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ABSTRACT

Verification and testing are essential processes in the development of a product. They
not only identify issues, but also assure that the product meets the desired behavior. The
present work describes a test system to test an embedded vehicular connectivity unit which
has several interfaces, including CAN/CAN-FD, RS232, Bluetooth Low Energy, Wi-Fi,
and V2X protocols. The objective of the work is to ease debug of the device under test,
testing different features and making the whole validation process more agile for new
test cases and less time consuming for routine operations. The test system consists of a
software coded in Python that runs in the device under test and a modular test fixtures
available in the market. The latter was programmed during this work in a proprietary
language, CAPL. The developed test system successfully includes all features initially
proposed and was made to be further enhanced. Naturally, new requirements were added
as the work progressed. Generating new objectives is essential to keep up the continuous
pursuit for excellence and fundamental to the system outside of the scope of this bachelors
thesis. So far, the intuitive and friendly interface, the correct management of the system
resources, and the implementation of tests, makes the Python software and test fixtures,
both combined and independently, reach beyond initial expectations.

Keywords: Vehicular connectivity, protocol validation, test automation.





RESUMO

Verificação e testes são processos essenciais no desenvolvimento de um produto. Não
só identificam problemas, mas também asseguram que o produto satisfaz o comportamento
desejado. O presente trabalho cria um sistema de testes para um sistema embarcado de
conectividade veicular que tem várias interfaces, incluindo os protocolos CAN/CAN-FD,
RS232, Bluetooth Low Energy, Wi-Fi e V2X. O objetivo do trabalho é facilitar a depuração
do dispositivo, testando diferentes características e tornando todo o processo de validação
mais ágil para novos procedimentos de teste e menos demorado em operações rotineiras. O
sistema de teste consiste em um software codificado em Python executado no dispositivo e
uma jiga de testes modular disponível comercialmente. Este último foi programado durante
este trabalho numa linguagem proprietária, CAPL. O sistema de teste desenvolvido inclui,
com sucesso, todas as características inicialmente propostas e foi elaborado prevendo
futuras melhorias. Naturalmente, novos requisitos foram acrescentados à medida que o
trabalho avançava. A geração de novos objetivos é essencial para manter a busca contínua
por excelência e fundamental para o sistema fora do âmbito deste trabalho de conclusão de
curso. Até agora, a interface intuitiva e amigável, a gestão correta dos recursos do sistema
e a implementação de testes, torna o software Python e a jiga de testes, tanto combinados
como independentes, acima das expectativas iniciais.

Palavras-chave: Validação, Sistema de Testes, Conectividade Veicular.





CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . 17

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 The Vector Validation Solution . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 CANoe and CAPL Overview . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Python and Generic Coding . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 V2X Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 DEVELOPMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Mini Test System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.1 Testing CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Qualification Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Template Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 QSW Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 V2X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Intersection Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Vehicle Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Special Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Virtual V2X Environment Interface . . . . . . . . . . . . . . . . . . . . . 40

4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

APPENDIX A - QSW EXAMPLE USAGE AND COMMANDS . . . . . 47

APPENDIX B - MTS BEFORE THE QSW . . . . . . . . . . . . . . . . 53

APPENDIX C - BLUETOOTH DONGLES WITH THE QSW . . . . . 55

APPENDIX D - MTS V2X INTERSECTION .CAN FILE . . . . . . . . 57

ANNEX A - FIRST ANNEX TITLE . . . . . . . . . . . . . . . . . . . . 61
A.1 DENM Cause Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



LIST OF FIGURES

1 ProCV Gen2 - Vehicular Connectivity Unit . . . . . . . . . . . . . . 19
2 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Current European V2X standards . . . . . . . . . . . . . . . . . . . 24
4 Mini Test System (MTS) with ProCV Gen1 connected . . . . . . . . 25
5 MTS Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 MTS Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . 27
7 MTS CAN test interface . . . . . . . . . . . . . . . . . . . . . . . . 28
8 MTS Power Supply test interface . . . . . . . . . . . . . . . . . . . 30
9 QSW Python Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10 MTS V2X node architecture . . . . . . . . . . . . . . . . . . . . . . 36
11 MTS V2X simulated car close-up . . . . . . . . . . . . . . . . . . . 39
12 MTS V2X input interface . . . . . . . . . . . . . . . . . . . . . . . 40
13 MTS V2X message trace . . . . . . . . . . . . . . . . . . . . . . . . 41
14 MTS V2X simulated intersection close-up . . . . . . . . . . . . . . . 42
15 QSW Server raw help text . . . . . . . . . . . . . . . . . . . . . . . 47
16 QSW Client in commander mode listing the available managers and

CAN0 scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
17 QSW Client in commander mode executing help . . . . . . . . . . . 49
18 QSW Client in supervisor mode . . . . . . . . . . . . . . . . . . . . 50
19 QSW Server executing the start up sequence . . . . . . . . . . . . . 51
20 QSW Server executing the stop sequence . . . . . . . . . . . . . . . 52
21 MTS CAN0 sub-network . . . . . . . . . . . . . . . . . . . . . . . . 54
22 mgmtBT raw help code . . . . . . . . . . . . . . . . . . . . . . . . . 56





LIST OF ABBREVIATIONS

DUT Device Under Test

QSW Qualification Software

MTS Mini Test System

V2X Vehicle-to-everything

GPIO General Purpose Input Output

IMU Inertial Measurement Unit

BT Bluetooth

BLE Bluetooth Low Energy

DENM Decentralized Environment Notification Message

CAM Cooperative Awareness Message

SPaT Signal Phase and Timing





19

1 INTRODUCTION

The development process of a product is usually accompanied by constant testing and
verification, not only to promptly identify and solve issues in the work, but also to ensure
that the product meets the desired behavior. This continuous checking consists of different
tasks and may use different strategies. The objective of the present work is to create a
system that automatically tests simple features of the target product, identifying commonly
occurring problems. It allows professionals who perform these tests to focus on more
detailed approaches and to broaden the scope of the whole validation procedure.

The Device Under Test (DUT) is a vehicular connectivity unit with several communi-
cation interfaces (FRIEDRICHSHAFEN, n.d.). It was developed to be a telematics central,
exchanging information with different peripherals, communicating with external devices,
and interfacing with the internet. It operates with a Linux kernel and a firmware developed
within the company. The test routines are compatible with different combinations of
firmware and hardware versions. The second hardware version may be seen in Figure 1.
This device is still under development, by ZF Friedrichshafen AG, and the test system aims
to improve the workflow of the validation team assigned to this DUT of this company.

Figure 1: ProCV Gen2 - Vehicular Connectivity Unit

Source: Author

As part of this work, a software that runs on the DUT, the Qualification Software
(QSW), was developed from scratch. It manages test procedures, executes internal tests,
collects system data for analysis, and logs procedures. The QSW is primarily programmed
in Python, but also makes use of libraries coded in C++ for low level access and interface
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manipulation. Although most of this software was developed by me, there were instances
of paired programming. These are specified in Subsection 3.2.2.

Most of the DUT interfaces are tested by communicating with an external system
specifically designed to interact with the DUT, the Mini Test System (MTS). This system
may also perform independent tests on DUT features. The MTS hardware selection is not
part of the scope of this work, being briefly explained in Section 2.1. The software that
operates this test system is called CANoe. This work includes the development of program
blocks and interfaces that run inside CANoe to test the DUT according to its requirements,
which was done entirely by me.

The predefined hardware of the MTS is a collection of validation kits developed by
Vector Venture Capital GmbH, centralized in a server module by the same manufacturer. It
communicates through USB with a computer where an instance of the main software that
controls the whole Vector system, CANoe, runs. In an attempt to clarify the boundaries
of QSW and to provide visual description of the MTS, Figure 2 depicts the interaction
of CANoe with the computer that runs it, its interface to Vector Kits, the connection of
Vector Kits to the DUT (which may happen in different protocols), and finally the loading
of QSW into the DUT.

