the
specified time horizon. The symbol ∑I

i denotes a summation over all I UAV-BSs.
Similarly, ∑T

t represents a summation over all T time steps. P T otal
i,t signifies the

total power consumption of UAV-BSi at time step t. Function f2 in (3.27) repre-
sents the total count of uncovered UEs. The negative sign preceding the summation
implies that the objective is to minimize this metric, aiming to reduce the number
of UEs left uncovered (IUE

i,j,t = 0). Function f in (3.28) that can be referred to as
the problem itself, represents the combination of the two objectives f1 and f2 into
a single objective function min f by assigning weights w1 and w2 to each objective.
Constraint (3.29) ensures that the weights are properly normalized, meaning w1 and
w2 must sum up to 1.

The constraints pertaining to the proposed optimization problem can be clas-
sified into several categories: mobility-related constraints, power consumption con-
straints, path loss and UEs’ data rates, and operational constraints.

A: Mobility Constraints:
When factoring in the mobility constraints of UAV-BSs such as limiting

boundaries, setting UAV-BSs’ start points, and UAV-BSs speed, it is crucial to de-
sign assignments that optimize mission success while adhering to these constraints.
The vertical and horizontal speeds of UAV-BSs have a significant impact on their
mobility and performance. These speeds are key parameters that influence the
UAV-BS’s ability to navigate, carry out missions, and adapt to different scenarios.
In addition, defining clear boundaries within which UAV-BSs can operate is essential
to ensure safety, security, and regulatory compliance.

V Vertical
i,t =

hUAV−BS
i,t − hUAV−BS

i,t−1

dt
,∀i, t (3.30)

V X
i,t =

xUAV−BS
i,t − xUAV−BS

i,t−1

dt
+ V W ind

i,t cos(θW ind
t )IUAV−BS

i,t ,∀i, t (3.31)
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V Y
i,t =

yUAV−BS
i,t − yUAV−BS

i,t−1

dt
+ V Wind

i,t sin(θWind
t )IUAV−BS

i,t ,∀i, t (3.32)

V Horizontal
i,t =

√(
V X

i,t

)2
+
(
V Y

i,t

)2
,∀i, t (3.33)

Vi,t =
√(

V Vertical
i,t

)2
+
(
V Horizontal

i,t

)2
,∀i, t (3.34)

xUAV−BS
i,t = xUAV−BS,Initial

i,t · IUAV−BS
i,t ,∀i, t = 0 (3.35)

yUAV−BS
i,t = yUAV,Initial

i,t · IUAV−BS
i,t ,∀i, t = 0 (3.36)

hUAV−BS
i,t = hUAV−BS,Initial

i,t · IUAV−BS
i,t ,∀i, t = 0 (3.37)

xMin ≤ xUAV−BS
i,t ≤ xMax,∀i, t (3.38)

yMin ≤ yUAV−BS
i,t ≤ yMax,∀i, t (3.39)

hMin ≤ hUAV−BS
i,t ≤ hMax,∀i, t (3.40)

Constraint (3.30) indicates the vertical speed of the UAV-BSi at time t on
the vertical axis, assuming the wind speed and direction do not impact the vertical
speed. Constraints (3.31), and (3.32) show the horizontal speed of the UAV-BSi at
time t in X-axis, and Y-axis, respectively, considering wind speed and orientation.
Constraint (3.33) shows the horizontal speed of the UAV-BSi at time t.

The Euclidean relation between vertical and horizontal speeds form the total
speed of the UAV-BSi at time t, shown in constraint (3.34). The logic behind the
constraints (3.31) to (3.34) is shown in Figure (3.7). Based on Figure (3.7), the
speed of UAV-BSi at time t can be calculated, and it is located at coordinates
(xUAV

i,t , yUAV
i,t , hUAV

i,t ) in both the horizontal and vertical dimensions. The speed of
UAV-BS during vertical flight is equivalent to the distance traveled along the vertical
(h) axis, as indicated in constraint (3.30). As Figure (3.7) shows, for horizontal flight,
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Figure 3.7 – Speed and direction of wind in power model

one can project the motion of a UAV-BS onto a 2D plane to calculate the speed
of the UAV-BS along the x-axis (constraint (3.31) and y-axis (constraint (3.32),
taking into account the effect of wind speed (V W ind

i,t ) and direction (θW ind
t ). Finally,

constraint (3.33) illustrates the horizontal speed of the UAV-BS.
Constraints (3.35), (3.36), and (3.37) define the initial values of UAV-BS

coordinates. Constraints (3.38), (3.39), and (3.40) the spatial boundaries within
which the 3D coordinates of UAV-BSs have to lie. The xmin, ymin,hmin, and xmax,
ymax specify the minimum and maximum allowable x, y, and h for a UAV-BS.

B: Power Consumption Constraints:
The power consumption of UAV-BSs can be broken down into four main

components (ALOQAILY et al., 2022), (OMONIWA; GALKIN; DUSPARIC, 2022),
(REN et al., 2023) :

• Motor power: This component, also referred to as propulsion power, which
is the most significant portion of power consumption, covers the power re-
quired for various UAV-BS movements, including horizontal and vertical mo-
tion, landing, take-off, and hovering. A connection exists between UAV-BS’
speed, wind speed, and direction, but it is noteworthy that many studies over-
look how wind factors affect UAV-BS speed and motion. When the UAV-BS
faces substantial headwinds, it might necessitate extra power consumption,
resulting in faster battery drainage and a decrease in the duration of flight.
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Conversely, when flying with tailwinds, the UAV-BS can prolong its flight time
because it needs less power to operate (THIBBOTUWAWA et al., 2019).

• Communication-related power: This component pertains to the energy used
for data transmission and reception at the UAV-BS.

• Sensing and processing powers: While this factor exists, their power consump-
tion is minimal and is neglected in the proposed power model.

These components collectively make up the power consumption of UAV-BSs,
with motor power and communication-related power being the most prominent
factors.

P Horizontal
i,t = P0

1 +

(
V Horizontal

i,t

)2

Ω2R2



+ Piκ̃


√√√√√κ̃2 +

(
V Horizontal

i,t

)4

4V 4
0

−

(
V Horizontal
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(3.41)

Constraint (3.41) shows the closed-form expression of UAV-BS power con-
sumption model in horizontal flight, which is provided based on the formula given in
(ZENG; XU; ZHANG, 2019). In constraint (3.41), the first two terms represent the
blade profile power and induced power during forward flight, respectively. The third
term signifies the parasite’s power. These terms are contingent on the horizontal
speed V Horizontal

i,t .

P Vertical
i,t = P0 + Pi + 1

2RT V Vertical
i,t + RT

2

√(
V Vertical

i,t

)2
+ 2RT

ρA
,∀i, t (3.42)

constraint (3.42) shows the vertical flight of the UAV-BSs, which is extracted
from (GONG et al., 2023). RT represents the rotor thrust, while the other parame-
ters remain consistent with those previously introduced. The Thrust-to-weight ratio
κ̃ in (3.41) is equal to RT

W
≃ 1 which means (RT ≃ W ), based on this (3.41) and

(3.42) that show the horizontal, and vertical power consumption of the UAV-BSi at
time t, respectively, can be simplified as follows:
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P Comm
i,t = Pc + τtηP, ∀i, t (3.45)

P T otal
i,t = P Horizontal

i,t + P V ertical
i,t + P Comm

i,t , ∀i, t (3.46)

The power consumption resulting from communication, which is extracted
from (ABUBAKAR et al., 2023), is shown in (3.45), where the Pc shows the circuit
power, τt, η and P depict normalized traffic load, amplifier efficiency, and transmit
power, respectively.

The total power is shown in Constraint (3.46) which is the summation of
horizontal, vertical movement power, and consumption power.

C: Path Loss and Data Rate Constraints:
The deployment of UAV-BS has dual repercussions, impacting both the cov-

erage area available to UEs and the reliability of AtG communication links. Within
the realm of AtG path loss simulation, a variety of channel models can be found in
the literature (SMITH; JOHNSON, 2020), (LEE; GARCIA, 2018), and (BROWN;
WILLIAMS, 2019). In this paper, the channel model detailed in (Qiu et al., 2020)
is specifically chosen due to its proven track record of performance.

Depending on the prevailing propagation conditions, AtG communication
links can be classified as either LoS or NLoS. The probability of establishing a
LoS connection between the receiver and transmitter holds significant importance
as it directly shapes the power utilization by UEs. The likelihood of achieving a
LoS connection between an UE and a UAV-BS is contingent upon factors such as
building density, the UE’s geographical position, and the elevation angle of the UAV-
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BS in relation to both the UE and itself. To compute the probabilities of both LoS
and NLoS connections between UEj and UAV-BSi, the calculations adhere to the
methodology delineated in (Qiu et al., 2020).

The data rate between UEj and UAV-BSi can be calculated as follows based
on the path loss model provided in (Qiu et al., 2020):

DRUE
i,j,t = Bij × log2

1 + pij × 10
−ζij

10

Bij × ε2

 ,∀i, j, t (3.47)

where Bij and pij are sub-channel bandwidth, transmit power allocated by
the UAV-BSi to UEj and ε2 is the noise power spectral density of the Zero-mean
white Gaussian noise at the receiver. ζij represents the average path loss between
UEj and UAV-BSi, determined through the methodology detailed in (Qiu et al.,
2020).

D: Operational Constraints:
Using operational constraints, the assignment of UEs is limited based on their

proximity to at most one UAV-BS at each time step to ensure reliable communication
or service. The total data rate or resource demands of the UEs assigned to a UAV-
BS are ensured not to exceed the capacity or capabilities of the UAV-BS. Collision
avoidance between UAV-BSs is ensured by monitoring and maintaining the minimum
safe distance between them.
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(3.51)
Constraint (3.48) indicates that UEj should be within the coverage range

of UAV-BSi. In other words, the 2D distance between connected UEj and the
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projection of UAV-BSi on the X-axis at time t should be equal or less than the
coverage range of UAV-BSi, and the area boundaries. Constraint (3.49) says that
each ground UEj should be served at most by one UAV-BS at location i. Constraint
(3.50) shows that the total data rate of all covered UEs by one UAV-BSi (the
capacity of the wireless link between UAV-BSi and UE j) at time t cannot exceed
the maximum data rate capacity of that UAV-BS. Constraint (3.51) shows to avoid
collisions among the UAV-BSs during movement, the distance between each pair of
UAV-BSs (i,k) at time t, must be more than a threshold.
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Figure 3.8 – Overall view of previous and proposed optimization models.
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4 THE PROPOSED UAV-BS PLACEMENT STRATEGY

This chapter initiates by providing a comprehensive overview and description
of the proposed approach, diving into the fundamental aspects outlined in Section
4.1. Specifically, it delves into the application of the JAYA algorithm, elucidating
its relevance and effectiveness in addressing the optimization model proposed for
determining optimal positions for the UAV-BSs. The focus lies on highlighting how
the JAYA algorithm acts as a pivotal tool in achieving near-optimal solutions within
the context of optimizing UAV-BS deployment.

Moreover, within this section, a thorough exploration is undertaken to show-
case the efficacy of the JAYA algorithm in efficiently solving the complex optimiza-
tion model. The discussion revolves around elucidating its iterative nature, adaptive
characteristics, and its inherent ability to converge toward solutions that are notably
close to the optimal ones. Insights into how this algorithm effectively navigates the
multifaceted parameters and constraints inherent in the optimization model are also
delineated, providing a comprehensive understanding of its application in this spe-
cific scenario.

