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RESUMO 

Os avanços na área de sequênciamento de genoma completo de procariotos provocaram 

um aumento significativo na quantidade de informações disponíveis em bancos de dados 

públicos para pesquisadores da área de sistemática bacteriana. Em consequência disso, 

esforços têm sido feitos para desenvolver metodologias, usualmente chamadas de OGRIs, 

que utilizam todo o genoma de um organismo para ajudar a definir sua posição taxonômica. 

Com isso em mente, este trabalho utilizou algumas dessas técnicas desenvolvidas, como 

ANI e AAI, para avaliar a situação taxonômica da família Paenibacillaceae utilizando 

sequências depositadas no banco de dados RefSeq do NCBI. A primeira parte deste trabalho 

utilizou genômica comparativa e análise filogenética para comprovar que as sequências de 

cepas definidas como de espécies distintas de Paenibacillus na verdade são subespécies 

uma da outra. Na segunda parte, sequências do gênero Paenibacillus que tiveram 

resultados inconclusivos para sua situação taxonômica dentro do RefSeq, foram 

comparadas com sequências de cepas tipo de outros gêneros da família. Foram 

encontradas diversas sequências que, ou pertenciam a outro gênero, ou não pertenciam a 

nenhum gênero analisado. Na terceira parte, o foco foi para melhor definir as fronteiras 

que separam os gêneros dentro da família e, ao mesmo tempo, encontrar grupos de 

sequências que potencialmente pertencem a um gênero ainda não descrito. Para isso, 

todas as sequências da família Paenibacillaceae disponíveis no RefSeq foram baixadas e o 

teste AAI foi utilizado para isolar grupos dentro da família e, concomitantemente, selecionar 

uma sequência genômica em cada grupo que pudesse servir como referência de 

comparação. Adicionalmente, também foi feita uma análise filogenética utilizando MLSA 

para corroborar os resultados do teste genômico e auxiliar na seleção de grupos. Com isso, 

foi possível identificar diversos grupos que aparentemente pertencem a gêneros ainda não 

descritos, e grupos com membros representando mais de um gênero. Contudo, muitos 

gêneros da família ainda não possuem sequências de suas espécies depositadas no RefSeq 

para verificar se esses grupos isolados pertençam a esses gêneros já descritos. Finalmente, 

este trabalho demonstrou os benefícios de se utilizar genômica comparativa para ajudar a 

definir as fronteiras entre gêneros dentro da família Paenibacillaceae através da seleção de 

uma sequência referência para comparação.  
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ABSTRACT 

Advances in whole genome sequencing of prokaryotes resulted in a significant increase in 

the amount of information available in public databases for researchers on the bacterial 

systematics field. Consequently, efforts have been made to develop methodologies, usually 

called OGRIs, that use the whole genome of an organism to help define its taxonomic status. 

With that in mind, I used some of those methods developed, such as ANI and AAI, to 

evaluate the taxonomic status of the Paenibacillaceae family using sequences deposited in 

the NCBI RefSeq database. In the first part of this work, I used comparative genomic analysis 

and phylogeny to prove that the sequences of two strains defined as distinct species of the 

Paenibacillus genus are in fact subspecies of each other. In the second part, sequences of 

the Paenibacillus genus that showed inconclusive results for their taxonomic status on 

RefSeq, were compared against sequences of type strains from other genera of the family. 

Several sequences were found to either belong to another genus, or do not belong to any 

genus evaluated. On the third part, the focus was to better define the boundaries that 

separate the genera of the family and, at the same time, find sequence groups that 

potentially belong to a genus not yet described. To do that, all sequences of the 

Paenibacillaceae family available at RefSeq were downloaded and the AAI test was used to 

isolate groups within the family and, concomitantly, select a genome sequence that could 

serve as a referential for comparison. Additionally, a phylogenetic analysis, using MLSA, was 

also made to corroborate the genomic test results and assist in the group selection. With 

those results, it was possible to identify several groups that apparently belong to genera 

not yet described, as well as groups with members of more than one genus. However, 

several genera of the family do not have sequences of its species deposited in RefSeq yet 

to verify if those isolated groups belong to those already described genus. Finally, this work 

demonstrated the benefits of using comparative genomics to help define the boundaries 

between genera within the Paenibacillaceae family through the selection of a reference 

sequence for comparison.  
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Objectives 

1. Primary 

• Evaluate the taxonomic status of the Paenibacillaceae family using whole genomic 

analysis and phylogenomics. 

