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Video Segmentation Based on Motion Coherence
of Particles in a Video Sequence

Luciano S. Silva and Jacob Scharcanski, Senior Member, IEEE

Abstract—This work describes an approach for object-oriented
video segmentation based on motion coherence. Using a tracking
process based on adaptively sampled points (namely, particles),
2-D motion patterns are identified with an ensemble clustering ap-
proach. Particles are clustered to obtain a pixel-wise segmentation
in space and time domains. The segmentation result is mapped to
an image spatio-temporal feature space. Thus, the different con-
stituent parts of the scene that move coherently along the video se-
quence are mapped to volumes in this spatio-temporal space. These
volumes make the redundancy in the temporal sense more explicit,
leading to potential gains in video coding applications. The pro-
posed solution is robust and more generic than similar approaches
for 2-D video segmentation found in the literature. In order to il-
lustrate the potential advantages of using the proposed motion seg-
mentation approach in video coding applications, the PSNR of the
temporal predictions and the entropies of prediction errors ob-
tained in our experiments are presented, and compared with other
methods. Our experiments with real and synthetic sequences sug-
gest that our method also could be used in other image processing
and computer vision tasks, besides video coding, such as video in-
formation retrieval and video understanding.

Index Terms—Ensemble clustering, motion segmentation, ob-
ject-based video segmentation, point tracking, video coding.

I. INTRODUCTION

M OTION segmentation is an important preprocessing
step in many computer vision and video processing

tasks, such as surveillance, object tracking, video coding,
information retrieval, and video analysis. These applications
motivated the development of several 2-D motion segmentation
techniques, where each frame of a video sequence is split
into regions that move coherently. By 2-D motion, here we
denote the motion of objects in a 3-D scene projected in the
image plane of a camera. However, 2-D motion segmentation
often leads to video over-segmentation. For example, a scene
composed by static rigid objects, captured by a moving camera,
can be over-segmented in several 2-D motion regions due to
several reasons, such as depth discontinuities, occlusions, and
the perspective projection effect. In some situations, a scene
comprises several moving objects and it is necessary to identify
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each object as a coherent motion entity. In these cases, the
segmentation process can be approached by considering the
objects as moving in 3-D space , and this approach has
motivated several works in 3-D motion segmentation [1]–[6].
Spatio-temporal motion segmentation [7]–[10] is a different
approach, where different moving objects are segmented in
volumes (called tunnels [10]) in the domain formed by the
spatial dimensions (e.g., ) and the temporal dimension ,
and these volumes are delimited by object motion boundaries
(i.e., motion discontinuities). The definition of object in a
video segmentation framework is related to the concept of
region homogeneity, and different applications require different
region homogeneity criteria. In video coding, for example,
segmentation is frequently used to explore the data redundancy
in time [11]. In this context, an object region that retains its
characteristics (e.g., color or texture) along the sequence can
be considered homogeneous and redundant. Thus, even if the
object region moves along the temporal sequence, the region
representation remains the same, i.e., redundant, within the
object motion boundaries.

In 3-D motion segmentation, the concept of object is related
to actual objects existing in 3-D space that do not change
their 3-D characteristics over time. The concept of object in
spatio-temporal segmentation is different, since an object is
represented by a spatio-temporal tunnel formed by a sequence
of 2-D projections, each 2-D projection obtained at a time of
an object in 3-D space. Two sets of parameters are often used
to describe 3-D parametric motion, the set of global parameters
representing the camera and/or object motion, and the set of
local parameters representing the object attributes (e.g., shape,
color, and texture). However, the estimation of a large number
of parameters often is awkward, particularly in the presence
of noise and outliers. An outlier can be, for example, a point
trajectory incorrectly computed. On the other hand, when
camera translations and depth variations are small compared
to the distance of the camera to the scene objects, simpler 2-D
motion models can become attractive [12]. In 2-D parametric
motion segmentation, a small number of parameters is needed
to describe the object motion, making the motion segmentation
more robust to noise. Although the computer vision community
has been consistently working towards improving 3-D motion
segmentation [13]–[20], 2-D motion segmentation also has
received attention, since it still has some open issues and it is
suitable for some important video processing tasks like video
coding, where a simple representation is important, and in
general the semantic aspects of the scene are less relevant [11].

In the context of motion estimation, the literature can be
divided in two classes of methods: direct methods [12] and
feature-based methods [21]. Motion segmentation methods
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can also be divided according to these two paradigms. Direct
methods recover the unknown parameters directly from mea-
surable image quantities at each pixel in the image, solving
two problems simultaneously: 1) the motion of the camera
and/or objects of the scene, and 2) the correspondence of every
pixel. This is in contrast with the feature-based methods, which
first extract a sparse set of distinct features from each image
separately, and then recover and analyze their correspondences
in order to determine motion. Feature-based methods mini-
mize an error measure that is based on distances between a
few corresponding features, while direct methods minimize a
global error measure that is based on direct image information
collected from all pixels in the image. For this reason, direct
methods are sometimes called dense methods in the literature.
However, we should note that, according to the feature-based
philosophy, motion can be estimated using sparse features in a
first step, and in a second step the motion should guide the dense
correspondence for the nonfeature pixels. Thus, in this work we
refer to any motion estimation/segmentation method that yields
correspondence/classification for each pixel as “dense”, even
if the motion estimation/segmentation core is guided only by a
sparse set of features. It is important to observe that with direct
methods the pixel correspondence/classification is performed
directly with the measurable image quantities at each pixel,
while in feature-based methods this is done indirectly, based
on independent feature measurements in a set of sparse pixels.
An important property of the direct methods is that they can
sucessfully estimate global motion even in the presence of
multiple motions and/or outliers [12]. However, computational
time is wasted by including in the minimization a large number
of pixels where no flow can be reliably estimated. Moreover,
normal flows can only be combined across regions of the image
that have some simple parametric form (such as an affine or
quadratic [21]), and motion estimate errors can accumulate
when frames are distant apart and the data may not fit the
model very well. On the other hand, feature-based methods
initially ignore areas of low information, resulting in a problem
with fewer parameters to be estimated, with good convergence
even for long sequences. Further, there is a wide of choice of
algorithms to estimate parameters for more complex models
(e.g., epipolar or trifocal geometry) from point or line features.
Nevertheless, in these methods, feature correspondences are
computed independently, being more susceptible to outliers.