Following the comprehensive overview, the chapter proceeds to present a
meticulous and detailed complexity analysis. This analysis aims to provide a deeper
understanding of the computational resources and time requirements involved in em-
ploying the JAYA algorithm for solving the optimization problem related to UAV-BS
placement. The complexity analysis meticulously examines the algorithm’s compu-
tational demands, culminating in establishing an overall time complexity of O(n2).
This insight into the computational intricacies not only enriches the understanding
of the algorithm’s performance but also assists in gauging its feasibility for real-world
deployment scenarios.

Moving forward in the chapter, the emphasis shifts to Section 4.3, which
meticulously delineates the steps involved in generating the requisite dataset for
the proposed optimization framework. This section elaborates on the intricacies
of the data generation process, encompassing the various parameters, models, and
simulations employed to create a comprehensive dataset representative of real-world
conditions. By elucidating the data generation methodology in detail, this section
ensures a thorough comprehension of the inputs used in the subsequent phases of
the study, ultimately contributing to the reliability and robustness of the proposed



76

approach.

4.1 Designed Solution

Problem (3.28) is a MINLP optimization problem that minimizes the move-
ment and communication powers consumed by UAV-BSs, while minimizing the num-
ber of uncovered UEs. Such a problem can be solved using different techniques.
Metaheuristic-based approaches are one of the problem-solving techniques that use
iterative search algorithms to find optimal or near-optimal solutions to UAV place-
ment optimization problems. GA, PSO, GWO, CS, ACO, and JAYA are powerful
problem-solving techniques that can be used to solve the UAV-BS placement prob-
lem (PASANDIDEH et al., 2023a; PASANDIDEH et al., 2021; PASANDIDEH et
al., 2022; ZITAR et al., 2022).

The Jayatilaka (JAYA) algorithm is a relatively new optimization algorithm
used for solving optimization problems. It was introduced by Dr. R. V. Jayatilaka in
2016. This algorithm is inspired by the behavior of social hierarchies and dynamics
within a group. The JAYA algorithm falls under the category of metaheuristic
optimization techniques, specifically designed for solving continuous optimization
problems (JAYATILAKA, 2016). The primary idea behind the JAYA algorithm is
to improve the solutions iteratively by simulating the natural process of improvement
within a society. It operates on the concept of two main phases: exploration and
exploitation. During the exploration phase, potential solutions are sought, while the
exploitation phase concentrates on refining these solutions.

The main reason for using JAYA as the meta-heuristic algorithm in this con-
text is its simplicity, efficiency, and effectiveness in optimization tasks. Unlike some
other meta-heuristic algorithms, JAYA does not require the specification of specific
parameters such as population size or mutation rates, which simplifies its imple-
mentation process. Instead, it operates by continually improving solutions until
convergence is achieved, iteratively replacing inferior solutions with superior ones.
This approach not only simplifies the implementation but also leads to fast con-
vergence towards global or near-optimal solutions. Moreover, JAYA’s deterministic
behavior ensures consistent results for the same problem and input, enhancing its
reliability and usability in UAV-assisted applications. Additionally, JAYA is faster
and more memory-efficient compared to other meta-heuristic algorithms, further
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solidifying its suitability for the task at hand.
One of the primary challenges in using JAYA for UAV-BS placement prob-

lems is its simplicity and lack of parameterization, which may limit its ability to
effectively explore the complex solution space inherent in such optimization tasks.
However, incorporating k-means clustering alongside JAYA can mitigate some of
these limitations by providing a more structured approach to initial solution gener-
ation. K-means clustering helps in dividing the search space into clusters, thereby
guiding JAYA to focus on specific regions of interest. By initializing the population
with centroids obtained from k-means clustering, JAYA can start the optimiza-
tion process with a diverse set of candidate solutions, potentially enhancing the
exploration of the solution space and improving the likelihood of finding optimal
or near-optimal UAV-BS placements. This combination leverages the simplicity
and efficiency of JAYA while harnessing the structured initialization provided by k-
means clustering to overcome some of the challenges associated with UAV placement
optimization.

After initializing the parameters of both the optimization problem and the
JAYA algorithm, the first potential locations for UAV-BSs are found at time 0
(xUAV −BS,initial

i,t , yUAV −BS,initial
i,t , hUAV −BS,initial

i,t ), using k-means clustering.
Figure 4.1 depicts the flowchart of the JAYA algorithm for the MINLP UAV-

BS placement optimization problem, offering a comprehensive overview consistent
with the algorithm outlined in Algorithm 2. After formulating the placement prob-
lem according to the flowchart provided in Figure 4.1, parameters such as population
size, the number of iterations, variables, and termination criteria need to be set. Sub-
sequently, the solutions, denoted as coordinates for UAVs, within the population are
ranked, distinguishing the best and worst solutions. The refinement of new solu-
tions involves utilizing equations 4.1, 4.2, and 4.3 that represent iterative updates
for optimizing the coordinates (XUAV −BS

i,t,New , Y UAV −BS
i,t,New , and HUAV −BS

i,t,New ) of UAV-BS
placements in proposed optimization process. Each equation set delineates how the
new coordinates (denoted as New) are recalculated based on the current coordinates
(Current), the best coordinates (Best), and the worst coordinates (Worst). The
process involves adjusting the UAV-BS coordinates iteratively until convergence or a
specific criterion is achieved. The parameter r acts as a scaling or step factor in this
updating process. If an improved solution is found, it replaces the previous solution;
otherwise, the algorithm reverts to the previous solution. Once all solutions in the
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population have been evaluated, and if the iteration count reaches N , a check for
the termination condition occurs. If met, the best or optimal solutions (UAV-BS
coordinates) are returned; otherwise, the process continues with a new iteration.

XUAV−BS
i,t,New = XUAV−BS

i,t,Current +r ·(XUAV−BS
i,t,Best −

∣∣∣XUAV−BS
i,t,Current

∣∣∣) −r ·(XUAV−BS
i,t,W orst −

∣∣∣XUAV−BS
i,t,Current

∣∣∣)
(4.1)

Y UAV−BS
i,t,New = Y UAV−BS

i,t,Current + r · (Y UAV−BS
i,t,Best −

∣∣∣Y UAV−BS
i,t,Current

∣∣∣) − r · (Y UAV−BS
i,t,W orst −

∣∣∣Y UAV−BS
i,t,Current

∣∣∣)
(4.2)

HUAV−BS
i,t,New = HUAV−BS

i,t,Current +r ·(HUAV−BS
i,t,Best −

∣∣∣HUAV−BS
i,t,Current

∣∣∣) −r ·(HUAV−BS
i,t,W orst −

∣∣∣HUAV−BS
i,t,Current

∣∣∣)
(4.3)

Algorithm 2 utilizes the JAYA algorithm to optimize the placement of UAV-BSs in
more detail. It takes as input the following parameters: UE positions, their required
data rates, UAV-BS speed during horizontal and vertical flights, UAV-BS capacity,
coverage radius, rotor specifications, area boundaries, wind speed, and wind orien-
tation. It initializes both the optimization problem and JAYA algorithm parame-
ters. Employing k-means clustering, it generates the initial potential locations of
UAV-BSs at time 0 (xUAV −BS,initial

i,t , yUAV −BS,initial
i,t , hUAV −BS,initial

i,t ). Subsequently,
objective functions f1, f2, and f are computed based on constraints (3.26), (3.27),
and (3.28) respectively. After sorting the solutions to identify the best and worst
ones (xUAV −BS

i,t,Best , yUAV −BS
i,t,Best , hUAV −BS

i,t,Best , and xUAV −BS
i,t,W orst , yUAV −BS

i,t,W orst , hUAV −BS
i,t,W orst ), the algo-

rithm initiates a loop, iterating up to a maximum count, K. For each I UAV-BS, J

UEs, and T time step, new solutions refine UAV coordinates using JAYA’s equations
in lines 11-13. Improved solutions replace current ones if found. Finally, in lines
18-22, it checks for the termination condition, halting and returning the optimal
UAV-BS coordinates if the maximum iterations are reached; otherwise, it continues
until convergence, consistently refining UAV-BS placements based on the predefined
objectives and constraints.
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Algorithm 2: Proposed algorithm.
Input: xUE

j,t , yUE
j,t , DRUE

i,j,t, V Vertical
i,t , V Horizontal

i,t , CapacityUAV−BS
i , RUAV−BS

t ,
(xMin, xMax), (yMin, yMax), (hMin, hMax), V wind

t , and θwind
t

Output: xUAV−BS
i,t , yUAV−BS

i,t , hUAV−BS
i,t

1: Initialize the problem parameters
2: Generate first generation using k-means.
3: Compute objective functionsf1, f2, and f .
4: Sort the population
5: k = 1
6: repeat
7: for i = 1,...,I do
8: for j = 1,...,J do
9: for t = 1,...,T do

10: Set r ∈ [0, 1]
11: Calculate XUUAV−BS

i,t,New according eq. 4.1
12: Calculate Y UAV−BS

i,t,New according eq. 4.2
13: Calculate HUAV−BS

i,t,New according eq. 4.3

14: Update process
15: if f(XUAV−BS

i,t,New ) ≤ f(XUAV−BS
i,t ) then

16: f(XUAV−BS
i,t ) = f(XUAV−BS

i,t,New )
17: if f(Y UAV

i,t,New) ≤ f(Y UAV−BS
i,t ) then

18: f(Y UAV−BS
i,t ) = f(Y UAV−BS

i,t,New )
19: if f(HUAV

i,t,New) ≤ f(HUAV−BS
i,t ) then

20: f(HUAV−BS
i,t ) = f(HUAV−BS

i,t,New )
21: k+ = 1
22: until k = K : The maximum number of iterations (K) is reached;
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Figure 4.1 – JAYA algorithm for MINLP UAV-BS placement optimization problem.

4.2 Complexity Analysis

JAYA algorithm lacks a definitive time complexity akin to traditional algo-
rithms due to its adaptive nature. Nevertheless, its computational complexity can
be measured in terms of iterations or function evaluations, influenced by factors
such as problem complexity, population size, and termination conditions. Despite
this variability, the JAYA algorithm is esteemed for its simplicity and efficacy, often
outperforming other metaheuristic algorithms in terms of convergence speed. Its ap-
proach involves iteratively evaluating objective functions for population members,
and updating their positions based on certain rules until termination conditions are
met. Evaluation of the algorithm’s complexity typically occurs through empirical
experimentation on specific problems to gauge convergence speed and solution qual-
ity. The time complexity of the proposed JAYA-based optimization algorithm is
provided as follows:

• Variable Initialization: This section initializes various variables based on the
data read from the file. The time complexity of initializing these variables is
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O(I +J), where I is the value of the "UAV-BS" set variable, and J is the value
of the "UE" set variable. Considering the total number of elements processed as
n = max(I, J), the time complexity expressed as O(I + J) can equivalently be
represented as O(n). This transition to O(n) clarifies that the computational
complexity depends on the larger of the two variables, I and J , encapsulated
by the variable ‘n‘. This representation emphasizes that ‘n‘ serves as a unified
measure that accounts for the overall workload determined by the maximum
between I and J loops.

