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Information Geometric Similarity Measurement
for Near-Random Stochastic Processes

Christopher T. J. Dodson and Jacob Scharca@siior Member, IEEE

Abstract—We outline the information-theoretic differential ft1,v)
geometry of gamma distributions, which contain exponential
distributions as a special case, and log-gamma distributions.
Our arguments support the opinion that these distributions have
a natural role in representing departures from randomness,
uniformity, and Gaussian behavior in stochastic processes. We
show also how the information geometry provides a surprisingly
tractable Riemannian manifold and product spaces thereof, on
which may be represented the evolution of a stochastic process, or
the comparison of different processes, by means of well-founded
maximum likelihood parameter estimation. Our model incor-
porates possible correlations among parameters. We discuss
applications and provide some illustrations from a recent study of
amino acid self-clustering in protein sequences; we provide also
some results from simulations for multisymbol sequences.
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Fig. 1. Probability density functiong(¢; 7, ), for gamma distributions of
inter-event intervalg with unit meanr = 1, andv = 0.5, 1, 2, 5. The case
v = 1 corresponds to an exponential distribution from an underlying Poisson
. . . processy # 1 represents some organization—clustering or smoothing.
LSEWHERE we have discussed the differential geometry
of manifolds of gamma distributions and their applicatio
to various clustering problems and security testing, e.g., [5], [
and [9]. The family of gamma distributions with event spac
Q = RT, parameters, v € RT has probability density func-
v tl/fl

tions given by
) I'(v)

Thent = 7 is the mean and ar(t) = 72/v is the variance, so

the coefficient of variation/Var(t) /7 = 1//v isindependent ” o
of the mean. The special case- (1 )lr/1 () co/rresponds tothe sit- functionh, that having independence of the sample meand

uation of the random or Poisson process with mean inter-evSA{PIe coefficient of variationv = o/ is equivalent toh
interval . eing a gamma distribution. Fig. 1 shows some sample gamma

Forv < 1, (1) models a process that has larger variance thd$tributions, all of unit mean, with = 0.5, 1, 2, 5, thus, rep-

the random case; this corresponds to clustering since very snigfienting processes that are clustered, random and smoothed,

and very large values @fbecome more likely. respectively. . . . . .
Forin¥ege?u —1,2,....(1) modelsaproc}(lass that is Poisson The log-likelihood function for a probability density function

but with intermediate events removed to leave only evéfy Jisi=log f; Cf eg [2] and [3] for more details of“general're-“
This would evidently have a smoothing effect for> 1. For- sults. Shannon’s information theoretic entropy or “uncertainty

mally, the gamma distribution fanteger is the v-fold con- 'S 9IV€N, up to a factor, by the negative of the expectation of
the log-likelihood function. For the gamma densities {13

log(f(¢;T,v)) and the entropy is
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I. INTRODUCTION TOGAMMA MODELS AND THEIR GEOMETRY

olution of the exponential distribution, called also the Pearson

Ype Il distribution.

€ Thus, gamma distributions can model a range of stochastic
processes corresponding to nonindependent clustered events,
for v < 1, and smoothed events, for > 1, as well as the
random case. Note that the property of having sample stan-
dard deviation independent of the mean actually characterizes
gamma distributions, as shown recently by Hwang and Hu [12].
They proved, fom > 3 independent positive random variables
x1,9,.-.,2, With a common continuous probability density

—tv
-

14

ft;mv) = (—
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e teRT.
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Sy(rv) = — / log (f(t:7,v)) £(t; 7, )dt

0
I(v)

7'(v)
I'(v) ’ 2)

=v+(1-v) + log

inf.ufrgs.br).
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F% particular, at unit mean, the maximum entropy (or maximum
uncertainty) occurs at = 1, which is the random case, and
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Entropy S¢(,v) R+} for gamma distributions, the arc length function is given
1 by
o ds? = %er + <1//(1/) - 1) dv® forr,v e RT  (7)
2 4 6 8 10 12 14 4 Y
-0.5 v wherey(v) = (I'(v))/(T'(v)) is the logarithmic derivative of
the gamma function. The 1-dimensional subspace parameter-
-1 ized byrv = 1 corresponds to all possible “random” (Poisson)
-1.5 processes, or equivalently, exponential distributions.
Dodson and Matsuzoe [9] have provided an affine immersion
-2 in EuclideanR? for the Riemannian 2-manifold of gamma dis-
2.5 tributions with information metric (7). This may help in visual-

