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A permanent magnet axial-flux machine was designed, built, and tested. Numerical and analytical models were developed for the
machine and comparisons were carried out. The analytical models rely on Lie’s symmetries and the comparison results will be presented.
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I. INTRODUCTION

HE axial-flux machines tend to present a larger air gap than
T the radial ones, therefore, requiring higher excitation. That
can be provided by permanent magnets. Several papers have
studied such machines in constructive, control, and in modeling
aspects [1], [3]-[6]. For further studies concerning a new ana-
lytical model, an axial-flux machine with rated rotation of 450
r/min, torque of 3 N-m, and an outside diameter of 0.16 m was
built. A finite element software was employed to carry out the
numerical simulation of its flux distribution. Analytical models
for the windings and permanent magnets inductions were de-
veloped. Those models rely on the Lie’s symmetries, which are
variable changes that maintain the form of differential equation
[2]. This kind of variable change transforms an exact solution
of a differential equation into another solution of the original
differential equation, with more arbitrary elements. The latter
are elements that present flexibility to satisfy boundary condi-
tions. The solution with the Lie’s symmetries is a different way
to solve a cylindrical 3-D problem, because it avoids solutions
using Bessel’s functions and spatial harmonics, which require a
very large number of terms to converge. Along with the perma-
nent magnet induction, the electromotive force and the torque
were also computed.

II. DESCRIPTION OF TORUS MACHINE

The Torus machine that was studied is a disc-type axial-flux
machine, with a stator mounted between two external rotors. Its
construction is rather simple, compact, and has reduced axial
length. That is required by applications with volume restric-
tions.

The machine has a toroidal stator with eighteen coils that are
connected in three groups with six coils in series, which are en-
ergized sequentially. Each rotor has six permanent magnets with
alternating polarity. The poles of the permanent magnets on one
rotor are mirrored by the ones at the same angular position on
the other rotor. The magnetic inductions of permanent magnets
interact with the currents of the stator coils, and torque is pro-
duced. The excitation of the coils’ groups is carried out through
a converter that energizes the coils sequentially. By that way,
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TABLE 1
TORUS MACHINE CHARACTERISTICS
Quantity Value Quantity Value
Rotation 450 RPM Number of poles 6
Torque 3 Nm Number of phases 3
Outside diameter 0.16 m Number of coils 18
Axial length 0.0545 m Number of coils per phase 6

Stator frame

( Stator

Fig. 2. Assembled machine.

the stator magnetic induction moves along with the permanent
magnet magnetic induction.

The main characteristics of Torus machine are presented in
Table I.

Fig. 1 shows the frame, cores and permanent magnets, while
Fig. 2 shows the complete machine.

As far as a machine section is considered, the flux lines point
from a north pole and across the air gap, which includes the
windings. Subsequently, they enter the stator core and reach as
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Fig. 3. Flux lines in machine’s section.

far as the next pole alignment, leave the stator and cross the air
gap again. After leaving the air gap, the flux lines point towards
the south pole of an adjacent permanent magnet, leave it through
the north pole and enter the rotor core. In the rotor, the flux lines
describe a pole pitch. Fig. 3 shows a machine section with the
indication of the trajectory of the flux lines.

Every driving cycle, the converter energizes two phases,
while the third one remains de-energized. In the following
cycle, considering the direction of rotation, the first phase is
de-energized and the third one is energized.

The converter comprehends three parts: the control circuit,
with a microprocessor that executes the driving cycles; the in-
terface that isolates the control circuit from the power circuit;
and the power circuit, which has power transistors to energize
the windings.

III. ANALYTICAL MODEL AND VALUES COMPARISON

A. Windings’ Magnetic Induction

The model for the windings’ magnetic induction was devel-
oped in cylindrical coordinates 7,6, and z, because the cylin-
drical structure of the Torus machine. As there are currents in
windings, the magnetic behavior of windings can be described
by

—V(VoA)+V2A=—pul (1)

where A is the magnetic potential vector, y is the magnetic per-
meability, and J is the current density vector.

When one applies the Coulomb’s gage, the first term of the
left-hand side of (1) can be set to zero, as seen in (2)

VZA = —uld. 2)

The development of (2) results in three equations

92A, + 72 9%A,
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An expression for A, is obtained by solving (4) and (5)
through an order reduction and comparing the solutions. The
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Fig. 4. Z-component of winding magnetic induction.
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Fig. 5. Winding magnetic induction.

expression of the magnetic vector potential is derived by re-
placing it in (3) and solving the resulting equation

- 1 22 . 62 R
A, =— 1—‘?4—6’42—{—6'5 Ug+r —F?+C60+C7 Us.
T
(6)
With the aid of the boundary conditions, the magnetic induc-
tion of the windings is computed

—

1
By = ;(FZ + 04)’17:9 + (FH — Cg)ﬁz. @)

Equation (8) is obtained by applying a Lie’s translation sym-
metry [2] admitted by (7)

—

1
Bef = ;(FZ’ + C4)ﬁ9 —|— (Fg — CG)’lIZ + Cg (8)

where B,y is the air gap induction produced by the windings,
I',C4,C5,Cg,Cr, and Cg are constants.

The z-component of winding magnetic induction is shown in
Fig. 4.

The calculated and simulation figures of the z-component of
winding magnetic induction along the arcs with constant radii
equals to 0.050, 0.062, and 0.074 m are shown in Fig. 5.

