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ABSTRACT 

The most characteristic subgroup of 2D metal halide inorganic perovskites 

(MHIPs) is composed of perovskites with ordered vacancies along the <111> 

direction, with the chemical formula A3B2X9 (where A is a monovalent cation, B is a 

trivalent cation such as Bi3+ or Sb3+, and X is a halide anion). Due to their low toxicity, 

remarkable optoelectronic properties, and long-term stability, these structures have 

attracted considerable attention. They may potentially replace lead halide 

perovskites, which are highly toxic and sensitive to moisture, while also addressing 

the challenge of limited carrier generation and transport in 2D MHIPs with organic 

spacers. This thesis delves into a comprehensive theoretical investigation of the most 

studied representatives of this material class, Cs3Sb2X9 (X= Cl, Br, I) (space group: 

P3̅m1). Through our investigation, we reveal that halide mixing can significantly 

influence band gap variations and structural shifts, presenting potential ordered 

structures. We also found that in these materials (1000) surfaces retain beneficial 

electronic properties for photovoltaics, while (0001) surfaces exhibit reactivity suitable 

for photocatalysis. Additionally, the band alignments of Cs3Sb2Br9|Cs3Sb2Cl9 

interface and defect tolerance in Cs3Sb2I9|Cs3Sb2Br9 interface highlight potential 

applications in LEDs and photovoltaics, respectively. Expanding our study, we 

examined transition metal and halogen doping in both polymorphs of Cs3Sb2I9 (space 

groups: P3̅m1 and P63/mmc), the lowest band gap perovskite in this group. We 

discovered that indium doping enhances optical absorption and stability, while 

scandium doping stabilizes the lattice with minimal band gap increase, suggesting 

methods to reduce Urbach energy and improve device performance. Utilizing the 

capabilities of the machine learning model, Materials Optimal Descriptor Network 

(MODNet), augmented with a new featurizer for enhanced accuracy, we conducted 

an extensive exploration of the chemical space for this material class. This included 

multi-element doping, predicting the formability of new compounds, and identifying 

stabilizing elements. Our machine learning workflow screened over 100 million 

candidate structures, identifying promising ternary compounds including Cs3Ga2Br9 

and Rb3Cr2Br9 with lower band gaps than commonly studied perovskites, and 

suggesting mixed A-cations and anions as potential stabilizers. 

Keywords: metal halide inorganic perovskites, 2D perovskites, density functional 

theory, machine learning. 
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RESUMO 

O subgrupo mais característico das perovskitas inorgânicas de haleto metálico 

2D (PIHM) é composto por perovskitas com vacâncias ordenadas ao longo da 

direção <111>, com a fórmula química A3B2X9 (onde A é um cátion monovalente, B é 

um cátion trivalente como Bi3+ ou Sb3+, e X é um ânion haleto). Devido à sua baixa 

toxicidade, notáveis propriedades optoeletrônicas e estabilidade, essas estruturas 

têm atraído considerável atenção. Elas podem potencialmente substituir as 

perovskitas de haleto de chumbo, que são tóxicas e sensíveis à umidade, abordando 

o desafio da geração e transporte limitados de portadores em PIHMs 2D com 

espaçadores orgânicos. Esta tese investiga teoricamente os materiais, Cs3Sb2X9 (X= 

Cl, Br, I) (grupo espacial: P3̅m1). Através da nossa investigação, revelamos que a 

mistura de haletos pode influenciar significativamente as variações de band gap e 

mudanças estruturais, apresentando estruturas ordenadas potenciais. Também 

descobrimos que, nesses materiais, as superfícies (1000) mantêm propriedades 

eletrônicas benéficas para fotovoltaicos, enquanto as superfícies (0001) exibem 

reatividade adequada para fotocatálise. O alinhamento das bandas de 

Cs3Sb2Br9|Cs3Sb2Cl9 e a tolerância a defeitos de Cs3Sb2I9|Cs3Sb2Br9 sugerem 

aplicações em LEDs e fotovoltaicos, respectivamente. Também examinamos a 

dopagem de metais de transição e halogênios em ambos os polimorfos de Cs3Sb2I9 

(grupos espaciais: P3̅m1 e P63/mmc), a perovskita de menor band gap deste grupo. 