Variational frameworks have been widely used in the context
of direct motion segmentation [7]–[10], [22]–[24]. In order to
improve the quality of object segmentation, shape priors were
integrated in variational methods by Cremer et al. [22]–[24].
However, prior information about the objects in a sequence often
is not available. Therefore, Mitiche et al. [7] proposed to seg-
ment moving objects by detecting the tunnel delimited by mo-
tion discontinuities in the spatio-temporal domain. Feghali and
Mitiche further extended this idea to also handle moving cam-
eras [8], and later Sekkati and Mitiche proposed a 3-D direct mo-
tion segmentation method with a similar approach in [14] and
[25]. They formulated the problem as a Bayesian motion parti-
tioning problem, and approached the corresponding Euler-La-
grange equations as a level-set problem. Cremers and Soatto
[9] proposed a multiphase level-set method to segment a video

using spatio-temporal surfaces (tunnels) that separate regions
with piecewise constant motion. A limitation of segmentation
methods based on motion discontinuities (motion boundaries)
is that they tend to fail in frames where these boundaries are
not evident, or do not exist. For example, a static object in a
static background that moves only in the last few frames of the
sequence can not be correctly segmented at the beginning of
the sequence, since there were no motion boundaries and the
object was not moving with respect to the background. Ristivo-
jevic and Konrad [10] also proposed a spatio-temporal segmen-
tation method based on the level-set approach, where they de-
fined the concepts of occlusion volumes (i.e., background re-
gions that become occluded) and exposed volumes (background
regions that become visible). The authors suggested that poten-
tially the concepts of occlusion and exposed volumes can be ap-
plied in the next-generation of video compression methods. As
occlusion and exposed areas are difficult to predict, new effi-
cient compression techniques could be developed by estimating
occlusion and exposed areas a priori. However, the occlusion
volume concept have limitations as proposed, since it does not
consider the occlusion of a moving object by the background,
or by another moving object. A characteristic shared by most
variational methods is that they rely on motion models defined
a priori. If the data do not fit these models well, the methods
tend to fail—except when special conditions can be assumed,
like static background, number of objects known a priori, etc.

Feature-based methods for motion segmentation usually con-
sist of two independent stages: 1) feature selection and/or corre-
spondence and 2) motion parameter estimation [21]. The second
stage often is performed through factorization methods [2], [5],
[15], [26], although some simpler clustering strategy can be
used [27], [28]. In factorization methods, motion and shape in-
formation are treated separately by applying constraints to the
scene projection on the image formation plane, as well as on
the object shape and motion. Several methods have been pro-
posed for sparse feature selection and/or correspondence, and
among the most popular are the Harris Corner Detector [29],
KLT [30], and SIFT [31]. As mentioned before, a weak point
of these sparse feature-based methods is that feature correspon-
dences are computed independently. Thus, they are very sensi-
tive to outliers, making them susceptible to errors in motion pa-
rameter estimation/segmentation. Also, homogeneous regions
of a frame may present none or few features, making the motion
estimation/segmentation difficult (or even impossible) in large
areas of the video frames.

Eventually, we can obtain consistent object segmentation by
combining several partial informations about an object. The idea
of merging object segmentation information from several parts
of a sequence was proposed by Geldon et al. [32], as a proba-
bilistic multiple hypothesis tracking (PMHT) approach. The au-
thors propose to track an object over the whole image sequence,
by combining partial object segmentations previously computed
in different parts of the sequence. This is done by modeling
the motion and geometry of the objects, and these models are
combined assuming smooth trajectories, and are used to elimi-
nate ambiguities caused by occlusions and incorrect detections.
However, the object motion and/or geometry modeling accuracy
depends on how well the models fit the data, besides the tra-
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jectory constraints preclude the application of this approach in
videos with discontinuous object trajectories, which is common
in sequences obtained with hand-held cameras, for example.

In this paper, we present a new approach for video object seg-
mentation where objects are defined as nonoverlapping regions
(at pixel level) in the spatio-temporal domain. These regions are
expected to retain their spatial and photometric characteristics
in time. Our approach combines the advantages of dense and
feature-based methods, as described next. Initially, correspon-
dences in time of sparse points (i.e., particles) are computed,
so that long-range motion patterns can be identified. However,
instead of computing point correspondences independently (as
done in many feature-based methods), neighboring particles are
treated as they were linked, reducing the chance of occurring
outliers and avoiding the aperture problem [33].1 Moreover, the
density of sampled points (i.e., particles) is adaptive, and denser
particle distributions are used in regions where precision is more
important (for example, in motion boundaries), saving compu-
tation without neglecting homogeneous regions. To compute
particle correspondences in a video sequence, we use the ap-
proach proposed by Sand and Teller [34], which relies on par-
ticles that are located with sub-pixel precision. After the par-
ticle correspondences are computed, particles are clustered in
each frame of the sequence. The individual particle clusterings
at frame level, are then further grouped in larger sets of particles
associated to different frames, according to an ensemble clus-
tering strategy. Finally, a dense video frame representation (i.e.,
a pixel-wise representation) of the final clustering is obtained.
The proposed method is general in the sense that it does not rely
on motion models, does not impose trajectory constraints and
segments multiple objects of arbitrary shapes, without knowing
the number of objects a priori. Instead of motion boundaries,
the segmentation is guided by the consistent motion behavior
of sample points of the frames. This strategy allows to extract
longer tunnels in the spatio-temporal domain. Besides, it does
not need any special treatment for changes in topology or new
objects that arise along the sequence. The proposed method po-
tentially has the ability to generate occluded and exposed vol-
umes, since motion patterns are discovered and associated to
each moving region, and voxels of the spatio-temporal volumes
are classified as belonging to object volumes, occluded volumes
or exposed volumes. The proposed approach generates a simple
scene representation, adequate for object video coding, and also
delivers a more redundant and temporally persistent partition
of the scene than direct video segmentation methods and mo-
tion prediction strategies. Experimental results for synthetic and
natural video sequences are used to illustrate the properties of
the proposed method, and to show its potential in video coding
applications.

This paper is organized as follows. Section I discusses the
state of the art in video segmentation, and contextualizes our
work. An overview of the proposed approach is presented in
Section II. In Section III, we describe the estimation of particle
trajectories along the video sequence, and the segmentation of
particle trajectories is described in Section IV. In Section V, we

1The aperture problem arises from the ambiguity of 1-D motion viewed
through a small aperture. Therefore, locally, we can detect motion only in the
orientation perpendicular to the moving object contour, and we can not detect
motion in homogeneous regions.

present the dense representation for the motion segmentation.
Section VI presents some experimental results obtained with the
proposed approach. Finally, Section VII summarizes the main
contributions of this paper, and discusses some limitations of
the proposed approach and future work directions.

II. METHOD OVERVIEW

The structure of the proposed coherent motion segmentation
approach can be divided in three main parts.

1) Estimation of Particle Trajectories (see Section III).
2) Segmentation of Particle Trajectories (see Section IV).
3) Dense Segmentation Extraction (see Section V).

The first part concerns the selection and tracking of a set of
points of the scene (namely, particles). This stage takes as input
the original video frames, and returns as output a set of parti-
cles and their respective trajectories. During the estimation of
particle trajectories, the particles whose correspondent point lo-
cations in the scene suffer occlusion are eliminated, and new
particles are created in regions that become newly visible along
the video sequence.