2. Secondary 

• Identify and propose a reference strain for each genus in the family to use whole 

genome comparison for genus boundary delineation. 

• Propose new monophyletic genera within the family using whole genomic 

comparison. 
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Abstract

Bacteria of the genus Paenibacillus are relevant to humans, animals and plants. The species Paenibacillus massiliensis and Pae-
nibacillus panacisoli are Gram-stain-positive and endospore-forming bacilli isolated from a blood culture of a leukemia patient 
and from soil of a ginseng field, respectively. Comparative analyses of their 16S rRNA genes revealed that the two Paenibacillus 
species could be synonyms (99.3% sequence identity). In the present study we performed different genomic analyses in order 
to evaluate the phylogenetic relationship of these micro-organisms. Paenibacillus massiliensis DSM 16942T and P. panacisoli 
DSM 21345T presented a difference in their G+C content lower than 1 mol%, overall genome relatedness index values higher 
than the species circumscription thresholds (average nucleotide identity, 95.57 %; genome-wide ANI, =96.51 %; and orthologous 
ANI, 96.25 %), and a monophyletic grouping pattern in the phylogenies of the 16S rRNA gene and the proteome core. Consider-
ing that these strains present differential biochemical capabilities and that their computed digital DNA–DNA hybridization value 
is lower than the cut-off for bacterial subspecies circumscription, we suggest that each of them form different subspecies of 
P. massiliensis, Paenibacillus massiliensis subsp. panacisoli subsp. nov. (type strain DSM 21345T) and Paenibacillus massiliensis 
subsp. massiliensis subsp. nov. (type strain DSM 16942T).

Paenibacillus is the type genus of the family Paenibacillaceae 
and is the most studied group of the family due to its diver-
sity and its ecological and economic relevance [1]. Bacteria 
from this genus are able to survive in a broad spectrum of 
habitats, from extreme environments such as volcanic soils 
[2] and the Antarctic continent [3], to the earthworm gut [4]. 
Nonetheless, many of them are commonly found associated 
with plants [1], and some of them present plant growth-
promoting abilities [5–10]. Species of this genus have hetero-
geneous characteristics, but most are Gram-stain–positive, 
endospore-forming and facultative anaerobic bacilli [11]. 
Paenibacillus strains share the same basal characteristics 
as Bacillus [1], in which the composition and structure of 
the major cell-wall polysaccharide varies depending on the 
species being examined, a fact that influences the charac-
terization of the micro-organism when subjected to Gram 
staining. The species of this genus present variations in the S 

layer standing over the peptidoglycan, which may be thinner 
in some species [12].

Despite the methods for bacterial species identification 
being well-established and recorded in successive editions of 
Bergey's manuals, the advent of high-throughput sequencing 
has influenced the bacterial taxonomy field. Currently, it 
has been proposed that overall genome relatedness indexes 
(OGRI) are included in order to identity novel bacterial 
species [13], such as average nucleotide identity (ANI) [14]. 
The portability and wealth of information generated by 
genome sequencing are leading to the identification of many 
taxonomic misclassifications on all levels [15].

In the genus Paenibacillus, some species have already been 
reclassified using established genome metrics [16–19], since 
16S rRNA gene analyses lack enough resolution to correctly 
identify species from this genus [16–18]. However, it was 
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only in 2011 that Paenibacillus massiliensis DSM 16942T and 
Paenibacillus panacisoli DSM 21345T were compared [19] and 
it was proved that they presented 16S rRNA gene sequence 
similarity above 99 %. In order to clarify the taxonomic status 
of both strains, this study used phylogenetic and genomic 
analyses.

For these analyses, closely related species to both strains were 
selected: Paenibacillus illinoisensis NBRC 15959T, Paeniba-
cillus pabuli NBRC 13638T, Paenibacillus amylolyticus NBRC 
15957T, Paenibacillus barcinonensis CECT 7022T and Paeni-
bacillus polymyxa IAM 13411T; P. polymyxa was utilized as 
outgroup in the phylogenetic analyses. In the genomic anal-
yses, all strains were compared to P. panacisoli DSM 21345T.