izing the geometric shape of the gamma manifold:
Fig. 2. Information entropy;(7, v/), for gamma distributions of inter-event ~ Proposition 1.1: (Dodson and Matsuzoe [9]yhe coordi-
intervalst with unit meanr = 1. nateg#',6?) = (8 = v/, v) form a natural coordinate system
for the gamma manifold. Theng can be realized in Euclidean
thenS;(7,1) = 1 + log 7. Fig. 2 shows a plot o4 (7, v), for R3 by the graph of the affine immersiofh, £} where¢ is the
the case of unit mean= 1. So, a Poisson process of points oiransversal vector field along(cf., Amari and Nagaoka [3]):

aline are as disorderly as possible and among all homogeneous 3 0
point processes with a given density, the Poisson process P)Las R - </3> . y =10
maximum entropy. ) log T(v) — v log 3 ’ 1
The maximum likelihood estimates,” of r,v can be
expressed in terms of the mean and mean logarithm of a set O
of independent observation’s = {X;, X»,...,X,}. These This immersion has been used to prove a general result which
estimates are obtained in terms of the propertiesXoby by its very qualitative nature is stable under small perturbations
maximizing the log-likelihood function and hence should be useful in practice, giving confidence in the
. use of gamma distributions to model near random processes.
Y ) ) Proposition 1.2: (Arwini and Dodson [1])Every neighbor-
log likix (7, v) = log (Ll_[lp Xi;T V)> hood of an exponential distribution contains a neighborhood of

gamma distributions, in the subspace topologRf
with the following result that is easily applied to experimental This means that in a rather precise seasery neighborhood

data{X,, Xo,..., Xn}. of a random process on the real line has a neighborhood of
processes that are represented by gamma distributions
P l Z ©) It was proved elsewhere [8] that there is a Riemannian mani-
n = fold £ consisting of log-gamma distributions and isometric with

) . G. This log-gamma manifold has several useful properties in
logr — Ty log X —log X (4) security testing of smartcards and in modeling of galactic cluster
evolution [7], [8].
wherelog X = 1/n 3", log X;. Proposition 1.3: (Dodson [8])The log-gamma probability
At each point in parameter space the covariance of partfgnsity functions for random variablé € [0, 1]
derivatives of the log-likelihood function with respect to the L% (1) (1og L)7
parameters gives the Fisher information matfix,], which g(N,7,v) = N (T) (Og N) for (r,v) € Rt x RT
turns out to be positive definite. This matrix has entries the I'(v)
expectations . . o . (.8)
determine a metric spaag of distributions with the following
oo ) oo 921 properties: . . - o
/ (891 801> / (W) da  (5) 1) £ contains the uniform distribution as the limit:
0 0 hm‘l'—’lg(N/T,l):g(N711):1
) . 2) L contains approximations to truncated Gaussian distri-
for coordinategf’) € G = R x R*. butions.
Since it is positive definite[g;;] determines a Riemannian 3) £ = § is an isometry of the Riemannian manifold of
metricg on the parameter spade called the expected informa- gamma distributions with information-theoretic metfic.

tion metric for the parametric statistical modeIExplicitly, the

Lo ) In Fig. 3 are shown examples of the log-gamma distributions
metric is given by the arc length function g P 99

corresponding gamma distributions in Fig. 1. In fact, the log-
2 _ 08 api gamma family (8) arises from the gamma family (1) for the

ds Zg”dg dv’. (©) nonnegative random variable = log 1/N, or equivalently,

N = e t. So, the gamma and log-gamma families of distri-

In our case, we have two parameters so we obtain a Riemanrbations have a common differential geometry through the infor-

2-manifold and on the parameter spate= {(r,~) € R™ x mation metric and the exponential distributiongjirmap onto

i3
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g(N;7,v) Il. CURVES AND DISTANCES ING

2.5 ‘ In the manifoldG of gamma models for the distribution of
intervals between events, we use the Riemannian metric to
measure information distances between pairs of points. In a
neighborhood of a given point we can obtain a locally bilinear
approximation to this distance. From (7) for small variations

