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Robustness Margins for Indirect Field-Oriented Control
of Induction Motors

A. S. Bazanella and R. Reginatto

Abstract—The influence of the rotor time constant mismatch on the sta-
bility of induction motors under indirect field-oriented control is analyzed.
The results of [14] are generalized. A Lyapunov function which provides a
global stability test and allows us to compute robustness margins is given.
Different mechanisms for the loss of stability are detected by means of bi-
furcation analysis. Robustness margins and design guidelines are derived
from these results.

I. INTRODUCTION

Indirect field-oriented control (IFOC) is a well established and
widely applied control technique when dealing with high performance
induction motor drives [37], [41], [40]. Yet, it was not until very
recently that this control scheme has been provided a firm theoretical
foundation [15], [23], [14].

The comissioning of an IFOC requires the knowledge of a single
motor parameter, namely the rotor time constant, which can vary
widely in practice [36], [22]. The robustness of this control strategy
against mismatches in this parameter has been analyzed in [14], where
the robust global stability of the operating point has been established
from a qualitative standpoint. A range of the parameter mismatch that
guarantees the uniqueness of the equilibrium point for any loading
condition has also been given.

In this paper we analyze the effects of parameter mismatches on the
behavior of induction motors under IFOC in speed regulation tasks. In
Section II the system modeling and the control equations are given.
Then we generalize and deepen the results of [14] in two directions.
First, in Section III, the robustness of the global stability property is
given a quantitative measure by means of a Lyapunov analysis sim-
ilar to that in [14]. Second, in Section IV, a bifurcation analysis is pre-
sented in terms of two parameters, namely the motor load and the rotor
time constant mismatch. Conditions for the ocurrence of saddle-node
bifurcations are given, providing bounds on the two parameters that
avoid such bifurcations and guarantee uniqueness of the equilibrium.
Finally, a discussion of the results presented is given in Section V, de-
riving some design guidelines. All symbolic manipulations and plots
presented have been performed with MATLAB V.

II. PROBLEM STATEMENT

The dynamic model of a current-driven induction motor expressing
the rotor flux and the stator currents in a reference frame rotating at
synchronous speed is given by [37], [41], [40]

_x1 = � c1x1 � u1x2 + c2u3 (1)

_x2 = � c1x2 + u1x1 + c2u2 (2)

_w = � c3w + c4[c5(x2u3 � x1u2)� Tm] (3)
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wherex1 andx2 represent, respectively, the quadracture axis compo-
nent and the direct axis component of the rotor flux,w is the rotor
speed,u1, u2, andu3 stand for the inputs—the slipping frequency, the
direct axis stator current component, and the quadrature axis stator cur-
rent component, respectively;Tm is the load torque, which is assumed
constant, and the “c” parameters are all positive. In particular,c1 rep-
resents the inverse of the rotor time constant, which is a critical param-
eter for indirect field-oriented control. The model considered in [14] is
expressed in a reference frame fixed in the rotor and is, upon a non-
singular (u1-dependent) change of coordinates, equivalent to (1)–(3)
with c3 = 0. See [37], [41], and [40] for further details regarding the
derivation of the induction motor model.

In speed regulation applications the indirect field-oriented control
strategy is usually applied along with a PI speed loop. This control
strategy is described by the following equations [37], [14]:

u1 = ĉ1
u3

u2
(4)

u2 =u
0

2 (5)

u3 = kp(wref � w) + ki

t

0

(wref(�)� w(�)) d� (6)

whereĉ1 is an estimate for the inverse rotor time constantc1, kp, and
ki are the gains of the PI speed controller,wref is the constant reference
velocity andu02 is some constant which defines the flux level.

If ĉ1 = c1, that is, if we have a perfect estimate of the rotor time
constant, we say that the control is tuned, otherwise it is said to be
detuned. Accordingly, we define

�
�
=

ĉ1

c1
(7)

as the degre of tuning. It is clear that� > 0 and the control is tuned if
and only if� = 1.

