
EMBEDDED APPLICATIONS DEVELOPMENT is

part of a new, promising computer systems mar-

ket. However, applications based on devices

embedded in consumer electronics have differ-

ent design constraints than those of stand-alone

systems. In embedded applications, for example,

low power consumption, high code density, and

the ability to integrate peripheral devices into the

same circuit can be more important than perfor-

mance requirements.

Time-to-market pressures and the prolifera-

tion of incompatible devices make software

design a difficult task for consumer device

developers. Embedded-system developers have

embraced Java over the past few years because

the language is abstracted from the underlying

hardware, enhancing portability.1 Java is a nat-

ural choice for embedded system development

because of its ability to overcome some C and

C++ problems.

New application requirements (such as mul-

timedia processing) drive the embedded

processor market to powerful 32-bit devices

with software environments that can easily sup-

port the Java runtime environment.2 In fact, we

have seen that solutions now focus on embed-

ded systems with enough resources to incor-

porate a real-time operating system (RTOS), a

specific implementation of the Java virtual

machine (JVM), multithreading support,

garbage collection mechanisms, and so on.3,4

On the other hand, traditional eight-bit

microcontrollers are still advancing into new

products—boosted by low cost and new capa-

bilities—increasing their estimated shipments.

This change promotes interest in using Java

for small microcontrollers. When considering

a Java machine as the target architecture,

there is one primary issue: the Java platform’s

suitability for implementing embedded appli-

cations in devices with eight to 16-bit CPUs

and limited memory. For very simple embed-

ded applications, however, the mechanisms

just discussed (the JVM, RTOS, and so on) can

be too costly for the runtime environment to

support.

A processor like PicoJava was designed to

obtain performance and could not address

resource-constrained applications (such as

garage door openers, embedded controls in

portable devices, and identification and secu-

rity systems). Java microcontrollers can be the

best choice in these applications.5

The simplest way to implement an execution

engine for Java in hardware is through a stack

machine compatible with the JVM specification.

Compiling Java to native code or designing a

microprocessor with another behavior loses the

valuable software compatibility feature.

Making Java Work for
Microcontroller Applications

Java and Microcontroller Applications

100

The authors investigate complete system

development using a Java machine aimed at

FPGA devices. A new design strategy targets a

single FPGA chip, within which the dedicated Java

microcontroller—FemtoJava—is synthesized.

Sérgio Akira Ito and Luigi Carro
Universidade Federal do Rio Grande do Sul, Brazil

Ricardo Pezzuol Jacobi
Universidade de Brasilia, Brazil

0740-7475/01/$10.00 © 2001 IEEE IEEE Design & Test of Computers

Related work
The Java card platform1 is targeted for devel-

oping applications that run in environments as

small as those with 512 bytes of RAM, 16 Kbytes

of ROM, and an eight-bit CPU. This platform

supports dynamic object creation and has a

two-part JVM and reduced application pro-

gramming interface (API). It is exclusively tar-

geted to devices like smart cards, because it

depends on card acceptance devices to run the

applications.

Some lightweight JVMs are designed to run

dynamically loaded applications in embedded

systems, such as the Hewlett-Packard JVM,

Kaffe, and Spotless System.3,6,7 However, Sun

Labs reports that the Spotless project’s goal—

designing a Java platform for devices with a few

kilobytes of RAM for both the runtime environ-

ment and applications—may be an arduous

task. Sun also claims that the PicoJava micro-

processor can be configured for an embedded

market. However, since PicoJava’s microarchi-

tecture incorporates sophisticated mechanisms

for performance gain, it seems impossible for it

to fit in a smaller space than a classic micro-

controller.5

Compiling Java source or bytecodes to

native code could overcome poor performance

and help maintain a smaller runtime environ-

ment. However, this approach requires a com-

piler (or compiler back end) for each new

device, as required in the microcontroller mar-

ket, making software portability more difficult

to attain.

The JASIP (Java application-specific inte-

grated processor) architecture is an interesting

solution to native multithreaded Java applica-

tion execution.4 This architecture requires a

processing element for each thread, early class

hierarchy resolution, and object allocation sup-

port at global-memory and thread scheduling.

However, implementing its prototype required

an FPGA (field-programmable gate array)

board with 100,000 gates and a memory mod-

ule. These requirements don’t fit the concept of

a single chip, low-power application.

