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Abstract
Cells form the fundamental building blocks of living organisms, and understanding the
mechanical properties of the tissues they form has significant implications in cancer
progression, wound healing and embryology. In this study, we present a two-dimensional
model where each cell consists of particles connected by springs, working as perimeter
forces, and a second term playing a role of area conservation. The purpose of our research
is to investigate the mechanical parameters compatible with the micropipette aspiration
of a group formed with these cells, and relate them with the macroscopic behavior of
a tissue. To validate the accuracy of our cellular model, we conducted micropipette
aspiration simulations on single cells. Our results demonstrate that a one-dimensional
mechanical model can effectively describe the behavior of single cells. This finding suggests
that macroscopic measures, such as cell stretch, can be used to extract microscopic cell
parameters. Interestingly, we also observed that cellular activity does not significantly
influence the mechanical properties of cells in this particular scenario. Moving beyond single
cells, we extended our simulations to cell aggregates to explore their internal parameters.
By subjecting cell aggregates to micropipette aspiration, we were able to map internal
parameters that could potentially be applied to real cells. We found that, in our model,
cellular adhesion does not impact the speed of viscous flow unless it is strong enough to
completely obstruct the flow. Furthermore, we discovered a linear correlation between the
minimum aspiration pressure required for cell aggregates to be aspirated in a continuous
viscous-plastic flow and the strength of cell membrane adhesion. This finding highlights
the potential importance of considering adhesive properties when studying cell aggregates
and their behavior under force. In conclusion, our research contributes novel insights into
the mechanical parameters of tissues, enhancing our understanding of cell tissue dynamics.

Keywords: cell movement; micropipette; cell simulation.





Resumo
As células formam os blocos de construção fundamentais dos organismos vivos e entender
as propriedades mecânicas dos tecidos que elas formam tem implicações significativas na
progressão do câncer, na cicatrização de feridas e na embriologia. Neste estudo, apresen-
tamos um modelo bidimensional onde cada célula consiste em partículas conectadas por
molas, funcionando como forças de perímetro, e um segundo termo desempenhando o papel
de conservação de área. O objetivo deste trabalho é investigar os parâmetros mecânicos
compatíveis com a aspiração por micropipeta de um grupo formado por essas células e
relacioná-los com o comportamento macroscópico de um tecido. Para validar a precisão
de nosso modelo celular, realizamos simulações de aspiração por micropipeta em células
individuais. Nossos resultados demonstram que um modelo mecânico unidimensional pode
descrever efetivamente o comportamento de células individuais. Esse achado sugere que
medidas macroscópicas, como estiramento celular, podem ser usadas para extrair parâme-
tros celulares microscópicos. Também observamos que a atividade celular não influencia
significativamente as propriedades mecânicas das células neste cenário específico. Indo
além das células individuais, estendemos nossas simulações para agregados celulares para
explorar seus parâmetros internos. Ao submeter agregados celulares à aspiração por micro-
pipeta, pudemos mapear parâmetros internos que poderiam ser potencialmente aplicados a
células reais. Descobrimos que em nosso modelo a adesão celular não impacta a velocidade
do fluxo viscoso a menos que seja forte o suficiente para obstruí-lo completamente. Além
disso, descobrimos uma correlação linear entre a pressão mínima de aspiração necessária
para que os agregados celulares sejam aspirados em um fluxo viscoplástico contínuo e a
força de adesão da membrana celular. Esse resultado destaca a importância de considerar
as propriedades adesivas ao estudar agregados celulares e seu comportamento sob força.
Em conclusão, nosso estudo contribui com novos insights sobre os parâmetros mecânicos
de tecidos, aprimorando a compreensão da dinâmica de tecidos celulares.





Press Release

Exploring Mechanical Properties of Cell Tissues: Insights from Simulation
Studies

Cells constitute the fundamental units of
living organisms, and deciphering the me-
chanical properties of the tissues they form
is primordial for understanding various bi-
ological processes such as cancer progres-
sion, wound healing, and embryology. In this
study, we introduce a two-dimensional model
representing cells as particles interconnected
by springs, with perimeter forces and area
conservation terms. Our investigation aims
to elucidate the mechanical parameters rel-
evant to micropipette aspiration and their
implications for tissue behavior.

Through simulations, we demonstrate the
efficacy of a simplified one-dimensional me-
chanical model in describing the behavior of
single cells. Remarkably, we observe minimal
influence of cellular activity on the mechan-
ical properties in this specific context. Ex-
panding our analysis to cell aggregates, we
uncover a significant relationship between
the minimum aspiration pressure required
for cell aggregates to undergo continuous
viscous-plastic flow and the strength of cell
membrane adhesion. This highlights the criti-
cal role of adhesive properties in determining
the behavior of cell aggregates under exter-
nal forces.

Comparison of the experiment (TLILI; GRANER;

DELANOE-AYARI, 2022) (top) and simulations conducted

in this study (bottom).

Our findings not only provide valuable in-
sights into the mechanical characteristics of
tissues but also offer a framework for un-
derstanding the interplay between cellular
mechanics and tissue dynamics. By bridging
the gap between microscopic cellular param-
eters and macroscopic tissue behavior, our
research contributes to advancing our under-
standing of fundamental biological processes
and lays the groundwork for future studies
in tissue biomechanics and related fields.



Keywords: tissue mechanics; micropipette absorption; extended cell model simulation.
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1 Introduction

Throughout the centuries, biological science has progressively advanced in the
examination of living organisms and their attributes, whether they be microscopic, such as
cellular behavior, or macroscopic, encompassing the arrangement of animals and organisms.
In recent times, additional scientific disciplines have begun focusing in the exploration
and delineation of biological properties from alternative perspectives, creating domains
such as biological physics.

Biological physics finds its origins in the adaptation of physical principles to explain
phenomena such as the collective motion of birds and fishes (REYNOLDS, 1987; COUZIN
et al., 2005; SUMPTER et al., 2008; GUTTAL; COUZIN, 2010), as well as human
pedestrians (HELBING; MOLNÁR, 1995; OBATA et al., 2000). Furthermore, mechanical
attributes inherent in living entities, exemplified by bacteria (BERG; TURNER, 1979),
individual cells (HOCHMUTH, 1993), and cellular aggregates (GUEVORKIAN et al.,
2010; GUEVORKIAN et al., 2011; GUEVORKIAN; MAÎTRE, 2017), stand as subjects of
inquiry within this facet of physics. Specifically, the exploration of dynamic and mechanical
characteristics pertaining to cells has engendered substantial enthusiasm among biological
physics physicists, as these traits generate insights into wound healing, inflammatory
responses, and even tumor metastasis (HAGA et al., 2005).

Although the targets within the domain of biological physics exhibit discernible dis-
parities, they collectively share a fundamental attribute: that of self-propulsion. Diverging
from entities delineated by classical physics, self-propelled entities possess the capability to
engender motion through the utilization of intrinsic energy, whether it is stored internally
or acquired from the immediate surroundings. Adopting a particle-based perspective
upon these entities, it is plausible to assert that this internal energy modifies the particle
dynamics, thereby creating a state of persistent non-equilibrium systems, a state which
diverges from the equilibrium frameworks described by classical physics (RAMASWAMY,
2010).

Owing to this intrinsic energy facilitating motion, we commonly denominate such
entities as “active particles”. Illustrative instances of active particles encompass boids and
active Brownian particles.