• Population Initialization : The time complexity of this section depends on
the size of the population, which is determined by the values of I, and J.
Considering that I and J are indicative of the population’s size, the total
number of elements processed is best represented by n = I × J , with the
larger value between I and J determining the population size. Therefore, the
time complexity of this section is O(I × J), which can also be represented as
O(n2), assuming n = max(I, J).

• Function Evaluation: This section evaluates the objective functions for the
population variables. The time complexity of this section depends on the size
of the population and the calculations performed in the objective functions. In
this case, it involves nested loops over I, J, which results in a time complexity
of O(I × J) or equivalently O(n2).

Overall, the time complexity of the given program is dominated by the popu-
lation initialization and function evaluation sections, which both have a time
complexity of O(I × J) or O(n2). As for the computational intensity of the
code, it depends on the specific values of I and J . If these values are rela-
tively small, the code should be computationally feasible to run on UAV-BSs.
However, if the values are large, the code might become computationally in-
tensive and may require more powerful computational resources to execute in
a reasonable amount of time.

4.3 Data Generation

The input data fields are provided in Table 4.1. The number of rows for
each field is determined by the lower indexes of each field. For example, in the first
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Table 4.1 – Data generation parameters

Data parameters Descriptions
V wind

t the speed of wind (1-21 km/h)
θwind

t wind orientation (0-360◦)
CapacityUAV

t UAV-BS capacity (400-600 MB)
RadiusUAV

i UAV-BS coverage radius (400-500 meters)
DRUE

i,j,t UE data requirement (100-200 MB)
XUE

j,t X-coordinate of UEs (0-2000 meters)
Y UE

j,t Y-coordinate of UEs (0-2000 meters)
IdUAV

j,t UAV-BS ID number
Idj

UE UE ID number
I, J, T Sets of UAV-BSs, UEs, and time steps
xmin, xmax, ymin, ymax,
hmin, hmax

Minimum and maximum allowable area
boundaries (same for all experiments)

scenario, experiment two, where there are 5 UAV-BSs (I=5) and 75 UEs (J=75)
over 10-time steps (T=10), the number of rows for the variables V wind

t and θwind
t

is 10. These two variables are related to the time index, which is denoted as ‘t‘
and ranges from 1 to 10. Considering there are 75 UEs (indexed from 1 to 75) and
10-time steps, there is indeed a total of 750 rows in the dataset for both XUE

j,t and
Y UE

j,t fields. For the field DRUE
i,j,t, there are 5 UAV-BSs, 75 UEs, and 10-time steps,

resulting in a total of 3750 (5 × 75 × 10) rows in the dataset.
A Python script is employed to generate the initial dataset with the men-

tioned fields, for each of the four experiments. In a manner akin to a Monte Carlo
simulation, 1000 distinct variations of the initial dataset are generated for each
experiment. This approach enables the model to be executed on each data varia-
tion, the resulting outputs observed, and subsequently, an average of these outputs
computed. Due to the considerable computational demands associated with high
dimensions for I, J, and T, the model is executed solely on the first 10 dataset vari-
ations for each experiment, evaluating their outputs. The average of these 10 files is
then computed, resulting in a single file representing the average data. Subsequently,
the simulation is run just once on this average data. It is observed that the output
of running the simulation 10 times and averaging the results is equivalent to running
the simulation once on the average data. This approach allows the conservation of
computational resources while maintaining the accuracy of the results. Based on
the analysis, the simulation is performed using the average dataset derived from the
1000 variations, and the resulting outputs are documented.
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5 PERFORMANCE EVALUATIONS

The proposed framework and its components were meticulously constructed
utilizing the Python programming language, showcasing a cohesive integration of
the network architecture, optimization model, and algorithmic processes. Within
the realm of Python, the simulation setup was realized through the implementation
of a specialized network architecture leveraging the robust capabilities of the Pyomo
optimization library (Hart et al., 2011). This Python-based framework seamlessly
amalgamated several critical facets, including data preprocessing, the formulation of
intricate mathematical optimization models, and the utilization of the JAYA-based
algorithm, thereby establishing a comprehensive and efficient system. It is worth
mentioning that a detailed presentation of the results for the initial PSO-based
placement problem formulation can be found in (PASANDIDEH et al., 2023a).

To provide a detailed understanding of the simulation procedures, Section
5.1 of this chapter intricately delineates the simulated scenario. Herein, a compre-
hensive overview of the simulation setup, encompassing the conditions employed, is
meticulously presented. Furthermore, the experimental design is comprehensively
explored in Section 5.2. This section meticulously outlines the myriad factors under
consideration and elucidates the methodological approach adopted for conducting
the experiments. Each factor’s variation and its subsequent impact on the afore-
mentioned metrics were scrutinized and analyzed methodically.

The culmination of these rigorous experimental procedures is expounded
upon in Section 5.3. This section encapsulates the findings gleaned from the con-
ducted experiments, presenting comprehensive insights and results derived from the
meticulous evaluation of the simulated scenarios and experimental designs detailed
earlier. Section 5.4 presents the comparison of the proposed method with the base-
line papers in terms of packet loss, latency, and movement power consumption of
UAV-BSs. Following this, Section 5.5 discusses how the proposed methods guaran-
tee the correctness of the models, the techniques employed to ensure the correctness
of both the models and implementations, and addresses the challenges associated
with implementing this work in the real world. Additionally, it provides a statement
elucidating the limitations of the work.
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5.1 Simulated Scenario

Consider a scenario where terrestrial BSs may become inoperative due to
equipment damage or power failure. In such situations, UAV-BSs can play a vi-
tal role in swiftly and efficiently restoring communication services. Multiple UAV-
mounted BSs are deployed to target regions, offering temporary wireless communi-
cation services. One of the use cases arises when there is a fundamental need for
flexibility, reliable access, and low latency within the framework of 6G networks.
In response, UAV-BSs can function as macrocells, serving as 5G or 6G infrastruc-
ture in urban settings and presenting a potential solution for advancing 6G, as
highlighted in (BAJRACHARYA et al., 2022). These UAV-BSs assume a critical
role during natural disasters, such as severe storms, thereby enhancing relief ef-
forts and radio communication capabilities. Notably, the aftermath of Hurricane
Katrina in the United States underscored the imperative need for such communi-
cation enhancements. Furthermore, UAV-BSs can ameliorate the consequences of
unnatural disasters, such as war or fires, which can disrupt radio communication
and internet access, as explored in (PARVARESH; KANTARCI, 2023) and (LIAO;
FRIDERIKOS, 2022). The research aims to delve into these scenarios through sim-
ulation. In figure 5.1, two scenarios depicting natural and unnatural disasters are
presented. UAV-BSs can effectively contribute to these disaster situations, and in
this simulation, these scenarios are modeled to represent real-world situations where
UAV-BSs are utilized.

5.2 Experimental Design

The implementation of a comprehensive full factorial experiment requires
meticulous planning and systematic structuring to evaluate the dynamics between
UEs and UAV-BSs in communication networks. Based on Figure 5.2, this study
investigates the impact of varying quantities of UEs (50, 75, 150) and UAV-BSs (2,
3, 5, 10) on critical performance metrics including packet loss, throughput, latency,
movement, and communication power of UAV-BSs.

The choice of the specific number of UEs in the performed experiments was
driven by the necessity to ensure meaningful comparisons with baseline studies, as
evidenced in previous research (PASANDIDEH et al., 2023a) and (MANZOOR;
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Figure 5.1 – Scenarios for unnatural disaster (war), and natural disaster (flood).

Figure 5.2 – The implementation of a comprehensive 12 factorial experiments.
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KIM; HONG, 2019). However, it is acknowledged that the numbers used may ap-
pear lower when compared to the scenarios described, such as the example of 50,000
people attending a football match in a stadium. It is important to clarify that
the designed experiments are simplifications of the provided use case scenarios. To
address this concern, additional tests were conducted on larger sets of UEs, en-
compassing combinations of UAV-BSs and time steps. These tests included UEs
ranging from 500 to 1000 and varying numbers of UAV-BSs (2, 3, 5, 10). Despite
the reasonable results obtained, it is crucial to highlight that increasing the number
of UEs led to higher computational demands, resulting in longer running times due
to the heightened requirement for computational resources. Additionally, covering
the expanded set of UEs necessitated a greater number of UAV-BSs. While designed
experiments may not directly mirror the scale of real-world scenarios, they provide
valuable insights into the performance of the proposed system under varying con-
ditions and help lay the groundwork for further investigation and optimization. To
tackle large-scale scenarios involving thousands of UEs more efficiently, future work
will focus on developing algorithms tailored to such contexts.

The experiment design involves conducting 12 distinct trials, systematically
controlling and manipulating the independent variables to observe their effects on
the dependent variables. The experimental design matrix comprises two separate
dimensions: one where the number of UAV-BSs remains constant while the number
of UEs fluctuates, and another where the number of UEs is fixed while varying the
quantity of UAV-BSs. To execute the experiments effectively, each trial isolates
a specific combination of UEs and UAV-BSs. In the first set of trials, where the
number of UAV-BSs is held constant, different quantities of UEs are employed to
evaluate their impact on the performance metrics. Conversely, in the second set of
trials, the number of UEs remains fixed while the number of UAV-BSs is varied to
discern their influence on the aforementioned metrics.

5.3 Results and Discussions

This section discusses the simulation results obtained from the characteriza-
tion of the proposed optimization problem and the algorithm including, the move-
ment and communication powers, packet loss ratio, latency, throughput, and the
number of connected UEs to each UAV-BS.
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• Optimal location of UAV-BSs in different scenarios: The presented optimiza-
tion model aims to determine the UAV-BSs optimal positions for a compre-
hensive experimental design encompassing 50, 75, and 150 UEs, paired with
varying numbers of UAV-BSs set at 2, 3, 5, and 10 units. These calculations
span across diverse input data configurations spanning 10 time steps. Figure
5.3 showcases the optimal positions of UAV-BSs across 12 experiments and
their associations with UEs during the initial time step for each scenario. Ac-
cording to Figure 5.3 each UAV-BS is denoted by a differently colored square.
UEs are represented by their IDs as small dots colored corresponding to their
connected UAV-BS. Disconnected UEs are depicted in gray. Notably, Figure
5.3 demonstrates that when the number of UAV-BSs is set to ten, achiev-
ing 100% coverage probability ensues, effectively covering all UEs. While the
positions of UAV-BSs and UEs across 10-time steps are displayed for each ex-
periment, due to space limitations, only the positions at time 0 are provided in
this presentation. Table 5.1 shows the number of connected and disconnected
UEs for different scenarios at time 0.

Table 5.1 – The number of connected and disconnected UEs to each UAV-BS in each
scenario at time 0.

Experiment Number of
UEs Number of UAV-BSs Number of

Connected
Number of

Disconnected
1

50

2 31 19
2 3 38 12
3 5 46 4
4 10 50 0
5

75

2 47 28
6 3 61 14
7 5 65 10
8 10 75 0
9

150

2 80 70
10 3 112 38
11 5 147 3
12 10 150 0

For further insights and additional results across multiple time steps for each
experiment, interested readers can find the complete dataset in the Git repos-
itory made available by this research group. Complete dataset repository
available at: 1 link.