The second part deals with the segmentation of particle tra-
jectories, so that particles moving coherently are grouped to-
gether. This stage takes as input the particles trajectories com-
puted in the first stage, and returns labels for all the particles as
outputs, representing the motion segmentation of frame regions
according to the particle trajectories. The segmentation of par-
ticle trajectories can be divided in four steps.

• Clustering of 2-frame motion vectors: in this step, clus-
terings of particles are performed with displacement mo-
tion vectors taken from pairs of frames. Only neighboring
frames are considered (1, 2, and 3 unit time distances),
and clusterings are computed in an independent way. For
each pair of frames, the input to this step is the position of
particles in each frame, and the output is a set of particle
clusterings and their labels, valid for each pair of frames
considered.

• Ensemble clustering of particles: here, all the clusterings
computed in the previous step are processed simultane-
ously to produce a unique division of the full set of par-
ticles in sub-sets of particles in coherent motion, called
meta-clusters; several sets of clustering labels are taken as
input to this step, and a unique set of segmentation labels
(several particles in coherent motion share the same seg-
mentation label) are returned as output.

• Meta-clustering validation: in this step, particles that
were segmented in the previous step are compared to
meta-cluster prototypes in terms of motion and spatial
position to detect incorrectly labeled particles and, when
this occurs, particles are re-labeled. A set of segmentation
labels is taken as input, and a corrected set of segmentation
labels is returned as output.

• Spatial filtering: in this step, outliers are eliminated and
groups of adjacent particles that are not significant. The
particle labels are analyzed spatially, and links between
particles are created to define spatial adjacency in each
frame. Small groups of adjacent particle labels that are not
significant are then re-assigned. This step takes as input a
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set of particle labels, and returns as output a filtered set of
particle labels.

The third and final part of the proposed motion segmenta-
tion method is the dense segmentation extraction. This stage
takes as input the original video frames, the segmentation la-
bels returned by the second stage, as well as the particle posi-
tions returned by the first stage, and returns as the output the
corresponding segmentation labels for each pixel of each frame
of the video sequence. This is equivalent to the segmentation
of a spatio-temporal volume in several tunnels. The dense seg-
mentation extraction is done by creating implicit functions for
each particle, based on motion and spatial position. This repre-
sentation of motion segmentation through tunnels can be em-
ployed to obtain efficient motion predictions for video coding
applications.

All the stages of the proposed approach are processed se-
quentially. Every stage is performed for the entire video before
going to the next stage. Thus, the proposed motion segmentation
method can not be used in online applications, without video
partitioning.

III. ESTIMATION OF PARTICLE TRAJECTORIES

In this section, we show how the particles are selected in each
video frame, and how they are located in the video frames of a
video sequence. The approach proposed by Sand and Teller [34]
is used here, with a few modifications.

Some important properties of this trajectory estimation
approach are outlined next. First, the estimation of particle tra-
jectories does not require any temporal smoothness constraints.
This means that it is robust to abrupt camera motions, and
objects motion discontinuities. Second, the particle sampling
density is adaptive, in the sense that regions with more details
are sampled with more particles, while homogeneous regions
are sampled with less particles. Thus, higher motion segmen-
tation precision can be obtained in regions with more motion
information, where higher density is necessary, while saving
computation in regions with less motion information. Third,
motion information can be inferred from neighboring particles,
reducing the effect of the aperture problem in homogeneous
regions, where there is not enough motion information. These
properties suggest that this particle video approach potentially
can estimate long-range coherent motion patterns, while repre-
senting details of regional motion by adapting the granularity
locally. These properties are advantageous in video coding,
since data redundancy can be explored in sets of frames that are
not immediate neighbors, not only in pairs of adjacent frames,
as in many other approaches [28], [35], [36].

A particle is created in a frame pixel when a maximum prox-
imity criterion is satisfied (as discussed in [34]). As soon as a
particle is created, it is tracked along subsequent frames, until
the point it represents becomes occluded, or its location sur-
passes the visible frame area. In this work, addition and tracking
of particles are performed in one pass over the video sequence.
As suggested by Sand and Teller [34], more passes can be exe-
cuted in different directions (forward and backward) aiming at
a better distribution and localization of particles, at the cost of

higher computational effort. However, we did not notice a con-
siderable advantage in the final motion segmentation results by
performing several passes.

The method for estimating particle trajectories used in this
work can be divided in four steps: particle addition, particle
propagation, particle pruning and particle location optimization.
In the particle addition step, new particles are created and in-
serted in each frame of the video sequence, in pixel locations
where a particle proximity criterion is satisfied (see [34]). This
proximity criterion is adaptive to the video scene contents. In the
particle propagation step, the positions occupied by particles in
the frame at time are propagated to the frame at time
using particle motion information, which is obtained from the
computation of optical flow vectors (see [34]). In this work, we
use the optical flow method proposed by Sand and Teller [34].
In the particle pruning step, we eliminate particles that, after
the execution of the propagation step, become occluded or leave
the field of view. In the particle location optimization step, the
positions of particles are re-adjusted by minimizing an energy
function provided by Sand and Teller. These re-adjustments of
the particle positions are used for correcting particle motion es-
timation errors that may occur in the particle propagation step,
avoiding the propagation of such errors to the subsequent frames
(see [34]). The algorithm initially adds particles to the first frame
of the sequence. After that, the second frame in the sequence is
processed, and the algorithm executes the particle propagation,
pruning and location optimization steps for the second frame.
Next, some particles are added to the second frame to satisfy
the particle proximity criterion, and the process continues with
particle propagation, pruning and location optimization, consid-
ering the positions of particles in the third frame. These steps
are executed in the above mentioned order for the subsequent
frames, until the end of the video is reached. The particle addi-
tion, propagation, and location optimization steps used in this
work are the same as those proposed by Sand and Teller [34].
The next section shows the particle pruning method employed in
our work. This method introduces a modification in the method
proposed by Sand and Teller, so the number of false occlusions
can be reduced. We observed experimentally that a few particle
trajectory detection errors still may occur, and the best segmen-
tation results are obtained when particles have longer lifetimes.
Particle trajectory errors are handled separately in this work.

A. Particle Pruning

In the work proposed by Sand and Teller [34], the same ob-
jective function that is minimized to optimize (i.e., fine-tune)
the location of particles is employed as a measure of particle
location reliability in the particle pruning stage. This objective
function is composed by three terms, namely , and
as described below.

The first term represents the projection error of the par-
ticle in the frame at time with respect to the particle first
appearance in a frame of the sequence
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where denotes the color channel (i.e., R,G,B) of the video
sequence; and represent the spatial coordinates of
particle in the frame at time ; and represents the time of the
first appearance of particle in the sequence. The term

is the robust norm,2 with .
The second term represents the difference between the ac-

tual displacement of the particle in the frame at time , and the
corresponding estimate based on the local optical flow displace-
ment (see the first equation shown at the bottom of the page),
where and are the horizontal and vertical components of the
optical flow vectors, respectively.