Java has also been studied as a specification

language for embedded systems and hardware-

software systems. In this research area, Young

presented an approach to synthesize hardware

from system specifications using Java and some

restrictions in the application modeling.8

However, this codesign methodology is target-

ed to generate hardware pieces that accelerate

Java applications, making no assumption about

resource constraints. The Sashimi (system as

software and hardware in microcontrollers)

approach shares some concepts with these

works, such as system specification using a sub-

set of Java, CPU customizing, and early refer-

ence resolution. However, we provide a

general methodology to support the develop-

ment of embedded applications, based on a

single-language and single-chip approach to

reducing costs.

Embedded-processor
requirements

Microprocessors designed for the embed-

ded market have different constraints than

desktop microprocessors. Embedded appli-

cations include video game consoles,

modems, set-top boxes, digital cameras, cel-

lular phones, printers, and so on.2 Resource-

constrained applications like building-access

controllers, watches, pens, smart cards, and

smart rings are also considered embedded

applications. For the last set of applications,

restrictions include

� Power consumption. In addition to reducing

power supply voltage, the processor stand-

by mode reduces power consumption.

� Program size. Small program code size

allows application execution in limited-

memory devices. The stack machines allow

more compact code than complex-instruc-

tion-set computing (CISC) and reduced-

instruction-set computing (RISC) processors.

� Microarchitecture optimizations. Depending

on the application, an application-specific

instruction set processor (ASIP) can be a

good solution. Also, address and data widths

and register file size can be adjusted to ful-

fill application needs.

� Higher levels of integration. Integrating mem-

ory and communication interfaces in the

same die can save power and simplify sys-

tem design. A serial communication inter-

face also reduces embedded processor

101September–October 2001

costs for specific applications.

� Design reuse. Considering costs and time to

market, design reuse can be a very effective

approach to reducing problems in the

embedded market.

� CAD support. Having adequate CAD support

is key to achieving higher productivity and

reliability, high-quality products, and effec-

tive design reuse.

The cost of building a new compiler should

be considered when ASIPs are going into a

design. In addition, for most embedded appli-

cations, compilers cannot produce code that is

as compact and efficient as programs hand-

coded using assembly language. However,

assembly-level programming has problems

such as software compatibility, reuse, and

maintenance cost.

We have omitted multimedia acceleration

and special application software acceleration

because our focus is on applications without

mass-processing requirements.2 Our target

applications can be implemented with low-cost

microcontrollers. Because of this focus, we also

consider generating an ASIP to reduce proces-

sor size rather than gain performance.

In fact, we explore Java code compactness

to overcome the code size problem and gener-

ate an ASIP to deal with the hardware cost

issue. We also provide an appropriate CAD

framework to make new compilers unneces-

sary and take advantage of Java’s software

compatibility through the FemtoJava micro-

controller.9 Moreover, we synthesize the system

using FPGAs because of their flexibility and low

cost.

FemtoJava microcontroller
There are several alternatives for running

Java programs: native and just-in-time (JIT)

compilers, interpreters, or a Java processor.

Native compilers do not consider the software

compatibility issue because they compile Java

into native code. JIT compilers and interpreters

maintain this Java feature but incur some over-

head cost, because they require more memory

to run the software, which results in poorer per-

formance. Java processors can execute JVM

bytecode natively, exhibiting a specific archi-

tecture organization (most are stack machines)

to run Java programs efficiently. This is why

Java processors can concurrently address the

software compatibility and performance issues

of Java programs. Although Java interpreters

running on embedded processors would also

provide such compatibility, the performance

penalty is evident.

Our target domain application requires a

simple microcontroller, but must still execute

a Java program with the desired throughput. In

addition, we defined the microarchitecture for

our FemtoJava microcontroller based on stud-

ies of the JVM architecture and information we

gathered about existing Java processors.

The JVM is based on a stack architecture

and is an abstract machine with Java bytecode

execution capability.10 In general, the JVM has

three major components: the class loader, class

verifier, and execution engine. In fact, the class

loader and verifier act at runtime and are only

necessary if you want a multiapplication plat-

form and have to download code over a net-

work. We are using a compiler that obeys the

JVM specification and will synthesize an ASIP

version of FemtoJava. Only the execution core

and some tools to extract the software at design

time are really necessary.