AT, Av, near(ry, ) € G; itis approximated by

1
Asg ~ \/V—gATZ + (1/)’ (vo) — —) Av2.  (10)
7'0 121}

‘ Asy increases from 1, the fact@y’ (19) — (1) /(o)) decreases
1 monotonically from(72)/(6) — 1. So, in the information metric,
the differenceAr has increasing prominence ovAr as the
Fig. 3. Log-gamma probability density functiongN; 7, ~), with central Standard deviation reduces with increasigg—corresponding
meanN = 0.5, andv = 0.5, 1, 2, 5. The cases = 1 is the uniform tg jncreased temporal smoothing of event scheduling.
g:)srﬁcgfstg’lgl’/”;ll Ccoorrrf:ppg’nnf;tfS"#ﬂgﬁ;ﬁ%_'nthe underlying spatial process; |, - naticular, near the exponential distribution, where
(10,v0) = (1,1), (10) is approximated by

the uniform distribution inC, giving further topological proper-
ties through the isometry [1]. Asg ~ \/ATQ + (

2
% - 1) Av2. (11)
A. Correlation For a practical implementation we need to obtain rapid es-
Clearly, in certain bivariate stochastic processes we may ginates of distances in larger regions than can be represented
pect that there will arise departures from randomness that By quadratics in incremental coordinates. This can be achieved
corporate correlation between the variables. So it is naturall}ging the result of Dodson and Matsuzoe [9] that established
consider bivariate gamma distributions. geodesic foliations of the gamma manifold. Now, a geodesic
Kibble’s bivariate gamma distribution has been used in a Vag e is locally minimal and so a network of two nonparallel
riety of applications [13], but from our viewpoint it suffers fromgeatg of geodesics provides a mesh of upper bounds on distances

the disadvantage that its two marginal gamma distributions haye, sing the triangle inequality about any point. Such a geodesic
a common dispersion parametemMoreover, the calculation of ash is shown in Fig. 4 using the geodesic cumves v and

the Fisher metric and its information geometry is intractable. , _ ~onstant. which foliate, as described in [9].
Mc_Kay’s b_ivariate gamma distribution [14] is given by the Explicitly, the arc length along the geodesic curves= v
density function from (79 = vy, o) to (7 = v, v) is

f(ll?;iﬁ 06170127062)

o &1logT &1logT
P er) - fear
I'(a1)l(az) ©) " and the distance along curves of constart v from (7o, 1)
defined on0 < = < y < oo with parametersy, o12, s > 0. to (7,vp) is

Whereos is the covariance of andy. This has the limita- To
tions that it constrains the random variables to the odianat ‘VO log ?‘ :
z < y < oo and to have nonnegative covariance. The infor- ) ) ) )

3-manifold which has been studied by Arwini and Dodson [pined numerically so at any given parameter values they can be

and will be reported elsewhere since the details of the geomegtpstituted directly. In Fig. 4, we use the base poigty) =

are rather cumbersome. (20,1) € G and combine the above two arc lengths of the
In the sequel, to circumvent these difficulties in developingeodesics to obtain an upper bound on distances fram)

easily applied information geometry of bivariate gammas

manifolds, we introduce the notion of warped products of .

statistical manifolds. A simple direct product geometry likd’*stance [(70, 0). (7, )]

G x G represents the case when we have two independent d’ logr(y _ d? logf(y )

stochastic processes subordinate to gamma distributions. dv? dv? 0

Warped products allow us to create a new geometry from any

pair of manifolds by blending them through a warping function

which can represent interaction; no interaction remains as the

special case for independent processes. Such methods are uskda practical application of the above differential geometry

in the pseudo- Riemannian geometry of general relativisticee can measure departures from randomness in the gamma

spacetime, cf., Beert al.[4]. manifold G. Equivalently, in the log-gamma manifold we

+ ‘Volog?‘. (12)

I1l. PRODUCT GEOMETRIES
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can measure differences between approximations to truncaded the information distance arc length element from this com-
Normal distributions or departures from a uniform distributiorponent of the metric tensor will be given by