A dopagem com índio aumenta a absorção óptica e a estabilidade, e a dopagem 

com escândio estabiliza a rede cristalina com aumento mínimo do band gap, 

sugerindo métodos para melhorar o desempenho do dispositivo. Usando o modelo 

de aprendizado de máquina MODNet, aprimorado com um novo gerador de 

descritores, exploramos extensivamente o espaço químico desta classe de 

materiais. Isso incluiu dopagem multi-elemento, previsão da formabilidade de novos 

compostos e identificação de elementos estabilizadores. Nosso fluxo de trabalho de 

aprendizado de máquina analisou mais de 100 milhões de estruturas, identificando 

compostos ternários promissores, incluindo Cs3Ga2Br9 e Rb3Cr2Br9, com band gaps 

mais baixos do que as perovskitas comumente estudadas, e sugerindo cátions A 

mistos e ânions como potenciais estabilizadores. 

Palavras-chave: perovskitas inorgânicos de haleto de metal, perovskitas 2D, teoria 

do funcional da densidade, aprendizado de máquina. 
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CHAPTER 1 — INTRODUCTION 

Currently, the world faces a crisis of energy insecurity with aggravating trends 

due to an increase in energy consumption, increasing fossil fuel prices, and 

geopolitical conflicts. Furthermore, the environmental and social effects of global 

warming have further stimulated the search for clean and renewable sources of 

energy. However, despite strides in renewable energy, projections indicate that about 

1.2 billion people could face displacement by more frequent natural disasters in a 

world 2°C hotter by 2050 (Bellizzi et al. 2023; Diffenbaugh and Barnes 2023).  Of all 

renewable energy sources, solar energy is the most prominent player in ensuring long-

term energy security and mitigating the effects of global warming by offering a solution 

to fossil fuel emissions. Most commercial solar panels use silicon as a light collector, 

however, alternative absorber materials with perovskite crystal structure have 

emerged with great potential due to low cost, lightweight and ease of processing (J. Yu 

et al. 2022; Mohammad and Mahjabeen 2023). 

Perovskite solar cells (PSCs) have already achieved photoconversion efficiencies 

of 26.1% in 2023, comparable to the best silicon technologies (NREL 2023). However, 

these results are based on hybrid organic-inorganic methylammonium lead iodide         

(CH3NH3PbI3 or MAPbI3) perovskite and these are still not able to replace silicon 

modules because they suffer from low stability to heat and humidity arising from the 

organic components (Conings et al. 2015; B.W. Park and Seok 2019; Miyasaka et al. 

2020) and rely on the presence of lead in their structure, which has high toxicity (Xin Li 

et al. 2021). Lead can cause severe damage to ecosystems, soil, water sources, and 

human health, leading to functional disorders in the nervous, digestive, and blood 

systems (M. Wang et al. 2021; Hailegnaw et al. 2015). Moreover, the efficient entry of 

lead from perovskite materials into the food chain emphasizes the need for stricter 

safety standards regarding lead content in perovskite-based solar cells (S.-Y. Bae et 

al. 2019; Junming Li et al. 2020). 

By replacing organic cations with inorganic counterparts, such as cesium, all-

inorganic perovskites demonstrate higher intrinsic stability, making them more 

resistant to environmental factors (Tai, Tang, and Yan 2019). For the substitution of 

lead, theoretical calculations based on Density Functional Theory (DFT) have provided 

evidence linking the exceptional optoelectronic properties of hybrid lead-halide 

perovskites to the presence of the 5s² lone pair in Pb²⁺ (Fabini, Seshadri, and 
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Kanatzidis 2020; Brandt et al. 2015; Filippetti and Mattoni 2014). Therefore, materials 

that contain a lone 6s2 or 5s2 pair of electrons in the cation can potentially share the 

high dielectric constant, low effective masses, and valence band (VB) antibonding 

character yielding defect tolerant transport properties. These compounds, which fall 

under a broad category, are created from partially oxidized post-transition metals and 

are arranged in ascending order of the relative stability of the lone-pair s orbitals, as 

follows: In+ < Tl+ < Sn2+ < Pb2+ < Sb3+ < Bi3+ < Te4+ < Po4+ (Brandt et al. 2015; Fabini, 