The third term measures the relative motion between
linked particles and in the frame at time 3 (see the second
equation shown at the bottom of the page), where is the
weight of the link between particles and in the frame at
time . This weight is inversely proportional to the difference
of optical flow vectors at the corresponding particle positions.
See details in [34].

Grouping these three terms, we have the complete objective
function

where denotes the set of particles linked to the particle
in frame at time ; and are constants that provide a com-
promise among the terms, and were set to 5 and 10 in the par-
ticle location optimization step, respectively ( and were
set based on experiments). The performance of the trajectories
estimation is not very sensitive to changes in these constants.
So, the values fixed here for and may work for a large
variety of sequences. We only need to be careful when setting
the values for , since the term acts like a positional con-
straint; consequently, values for that are too small could lead
to significant errors with respect to the optical flow estimates.

In Sand and Teller [34], a particle is pruned in a frame at
time when its energy function is larger than a threshold.
In our work, particles are pruned only if they become occluded,

2This function is a differentiable form of the absolute value function and does
not respond as strongly to outliers as the � norm [34].

3In this work, linked particles are defined as pairs of particles satisfying ad-
jacency constraints imposed by the Delaunay triangulation.

or if they leave the field of view. We define the field of view
as the set of points that are distant at least five pixels from the
image boundaries. So, when a particle leaves the field of view
area after the propagation stage in a given frame, it is removed
from that frame. This avoids propagating incorrect optical flow
estimates in regions where these estimates are unreliable.

To detect when a particle becomes occluded, we use the oc-
clusion detection approach employed in the optical flow method
proposed by Sand and Teller [34]. In order to determine the cur-
rent frame regions that will become occluded in the subsequent
frame, the flow field divergence and pixel projection error are
combined as explained next. Let us define the optical flow di-
vergence as

where and are the horizontal and the vertical
components of the optical flow vectors, respectively, at the pixel
position of the frame at time . The divergence is positive
for disocclusion boundaries, negative for occlusion boundaries
and near zero for shearing boundaries. Since we are interested
only in occlusion boundaries, the function is defined

.

The projection error also provides an estimate of
occlusion likelihood

These two estimates are combined to obtain the occlusion
mask, which is the set of locations where , and

is given by [34]

(1)

The values of , and were chosen as 0.3, 20, and 0.5,
respectively, based on experiments. The performance of par-
ticle pruning is not considerably sensitive to the values of
and . However, close attention should be paid when setting

. Too small values allow particles representing occluded
points of the scene to survive longer, possibly changing the
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occluded object representation. On the other hand, too large
values may prune consistent particles prematurely. Fortu-

nately, with our particle segmentation approach, a small portion
of tracking errors—particles that are associated to one object
but erroneously change to another object—can be recovered in
the postprocessing stages (see Sections IV-B and IV-C) without
degenerating the segmentation results considerably.

In this work, if a particle becomes occluded or leaves the vis-
ible field, this particle is eliminated and it is no longer consid-
ered in the tracking process, even if the image location currently
associated with that particle position becomes disoccluded later.

IV. SEGMENTATION OF PARTICLE TRAJECTORIES

The representation of motion in videos based on particle tra-
jectories is flexible, allowing the identification of object mo-
tion without global motion constraints (e.g., camera model, rigid
scene model, etc.), handling occlusions and providing adaptive
local granularity. However, extracting high-level information
about the moving structures based on particle trajectories is not
a trivial task, for the reasons discussed next. Different particles
that represent scene points of the same moving structure can
have different lifetimes. For example, it may happen that a pair
of particles in coherent motion along the video sequence does
not coexist in the same video frame, because of their different
lifetimes. Moreover, it is difficult to avoid the incidence of er-
roneous motion patterns, which may occur due to the noise, ar-
tifacts caused by illumination and/or quantization/compression,
lack of motion information in parts of the scene, and the absence
of a validation model for particle motion.

Only particles that appear simultaneously in at least two con-
secutive frames can be compared directly in terms of their mo-
tion. Nevertheless, two particles that do not coexist in any video
frame can be compared indirectly by investigating how they
move in relation to other particles that have lifetime intersec-
tions with these two particles. For example, let and be
the sets of frames where two particles and exist but have
no lifetime intersection (i.e., ). Other particle
may have its lifetime represented by the set of frames , such
as and . Thus, motion analysis can be
performed by combining information of particle sub-sets. This
idea of combining motion information (motion patterns) of data
sub-sets is similar to the combination of data partitions in en-
semble clustering [37]–[39].

According to the ensemble clustering philosophy, given a data
set with samples, there are different ways of generating clus-
ters from this data set [38].

• Applying different clustering algorithms to the whole set
of samples.

• Applying the same clustering algorithm with different
parameters.

• Applying clustering algorithms to different data represen-
tations (for example, using different feature spaces).

• Applying clustering algorithms to different data partitions
(i.e., to sub-sets of the samples).

The last item describes the approach adopted in this work for
grouping particles in coherent motion. A clustering algorithm is
applied to each set of particles that coexist in the video sequence

(i.e., have lifetime intersection), and then these particle sub-set
clusterings are combined in larger particle clusters.

The majority of ensemble clustering methods require the
computation of pairwise similarities for all objects in the
collection. In our case, the number of particles in a video can
be very large, and the cost of computing a pairwise similarity
matrix can be impracticable. An interesting option is to con-
sider the integration of different data partitions as a cluster
correspondence problem [38], where similar cluster groups are
identified and combined, forming meta-clusters. An algorithm
for combining several particle clusterings in meta-clusters will
be presented in Section IV-A, using the ensemble clustering
approach proposed in [38], modified for selecting automatically
the number of meta-clusters.

Inconsistencies in the particle clustering process are ex-
pected, since errors may occur when tracking a large number
of stochastically moving particles. For this reason, the clus-
tering stage is followed by a cluster validation stage (see
Section IV-B), where particle context, motion and spatial loca-
tion are combined to check for possible inconsistencies. Finally,
a filtering stage (see Section IV-C) is executed to eliminate
outliers and small groups of particles that are not considered
significant.

A. Ensemble Clustering of Particles

In order to group particles that are in coherent motion along
the video sequence, we first identify the subsets of particles
that present similar motion in neighboring frames. Let

be the whole set of particles in the video se-
quence, and be the displacement vector of particle
between frames at time and time

For each frame at time , three clusterings are computed with
the particles present in this frame (i.e., ), based on
the following features: 1) displacement vectors between the ad-
jacent frames ( ); 2) displacement vectors between
frames distant two time units ( ); 3) displacement vec-
tors between frames distant three time units ( ).