Boids represent a category of particles originally conceived to replicate the collective
motion exhibited by biological entities such as birds, herds, or fish (REYNOLDS, 1987).
The term “boid” derives from the English word “bird-oid”, a contraction of "bird-like,"
signifying resemblance to avian locomotion. The dynamics governing boid behavior are
simple and can be described by three primary constituents: spacing, alignment, and
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cohesion. In essence, the movement orientation of an individual boid within a system of
multiple boids tends to synchronize with the orientations of its neighbors. Furthermore,
the boid endeavors to maintain proximity to its neighbors while avoiding direct contact.

The concept underlying active Brownian particles, in contrast, deviates somewhat
from the aforementioned. Classical Brownian particles exhibit an inherent degree of in-
ternal randomness, often stemming from collisions with smaller particles present within
the environment, thereby predominantly engendering diffusive motion (EINSTEIN, 1905).
Nonetheless, active Brownian particles, in addition to their innate diffusion, feature an
orientation parameter that evolves stochastically. This orientation influences the particle’s
movement, giving rise to a preferred trajectory in tandem with natural diffusion (RO-
MANCZUK et al., 2012)

The employment of active Brownian particles in biological physics is commonly
intertwined with the characterization of the particles’ orientation parameter. In elucidating
the collective movement of cells, Szabó et al. (2006) engineered the orientation angle of
their active Brownian particles to align with the resultant force acting upon each particle.
Moreover, they incorporated a force acting at short distances to attract particles and,
at even closer distances, to repel them. The outcome of this amalgamation of alignment
and adhesion mechanisms is the induction of concerted motion among multiple particles
following contact, leading to coordinated movement in a shared direction. This approach
effectively emulates experiments conducted with actual cells (SZABÓ et al., 2006).

A constraint inherent in models portraying cells as individual particles lies in the
notion of shape. Actual cells typically exhibit behavior akin to viscoelastic solids (JONES
et al., 1999), enabling deformations in their morphology. In light of this, it is anticipated
that the individual particle model would fall short in faithfully replicating the elastic
attributes intrinsic to cellular entities.

To circumvent this constraint, more intricate models accounting for additional
elements have been developed over the years, such as the Voronoi model, vertex model,
Potts model, and multiparticle model. The Voronoi model (SULSKY; CHILDRESS;
PERCUS, 1984), while still encompassing the notion of individual particles, incorporates
supplementary forces based on the Voronoi cells generated by particle tessellation. This
approach introduces forces linked to cell volume and perimeter. Similarly, the vertex
model (WELIKY; OSTER, 1990) also employs Voronoi tessellation to integrate extra forces;
however, in this case, these forces act directly upon the vertices of the Voronoi tessellation
rather than on the central particle. Both the Voronoi and vertex models share a limitation
in terms of accurately depicting irregular cell shapes. Since Voronoi tessellation inherently
produces lattice-like cells, elongated or curvilinear cellular forms cannot be faithfully
reproduced by this method, thereby restricting the portrayal of experiments involving
substantial cell distortions. In contrast, the Potts model employs a discretization of space
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into boxes (typically pixels in 2D (GLAZIER; GRANER, 1993) or voxels in 3D (SWAT et
al., 2012)), endowing each box with a comprehensive description of its physical properties.
Temporal evolution is achieved using Monte Carlo steps, determining the state that
minimizes the system’s energy. In the context of the cellular Potts model (GRANER;
GLAZIER, 1992), each box bears information about its cell affiliation. Constraints are
directly imposed within the system’s Hamiltonian, ensuring specific properties, such as
the absence of disassociated boxes from the cell body, preservation of approximate cell
volume and perimeter constancy, among others. This model adeptly characterizes cellular
movement (FORTUNA, 2020) and avoids the shape limitation encountered in the Voronoi
and vertex models. However, due to the Monte Carlo temporal advancement, temporal
information is not fully resolved, necessitating recovery via estimations and relationships
between temporal dynamics and Monte Carlo dynamics (BILLONI; STARIOLO, 2007).

The multiparticle model involves the construction of a composite body by interlink-
ing multiple individual particles. An illustrative instance of this modeling approach was
demonstrated by J. Newman (2005), where artificial cells were fabricated by assembling
numerous randomly positioned and interconnected particles. This methodology resulted in
the creation of artificial cells characterized by a simplified internal structure.

In order to describe objects possessing elasticity using multiparticle models, a
strategy involves the creation of multiple particles arranged in a periodic manner and
interconnected by springs (ÅSTRÖM; LATVA-KOKKO; TIMONEN, 2003). This approach,
initially introduced as a framework capable of characterizing cellular membranes (ÅSTRÖM;
KARTTUNEN, 2006), owing to its simplicity, accommodates the inclusion of supplementary
features in these models, such as cell division (MKRTCHYAN; ÅSTRÖM; KARTTUNEN,
2014) or activity (TEIXEIRA; FERNANDES; BRUNNET, 2021). To extract mechanical
parameters of cells, it is imperative to subject the cells to a force and observe their
response (HOCHMUTH, 2000).

An interesting experiment for determining the elastic properties of cells is the
micropipette aspiration experiment. This experimental procedure involves bringing a
micropipette into proximity with a cellular body, whether it be a single cell or a cell
aggregate, and applying pressure to induce aspiration. The aspirated cellular body deforms,
facilitating subsequent measurements. The micropipette aspiration experiment has been
utilized since 1970 (GONZÁLEZ-BERMÚDEZ; GUINEA; PLAZA, 2019) to measure
physical properties of cells. It has been employed for quantifying the elastic properties
of red blood cells (EVANS, 1973), the viscous properties of adhesive cells (SATO et al.,
1990), and the elastic properties of the cell nucleus (GUILAK; TEDROW; BURGKART,
2000). More recently, this technique has also been applied to assess the elastic, viscous,
and rheological properties of tissues (GUEVORKIAN et al., 2011), and it can even be
used for in vivo measurements (NAVA et al., 2008; MAJKUT et al., 2013; PORAZINSKI
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et al., 2015; GUEVORKIAN; MAÎTRE, 2017). Due to its ability to induce continuous
deformation in cells or tissues (GUEVORKIAN et al., 2010) and its compatibility with in
vivo systems, this approach has gained prominence over classical techniques like parallel
plate compression, where cells merely relax towards equilibrium.

In conjunction with micropipette aspiration experiments, analytical models have
been devised to establish correlations between the measurable outcomes of the experiments
and the physical properties of the investigated cellular entity. Initially, Theret et al. (1988)
proposed a half-space model to delineate the elastic properties of the entity in relation
to its deformation length, i.e., the extent of the cell membrane encompassed within the
micropipette. More intricate models have been developed to provide a slightly more
detailed description of the micropipette aspiration experiment (WU; HERZOG; EPSTEIN,
1999; HOCHMUTH, 2000; PLAZA et al., 2015). Nevertheless, these analytical models are
constrained to equilibrium solutions of symmetric membranes and are incapable of capturing
phenomena such as deformations or changes in neighboring configurations (OURIQUE;
TEIXEIRA; BRUNNET, 2022).

