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Robustness Margins for Indirect Field-Oriented Control ~ wherez; andx» represent, respectively, the quadracture axis compo-

of Induction Motors nent and the direct axis component of the rotor fluxjs the rotor
speedu, uz, andus stand for the inputs—the slipping frequency, the
A. S. Bazanella and R. Reginatto direct axis stator current component, and the quadrature axis stator cur-

rent component, respectively;, is the load torque, which is assumed
] ) ] constant, and the-” parameters are all positive. In particular, rep-

_ Abstract—The influence of the rotor time constant mismatch on the sta- o gents the inverse of the rotor time constant, which is a critical param-
bility of induction motors under indirect field-oriented control is analyzed. L ) . . . .
The results of [14] are generalized. A Lyapunov function which provides a ©ter for indirect field-oriented control. The model considered in [14] is
global stability test and allows us to compute robustness margins is given. €xpressed in a reference frame fixed in the rotor and is, upon a non-
Different mechanisms for the loss of stability are detected by means of bi- singular ;-dependent) change of coordinates, equivalent to (1)—(3)
furcation analysis. Robustness margins and design guidelines are derived \ith cs = 0. See [37], [41], and [40] for further details regarding the
from these resdlts. derivation of the induction motor model.

In speed regulation applications the indirect field-oriented control
I. INTRODUCTION strategy is usually applied along with a Pl speed loop. This control

Indirect field-oriented control (IFOC) is a well established angtrategy is described by the following equations [37], [14]:
widely applied control technique when dealing with high performance

induction motor drives [37], [41], [40]. Yet, it was not until very u =6 o (4)
recently that this control scheme has been provided a firm theoretical uz = ud (5)
foundation [15], [23], [14]. ol
The comissioning of an IFOC requires the knowledge of a single s = kp(wrer —w) + ki/ (wrer (¢) — w(()) d¢ (6)
0

motor parameter, namely the rotor time constant, which can vary

widely in practice [36], [22]. The robustness of this control strategyhereé; is an estimate for the inverse rotor time constant,, and
against mismatches in this parameter has been analyzed in [14], whgrare the gains of the Pl speed controlier,; is the constant reference
the robust global stability of the operating point has been establisheglocity andu$ is some constant which defines the flux level.

from a qualitative standpoint. A range of the parameter mismatch thatf ¢, = ¢, that is, if we have a perfect estimate of the rotor time
guarantees the uniqueness of the equilibrium point for any loadingnstant, we say that the control is tuned, otherwise it is said to be

condition has also been given. detuned. Accordingly, we define
In this paper we analyze the effects of parameter mismatches on the .
behavior of induction motors under IFOC in speed regulation tasks. In P (7)

Section Il the system modeling and the control equations are given. é

Then we generalize and deepen the results of [14] in two directioRs the degre of tuning. It is clear that> 0 and the control is tuned if
First, in Section Ill, the robustness of the global stability property ignd only ifs = 1.

given a quantitative measure by means of a Lyapunov analysis simThe closed-loop system (1)—(3) with the control (4)—(6) is a fourth-
ilar to that in [14]. Second, in Section 1V, a bifurcation analysis is presrder system that can be described as follows:

sented in terms of two parameters, namely the motor load and the rotor

time constant mismatch. Conditions for the ocurrence of saddle-node i1 = — 111 + cory — % Tody (8)
bifurcations are given, providing bounds on the two parameters that h”{?
avoid such bifurcations and guarantee uniqueness of the equilibrium. iy = — c1as + c2uy + u—ol T124 9)
Finally, a discussion of the results presented is given in Section V, de- 2
riving some design guidelines. All symbolic manipulations and plots 43 = — 33 — Ca {%(1,»2“ — ugm)
presented have been performed with MATLAB V.

_Tm - C_3 'wref:| (10)

Il. PROBLEM STATEMENT ca

. . . . . 24 = (ki — kpes)as
The dynamic model of a current-driven induction motor expressing s
the rotor flux and the stator currents in a reference frame rotating at — kpca {65(1’21’4 —udw1) = Tm — - 'wrer} (11)
synchronous speed is given by [37], [41], [40] 4

where we have defined the new state variabl,eé wrer — w and

&1 = — 121 — U2 + coug ® A
Xr4 = U3.
By = — 1wy +uran + coug 2 We shall analyze the stability properties of the closed-loop system
W= — cgw + cafes(wouy — x1u) — Ty (3) (8)—(11) and its dependence on the loading conditions and the degree
of tuning .
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. KCy 3 3
Zp = —cazn+ 20 [#724 + 21 (24 + 27)]
2

fy = — 3z — cacs[za(za + 25) — z1us 4 524]
Za = (ki — kpes)zg — kpeacs[z2(za + @5)
— sud+ x5 24].
Define also, for convenience of notation
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>0

. kp
ks 2 ey }—7 > 0.