Figure 2: System overview

Source: ZF Friedrichshafen A.G.
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2 LITERATURE REVIEW

The first section of the Literature Review (Section 2.1) describes the MTS hardware,
protocol configuration, and how to setup the CANoe environment. Although the last two
are topics are specific to the DUT and included in the scope of this work, they were done
by following a manual given by the manufacturer. Therefore, they are not described in the
Implementation chapter, instead, a generic configuration procedure is explained here.

All algorithms developed specifically to test the DUT with the MTS are executed by
CANoe and were coded in a proprietary language called CAPL. Section 2.2 describes how
it handles protocol interfaces and structures the system. The section also briefs on the
language and explains how tests are performed in a Vector environment.

In the context of object oriented programming, class inheritance is a common practice
that aids not only in organizing the project and keeping code generic, but also eases most
debug procedures. As the QSW uses inheritance in its core, the Section 2.3 gives an
overview on how this is dealt in Python.

Section 2.4 gives an overview of Vehicle-to-everything (V2X) communication, giving
examples of the most common message types and what kind of information is exchanged.
In real use cases, the DUT would be included in a V2X environment and assigned a specific
role.

2.1 The Vector Validation Solution

The Vector solution is designed for analysis and testing of DUTs, aiding from de-
velopment planning to system-level test. A validation setup has a CANoe instance at
its center, commanding a number of connected Vector Kits. These pieces of hardware
have distinct capabilities and multiple protocol interfaces, supporting different protocol
versions depending upon the model. When testing a DUT with multiple interfaces simulta-
neously, communication is usually centralized in a single "server" kit, so that the computer
where CANoe is running has to connect with only one hardware. This approach not only
minimizes cabling to the computer to a single USB, but also allows the Vector Kits to
communicate internally, to automatically synchronize systems, and to combine a single
timestamp among all test interfaces.

Vector products are event driven, which means that all information exchanged internally
is carried by events, including messages sent between interfaces and configuration done at
code level. As events may be queued or delayed for some reason, they are all loaded with
a timestamp when created, guaranteeing proper tracing for most of algorithms.

Once the test system is physically interconnected, the hardware must be mapped
in software. All settings and all used algorithms are saved into a single file, called a
"CANoe configuration". As part of this configuration, the real hardware is mapped to a
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virtual network, elevating the abstraction level and facilitating any test system hardware
enhancements. The virtual network interfaces may be assigned individually to a specific
port of the real hardware. The created virtual interfaces are all connected to the same
virtual network, but they are grouped by protocol into sub-networks, as a way to organizing
the test system.

Hardware can be directly configured prior to test execution through the CANoe in-
terface. During test execution, there is the possibility to trigger events that configure
the virtual interfaces. These take precedence and will override hardware settings. De-
pending on the interface type, different settings are available, such as data speed, resistor
terminations, checksum, protocol version, master-slave role, and others.

2.2 CANoe and CAPL Overview

In CANoe, any event within the virtual network may be processed by a node, which
may also generate events on its own. Nodes are independent code blocks that run in
a specific sub-network. Each node executes its algorithm in parallel and may have an
associated interface, with which the user can interact while the test is in execution. There
is no event routing within the virtual network, which means that it’s possible to configure
any node to react to any event, even if they belong to different sub-networks.

CANoe offers standard nodes that do not require additional programming beyond some
initial setup. Standard nodes execute simple tasks like tracing messages of a given type
or generating user configured messages by the click of a button or by a set period. More
complex nodes, adapted to the target project, are added just like an ordinary node, but must
be programmed by a developer using CAPL, a C based proprietary language that is event
driven just as CANoe.

The main program file of a developed node is a .can file. This file may include a
number of additional .cin files, which act as function libraries for the node. These included
files may include additional .cin files, cascading inclusions, allowing the developer to
avoid code repetition, and increasing project flexibility. The events handled in these nodes
range from an incoming message to a modification in a system variable. The latter is an
information defined in the CANoe context which is used mainly to store information and
sync the nodes with either other nodes or their interfaces.

The common approach in programming interfaces is to create a system variable and
then associate its value with a configurable field in a GUI. If a programmed node requires
an interface, it must also be designed by the developer. CANoe offers a tool for quickly
creating a GUI and associating its buttons and fields with a system variable.

2.3 Python and Generic Coding

Python is an interpreted high-level programming language that has been consistently
gaining popularity in the last decade (GUTTAG, 2016). The Python community encourages
programmers to properly create documentation and to follow best practices, contributing
to conventions universally accepted across applications. Python Enhancement Proposals
(ROSSUM; WARSAW; COGHLAN, 2001) serve as reference documentation for the commu-
nity and as a channel for describing the rationale for new features in the programming
language.

Python is dynamically-typed, garbage-collected that contains many options for any
programmer. Although inside the interpreter Python uses an object oriented structure,
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the scripts can also be coded using other programming paradigms, including structured
and functional programming. Currently Python offers a wide range of libraries and open
source projects that can be easily included in a project to ease development. The number of
available libraries continue to expand as a result of the incentive to using modules. Modules
allow for sharing open-source libraries among the members of the Python community,
making a cumulative collection of reusable and distributable code.

Python does not natively use interfaces, but to ensure that a certain class has the
required set of methods to operate, class inheritance can be used. The child class will not
just have all the methods and properties of the parent, but it may overwrite any method
or property of the parent with new instructions or objects. This could be used in a similar
way as an interface if, for example, the parent class is programmed with a method called
connect that raises an exception when used. The connect method could only be used if the
child class overwrites it with specific code.

2.4 V2X Communication

Vehicle-to-everything (V2X) is a class of communication that includes any transmission
from or to a vehicle. The DUT communicates through the IEEE 802.11p standard using
European message types (INSTITUTE, n.d.). The standard gives much freedom to message
structure and is generic in the higher layers of the protocol. Therefore, complementary
standards were used to further specify how the DUT implements V2X.

When using the IEEE 802.11p standard in Europe, it is possible to select different
communication channels and use personalized message types. Still, just the four most
used types are tested with the tools developed in this work. These messages are used by
a vehicle to communicate to other vehicles or road infrastructure. The message types
described below are carried by a Geo-Networking layer that contains the location of the
transmitter, its address and its size. If the Geo-Networking message does not carry any
content, it is interpreted as a beacon. How the V2X standards are structured in Europe can
be seen in Figure 3.

A Cooperative Awareness Message (CAM) is used mainly to broadcast vehicle actions,
such as lane changes, future trajectory, and blind spot detection (ETSI, 2019). Yet, they
can also be used to forward any type of data within V2X stations, allowing for complex
platooning operations. These messages may also contain any type of vehicle information,
informing from the hazardous cargo to the steering wheel angle.

The road infrastructure transmits MAP messages to vehicles, defining topological
aspects of lanes, intersections, and road segments (ISO, 2019). MAP messages also specify
the relationships of all circumstances of the road, allowing vehicles to safely map the
traveling environment.

SPaT stands for Signal Phase and Timing, which is a message type that broadcasts
cyclical behaviors, like the status of traffic lights or barriers. They are used not only to
organize traffic when platooning, but also in vehicle control systems to predict if the car
should be slowing down to an incoming change in the traffic signal or if it will have time
to safely cross an intersection.

Decentralized Environmental Notification Messages (DENM) are triggered to provide
information about a specific driving environment event or traffic event to other stations.
The events can be of any kind, as long as it has an impact in traffic. Road construction, for
example, could have a V2X capable road side unit informing the restricted areas and a new
speed limit while the repairs are ongoing. Another possible usage is to have an ambulance
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Figure 3: Current European V2X standards

Source: SWARCO, Amsterdam Intertraffic 2014

in route to a hospital transmit DENM messages to inform the special circumstances and
ask for right of way.
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3 DEVELOPMENT

The QSW and MTS were developed to be counterparts, nonetheless they may inde-
pendently execute simple routines. The DUT interface test coverage and the test cases
are discussed in a separate section for each counterpart. These do not go in depth in the
actual test procedures, as that would require lengthy descriptions. Instead, few modules
are selected as examples to illustrate generic operation, with emphasis in describing the
overall test system structure. The MTS fully connected to a DUT running an instance of
the QSW may be seen in Figure 4.