The closed-loop system (1)–(3) with the control (4)–(6) is a fourth-
order system that can be described as follows:

_x1 = � c1x1 + c2x4 �
�c1

u0
2

x2x4 (8)

_x2 = � c1x2 + c2u
0

2 +
�c1

u0
2

x1x4 (9)

_x3 = � c3x3 � c4 c5(x2x4 � u
0

2x1)

�Tm �
c3

c4
wref (10)

_x4 =(ki � kpc3)x3

� kpc4 c5(x2x4 � u
0

2x1)� Tm �
c3

c4
wref (11)

where we have defined the new state variablesx3
�
= wref � w and

x4
�
= u3.

We shall analyze the stability properties of the closed-loop system
(8)–(11) and its dependence on the loading conditions and the degree
of tuning�.

III. L YAPUNOV ANALYSIS

Let us define a change of coordinatesz
�
= x � xe, wherexe =

[xe1x
e
2x

e
3x

e
4]
T represents a generic equilibrium point. The system can

be described in these coordinates as

_z1 = � c1z1 + c2 �
xe2�c1

u0
2

z4 � z2(z4 + x
e
4)
�c1

u0
2

(12)
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_z2 = � c1z2 +
�c1
u0
2

[xe1z4 + z1(z4 + xe4)] (13)

_z3 = � c3z3 � c4c5[z2(z4 + xe4)� z1u
0

2 + xe2z4] (14)

_z4 =(ki � kpc3)z3 � kpc4c5[z2(z4 + xe4)

� z1u
0

2 + xe2z4]: (15)

Define also, for convenience of notation

�
�
=

�c1
u0
2
c4c5

> 0

k2
�
=

�2ki
c2

> 0

k3
�
= �2c3

kp
ki

> 0:

We will study the stability of the originz = 0 by means of the
quadratic Lyapunov function candidate

V (z) = 1

2
zT (P1 +mP2)z (16)

where

P1 =

k2p +
k

�
0 �k2 �kp�

0 0 0 0

�k2 0 k2pk3 + �k2 �kpk3
�kp� 0 �kpk3 k3 + �2

(17)

P2 =

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

(18)

andm is a positive scalar to be assigned. The matrixP1 + mP2 is
symmetric positive definite for anym > 0 and any possible operating
condition.

The time derivative of this Lyapunov candidate can be calculated as

_V (z) = � �1z
2

1 � �3z
2

3 � �4z
2

4 � 2�13z1z3 + 2�14z1z4

�mc1z
2

1 �mc1z
2

2 +m
xe1c1�

u0
2

z2z4

+m c2 �
xe2c1�

u0
2

z1z4 (19)

where

�1
�
=

c1
c2

(�+ 1)(k2pc2 + ki�) > 0

�3
�
=

c3
c2

�2(k2pc2 + ki�) > 0

�4
�
= c2kp� > 0

�13
�
= �

�

2

c1
c2

(�+ 1)ki�+
c3
c2

(k2pc2 + ki�)� kpki

�14
�
=

1

2
[ki� + k2pc2 + kp�c1(�+ 1)] > 0

The Lyapunov derivative (19) can be put in a quadratic form as
shown in (20), at the bottom of the page.

Define also the quadratic polynomial

p(m) = p2m
2 + p1m+ p0 (21)

p2 = � c1�3
xe1c1�

2u0
2

2

+
c2u

0

2 � xe2c1�

2u0
2

2

(22)

p1 = � �1�3
xe1c1�

2u0
2

2

� 2c1�3�14
c2u

0

2 � xe2c1�

2u0
2

+ �213
xe1c1�

2u0
2

2

+ c21�3�4 (23)

p0 = c1(�1�3�4 � �3�
2

14 � �213�4): (24)

Then we have the following result, which provides a robust stability
test and establishes the robust global stability in the tuned condition.