In order to surmount the limitations inherent in analytical models, numerical models
designed to describe cells and tissues have been adapted to encompass the micropipette
aspiration experiment. Boey, Boal e Discher (1998) introduced a numerical model depicting
cells as interconnected points within a three-dimensional space, which was subsequently
employed to simulate the micropipette aspiration experiment (DISCHER; BOAL; BOEY,
1998). This model demonstrated consistency in replicating cell elastic properties; however,
its evolution was facilitated through Monte Carlo steps, restricting its applicability to
stationary scenarios. More sophisticated models of the micropipette aspiration experiment
have been developed (ZHOU; LIM; QUEK, 2005; ESTEBAN-MANZANARES et al., 2017),
including considerations for the cytoskeleton (LYKOV et al., 2017).

In this study, our aim is to devise a numerical model for simulating the mi-
cropipette aspiration experiment on cells. Our approach diverges from the precedents
set by previous models (DISCHER; BOAL; BOEY, 1998; ZHOU; LIM; QUEK, 2005;
ESTEBAN-MANZANARES et al., 2017; LYKOV et al., 2017). We have formulated a
minimalist model that not only emulates the mechanical properties of cells but also takes
advantage of active particle dynamics. In our model, we extend its application to multiple
cell systems, employing non-active particles in this scenario.

The employed model constitutes an expansion of the framework introduced by
Teixeira, Fernandes e Brunnet (2021), enhanced by the incorporation of supplementary
features including volume conservation, wall interactions, and interplay among distinct
membranes. Due to its minimalist nature, this model facilitates simulations involving
multiple interacting membranes, akin to experiments involving the aspiration of cell
aggregates (GUEVORKIAN et al., 2010; GUEVORKIAN et al., 2011).
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With the outlined model, we conducted simulations of both individual cell aspiration
and cell aggregate aspiration. The ensuing outcomes will be elucidated in the subsequent
sections.

In Section 2, we provide a literature review on cell modeling and aspiration. In
Section 3, we describe our numerical model. Section 4 details our simulations. Section
5 presents the results obtained from our simulations. Finally, in Section 6, we draw
conclusions from this work.
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2 Review

In this chapter, we will present the most common theoretical description for the
single-cell aspiration experiment, along with one of the possible descriptions used to
characterize aggregates.

2.1 Single Cell

The cell aspiration experiments using micropipette, initially conducted on individual
cells, typically rely on the theoretical framework proposed by Theret et al. (1988). They
adopted a half-space model to depict a cell and brought it into proximity with a cylindrical
micropipette. This can be understood as an infinitely large cell occupying half of the entire
physical space, with the unoccupied region hosting a micropipette in contact with the cell.

Figure 1 depicts a schematic of this model, in this case featuring a micropipette
with inner radius a, outer radius b, and aspiration pressure ∆P . In order to organize future

b
a

P

Figure 1 – Schematic of the half-space model employed to describe the micropipette
aspiration experiment. The micropipette walls are depicted in blue, the cell
body in red, and the vector associated with the pressure-induced force in gray.
Dashed lines indicate infinite extensions of the system, illustrating that, in this
model, the cell body occupies half of the entire space. Parameter a represents
the inner radius of the micropipette cylinder, while b represents the outer
radius.
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explanations, we define the z-axis as the axis coinciding with the center of symmetry of
the micropipette. Consequently, the r-axis is perpendicular to the z-axis and is aligned
with the entrance of the micropipette.

To address the present problem, Theret et al. (1988) considered two distinct and
independent boundary conditions:

1) The first assumption establishes that the membrane pressure on the edge of the
pipette (the ring with area π(b2 − a2)) remains constant. In other words, it assumes that
the component szz of the stress tensor remains constant over this ring. For equilibrium to
hold, the force component generated by szz on the pipette edge and the force produced by
the pressure ∆P on the circular area with radius a inside the pipette must be equal, that
is,

szz = − a2

b2 − a2 ∆P . (2.1)

2) The second boundary condition asserts that the deformation of the membrane
in the z-direction, uz(r, 0), is zero over the surrounding ring.

uz(r, 0) = 0 , a < r < b . (2.2)

Now, with the boundary conditions established, and assuming that the body being
modeled is composed of a completely elastic and incompressible medium, we have four
expressions that rules deformation, namely:

∇ · s = 0 (2.3)
1
2[∇u⃗ + (∇u⃗)T ] = e (2.4)

∇u⃗ = 0 (2.5)

−pI + 2µe = s , (2.6)

where s is the stress tensor, u⃗ is the displacement vector, e is the infinitesimal strain
tensor, p is the mean stress, I is the identity tensor, and µ is associated with the elastic
modulus E, with µ = E/3. Equation 2.3 is the stress equilibrium condition for a deformed
body (LANDAU; LIFCHTZ, 1967), and Equation 2.4 relates the infinitesimal strain
tensor to the displacement gradient. On the other hand, Equation 2.5 is connected to
material incompressibility, and Equation 2.6 provides the stress-strain relationship for an
incompressible material.

Theret et al. (1988) solved the system of equations for both boundary conditions
and obtained as a solution,

Lp = 3a∆P

2πE
Φ , (2.7)
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where Lp is the total membrane length inside the pipette along its axis, Φ is a dimensionless
number that depends on the geometry of the micropipette walls (parameters a and b in
Figure 1) and the type of boundary condition. In their work, Theret et al. (1988) chose to
use a value of Φ close to 2.1, as it was a consistent value for both boundary conditions.

2.2 Cell Aggregate

For cellular aggregates, we have a comprehensive description proposed by Tlili et
al. (2015), where the system is described by combining intra-cellular viscoelasticity with
inter-cellular plasticity, as illustrated in Figure 2.

Gcortex Y

cyto Y

intra inter

Figure 2 – Proposed cellular aggregate rheological model. This model consists in an intra-
cellular rheology model combined with an inter-cellular rheological one.

In this Figure, the left side illustrates the Kelvin-Voigt element, which characterizes
the cellular components within the aggregate. Here, Gcortex signifies the effective shear
elastic modulus of the cell, and ηcyto denotes the viscosity of the cytoplasm. On the right
side, we present the rheological component of the cell aggregate, wherein σY represents
the yield stress of the aggregates, microscopically associated to cell rearrangement, while
ηY is the viscosity.

This model exhibits interesting properties, such as an intrinsic resistance to de-
formation, causing the aggregate to only start flowing after reaching a certain minimum
pressure. We describe the model in a one-dimensional framework for deformations using
the dissipation function formalism (TLILI et al., 2015),
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E(ε, εintra) = 1
2Gcortexε2

intra (2.8)

D(ε, εintra) = 1
2ηcytoε̇

2
intra + 1

2ηY (ε̇ − ε̇intra)2 + σY |ε̇ − ε̇intra| (2.9)

where E describes the system’s elastic energy, and D represents the dissipation.