These three clustering are used in each frame to reinforce
the tendency of particles with similar motion patterns to group
together, reducing the influence of outliers and inconsistencies
in individual clusterings in the final partition.

Assuming frames in the video sequence, we will have
clusterings of the set of particles in those

frames. Note that some displacement vectors can
not be calculated: (a) , and ,
when ; (b) and when

; and (c) when . Each clustering
divides the set of particles in

clusters , , where
represents the th cluster of the th clustering, and denotes
the number of clusters of the th clustering.

The mean-shift method [40] is employed in this work to ob-
tain the clusters in , because of the ability of the mean-
shift method to identify clusters with arbitrary shapes in feature
space. The bandwidth of the mean-shift kernel was set to , for
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TABLE I
EXAMPLE OF A HYPER-GRAPH WITH 8 HYPER-EDGES

all the frames and . The bandwidth increases
with in order to reduce clustering diversity and, consequently,
to produce meaningful cluster correspondences, because low di-
versity within clusters is required by the ensemble clustering
algorithm employed in this work. Note that the bandwidth of
the mean-shift kernel is related to the expected range of relative
motions between objects (i.e., particle clusters). The bandwidth
can be tuned according to the kind of object motion (slow, fast)
found in the sequence. Nevertheless, it is not affected by global
motion, such as the translational motion induced by a moving
camera, for example.

At this stage, we have three clusterings for each
frame. Only one data partition is obtained for the whole set of
particles in the video sequence, by combining all clusterings
(three for each frame) in a single clustering . To perform this
task, we use the meta-clustering algorithm (MCLA) [38], as
detailed next.

Each particle is assigned to one of the

clusters in each clustering based on its motion patterns
in different time spans . Therefore, each cluster
in clustering can be represented by a binary label vector,
where a particle is labeled as “1” if it belongs to , or “0”
otherwise (see Table I).

Initially, according to the MCLA approach, the clusters
, represented by binary label vectors, are transformed in a

hyper-graph. A hyper-graph is constituted by nodes and hyper-
edges, and it is a generalization of a graph in the sense that a
hyper-edge can connect any set of nodes (while in a regular
graph, an edge connects exactly two nodes). Each clustering

is represented by a binary matrix, with rows (one for
each particle of the entire video sequence) and columns
(i.e., a concatenation of binary label vectors, one for each
cluster). In our hyper-graph representation, nodes represent par-
ticles and the hyper-edges represent clusters of particles that
jointly occur in 1, 2, and 3 consecutive frames. Table I shows
a simple example of a hyper-graph. In this example of a simple
sequence of 3 frames, the lines of the Table represent the par-
ticles ( ), the clusterings are represented by the binary
matrices , and the individual clusters are represented
by the hyper-edges , , and . Note that, since we
have three frames in this example, three clusterings are formed
using: 1) motion vectors between frames 1 and 2 ( ); 2) mo-
tion vectors between frames 1 and 3 ( ), and 3) motion vec-
tors between frames 2 and 3 ( ). Since a particle can be-
long to only one cluster in each clustering , the lines

Fig. 1. Example of a dendrogram of meta-clusters. � represents the longest
range of consecutive threshold values in which the number of meta-clusters does
not change �� � ��.

in the corresponding binary matrix sum up to “1” when the par-
ticle cluster is known (i.e., the particle is defined in the frame
interval used to produce the clustering ). Lines
corresponding to particles that were not assigned to any cluster
sum up to “0” (i.e., the corresponding particles do not exist in
the frame interval over which the clustering is
defined).

The concatenated matrix
is a hyper-graph, with nodes (i.e.,

particles) and hyper-edges (i.e., particle
clusters). Each column vector , is a
hyper-edge of the hyper-graph , and represents one of the par-
ticle clusters of the set of clusterings . The
MCLA approach groups particle clusters (i.e., hyper-edges)
in meta-clusters based on their similarity measured by the
Jaccard distance [see (2)]. The final particle segmentation is
obtained by assigning each particle in the sequence to one
meta-cluster, and these meta-clusters will eventually lead to the
final segmentation, as explained in Section V.

The meta-clusters are obtained by hierarchical clustering of
hyper-edges. To do that, a symmetric similarity matrix is
computed, where , containing the cal-
culated similarity between each pair of hyper-edges and
of the hyper-graph . The similarity between pairs of clusters
(i.e., hyper-edges) and is measured by the Jaccard distance

(2)

The computed similarity matrix is then used as an input
of the hierarchical clustering algorithm, namely the single link
method [41]. The ideal number of meta-clusters is selected
as the number of clusters that is more stable in the hierarchical
clustering dendrogram. We observe how the number of clusters
vary as the threshold values increases from “0” to “1”, when
the dendrogram is built; is the number of detected clusters in
the longest range of consecutive threshold increases when the
dendrogram is built, for which the number of clusters does not
change. This is illustrated in Fig. 1, where the range in the
dendrogram defines the ideal number of meta-clusters
(since this is the longest sequence of threshold value changes
for which the number of meta-clusters is constant).
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TABLE II
EXAMPLE OF 3 META-CLUSTERS, REPRESENTED BY

THEIR RESPECTIVE META-HYPER-EDGES

After the meta-clusters is identified, all the hyper-edges
belonging to the same meta-cluster are grouped together in a
single meta-hyper-edge. Suppose we consider the original log-
ical values of particles in the hyper-edges as being weights in-
dicating the association of particles to the corresponding clus-
ters , and also to the clusterings (“1” indicating a strong
association and “0” indicating no association). Then, particles
are assigned to meta-clusters based on their weights (or associ-
ation to the meta-cluster), and these weights are computed by
the particle weight average in all hyper-edges belonging to
each meta-cluster. Supose we have identified three meta-clus-
ters in our hyper-graph example shown in Table I, each
one of them composed by the following hyper-edges: 1) :

and ; 2) : , and ; 3) : ,
and . The meta-hyper-edges corresponding to these three
meta-clusters are shown in Table II. Recall that a particle can
be associated to different clusters , and these clusters can
be associated to different meta-clusters (for example, in some
frames a particle is moving in relation to the background, but
the same particle can be static in other frames). Calculating
the average particle weight in the hyper-edges will result in a
meta-hyper-edge that has an entry for each particle in the video
sequence, describing the degree of association of this particle
with the corresponding meta-cluster. Stronger this association,
closer to “1” is this entry; while weaker associations have values
closer to “0”.

The last step in the ensemble clustering is the assignment
of each particle to the meta-cluster to which it has the larger
association degree (i.e., to the meta-hyper-edge vector that
has the largest calculated particle average weight among all
meta-hyper-edges), and ties are broken randomly. In our ex-
ample (Table II), we would have the following assignments: 1)

; 2) assigned to either or , at random; 3)
; 4) ; 5) ; and 6) . At the

end of the particle assignment process to the meta-clusters,
the final set of particle meta-clusters is obtained.
The final number of meta-clusters can be smaller than be-
cause some meta-clusters can have no particle assigned. Thus,

there will be labels at the end of the particle clustering process
(a maximum of ).