Theorem 1: Let p(m) have distinct real rootsm1,m2 ordered such
thatm2 > m1. If

m2 >
�213 � �1�3

c1�3

�
=m0 (25)

then the origin of the system (12)–(15) is globally asymptotically
stable. }

Proof: It is clear from (20) that if there exists anm such that
all the leading minors of the symmetric matrixQ are positive then the
origin will be globally asymptotically stable. The leading minors of
first and second order are always positive, whereas the third and fourth
order minors are given respectively by

�3(m) =mc1[(�1 +mc1)�3 � �213] (26)

�4(m) =mp(m): (27)

If the roots ofp(m) are real and distinct, thenp(m) > 08m 2
(m1;m2), sincep2 is negative; then�4(m) is positive in this interval.
On the other hand,�3(m) > 0;8m > m0, so that all the leading
minors will be positive form 2 (maxfm0;m1g;m2). Condition (25)
guarantees that this interval is not empty. }

The robust global stability of the IFOC close to the tuned condition
for general systems can be established as a direct consequence of The-
orem 1.

Corollary 1: The equilibrium of the system (12)–(15) is globally
asymptotically stable provided that� = 1 or sufficiently close to this
value. }

Proof: As the tuned condition(� = 1) is approached,p2 tends
to zero by the left andp1 tends to a finite positive value, sincexe1 and
xe2 approach 0 and(c2=c1)u02, respectively. Hence one of the roots of
p(m) tends to+1 and, asm0 remains finite, there exists an interval
of values of� containing the point� = 1 such that condition (25) is
satisfied. }

_V (z) = � zTQz

Q =

�1 + c1m 0 �13 ��14 �
c2u

0

2 � xe2c1�

2u0
2

m

0 c1m 0 �
xe1c1�

2u0
2

m

�13 0 �3 0

��14 �
c2u

0

2 � xe2c1�

2u0
2

m �
xe1c1�

2u0
2

m 0 �4

(20)
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Given the complexity of the expressions involved, it is impossible
at this point to make general statements about the conditions of The-
orem 1, unless in the important case of the corollary above. However,
this theorem provides a simple robust stability test for any particular
system, allowing us to establish robustness margins by the verification
of condition (25) for different values of�.

IV. BIFURCATION ANALYSIS

A. Parameterization of the Equilibria

We start our analysis by studying the equilibria of the system
(8)–(11) and their dependence on the degree of tuning�. The equi-
libria of this system are the solutionsxe1, xe2, xe3, xe4 of the system of
equations

� c1x
e
1 + c2x

e
4 �

�c1
u0
2

xe2x
e
4 = 0 (28)

� c1x
e
2 + c2u

0

2 +
�c1
u0
2

xe1x
e
4 = 0 (29)

� c3x
e
3 � c4 c5(x

e
2x

e
4 � u02x

e
1)� Tm �

c3
c4

wref = 0 (30)

(ki � kpc3)x
e
3 � kpc4 c5(x

e
2x

e
4 � u02x

e
1)� Tm �

c3
c4

wref = 0:

(31)

The equilibrium values of the fluxes can be obtained rewriting (28)
and (29) as

c1 c1�r

�c1�r c1

xe1
xe2

=

1

c2u02
r

c2u
0

2

(32)

where we have defined the dimensionless variabler
�
= (xe4=u

0

2).
Solving (32) forxe1, xe2 yields

xe1 =
c2
c1

u02
1� �

1 + �2r2
r (33)

xe2 =
c2
c1

u02
1 + �r2

1 + �2r2
: (34)

Now, from (30) and (31) it is clear that

xe3 =0 (35)

c5(x
e
2r � xe1)u

0

2 =Te
�
= Tm +

c3
c4

wref : (36)

Substituting (33) and (34) into (36) we get

c2
c1

(u02)
2 �r3 + �r

1 + �2r2
=

Te
c5

: (37)

Let us define alsor�
�
= (Tec1=c5c2(u

0

2)
2), which is a dimensionless

quantity that represents the system loading, since it is proportional to
the electrical torque developed in steady-stateTe. Also note thatr�

equals the value ofr in the tuned condition. Then, from (37), it follows
thatr must satisfy the following polynomial equation:

�r3 � r��2r2 + �r � r� = 0: (38)

Collecting (33)–(35) and the definition ofr we can write the equi-
librium point as

xe1
xe2
xe3
xe4

=

c2u
0

2

c1

1� �

1 + �2r2
r

c2u
0

2

c1

1 + �r2

1 + �2r2
0

u02r

: (39)

The equilibrium is now parameterized in terms of a single di-
mensionless quantityr, which satisfies (38). This is a third order
polynomial equation whose coefficients—which are dimensionless as
well—depend only on the degree of tuning� and the motor load as
denoted byr�.