Following the dissipation function formalism, we obtain the stress, σ:

σ = ∂D
∂ε̇

+ ∂E
∂ε

(2.10)

When applied to equations 2.8 and 2.9, we obtain,

σ = ηY (ε̇ − ε̇intra) + σY
ε̇ − ε̇intra

|ε̇ − ε̇intra|
(2.11)

0 = Gcortexεintra + ηcytoε̇intra − ηY (ε̇ − ε̇intra) − σY
ε̇ − ε̇intra

|ε̇ − ε̇intra|
(2.12)

Note that (ε̇ − ε̇intra) = ε̇inter = 0 when σ < σY, dividing the system into two distinct
regimes. In this case, the system is simply described by the following expression:

ηcytoε̇intra + Gcortexεintra − σ = 0 (2.13)

Which can be solved as a function of time, yielding:

εintra = σ

Gcortex

(
1 − e− t

τc

)
(2.14)

where τc = ηcyto/Gcortex. This expression indicates that, under these conditions, the system
behaves purely elastically, deforming up to a limit defined by the elasticity of the aggregate.
Note that in this particular case, the total aggregate displacement is equal to the internal
cell displacement, i. e., εintra = ε

For the case where σ > σY, the applied stress is sufficient to break the bonds
between the cells, allowing flow into the pipette. To solve this case, we initially isolate the
displacement variation in Equation 2.11

ηY (ε̇ − ε̇intra) = σ − σY (2.15)

ε̇ = σ − σY

ηY
+ ε̇intra (2.16)

and integrate with respect to time, resulting in:

ε = σ − σY

ηY
t + εintra . (2.17)
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Finally, we substitute the solution obtained in Equation 2.14 into Equation 2.17,
resulting in the solution:

ε = σ − σY

ηY
t + σ

Gcortex

(
1 − e− t

τc

)
. (2.18)

The solution in Equation 2.18 is interesting as it highlights both the elastic and visco-plastic
regimes, where the system flows while undergoing deformations.
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3 Numerical Model

The numerical description model adopted in this work is an extension of the
model presented by Teixeira, Fernandes e Brunnet (2021). It represents the cell membrane
as a collection of active particles connected to form an extended body. Our extension
includes volume conservation elements, modifies the contact interaction, and incorporates
an adhesion and contact force for interaction between distinct membranes.

In the following sections, we will discuss in detail the equations describing the
single-cell model (Section 3.1), the cell aggregate model (Section 3.2), the interaction with
walls (Section 3.3), and the employed dynamics (Section 3.4).

3.1 Single Cell

The model incorporates four interactions to describe an individual cell: binding
interaction, bending interaction, contact interaction, and area conservation.

3.1.1 Binding Interaction

Similar to the model presented by Teixeira, Fernandes e Brunnet (2021), the binding
interaction is achieved through springs connecting the particles composing the membrane.
The potential associated with this interaction, denoted as Us, is given by:

Us = ks

2

N∑
i=1

(|d⃗i,i+1| − d0)2 (3.1)

where ks is the spring stiffness, N is the number of particles in the membrane, di,j is the
distance between particle with index i and particle with index j of the membrane, and d0

is the equilibrium distance of the spring. Note that, since we are in a periodic boundary
situation, the particle with index N will interact with the particle with index 1.

In Figure 3, we have a sketch of an extended body composed of 50 particles
connected by springs, representing a membrane. On the right side of the figure, there is an
enlarged region of the membrane, highlighting the connecting springs, their equilibrium
length, and stiffness. For convenience, we define,

d0 = 2πr0

N
. (3.2)

This definition ensures that if the system is in a circular shape and in equilibrium, the
cell’s radius will be equal to r0.
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d0

ks

Figure 3 – Sketch of a cell composed of 50 particles connected by springs. The framed
area represents an enlarged region, highlighting the springs that form the
connections. In the enlarged region, the equilibrium distance and stiffness of
the springs are also marked.

3.1.2 Bending Interaction

The bending interaction was introduced in the multi-particle model by Teixeira,
Fernandes e Brunnet (2021). This interaction is responsible for maintaining the circular
structure of the cell, minimizing the relative angle between pairs of particles that compose
the membrane. In Equation 3.3, we have the potential that describes the bending interaction,
denoted as Ub,

Ub = kb

2

(
N −

N∑
i=1

cos (θi,i+1 − θ0)
)

(3.3)

where kb is the potential constant, θ(i, j) is the relative angle between particle pairs i, i + 1
and j, j + 1, and θ0 is the equilibrium angle. This potential can be interpreted as a kind
of angular spring that changes the relative angle between particles, aiming to achieve an
angle equal to θ0. We define θ0 = 0 so that a free cell will tend towards a circular shape,
even in this limit, it will be under tension.

In Figure 4, we have a sketch describing how the bending interaction acts on the
membrane. Initially, the relative angle between two pairs of particles is determined and
subsequently minimized.
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kb

Figure 4 – Sketch of part of a cell. In orange, we can see the vectors connecting two pairs
of particles and the angle formed between them. The bending potential tends
to minimize this angle during the evolution.

3.1.3 Contact Interaction

The contact interaction is responsible for preventing a particle from passing through
other particles in the membrane that are not its nearest neighbors. Teixeira, Fernandes
e Brunnet (2021) used a Weeks–Chandler–Anderson potential to describe this contact
interaction, which acts as a volume exclusion potential. In this work, we employ a simpler
and more stable approach. The contact interaction is achieved through a repulsive force,
F⃗c, which decays linearly with distance, as presented by Szabó et al. (2006), with its
maximum exactly on top of the particle and its cutoff point at a distance equal to de, as
shown in Equation 3.4,

F⃗c(i, j) = kcd̂i,j


(

1 − |d⃗i,j |
de

)
, |d⃗i,j| < de

0, |d⃗i,j| ≥ de

(3.4)

where kc is the maximum amplitude of the repulsive force, and the indices i and j represent
the interacting particles. It is important to note that, unlike the Weeks–Chandler–Anderson
potential, this force does not result in an infinite repulsion at its center, giving our particles
a “soft” character.

In Figure 5, we depict a sketch of a membrane composed of 30 particles compressed
along a given direction. In this figure, the orange region represents where the contact
interaction is active, preventing the membrane particles from touching each other even
when compressed. We have marked a black circle on only one particle of the membrane to
facilitate the visualization of the particles on which the contact interaction is acting. We
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set the value de = d0, ensuring that the repulsion experienced at the exact center between
two other membrane particles is equal to the repulsion at the center of a single particle.

Figure 5 – Sketch of a cell composed of 30 connected particles being compressed. In red, we
have the particles comprising the body, and in blue, their respective connections.
In semi-transparent orange, we have marked the area of the repulsive force’s
reach. For better visualization, we have included a black circle on one of the
membrane particles, indicating the boundaries of the contact interaction region.

3.1.4 Area Conservation

A good approximation in describing a cell, given the incompressibility of water, is
to maintain constant volume. In two dimensions, this corresponds to conserving area. To
introduce area conservation, we create a harmonic potential, UA, which is minimized when
the area of our cell, denoted as A, is equal to an equilibrium area, A0,

UA = kA

2 (A − A0)2 , (3.5)

where kA is the amplitude of this potential. The outcome of this potential is a force that
always acts perpendicular to the membrane’s surface, functioning as an internal pressure.
If the area of our cell is larger than the equilibrium area, this force will point towards the
inside of the cell.

As it acts as an internal pressure, the force stemming from this potential is crucial
for reproducing experiments in which the cell undergoes some form of compression. In
Figure 6, we present two cells, one on the left with an area above the equilibrium area,
and one on the right with an area below the equilibrium area. In this figure, we have a
grayed-out cell equivalent to the equilibrium area, along with vectors associated with the
force resulting from the potential presented in Equation 3.5.
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kA

A0

kA

A0

Figure 6 – Sketch of two cells composed of 18 particles each. In gray, there is a circle with
an area equal to A0, and in green, there are the force vectors resulting from
area conservation. On the left, the body has an area smaller than A0, causing
the force vectors to expand the body. On the right, we have the opposite case,
where the body’s area is larger than A0, causing the force to compress the body.