Although this approach uses clusterings obtained from
pairs of frames, the ensemble clustering tends to extract
long-range patterns, without suffering from the error accumu-
lation problem that is present in the purely frame-by-frame
sequential approaches [36], [42]. Furthermore, new objects that
appear along the video do not need special treatment.

B. Particle Meta-Clustering Validation

As mentioned before, particle tracking errors may occur, re-
sulting in incorrect particle-to-meta-cluster assignments. To de-
tect these inconsistencies after the ensemble clustering stage
(Section IV-A), a cluster validation step is performed by ana-
lyzing trajectories in the context of particles grouped together
(same meta-cluster). This is particularly important when par-
ticles are assigned to one object but migrate to another object
during the tracking process, because of occlusion detection im-
perfections.

Let be the th particle, represented by its
spatial coordinates in frame at time . The context of this particle
is defined by a window of size , given by

, where

In all our experiments, a context of size was used.
The context of a particle moving coherently with its neigh-

boring particles often does not change from one frame to an-
other, since the set is moving coherently and we can assume
motion approximately translational between adjacent frames.
The projection error of a point in a window at
sub-pixel level, that specifies the context of particle , given the
motion of the particle between frame at time and frame at time

, can be computed as follows (see the equation shown
at the bottom of the page). In order to detect context changes,
we compute the mean of the -best matches (i.e., the mean of
the smallest motion estimation errors of
in ), and if this mean value is large
enough (i.e., larger than a threshold , with ), we
assume that particle changed its context in the frame at time ,
and is marked as inconsistent. Based on experiments, we veri-
fied that and offer a good compromise between
false positives and false negatives. Note that the choice for
is strongly related to the bandwidth of the mean-shift kernel.
Both constants must be defined in terms of the expected range
of relative motion between objects. The slower the motion is,
the larger is (and smaller the bandwidth kernel is); however,
the faster is the motion, the smaller is (and larger the band-
width kernel is). The choice of a value for is discussed below.
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Fig. 2. Context change detection: (a)–(b) �-best matches � � ;
(c)–(d)�-best matches� � (a) frame at time � � �� (b) frame at
time � (c) frame at time � � �� (d) frame at time �.

We use only the -best matches in the window context to
reduce the influence of particles near motion boundaries, as their
contexts are affected by different motions in adjacent regions.
However, if is too small, slow transitions between adjacent
regions would not be detected as context changes. An example
of context change in a 3 3 window is illustrated in Fig. 2.
Note that, with a small , a particle context change could not
be detected if the transition is slow enough to obtain a few good
matches.

Let be the ordered set of indices of
the frames where possible context changes occur for particle .
The lifetime of particle is then divided in intervals

(3)

Recall that a particle must move consistently with the collective
motion of the other particles in its meta-cluster , and its spa-
tial vicinity should not change much. To determine if a context
change actually occurred (and the particle trajectory has been
incorrectly calculated), we follow the motion and the spatial lo-
cation of particle , comparing it with meta-cluster prototypes
(as explained below) in the intervals shown in (3). Thus, the
similarity between the motion patterns of particle and the pro-
totype of each meta-cluster is given by

(4)

where and denote the motion and spatial
differences, respectively, between the particle and the proto-
type of the meta-cluster in frame at time , which are defined
below. The standard deviations and were set to “1”. The
motion difference is defined as

where , ,
and and are, respectively, the horizontal and ver-
tical components of the meta-cluster representative motion
vector between the frames at time and time . This repre-
sentative motion vector is computed as follows.

1) Compute the set of motion vectors
.

2) Compute the reduced order of the respective motion vec-
tors, in relation to a reference vector given by the min-
imum values of horizontal and vertical particles displace-
ments among all particles belonging to meta-cluster :

.
3) The vector corresponding to the median in the sorted

distances to the reference vector is assigned to
.

The spatial difference to particle , , is defined as

where are the spatial coordi-
nates of the nearest particles that belong to the meta-cluster

in relation to the particle in frame at time .
In order to determine to which meta-cluster the particle

should be assigned in the interval , we verify which
meta-cluster maximizes the following similarity measure
[see (4)] in this interval

(5)

Note that if a context change is detected, it does not neces-
sarily imply a meta-cluster change after validation. It just yields
a marker that give us evidence that the particle trajectory esti-
mation can be incorrect. The analysis of spatial and motion co-
herence expressed in (5) indicates if a meta-cluster change has
occurred.

C. Spatial Filtering

The last stage in the classification process is the particle spa-
tial filtering. The goal of spatial filtering is to eliminate outliers
and groups of adjacent particles that are not significant (i.e., as-
signed to small isolated region fragments).

To represent the particles spatial adjacency, the Delaunay tri-
angulation is computed based on the particle positions

in each frame at time . Two particles are consid-
ered adjacent if they share an edge in the triangulation .
The association between adjacent particles is represented by as-
signing binary weights to the edges of ; that is, an edge
receives “1” if it connects two particles belonging to the same
meta-cluster, or it receives “0” if connects particles belonging to
different meta-clusters. All the connected components of
are examined4 and very small ones (less than 20 particles) are
assigned to other meta-clusters. These components are assigned
to the meta-cluster that shares more edges with weight “0”, i.e.,
to the other meta-cluster with which it shares the largest spatial
border.

V. DENSE SEGMENTATION EXTRACTION

In many computer vision and image processing tasks, and in
many video coding problems, it is necessary to extract a dense

4Two particles are in the same connected component if and only if there is a
path between them composed only by edges of weight “1”.
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representation of motion segmentation. It means that we must
determine which pixels are assigned to each moving object.

At this stage, we know the particles positions in each frame,
as well as the particles meta-cluster labels. Then, we only need
to assign each pixel to the most similar particle meta-cluster. To
perform this task, we compare pixels with sets of particles in
terms of motion and spatial proximity using implicit functions,
as explained next. Let be the whole set
of particles of the video, and the set of
labels that indicates for each particle, to which meta-cluster

the particle is associated with. So, to each particle in
a frame at time , represented by its spatial coordinates ,
is assigned a multivariate gaussian kernel [see (6), shown at the
bottom of the page], where and
represent the displacement of particle in frame at time , and

is the covariance matrix given by

where, and are the spatial and motion standard devia-
tions, set to 50 and 1, respectively. These coefficients are chosen
based on a compromise between precision and smoothness of
the objects boundaries, and can be modified according to the
application. The smaller the value of , the more precise the
boundaries will be. The larger the value, the smoother the
boundaries will be. On the other hand, controls the weight
of motion information used in pixel classification. Large
values should be avoided because it would cause fragmentation
of object regions. It means that each particle will be associated
to an implicit function, that defines the likelihood of assigning a
pixel to the motion pattern represented by particle in a
4-D space (two spatial dimensions and two motion dimensions).
Thus, pixels located near the particle , with motion similar to
particle , will yield large values, while pixels
far away from the particle , or with distinct motion vectors,
will yield small values. In order to assign one
pixel to a meta-cluster, we compare it with all the particles of
each meta-cluster using (6), and assign the pixel to the particle
meta-cluster which yields the largest sum of particle implicit
functions.5 A pixel of the image is then assigned to

5Alternatively, we can compare a pixel only with the �-nearest particles. In
our experiments, we compared each pixel with the 30 nearest particles, and ob-
tained results virtually equal to those obtained by comparing pixels with all
the particles, with the advantage of reducing the dense segmentation extraction
computation time in more than 90%.