B. Uniqueness of the Equilibrium

The real solutions of (38) give the equilibrium values ofr for any
given degree of detuning—�—and any given load—r�. It is clear that
(38) has at least one and at most three real solutions, depending on the
particular values of� andr�.

Theorem 2: Assume that

� > 3 (40)

and consider the inequalities shown in (41) and (42), at the bottom of
the page.

If (41) and (42) are both satisfied strictly, then the system (8)–(11)
has three equilibrium points. If either (41) or (42) holds with equality,
then the system has two equilibrium points. Otherwise, the equilibrium
point of this system is unique. }

Proof: Rearranging (38) we haver� as a function ofr

r� = f(r) = �r
r2 + 1

�2r2 + 1
: (43)

Equation (38) has a unique real solution wheneverf(r) is bijective. It
is clear thatf(r) is continuous and injective, so that it will be bijective
if it is strictly monotonic

df(r)

dr
=�

(�2r2 + 1)(3r2 + 1)� r(r2 + 1)2r�2

(�2r2 + 1)2
(44)

=�
�2r4 + (3� �2)r2 + 1

(�2r2 + 1)2
: (45)

The sign of the derivative depends only on the sign of the polynomial
in the numerator, since the denominator is always positive, as well as
�. Thus the functionf(r) is bijective for all values ofr� such that

�2r4 + (3� �2)r2 + 1 > 0: (46)

The points at which the derivative changes sign are the roots of the
polynomial equation

�2r4 + (3� �2)r2 + 1 = 0: (47)

jr�j �
[ (�� 1)(�+ 3) + (�+ 1)(�� 3)][3(�2 � 1) + (�� 1)(�+ 3)(�+ 1)(�� 3)]

2�2(�2 � 1 + (�� 1)(�+ 3)(�+ 1)(�� 3))
(41)

jr�j �
[ (�� 1)(�+ 3) + (�+ 1)(�� 3)][3(1� �2) + (�� 1)(�+ 3)(�+ 1)(�� 3)]

2�2(1� �2 + (�� 1)(�+ 3)(�+ 1)(�� 3))
(42)
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Fig. 1. Locus of the points in the parameter space where the number of
equilibria changes.

The four solutions of this equation can be written as a function of�

r =
1

2�
[� (�� 1)(�+ 3)� (�+ 1)(�� 3)] (48)

which yields real solutions only for� > 3, thus establishing the ne-
cessity of (40). In this case, two positive and two negative solutions
exist. Sincef(�) is odd, the analysis can be restricted tor 2 [0;1)
and extended to negativer by symmetry arguments. Let the positive
solutions ber1 andr2, r2 > r1; then the right-hand side of (41) and
(42) are obtained by evaluatingf(r2) andf(r1), respectively. By the
sign of the derivative, it follows thatr1 is a local maximum andr2
is a local minimum, and hencef(r) will not be bijective forr� =
f(r) 2 [f(r2); f(r1)]. This is precisely the condition stated in (41)
and (42). Indeed, the set[r1; r2]

�
= fr: r� = f(r) 2 [f(r2); f(r1)]g

is well defined and such that0 < r1 < r1 < r2 < r2, since
f(�) is continuous, unbounded,f(r) > 0;8r > 0, andf(0) = 0.
Observing thatf(�) is strictly increasing inA