We will study the stability of the origir = 0 by means of the

quadratic Lyapunov function candidate

V(z)=1:(P+mP)z

where
(kp+ %20 —ko —kpa
P 0 0 0 0
T ke 0 K2R taks  —kyks
L —kpa 0O —kpks ks + o
T 0 0 0
0100
P =
? 0000
L0 0 0 0

(13)

(14)

(15)

(16)

(€¥))

(18)

andm is a positive scalar to be assigned. The malix+ m P is

symmetric positive definite for any. > (0 and any possible operating

condition.

1227

The Lyapunov derivative (19) can be put in a quadratic form as
shown in (20), at the bottom of the page.
Define also the quadratic polynomial

p(m) =pam® + prm + po (21)

ric1kK 2 caud — aSerLk 2

TIC1R U5 — LoC1R

- 22
[( i) (e ” @2

e\ 2 0 _ e .
Tic1k ) Colly — THC1K
PL = —aias —2cia3P14 | ———F—

D2

2uf 2uf
e N2
+ 3122 <J lttf{) + clasay (23)
2us
Po =cC1 (Oé1 304 — Oésﬁ?:t - ﬁfsmk)- (24)

Then we have the following result, which provides a robust stability
test and establishes the robust global stability in the tuned condition.
Theorem 1: Let p(m ) have distinct real roots 1, m» ordered such

thatmy > mq. If

2
,513 — Q13 A

me > mo (25)

C1(v3

then the origin of the system (12)—(15) is globally asymptotically
stable.

Proof: It is clear from (20) that if there exists an such that
all the leading minors of the symmetric matfixare positive then the
origin will be globally asymptotically stable. The leading minors of
first and second order are always positive, whereas the third and fourth
order minors are given respectively by

Az(m) =mer[(ar + mer)as — i) (26)
Ay(m) =mp(m). 27)

The time derivative of this Lyapunov candidate can be calculated as

' 2 2 2 ¢ P
V (Z) = —Q1Zy —O3Z3 — N4Zy — 2,{5132’133 + 2,«'#142124
e .
2 2 ric1k
—mc1z] —mecirzy +m 5 2224
u

2

If the roots ofp(m) are real and distinct, thep(m) > 0Vm €
(m1, m2), sinceps is negative; thed\, () is positive in this interval.
On the other hand}s(m) > 0,Vm > mg, so that all the leading
minors will be positive forn € (max{mo,m1}, m2). Condition (25)
guarantees that this interval is not empty.

r5C1 K B
tm <62 ul ) o (19) ™ The robust global stability of the [FOC close to the tuned condition
for general systems can be established as a direct consequence of The-
where
orem 1.
ap 2 1 (k + 1)(k§62 +hia) > 0 Corolla_ry 1. The equmt_)rlum of the system_ (;2)—(15) is globglly
C2 asymptotically stable provided that= 1 or sufficiently close to this
az 2 & a®(kpes + kia) > 0 value. %
> Proof: As the tuned conditiofx = 1) is approachedy. tends
g = cokpa > 0 to zero by the left ang; tends to a finite positive value, sinag¢ and
A a [e es oy x5 approach 0 ande:/c; )us, respectively. Hence one of the roots of
Ps= -5\ (k4 Dkia + . (kpez + kia) = kpk p(m) tends to+oo and, asm, remains finite, there exists an interval
Al ) , ) of values ofx containing the point = 1 such that condition (25) is
B4 = 3 ki + kpez + kpacr (s +1)] > 0 satisfied. S
Viz)=-:"Q=
B K
ap +cim 0 b1z —f1a — M
2usg
’ _:Ef C1K
0= 0 cym 0 248 m (20)
,‘313 0 a3 0
B — coud — a5eik ’ _:Ef C1R 0 o

40
2us
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Given the complexity of the expressions involved, it is impossible Collecting (33)—(35) and the definition efwe can write the equi-
at this point to make general statements about the conditions of Thibrium point as
orem 1, unless in the important case of the corollary above. However,

0 .
this theorem provides a simple robust stability test for any particular cauz 1—k

e — T
system, allowing us to establish robustness margins by the verification ‘Li “ 11"' “2""22
of condition (25) for different values of. To| | coua 1A w17 (39)
5 c1 14 K2r2
IV. BIFURCATION ANALYSIS 3