The 16S rRNA gene sequences from all strains were obtained 
from the Genbank database, aligned with the sina aligner 
(version 1.2.11) [20] and sequence gaps were excluded with 
trimAl on the ​NGPhylogeny.​fr platform [21, 22]. Phylogeny 
was reconstructed using the maximum-likelihood method, 
with the Hasegawa–Kishino–Yano substitution model [23] 
and Gamma distribution with five categories, with 1000 
bootstrap replications, using mega-X software [24]. There 
were a total of 1533 positions in the final dataset. The param-
eters used for the analysis were those suggested by mega-X 
software, based on the aligned sequences. The resulting tree 
was rooted on the outgroup strain branch, P. polymyxa IAM 
13411T. The phylogenetic reconstruction of the 16S rRNA 
genes indicated that P. panacisoli DSM 21345T and P. massil-
iensis DSM 16942T form a monophyletic group with high 
bootstrap values (Fig. 1). The 16S rRNA gene identity values 
between both strains and their closely related species were 
computed in BioEdit version 7.0.5.3 [25]. P. panacisoli DSM 
21345T and P. massiliensis DSM 16942T presented identity 

values for 16S rRNA gene higher than the species delimitation 
threshold of 98.7 % [26] as shown on Table 1.

For genomic metrics and core-proteome analysis, all genomes 
were downloaded from the NCBI RefSeq Database [27] 
(Table  2). Core proteome analysis was conducted using 
get_homologues version 03012019 [28], and the ortholo-
gous proteins were clustered using OrthoMCL version 1.4 
[29] included in the get_homologues package. The raw 
data from the OrthoMCL analysis are available on Figshare 
and can be accessed at https://​figshare.​com/​articles/​Core_​
proteome_​files/​11994258/​1. The 2255 protein sequences 
of the core proteome were aligned using muscle version 
3.8.1551 [30], concatenated with the mega-X software [24] 
and sequence gaps were removed with trimAl on the ​NGPhy-
logeny.​fr platform [21, 22], resulting in 726 049 amino acid 
positions. The core-proteome phylogeny was reconstructed 
with mega-X software [24], using the neighbour-joining 
method [31] with the Jukes–Cantor substitution model 
and 1000 bootstrap replicates in mega-X software [24]. The 
resulting tree was rooted on the P. polymyxa IAM 13411T 

Fig. 1. Phylogeny of the 16S rRNA genes of Paenibacillus massiliensis 
2301065T, Paenibacillus panacisoli DSM 21345T and their closest 
neighbours. The tree was built using the maximum-likelihood method. 
Bootstrap values greater than 0.9 are shown next to the branches. 
The tree was drawn to scale, with branch lengths in the same units as 
those of the evolutionary distances used to infer the phylogenetic tree. 
Paenibacillus polymyxa IAM 13419T is the outgroup. Accession numbers 
of 16S rRNA gene sequences are next to the species name.

Table 1. Identity values of 16S rRNA genes of Paenibacillus type strains 
in relation to their counterpart from Paenibacillus panacisoli DSM 
21345T

Organism Identity value (%)

Paenibacillus massiliensis 2301065T* 99.3

Paenibacillus pabuli NBRC 13638T 94.5

Paenibacillus amylolyticus NBRC 15957T 93.9

Paenibacillus barcinonensis CECT 7022T 93.7

Paenibacillus illinoisensis NBRC 15959T 95.1

Paenibacillus polymyxa IAM 13411T 93.1

*Bold, value above 98.7 of sequence identity. Accession numbers 
are provided in Fig. 1.

Table 2. Genome sequences utilized

Strain Accession no. Length G+C content 
(mol%)

Paenibacillus massiliensis 
2301065T

GCF_000377505 6 385 800 48.5

Paenibacillus panacisoli 
DSM 21345T

GCF_000426545 6 326 414 48.27

Paenibacillus amylolyticus 
NBRC 15957T

GCF_004001025 7 110 896 45.6

Paenibacillus barcinonensis 
CECT 7022T

GCF_003217495 6 261 136 46.9

Paenibacillus illinoisensis 
NBRC 15959T

GCF_004000925 6 623 886 47.1

Paenibacillus pabuli NBRC 
13638T

GCF_001514495 7 329 063 46.5

Paenibacillus polymyxa 
IAM 13411T

GCF_900454525 5 984 949 45.1
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branch. The core-proteome phylogenetic tree corroborates 
the 16S gene tree, in which P. panacisoli DSM 21345T and 
P. massiliensis DSM 16942T form a monophyletic clade with 
high bootstrap values (Fig. 2).