1<https://github.com/Faezeh1989/final_PhD_UAV_Placement/tree/main>

https://github.com/Faezeh1989/final_PhD_UAV_Placement/tree/main
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50 UEs 2 UAV BSs

50 UEs 3 UAV BSs

50 UEs 5 UAV BSs

50 UEs 10 UAV BSs

75 UEs 2 UAV BSs 150 UEs 2 UAV BSs

75 UEs 3 UAV BSs 150 UEs 3 UAV BSs

75 UEs 5 UAV BSs 150 UEs 5 UAV BSs

75 UEs 10 UAV BSs 150 UEs 10 UAV BSs

Figure 5.3 – Optimal positions of UAV-BSs while serving different numbers of UEs.

• Packet loss rate: In wireless communication systems, especially in scenarios in-
volving UAV-based communication, ensuring minimal packet loss is crucial for
optimizing network performance. As UAV-BS start to move from their orig-
inal locations, multiple UEs establish connections with these UAV-BS units.
The time it takes for a UAV-BS to reach the vicinity of a UE becomes a crit-
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ical factor in accurately measuring packet loss. Estimating the packet loss
rate involves a complex interplay of variables governed by a linear relationship
that encompasses several influential factors. These factors include but are not
limited to:

– Number of Connected UEs: The total count of UEs establishing connec-
tions with the UAV-BS significantly impacts the network’s packet loss
rate. Higher UE density might lead to increased contention for network
resources, potentially elevating packet loss.

– Data Rate of UEs: The transmission speeds or data rates at which UEs
communicate with the UAV-BS influence packet loss. Higher data rates
might strain the network, potentially resulting in a higher probability of
packet loss, especially if network resources are limited.

– Proximity of UEs to UAV-BS: The distance between UEs and the UAV-
BS plays a crucial role. UEs closer to the UAV-BS typically experience
better signal strength and lower interference, thereby potentially experi-
encing lower packet loss compared to UEs farther away.

– Movement of UAV-BS: The dynamic nature of UAV-BS relocation in-
troduces variability in the network topology. This movement affects the
connectivity and signal quality experienced by UEs, thereby impacting
the packet loss rate.

Accurately estimating and managing packet loss rate under these dynamic
conditions necessitates continuous monitoring, predictive modeling, and adap-
tive algorithms. Strategies involving proactive handover mechanisms, resource
allocation algorithms, and predictive path planning for UAV-BS can be em-
ployed to mitigate packet loss and enhance overall network performance in
such scenarios. In Figure 5.4, the packet loss rates for 2, 3, 5, and 10 UAV-
BSs are depicted over time across different experiments, each involving varying
numbers of UEs (50, 75, and 150). Observing Figure 5.4 plots a, b, and c, it
is apparent that the average packet loss for UAV-BSs 2, 3, and 5 tends to be
higher when accommodating 150 UEs compared to scenarios with 75 and 50
UEs respectively. However, when employing 10 UAV-BSs to cover these sets
of UEs, the packet loss values converge to nearly the same levels due to the en-
hanced coverage. With 10 UAV-BSs deployed, complete coverage is achieved
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for each subset of 50, 75, and 150 UEs. Notably, the variance observed in
the plots regarding packet loss is attributable to the stochastic nature of data
demands from UEs at different time instances.

• Latency: The latency of UEs and UAV-BSs is of paramount importance in
numerous modern applications, particularly in the realms of remote sensing,
surveillance, and communication. Low latency is critical for real-time decision-
making and control, as it directly impacts the responsiveness of UAV-BSs to
UE commands and the timely delivery of data or services. Reduced latency
enhances the effectiveness of UAV-BSs in tasks such as disaster response, where
quick decision-making and communication can save lives, or in autonomous
UAV-BS delivery services, where prompt navigation and obstacle avoidance
are essential. In summary, minimizing latency between UEs and UAV-BSs is
vital for ensuring the efficiency, safety, and reliability of UAV-BS operations
across a wide range of industries and applications. Figure 5.5 displays bar
charts illustrating the varied latency of UAV-BSs in an experiment involving
75 UEs. As depicted in the figure, an increase in the number of available
UAV-BSs serving UEs potentially reduces the distance between a UE and the
nearest UAV-BS. This proximity results in shorter communication paths, thus
contributing to lower latency. It is important to note that the low latency
values observed are due to the direct single-hop communication between UEs
and the UAV-BSs.

Additionally, Table 5.2 shows the comparison of the average latency of the
proposed optimization model for a full factorial design. As indicated by Table
5.2, the average latency in for each set of UEs and their respective UAV-BSs re-
mains approximately 1 ms. Latency within this context is notably influenced
by the spatial separation between UEs and UAV-BSs. A direct correlation
exists where increased distance between UEs and UAV-BSs results in higher
observed latency. The proposed optimization model strategically minimizes
the distance between UEs and UAV-BSs, thereby inherently reducing the la-
tency. The reduction in spatial separation inherently leads to a considerable
decrease in latency, exemplifying the efficacy of the proposed model in achiev-
ing lower communication delay. This optimization approach plays a significant
role in enhancing the efficiency and responsiveness of the communication sys-
tem by mitigating latency concerns through minimized distances between UEs
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(a) UAV-BSs packet loss, 2 UAV-BSs, varying UEs (b) UAV-BSs packet loss, 3 UAV-BSs, varying UEs

(d) UAV-BSs packet loss, 10 UAV-BSs, varying UEs(c) UAV-BSs packet loss, 5 UAV-BSs, varying UEs

Figure 5.4 – The packet loss rate of each UAV-BS over time in different experiments
with varying number of UEs
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Figure 5.5 – Latency of UAV-BSs, the experiment with the fixed number of 75 UEs and
varying number of UAV-BSs
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Table 5.2 – Average latency of each UAV-BS in each scenario over time.

Experiment Number of UEs Number of UAV-BSs Average Latency (ms)
1

50

2 0.60
2 3 0.40
3 5 0.24
4 10 0.20
5

75

2 0.90
6 3 0.72
7 5 0.61
8 10 0.37
9

150

2 1.82
10 3 1.22
11 5 1.66
12 10 0.67

and UAV-BSs.

It is worth mentioning that, the low values observed in both parameters, La-
tency and Packet Loss, stem from the direct single-hop communication be-
tween UEs and the UAV-BSs. The assumption of single or multiple hops
between UAV-BS and users significantly impacts packet loss and latency in
communication systems. In a single-hop configuration, where UAV-BSs di-
rectly communicate with users, packet loss and latency tend to be lower due
to the simplified transmission path, minimizing potential points of failure and
interference. Conversely, in a multiple-hop setup, where data is relayed be-
tween UAV-BSs before reaching users, packet loss and latency may increase as
each additional hop introduces transmission delays, potential points of failure,
and the risk of interference or signal degradation at relay points. While multi-
ple hops can offer broader coverage, the trade-off often involves higher packet
loss and latency, emphasizing the importance of carefully considering network
topology and application requirements to optimize communication efficiency
and reliability. However, based on the presented model, factors influencing
packet loss and latency also include the distance between the UE and the
UAV-BS, the number of concurrent connections to the UAV-BS, and the data
requirements of the UEs.

• Power consumed by UAV-BSs : The power consumption of UAV-BS is a mul-
tifaceted aspect influenced by several key factors, primarily impacted by their
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mobility and communication operations. While the movement of UAV-BSs
significantly affects their power usage, it is crucial to emphasize that the en-
ergy expended during data transmission and reception processes is equally
significant, albeit often overshadowed when compared to movement-related
power consumption. Movement-related power consumption encompasses a
spectrum of activities inherent in UAV-BS mobility. This includes horizontal
and vertical motion, landing, take-off, and hovering. Each of these activi-
ties contributes to the overall energy expenditure of the UAV-BSs. Optimiz-
ing these movements is crucial to effectively managing power consumption.
However, beyond movement, communication processes—such as transmitting
and receiving data—also demand substantial power resources. This aspect
is pivotal and should not be underestimated in the overall power consump-
tion profile. Efforts aimed at reducing movement-related power consumption
should be aligned with strategic optimization of UAV-BS placement to max-
imize coverage for UEs. By strategically placing UAV-BSs, coverage can be
enhanced while unnecessary movements are minimized, thereby reducing over-
all power consumption. In summary, while movement plays a significant role
in the power consumption of UAV-BSs, it’s essential to acknowledge and ad-
dress the energy demands associated with communication processes. Strategic
placement and operational optimization are key to balancing both movement-
related and communication-related power consumption while ensuring optimal
coverage for UE. Figure 5.6, and 5.7 illustrate the comparison of movement
power, and communication power consumption of UAV-BSs in different scenar-
ios and experiments, respectively. According to Figure 5.6, movement power
consumption is the most significant portion of power consumption compared
to communication power. As determined by the proposed model, movement
power is a function of UAV-BS movement, rotor specifications, UE positions,
UAV-BS positions, wind speed, wind direction, and UAV speed. According to
Figure 5.6 where the lines representing average movement power remain small
when UAV-BS movement is limited.

As it is possible to observe in Figure 5.6, there are instances where movement
power increases during certain time steps. This occurs when UAV-BSs need
to reposition themselves more extensively to attain optimal locations for com-
prehensive UE coverage. In Figure 5.6, specifically in plot (a), there exist peak



95

values at time step 2 for the experiments with 50, and 150 UEs, which can be
attributed to the UAVs covering a distance of nearly 100 units between time
steps 1 and 4. This distance is crucial as it aligns with the data requirements
of the UEs and is influenced by various factors such as UAV mobility patterns,
movement dynamics, positional changes, UAV capacity, and coverage range.
Moreover, the simulation considers randomly selected wind conditions, rang-
ing from 1 to 21 km/h in speed and 0 to 360 degrees in orientation. Notably,
at time step 2, the specific values of wind speed (V W ind

t ) registering at 17.23
km/h and wind orientation (θW ind

t ) at 251.06 degrees indicate a strong wind
opposing the direction of the UAV’s movement. Consequently, this opposition
leads to increased power consumption by the UAV-BS due to the adverse effect
of wind resistance. Similar adjustments might be observed in other plots con-
cerning their respective peak values, which could also be influenced by these
diverse environmental and mobility factors.

Figure 5.7 indicates the communication power consumed by each UAV-BS over
time in different experiments with varying number of UEs. One crucial factor
affecting this communication power is the number of UEs being covered by
each UAV-BS. Generally, when a UAV-BS covers more UEs, it tends to con-
sume more power for communication, as it needs to manage data transmission
and reception for a larger UE base. Conversely, when fewer UEs are con-
nected, communication power is lower. This relationship is consistent across
the depicted graphs.

Figure 5.8 depicts the connectivity percentage in an experiment where the
number of UEs was fixed at 50 while the number of UAV-BSs varied (2, 3, 5,
and 10) over time. As observed from Figure 5.8, there is a noticeable upward
trend correlating an increased number of UAV-BSs with enhanced connectivity.
With a higher count of UAV-BSs, the connectivity of UEs demonstrates a
consistent increase. Notably, when employing 10 UAV-BSs, a 100% coverage
probability was achieved. Similar experiments were conducted for different
sets of UEs (75, 150) alongside varying numbers of UAV-BSs.