Fig. 3. Particle segmentation for the frame 5 (first row) and frame 45 (second
row) of the coastguard sequence: (a), (d) particle tracking results; (b), (e) par-
ticle meta-clustering results; and (c), (f) final particle segmentation.

the particle meta-cluster that maximizes the sum of the
Gaussian kernels at the corresponding pixel position

(7)

Note that we use the optical flow components ( and
) as the motion information at pixel level, and com-

pare them with the motion of particles using the im-
plicit functions given by the Gaussian kernels sum. The pixel is
then assigned to the meta-cluster containing particles near the
pixel that are moving more coherently with respect to the local
optical flow, i.e., the maximum of (7). The more accurate the
optical flow estimate, the more accurate the segmented object
motion contours. Using sum of Gaussian kernels results in spa-
tially smooth contours, even when few particles are available
near motion object boundaries.

The final result of the pixel assignments to the particle meta-
clusters in all frames of the sequence can be seen as a set of
volumes (representing objects) in the spatio-temporal domain,
where pixels are represented by voxels.

VI. EXPERIMENTAL RESULTS

In this section, we present some experimental results to
illustrate the performance of our proposed approach. Fig. 3
shows results of the proposed segmentation method for the fifth
and the 45th frames of the classic coastguard sequence in the
first and second rows, respectively. The whole tested sequence
has 50 frames, each frame with . In (a) and (d),
we show particle tracking results for these frames, and the 5427
particles used in the whole sequence. In (b) and (e), the three
meta-clusters obtained with the proposed motion segmentation

(6)
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Fig. 4. Particle segmentation for the frame 5 (first column), frame 15 (second
column) and frame 25 (third column) of the cars sequence: (a)–(c) individual
clustering results and (d)–(f) the final segmentation results for the correspondent
frames.

method are presented. The meta-clusters are represented by
particles of distinct colors (red, green, and blue). The proposed
method segmented correctly the sequence in three objects
moving distinctly, in spite of the high noise contamination level
in the original sequence, and the water surface fluctuations. The
final results of the segmentation process—after meta-cluster
validation and spatial filtering—are shown in (c) and (f). Note
that some particles belonging to the blue meta-cluster, that
had been wrongly classified to the background, were correctly
re-classified after meta-cluster validation and spatial filtering.

Individual clusters, as well as the final segmentation for the
video cars, used in the work of Sand and Teller [34], are shown
in Fig. 4. The first row of Fig. 4 shows the results of individual
meta-clusters (i.e., based only on the neighboring frames) ob-
tained using the mean-shift algorithm applied to the frames 5,
15, and 25. Note that the perspective projection effect in this
video is quite pronounced. For this reason, and due to the fact
that mean-shift uses a fixed bandwidth, restricting the range of
object motions detected, was not possible to distinguish between
the two cars in the foreground in frames 5 and 15, using indi-
vidual two-frames clustering. However, the ensemble clustering
approach identifies them as distinct objects, as shown in the
second row of Fig. 4 (final results). This occurs because the en-
semble clustering recognizes groups of particles that tend to be
clustered together along the entire sequence, returning mean-
ingful results even when motion boundaries are unreliable or
incorrect individual clusterings are found. This property is also
important in video coding, as the data redundancy of individual
objects is better explored, without breaking up object trajecto-
ries in several parts.

Fig. 5 presents results of the proposed method for a 30 frames
synthetic video, used in the work of Ristivojevic and Konrad
[10] for the extraction of object tunnels, occlusion volumes, and
exposed volumes. The authors suggested that these concepts
could be used in next-generation video compression methods.
Thus, we compared the results obtained by Ristivojevic and
Konrad with our proposed approach. This video consists of
a synthetic beam-shaped object that moves against a static
background. This object has its motion described by an affine
transformation (with rotation, translation, and scale), and
suffers occlusion, inducing a topological spatial change. The
tenth and the 30th frames of the sequence are shown in Fig. 5

Fig. 5. Segmentation for the frame 5 (first row) and frame 30 (second row) of a
synthetic video: (a), (d) particle segmentation results; (b), (e) object tunnel, oc-
clusion volumes and exposed volumes obtained with the proposed method; and
(c), (f) object tunnel, occlusion volumes and exposed volumes for the method
proposed by Ristivojevi e Konrad [10].

(first and second row, respectively). The corresponding particle
segmentations are shown in (a) and (d). The dense segmentation
results (see Section V), are shown in (b) and (e), as well as
the corresponding occlusion volumes and exposed volumes,
as proposed by Ristivojevi and Konrad [10]. The labels, from
black to white, represent: 1) background; 2) background occlu-
sion volume; 3) background exposed volume; 4) object; and 5)
object occlusion volume. The corresponding results obtained
by Ristivojevi and Konrad method are shown in (c) and (f).
We obtained the occlusion volumes and exposed volumes by
estimating an affine transformation for each region in each
frame, and propagating these regions through the sequence
using these transformations. This affine transformation is es-
timated based on the motion of the particles belonging to the
same region. To compare the segmentation accuracy of both
methods, we manually created a ground truth for this sequence,
and obtained a rate of 99.75% correctly classified object pixels
with our method, against 99.35% obtained by Ristivojevi and
Konrad [10]. The accuracy measurements refer only to object
pixel classification (object versus background, in this case). We
can see that the proposed approach deals with occlusion and
topological changes in a straightforward manner, and obtain
occlusion volumes and exposed volumes reliably, without the
limitations of the approach from Ristivojevic and Konrad (as
discussed in Section I). Further, the results demonstrate that
our approach deals in a straightforward way with topological
changes caused by occlusions. Note that using the proposed
segmentation approach, together with the dense segmentation,
we also have the information of the corresponding particles
that can be used as a motion cue in several applications. For ex-
ample, occlusion and motion within the objects can be inferred
through the information of particles and dense segmentation
combined together. In the experiment showed above, we em-
ployed an affine transformation to perform this task. However,
it should be noted that the segmentation algorithm is general
and does not implies any motion constraint.