0
ulr
A. Parameterization of the Equilibria o ) ) ) . i
The equilibrium is now parameterized in terms of a single di-

We start our analysis by studying the equilibria of the systeMensionless quantity, which satisfies (38). This is a third order
(8)—=(11) and their dependence on the (;iegreee COf tuRinghe equi- - holynomial equation whose coefficients—which are dimensionless as
libria of this system are the solution§, =5, =5, = of the system of well—depend only on the degree of tuningand the motor load as

equations denoted by~ .
e e RC1 e e
—cix 9y — —— Toly = 2
eyt ey ug 0 (28) B. Uniqueness of the Equilibrium
— 1 + couy + h—pol xixy =0 (29) The real solutions of (38) give the equilibrium valuesrdior any
2 given degree of detuningx—and any given load+~. It is clear that
— eyl — ¢4 {p(rzm —ul2$) = T — i) “,,ref} =0 (30) (38) has at least one and at most three real solutions, depending on the
¢4 particular values of: andr™.
(ki = hpes)as — Eyea [( ) T - & } —o.  Theorem 2:Assume that
C4
(31) k>3 (40)
The equilibrium values of the fluxes can be obtained rewriting (28nd consider the inequalities shown in (41) and (42), at the bottom of
and (29) as the page.
. 1 If (41) and (42) are both satisfied strictly, then the system (8)—(11)
{ ‘@ Cl’“‘} {Ti } = | coul T (32) has three equilibrium points._ I_f e_ither (4_11) or (42) hplds with eq_u_ali_ty,
—CIRT (i Ty ot then the system has two equilibrium points. Otherwise, the equilibrium
point of this system is unique. &
where we have defined the dimensionless variablé (25 /u3). Proof: Rearranging (38) we have as a function of-
Solving (32) forz{, =5 yields .
. r+1
e g l=g T :f(r):m‘f. (43)
T = o Uy T4 n2r2 r (33) K2r2 +1
. C2 o l4nr? Equation (38) has a unique real solution whenei{e is bijective. It

rH = — —_—. (34)

Uy —
c1 14+ Kk2r2

Now, from (30) and (31) it is clear that

is clear thatf (r) is continuous and injective, so that it will be bijective
if it is strictly monotonic

R df(r 2.2 1)(372 1) — r(72 1)2r k2
25 =0 (35) {im _ .+ 1( (,A2+2)+1)72(7 D2t
c(asr — 2l =T. 2 T, —I—C—gur (36) " . nr
cs(agr —xy)uy =T. =Ty oy et . K27+ (3— k22 + 1 45)
Substituting (33) and (34) into (36) we get (%2 +1)2
es o KIS+ rr T. The sign of the derivative depends only on the sign of the polynomial
— () 5 = — (37) in the numerator, since the denominator is always positive, as well as
cy 14 k21 c

. Thus the functiory (r) is bijective for all values of* such that
Let us define also™ 2 (T.cy /csca(ud)?), which is a dimensionless R , .
quantity that represents the system loading, since it is proportional to At (3= kP41 > 0. (46)
the electrical torque developed in steady-stAte Also note that*
equals the value of in the tuned condition. Then, from (37), it follows ~ The points at which the derivative changes sign are the roots of the
thatr must satisfy the following polynomial equation: polynomial equation

3 * 2
Rr —7T K

4 ke — " =0, (38) Hrt e (3-rN)r 4+ 1=0. (47)

WE=1D(E+3)+/(r+1)(r=3)]B(x* = 1)+ /(s = 1)(k+3)(s+ 1)(rx — 3)]
252(k2 = 1+ (k= 1)(s+3)(k + 1)(r — 3))

=D+ + VET DG =3B - &) + /G = DT 3+ D5 = 3)
252(1— k24 /(s — D)(s+3)(s + 1)(r — 3))

[r*] >

(41)

"] < (42)
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Bifurcation curves

06 : ditions lie in between the two curves and a unique equilibrium outside.
At each one of the two curves two equilibria coincide.