Figure 4: Mini Test System (MTS) with ProCV Gen1 connected

Source: ZF Friedrichshafen A.G.
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Initially MTS and QSW were testing tools, rather than test case systems. As a result,
the user had to create initial parameters based on test requirements and manually input
them. After the implementation of this work, the system requires very little input from
the user, yet an operator must still check if the test output matches what is expected. With
that being said, the MTS and QSW were built to allow a higher level of automation, as test
cases may be implemented at any time by the simple addition of a single script or node.
Future developments of the QSW and MTS will include these features.

The system tests the following DUT wired interfaces: 2x CAN, 2x CAN-FD, 2x RS232,
1x K-Line, 1x LIN, and 2x Broad-Reach (Eth). The wireless protocols tested are V2X,
Wi-Fi, GSM/Cellular, Bluetooth 4.0 / BLE, and GNSS. Further feature tests are done
regarding the DUT’s 4 analog inputs, 4 digital outputs, power supply, device memory, and
CPU. As the product is still in development, current protocol versioning supported and
additional interface specifications are classified. When using the QSW, some additional
hardware is needed to fully use the system: a GPS antenna for GNSS, an access point for
Wi-Fi, an available cellular network for GSM, among others.

3.1 Mini Test System

The CANoe configuration of the Mini Test System includes eight sub-networks: CAN0,
CAN1, CAN-FD0, CAN-FD1, V2X, LIN1, Eth1 and Eth2. The MTS is also connected with
the DUT through the GPIO and RS232 interfaces. These are not treated as virtual interfaces
by CANoe, but as "sensors", due to the nature of the hardware used. Communication with
sensors is handled in the MTS directly through system variables.

Having no associated virtual interface, the nodes that interact with RS232 and GPIO,
as well as the ones that perform system and power tests, do not belong to a specific virtual
sub-network. They were added to the CAN0 sub-network because every node must be in a
network, but do not handle any CAN messages. Figure 5 shows the CAN0 setup and the
project configuration tree-view. All nodes inside the "Nodes" category were programmed
for this setup. Generators are also nodes, but are part of CANoe so are categorized
differently. Databases are files that map the network, describing possible messages and
their fields. Databases define communication parameters with the DUT.

Whenever the DUT communicates in a way that the MTS was not expecting, an error
event is triggered. This event carries the message information and the error may be easily
seen in CANoe’s trace window, as the event would be marked in red. Failures range
from wrong electrical levels at the physical layer to a format that does not conform to
the database. As this checking is done automatically by CANoe, much can be said of the
DUT simply by plugging it to the MTS and exchanging few messages. The databases used
in the MTS were configured during this work, yet they are to be provided by the DUT’s
developers once the product enters its final stages as part of the test requirements. It is a
concern of this work to complete, but not overreach, the given specifications.

The measurement setup is a CANoe configuration that routes messages and events to
specific blocks. The MTS measurement setup can be seen in Figure 6. The leftmost block
selects between online and offline operation. Online means communication with the DUT
and offline means reading a log file as an input. The offline option may be used to test
specific scenarios with the MTS or emulate an interaction with the DUT, which is basically
used to verify the test system. This block outputs the events that occur in the simulated
network. The events are filtered by the blocks in the middle of the image, according to
interface or origin (a node or the DUT), and then delivered to the rightmost blocks.
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Figure 5: MTS Simulation Setup

Source: Author

Figure 6: MTS Measurement Setup

Source: Author

The Statistics and Trace blocks are further explained in the next subsections. The
Logging block, disabled in Figure 6, generates a log file every time the test system runs.
This logging is not only proof of the DUT’s behavior, but may also be used by the MTS in
offline mode to evaluate a scenario step by step. Logging is a standard feature applied in
any official test procedure and is essential when an issue is encountered.

All blocks shown in Figure 6 were configured during this work, but are native to CANoe
and required little adaptation. The nodes displayed in Figure 5, and all other sub-networks,
were all programmed during this work, with the only exception being Generator nodes.
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Figure 7: MTS CAN test interface

Source: Author

Generator nodes can trigger custom messages at demand, but only manually, so they are
rarely used in the MTS.

Prior to implementing QSW, MTS controlled the DUT using SSH via RS232 interfaces.
A node was developed to authenticate the session, trigger command at the push of a
button, parse the command outputs, and gather system data automatically. Although well
constructed and of extreme significance at the time, this feature was deprecated once the
QSW was created, as it was no longer used for testing. Some of the nodes code was instead
reused to pass commands to the QSW, in a higher abstraction level than before. The MTS
still carries an interface for the user to input a string over the RS232 interface and receive
its output. Appendix B gives and insight on how the system was at the time.

3.1.1 Testing CAN

The first to be implemented, CAN/CAN-FD tests incorporate a simple and effective
interface, which will help explain the manual usage of the MTS. As seen in Figure 7, the
interface consists of three windows used in parallel for testing.

The window used by the user to control the procedure is at the right hand side of the
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image. There, the CAN interfaces are shown, each with its own configuration. When
enabling the Sender, the corresponding interface will start sending messages with a random
payload length and content. The message ID is also randomized, but must be within the
range determined at the bottom of the window. The Ranger similarly sends messages, but
instead the message IDs are incremented by one in every new message, looping back to
the minimum ID configured once the maximum ID is reached. Whenever the Receiver is
enabled, any messages with even IDs will be answered with a message with the next ID
and the same payload.

The test approach with CAN follows the same guidelines as the QSW, introducing
behaviors to the interface. The message types used by DUT are explicitly defined in the
included database, but they are not yet fully defined. Once they are, the new database should
be included in the CANoe configuration and allow more proper tests to be performed. In
the meantime the behaviors introduced are sufficient for testing.

Whenever a DUT interface mismatches the configuration of the connected MTS inter-
face, CANoe triggers an error event. The automatically generated error log also gives some
insight on how the DUT is configured, allowing easy debug. Some other CANoe features
are used in tests, mostly to perform stress tests. The introduction of message bursts in the
bus is especially useful, which is used to check how the DUT behaves with high bus usage.

The statistics windows is seen at the left hand side of Figure 7. The data can be used
to monitor the progression of any ongoing operations. The shown metrics can be used to
quickly evaluate the DUTs state.

The message trace window, at the bottom of the interface, gives a detailed overview of
what is happening at any given time and may be used to view the communication history.
Filters may be applied and messages can be grouped chronologically, by message ID or
other classifications. Any error frames appear in red, making it easy to track protocol
breaches or wrong message formats. To further enhance error identification, handlers were
programmed in the CAN nodes to alert whenever an incoming message is valid by the
protocol, but unexpected by the test procedure.

Additionally, there is the Write Window, a window used by all CANoe nodes to write
messages. In simpler terms, when a node uses a "print" command, the given string is
shown in the Write Window and automatically logged.

3.1.2 Power Supply

Power to the DUT can be supplied by the MTS, through a configurable internal power
source. The tested device is intended to be a vehicular connectivity unit, so the input power
includes common car battery voltages, ranging form 9V to a maximum of 36V. Power is
regulated internally to 12V and is fed through three wires: OUT1 is the positive terminal
to the device, OUT2 connects to the ignition of a real vehicle for signaling power on, and
the third wire connects to ground.

Test with the MTS is done by defining a profile in the power supply CANoe interface.
Profile 0 applies a square wave to the output with a period set by the user. Profile 1 ramps
up the Voltage with a discrete number of steps. More profiles were to be added to the MTS,
however development faced an insurmountable obstacle: the current hardware cannot
change output voltage faster than 100V

s .
The max Voltage rate is even lower when the DUT is plugged in the system. This

limitation restricts tests that could be done with other profiles (e.g. applying a sinusoidal
waveform), therefore development was halted until the MTS power supply module was
upgraded. The implemented profiles cannot verify the device behavior in power surges, but
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Figure 8: MTS Power Supply test interface

Source: Author

perform well for testing maximum and minimum operation voltages. This limitation also
distorts the square wave set by Profile 0 into a series of trapezoids and the steps generated
by Profile 1 into a series of ramps.