Additionally, Table 5.3 offers valuable insights into the average percentage
of connected and disconnected UEs over the duration of each UAV-BS in-
teraction, directly influencing the observed trends in communication power
displayed in the communication-related power chart. An analysis of the table
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(a) UAV-BSs movement power, 2 UAV-BSs, varying UEs (b) UAV-BSs movement power, 3 UAV-BSs, varying UEs

(c) UAV-BSs movement power, 5 UAV-BSs, varying UEs (d) UAV-BSs movement power, 10 UAV-BSs, varying UEs

Figure 5.6 – The movement power consumed by each UAV-BS over time in different
experiments with varying number of UEs
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(a) UAV-BSs communication power, 2 UAV-BSs, varying UEs (b) UAV-BSs communication power, 3 UAV-BSs, varying UEs

(c) UAV-BSs communication power, 5 UAV-BSs, varying UEs (d) UAV-BSs communication power, 10 UAV-BSs, varying UEs

Figure 5.7 – The communication power consumed by each UAV-BS over time in different
experiments with varying number of UEs
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indicates a clear trend: as the number of UAV-BSs increases, there is a rise
in the percentage of connectivity observed among the UEs. Moreover, it is
noteworthy that in each experiment, a 100% coverage rate was achieved using
10 UAV-BSs, emphasizing the correlation between the quantity of UAV-BSs
and the enhanced connectivity observed across the interactions with UEs.
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Figure 5.8 – The percentage of UEs connectivity for experiments with fixed number of 50
UEs, and varied number of UAV-BSs

• UAV-BSs Throughput:

The graphical representation in Figure 5.9 showcases the dynamic nature
of throughput measured in milliseconds, reflecting the data transfer speed
achieved by UAV-BSs across a period of time. The fluctuations in throughput
are influenced by various interrelated factors, each contributing significantly
to the observed variations.

– Number of Connected UEs: The primary determinant affecting through-
put is the quantity of UEs simultaneously linked to each UAV-BS. Higher
throughput is typically experienced when a UAV-BS serves a larger num-
ber of UEs concurrently. This situation leads to increased data transmis-
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sion and reception, thereby elevating the throughput. Conversely, a lower
number of connected UEs results in reduced data exchange demands and
subsequently lower throughput.

– Quality of Wireless Link: The strength and stability of the wireless con-
nection between the UAV-BSs and UEs significantly impact throughput.
Strong, stable connections enhance data transfer rates, while weaker or
unstable links can cause fluctuations and lower throughput.

– Network Congestion: Congestion within the network infrastructure can
hinder data flow and subsequently reduce throughput. High network
traffic or bottlenecks in the communication pathways can restrict the
efficient transfer of data, resulting in decreased throughput.

– Efficiency of Data Transmission Protocols: The effectiveness of the pro-
tocols governing data transmission plays a crucial role in determining
throughput. Efficient protocols facilitate rapid and reliable data ex-
change, thereby positively impacting throughput. Conversely, inefficient
protocols may lead to slower data transfer rates and reduced throughput.

– Packet Loss: Throughput can be affected by the occurrence of packet
loss during data transmission. Higher packet loss rates can result in
retransmissions and slower overall throughput.

– UAV-BS Capacity: The randomly generated capacity of UAV-BSs, typi-
cally falling within the range of 400-500 meters, contributes to through-
put variations. Depending on the capacity available, the UAV-BSs may
handle differing quantities of UEs and data traffic, thereby impacting
throughput.

– UEs’ Data Rate: The randomly generated data rates of UEs directly
influence throughput. Higher data rates lead to faster data transmission,
increasing throughput, while lower data rates can cause imbalances and
fluctuations in throughput plots.

5.4 Comparative Analysis

To validate the efficacy of the optimization model proposed in this disser-
tation, algorithms found in the literature, including (PASANDIDEH et al., 2023a)
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(a) UAV-BSs throughput, 2 UAV-BSs, varying UEs (b) UAV-BSs  throughput, 3 UAV-BSs, varying UEs

(c) UAV-BSs throughput, 5 UAV-BSs, varying UEs (d) UAV-BSs  throughput, 10 UAV-BSs, varying UEs

Figure 5.9 – UAV-BSs Throughput of each UAV-BS over time in different experiments
with varying number of UEs.
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Table 5.3 – The average of connected and disconnected UEs to each UAV-BS in each
scenario over time.

Experiment Number of
UEs Number of UAV-BSs Average %

Connected
Average %

Disconnected
1

50

2 51 49
2 3 66 34
3 5 91.80 8.2
4 10 100 0
5

75

2 51.99 48.01
6 3 60.94 39.06
7 5 78.93 21.07
8 10 100 0
9

150

2 39.07 60.93
10 3 62 38
11 5 88.81 11.19
12 10 100 0

and (MANZOOR; KIM; HONG, 2019), have been chosen for comparative analysis.
In (PASANDIDEH et al., 2023a), it was observed that specific UEs experi-

enced a significantly high packet loss rate. This issue predominantly stemmed from
the distant positioning of these UEs beyond the coverage area of the correspond-
ing UAV-BSs, causing data packets from these UEs to fail to reach the UAV-BSs.
However, an evident improvement is apparent when considering the comprehensive
factorial experiments depicted in Figure 5.4, showcasing the packet loss rates of
UAV-BSs. According to Figure 5.10, the overall packet loss rate achieved through
the proposed method is lower than the average packet loss rate outlined in (PASAN-
DIDEH et al., 2023a). This enhancement can be attributed to the increased precision
of the current model in determining optimal UAV-BS positions. Consequently, UEs
are efficiently allocated to closer UAV-BSs, resulting in a reduction in packet loss
rates.

According to Figure 5.11, (PASANDIDEH et al., 2023a) the average latency
recorded for each set of UEs and their corresponding UAV-BSs is approximately 15
ms. This latency value stands notably higher when compared to the latency rates
achieved in the proposed method, as presented in Table 5.2, where the average la-
tency is approximately 1 ms. Latency is intricately tied to the distance between UEs
and UAV-BSs, indicating that greater physical distance between these entities tends
to result in higher latency. The proposed method focuses on minimizing the distance
between UEs and UAV-BSs, consequently leading to a reduction in latency when
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Figure 5.10 – The comparison of UEs packet loss rate between proposed method, and
(PASANDIDEH et al., 2023a)

compared to the latency reported in (PASANDIDEH et al., 2023a). Furthermore,
a direct correlation exists between packet loss and latency. The proposed method
has notably decreased packet loss in contrast to the prior work. When packets are
lost during transit through the network, additional time is required for the sender
to detect and recover these lost packets. Therefore, the reduced packet loss in the
proposed method directly contributes to the lower latency observed.
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Figure 5.11 – The comparison of UEs latency between proposed method, and
(PASANDIDEH et al., 2023a)

Table 5.4 shows the performance comparison of PSO and JAYA for UAV-BS
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placement problem. Convergence speed reflects how quickly the algorithm converges
to a solution. According to Table 5.4, JAYA outperforms PSO, demonstrating a
faster convergence. Solution quality shows the quality of the solutions produced
by the algorithms, which are assessed based on the objective function values. The
accuracy of optimal UAV positions achieved by the JAYA algorithm surpasses that
of the PSO algorithm. This assessment is based on the deviation from the true
optimal positions and the achieved coverage rate. As depicted in Table 5.4, JAYA
exhibits superior performance with lower UAV-BS latency and reduced packet loss
rates, signifying accelerated communication compared to PSO.

Table 5.4 – Performance of PSO and Jaya for UAV-BS Placement

Algorithms Convergence
Speed

Solution
Quality

UAV
Positions
Accuracy

Packet
Loss Latency

PSO Moderate Good Moderate Moderate High
Jaya Fast Excellent High Low Low

The power consumption comparison depicted in Figure 5.12 highlights an
ascending trend in the red line, representing the power consumption according to
the methodology outlined in (MANZOOR; KIM; HONG, 2019). This trend implies
a direct correlation between the increasing number of UEs and elevated power us-
age. However, the proposed model, represented by the blue line, recognizes that
power consumption is not solely dependent on the quantity of users served. In the
proposed model, various additional factors contribute significantly to power con-
sumption. Elements such as wind speed and direction, the velocity of UEs, their
data rate requirements, UAV-BS capacity, and other contributing factors are in-
tegral components within the proposed power consumption model. These factors
collectively shape and influence the dynamics of power consumption. This broader
perspective results in a more intricate and nuanced power consumption pattern. For
instance, an escalation in wind speed and opposing direction can exert a notable im-
pact on power utilization, even in scenarios with a consistent number of UEs. By
integrating these diverse factors, the proposed model provides a comprehensive un-
derstanding of power consumption dynamics, moving beyond a singular focus on
the quantity of UEs served to capture the complex interplay of multiple variables
influencing power usage.

The choice of the (MANZOOR; KIM; HONG, 2019) as one of the baselines
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for comparison stems from several key factors. Firstly, the (MANZOOR; KIM;
HONG, 2019) provides a solid foundation for understanding power consumption dy-
namics in UAV-BS systems. Additionally, the formulation of power consumption in
the proposed method is derived from the baseline, indicating a logical starting point
for comparison. The third reason is the similarities in parameters such as UAV-BS
rotor specifications and experimental setup, the proposed model expands upon the
baseline by incorporating additional factors that significantly impact power con-
sumption, such as wind speed and direction, UE velocity, data rate requirements,
and UAV-BS capacity. By integrating these diverse factors, the proposed model of-
fers a more comprehensive understanding of power consumption dynamics, moving
beyond a simplistic focus on the quantity of UEs served. Thus, the (MANZOOR;
KIM; HONG, 2019) serves as a relevant reference point for evaluating the improve-
ments and nuances introduced by the proposed model in capturing the complex
interplay of multiple variables influencing power usage in UAV-BS systems.
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Figure 5.12 – The comparison of power consumption between proposed method, and
(MANZOOR; KIM; HONG, 2019)

5.5 Discussion

This section, delves into an extensive examination of how the proposed meth-
ods establish and uphold the integrity and accuracy of the models. It thoroughly



105

explores the techniques meticulously employed to ascertain not only the precision of
the models but also the correctness of their implementations. Furthermore, this sec-
tion extensively addresses the myriad challenges entailed in the practical application
and integration of this research into real-world scenarios. Additionally, it furnishes a
comprehensive elucidation of the inherent limitations inherent in the work, thereby
offering a nuanced perspective on its scope and applicability.

5.5.1 Techniques and validation procedures

To ensure the correctness and validity of the proposed energy-efficient UAV-
BS positioning mechanism, several techniques are employed. Firstly, the model
formulation is rigorously validated by comparing it against established theoretical
principles in wireless communication and optimization. This formulation was based
on a thorough literature review and consultation with domain experts to ensure that
the model accurately represented the complexities of UAV-BS positioning. The
model assumptions and equations are cross-referenced with existing literature to
ensure accuracy and consistency.

Secondly, the implementation of the model is thoroughly verified by exten-
sively testing it against known scenarios and benchmarks. This includes code review,
unit testing, and validation against test cases to identify and correct any errors or
inconsistencies. Additionally, sensitivity analyses are conducted to assess the impact
of parameter variations on the results, ensuring robustness across different scenarios.
Finally, the achieved results with JAYA are compared with those obtained using a
PSO-based method, enabling us to validate the effectiveness and efficiency of the
proposed approach against established techniques. By employing these techniques,
correctness and validity is guaranteed in the models, implementations, and experi-
ments, enhancing the reliability and trustworthiness of the research outcomes.