_In fact all of the;t_a types of comparison betyveen such dis- ds? = X[Myp]XT (16)
tributions—or empirical sampling of them—arise in the cost
function for approximating a given stochastic process. In gewhere X = (drdvydradys).
eral, however, we havedistributed parameter sets to optimize. Here, the off-diagonal ternip; ; are symmetric and consist of
First we consider the case where ausearch parameters allthe product of the correlation coefficiept; = p;; between the
come from the joint families of gamma and log-gamma distrtwo parameter spaces and the scale comtrbhe scaling value
butions and are independent of one another. Then we haveraust be chosen such thitt[M;,] > 0, to ensure that positive
product manifold? of dimension2n with n pairs of coordi- definiteness is preserved. The maximum likelihood estimates

nates{(r;,v;)|i = 1,2,...,n}. So,P consists of a product of should be used for the parameter val¢esy;) obtained from
~ copies ofG and\ copies ofC, wherey, A > 0 andy+ A = n. measured data histograms.
Hence, The simplest case is perhaps that of a relationship between
N the two mean valuesy, m». For this suppose that all of thg;
P=g"xL (13)  are zero exceptis = p, say. Then, we have to control the size
with the n-fold direct product metric of (1.7) of p in order to havelet[M.] > 0, namely
i % 0 P 0
ds Z(VidQ"‘(l//(’/) 1>d1/2> 76 ' (v1) ! 0 0
Sp = —aT; L i) T i P v) — o
—\T; v; p b 7 0 >0. (17)
n . 1 2
e 55 (to s (- ) o) R
i=y1 N Vi But we know that the product of diagonal terms is positive
for 7;,v; € RY buty; > 1fori > ~. (14) because this is the determinant for the trivial product space, i.e.

. . with p = 0. Hence, the constraint reduces to
We note that each component space in such products contributes )
V1 Vg

two dimensions. 2 A= _ - 18
s 712 722 Vary Vars (18)
A. Warped Products and Correlation N2 et N2 (19)
Lo L L N —
More intricate products arise in applications of geometry to T1T2 TIT2

physics, as discussed for example in Besdral. [4]. A warped and so the magnitude @fis bounded by the reciprocal of the
productof two Riemannian manifoldgX, g) with coordinates geometric mean of the variances of the two marginal gamma
(z;) and(Y, k) with coordinatesy; ) is a manifold X x Y, gx s  distributions in the product. This bound could be estimated once
h) with coordinategz;) = ((z;), (:)) under the metrig x s b the domain of interest was established.

has the form

P P P C. Representing Multimodal Distributions
g X hijdz"dz’ = gijdz'da’ + f(z;) hij dy'dy’

A large class of distributions arise in practical situations as
for some positive warping functiorf, defined onX. It is pos-  himodal or multimodal histograms. A typical situation is that
sible that correlation may be represented to some extent byfaseveral disjoint symmetric peaks. We can easily handle the
suitable choice of warping function in a warped product of stgase when the peaks all resemble gamma or log-gamma shaped
tistical manifolds; this is under investigation. distributions; we just multiply the metric contribution of each
Meanwhile, it seems that some empiricism may be needggak by the total probability fraction represented by that peak.
to introduce correlation between variables in the manifBld  Suppose that an observed data set has a histofavith
One way would be to modify the direct product metric by intropeaks giving respective fractional contributions p, . . ., px
ducing symmetrically off-diagonal termg;, i # j, while pre-  to the total probability. If each peak is well represented by a
serving positive definiteness. These off-diagonal terms could §8mma or log-gamma distribution, then there will bekadi-
bounded byte, say, and ranked in absolute size by the relativ@ensional subspace corresponding to such histograms and its

strengths of the corresponding correlations. metric will be
1=k
- i 1
B. Example of Two-Fold Products R (V_QdTiZ 4 (1//(1/1') N _) dV?) (20)
Let us take for illustration the submatrix of the metyig for i=1 i vi

i,7 = 1,2,...,4; so it applies to one of the spacg$, G x L,
L x G, £?, as part of the:-fold productP. Then this part of the
metric tensor matrix;; will have the form

with 0 < p; < landYiZ) p; = 1.

IV. APPLICATIONS

oS 0 o .

. . prs P14 A number of applications arise rather naturally from the
[Mys] = 0 (1) - 7 P23 P24 (15 observation that the gamma and log-gamma distributions have

P13 P23 g 0 a natural role in representing departures from randomness,

P14 P24 0 ¢ () — 1 uniformity and Gaussian behavior in stochastic processes. We
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Distance from (T,v) = (20,1) in G TABLE |
TYPICAL SIMULATION RESULTS FOR4-SYMBOL SEQUENCES OFLENGTH
10,000, WTH THE SYMBOLS HAVING ABUNDANCE DISTRIBUTIONS:
I UNIFORM AND Il EXPONENTIAL. THESE DATAPOINTS ARE PLOTTED IN FIG. 5

I Uniform 11 Ezponential
Probability v T Probability v T

A 0.25 1.27 4.03 0.45 1.75 2.22

B 0.25 1.39 3.98 0.28 1.38 3.59

C 0.25 1.29 4.00 0.17 1.16 5.89

D 0.25 1.32 3.99 0.10 1.05 9.80

in these long sequences encodes important features that may be
relevant in genetic analysis.