Aiming to follow the correct procedures, the output voltages of the MTS were measured
and, once it was verified that the set Voltage differed from the real output, a control loop was
implemented to compensate any errors. OUT1 is controlled by a proportional integrative
loop, having the integral portion of the controller saturate at a defined level to avoid windup.
As the error in OUT2 was similar to OUT1 and given that when following the implemented
profiles both outputs are set to the same voltages, OUT2 is controlled in open loop that
simply mimics OUT1.

The MTS Power Supply Test Interface may be seen in Figure 8 and through it the
controller parameters may be set as desired. The current status of the power supply relays
(green circles in the image) and levels of OUT1 and OUT2 may also be seen beside
the controller settings. Metrics relevant to most test cases can be seen at the right side
of the image and be reset manually through a button at any time. At the bottom left
corner of the interface, the automatic test procedure may be configured and started. The
right hand side displays whether the DUT has booted and whether the SSH connection
could successfully login, followed by the number of times the DUT initiated a power-up
sequence since testing began and the timestamp of the last received message in any of the
RS232 interfaces. This information is used to implement test cases that generate a printed
overview in CANoe once complete. This overview also registers a failure with a timestamp
in case a power-down failure occurs during execution.

Unfortunately some interfaces experience a bug that makes the field names be covered
by the fields, as seen in Figure 8. This happens when the computer makes a resolution
change or the interface is resized. Currently the only workaround is to edit the interface
and save it again using the new resolution and size.
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3.2 Qualification Software

The Qualification Software (QSW), as mentioned before, is a collection of Python
scripts that run in the DUT. Therefore it is interfaced with a command line terminal, same
as most embedded systems based in a Linux kernel. Each script has a determined standing
in the QSW, following a hierarchy. The top level of the system is a QSW Server with any
number of QSW Clients connected. They communicate through internal sockets and use
threading to execute tasks in parallel. Under the QSW Server, there are several Interface
Managers, one for each interface type of the DUT.

The QSW Server imports and initializes all available Interface Managers at startup.
Then it processes given commands to execute tests, start metric logging, parameterize
interfaces, and other actions. Before executing any command received from a QSW Client,
the QSW Server executes a command sequence defined in a text file. These commands are
typically used to configure interfaces or automatically start logging, but could also include
testing or additional configuration to be executed when the QSW Server starts.

Upon running an instance of QSW Client, the user is prompted to choose between two
modes of operation, one for supervising and another for giving commands. The supervisor
mode will periodically update display information on the selected interfaces of the DUT
and QSW modules, monitoring the system while in operation. Although the QSW Client
in supervisor mode has a fixed refresh rate of 100ms, the information displayed is usually
updated more slowly and asynchronously. The viewed data is primarily generated by the
Managers and sent to the QSW Client, each one through a different thread. The Managers
could be configured to update data as frequently as the QSW Client refreshes, however
this would consume more DUT resources and compromise critical tasks, like maintaining
stable communication across the DUT interfaces.

Commanding the QSW through a QSW Client command line was designed to be
intuitive to experienced Linux developers, as the syntax is often similar. Whatever may be
the QSW state, one could enter "help" to get a list of available commands. Managers, test
procedures, and interface behavior configuration also have a detailed description which
may be accessed through a "help" command. In all, more than 50 commands are included,
some of them being explained in this section. A few usage examples and outputs from
"help" commands may be seen in Appendix A. QSW Client connections in command mode
may also be logged, including commands and their outputs, by giving the "logSimple"
command at QSW Server start up. Command history is essential to determine if the state
of the DUT metrics matches what is expected.

The main reason driving the development of the QSW to follow this design was the
need to run the software in the background of the DUT operating system while being
able to easily control and monitor tests. If the QSW Server were to be opened through a
terminal and not be assigned as a background process, the server would terminate in the
same instant the terminal closes, interrupting any ongoing tests and truncating metrics logs.
With the current approach, the QSW Server may continue to run even if the DUT is left by
itself. To make any changes, one would simply connect a computer to the DUT, open a
terminal and run the QSW Client.

3.2.1 Template Scripts

The classes defined in template scripts do not become objects in the QSW, instead,
they are used as base classes by other scripts. Like so, the templates define only common
methods and instances, that all scripts of the respective type must have. A specific Interface
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Manager is the top level script of its interface and usually incorporates a configuration
script, some message core scripts, and more behavior scripts. Commands given to the
manager configure and trigger these included scripts.

The Interface Manager template includes two classes. The first is a class for the manager
itself, containing common methods for initializing threads, setting internal objects, and
processing commands. This class also implements a standalone mode of operation, in
which the Interface Manager can be started independently from the QSW with its own
command line. Self-sufficient operation may be useful in stress tests, during which the
DUT should not be burdened with maintaining a whole instance of the QSW.

The second standard class implements a supervisor that by default instantiates a thread
and uses it to periodically update information. The data is available to other objects as
long as those contain the supervisor as a parameter. All Interface Managers have one
supervisor, collecting information about system resources, interface configuration, or
messaging metrics. Each supervisor is responsible for a different set of information, in a
way that even with all supervisors running in a QSW instance, no information is fetched
twice.

Configurators are scripts that configure communication interfaces and setup the environ-
ment prior to communication. They may also be used to identify the current configuration.
Generally the configuration scripts call native DUT commands through the Python subpro-
cess library. Alternatively, configuration may be done through file descriptors serving as
inputs to an interface API. Configurators may include different methods of configuration,
however these are usually encapsulations of the same approach and are mainly included to
test the approach itself, and not the configuration. For example, the Bluetooth Low Energy
interface may be configured by transmitting the configuration directly to the protocol stack,
by using the API, or by manipulating the protocol stack wrapper, but in essence, all of
them are using the same internal bus to apply the configuration.

Aiming to conduct communication using different approaches, the QSW always ex-
changes messages using cores. These are low level scripts that exchange messages using
imported Python packages, Linux commands, manipulating wrappers, internal buses,
among others. All possible means of communication are to be tested, as the DUT’s user
may opt to use any of them. Cores are made to elevate the code abstraction level, in a way
that, no matter the approach, the test script simply imports the desired core and uses send
or receive methods.

As aforementioned, the Interface Managers do not implement formal test procedures,
but instead apply behaviors to a desired interface. Behavior scripts may be enabled to, for
example, answer a determined type of message with another, or periodically send messages
following a predefined pattern.

3.2.2 QSW Modules

Several scripts were developed for the QSW, Figure 9 gives an overview while showing
some information on them. The shape of each module shows which template they follow
and all templates are at the bottom of the image. Blue colored scripts were entirely made by
me, purple ones were made with the help of some team members, while white represents
the ones not developed.

Although the managers were all implemented using the same template, their usage
varies and many have unique features. While this section does not explain the managers
commands in detail, Appendix A contains the raw information of the help command for
some managers that could be used to better understand the managers capabilities. In the
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next subsections, the managers are grouped and described by similarity.
Wired Protocols
As the DUTs firmware is still in development, most of the structure needed to test the

BroadR-Reach (BR), LIN, and K-Line interfaces is not ready. Still their managers were
implemented and can already be used to configure the interfaces. Although most of the
protocol layers cannot be tested, QSW verifies that the protocol stacks are responsive and
can exchange messages.

The situation is different for RS232 and CAN interfaces. Some additional features
were added to the QSW, implementing the counterparts for the tests described in Section
3.1. Consequently, more elaborate standalone tests can be performed, by connecting
interfaces of the same type and enabling different behaviors. The possible test cases could
be determined by inspecting the scripts described in Figure 9.