B. Permanent Magnets’ Magnetic Induction

The model of the permanent magnets’ magnetic induction
was developed in rectangular coordinates x, y, and z, based on

B = p,H = p, V0 ©9)
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where B is the magnetic induction vector produced by the per-
manent magnets, H is the magnetic field intensity, and ¥ is the
scalar magnetic potential.

The air gap scalar magnetic potential was modeled by means
of Gaussian curves, according to

fi= (e amt) [ amhat
fo = (e—f/‘““lf)/ Akt (10)

where k; is a curve parameter.
The Op operator is the 2-D Laplacian minus the time deriva-
tive

82
Op:k‘l <8—a:];+

The definition of f = f; + f» and the application of Op in
the function f results in an identity. As the magnetic transient
is very short, (11) represents the Laplacian of the sum of f; and

fa.

When a variable change in f7 is introduced

far = exp(—a/7)/(2v/7)

with @ as an auxiliary variable, while ¢ is a structure parameter.

The auxiliary variable a can be replaced by z and y with
their respective displacements z,, 4,, and y; . The displacements
are associated with the functions’ maximum and the dominium
center in the coordinate system. With the changes of variables,
four curves are generated to form

02 o
—f> - a—{. (11)

Oy?

12)

ay ay
fas = Nl (7) (exp(z + 20)” + exp(y + Yo — y1)°

+exp(x — 70)” + exp(y — yo — 41)”) (13)
where aq and a9 are constants.

By replacing x = = + jz and y = y + jz in (13), it makes
the combined function become a function of x,y, and z. The
resulting equation is still a solution of Laplace’s equation. The
scalar magnetic potential is obtained by replacing the numeric
value of 7 and extracting the real part of the resulting equation.
The expression of the permanent magnet induction is derived
by replacing the scalar magnetic potential in (9) and applying a
scale Lie’s symmetry.

Fig. 6 shows the magnetic induction at 0.5 mm from the per-
manent magnet surface in the air gap.

The values of the permanent magnet induction corresponding
to the simulation, the analytical model and the measurements
are shown in Fig. 7.

C. Electromotive Force

The electromotive force e was calculated by the Faraday’s
law
9B -
=— [ —dS
¢ / ot
s

where S is the section covered by the displacement of conduc-
tors’ projection on a permanent magnet polar face.

(14)
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Fig. 6. Magnetic induction near permanent magnet’s surface.
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Fig. 7. Magnets magnetic induction.

As the magnetic induction is a smooth and continuously
derivable function, (14) can be written as

d _ L
e 7 / odS (15)
S

Since the magnetic induction is perpendicular to the plan of
conductors, the gradient of the scalar magnetic potential is equal
to the z-derivative of that quantity

d dv

S

(16)

The operators order can be inverted in (16) and dS can be de-
veloped, so the expression of electromotive force can be written

as
d d

= ——— v i

e T // dzdy

The integrals of the scalar magnetic potential with respect to
x and to y result in

fay = azy/m <erf <M> y

7)

2 —a1T

al(y_yl +yo) al(a:_xo)
f ———= | ————=
+ er ( e > T+ er ( — y

+ erf <—a1(y_y1 _y)>x)/\/——a1 (18)
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Fig. 8. Electromotive force.

In order to obtain the electromotive force, two variable
changes were carried out: z = x + jz and y = y + jz. The real
part was extracted and other two variable changes were made:
x = rcoswt and y = rsinwt. The time derivative of the last
expression results in the expression of the electromotive force.

Fig. 8 shows the analytical, simulation, and measurements
results of the electromotive force.

D. Torque

The force produced by the interaction between the magnetic
induction of the permanent magnets and the current in the coils
located on the permanent magnet projection can be calculated
by Lorentz’s force law, i.e.,

dF = Jx BdV (19)
where F' is the force produced by the interaction of the current
density and the permanent magnets’ magnetic induction.

Based on the geometric parameters of the coils, the current
density in the Torus machine can be expressed as
NI'l &k

= - = — 2
gbhb T T ( 0)

where N is the number of turns in each coil, I is the current in
each coil [A], 6, is the angle that describes the coil arc, hy, is
the coil’s thickness, and r is the r-coordinate of the reference
system.
The differential dF becomes (21) when one replaces the cur-
rent density in (19)
k

dF = 27 x B dV.
T

2y

The torque differential is equal to the force differential mul-
tiplied by r

k

AT = r~ Bav. (22)
T
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Fig. 9. Torque of the Torus machine.

The torque is obtained by the integration of (22)

T= k/// Bdzdyd:z.

The torque expression becomes (24) when the definition of
the scalar magnetic potential is introduced in (23)

T= k///d\l/dxdy.

Once the integrations were carried out, the z-coordinate is
introduced through the variable changes x = = + jz and y =
y + jz, the real term is extracted, and the result obtained is the
torque expression.

Fig. 9 presents the torque values from the analytical model,
the measured and the simulated ones.

(23)

(24)

IV. CONCLUSION

The studies carried out with the Torus machine produced ana-
Iytical and numerical results that are compatible with the values
of the measurements. By that it is demonstrated the Lie’s sym-
metries can be applied in electromagnetic systems, since they
are a very versatile method for analyzing complex differential
equations.
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