Most Java processors support stack opera-

tions through stack emulation on their register

files.4,5 This approach reduces the memory

access bottleneck of the stack machine,

improving performance. While several pro-

posed mechanisms (such as instruction fold-

ing, stack caching, and pipelining) address the

performance issue in desktop systems, it is dif-

ficult to find work about supporting Java in

small devices.

The JVM instruction set is large and complex.

There are 226 instructions with varying formats,

and many instructions correspond to awkward

functions. Despite these characteristics, the JVM

instruction set remains incomplete. To maintain

software portability, Java’s designers removed

instructions that make assumptions about the

hardware. For instance, the JVM does not include

specific I/O instructions or addressing modes that

involve registers. These omissions are why you

must add instructions to the JVM instruction set to

run the Java code directly on hardware.

Java and Microcontroller Applications

102 IEEE Design & Test of Computers

After studying pre-

vious Java processors,

we realized that sup-

porting the full JVM

instruction set in hard-

ware was impractical

for our project. Then,

we started by compil-

ing pieces of Java code

and checked the

resulting executable

program. We observed

that only a few instruc-

tions were really nec-

essary to implement

typical embedded

applications.

This observation let us define a basic sub-

set—just 68 instructions—for the FemtoJava

microcontroller to support.9 This subset includes

instructions necessary to perform basic integer

and stack operations, array manipulation, con-

ditional and unconditional jumps, execution of

the Java static methods, and class field access.

Table 1 presents the FemtoJava instruction set

using the mnemonic convention of the JVM spec-

ification. The extended bytecodes are necessary

to perform I/O operations, for interrupt program-

ming (discussed next), and also to put the micro-

controller in suspend mode. The FemtoJava

microcontroller can run only class code because

its instruction set includes only invokestatic,

return, and ireturn as method instructions.

However, this is not a serious limitation because

it is not necessary for most embedded software

to allocate complex objects at runtime.

Memory organization
Frame allocation plays an important role for

the Java program’s execution compatibility,

since several instructions (such as load and

store) use the current frame as a base to calcu-

late the correct target addresses. In such cases,

FemtoJava implements a Java-compatible

frame allocation scheme, as shown in Figure 1.

Compared to that of processors such as

PicoJava, the FemtoJava frame allocation is

much simpler. In Figure 1, the JVM model only

specifies that stack operands must be kept on

top of the frame information allocated over

local variables’ space. Because we designed

FemtoJava for single-threaded applications and

static linked code (with merged method vectors

and constant pools), we don’t need to store as

many fields on frame information as PicoJava

does. We simply remove the information on

monitors, method vectors, and constant pool.

103September–October 2001

Table 1. FemtoJava instruction set.

Instruction type Mnemonics

Arithmetic and logic iadd, isub, imul, ineg, ishr, ishl, iushr, iand, ior, and ixor

Control flow goto, ifeq, ifne, iflt, ifge, ifgt, ifle, if_icmpeq, if_icmpne, if_icmplt, if_icmpge, if_icmpgt, if_icmple, return, ireturn,

and invokestatic

Stack iconst_m1, iconst_0, iconst_1, iconst_2, iconst_3, iconst_4, iconst_5, bipush, pop, pop2, dup, dup_x1, dup_x2,

dup2, dup2_x1, and swap

Load/store iload, iload_0, iload_1, iload_2, iload_3, istore, istore_0, istore_1, istore_2, and istore_3

Array iaload, baload, caload, saload, iastore, bastore, castore, sastore, and arraylength

Extended load_idx, store_idx, and sleep

Others nop, iinc, getstatic, putstatic

Return
variables

Return
frame

Current
method
vector

Current
monitor

Return
current pool

Return
PC

Return
variables

Return
frame

Return
PC

Frame
information

Operand
stack

Local
variables

Frame
information

Operand
stack

Local
variables

Frame
information

Operand
stack

Local
variables

Frame
information

Operand
stack

Local
variables

(a) (b) (c)

Figure 1. Frame allocation onto the stack: JVM (a), PicoJava (b), and FemtoJava (c) models.

The JVM or Java processors with enough

resources for an RTOS can organize the pro-

gram and its data in memory by using well-

known object-oriented techniques. However,

the microcontroller environment cannot always

support dynamic Java features. For this reason,

we defined specific schemes to organize both

the program and data memories to obtain a sim-

ple hardware implementation. This implemen-

tation provides capabilities for I/O port mapping

and the static linking of application code.