The second hardware version of the DUT brought significant changes, affecting the
RS232 interface. The elimination of a Redis service used to control the RS232 crippled
coreRS232redis, the only core available that could be used to communicate through the
RS232 interfaces. As a result, RS232 is not currently tested in the latest DUT hardware
version. The SSH connection remained the same thus commanding the DUT through the
MTS was preserved. Additional RS232 cores are being specified to solve this issue.

Wireless Protocols
The Wi-Fi and GSM managers work in a very similar way. Both of them use a stack

implemented in the firmware to connect, disconnect, completely ignore a network, and
configure the interfaces. Both of them do an automatic health check and maintain the device
connected. It is possible to directly pass commands to each protocol stack, increasing
greatly the usage of these managers and allowing flexible operation. Both of them can use
an additional script to ping a selected IP address or URL over the internet, as well as check
latency and packet loss.

mgmtGNSS is misleadingly named. First, it supports only GPS and GLONASS sys-
tems, so it is not an all-purpose GNSS module. Second, Inertial Measurement Unit (IMU)
information comes from the same peripheral as GNSS data, so they were conveniently
combined. This manager gathers data through either Redis or internal sockets and eval-
uates the collected information. Data consistency checks are done automatically, which
alerts through the supervisor of any errors detected in the data. Additional scripts were
implemented to measure the precision of the positioning system, offset, and IMU slip.

The Bluetooth (BT) section of the QSW is the most complex part of the QSW, as it
includes extensive interaction with the protocol stack using the message bus system D-Bus
(FREEDESKTOP, n.d.). Any application that uses Bluetooth will have to be developed by
the user, since the firmware only includes the BT protocol stack. Therefore most of the
code necessary to operate the Bluetooth interface was developed as part of the QSW.

All basic BT 4.2 features are tested by the QSW, including scanning for connections,
pairing, usage of different BT services and some security measures like address blocking.
Bluetooth Low Energy (BLE) is tested extensively using Bluetooth dongles that were
developed specifically to test the DUT with the QSW. They are used to test not only the
communication itself, but also if other protocol definitions are followed, like maximum
number of devices in a connection/piconet and the special notification messages.

The QSW can configure the Bluetooth interface as either a master or slave and also
use a specifically designed protocol to communicate with the dongles and rearrange the
network as pleased. The QSW directly commands the dongles and can program behaviors
like generating a burst of dummy messages in a selected BT channel, all using BT messages.
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Figure 9: QSW Python Scripts

Source: Author
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How the QSW may interact with the dongles is briefly described in Appendix C.
Most of the V2X routines and features are part of the DUT and its version as a final

product, including all V2X protocol layers. Currently, there are no message handles and no
way to control the V2X protocol stack. Therefore, the QSW has limited V2X interaction,
only collecting internal metrics for comparison with the data the MTS retrieves. This
data is collected using the protocol stack API and used to assert system health by the
scriptV2Xmetrics. The MTS is already geared for handling V2X tests, as seen in Section
3.3, relinquishing the need for greater QSW role in the testing of the DUT.

3.2.3 GPIO

The GPIO manager handles digital output and analog input tests. Most test procedures
rely on the readings of the MTS, yet there are some tests that can be done independently
by the DUT. One such example is to plug a digital output and analog input together and
verify that setting the value of the output will cause a different reading on the input. This
test not only checks that the GPIO is responsive to commands, but also verifies its latency.

Once connected to the MTS, the test can be performed with a single channel, allowing
more precise and better detailed results. By combining the MTS and QSW, it is possible to
assert the configured input sampling rate and to check if the output voltages are correct in
different scenarios.

DUT Resource Management and Stressing
The first generation of the DUT was built with an additional Aurix Microcontroller,

responsible for some peripherals, for security measures and to handle some of the main
processor tasks. The second generation of the DUT is equipped with a more powerful
processor and a different system architecture, that does not include the additional micro-
controller. To handle this change, the QSW detects at startup the current hardware and
firmware of the DUT. This information is used to determine which parts of the QSW
should be active and also sets some of the managers behavior. The aurixCommands script
is used when the first hardware version is detected and it translates input commands for
the Aurix Microcontroller as needed.

DUT resources are constantly monitored by the QSW through mgmtSystem. To make
it possible to conduct tests under a defined level of system stress, it can also trigger scripts
to consume processor time or increase internal bus usage. This module does not offer as
many procedures as other parts of the QSW, instead it enhances the other managers by
tracking resource usage and setting the operation conditions of the DUT. Those features
are essential to most tests.

3.3 V2X

The Device Under Test implements V2X communication through a protocol stack
that starts at boot. It answers according to the European V2X standard message types
(INSTITUTE, n.d.) and is configured to generate beacon and CAM messages in a set period.
Although the DUT protocol stack is operational, it is still not ready to interact with other
processes. As there is no way to send or read messages freely, the implemented test
procedures rely in reading protocol stack logs and checking metrics. This is enough to
assert that all included message types are being correctly exchanged.

The MTS receives and decodes V2X messages from the DUT according to the included
database. CANoe automatically validates the structure of the messages against the same
database, alerting if any error is found. The work done in this stage was basically to
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Figure 10: MTS V2X node architecture

Source: Author

download the international V2X CANoe database and adapt it to both the European
Intelligent Transport Systems standard (ETSI, 2010) and the DUT requirements.

The V2X virtual network has the most nodes, with up to 14 depending on the test.
These nodes work together to create a virtual environment used to test the DUT in different
scenarios, where each node represents an unique V2X station. The objective of this setup
is to expose the DUT as closely as possible to a real application situation.

The .can files define the unique station ID, and unique V2X address each node executes.
It also defines the executed algorithm by importing different .cin files. The procedures
programmed in a .cin define whether the node either behaves as a vehicle, as an intersection
controller, or as a generic road-side unit.

Furthermore, each .cin file may include additional .cin files. This architecture allows
multiple nodes to have the same behavior and avoids duplicate code. Figure 10 exemplifies
the node setup using three nodes of different types. The MTS is usually configured with
one Scriptor node, two intersections, and five cars. These and an example test procedure
are covered in the next subsections.

Despite the fact that all nodes sending V2X messages include the file BasicMessage-
Exchange.cin, the node behavior will vary depending on configured message handles
or enabled message types. BasicMessageExchange.cin contains the configurable timers
that cyclically trigger V2X messages and functions to characterize messages up to the
Geo-Networking layer. The specifics of CAM, MAP, SPaT and DENM are configured
in BasicV2X.cin, which uses the CANoe V2X Database API to structure the messages
correctly. The API was altered similarly to the message database, as to fit the European
Intelligent Transport Systems standard and the DUT requirements as well.

BasicV2X.cin has data structures that contain the necessary information to fill every
used field of the V2X messages, guaranteeing that all required data is available. This
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structure defines critical information to the higher layers of the node, like the station
latitude, longitude, and dimensions. The initial configuration usually alters the variables
defined in this structure.

3.3.1 Intersection Controllers

In a real application scenario, an intersection controller broadcasts MAP and SPaT
information about one or more intersections. It directly controls traffic lights and may react
to DENM messages by giving preference to an incoming emergency vehicle. In the MTS
simulated environment, the intersection controllers do not react to messages, instead they
stick to the signaling cycle programmed at startup, periodically sending SPaT and MAP.

Nodes that operate as traffic controllers utilize additional information in their .can files
to determine their position, timing, and design. Traffic controllers use MAP messages to
broadcast their profile to the rest of the system.

As it is not in the interest of the current test procedure to check how the DUT deals
with different intersection architectures, the .can file does not define all fields of the MAP
message directly, instead, it defines a data structure that is later used by a function to
calculate and update all of the MAP message fields. This approach limits the possible
intersection designs, but makes it fairly easy to position a new intersection in the map
while improving code readability. Appendix D demonstrates how the simplest intersection
available in the MTS is defined.