3.2 Cell Aggregate
The model used to represent a cell aggregate can be considered an extension of the

single-cell model, where we include short-range adhesion and contact repulsion between
particles of different cells (SZABÓ et al., 2006). This adhesion and repulsion are described
by the force F⃗i(i, j), as presented in Equation 3.6.

F⃗i(i, j) = d̂i,j


kr

(
1 − |d⃗i,j |

dr

)
, |d⃗i,j| < dr

ka

(
dr−|d⃗i,j |

dl−dr

)
, dr ≤ |d⃗i,j| < dl

0, |d⃗i,j| ≥ dl

(3.6)

where i and j are indices of two distinct membrane particles, kr is the maximum amplitude
of the repulsion force, dr is the equilibrium point between contact repulsion and adhesion
force, ka is the maximum amplitude of adhesion, and dl is the cutoff point of the adhesion
force.

It is interesting to note that the maximum adhesion of this force occurs in the
region closest to the cutoff point, and the maximum repulsion occurs when the distance
between two particles is zero. This structure creates a zone between the repulsive and
attractive regions where particles can move freely.

In Figure 7, we have an example of a cell aggregate composed of 20 cells, each
consisting of 50 particles. The red region represents where the repulsive force acts, while
the green region represents where the adhesion force acts.
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Figure 7 – A simulated cell aggregate with 20 cells, each composed of 50 particles. The
red region represents the region of repulsion between the cells, while the green
region represents the region of adhesion.

It’s worth noting that, as described earlier, since the area between the adhesion
force and the repulsion force is a region of free movement, the most energetically favorable
configuration for the particles happens when the maximum number of particles occupies
this region.

3.3 Wall Interaction

The walls in our model are composed of a large number of small repulsive particles
positioned in such a way that the membrane particles are unable to pass through them.
The repulsive force arising from the wall particles, denoted as Fw, is very similar to the
contact interaction presented in Equation 3.4, as shown in Equation 3.7

F⃗w(i, j) = kwd̂i,j


(

1 − |d⃗i,w|
dw

)
, |d⃗i,w| < dw

0, |d⃗i,w| ≥ dw

(3.7)

where kw is the maximum amplitude of the repulsive force, i is the index of a particle from
a membrane, w is the index of a wall particle, and dw is the cutoff point of the repulsive
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force. In Figure 8, we have an example of a micropipette formed by several closely spaced
particles.

dw

kw

Figure 8 – Sketch of a micropipette composed of several particles with short-range repulsive
interactions. The red regions highlight the interaction area of each particle. Due
to the overlap of these interaction areas, the membrane particles are unable to
pass through the wall particles.

To ensure that the membrane particles cannot penetrate the walls, the distance
between the wall particles is set to dw/2.

3.4 Dynamics

In the simulations, we use the same dynamics proposed by Teixeira, Fernandes e
Brunnet (2021). The membrane consists of active Brownian particles that orient themselves
according to the resultant force acting on them. The equations of motion for this dynamics
follow the Langevin dynamics, which can be seen in Equations 3.9 and 3.8.
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dθi(t)
dt

= 1
τ

arcsin
((

n⃗i(t) × v⃗i(t)
|v⃗i(t)|

)
· e⃗z

)
+ ξi(t) (3.8)

dr⃗i(t)
dt

= v0n⃗i(t) + µF⃗i(t) (3.9)

In Equation 3.8, θi is the orientation of particle with index i, τ is defined as the
relaxation time, n⃗i = (cos (θ), sin (θ)), v⃗i is the velocity of the particle, e⃗z is a positive unit
vector pointing in the z direction, and ξi is white noise with zero mean and a standard
deviation of

√
2DR. DR is the angular noise coefficient, which is the inverse of the residence

time, τr. In this particular work, we use τr = 100τ .

In Equation 3.9, the vector r⃗i gives us the position of particle with index i, v0 is
the self-propulsion velocity arising from activity, µ is the mobility, and F⃗i is the resultant
force on the particle.

For the cell aggregate simulations, since the timescale of the motion associated
with this activity is negligible compared to the motion associated with aspiration, i.e.,
µ∆P ≫ v0/Rc, we can neglect the activity of membrane particles. Thus, our equations of
motion are written as:

dr⃗i(t)
dt

= µF⃗i(t) . (3.10)
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4 Simulation

This work focuses on two distinct types of simulations: single cells and cell aggregates.
Single-cell simulations are conducted with membranes composed of up to 500 particles.
In contrast, simulations of cell aggregates are performed with simplified membranes,
containing only 50 particles each. Each cell aggregate simulation is carried out with 500
cells, totaling 25, 000 particles in the system.

4.1 Single Cell Simulation

As mentioned earlier, single-cell simulations are conducted with membranes com-
posed of a variable number of particles ranging from 250 to 500. For illustrative purposes,
the figures presented in this section will depict membranes composed of 500 particles.

The initial condition of the simulation is prepared with a perfectly circular cell
with a radius of Rc. A micropipette is included in the system with an opening equal to
2Rp = Rc/2, which is one-quarter of the cell’s radius. The cell is positioned in contact
with the micropipette, and then an aspiration pressure ∆P is initiated. The pressure is
represented by a force that acts on each membrane particle that is inside the micropipette
and is not in contact with the inner walls of the micropipette. Similar to the force arising
from area conservation, the force associated with pressure is constructed to be perpendicular
to the membrane’s surface, and its magnitude is designed so that the relationship between
force and pressure results in a pressure equal to ∆P . The length of the membrane region
within the pipette, the deformation length, is defined as Lp.

After some time of aspiration, the elastic forces of the cell membrane reach equi-
librium with the aspiration pressure, leading the cell to a steady-state regime, except for
its internal activity. In Figure 9, we have an example of a cell already aspirated by a
micropipette. In this figure, we also have the initial configuration of the cell shown in gray.

4.2 Cell Agreggate Simulation

Our initial condition is established using 500 cells, each composed of 50 particles.
These cells are randomly positioned within a circular region under extreme compression,
with each cell occupying only a quarter of its equilibrium area. Subsequently, the cells
evolve in the absence of external forces until they reach their equilibrium volume. On the
left side of Figure 10, an example of cells randomly positioned under extreme compression
is presented, while on the right side of the same figure, the final state is depicted, attained
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Rc
P 2Rp

Lp

Figure 9 – An example of a simulation of a cell being aspirated by a micropipette. In gray,
we have the sketch of the initial configuration of the cell, and in red, we have
the equilibrium configuration after aspiration. In the figure, we highlight the
definitions of the cell radius, Rc, micropipette opening, 2Rp, aspiration pressure,
∆P , and deformation length, Lp.

after the system reaches equilibrium. The radius of the cell aggregate, RA, can be estimated

Figure 10 – Arrangement of cells to generate the initial condition of a cell aggregate.
Initially, the cells are randomly positioned along a circle in a state of extreme
compression, as shown on the left. After the cells are positioned, the system
evolves until the cells reach their equilibrium volume, as shown on the right.

from the relationship between the area of an individual cell and the total area of the
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aggregate, following the equation:

RA =
√

(N c)Rc , (4.1)

where N c is the number of cells in the system.

A micropipette with an opening of 2Rp = 10Rc is inserted into the system. This
opening was defined so that at most 5 perfectly circular cells can pass through the
micropipette opening simultaneously. If the observed behavior in the simulations exceeds
5, it provides clear evidence of cellular deformation.