Data memory is organized as shown in

Figure 2; its initial address space, from position

00H to 10H, contains some memory-mapped

registers. These registers are intended for inter-

rupt and timer programming, and also for I/O

operations. The remaining memory is for stor-

ing class fields (variables and constants) and

allocating frames for Java methods.

The techniques used to map the code and

class information into program memory must

be carefully considered to produce simple

hardware structures. For FemtoJava, we used

the mapping illustrated in Figure 3. In the mem-

ory’s first part, we store the code necessary to

call methods for handling interrupt requests. For

faster method calls (and frame allocation), we

store some information on the method heading.

These fields let stack-pointer calculations skip

over the stack and correctly restore the frames

when return and ireturn instructions execute.

FemtoJava is a Java microcontroller with a

reduced-instruction-set Harvard architecture.

The FemtoJava microarchitecture, shown in

Figure 4, uses simple building blocks. It con-

tains some multiplexers, a few registers, mem-

ories, and a unique arithmetic logic unit (ALU).

Inside the ALU we include a barrel shifter, a

Booth parallel multiplier, a ripple carry

adder/subtractor, and a Boolean logic unit. The

component architecture was selected for hard-

ware cost reasons, but can be replaced by oth-

ers, if necessary, because we use FPGAs as

synthesis target devices.

In our work, we exploit the reconfigurability

of FPGAs to synthesize customized versions of

FemtoJava for each application. In this case, the

target FPGA characteristics had some influence

on design. In fact, in the implemented micro-

architecture, we changed buses to multiplexers

Java and Microcontroller Applications

104 IEEE Design & Test of Computers

FFH

04H

08H

0CH

10H

00H

Frames

Class
variables

4 output
ports

4 output
ports

Timer
program
registers

Interrupt
program
registers

Data area

Timers

I/O subsystem

Interrupt handling

Figure 2. FemtoJava data memory

organization.

00H

FFH

Reset

03H

0BH

13H

1BH

23H

2BH

8 bytes

1 byte

1 byte

Program code Method
code

Interrupt
handling

Method N

Method 1

Method 0

Number of
parameter

words
Number of

local
variable words

Figure 3. FemtoJava program memory organization.

because of difficulties in using buses inside the

FPGAs of Altera’s Flex 10K series. Also, sharing

the same ALU to execute the instructions and to

operate over stack pointer (SP) and program

counter (PC) registers makes no sense, because

the FPGA architecture makes an adder’s size

105September–October 2001

Interrupt
handler

Timer

IR

Input
ports

Output
ports

ROM

RAM

Control

B

A

A
LU

+/–

VAR

FRM

SP

MAR

M
ux

M
ux

Constant

IMM

A

1

M
ux

0

M
ux

PC

+

P
ro

gr
am

 m
em

or
y

ad
dr

es
s

bu
s

In
st

ru
ct

io
n

bu
s

D
at

a
m

em
or

y
ad

dr
es

s
bu

s

D
at

a
bu

s

Figure 4. FemtoJava microarchitecture.

similar to that of a multiplexer. Moreover, this

design strategy lets some instructions take fewer

clock cycles to execute.

The FemtoJava core can execute all support-

ed instructions in, at most, 14 cycles. Some

instructions are memory bound and others are

much simpler, like iadd. An important observa-

tion is that decoding Java instructions needs

complex hardware structures, and reducing the

number of control-machine states can help

reduce circuit area. Therefore, to save hardware,

we grouped instructions according to the num-

ber of cycles they take to execute. FemtoJava

has four categories of instructions: those that exe-

cute in three, four, seven, or 14 cycles.

We built the implementation using VHDL

(VHSIC hardware description language); we per-

formed synthesis and analysis in the Maxplus-II

environment from Altera. FemtoJava’s VHDL

code uses a style that makes changing data path

widths easy, and adapting its instruction set is

straightforward for each target application. In

fact, the Sashimi tools can automatically adapt

to the FemtoJava architecture.

For embedded systems applications, it is

very important to define structures like timers,

I/O ports, and interrupts, despite their absence

in the JVM specification. We have included the

corresponding VHDL models for these compo-

nents in our microcontroller.

Table 2 presents the synthesis results for the

FemtoJava and two other microprocessor cores.