3.3.2 Vehicle Simulation

When a node represents a vehicle, its .can file imports AutoVehicle.cin, which imple-
ments an autopilot to guide the car. The purpose of this layer is to mimic a driver and
it uses a closed loop control system to guide the vehicle from one set of coordinates to
the next. This is done by controlling the steering wheel angle, accelerator pedal, and
other values. Originally the vehicle simply followed a given route, but this approach was
discarded in favor of simulating a more detailed model, a homogeneous box with four
weightless wheels. The detailed model was developed because CAM messages also notify
physics information and the drivers behavior. The transmitted information include if the
brake pedal is engaged, the lateral acceleration of the vehicle, and the aforementioned
values which are used to control the vehicle model.

The physics model is calculated in BasicVehicle.cin, which also sets the data structure
in BasicV2X.cin to values commonly seen in cars. Information like weight, maximum
front wheel angle, and length are defined here to a default value, but may be overwritten
in the .can file if the test requires a different vehicle. This node also handles changes in
system variables during test execution. These variables can be used by the user to take
manual control over the car and guide it through the virtual environment using a game-like
interface. Special messages and other parameters may also be defined, but these will be
covered in Subsection 3.3.4.

The route the autopilot follows is generated by BasicPathfinder.cin. It uses a coordinate
set defined in a .track file to inform the autopilot where to go. This coordinate set represents
a possible route, normally a segment of a real-world road. Once it is close enough to the
destination, the next coordinates are given. At the end of a route, an associated .choice file
is read, which specifies where the vehicle may go next and which routes are connected to
the current route. BasicPathfinder.cin then randomly selects one and restarts the process. If
the .choice file is mapping an intersection with a traffic light, it must guide the vehicle to
the correct lane, matching any defined Intersection Controller information. In other words,
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all autopilots in the simulated environment follow a virtual map made of road segment
coordinates and choices, which include intersection lane specifications.

There are currently 57 road segments with their associated choices in the MTS, mapping
a region of Friedrichshafen, Germany. There is no .track file without an associated .choice,
so all routes lead somewhere and the map is closed. If by chance BasicPathfinder.cin
cannot find the correct files, the vehicle is halted and the MTS operator is alerted.

These .track and .choice files were made through a special CANoe node that does not
belong to the MTS. It uses BasicVehicle.cin and all its imports to create a vehicle that is
manually driven by the user. The operator sets which road segment or choice it is mapping
and clicks on a button to start registering. A coordinate set, speed information and other
data is added every few meters. The distance between points in the files is configured at
generation, normally ranging from 4m to 20m. This means that all files were generated by
manually driving the vehicle through virtual roads.

Nodes that represent a vehicle have handlers for three types of incoming messages.
HandlerMAP.cin uses the information received through MAP messages to determine if the
vehicle is in an intersection. If in an intersection, the vehicle registers its traveling lane and
which traffic light signal it should follow. When receiving a SPaT message while in an
intersection, HandlerSPAT.cin uses the registered signal group the vehicle should follow to
determine if the vehicle can cross the intersection or not. This information is used directly
by the autopilot. Basically, it constantly monitors HandlerSPAT.cin for a red light, upon
which halts the vehicle and waits for a green light to resume travel.

The third implemented handler is HandlerCAM.cin, which constantly monitors all
CAM messages received and track stations that are close to the vehicle. If a tracked object
is in front of the vehicle, this handler will notify the autopilot, which will then halt the
vehicle. Currently the stations that send CAM messages are either simulated vehicles or
the DUT.

To avoid a pair of vehicles that are blocking each other to be forever halted, the vehicle
with greater station ID will remain halted while the other one maneuvers around it. The
maneuvering algorithm is not perfect, so it rarely fails and causes a halt dead-lock. Two
vehicles being in a dead-lock state does not significantly impact the V2X environment,
but they usually do so in the middle of the road, which means that in a matter of hours
all vehicles in the simulation would be queued behind them. To avoid this scenario, the
autopilot will drive the vehicle with a fixed speed for a certain time if the vehicles has
been halted for too long. This means that the simulated vehicle will be forced to pass
through the tracked object blocking its way, which is a preferable approach when all other
alternatives are considered.

The MTS V2X interface has a map window that interprets all V2X messages and
draws shapes in a map to represent them. The background is a real city map, loaded from
OpenStreetMap. Additional shapes can be drawn freely by nodes. In case of a vehicle
node, the shapes are drawn by BasicVehicle.cin, giving a graphic overview of the vehicles
operation. Figure 11 shows a car driving through a street. The cyan rectangle represents
the boundaries of the car model. A thick blue line is drawn between the center of the
vehicle and the autopilot target coordinates. The brownish shape in the background is
automatically drawn by the map window for every V2X station and cannot be removed.
The green circle shows the object tracking range. If an object is in the slice defined by the
green straight lines, it is considered as an object that is blocking the vehicles movement.
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Figure 11: MTS V2X simulated car close-up

Source: Author

3.3.3 Special Nodes

The interfaces do not interact directly with nodes, but rather change system variables
that are used by the nodes. The nodes were made to be configurable through these system
variables and much of their behavior can be set by using them. The Scriptor node was
implemented to manipulate system variables as if it were an user. This feature can be
used to execute routine tests and procedurally control vehicles and synchronize events,
generating cyclical or even random scenarios. The Scriptor node includes different scripts,
including some to trigger DENM messages, or control cars directly.

Each instance (one per node) of BasicMessageExchange.cin constantly monitors all
incoming CAM messages that match a system variable called DUT Address. Whichever
station has this exact V2X address is considered the DUT of the current test by all the other
stations. To simulate a real world communication range, any station that is distant beyond
a determined range from the DUT will never transmit V2X messages.

DUT Address must be defined for the simulated environment to work. By default
the system assigns the address of N01 as DUT Address, making it possible to run the
simulation without the DUT. This behavior is programmed in the .can file, along with
functions that draw the communication range in the map window, as a blue circle around
the DUT even if the DUT is not N01.

The MTS also includes a prototype Barrier Node, which defines a traffic barrier in the
V2X environment. Currently an interface to position and control it is implemented, but the
Barrier Node does not have any algorithm to open or close the barrier by its own.
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3.3.4 Virtual V2X Environment Interface

The MTS V2X interface has three windows for input, as seen in Figure 12. The bottom-
right window controls the prototype Barrier Node explained in the previous subsection.

The window at the bottom-left is used to configure the DENM message to be sent by a
node, which is selected by station ID through the field "Selec". Latitude and Longitude
can be specified in a DENM message to pinpoint the location of the event. If there is a
landslide, for example, the vehicle can send the coordinates of the accident through the
DENM message. If the vehicle itself is the source of the event, for example it being a
police car asking for passage, the DENM can be set to have the same coordinates as the
vehicle by leaving the fields empty. The DENM cause codes defined by the standard can
be seen in Annex A.1.

Figure 12: MTS V2X input interface

Source: Author

The top window seen in Figure 12 lists all available simulated vehicles, in this case,
five. Through this window it is possible to set the period in which each message type will
be sent. If the period is zero, no messages will be sent. If the period is negative one, the
node will disarm the handler and message timer, freeing computer resources. If a period
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is set to the MAP or SPaT message types, the messages will be sent even though a real
vehicle would never do so. This feature is used only for testing and the message content is
the default defined by the European V2X standard, which carries no information.

The speed that the vehicle travels is defined in the .track and ;choice files, but may
be overruled by the speed defined through this interface in the "Speed" column for each
vehicle. Through the circular button at the left part of this column it is possible to force
vehicle speed. While forcing, the autopilot will ignore red traffic lights and will "run
through" any blocking objects.

This same interface window is used to configure the DUT Address and communication
range. Additional switches can enable or disable warnings in the Write Window, used to
log strings as seen in Section 3.1. These warnings are neither critical to the test nor related
to the DUT, they inform of occasional vehicle crashes or when the autopilot has to take a
drastic decision such as exceeding speed to overcome a situation. The purpose of these
warnings is to debug the autopilot. Some warnings also alert of a bad .track or .choice files.