�
= (r1; r1) [ (r2; r2)

and strictly decreasing inB
�
= (r1; r2), it follows that (38) has three

distinct solutions wheneverr� 2 (f(r2); f(r1)), thus establishing the
first part of the theorem. Now, suppose (42) is satisfied with equality.
Then,r� = f(r1) and, sincef(�) is strictly increasing in(r2;1),
f(r2) = f(r1). No other solution exists sincer1 is a local maximum
andf(�) also is strictly increasing in[0; r1). With a similar reasoning
applied to the case in which (41) is satisfied with equality, the second
part of the theorem follows. The theorem is proved by noting thatf is
bijective outside the set[r1; r2]. }

This result is ilustrated by Fig. 1, where the limits described by (41)
and (42) are plotted. The point where the two curves intersect is� = 3,
r� = (

p
3=3). For large� the upper bound (42) tends tor� = 0:5 and

the lower bound (41) tends to zero, as can be seen by analysis of (41)
and (42). The system has three equilibria if the tuning and loading con-

ditions lie in between the two curves and a unique equilibrium outside.
At each one of the two curves two equilibria coincide.

C. Local Stability Analysis

The Jacobian matrix of the system (8)–(11) is given by (49), as
shown at the bottom of the page, whose determinant is

det(J(�; r)) = c1c2c4c5u
0

2ki�
�2r4 + (3� �2)r2 + 1

1 + �2r2
: (50)

We know from the stability analysis in the previous section that for
the tuned condition the Jacobian has all its eigenvalues in the closed left
half-plane. Accordingly, we can verify from (50) that det(J(1; r)) >
08r. As the parameters� andr� vary, loss of stability can be detected
by the eigenvalues of the Jacobian, as either a pair of complex eigen-
values or a single real eigenvalue cross the imaginary axis toward the
right half-plane. If a pair of complex eigenvalues crosses the imaginary
axis, then a Hopf bifurcation takes place. Given the complexity of the
expressions involved in an eigenvalue analysis, we cannot at this point
provide generic conditions for the ocurrenc of Hopf bifurcations. We
point out however, that it can happen for certain choices of PI gains, as
shown by an example given in [14].

On the other hand, the crossing of a real eigenvalue through zero can
be detected just by looking at the sign of det(J(�; r)) in (50). This de-
terminant is the product of positive quantities and a fourth-order poly-
nomial inr. Thus it is zero if and only if the polynomial is zero

�2r4 + (3� �)r2 + 1 = 0: (51)

Since this equation is the same which describes the points where the
number of equilibria changes (47), the following fact has been estab-
lished.

Fact 1: System (8)–(11) presents turning points (saddle-node bifur-
cations) at the solutions of (51). }

Then the curves in Fig. 1 represent bifurcation surfaces in the pa-
rameter space, that is, they give the locus of all the turning points in
this space [1], [2]. It is instructive to look at the branching diagram ob-
tained varyingr� for a given�. Fig. 2 presents the branching diagram
for � = 4. Two turning points can be seen, associated to the crossing
of each one of the two curves in Fig. 1. This branch topology is known
to cause the occurrence of jumps and hysteresis [2].

An additional local stability property follows from the above devel-
opment.

Fact 2: Assume no Hopf bifurcation takes place for a given positive
range of values ofr� and�. Then system (8)–(11) has at least one
locally exponentially stable equilibrium point for all positive values
of � andr� within this range. Moreover, equilibria such that (46) is
satisfied will be locally exponentially stable, whereas other equilibria
will be unstable. }

By Theorem 1 it is clear that there exists a nonempty range of param-
eters around the tuned condition which satisfies the assumption of Fact
2. The occurrence of Hopf bifurcations depends on the setting of the
PI speed controller. Conditions on the parameterskp andki to avoid
the Hopf bifurcation in the zero load torque case have been given in
[14]. For small load torque the behavior is expected to be similar, so

J(�; r) =

�c1 �c1�r 0 c2(1� �)=(1 + �2r2)

c1�r �c1 0 c2�(1� �)=(1 + �2r2)r

c4c5u
0

2 �c4c5u02r �c3 �c4c5 c2
c1

u02(1 + �r2)=(1+ �2r2)

kpc4c5u
0

2 �kpc4c5u02r ki � kpc3 �kpc4c5 c2
c1

u02(1 + �r2)=(1+ �2r2)

(49)
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Fig. 2. Branching diagram for� = 4.

these conditions should be useful also for this case. However, it is still
unclear how to predict and avoid the occurrence of Hopf bifurcations
for higher loading conditions.