The 8051 ASIP core starts from a reduced-

instruction-set version of the well-known Intel

8051 microcontroller. The Risco is a 32-bit

RISC-like microprocessor with a three-stage

pipeline. The applications we used as bench-

marks are

� the classic biquadratic filter,

� a simple elevator control system (ECS),

� an algorithm used on a portable device to

measure the distance that a person walks or

runs (Podos), and

� a hash-based searching algorithm used to

translate words.

In fact, we can see that FemtoJava can be

used in applications requiring compact hard-

ware. Note that 8051 ASIP and Risco cores do

not include interrupt-handling mechanisms

and timers. In terms of program size, Table 3

shows that FemtoJava can implement the appli-

cation software more compactly. In this case,

we stripped out the code for programming

interrupts and timers for comparison with other

microprocessors. Table 3 (next page) also

shows that the available instructions on the

8051 ASIP are insufficient to implement those

applications without modifying the code.

CAD framework
We developed the Sashimi environment to

support automatic adaptation of software, and

the ASIP and application-specific integrated cir-

cuit (ASIC) generation. Using Sashimi, the

Java and Microcontroller Applications

106 IEEE Design & Test of Computers

Table 2. Characteristics of synthesized microcontrollers. Microcontrollers are synthesized to the Altera Flex EPF10K30RC240-4 unless

otherwise noted.

FPGA No. of distinct

No. of device usage Frequency instructions

Microcontroller Version Application logic cells (percentage) (MHz) required

FemtoJava 8 bits None 1,481 85 4.85 68

Biquad 991 57 7.97 22

16 bits Synthesized 1,979 85 3.93 69

ECS 1,556 90 5.65 31

Podos 1,465 89 5.55 29

Translator 1,253 72 5.13 32

8051 ASIP 8 bits Synthesized 659 38 3.07 14

Risco* 32 bits Synthesized 1,271 25 4.03 35

* Synthesized to the Altera Flex EPF10K100GC503-3

designer can model, simulate, and build the

system implementation directly in Java. We

provide libraries that improve simulation accu-

racy and allow direct mapping of classes used

by simulation to actual code in the final imple-

mentation. These predefined classes also cover

all the details required to interface the micro-

controller with the real world (interrupt mech-

anism programming, communication with LCD

displays, and keyboards).

The automated tasks performed by the

development environment are code analysis,

performance estimation, and critical-routine

identification. A set of tools can help the

designer predict the final system performance

and costs.

Design process
The Sashimi design environment uses freely

available tools, like the Java compiler and the

JVM included in the Java development kit

(JDK). In addition, we also provided tools specif-

ically designed for Sashimi. Figure 5 (next page)

illustrates the entire design flow from the Java

source code to the synthesized microcontroller

chip. In the Sashimi environment, the user starts

with Java files representing the application

source code. In this phase, the development

process follows the traditional edit-compile-run

cycle in a desktop computer with a standard

JDK. In this scenario, running the application is

equivalent to simulating it in still-unavailable

hardware, which, in this case, is emulated by the

Java interpreter. During simulation, the design-

er can use predefined classes (where threads are

allowed) to model the behavior of necessary

peripherals. Later, in the synthesis step, the sys-

tem will replace these classes for code providing

the interface with real components.

When the designer considers the application

ready, the user-provided input vectors and the

simulation-generated output vectors are saved

for later use by the bytecode validation phase.

The code analyzer tool will take the executable

code (class files) to estimate quantities like per-

formance and hardware size. The analyzer tool

estimates performance using method-call infor-

mation, number of instructions per method,

cycles per instruction, and probable frequency

to be reached after synthesis. FPGA area and

frequency are estimated by using previous

results obtained in synthesizing FemtoJava with

different numbers of instructions. Since

FemtoJava does not support the full JVM instruc-

tion set, the code analysis phase must provide

information for ASIP generation and code adap-

tation.

Adapting bytecodes involves some transfor-

mations in class files, while semantic modifi-

cations are not allowed. This process

transforms complex instructions (such as

tableswitch and lookupswitch) in a sequence

107September–October 2001

Table 3. Software generation. Microcontrollers are synthesized to the Altera Flex EPF10K30RC240-4.