Figure 13 shows the V2X message trace during a test, with all four message types
and an additional message that has only the Geo-Networking layer, identified as a beacon
message. With the shown configuration, messages are grouped by type and address. Once
the message has not been received in a while, it fades out, like both messages from N10.
It is probably out of the communication range. The "Dir" column shows the message
direction in the connected Vector Kit, which interfaces the simulated environment with
reality. Messages marked as Tx were generated inside the simulation and sent by the
Vector Kit. Messages marked as Rx were received by the Vector Kit and forwarded to the
simulated environment.

Figure 13: MTS V2X message trace

Source: Author

The map window shown in Figure 14 and the trace in Figure 13 were captured si-
multaneously. Figure 14 shows one of the intersections of the simulated environment,
where one vehicle is experiencing an engine breakdown, while two others are backed up
behind it. South of the intersection, a fourth vehicle waiting at a traffic light, will move
again on green. The traffic light status is conveniently indicated by the color of the lines
that connect the intersection lanes. Purple lanes are entering, while blue lanes are exiting
the intersection. The purple circle at the bottom indicates the location of the intersection
controller, which is the origin of the V2X messages. Contrary to the vehicles, the system
generates all graphics of intersections in the map window based on the MAP and SPaT
network messages.
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Figure 14: MTS V2X simulated intersection close-up

Source: Author
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4 RESULTS

The Qualification Software (QSW) code is easy to understand and expand by other
developers, as it uses a generic, well documented, Pythonic approach. This is also due
to the usage of templates that divide the software in abstraction layers. By importing a
template, a developer already has what is necessary to integrate custom code into the QSW.

In terms of software quality, the QSW has good performance and does not overuse the
limited DUT resources. When an external library used by the QSW is updated in a new
DUT firmware version, sometimes blocking actions are introduced. They interrupt the
execution of the respective QSW thread, preventing the QSW from stopping completely at
the end of the test. So far, all blocking cases are dealt by using timeouts or Python’s select
package. In such cases, altering the affected core script resolves the issue. By having the
core scripts interfacing QSW’s algorithm and the DUT’s firmware, it is possible to solve
most compatibility issues with a simple and contained fix.

One of the greatest obstacles when coding the QSW was to figure out how to implement
the cores. Being a product still in development, the DUT was prone to constant change and
the available user manuals were often incomplete or outdated. It was often necessary to
investigate the DUT by mapping the firmware or listing the available libraries. It was com-
mon for an approach to find a dead end and for the work to be discarded. Initially, multiple
cores were specified for each interface, but they were often impossible to implement.

Attention to detail was required while developing the QSW, because it had to not only
has to be bug-less, but should execute as many tests as possible while dealing with a bugged
DUT. An example of how meticulousness showed impressive results was when it was
possible to isolate a bug in internal sockets thanks to the QSW System Manager supervision.
It happened that when closing a socket connection, the DUT firmware launched a detached
process to close the socket and, after correctly executing its task, it remained as a zombie
process. While debugging the QSW through the QSW System Manager it was possible to
see this detached process, that was in fact a bug in the DUT firmware.

The MTS uses the Vector solution for testing, which is portable and easily re-configurable.
MTS hardware changes and new protocol configurations could be needed, as the DUT is
still under development and not all requirements are established. On the down side, as the
DUT has several interfaces, managing them all is taxing on the computer that runs CANoe.
This fact is specially relevant during V2X tests, where the virtual environment has to be
simulated with all its stations and physical models. Originally, the physical models were
more complex and gave more information that could be transmitted through V2X. As an
example, more of the MTS system had to be enabled in a single test once CAN and V2X
integration tests were required, this consequently brought a higher demand of data via the
CAN interfaces. As such, vehicle physical models were simplified to free up computer
resources.



44

Most of situations while executing a test routine can be assessed through the CANoe
generated metrics and statistics, which are native to the system. Further information for
analysis is available via node-generated logs, and via warnings that indicate messages that
do not comply with the programmed database. The time taken to program these warnings
in CAPL and to correctly set the databases payed off, as in depth analysis was possible
even after the test ended.

V2X communication is still being developed in the DUT and some problems with
the test procedures originate from the DUT lacking critical features. An example of such
is that, if the DUT has no GPS signal, the V2X protocol stack will not run, even when
geographical position is not relevant to receiving messages. This prevents all V2X tests
to be executed when there is no GPS. The lack of integration between the DUT firmware
and V2X protocol stack is also an issue, because although the DUT can be included in the
virtual environment, it cannot react with the simulated stations. The inability to neither
read nor generate messages limits the number of test cases available.

The autopilot function implemented in the V2X simulation guarantees that the sim-
ulated environment will not enter a dead-lock. Still, the approach taken to solve them
ignores other vehicles and purposely crashes into objects. This solution is enough to
achieve the current requirements, but lacks quality. Enhancing the driving algorithm as to
reduce dead-locks from rare occurrences to nonexistent would be the correct way to deal
with this problem. The time required to implement this solution currently outweighs the
gains for the test system.

The MTS V2X environment and its features, with explicit numbers and operations,
meet all initial expectations, while offering the most impressive interface of the system.
Unfortunately, the map loaded from OpenStreetMap does not always match accurate
coordinates and fails to properly represent road width. This causes some vehicles to appear
to be driving outside the roads, which could be interpreted as an error by someone who is
not familiar with the system.
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5 CONCLUSION

The test system is structured to introduce behaviors instead of directly implementing
test cases. This approach makes it quicker to implement new test cases, as the programming
is done on a higher level. Even so, more complicated procedures require extensive
knowledge on the system, which is not something a good test system should demand of its
users. This issue could easily be solved in the QSW by sticking to the behavioral approach,
but not implementing them as individual object with a thread each, but as methods of an
Interface Manager.

This alternative solution could also solve other difficulties. Having multiple threads
per Interface Manager present shortcomings to synchronize data transmission. While
asynchronous communication packets may prove useful in certain test cases, the majority
of applications would suffer from intensified computational verification and processes.
While the test cases remain at the level of the current one, having complete control over
the QSW is preferable to having more options.

As the QSW interface is a command prompt, it is not as intuitive and appealing as
CANoe. It was noted that most users prefer to click a button in the MTS interface than to
pass commands to the QSW, even with the color coded outputs. Developing a node in the
MTS to pass commands to the QSW through a GUI could improve the systems popularity.

The MTS V2X simulated environment can be used to test the DUT under different
scenarios. It implements a simple and effective algorithm to put the DUT under a simulated
real application. The actions taken by the vehicle where the DUT would be installed are
not programmed in the DUT so far, because the DUT firmware lacks the support to do
so. Yet, the MTS is ready to be used to test such algorithms, the DUT being applied to an
autonomous vehicle or as a connectivity unit for assisted driving. Once the DUT firmware
is completed, it would be possible to implement an algorithm in the QSW to drive the DUT
through the simulated environment, testing more features and reacting to V2X messages.

Not only the MTS, but also the QSW, are meant to be further enhanced as the DUT
is developed and new test cases are defined. So far, the developed system is useful to
the validation team, as they are versatile enough to implement the vast majority of test
cases. The system itself does not increment test coverage, but it allows multiple tests to
be executed in parallel, so the previous test cases were fused into fewer, broader tests that
cover more features. Parallel testing also requires less overall test time.

QSW and MTS usage not only speeds up test procedures, but also helps isolate problems
with the DUT, with its logging and replay features. This grants more time to the validation
team to the develop new tests. Previously, test procedures required constant monitoring,
while using the MTS and QSW requires only occasional attention. In conclusion, the work
is a huge gain to the team, proving that the QSW and MTS are indeed useful testing tools.
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APPENDIX A - QSW EXAMPLE USAGE AND COM-
MANDS

This appendix shows usage examples of the QSW and some raw code.