V. DISCUSSION

The conditions for saddle-node bifurcations in Section V are given
in terms of the normalized load/flux rater� and the normalized pa-
rameter mismatch�. The range of parameters for which these bifurca-
tions occur represents a low load/flux rate, which implies that operation
under high flux yields smaller stability margins regarding saddle-node
bifurcations. In any case, no saddle-node bifurcation occurs for� <

3. Hence, in terms of robustness alone, it might be a good idea to
“aim low” at the parameterc1 when commissioning an IFOC, thus pre-
venting a high value of�. From this point of view it is also advisable
to use low flux levels in order to avoid the saddle-node bifurcations.

When three equilibria are present, and under the assumptions of Fact
2, two equilibria are locally asymptotically stable and the third one is
unstable—Fact 3. The stable equilibrium which appears with lowr in
the branch diagram (Fig. 2) is the operating point, and the other stable
equilibrium presents a much larger current level. In actual operation,
as the load varies passing through a saddle-node bifurcation the system
will jump from the operating point to the other equilibrium.

Some simulations are provided to illustrate the system behavior for
different mismatches in the rotor time constant. The model parameters
for the case simulated arec1 = 13:67 s�1, c2 = 1:56 H � s�1, c3 =

0:59 s�1, c4 = 1; 176 kg�11 m�2, c5 = 2:86, taken from a 1-cv
squirrel-cage induction motor. The simulations presented in Figs. 3 and
4 show the system’s behavior with� = 1 and� = 4 as the load
torque is slowly increased fromTm = 0 up toTm = 4 N � m. In the
tuned condition the system behaves properly, but for� = 4 the loss of
the equilibrium at which the system was operating causes a jump to a
much higher current level. Although speed regulation is not lost in the
simulation, in actual operation the motor would most likely stall due
to overcurrent protection actuation. It is also worth noticing that even
before the jump occurs the system may experience stability problems,
since the existence of a nearby unstable equilibrium reduces the size of
the region of attraction of the operating point.

Global stability of the IFOC has also been studied in this paper. A
new Lyapunov function, which generalizes the one given in [14], has
been given in Section III. By means of this Lyapunov function, a test
for the robust global stability in different operating conditions has been

Fig. 3. Simulation for varying load torque in the tuned condition.

Fig. 4. Simulation for varying load torque with� = 4.

derived. The robustness property given in [14] has been given a quan-
titative measure, applicable for any given system.

These results reveal important structural stability/robustness proper-
ties of the IFOC. From a practical point of view, in most cases tem-
perature variations inside the rotor can cause the rotor time constant
to vary more than 50% but not more than 100% [36]. Hence,� < 2

in most practical cases, so that the robust global stability in the tuned
condition along with the uniqueness of the equilibrium for� < 3

have strong practical implications. Yet, aiming low atc1 and at the
flux level may still be advisable in practical IFOC comissioning in
order to keep the saddle-node bifurcation as far as possible. Closeness
to a saddle-node bifurcation tends to deteriorate the system’s perfor-
mance and efficiency. Furthermore, much larger degrees of tuning�

are likely to temporarily occur when adaptive techniques (like [31]) are
employed, reaching the region where multiple equilibria are present.
Thus, the results also have practical implications regarding the stability
analysis and the design of adaptive IFOC drives.

It is important to stress that neither the existence of the robust global
stability property in the tuned condition nor the bifurcation topology
given in Section IV depend on the design of the PI controller. On the
other hand, both the size of the robustness margin as given in Theorem 1
and the occurrence of Hopf bifurcations depend on the PI parameterskp
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andki. Conditions to be satisfied by these parameters in order to guar-
antee stability have been given in [14] for the zero load case only. The
study of a number of different examples suggests that Hopf bifurcations
are avoided by a correct classical PI tuning, but this is still an open issue.
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