5.5.2 The challenges to utilizing this work in the real world

Utilizing research findings in real-world applications presents several chal-
lenges and limitations. One significant challenge lies in scaling the proposed energy-
efficient UAV-BS positioning mechanism to accommodate large-scale deployment
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scenarios. While the performed experiments demonstrate promising results, they
may not fully capture the complexities and dynamics of real-world environments.
Additionally, practical implementation faces hurdles such as regulatory constraints,
technological limitations, and cost considerations. Integrating UAV-BS into ex-
isting communication infrastructure requires collaboration with various stakehold-
ers, including regulatory bodies, telecommunications providers, and urban planners.
Furthermore, ensuring seamless operation and compatibility with existing systems
poses challenges that need to be addressed. Despite these limitations, proposed
work provides valuable insights and serves as a foundation for further research and
development in the field of UAV-assisted communication networks. It is essential to
acknowledge these challenges and work towards overcoming them to realize the full
potential of the provided research in real-world applications.
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6 CONCLUSION

This study at hand extends the scope of prior research by introducing a
cutting-edge MINLP model, specifically tailored to optimize energy efficiency by
strategically situating UAVs as BSs. This novel approach aims to significantly en-
hance wireless connectivity across diverse scenarios. To tackle this optimization
challenge, the paper proposes an algorithm that ingeniously merges the JAYA op-
timization algorithm with the K-means clustering technique. The fusion of these
methodologies presents a robust solution for addressing the optimization model’s
complexities.

This study aims to address two primary research questions. In response to
the initial research question concerning techniques, optimized algorithms, and data
structures for mitigating wasted power consumption in achieving optimal UAV-
BS placement, various strategies can be adopted. Here are several approaches to
consider:

• Efficient Data Structures: Utilizing data structures such as spatial indexes
or graph-based representations can significantly improve the efficiency of ac-
cessing and processing spatial information. This optimization aids in route
planning, navigation, and communication tasks, ultimately reducing UAV-BS
energy expenditure. Techniques such as quadtrees, R-trees, or graph data
structures can be leveraged.

• Machine Learning-Based Predictive Models: Implementing predictive models
based on machine learning enables proactive decision-making regarding UAV-
BS movement and resource allocation. These models can learn from historical
data and environmental factors to predict optimal placement and operational
strategies, thereby contributing to energy-efficient deployment.

• Dynamic Resource Allocation: Dynamically allocating resources based on real-
time demand and environmental conditions can help optimize energy consump-
tion. Adaptive algorithms that adjust UAV-BS placement and task assign-
ments in response to changing requirements and energy levels can mitigate
power wastage.

• Topology Control: Controlling the network topology to minimize redundant
coverage and optimize communication paths can also reduce energy consump-
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tion. Techniques such as clustering or relay node placement can be employed
to ensure efficient data transmission while conserving UAV-BS energy.

In response to the second question, to improve the adaptive algorithms and
optimization techniques for UAV-BS placement and energy consumption while main-
taining network quality, several strategies can be considered:

• Enhanced Learning Capabilities: Increasing the complexity and diversity of
the environmental datasets used for training reinforcement learning models can
improve their adaptability and decision-making capabilities. This can involve
incorporating more real-world scenarios, including a wider range of weather
conditions, terrain variations, and user demands.

• Refinement of Metaheuristic Algorithms:

Metaheuristic algorithms like genetic algorithms and particle swarm optimiza-
tion can be enhanced by improving their convergence speed. This can be
achieved through the development of more efficient search strategies or by
parallelizing computations to handle larger problem sizes more effectively.

• Multi-Objective Optimization:

Integrating multi-objective optimization strategies can help balance conflicting
objectives, such as optimizing energy consumption while ensuring network
quality. Techniques like Pareto optimization can be employed to find a set
of solutions that represent trade-offs between different objectives, providing
decision-makers with a range of options to choose from based on their priorities.

• Real-Time Data Integration:

Continuous integration of real-time environmental data, such as weather con-
ditions and user demands, into the optimization algorithms can improve their
responsiveness and adaptability. This may involve developing efficient data
collection and processing mechanisms to ensure timely updates for decision-
making.

• Hybrid Approaches:

Combining different optimization techniques, such as dynamic programming,
reinforcement learning, and metaheuristic algorithms, into hybrid frameworks
can leverage the strengths of each approach while mitigating their individual
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limitations. Hybrid approaches can provide more robust and flexible solutions
that are better suited to dynamic and uncertain environments.

• Simulation and Testing:

Conducting extensive simulations and real-world testing can help validate and
fine-tune the performance of adaptive algorithms and optimization techniques.
This iterative process allows researchers and practitioners to identify potential
weaknesses and areas for improvement, leading to more effective solutions in
practice.

To tackle large-scale scenarios involving thousands of UEs more efficiently, fu-
ture work will focus on developing algorithms tailored to such contexts. Specifically,
we aim to explore algorithms that can handle the increased computational demands
and ensure optimal UAV-BS placement while mitigating runtime challenges. Algo-
rithms such as advanced optimization techniques, machine learning algorithms, or
hybrid approaches combining different methodologies could be promising avenues
for investigation. These algorithms will be designed to efficiently manage the com-
plexities of large-scale scenarios, facilitating the seamless integration of UAV-BSs
into diverse communication environments.

A comprehensive factorial experiment is conducted within communication
networks, varying UE and UAV quantities (ranging from 50 to 150 UEs and 2 to 10
UAVs). The implementation of the proposed optimization model realized through
Python, facilitates a meticulous evaluation of critical performance metrics. These
metrics encompass packet loss, throughput, latency, UAV movement, and the power
dynamics in UAV-BS communications.

Simulation results underscore the efficacy of the JAYA-based algorithm,
showcasing its adeptness in minimizing packet loss, latency, and power consump-
tion. Notably, the observed variations in metrics are attributed to the dynamic
nature of UE data demands over time. Moreover, the proposed model ensures an
average connectivity rate surpassing 50%, validating its practical viability within
real-world scenarios.

Nevertheless, this study conscientiously acknowledges a limitation concerning
optimization algorithms, specifically the challenge of attaining the absolute global
optimum within intricate parameter spaces. The inherent tendency of optimization
algorithms to converge towards local optima poses a significant constraint, restricting
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exploration beyond initial starting points.
To fortify the proposed approach, the study suggests potential enhancements.

Strategies such as diverse initializations or the integration of multiple optimization
algorithms could expand the solution space, thereby potentially yielding superior so-
lutions. Introducing methodologies like simulated annealing, genetic algorithms, or
PSO is recommended to navigate the complexities of the landscape more effectively.

Future endeavors are urged to concentrate on alternative methodologies that
could delve into and converge upon the global optimum solution. Investigating ad-
vanced optimization techniques, pioneering algorithms, or hybrid approaches holds
promise in circumventing limitations associated with reaching the global optimum
within intricate parameter spaces. Such initiatives are envisioned to bolster the
efficacy of UAV-BS deployment, driving cost-effectiveness, sustainability, and per-
formance improvements in wireless communication networks.
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APPENDIX A — EXTENDED ABSTRACT IN PORTUGUESE

(RESUMO ESTENDIDO EM PORTUGUÊS)

Este apêndice apresenta brevemente esta tese de doutorado, que é intitulada
"Posicionamento energeticamente eficiente de Estações-Base Montadas em VANTs
para melhoria de conectividade em redes sem fio".

A.1 Introdução

Este estudo discute o campo em crescimento dos Veículos Aéreos Não
Tripulados (VANTs), comumente conhecidos como drones, concentrando-se em
seus sistemas colaborativos, especialmente no contexto das Redes Ad Hoc Aéreas
(FANETs). Destaca o aumento do investimento no mercado global de VANTs comer-
ciais e o papel em evolução dos drones em diversas aplicações, citando o crescimento
de 1,1 bilhão de dólares em 2020 para uma expectativa de 58,4 bilhões de dólares
até 2026. A integração de IA e robótica impactou significativamente o desenvolvi-
mento das FANETs. Essas redes de VANTs operam de forma colaborativa, sem
intervenção humana, e apresentam diversos desafios como mobilidade, dinâmica de
rede e questões de segurança. O avanço da IA, particularmente em aprendizado
de máquina (ML), oferece soluções promissoras para enfrentar esses desafios nas
FANETs (Fahim; Gadallah, 2020), (ZAHEDI et al., 2020).

Este estudo enfatiza a importância da otimização do posicionamento das
Estações Base montadas em VANTs (UAV-BSs) para aprimorar as redes de comu-
nicação sem fio. Aponta os objetivos associados ao posicionamento de UAV-BSs,
incluindo maximização da cobertura, minimização da interferência de sinal, otimiza-
ção da capacidade de rede, melhoria das métricas de Qualidade de Serviço (QoS)
e redução do consumo de energia (Akram et al., 2020), (SHAKOOR et al., 2021),
(CHERIF et al., 2020), (Chaalal; Reynaud; Senouci, 2020), (TAREKEGN et al.,
2022), (WANG et al., 2022), (DAI et al., 2022), (WU et al., 2022), ground nodes
(Fahim; Gadallah, 2020) (ZAHEDI et al., 2020) (Akram et al., 2020) (SHAKOOR et
al., 2021) (CHERIF et al., 2020) (Chaalal; Reynaud; Senouci, 2020), (TAREKEGN
et al., 2022), (WANG et al., 2022), (DAI et al., 2022), (WU et al., 2022),(SHAKOOR
et al., 2021), (Zhang; Ansari, 2020) (Zhong et al., 2020), (Vashisht; Jain; Mann,



121

2019), (Cicek et al., 2020), (Guo et al., 2019), e (YOU et al., 2020).
Além disso, este estudo introduz questões de pesquisa específicas: a primeira

aborda técnicas para mitigar o consumo de energia desperdiçada na obtenção do
posicionamento ideal de VANTs e a segunda se concentra em algoritmos adaptativos
ou técnicas de otimização que consideram fatores ambientais em tempo real para
otimizar o posicionamento e o consumo de energia de VANTs, mantendo a qualidade
da rede (Fahim; Gadallah, 2020)-(YOU et al., 2020).

A.1.1 Proposta de Pesquisa e Contribuições

Este estudo de pesquisa apresenta duas contribuições fundamentais no âmbito
da otimização de implantação de Veículos Aéreos Não Tripulados (VANTs). O foco
principal gira em torno de abordar as restrições de consumo de energia nos modelos
de posicionamento de VANTs. A primeira contribuição reside na formulação de um
modelo ótimo de posicionamento de VANTs que incorpora problemas de otimização
não lineares. Este modelo leva em consideração as complexidades do consumo de
energia, colocando estrategicamente os VANTs respeitando as restrições energéticas.

A segunda contribuição adentra em um estudo abrangente voltado para a
solução do modelo matemático mencionado. Ao empregar técnicas matemáticas
avançadas e algoritmos, esta pesquisa explora metodologias eficazes para resolver
de forma eficiente o complexo problema de otimização não linear associado ao posi-
cionamento de VANTs. Estas contribuições oferecem coletivamente uma abordagem
inovadora para otimizar a implantação de VANTs, considerando as restrições de con-
sumo de energia e propondo soluções viáveis para o modelo matemático resultante,
enriquecendo assim o panorama das estratégias de implantação de VANTs.