Figure 15: QSW Server raw help text

Source: Author



48

Figure 16: QSW Client in commander mode listing the available man-
agers and CAN0 scripts

Source: Author
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Figure 17: QSW Client in commander mode executing help

Source: Author



50

Figure 18: QSW Client in supervisor mode

Source: Author
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Figure 19: QSW Server executing the start up sequence

Source: Author
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Figure 20: QSW Server executing the stop sequence

Source: Author
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APPENDIX B - MTS BEFORE THE QSW

Before the creation of QSW, MTS used SSH over RS232 to control the DUT. As
many nodes and processes were competing for the same SSH connection, it was necessary
to structure access and organize the nodes. Figure 21 gives an overview of the CAN0
sub-network, which contained the RS232 than effectively made the communication and all
nodes that did not belong to a sub-network specifically.
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Figure 21: MTS CAN0 sub-network

Source: Author
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APPENDIX C - BLUETOOTH DONGLES WITH
THE QSW

Figure 22 shows the raw code behind of the help command of mgmtBT. It hits on the
usage of the manager with the Bluetooth Low Energy dongles developed to test the DUT.
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Figure 22: mgmtBT raw help code

Source: Author



57

APPENDIX D - MTS V2X INTERSECTION .CAN
FILE

/*@!Encoding:1252*/
includes
{

#include "..\BasicNodes\BasicTrafficLight.cin"
}

variables
{

int64 stateGreenTime[4] = { 2000,0,0,0 };
int64 stateYTime[4] = { 3000,0,0,0 };
int64 stateRYTime[4] = { 2000,0,0,0 };
int64 allRedTime = 5000;

}

void configureTrafficLight()
{

char buffer[10];
int intCounter, sgCounter;
double intersectionAngle = -0.3;
double laneAngle;
double relativeX = 800;
double relativeY = 300;
double laneLength = 2000;

laneAngle = PI/2;
for(intCounter=0 ; intCounter < elCount(intersec) ; intCounter++ )

for(sgCounter=0 ; sgCounter < elCount(intersec[intCounter].sg) ;
sgCounter++ )

intersec[intCounter].sg[sgCounter].currentState = -1;

station.Dynamics.latitude = 47.674810;
station.Dynamics.longitude= 9.498574;
station.Info.ID = 16;
thisMAC[5] = station.Info.ID;
snprintf(buffer,elcount(buffer),"TL%d", station.Info.ID);
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strncpy_off(stationName,0,buffer,10);
station.Info.mobileOrStationaryFlag = 0; // 0 = RSU, 128 = Vehicle
station.Info.stationType = 15;

//==============================================================
// Northern Intersection
//==============================================================

intersec[0].lat = 47.674710 * 1e7;// Latitude of Traffic Light Center (
Position)

intersec[0].lon = 9.498840 * 1e7; // Longitude of Traffic Light Center (
Position)

intersec[0].laneWidth = 350; // Lane width in cm
intersec[0].speedLimitType[0] = 0;
intersec[0].speedLimitValue[0] = 0;
intersec[0].numberOfLanes = 4;
intersec[0].intersectionIDoffset = 0;

intersec[0].lane[0].X = relativeX*cos(intersectionAngle) + relativeY*sin
(-intersectionAngle);

intersec[0].lane[0].Y = relativeX*sin(intersectionAngle) + relativeY*cos
(-intersectionAngle);

intersec[0].lane[0].angle = intersectionAngle + laneAngle;
intersec[0].lane[0].length = laneLength;
strncpy(intersec[0].lane[0].dir,"01",3);
strncpy(intersec[0].lane[0].man,"000",4);
intersec[0].lane[0].id = 10;

intersec[0].lane[1].X = -relativeX*cos(intersectionAngle) + relativeY*sin
(-intersectionAngle);

intersec[0].lane[1].Y = -relativeX*sin(intersectionAngle) + relativeY*cos
(-intersectionAngle);

intersec[0].lane[1].angle = intersectionAngle + laneAngle;
intersec[0].lane[1].length = laneLength;
strncpy(intersec[0].lane[1].dir,"10",3);
strncpy(intersec[0].lane[1].man,"100",4);
intersec[0].lane[1].id = 11;
intersec[0].lane[1].con[0].lane = 20;
intersec[0].lane[1].con[0].signalGroup = 1;

intersectionAngle += PI;

intersec[0].lane[2].X = relativeX*cos(intersectionAngle) + relativeY*sin
(-intersectionAngle);

intersec[0].lane[2].Y = relativeX*sin(intersectionAngle) + relativeY*cos
(-intersectionAngle);

intersec[0].lane[2].angle = intersectionAngle + laneAngle;
intersec[0].lane[2].length = laneLength;
strncpy(intersec[0].lane[2].dir,"01",3);
strncpy(intersec[0].lane[2].man,"000",4);
intersec[0].lane[2].id = 20;
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intersec[0].lane[3].X = -relativeX*cos(intersectionAngle) + relativeY*sin
(-intersectionAngle);

intersec[0].lane[3].Y = -relativeX*sin(intersectionAngle) + relativeY*cos
(-intersectionAngle);

intersec[0].lane[3].angle = intersectionAngle + laneAngle;
intersec[0].lane[3].length = laneLength;
strncpy(intersec[0].lane[3].dir,"10",3);
strncpy(intersec[0].lane[3].man,"100",4);
intersec[0].lane[3].id = 21;
intersec[0].lane[3].con[0].lane = 10;
intersec[0].lane[3].con[0].signalGroup = 1;

intersec[0].numberOfSG = 1;
}
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ANNEX A - FIRST ANNEX TITLE

Annex text.

A.1 DENM Cause Codes

Value of the direct cause code of a detected event as defined in ETSI EN 302 637-3
[i.3]. The value is assigned according to the clause 7.1.4 of ETSI EN 302 637-3 [i.3].

The cause codes are described as following:

• reserved (0): the value is reserved for future use,

• trafficCondition (1): the type of event is an abnormal traffic condition,

• accident (2): the type of event is a road accident,

• roadworks (3): the type of event is roadwork,

• value 4: reserved for future usage,

• impassability (5): the type of event is unmanaged road blocking, referring to any
blocking of a road, partial or total, which has not been adequately secured and
signposted,

• adverseWeatherCondition-Adhesion (6): the type of event is low adhesion,

• aquaplaning (7): danger of aquaplaning on the road,

• value 8: reserved for future usage,

• hazardousLocation-SurfaceCondition (9): the type of event is abnormal road surface
condition,

• hazardousLocation-ObstacleOnTheRoad (10): the type of event is obstacle on the
road,

• hazardousLocation-AnimalOnTheRoad (11): the type of event is animal on the road,

• humanPresenceOnTheRoad (12): the type of event is human presence on the road,

• value 13: reserved for future usage,

• wrongWayDriving (14): the type of the event is vehicle driving in wrong way,
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• rescueAndRecoveryWorkInProgress (15): the type of event is rescue and recovery
work for accident or for a road hazard in progress,

• value 16: reserved for future usage,

• adverseWeatherCondition-ExtremeWeatherCondition (17): the type of event is ex-
treme weather condition,

• adverseWeatherCondition-Visibility (18): the type of event is low visibility,

• adverseWeatherCondition-Precipitation (19): the type of event is precipitation,

• value 20-25: reserved for future usage,

• slowVehicle (26): the type of event is slow vehicle driving on the road,

• dangerousEndOfQueue (27): the type of event is dangerous end of vehicle queue,

• Value 28-90: reserved for future usage,

• vehicleBreakdown (91): the type of event is break down vehicle on the road,

• postCrash (92): the type of event is a detected crash,

• humanProblem (93): the type of event is human health problem in vehicles involved
in traffic,

• stationaryVehicle (94): the type of event is stationary vehicle,

• emergencyVehicleApproaching (95): the type of event is approaching vehicle oper-
ating emergency mission,

• hazardousLocation-DangerousCurve (96): the type of event is dangerous curve,

• collisionRisk (97): the type of event is a collision risk,

• signalViolation (98): the type of event is signal violation,

• dangerousSituation (99): the type of event is dangerous situation in which au-
tonomous safety system in vehicle is activated,

• value 100-255: reserved for future usage.
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