With the micropipette in the system, we position the cell aggregate against the
micropipette and initiate pressure in the region outside the micropipette. This pressure,
acting on all the cells located in the external region of the aggregate, forces the aggregate
into the micropipette. An example of this situation can be seen in Figure 11.

2Rp

P

Figure 11 – Cell aggregate under pressure positioned in contact with the micropipette.
The black vectors highlight the orientation of the pressure force applied to
the aggregate.

Throughout the evolution, it is possible to measure the deformation length of the
aggregate as it enters the micropipette. In Figure 12, we have the same system as shown
in Figure 11 after some time of evolution, where we can clearly see the displacement of
the cells and the deformation length.
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Lp

2Rp

P

Figure 12 – Cell aggregate under pressure positioned in contact with the micropipette
after some time of evolution. Highlighted in orange is the deformation length.

4.3 Program
The simulations were conducted using a program developed during this study. This

program comprises two primary components: a main Fortran95 program optimized for
enhanced performance, and a Python script responsible for configuring the simulation
setup and invoking the Fortran95 program. Further details about the implementation can
be found at <https://github.com/ourique-gus/micropipette_aggregate>.

https://github.com/ourique-gus/micropipette_aggregate
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5 Results

In this chapter, we will highlight the results obtained from the conducted simulations.
To facilitate future comparisons, we have nondimensionalized the system variables by
defining all quantities based on the parameters µ, τ , and Rc.

5.1 Single Cell

For single-cell simulations, we sought to assess the impacts of the area parameter
(kA), the bending parameter (kb), the self-velocity (v0), and the spring constant (ks) on the
system’s evolution. We conclude this part by comparing the values of an effective spring
constant resulting from an approximate series association and the simulations.

5.1.1 Compressibility

Taking into account that the main difference between the model proposed in this
work and the model presented by Teixeira, Fernandes e Brunnet (2021) is the area conser-
vation, we initially conducted simulations by varying the parameter kA. The parameters
for these simulations are N = 500, ∆P=7.5 (τµ)−1, kb=10−8 R2

c/(τµ), ks=10 (τµ)−1, and
v0=5 × 10−6 Rc/τ . With these parameters fixed, we varied the value of kA over five orders
of magnitude, from 10−3 (τµR2

c)−1 to 102 (τµR2
c).

To facilitate the analysis of the results, we defined parameter k0
A=104 (τµR2

c).
Throughout the simulations, we observed that the variation of volume scales very slightly
with the variation of kA, leading us to define the quantity log(kA/k0

A), which is dimensionless
and, due to base-10 logarithm, facilitates the visualization of the influence of kA.

In Figure 13, we present the relative volume of a cell during the system evolution,
absorbed for various values of log(kA/k0

A). It can be observed that for values above −3,
the cell volume remains nearly constant. Between −6 and −3, there is a cell area variation
of less than 8 percent compared to the area of a circular cell. However, for values below
−6, the cell is completely absorbed, indicating that area conservation plays a fundamental
role in simulating micropipette aspiration. This sets boundaries on parameter kA because
the experiment aims to establish a relationship between the membrane extension inside
the micropipette, Lp, and the applied pressure difference, ∆P , in the cell. Specifically, it
is supposed that the length of the cell membrane inside the micropipette is significantly
smaller than the entire cell perimeter.
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Figure 13 – The relative volume of a cell throughout its evolution while being aspirated
by a micropipette is shown. For log(kA/k0

A) values greater than −3, the cell
volume remains nearly constant. For log(kA/k0

A) values greater than −6 and
less than −3, the relative volume is above 0.92. However, for log(kA/k0

A) values
less than −6, the cell is completely absorbed.

5.1.2 Bending Rigidity

To investigate suitable values for the bending potential in our simulations, we varied
the value of the constant, kb, from 10−9 R2

c/(τµ) to 10−2 R2
c/(τµ), while keeping the other

constants as used previously in the determination of kA, and maintaining kA=102 (τµR2
c)−1.

To facilitate data interpretation, we defined k0
b =R2

c , allowing us to define the quantity
log(kb/k0

b ), which is useful for comparing the differences in our simulations across a wide
parameter range.

In Figure 14, we present the deformation length of the cell for different values of
kb. We notice that no significant differences occur, and the small variations do not show
any correlation with the value of kb.

5.1.3 Activity and Relaxation Time

To investigate the relevant parameter range for activity in the system, we initially
defined the auxiliary parameter v0

0=10−2, Rc/τ and kept the other parameters at the same
values mentioned earlier. Thus, we defined log(v0/v0

0), a parameter that we varied from
−9 to −2.3.

Observing Figure 15, we notice three distinct regimes: The first regime occurs
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Figure 14 – Deformation length of the cell being aspirated for various values of log(kb/k0
b ).

The zoomed-in region highlights that the variation in deformation length is
very small and does not follow any pattern associated with the value of kb.

when log(v0/v0
0)< − 3.2, where the membrane is absorbed by the micropipette and reaches

a steady state. In this regime, we perceive that the role of activity is to accelerate the
aspiration process. The second regime occurs when −3.2≤ log(v0/v0

0)< − 2.9, where the
membrane quickly reaches its maximum extension due to the high activity of membrane
particles. However, because of this high activity, considerable fluctuations occur around
an equilibrium point. The third regime, which occurs when log(v0/v0

0)≥ − 2.9, shows that
the activity is so high that the cell’s deformation length quickly passes its equilibrium
point. However, in this case, the oscillations due to high activity are not stable, forcing
the polarization of membrane particles to align along the membrane’s direction. In this
case, the cell starts rotating, as described by Teixeira, Fernandes e Brunnet (2021).

5.1.4 Elasticity

The effective elastic constant, keff, resulting from the series association of identical
springs with equilibrium length d0, turns out to be the constant of each spring divided by
the number of springs, keff = ks/N . If we want to vary the number of springs while keeping
keff and the equilibrium length of the association L = Nd0, we can define ρs, so that,

keff = ks

N
= ksd0

Nd0
= ρs

L
(5.1)
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Figure 15 – Deformation length of the cell being aspirated for various values of log(v0/v0
0).

We can see three distinct regimes in this figure: one where log(v0/v0
0)< − 3.2,

in which the membrane reaches its maximum deformation length and enters a
state of equilibrium with small fluctuations; one where −3.2≤ log(v0/v0

0)<−2.9,
in which the membrane reaches equilibrium with very high fluctuations due
to the high activity; and finally, one where log(v0/v0

0)≥ − 2.9, in which the
membrane has such high activity that the most favorable configuration to
dissipate internal energy is rotation.

The quantity ρs associates the spring constant of the springs constituting the membrane
and their equilibrium distance. To maintain parameters L and keff constants, when we
increase the number of particles composing a membrane, the equilibrium distance between
the springs must decrease. This property ensures that ρs is a valid measure for both
discrete systems with a finite number of connected springs and continuous systems, where
the distance between particles would be infinitesimal.

Starting from the equilibrium system after aspiration, we can calculate the value
of ρs using the balance between the aspiration force associated with pressure and the
deformation in the cell perimeter,

ρs = 2πRcRp∆P

l′ − l
, (5.2)

where l and l′ are, respectively, the cell perimeter before and after aspiration.