As contribuições podem ser elucidadas da seguinte maneira:

• Formulação de uma representação robusta do problema de posicionamento
de VANTs como um Programa Não Linear de Inteiros Mistos (MINLP), per-
mitindo a integração simultânea de diversos objetivos e restrições.

• Integração de restrições relacionadas às especificações do rotor do VANT, al-
cance de comunicação, velocidade de voo, fatores ambientais (como velocidade
e direção do vento), especificações de Equipamentos de Usuário (EU) e outras
limitações pertinentes no modelo formulado.
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• Otimização do modelo proposto de posicionamento de VANTs enquanto con-
sidera várias métricas de desempenho, como cobertura, capacidade, consumo
de energia e requisitos de Qualidade de Serviço (QoS).

• Introdução de um algoritmo meta-heurístico, nomeadamente PSO e JAYA,
projetado para determinar as localizações ótimas de VANTs.

• Validação do modelo analítico derivado por meio de análises numéricas inspi-
radas em simulações de Monte Carlo, reforçando sua aplicabilidade e confia-
bilidade.

A.2 Modelo de sistema e abordagem proposta

A.2.1 Modelo de sistema

Na situação descrita na Figura 3.1, em que a BS terrestre (BSk) pode ficar
inoperante devido a danos no equipamento ou problemas de energia, UAV-BSi, que
está localizada em (xUAV −BS

i,t , yUAV −BS
i,t , hUAV −BS

i,t ) no momento t torna-se crucial
para o restabelecimento rápido e eficaz da comunicação, por exemplo, para o UEj

que está localizado em (xUE
j,t , yUE

j,t ), em uma área de raio RUAV −BS
t no momento t.

O problema de determinar as posições ideais continua sendo um desafio con-
stante. Os UAV-BSs são comumente chamados de problema de posicionamento, que
este estudo investiga.

çãoModelo de rede O modelo de rede é composto por vários UAVs de baixa
altitude e um grupo de UEs móveis em um ambiente projetado para simular uma rede
ad-hoc dinâmica e voadora. O padrão de mobilidade dos UEs é regido pelo modelo
de mobilidade Random Walk, caracterizado por uma faixa de velocidade variável
de [5-100 km/h], refletindo os padrões de movimento imprevisíveis semelhantes aos
cenários do mundo real. Abaixo estão as suposições refinadas descritas no trabalho
proposto:

• O ambiente operacional dos UAV-BSs abrange uma área de 2 quilômetros
quadrados.

• Os UAV-BSs possuem intervalos de comunicação variados (RUAV −BS
t ) e ca-

pacidades. taxa de exigência de dados para UEs varia a cada etapa de tempo,
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determinada aleatoriamente para cada UE.

nó (compreendendo UAV-BSs e UEs) recebe um identificador exclusivo para
distinção da rede.

• Todas as UEs manobram com base em um modelo de mobilidade Random
Walk, com velocidades que variam de 5 a 100 km/h.

• A configuração de comunicação pressupõe comunicação direta de salto único
entre UEs e UAV-BSs. õe-se que a velocidade vertical dos UAV-BSs não seja
afetada pela velocidade e direção do vento.

• As estações base terrestres (GBS) e os links de backhaul entre UAV-BSs e BSs
não são considerados nesse contexto.

A tabela 3.1 mostra a lista de notações usadas neste trabalho e a formulação
de otimização do problema.

A.3 Formulação do problema de posicionamento

O modelo de otimização proposto foi projetado para atingir simultaneamente
dois objetivos principais: minimizar o consumo de energia de movimento e comuni-
cação (P T otal

i,t ) utilizada pelos UAV-BSs; a primeira função objetiva é fornecida em
(3.26), minimizando o número de UEs descobertas (IUE

i,j,t); a segunda função objetiva
é fornecida em (3.27). Esses objetivos são integrados na função objetiva composta
f mostrada em (3.28). As restrições são categorizadas em restrições de mobilidade,
restrições de consumo de energia, perda de caminho e restrições de taxa de dados,
além de restrições operacionais.

A.3.1 Método proposto

Para permitir que o modelo seja executado em aplicativos assistidos por UAV,
foi fornecido um algoritmo meta-heurístico chamado JAYA. Esse algoritmo é car-
acterizado por sua velocidade, simplicidade e eficiência em termos de tempo de
computação e uso de memória, superando outros algoritmos meta-heurísticos. O
JAYA exibe a capacidade de convergir rapidamente para soluções globais ou quase
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ideais. O algoritmo JAYA tem menos parâmetros algorítmicos em comparação com
algumas outras técnicas de otimização e tem um comportamento determinístico,
portanto, produz resultados consistentes para o mesmo problema e entrada (ZITAR
et al., 2022; SINGH; CHAUDHARY, 2020).

Depois de inicializar os parâmetros do problema de otimização e do algoritmo
JAYA, os primeiros locais em potencial para UAV-BSs são encontrados no tempo
0 (xUAV −BS,initial

i,t , yUAV −BS,initial
i,t , hUAV −BS,initial

i,t ), usando o agrupamento k-means.
Depois de formular o problema de posicionamento de acordo com o fluxograma
fornecido na Figura 4.1, parâmetros como o tamanho da população, o número de
iterações, as variáveis e os critérios de encerramento precisam ser definidos. Em
seguida, as soluções, denotadas como coordenadas para UAVs, dentro da população
são classificadas, distinguindo as melhores e as piores soluções. O refinamento de
novas soluções envolve a utilização de equações 4.1, 4.2 e 4.3 que representam atual-
izações iterativas para otimizar as coordenadas (XUAV −BS

i,t,New , Y UAV −BS
i,t,New e HUAV −BS

i,t,New )
de posicionamentos de UAV-BS no processo de otimização proposto. Cada conjunto
de equações delineia como as novas coordenadas (denotadas como New) são recalcu-
ladas com base nas coordenadas atuais (Current), nas melhores coordenadas (Best)
e nas piores coordenadas (Worst).

O processo envolve o ajuste iterativo das coordenadas do UAV-BS até que a
convergência ou um critério específico seja alcançado. O parâmetro r atua como um
fator de escala ou etapa nesse processo de atualização. Se uma solução aprimorada
for encontrada, ela substituirá a solução anterior; caso contrário, o algoritmo re-
verterá para a solução anterior. Depois que todas as soluções da população tiverem
sido avaliadas e se a contagem de iterações atingir N , ocorrerá uma verificação da
condição de término. Se for atendida, as soluções melhores ou ótimas (coordenadas
do UAV) são retornadas; caso contrário, o processo continua com uma nova iteração.

A complexidade de tempo do programa fornecido é dominada pela inicializa-
ção da população e avaliação da função que têm uma complexidade de tempo de
O(I × J) ou O(n2). Quanto à intensidade computacional do código, ela depende
dos valores específicos de I e J . Se esses valores forem relativamente pequenos, o
código deverá ser computacionalmente viável para ser executado em UAV-BSs. En-
tretanto, se os valores forem grandes, o código poderá se tornar computacionalmente
intensivo e exigir recursos computacionais mais potentes para ser executado em um
tempo razoável. para ser executado em um período de tempo razoável.



125

A.4 Conclusões

O estudo em questão amplia o escopo de pesquisas anteriores ao introduzir
um avançado modelo de Programação Não Linear de Inteiros Mínimos (MINLP),
especificamente elaborado para otimizar a eficiência energética ao situar estrategi-
camente Veículos Aéreos Não Tripulados (VANTs) como Estações Base (BSs). Esta
abordagem inovadora visa aprimorar significativamente a conectividade sem fio em
diversos cenários. Para lidar com esse desafio de otimização, o estudo propõe um
algoritmo que mescla de forma engenhosa o algoritmo de otimização JAYA com
a técnica de agrupamento K-means. A fusão dessas metodologias apresenta uma
solução robusta para lidar com as complexidades do modelo de otimização.

Um experimento fatorial abrangente é conduzido em redes de comunicação,
variando as quantidades de Equipamentos de Usuário (EU) e VANTs (variando de 50
a 150 EUs e de 2 a 10 VANTs). A implementação do modelo de otimização proposto,
realizada por meio de Python, facilita uma avaliação meticulosa de métricas de de-
sempenho críticas. Essas métricas englobam perda de pacotes, throughput, latência,
movimento de VANTs e dinâmica de energia nas comunicações entre VANTs e BSs.

Os resultados da simulação destacam a eficácia do algoritmo baseado em
JAYA, demonstrando sua habilidade em minimizar a perda de pacotes, latência
e consumo de energia. Notavelmente, as variações observadas nas métricas são
atribuídas à natureza dinâmica das demandas de dados dos EUs ao longo do tempo.
Além disso, o modelo proposto garante uma taxa média de conectividade superior
a 50

No entanto, este estudo reconhece conscientemente uma limitação relacionada
aos algoritmos de otimização, especificamente o desafio em alcançar o ótimo global
absoluto dentro de espaços de parâmetros intricados. A tendência inerente dos
algoritmos de otimização em convergir para ótimos locais apresenta uma restrição
significativa, restringindo a exploração além dos pontos iniciais.

Para fortalecer a abordagem proposta, o estudo sugere aprimoramentos po-
tenciais. Estratégias como inicializações diversas ou a integração de múltiplos al-
goritmos de otimização poderiam expandir o espaço de solução, potencialmente
gerando soluções superiores. A introdução de metodologias como recozimento sim-
ulado, algoritmos genéticos ou Otimização por Enxame de Partículas (PSO) é re-
comendada para navegar de forma mais eficaz nas complexidades do cenário.
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Futuros esforços são instados a concentrar-se em metodologias alternativas
que possam explorar e convergir para a solução do ótimo global. Investigar técnicas
avançadas de otimização, algoritmos pioneiros ou abordagens híbridas têm poten-
cial para contornar limitações associadas à busca do ótimo global em espaços de
parâmetros intricados. Tais iniciativas são imaginadas para fortalecer a eficácia do
implante de VANTs como BSs, impulsionando a economia de custos, a sustentabili-
dade e melhorias de desempenho em redes de comunicação sem fio.

A.5 Publications

The outcomes and collaborations resulting from this research are docu-
mented in the following publications.

a) The research conducted while developing this PhD thesis laid
the groundwork for the papers listed below:

1. (PASANDIDEH et al., 2023b) A systematic literature review of flying ad hoc
networks: State-of-the-art, challenges, and perspectives,F Pasandideh, JPJ
Costa, R Kunst, W Hardjawana, EP de Freitas Journal of Field Robotics
40 (4), 955-979, 2023.