In Fig. 6, we present the results of our proposed method for a
different synthetic video, showing background motion and three
moving objects in the foreground. One object in the foreground
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Fig. 6. Segmentation results for frame 5 (first row) and frame 20 (second
row) of a synthetic video with three moving objects: (a), (d) original frames;
(b), (e) object segmentation labels; (c), (f) object tunnels, occlusion volumes
and exposed volumes.

rotates and translates, while the others only undergo transla-
tional motion. The original frames 5 and 20 of the sequence
(which is composed by 30 frames) are shown in (a) and (d). The
labels of the segmented objects are shown in (b) and (e), while
object tunnels (black), occlusion volumes (gray) and exposed
volumes (white) are shown in (c) and (f). The proposed method
produced a correct object classification pixel rate of 96.12%.
An interesting property of this video is that one object (can of
soda), moves along with the background for ten frames, while
exhibiting a different motion in the remaining frames of the se-
quence. Even without motion boundaries along one third of the
sequence, the proposed method has segmented this object from
the background in all frames, due to its ability of extract pro-
longed patterns.

In order to evaluate the ability of the proposed method to
extract temporally redundant regions in videos, we computed
temporal predictions along object tunnels. This was done by fit-
ting an affine transformation for each tunnel and each frame,
based on the motion of particles belonging to the corresponding
tunnel in the corresponding frame. Then, this affine transforma-
tion was used to compensate tunnel motion to compute the pixel
predictions in each frame. The entropy of the residual predic-
tion errors is calculated and compared with the entropy of the
original video data, and the entropy of block matching residual
errors. The block matching approach used here for comparison
is Adaptive Rood Pattern Search (ARPS) [43]. The results are
shown in Table III, and indicate that our proposed method po-
tentially can produce lower bit-rates than the block-matching
approach. The PSNR of the block matching predictions and the
intratunnel predictions are presented in Tables IV and V, respec-
tively. The minimum, maximum and mean PSNR values for all
frames in each video sequence are shown. However, these re-
sults should not be considered video coding results in any way,
as we are not measuring real bitrates. They are just an indica-
tive that the tunnels obtained though the proposed segmentation
method are temporally very redundant, using the popular block
matching approach as a reference. To employ the segmentation
approach in a video coding framework, several other aspects
should be considered, as the object shape coding, motion pa-
rameters, key-frames selection, amount of loss allowed, residual

TABLE III
ENTROPIES OF THE RESIDUAL PREDICTION ERRORS AND ORIGINAL

DATA FOR VIDEO SEQUENCES

TABLE IV
PSNR OF BLOCK MATCHING PREDICTIONS

TABLE V
PSNR OF INTRA-TUNNEL PREDICTIONS

spatial coherence, source modeling, entropy coding, etc. We in-
tend to use the proposed segmentation approach in a complete
video coding framework in a future work.

All the experiments were conducted using a nonoptimized
Matlab code, except for the optical flow, which was coded in C.
Running the proposed approach in a PC-based computer with
a 1.6-GHz dual core processor, for a sequence of 50 frames,
with about 6000 particles (coastguard sequence), the computa-
tion took around 7 hours. The bottleneck of the segmentation
performance is on the optical flow and particle tracking com-
putations (both are variational methods), taking about 35% and
45% of the total computation time, respectively. Since the stages
of particle tracking (see Section III) and particle segmentation
(see Section IV) are computed only using the set of particles,
and the cardinality of this set is much smaller than the cardi-
nality of the set of pixels (i.e., there are fewer particles than
pixels), we believe that with an optimized code and further re-
ducing the number of particles utilized, the performance of these
stages could be executed in real-time (or near real-time) using
powerful machines. The computation of dense segmentation ex-
traction can be optimized to run in approximately linear time,
as discussed in Section V. Thus, in order to use this approach
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in applications with real-time requirements, we suggest to sub-
stitute the variational optical flow employed here by a more ef-
ficient optical flow method. The ensemble clustering strategy
employed in this work uses information about particle segmen-
tation in every frame of the sequence (see Section IV-A). Con-
sequently, the object segmentation for each frame of the se-
quence only can be known after all frames have been processed.
Therefore, even if the previous steps (i.e., optical flow compu-
tation, particle trajectory estimation and mean-shift clustering)
are computed in real-time, no frame segmentation is delivered
until the sequence is entirely processed. An alternative to mini-
mize the delay would be to divide the sequence in smaller parts,
with a fixed or adaptive number of frames, using buffers to store
information about previous frames.

VII. CONCLUSION

A method for unsupervised identification of coherent motion
in adaptively sampled videos was proposed in this work. This
technique provides a new way of linking low-level information
in videos to high-level concepts that can be employed directly in
video coding. This approach can be useful in many other image
processing and computer vision tasks, including object tracking,
information retrieval and video analysis.

The proposed method allows us to identify temporally discon-
tinuous motion patterns, and is robust to abrupt camera motion.
Besides, no global motion constraints are imposed to the scene
and/or the objects. The aperture problem is reduced by infer-
ring motion in homogeneous regions by the propagation of mo-
tion information in the neighborhood of the spatial samples (i.e.,
particles). However, the solution used to approach the aperture
problem has a drawback: when homogeneous regions become
occluded, motion propagation can yield erroneous motion esti-
mates, which must be corrected by additional consistency steps,
at the expense of more computational effort.

The proposed particle segmentation method uses ensemble
clustering to combine particle clusters obtained for adjacent
frames, allowing the identification of long-range motion pat-
terns, which we represent as spatio-temporal volumes called
tunnels. The identification of long-range motion patterns is
crucial to take full advantage of temporal redundancy in seg-
mentation-based video coding. The mean-shift algorithm [40]
is employed to obtain the particle clusters associated to adjacent
frames, and has the important property of identifying clusters
with arbitrary shapes in feature space. However, the mean-shift
algorithm presents an important drawback: it requires the use
of a fixed bandwidth, reducing the magnitude and variety of
detected motion patterns. Thus, by setting a fixed mean-shift
bandwidth, we restrict the performance of the method to a
certain range of motion magnitudes between objects. The value
of (see Section IV-B) also needs to be tuned according
to the range of motion magnitudes between objects. This can
be a drawback in applications where a wide range of motion
magnitudes is expected. Another limitation of the proposed seg-
mentation method concerns the type of motions that are better
handled with this approach. Since we generate clusters based
on similarity of the 2-D projected motion vectors, sequences

with pronounced perspective effects and/or with complex 3-D
spatial motion tend to be over-segmented.

Some experimental results obtained with the proposed mo-
tion segmentation method were presented, as well as PSNR
values for temporal predictions along segmented tunnels, and
the entropies of the prediction errors. Comparisons with block
matching predictions indicate that the proposed segmentation
approach potentially can be used in video coding with advan-
tages in terms of bit-rate, PSNR and flexibility to handle moving
objects.
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