05 C. Local Stability Analysis

The Jacobian matrix of the system (8)—(11) is given by (49), as
o4l shown at the bottom of the page, whose determinant is

It 4+ (3= k)2 41
oal detJ(r,r)) = crescacsuskik T+ H,27“2) . (50)
We know from the stability analysis in the previous section that for
the tuned condition the Jacobian has all its eigenvalues in the closed left

0.2

half-plane. Accordingly, we can verify from (50) that dét1,)) >
0Vr. As the parameters andr™ vary, loss of stability can be detected
ol | by the eigenvalues of the Jacobian, as either a pair of complex eigen-
values or a single real eigenvalue cross the imaginary axis toward the
right half-plane. If a pair of complex eigenvalues crosses the imaginary
0 * : axis, then a Hopf bifurcation takes place. Given the complexity of the
K expressions involved in an eigenvalue analysis, we cannot at this point
provide generic conditions for the ocurrenc of Hopf bifurcations. We
pcgint out however, that it can happen for certain choices of Pl gains, as
shown by an example given in [14].
On the other hand, the crossing of a real eigenvalue through zero can
The four solutions of this equation can be written as a function of be detected just by looking at the sign of @&tbs, ) in (50). This de-
1 terminant is the product of positive quantities and a fourth-order poly-

r=o- [V =1D)(r+3)+ /(s +1)(xk=3)] (48) nomialinr. Thusitis zero if and only if the polynomial is zero
R

Fig. 1. Locus of the points in the parameter space where the number
equilibria changes.

42,-4 - .2 —_—
which yields real solutions only for > 3, thus establishing the ne- R+ @B =r)rt+1=0. (51)

ce;sity .Of (40). !n this case, o positive and tW,O negative solutions g e this equation is the same which describes the points where the
exist. Sincef(-) is odd,_the analysis can be restrictedte [0, OO)_ . number of equilibria changes (47), the following fact has been estab-
and extended to negativeby symmetry arguments. Let the positivejishaq

solutions bery andrz, v > r1; then the right-hand side of (41) and 54 1. System (8)—(11) presents turning points (saddle-node bifur-
(42) are obtained by evaluatingr=) and f(r1), respectively. By the cations) at the solutions of (51). o
sign of the (_je_rlvatlve, It fOHOWS, tha’tl_ is a local maximum %nd? Then the curves in Fig. 1 represent bifurcation surfaces in the pa-
is a local minimum, and .he.ana(r).wnl not be b'l,e,Ct'Ve forr _ = rameter space, that is, they give the locus of all the turning points in
f(r) € [f(r2), f(r1)]. This is pAremser the condition stated in (41} space [1], [2]. Itis instructive to look at the branching diagram ob-
and (42). Indeed, the spt,, 7>] = {r: " = f(r) € [f(r2), f(r)]}  tained varying* for a givens. Fig. 2 presents the branching diagram
is well defined and such thé < 71 < ri < r2 < T2,8iNC@ for ,; = 4. Two turning points can be seen, associated to the crossing
f(-) is continuous, unboundedi(r) > 0,Vr 20 andf(0) = 0. of each one of the two curves in Fig. 1. This branch topology is known
Observing thatf(-) is strictly increasing ind = (71,71) U (r2,72)  to cause the occurrence of jumps and hysteresis [2].
and strictly decreasing i 2 (r1,72), it follows that (38) has three  An additional local stability property follows from the above devel-
distinct solutions whenever* € (f(r2), f(r1)), thus establishing the opment.
first part of the theorem. Now, suppose (42) is satisfied with equality. Fact 2: Assume no Hopf bifurcation takes place for a given positive
Then,»* = f(r1) and, sincef(-) is strictly increasing in(r2,>0), range of values of* andx. Then system (8)—(11) has at least one
f(72) = f(r1). No other solution exists sinee is a local maximum locally exponentially stable equilibrium point for all positive values
andf(-) also is strictly increasing if0, 71 ). With a similar reasoning of x andr* within this range. Moreover, equilibria such that (46) is
applied to the case in which (41) is satisfied with equality, the secosdtisfied will be locally exponentially stable, whereas other equilibria
part of the theorem follows. The theorem is proved by noting thiat  will be unstable. &
bijective outside the sét, 7]. & By Theorem litis clear that there exists a nonempty range of param-
This result is ilustrated by Fig. 1, where the limits described by (4Eters around the tuned condition which satisfies the assumption of Fact
and (42) are plotted. The point where the two curves intersecHs3, 2. The occurrence of Hopf bifurcations depends on the setting of the
r* = (v/3/3). For largex the upper bound (42) tends#d = 0.5 and Pl speed controller. Conditions on the parametgrandk; to avoid
the lower bound (41) tends to zero, as can be seen by analysis of (#ik) Hopf bifurcation in the zero load torque case have been given in
and (42). The system has three equilibria if the tuning and loading cqt4]. For small load torque the behavior is expected to be similar, so

—c1 —C1KT 0 co(1— k) /(1 + K%r?)
CiRY —cq 0 czij,(l — H,)/(1+1{27“2)r
J(k,r) = cacsud —cqcsudr —c3 —cqcs el ud(l + m‘z)/(l + k2r?) (49)
e