Furthermore, OGRI methods were conducted in order to 
assess their genomic similarities and solve this taxonomic 
issue. ANI values were computed using the JSpeciesWS 
Online Service [32]. Orthologous ANI (OrthoANI) values 
were calculated using OAT software version 0.93 [33]. MiSI 
method was utilized as described in Varghese et al. [34]. 
gANI values were computed using ANI calculator version 
1.0 [34]. dDDH values were estimated using the GGDC 2.1 
web service (Formula 2) [35]. All strains were compared to  
P. panacisoli DSM 21345T. OGRI results and G+C content 
difference (Table 3) indicate that P. panacisoli DSM 21345T 
and P. massiliensis DSM 16942T belong to the same species 
with ANIb, OrthoANI and gANI values being above the 
species threshold – ANIb ≥95%; gANI ≥96.5% – and G+C 
percentage content differing less than 1% between them.

Lastly, the phenotypic and chemotaxonomic profiles of  
P. panacisoli DSM 21345T and P. massiliensis DSM 16942T 
were compared using their original published profiles 
[36, 37]. From 25 available phenotypic traits, they differ in 
11 (Table 4). These differences could be consequence of intra-
specific variation, and the low reproducibility of phenotypic 
and chemotaxonomic tests should be considered [36].

Results of phylogenetic and genomic analyses suggests 
that P. panacisoli DSM 21345T and P. massiliensis DSM 
16942T are in fact members of the same species. Since 
the name P. massiliensis was validly published before  
P. panacisoli [36], the latter should be considered a later 
heterotypic synonym of the former.

Considering that these strains present a dDDH value lower 
than the cut-off for bacterial subspecies differentiation 
(79–80 %) [38] and that they have distinct biochemical 
capabilities, we suggest that they form different subspecies of 
P. massiliensis. Therefore, we propose the reclassification of 
Paenibacillus panacisoli DSM 21345T as Paenibacillus massil-
iensis subsp. panacisoli subsp. nov.

According to Rule 40d of the International Code of Nomen-
clature of Bacteria [39], the description of a novel subspecies 
which excludes the type strain of the species P. massiliensis 
automatically creates the subspecies Paenibacillus massiliensis 
subsp. massiliensis subsp. nov.

EMENDED DESCRIPTION OF PAENIBACILLUS 
MASSILIENSIS ROUX AND RAOULT 2004
Paenibacillus massiliensis (​mas.​si.​li.​en′sis. L. masc. adj. 
massiliensis of Massilia, the old Greek and Roman name for 
Marseille, where the type strain was isolated).

The description is based on Roux and Raoult [37], Ten et al. 
[36] and this study.

Cells are Gram-stain-positive, facultatively anaerobic rods 
(0.5 µm wide, 2.0–4.0 µm long). Ellipsoidal endospores 
are formed in swollen sporangia. The organism grows on 
routine media and forms translucent, beige-coloured, flat 

Fig. 2. Phylogeny of concatenated the core proteome of Paenibacillus 
massiliensis 2301065T, Paenibacillus panacisoli DSM 21345T and 
their closest Paenibacillus type strains. The tree was built using the 
neighbour-joining method. Bootstrap values greater than 0.9 are shown 
next to the branches. There were a total of 726 049 positions in the final 
dataset.

Table 3. Genomic metrics of Paenibacillus type strains in relation to Paenibacillus panacisoli DSM 21345T

Bold text indicates values above the species threshold. ANIb and OrthoANI threshold ≥95 %, gANI threshold ≥96.5 %. Brackets, confidence interval.

Strain ANIb (%) gANI (%) OrthoANI (%) G+C content difference (mol%) dDDH (%)

Paenibacillus massiliensis 2301065T 95.57* 96.51† 96.25 0.23 66.9 [64–69.8]

Paenibacillus pabuli NBRC 13638T 87.22 72.36 69.09 1.77 19.8 [17.6–22.2]

Paenibacillus amylolyticus NBRC 15957T 74.15 72.19 68.86 2.67 19.4 [17.2–21.8]

Paenibacillus barcinonensis CECT 7022T 72.47 72.42 70.44 1.37 20.3 [18.1–22.7]

Paenibacillus illinoisensis NBRC 15959T 75.93 72.35 70.13 1.17 20.3 [18.1–22.8]

Paenibacillus polymyxa IAM 13411T 84.32 72.97 70.06 3.17 19.5 [17.3–21.9]