Abstract: Unmanned aerial vehicles (UAVs), also known as drones, com-
municate, collaborate, and form flying ad hoc networks (FANETs) to perform
many different missions, ranging from delivery tasks to agriculture applica-
tions. Recently, FANETs have been integrated with different technologies,
such as artificial intelligence (AI), virtual reality, and the Internet of Things.
Such new avenues for the use of UAVs directly impact the research on FANETs
and cause some major challenges, such as security and physical layer issues, re-
source management, and UAV-BS positioning issues that need to be addressed.
Several researchers have been working for the last few years to propose AI and
machine learning (ML)-based solutions for different use cases in UAV-based
networks. They present the limitations of the existing research work and high-
light some possible future works on FANETs. However, exhibiting the trends in
the UAV research papers quantitatively is still required to motivate researchers
to rethink the research on FANETs. Therefore, this study covers more than

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.22157
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.22157
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170 scientific publications extracted from five trusted academic databases pub-
lished from 2013 to 2021 to provide a thorough overview of the main research
and development statistics in the area of FANETs, the open challenges ex-
isting in this area and the ML-based solutions to solve these challenges. In
addition, the investigation of emerging technologies integrated with FANETs,
as well as the simulation tools employed for evaluating FANETs’ performance
are discussed. Moreover, the future research directions in the area of FANETs
are considered within a prospective vision discussion.

2. (PASANDIDEH et al., 2021) An Improved Particle Swarm Optimization Al-
gorithm for UAV Base Station Placement,F. Pasandideh, F E. Rodriguez
Cesen, P. Henrique Morgan Pereira, C. Esteve Rothenberg, E. Pignaton de
Freitas, Wireless Personal Communications 130 (2), 1343-1370, 2023.
Abstract: In cellular networks, a set of Base Stations (BSs) might be out
of service and failed in the aftermath of natural disasters. One of the promis-
ing solutions to fix this situation is to send low-altitude drones equipped with
a small cellular BS (DBSs) to the target locations. This can provide cellu-
lar networks with vital communication links and make available temporary
coverage for the users in unexpected circumstances. However, finding the
minimum number of DBSs and their optimal locations are highly challenging
issues. In this work, a Mixed-Integer Non-Linear Programming formulation
is provided, in which the DBSs’ location and the proper number of DBSs are
jointly determined. An improved PSO-based algorithm is proposed to jointly
optimize DBSs’ locations and find the minimum number of DBSs. As in the
original PSO algorithm, the particles are randomly distributed in the initial-
ization phase and a K-means-based clustering method is employed to generate
the positions of the first-generation particles (DBSs). In addition, a custom
communication protocol is presented for data exchange between the users’
equipment (UE) and the network controller. The proposed approach is eval-
uated through four simulation experiments implemented using Mininet-Wifi
integrated with CopelliaSim. The acquired results show that the proposed
solution based on the integration of PSO and K-means algorithms provides a
low packet loss and latency. Moreover, it indicates that most of the users in
the considered scenarios are covered by the DBSs.

https://link.springer.com/article/10.1007/s11277-023-10334-2
https://link.springer.com/article/10.1007/s11277-023-10334-2
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3. (PASANDIDEH et al., 2022) A review of flying ad hoc networks: Key charac-
teristics, applications, and wireless technologies,F Pasandideh, JPJ da Costa,
R Kunst, N Islam, W Hardjawana, Remote Sensing 14 (18), 4459, 2022.

Abstract: Recent advances in unmanned aerial vehicles (UAVs), or drones,
have made them able to communicate and collaborate, forming flying ad hoc
networks (FANETs). FANETs are becoming popular in many application do-
mains, including precision agriculture, goods delivery, construction, environ-
ment and climate monitoring, and military surveillance. These interesting new
avenues for the use of UAV-BSs are motivating researchers to rethink the ex-
isting research on FANETs. Therefore, this paper provides a comprehensive
and thorough review of the different types of UAVs used in FANETs, their
mobility models, main characteristics, and applications, as well as the rout-
ing protocols used in this type of network. Other important contributions of
this paper include the investigation of emerging technologies integrated with
FANETs.

4. Providing an energy efficient UAV BS positioning mechanism to improve wire-
less connectivity ,F Pasandideh, A. Najafzadeh, JP. Javidi da Costa, E. Pig-
naton de Freitas, Wireless Networks, under-submission, 2023.

Abstract: In the era of ubiquitous wireless communication, the demand for
improved wireless connectivity has surged dramatically. This paper addresses
the challenge of enhancing wireless connectivity by introducing an innovative
energy-efficient mechanism for positioning Unmanned Aerial Vehicles (UAVs)
as base stations (BS) called UAV-BSs. In this study, a Mixed-Integer Non-
Linear Programming (MINLP) energy-efficient optimization model is provided
to adaptively position UAV-BSs based on real-time demand and network con-
ditions. Traditional optimization methods often face challenges in handling
the complex and dynamic nature of UAV-BSs deployment. To overcome this
limitation, a novel algorithm is presented that combines the strengths of the
optimization algorithm and the K-means clustering technique. Through ex-
tensive experimentation and comparative analysis, the performance of the op-
timization model and the improved JAYA-based algorithm against existing
techniques is evaluated. The results demonstrate that this approach outper-
forms other methods in terms of UAV-BS placement accuracy, lower power

https://www.mdpi.com/2072-4292/14/18/4459
https://www.mdpi.com/2072-4292/14/18/4459
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consumed by UAV-BSs, packet loss rate, and latency. Furthermore, the algo-
rithm exhibits adaptability to varying network conditions, making it a valuable
tool for optimizing UAV-BS locations in dynamic environments.

b) Additional papers have been published as follows:

1. (PASANDIDEH et al., 2021)Topology management for flying ad hoc net-
works based on particle swarm optimization and software-defined networking,F
Pasandideh, TDE Silva, AAS Silva, E Pignaton de Freitas Wireless Net-
works, 1-16, 2022.

Abstract: Flying Ad Hoc Networks (FANETs) are composed of a set of
high mobility flying nodes, such as unmanned aerial vehicles (UAVs), con-
nected in an ad-hoc manner and collaborating to perform specific tasks or
to achieve specific goals, such as providing connection to other nodes on the
ground. The high mobility degree of UAVs, and the possible connected users
on the ground, might cause fast and frequent changes in the network topol-
ogy. Hence, the topology management adaptation to the UAVs’ movements
is required to reduce UAVs’ mobility negative effects on the communication
and to improve the overall network performance. Observing these needs, this
paper proposes Software-defined networking (SDN) based manageable topol-
ogy formation to construct a more resilient and manageable UAV formation.
This novel proposal considers a set of graph theory concepts for network eval-
uation to guarantee user connectivity, alternative transmission paths, and a
lower possible amount of nodes being points of failure, as a consequence. Also,
the spring virtual force method is applied by using attractive-repulsive forces
among nodes to accomplish the following objectives: to impose safety distance
gaps for collision avoidance; to provide sufficient communication link distance
for proper link quality; and to maximize area coverage for enabling end-user
mobility. Finally, the Particle Swarm Optimization (PSO) algorithm’s parti-
cle selection procedure is proposed to maximize the number of interconnected
nodes. Simulation results show that the proposed solution can correct routing
policies and reestablish connections in every occurrence of failure. The results
also indicate that the considered packet loss was significantly lower compared
to the state-of-the-art, achieving results from 10% to 80% lower in the per-
formed experiments, as a higher number of packets were delivered within the
required delay limit.

https://link.springer.com/article/10.1007/s11276-021-02835-4
https://link.springer.com/article/10.1007/s11276-021-02835-4
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2. (PEREIRA et al., 2023)Design and Deployment of an Efficient Communi-
cation Service for Multi-UAV Systems,PHM Pereira, F Pasandideh, M
Basso, JP da Costa, E Pignaton de Freitas 2023 International Con-
ference on Unmanned Aircraft Systems (ICUAS), Warsaw, Poland,
2023.

Abstract: Recent advances in the areas of microelectronics, information
technology, and communication protocols have made possible the develop-
ment of smaller devices, with increasing processing capacity and low energy
consumption. This context contributed to the growth of applications based on
the use of one or multiple Unmanned Aerial Vehicles (UAVs). Networks com-
posed of multiple UAVs are being used as a matter of improving the effective-
ness, accuracy, and minoring the time of missions. However, these applications
demand a high rate of data exchange, such as the localization information of
each UAV, which can be a challenge, due to the limited transmission power
of certain drone platforms. This article proposes a communication service for
multi-UAV systems based on dividing the UAV-fleet into groups using the
communication protocol IEEE 802.11 ac. Each group has its local network,
whose participants can be chosen based on the UAV’s localization or task
assignment. UAVs/Drones within the same group constantly communicate,
exchanging pose information and specific mission-related data. On the other
hand, communication between different groups is only established by mes-
senger drones in pre-set times. The communication service from its detailed
implementation to its simulated and field validation experiments is presented
in this work. The results of three different network topologies provide evidence
that the proposed communication service for multi-UAVs is efficient and can
be used for drone cooperative missions.

3. (ISLAM et al., 2021)A review of applications and communication technologies
for internet of things (Iot) and unmanned aerial vehicle (uav) based sustainable
smart farming,N. Islam, Md Mamunur Rashid, F. Pasandideh|, B, Ray, S.
Moore, R. Kadel, Sustainability, 2021.

Abstract: To reach the goal of sustainable agriculture, smart farming is tak-
ing advantage of the Unmanned Aerial Vehicles (UAVs) and Internet of Things
(IoT) paradigm. These smart farms are designed to be run by interconnected

https://ieeexplore.ieee.org/abstract/document/10156133
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https://www.mdpi.com/2071-1050/13/4/1821
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devices and vehicles. Some enormous potential can be achieved by the in-
tegration of different IoT technologies to achieve automated operations with
minimum supervision. This paper outlines some major applications of IoT
and UAV in smart farming and explores the communication technologies, net-
work functionalities, and connectivity requirements for Smart farming. The
connectivity limitations of smart agriculture and its solutions are analyzed
with two case studies. In case study 1, we propose and evaluate meshed Long
Range Wide Area Network (LoRaWAN) gateways to address the connectivity
limitations of Smart Farming. While in case study 2, we explore satellite com-
munication systems to provide connectivity to smart farms in remote areas
of Australia. Finally, we conclude the paper by identifying future research
challenges on this topic and outlining directions to address those challenges.

4. (ISLAM et al., 2021)IoT Based Smart Farming: Are the LPWAN Technologies
Suitable for Remote Communication? ,N. Islam, F. Pasandideh, B. Ray, IEEE
international conference on smart internet of things (SmartIoT), 2021

Abstract: The Internet of Things (IoT) has changed the definition of smart
farming and enhanced it’s capabilities to monitor and assess crop and soil
quality; to plan planting locations to optimize resources and land area. The
Low-Power Wide-Area Network (LPWAN) technologies have enhanced these
capabilities by increasing the wireless communication range, by eliminating
the dependency of Backhaul networks and by reducing power consumption.
In this study, we have presented an experimental analysis of LPWAN liter-
ature with the support of simulation and actual implementation of a Long
Range Wide Area Network (LoRaWAN) based IoT network for smart farm-
ing. Based on our evaluation and experiment of the existing work and the
practical implementation of IoT based smart sprinkler using LoRaWAN com-
munication protocol, this paper has presented a comparison and evaluation
of different LPWAN technologies for remote smart farming. The empirical
equation of wireless communication range of LoRaWAN gateways and power
consumption model of LoRaWAN end devices helped us to determine that,
the LoRaWAN communication system enables an IoT network to be deployed
over 10 kilometers wirelessly in remote settings without being dependent on a
Long Term Evolution (LTE-4G/5G) or other backhaul network and the end
devices consume as low energy as only 15.36mAh per day.

https://ieeexplore.ieee.org/abstract/document/9192008
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