Co 5 o
kp(':4c,5'ug —]\'pC4C5’u,g7' ki — kpes  —kpcacs — ud (1 + R?’Z)/(l + k2r?)
&
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Branching diagram for K=4 182 T T 35
25 T T
181.5
2_
181
1.5- 1805
B
- H
180
4L
179.5
0.51 179
178.5 : . > .
0 0 10 20 30 0 10 20 30
0
r Fig. 3. Simulation for varying load torque in the tuned condition.
Fig. 2. Branching diagram for = 4.
184 T T 15
these conditions should be useful also for this case. However, itis sti 1s2f
unclear how to predict and avoid the occurrence of Hopf bifurcation: 0
for higher loading conditions.
178
101
V. DISCUSSION
176
The conditions for saddle-node bifurcations in Section V are giverg =
© 174 <
i=3

in terms of the normalized load/flux raté¢ and the normalized pa- %
rameter mismatch. The range of parameters for which these bifurca- 7| ]
tions occur represents a low load/flux rate, which implies that operatio sl
under high flux yields smaller stability margins regarding saddle-nod: 7°f 1
bifurcations. In any case, no saddle-node bifurcation occurs fer

3. Hence, in terms of robustness alone, it might be a good idea t

“aim low” at the parameter; when commissioning an IFOC, thus pre-  1est 1

venting a high value of. From this point of view it is also advisable

to use low flux levels in order to avoid the saddle-node bifurcations. '*%o 10 20 30 % 10 20 30
Tempo (s) Tempo (s)

When three equilibria are present, and under the assumptions of Fact
2, two equilibria are locally asymptotically stable and the third one 5y 4. simulation for varying load torque with = 4.
unstable—Fact 3. The stable equilibrium which appears withrldav
the branch diagram (Fig. 2) is the operating point, and the other stable
equilibrium presents a much larger current level. In actual operatiaterived. The robustness property given in [14] has been given a quan-
as the load varies passing through a saddle-node bifurcation the systitative measure, applicable for any given system.
will jump from the operating point to the other equilibrium. These results reveal important structural stability/robustness proper-
Some simulations are provided to illustrate the system behavior faes of the IFOC. From a practical point of view, in most cases tem-
different mismatches in the rotor time constant. The model parametpesature variations inside the rotor can cause the rotor time constant
for the case simulated arg = 13.67 s ', ¢c2 = 1.56 H- s, ¢3 =  to vary more than 50% but not more than 100% [36]. Hemce; 2
059s', ¢4 = 1,176 kg='"' m™2, es = 2.86, taken from a 1-cv in most practical cases, so that the robust global stability in the tuned
squirrel-cage induction motor. The simulations presented in Figs. 3 az@hdition along with the uniqueness of the equilibrium for< 3
4 show the system’s behavior with = 1 andx = 4 as the load have strong practical implications. Yet, aiming lowatand at the
torque is slowly increased froffi,, = 0 upto7,, = 4 N- m. Inthe flux level may still be advisable in practical IFOC comissioning in
tuned condition the system behaves properly, but:fer 4 the loss of order to keep the saddle-node bifurcation as far as possible. Closeness
the equilibrium at which the system was operating causes a jump ttoaa saddle-node bifurcation tends to deteriorate the system’s perfor-
much higher current level. Although speed regulation is not lost in tmeance and efficiency. Furthermore, much larger degrees of tuning
simulation, in actual operation the motor would most likely stall duare likely to temporarily occur when adaptive techniques (like [31]) are
to overcurrent protection actuation. It is also worth noticing that evesmployed, reaching the region where multiple equilibria are present.
before the jump occurs the system may experience stability problermibus, the results also have practical implications regarding the stability
since the existence of a nearby unstable equilibrium reduces the sizamdlysis and the design of adaptive IFOC drives.
the region of attraction of the operating point. Itis important to stress that neither the existence of the robust global
Global stability of the IFOC has also been studied in this paper. #ability property in the tuned condition nor the bifurcation topology
new Lyapunov function, which generalizes the one given in [14], hadven in Section IV depend on the design of the Pl controller. On the
been given in Section Ill. By means of this Lyapunov function, a testher hand, both the size of the robustness margin as givenin Theorem 1
for the robust global stability in different operating conditions has beemd the occurrence of Hopf bifurcations depend on the Pl paranigters
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andk;. Conditions to be satisfied by these parameters in order to guai24]
antee stability have been given in [14] for the zero load case only. The
study of a number of different examples suggests that Hopf bifurcations

are avoided by a correct classical Pl tuning, but this is still an open issue:
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