*Aligned nucleotides=0.83.
†Alignment fraction=0.86.
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colonies after incubation for 24 h at 30 °C. Bacteria are 
motile by means of peritrichous flagella. Catalase-positive 
and oxidase-variable. Optimal growth occurs at 30–37 °C, 
but variable growth at 50 °C. Growth occurs in the presence 
of 5 % (w/v) NaCl. Nitrate is reduced, but gelatin liquefaction 
is variable. Acid is produced from glycerol, ribose, galactose, 
fructose, mannose, mannitol, amygdalin, arbutin, aesculin, 
salicin, cellobiose, maltose, lactose, melibiose, trehalose, 
raffinose and gentiobiose. Acid production from d-arabinose, 
d-xylose, inulin, gluconate, glucose, sucrose, starch and 
glycogen are variable. Acid is not produced from erythritol, 
l-xylose, adonitol, methyl β-d-xyloside, sorbose, rhamnose, 
dulcitol, inositol, sorbitol, methyl α-d-mannoside, methyl 
α-d-glucoside, N-acetylglucosamine, melezitose, xylitol, 
turanose, d-lyxose, d-tagatose, d-fucose, l-fucose, d-arabitol, 
l-arabitol, 2-ketogluconate or 5-ketogluconate. The major 
fatty acids are anteiso-C15 : 0, iso-C16 : 0 and C16 : 0.

The type strain, which was isolated from blood culture, is strain 
2301065T (=CIP 107939T=CCUG 48215T=DSM 16942T). 
The DNA G+C content of the type strain is 48.5 mol% with a 
genome size of 6.38 Mpb. The name Paenibacillus panacisoli 
(Ten et al. [36]) is a later heterotypic synonym.

DESCRIPTION OF PAENIBACILLUS 
MASSILIENSIS SUBSP. MASSILIENSIS SUBSP. 
NOV.
Description is as that given for Paenibacillus massiliensis by 
Roux and Raoult [37]. The type strain is 2301065T (=CIP 
107939T=CCUG 48215T=DSM 16942T).

DESCRIPTION OF PAENIBACILLUS 
MASSILIENSIS SUBSP. PANACISOLI SUBSP. 
NOV.
Description as that given for Paenibacillus panacisoli by Ten et 
al. [36]. The type strain is Gsoil 1411 (=KCTC 13020T=LMG 
23405T=DSM 21345T).
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Final remarks 

The number of currently known and described bacterial species is only a fraction of 

the actual quantity of species that exist on Earth. There are currently 23,566 species with 

names validly published under the ICNP, with this number falling to 19,409 when excluding 

synonyms (Parte et al. 2020). A recent study using 16S rRNA gene sequence estimated that 

there are between 2.2 and 4.3 million full-length prokaryotic operational taxonomic units 

(OTUs) worldwide (Louca et al. 2019). One of the reasons for this large disparity is because 

a significant number of microorganisms are hard to isolate or simply are “unculturable” 

(Rappé and Giovannoni 2003; Keller and Zengler 2004; Achtman and Wagner 2008). 

Recent advancements in metagenomics provided the opportunity for researchers to 

sequence an entire community within a microbiome and identify how many potential 

species are present using computational analysis, with several studies managing to 

successfully identify novel bacterial species using computational analysis on metagenomic 

datasets (Wang et al. 2012; Tu et al. 2014; Pust and Tümmler 2021). Furthermore, recent 

studies using long-read genome assembly methods, such as nanopore (Jain et al. 2016), 

could sequence the complete genome of all bacterial organisms present in a metagenomic 

community with four or fewer contigs for each genome sequenced (Moss et al. 2020; Cuscó 

et al. 2021), although with reduced nucleotide accuracy in comparison to short-read 

assembly methods. 

Currently, a new bacterial species is only recognized by ICNP when there is proof of 

deposit of viable cultures in at least two public culture collections from different countries 

with no restriction on availability (Trujillo and Oren 2018), which significantly hinders the 

identification and naming of uncultivated or unculturable microorganisms (Konstantinidis 

et al. 2017). Additionally, some countries like Brazil have proprietary laws that impose 

several restrictions when trying to deposit biological cultures of organisms isolated from 

their environments in international collections. Considering the mandatory deposit of cell 

cultures to be too constraining, a group of renowned scientists in the prokaryotic 

systematics field launched SeqCode (Hedlund et al. 2022), a code of nomenclature “based 

upon isolate genome, metagenome-assembled genome or single-amplified genome 

sequences” (Hedlund et al. 2022). Consequently, the improvements in metagenome 
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sequencing, allied with this new code of nomenclature based on genomic data will 

significantly increase the rate of newly identified species within the bacterial kingdom, 

which, as a result, will increase our reliance on in silico computational analysis for 

prokaryotic taxonomy. 