It is interesting to note that, if we use a similar approach to that proposed by
Theret et al. (1988), assuming that the cell perimeter is much larger than the deformation
length, we can make the approximation (l′ − l)≃2Lp, as shown in equation 5.3.
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ρs = πRcRp∆P

Lp

(5.3)

Equation 5.3 is more convenient for comparison with experimental data because it
only requires measuring the deformation length.

To validate our simulations, we compared our measured value of ρs with the data
generated by simulations, which we denote as ρf

s , for various values of aspiration pressure,
with the input value of ρs defined as ρi

s. To perform this comparison, a graph was plotted
between the quantities Rp∆P and (l′ − l)/(2πRc) resulting from our simulations for various
values of ρi

s. Knowing that the slope of this relationship is given by ρf
s , we used a linear fit

to recover this value and compared it with the input value used in the simulation.

In Figure 16, we present simulations conducted with various distinct aspiration
pressures for five different values of ρi

s, represented by different colors. The lines in this
figure represent the linear fits. In the legends, we provide the input value for ρs, ρi

s, and
the value obtained through linear fitting, ρf

s .
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Figure 16 – Values of Rp∆P as a function of (l′ − l)/(2πRc), obtained from our simulations.
The colors indicate different input values of ρs, denoted as ρi

s, while the lines
represent the result of the linear fit, from which we determined the value of
ρf

s for comparison. The legends provide the values of ρi
s and ρf

s .
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5.2 Cell Aggregate

For cellular aggregates, the studies were centered on measuring the effect of
microscopic quantities on their viscoelastic-plastic properties. To simplify our analysis, we
define the parameter τ as an arbitrary simulation time scale. To streamline the analysis,
certain parameters were predefined for all subsequent simulations, and these parameters
include kb=0.25 R2

c/(τµ), ks=200 (τµ)−1, kc=1 (τµ)−1, kA=300 (τµR2
c), kr=100(τµ)−1 and

∆P=2.0 (τµ)−1.

5.2.1 Cell-to-Cell Adhesion

To determine the influence of cell adhesion, we varied the value of ka from 0.0 (τµ)−1

to 1.0 (τµ)−1, thus conducting simulations in which the aggregate cells are drawn into the
micropipette for each set of parameters. It is important to note that for ka = 0.0 (τµ)−1,
our system represents cells with no intercellular adhesion. In Figure 17, we can observe
the evolution of deformation length as a function of time for various cell adhesion values.

In this figure, we can link the initial progression to a purely elastic behavior that
eventually transitions into a steady flow, except in the case of strong cell adhesion that
blocks the flow. It’s worth highlighting that Equation 2.18 generically captures and may
be used to describe this outcome.
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Figure 17 – Evolution of deformation length for cell aggregations under micropipette aspi-
ration simulation. Each color indicates a different cell adhesion, ka, parameter
adapted for the simulation. For clarity, only curves with five different values
of ka are shown in this graph.

In order to match the simulation outcomes with the rheological model adopted,
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simplification is essential to remove parameter overlaps. Thus, we rewrite Equation 2.18 in
the form:

ε = At + B
(
1 − e− t

C

)
(5.4)

being A = σ−σY
ηY

, B = σ
Gcortex

and C = τc.

In this context, parameter A defines the velocity of the plastic flow, parameter B

indicates the maximum elastic deformation of the aggregate, and parameter C involves
the characteristic timescale of the elastic deformation.

Figure 18 presents the values of parameter A for various values of ka. The gray
region represents the range where the aggregate becomes purely elastic.
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Figure 18 – Parameter A calculated for simulations with various values of ka. The shaded
region delineates the aggregate in a purely elastic state.

For ka < 0.8, we did not find any clear relation between the adhesion strength
and the flow speed, since all curves within this criteria tend asymptotically to the same
slope. For higher values of ka we can observe an abrupt state change where the aggregate
becomes purely elastic with the flow stopping after a transient. We interpret this result
as indicative that, for a fixed pressure difference, ∆P , fluid viscosity is independent of
adhesion forces. This behavior is expected since cell adhesion in our model is represented
by a purely elastic potential, not providing any friction-like contribution. However, when
adhesion is significant enough to prevent neighbor exchange, the aggregate starts behaving
like an elastic tissue.

For parameter B, as we can observe in Figure 19, we find that for cells with higher
adhesion, the amplitude of elastic deformation is smaller. The results for this parameter
indicate that cellular adhesion is intrinsically correlated with the elastic modulus of the
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cells. This can be interpreted as the adhesion region surrounding the cell playing a role as
an extension of its overall volume; however, with a "soft" function, allowing cells in contact
to function as an extended body. In other words, cells with higher adhesion would be
represented by interfaces that are less compliant, resulting in a shorter distance between
cells within the aggregate.
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Figure 19 – Parameter B calculated for simulations with various values of ka. The shaded
region delineates the aggregate in a purely elastic state.

We also found, as shown in Figure 20, that the parameter C, responsible for
categorizing the temporal scale of elastic deformations within the aggregate, exhibits low
correlation with cellular adhesion in our model. Since our studies were limited to the
visco-plastic region, it was not possible to establish precise correlations in regions where
the aggregate is purely elastic.

It is noteworthy to mention that parameters A, B, and C predominantly characterize
the macroscopic viscoelastic-plastic properties of our system, rendering them suitable for
describing cellular aggregates in experimental scenarios.

5.2.2 Aggregate Elasticity

To investigate the elastic properties of aggregates represented by our model, we
conducted simulations with a fixed adhesion force, ka, set at 0.5 (τµ)−1. The suction
pressure, ∆P , was varied across a range of values from 0.0 (τµ)−1 to 2.0 (τµ)−1, as illustrated
in Figure 21.

In this figure, we observe a clear linear relationship between the deformation
length and the aspiration pressure at low pressures, as expected, since our membrane
adhesion potential is purely elastic up to its breakdown. Between aspiration pressure
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Figure 20 – The parameter C calculated for simulations with various values of ka. The
shaded region delineates the aggregate in a purely elastic state.
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Figure 21 – Aggregate deformation length for several distinct aspiration pressure. The
blue region indicated when the aggregate present small plastic deformations,
but still on a elastic state. The gray region indicates the elastic rupture of the
system, starting a visco-elastic-plastic flow.

∆P=0.9 (τµ)−1 and ∆P=1.40 (τµ)−1, the deformation length response exhibits a non-
linear behavior due to some plastic behavior inside the aggregate. For ∆P>1.4 (τµ)−1,
the aspiration pressure is strong enough to break the membrane adhesion, leading the cell
aggregate to a visco-elastic-plastic flow.

In a subsequent analysis, we varied cellular adhesion, ka, from 0.1 (τµ)−1 to
0.5 (τµ)−1, as depicted in Figure 22. In this figure, we introduced a constant offset to the
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aspiration length for better visualization, as our focus is on determining the aspiration
pressure at which the aggregate becomes fully aspirated. For clarity, we will refer to this
aspiration pressure limit as "breakdown pressure". As expected, we observe that aggregates
composed of cells with higher adhesion require a greater aspiration pressure to be fully
aspirated, transitioning from an elastic state to a visco-plastic state.
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Figure 22 – Simulation of cellular aggregates with distinct cellular adhesion being aspirated
while varying the aspiration pressure. In this figure, we can observe that beyond
a certain threshold, the aspiration pressure breaks the adhesive bonds between
the cells, causing the aggregate, previously elastic, to exhibit visco-plastic
behavior. Note that for higher values of cellular adhesion, a greater aspiration
pressure is required to disrupt the connections between the cells.