Program Data No. of distinct

size memory instructions

Microcontroller Version Application (bytes) (bytes) required

FemtoJava 8 bits Biquad 49 30 22

16 bits ECS 612 74 31

Podos 246 90 29

Translator 280 118 32

8051 8 bits Biquad 62 3 20

ECS 602 15 37

Podos 549 31 67

Translator 358 42 63

RISCO 32 bits Biquad 332 80 10

ECS 2,224 120 17

Podos 1,064 160 14

Translator 884 164 11

Java and Microcontroller Applications

108 IEEE Design & Test of Computers

MCU
generator

Java
interpreter

Bytecode
validation

Simulation
tool

Java
compiler

Bytecode
adapter

Linker

Code
analyzer

Operation
scheduler

ASIC
generation

ASIC
generation

Conventional tool

Sashimi tool

Optional flow

Software
generation

Java
interpreter

Application
validation

Parser

Source
code adapter

Synthesis
tool

A
pp

lic
at

io
n

is
 n

ot
 O

K

Sashimi
library

RAM

ASIP
attribution

Critical
routines

ASIC

VHDL
model
(ASIC)

Java
byte-
code

I/O
ports

Java
ASIP

VHDL
model
(ASIP)

ROM
(code)

User
test

inputs

Java
application

Adapted
software

Input
and

results
of test

ROM
with

application
software

Instruction
to

change

Interrupt
control

Timers

ASIC
generator

Figure 5. Sashimi design flow.

of simpler instructions. Class file structures keep

the maximum stack size for each method in a

class, and this information must be recalculat-

ed to allow correct adapted-code execution.

After this step, the tools perform a new simula-

tion to validate the bytecode transformation.

This process uses the previously stored output

test vectors and can be automatic.

The criteria that drive the bytecode substi-

tution process are the instructions supported

by the target microcontroller; size and speed

requirements; each instruction’s use rate; and

the memory size available to store the appli-

cation code. At this point in the design flow, a

set of class files is adapted to be compatible

with the specific instruction set that will be

implemented in the Java ASIP. The next step

removes unnecessary information (such as

line number structures) and resolves class hier-

archy. It also links and converts the application

code and the necessary libraries in a unique

program memory image. In addition, useless

bytecodes for embedded software generation

(such as calls for the System.out.println

method used during simulation) are discard-

ed, based on information generated during the

previous phases.

When performance estimates don’t match

application requirements, the code analyzer

tool can identify the critical code, and the

designer can choose whether to discard some

instructions. Alternatively, the designer can

provide an ASIC specification for integration

into the hardware to improve performance.

Communication between the ASIC and the

Java ASIP depends on the ASIC’s behavior, but

can be through either the stack or dedicated

addresses of main memory. In the future,

Sashimi will provide direct synthesis of Java

methods to VHDL and automatic interface

generation between FemtoJava and the gen-

erated ASICs.

System model
FemtoJava must be able to run the code

stored in ROM. From attributes (such as

instructions to implement and RAM size)

extracted by the code analyzer, an optimized

microcontroller VHDL model is generated.

Finally, this model is simulated using the target

application and synthesized in FPGA using any

synthesis tool that accepts a VHDL input. The

code is stored in nonvolatile memory, and only

necessary classes are linked. The application

is updated by replacement of this memory

module or reprogramming (if using erasable

memories).

The microcontroller can also be updated

because it is synthesized in an FPGA. Adding

new processor functions involves creating new

Java instructions required by some specific

application (by changing the specification file

with available instructions) or synthesizing spe-

cific hardware functions, like timers, watch-

dogs, or even digital filters.

Modeling constraints
Target applications induce some constraints

in coding style. These restrictions are similar to

those that make the synthesizable version of

VHDL smaller than the full language, which was

originally oriented toward simulation. Therefore,

a Java application must conform to the follow-

ing conditions to be synthesizable in Sashimi:

� the new operator is not allowed, since it

would require virtual memory management

by the hardware machine;

� only static methods and variables are sup-

ported, for the same reason;

� no recursive methods are allowed, since

they’d require dynamic memory manage-

ment;

� interfaces are not supported, because

dynamic binding represents additional cost

at runtime;

� floating-point arithmetic is not allowed,

although it could be enabled at the price of

a larger FPGA; and

� multiple threads are not supported, because

most microcontroller applications can be

described in a single thread, lowering design

and hardware costs.

We apply these rules to ensure that the gen-

erated software is fully implemented by the

FemtoJava instruction set. Providing some new

instructions or informing Sashimi to implement

some parts through ASICs are alternatives that

would let designers relax these rules.