In the first chapter of this thesis, we used comparative genomic analysis to prove 

that Paenibacillus panacisoli DSM 21345T and Paenibacillus massiliensis DSM 16942T are in 

fact subspecies of P. massiliensis, showing the potential of using OGRIs to improve the 

taxonomic assignment of bacterial species. Meanwhile, on the Paenibacillus genus alone, 

there are 278 strains deposited on the NCBI RefSeq database without species assignment 

that could be identified as a novel species via OGRIs if the SeqCode rules of nomenclature 

were to be adopted. 

Finally, in the second and third chapters, we shift our focus to using comparative 

analysis to evaluate genus delineation within the Paenibacillaceae family. Even though the 

paper from the second chapter is mostly focused on the Paenibacillus genus, it serves as an 

introduction to what would be the main subject of the paper of the third chapter. In the 

second chapter, using only Paenibacillus strain sequences that showed inconclusive results 

by the NCBI taxonomic check, we were able to identify several strains assigned as 

Paenibacillus in the RefSeq database that do not show sufficient genomic similarity with the 

strain sequence of the type species of the genus, Paenibacillus polymyxa, which was 

corroborated by phylogenetic analysis. Beyond that, at least two monophyletic clades 

isolated from the main Paenibacillus clade formed exclusively of Paenibacillus strains were 

observed, indicating the possibility of two new genera. In the third and final chapter, we 

expanded our genomic analysis to all available sequences from the Paenibacillaceae family 

and proposed a method that selects a reference sequence for each current, and potentially 

new, genus and uses it to represent them at the genomic level, serving as a referential for 

comparison when using genomic analysis to identify the genus of a new bacterial organism. 

While the initial intention of the work in the third chapter was to propose a 

taxonomic revision of the Paenibacillaceae family, the initial phylogenetic and genomic 

analysis results proved insufficient to define a clear genus boundary for the family. While 
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phylogenetic analysis included strain sequences from more than one genus on the same 

clade, the comparative genomic analysis showed AAI results above the cutoff value for 

genus delineation between sequences of different genera while at the same time having 

results below the cutoff point within sequences of the same genus. Even though those 

results clearly showed several genera misidentifications within the family, there were no 

clear boundaries that could properly isolate each group to effectively propose a taxonomic 

revision. The selection of a reference sequence for each group intended to add a second 

threshold layer for genus delineation when using OGRI and at the same time intended to 

develop a pipeline that uses AAI or POCP for genus delineation in a way that resembles the 

standard process of species delineation using ANI or GGDC. With the genus boundaries 

better defined within the Paenibacillaceae family, the next step is to propose the creation 

of all newly identified genera, while reclassifying any strain sequence that had its genus 

misidentified.  

The use of whole genomic comparison for genus delineation is relatively recent in 

the scientific community but has shown great potential for taxonomic analysis in both new 

and old genera (Lopes-Santos et al. 2017; Chan et al. 2019; Xu et al. 2019; Yamano et al. 

2022; Sreya et al. 2023). In case the SeqCode rules of nomenclature are generally adopted 

by taxonomists, the rate of inclusion of new organisms within the prokaryotic empire will 

increase significantly at every taxon level. Concomitantly, faster, and more reliable OGRI 

methods will need to be developed to be capable to evaluate continually growing datasets 

efficiently. In conclusion, in this thesis, by proposing the use of a reference strain, only one 

AAI test must be run to identify if a sequence does not belong to a determined genus, 

significantly reducing the time needed in the taxonomic assignment process. While the 

solution found in this thesis was extremely time-consuming at first, any further attempt to 

evaluate the Paenibacillaceae family will benefit greatly from the results found in this study. 

Furthermore, a method called FastAAI, which is about five orders of magnitude faster than 

the standard AAI, was proposed by Konstantinidis and collaborators and is currently 

available as a preprint (Konstantinidis et al. 2022), which could significantly reduce the 

process of reference strain selection. 
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