B. Stochastic Similarity for Multisymbol Sequences
Fig. 4. Distances in the space of gamma models, using a geodesic mesh. The

surface height represents upper bounds on distanceq from = (20, 1), the An application of the gamma manifolflwould be to provide
random case with mean = 20. Depicted also are 20 data points for a set of . .
a structural model for stochastic features of intervals between
consecutive occurrence of symbols through multi-symbol se-
quences. If the intervals between occurrences of a given symbol

have begun studies of several such situations, some are outliggfibit the property that their coefficient of variation is inde-

amino acid sequences with clustering to differing degrees.

below. pendent of the mean, then their distribution may be modeled by
a gamma distribution. Clustering’ < 1) would occur when
A. Characterizing Self-clustering of Amino Acids the symbol has greater frequency in certain sections; smoothing

The data plotted on the distance surface in Fig. 4 comes fréh> 1) would occur for symbols that are more regularly spaced
measurements of occurrencies of individual amino acids alon§'gn at random.
protein chain within the Saccharomyces cerevisiae genome, sel order to illustrate how the metric might benefit the study
Caiet al.[5]. If amino acids are distributed randomly within a0f stochastic sequences of symbols, we have developed a sim-
sequence then they follow a Poisson process and a histograrflgtor which generates a wide range of such sequences, of ar-
the number of observations of each gap size will follow a ne§itrary length and with arbitrarily many symbols. The proba-
ative exponential distribution. Our techniques show that this ity of occurrence of symbols is either uniformly distributed
not the case and that all 20 amino acids tend to cluster, all havRigr symbol types or not; if it is not uniform, then we can rep-
v < 1. In other words, the frequencies of short gap lengths teng@$ent the ranked probability values by a triangular-type distri-
to be higher and the variance of the gap lengths is greater thafiion—exponential serves well enough.
expected by chance. In this application we have a one-dimenWe extract some information from such simulated sequences
sional (1-D) spac€ where the intervals are between successi@ computing the maximum likelihood estimate of gamma dis-
occurrencies of a given amino acid, for all 20 possible amifigbution parameteréry, v ) for each symbok.
acids. The maximume-likelihood parameters were obtained forSample results from sequences of length 10 000 using four
gamma fits to the interval distribution for each amino acid. symbols are shown in Table | for uniform and exponential abun-
The methodology here allows representation of the departuggnce distributions, symbols being chosen independently with
from randomness of the processes that allocate gaps betwesgiacement. Fig. 5 shows the results, illustrating the distances
occurrences of each amino acid. Fig. 4 shows information dis-the space of gamma models, using a geodesic mesh. The sur-
tances in the space of gamma models, using a geodesic métg height represents upper bounds on distances(from =
the surface height represents upper bounds on distances ffdr, 1), the random case with mean= 4.7. Depicted also
(r,v) = (20,1), the random case with mean= 20. Depicted are data points from Table | for two sample simulations of se-
also are the 20 data points for the set of amino acid sequenaggggnces of length 10 000 with four symbols. The small points
these show clustering to differing degrees. near the center are from a uniform distribution of symbol abun-
The data for Fig. 4 consisted of sequences with of the orddances; the four larger points are from an exponential distribu-
of 10° occurrencies and from this the maximum-likelihood paion of abundances.
rameters were obtained. Here we have then a reduction of som@/e see from Fig. 5 that both processes yield sequences of
three million experimentally determined amino acid positiorsymbols all exhibiting more smoothing than random, namely
to just 20 points and the qualitative result that all amino aciddl haver > 1. In the case of the nonuniform abundances, we
within the Saccharomyces cerevisiae genome exhibit self-cludbserve, as expected that the mean intervhetween occur-
tering. We might expect that such stable stochastic informaticences of a symbol decreases with increasing abundance, essen-
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