109September–October 2001

IT IS POSSIBLE to synthesize small Java micro-

controllers in a single FPGA chip. The micro-

controller executes Java bytecodes natively,

with no new compiler or JVM implementation

required. Because they are reconfigurable, the

FPGA devices provide opportunities to update

microcontroller capabilities. The design envi-

ronment fully supports generating an optimized

microcontroller and the adapted code.

We plan several improvements for Sashimi

and FemtoJava. We are implementing new ver-

sions of the microcontroller that include testa-

bility features, a pipeline, and a smaller core.

Some tools for Java to VHDL synthesis are

already implemented and tested to determine

how to perform the final system integration

through interface generation. The availability

of wrappers to perform cosimulation with exist-

ing design environments, like those from

Synopsys and Matlab, will be key for Sashimi’s

dealings with legacy design parts. �

References
1. D. Mulchandani, “Java for Embedded Systems,”

IEEE Internet Computing, vol. 2, no. 3, May/June

1998, pp. 30-39.

2. M. Schlett, “Trends in Embedded-Microprocessor

Design,” Computer, vol. 31, no. 8, Aug. 1998,

pp. 44-49.

3. M. Barr, “A Free Java Virtual Machine for Embed-

ded Systems,” Proc. Embedded Systems Conf.,

Miller Freeman, San Francisco, 1998, pp. 277-288.

4. M. Mrva, K. Buchenrieder, and R. Kress, “A Scal-

able Architecture for Multi-threaded Java Applica-

tions,” Proc. 1998 Design Automation and Test in

Europe (DATE 98), IEEE CS Press, Los Alamitos,

Calif., 1998, pp. 868-874.

5. H. McGhan and M. O’Connor, “PicoJava: A Direct

Execution Engine for Java Bytecode,” Computer,

vol. 31, no. 10, Oct. 1998, pp. 22-30.

6. D. Clark, “HP Enters the Java Fray,” Computer,

vol. 31, no. 6, June 1998, p. 19.

7. A. Taivalsaari, B. Bush, and D. Simon, The Spot-

less System: Implementing a Java System for the

Palm Connected Organizer, tech. report SMLI TR-

99-77, Sun Microsystems, Palo Alto, Calif., 1999.

8. J.S. Young et al., “Design and Specification of

Embedded Systems in Java Using Successive,

Formal Refinement,” Proc. Design Automation

Conf., ACM Press, New York, 1998, pp. 70-75.

9. S.A. Ito, L. Carro, and R.P. Jacobi, “Designing a

Java Microcontroller to Specific Application,” XII

Brazilian Symp. Integrated Circuit Design (SBCCI

99), IEEE CS Press, Los Alamitos, Calif., 1999,

pp. 12-15.

10. B. Venners, Inside the Java Virtual Machine,

McGraw-Hill, New York, 1998.

Sérgio Akira Ito is a
research assistant in the Elec-
trical Engineering Depart-
ment, Microelectronics Group
of Universidade Federal do
Rio Grande do Sul (UFRGS),

Brazil. His reseach interests include computer
architecture, EDA, embedded systems, and core-
based design. Ito has a BS in computer science
from the Universidade Estadual de Maringa
(UEM), Brazil, and an MS in computer science
from UFRGS, Brazil.

Luigi Carro is a professor
in the Electrical Engineering
Department of the UFRGS.
His research interests in-
clude mixed-signal design,
digital signal processing,

and rapid system prototyping. Carro has a BS in
electrical engineering and a PhD in computer
science from UFRGS.

Ricardo Pezzuol Jacobi
is a professor in the Comput-
er Science Department, Uni-
versidade de Brasilia, Brazil.
His research interests include
embedded system design,

CAD, and reconfigurable architectures. Jacobi
has an MsC in electrical engineering from the
UFRGS, Brazil, and a PhD in applied sciences
from Katholieke Universiteit Leuven, Belgium.

Direct questions and comments about this arti-
cle to Luigi Carro, Departamento de Engenharia
Eletrica, Universidade Federal do Rio Grande do
Sul, Av. Osvaldo Aranha 103, CEP 90035-190,
Porto Alegre, RGS, Brasil; carro@iee.ufrgs.br.

Java and Microcontroller Applications

110 IEEE Design & Test of Computers