With this analysis, we can establish a relationship between the breakdown pressure
and cellular adhesion, as illustrated in Figure 23. In this figure, the linear dependence of
the breakdown pressure on the strength of adhesion force is evident. The transition from
the elastic regime to the plastic one, where the aggregate flows into the pipette is certainly
not a simple phenomena, but we may understand it in part from the model used, since
the maximum adhesive force exerted by the particles on the cellular membrane linearly
depends on the cellular adhesion constant.
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Figure 23 – Breakdown aspiration pressure as a function of cellular adhesion intensity,
along with a linear fit. In this figure, it is apparent that the data is well-
represented by a linear fit, consistent with the expectations of our model.
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6 Conclusion

The simulations we develop in this thesis demonstrate the possibility of creating
realistic representations of cells using a minimalist two-dimensional model. This opens up
opportunities to explore additional parameters or more varied experimental conditions,
such as aspiration through a micropipette.

Single cell simulations show that the conservation of area, the two-dimensional
equivalent of volume, is essential for realistic simulations. Since water, which constitutes
the majority of the cell’s interior, is incompressible, it was expected that its conservation
would play a dominant role. Conversely, we also observed that the bending potential
plays no significant role. This is a direct consequence of the experiment to which the
simulated cell was subjected. A circular cell under the influence of the bending potential is
always under tension, as the equilibrium point is when the relative angle between particle
pairs is zero (see Figure 4). During the micropipette aspiration experiment, the region of
the membrane inside the micropipette walls is perfectly aligned, minimizing the bending
potential and its contribution to the experiment as a whole.

We have also investigated the effect of particle activity. During the simulation, the
orientation of active particle movement aligns with the force associated with aspiration
pressure. This alignment between active movement and aspiration pressure results in an
effective aspiration pressure that can stretch the cell beyond what the aspiration pressure
alone would achieve. However, once reaching the limit of effective aspiration pressure,
the membrane particles start aligning with other elastic forces in the system, causing the
membrane to retract to a point where the aspiration pressure is capable of stretching the
system. At this point, the activity of particles in the membrane reaches equilibrium, leading
to membrane particles rotating along the membrane direction or adopting vibrational
movements.

Starting from the equilibrium of forces, it was possible to define a clear relationship
to determine the elastic properties of a single membrane composed of various particles
connected with springs. The parameter used to define the elasticity of our system was
ρs = d0ks, a quantity valid for both discrete and continuous systems, interpretable as an
elastic density. We compared the input value of ρs in our simulations with the measured
value obtained from the simulation results and found that the difference between these
values is below 1%, validating our simulations. This demonstrates that this method can be
used to map microscopic properties from simulations and compare them with experimental
data.

A potential extension of this cellular model involves a three-dimensional framework.



54 Chapter 6. Conclusion

An unrealistic consequence of the two-dimensional model, as mentioned earlier, is rotation.
This phenomenon is not commonly observed in real cells (TEIXEIRA; FERNANDES;
BRUNNET, 2020) and results from the alignment interaction and from the reduction in the
number of dimensions. The closed-ring structure facilitates system rotation, as particles can
move in loops without resistance. In a three-dimensional system, this type of movement is
less likely, resulting in more realistic cellular activity. Introducing a third dimension to the
model could address the limitation of rotational behavior observed in the two-dimensional
model. The closed-ring structure, which promotes rotation in two dimensions, may be
constrained in a three-dimensional space, leading to cellular activities that align more
closely with the observed behaviors in real cells. This modification may provide a more
accurate representation of cellular dynamics, contributing to a better understanding of
cell behavior in three-dimensional environments. Additionally, exploring the impact of
dimensionality on cellular activities can offer insights into the fundamental differences and
similarities between two-dimensional and three-dimensional cellular systems.

For cellular aggregates, our simulations indicate that the aggregate of cells composed
by multiparticles can be accurately mapped to a rheological model containing intra-cellular
viscoelasticity and inter-cellular plasticity. With this model, we can relate microscopic and
macroscopic properties, such as the strength of adhesion force concerning deformation
length in elastic regimes.

One intriguing observation pertains to the apparent lack of correlation between
cellular adhesion and the speed of aspiration flow. Initially, we expected that cellular
adhesion would function as an internal viscosity (Abbasi et al., 2021). However, our
simulations revealed that adhesion plays no role in the internal viscosity, only in cell
cohesion. This suggests that the overall viscosity of the system is predominantly governed
by cellular mobility (µ), implicit in the basic overdamped dynamical equations. Nevertheless,
in instances where adhesion surpasses the aspiration force, it effectively obstructs the
entire flow. This inhibition prevents any meaningful exchange of neighboring cells, causing
the aggregate to exhibit behavior analogous to that of an elastic tissue.

The obtained result, although atypical, aligns with expectations for our model.
In Figure 7, distinct regions are apparent where membrane particles reach equilibrium,
experiencing neither repulsive contact forces nor attractive adhesion forces with neighboring
particles. Because this adhesion lacks any connection to neighbor exchanges or movement
direction, it doesn’t contribute to friction or viscosity. This characteristic allows cells
to freely exchange neighbors. An extension to this model could involve introducing an
adhesion term inversely related to the alignment between membrane particle positions and
their movement velocities. Such a term could impede neighbor exchanges, taking on a role
akin to viscosity.

The configuration in which the aggregate simulates the characteristics of an elastic
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tissue holds significant relevance, particularly in the realm of medicine, where it can be
analogized to an assembly of tumor cells. Outcomes from our simulations indicate that,
under low pressures, the aggregate manifests a linear response to the applied aspiration
pressure. As the pressure slightly increases, a deviation from linearity becomes evident, sig-
nifying plastic effects wherein cells undergo neighbor exchanges. However, these exchanges
alone are insufficient to facilitate a viscous flow of cells into the micropipette. At higher
pressures, the adhesive forces among cells fail to sustain aggregate cohesion, resulting in a
visco-plastic flow of cells.

The delineation of these three distinct regimes, if validated in actual cellular
contexts, holds promise for application in experiments aimed at detecting metastatic risks
in tumors. In practical terms, considering a real sample of tumor cells in a micropipette
aspiration experiment, a linear response to pressure akin to blood pressure suggests a
relatively low risk of current metastasis through the bloodstream. Conversely, a nonlinear
response may serve as an indicator of heightened risk, implying an increased likelihood of
metastasis through the bloodstream.

A limitation of our cellular aggregate model is the computational burden imposed by
the number of cells and simulation time. As these are extensive cells, a simple simulation
with 500 cells, each composed of 50 particles, results in 25 000 particles. Due to the
sensitivity of the potentials, a considerably small time step is required to prevent numerical
divergences. This posed a significant challenge in conducting more in-depth analyses, such
as investigating the relationship between micropipette size and cell size.

A suggestion for future analyses is to employ a model that omits consideration
of cell shape, allowing for simulations with a significantly larger number of cells. By
foregoing the inclusion of cell morphology, computational efficiency could be improved,
enabling the exploration of a broader parameter space. This approach may facilitate a
more comprehensive investigation into factors such as the influence of micropipette size
and cell size on the system’s behavior. Despite the simplification, such a model could
still provide valuable insights into the fundamental dynamics of cellular aggregates in the
context of micropipette aspiration.
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