Seshadri, and Kanatzidis 2020). These elements may constitute BX6 octahedra, which 

are characteristic of perovskites. The X anion in these octahedra is one of the 

halogens, typically Cl, Br, or I, and can adopt various structural arrangements 

depending on relative size of the ions (Fakharuddin et al. 2019).  

The first report of a lead-free inorganic halide perovskite (LIHP) solar cell used 

Sn2+ as an homovalent replacement to Pb2+ in the compound CsSnI3 which presented 

better phase stability than the inorganic lead-based CsPbI3 and also an ideal bandgap 

of approximately 1.3 eV (Kumar et al. 2014). However, Sn2+ readily oxidizes to Sn4+ 

which severely limits their stability and performance causing large concentrations of 

vacancies in the perovskite films and encouraging faster degradation (M. Liu et al. 

2020; Fakharuddin et al. 2019).  

Alternatively, +4 oxidation states cations can also work as substitute for Pb2+ in 

LIHPs. For example, in A2B4+X6 type perovskites, Pb2+ is replaced by the combination 

of a B-vacancy and a B4+ cation. Thus, the crystal structure is a double perovskite 

consisting of two sublattices where the octahedral centers are occupied by vacancies 

and B4+ cations and thus are termed “vacancy ordered” perovskites. Most popular 

compound in this category is Cs2SnI6−xBrx which band gap can be tuned from 1.3 to 

2.9 eV by increasing Br content and has significantly improved stability compared to 

CsSnI3, however, their light absorption is quite limited leading to unsatisfactory 

performance as a photovoltaic material (Jin Zhang et al. 2023; Umedov et al. 2021). 

Similar problem also occurs with Cs2TeI6 although Te4+ preserves the ns² lone pair 

(Maughan et al. 2016). 

Another variation of the double perovskite structure involves A2B1+B3+X6 

compounds, where Pb2+ is substituted with a combination of a monovalent and a 

trivalent cation, maintaining the 3D structure seen in conventional AB2+X3 perovskites 
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(refer to Figure 1). In these perovskites, B1+ is frequently occupied by Cu+, Ag+, or Au+, 

while a trivalent element with a lone-pair feature, such as Bi3+, Sb3+, or In3+, typically 

takes the B3+ positions. Ab-initio calculations have proven instrumental in predicting 

possible B1+ and B3+ combinations and comprehending their properties unveiling highly 

adaptable carrier effective masses and optical gaps within the visible spectrum 

(Volonakis et al. 2016; 2017), some well-studied materials in this group include 

Cs2AgBiX6 and Cs2InAgCl6. However, despite their initial promise, they exhibit indirect 

bandgaps or parity-forbidden direct gaps and diminished electronic dimensionality, 

making them unsuitable for solar cell applications (Fakharuddin et al. 2019). 

Cs2InBiCl6 and Cs2CuInBr6 also showcased favorable characteristics such as low 

bandgaps, small carrier effective masses, and high absorption coefficients. However, 

the inherent instability of In+ and Cu+, tending to transition to In3+ and Cu2+ oxidation 

states, hinders their practical application (Xiao et al. 2017; Bala and Kumar 2021). To 

this day, no experimentally confirmed double perovskite material has been identified 

as a promising candidate for solar cells. Nevertheless, recent studies offer hope for 

enhancing stability and achieving suitable direct band gaps by reducing the 

dimensionality of these perovskites with organic spacers to slice the 3D structure in 2D 

confined layers (Bala and Kumar 2021; Connor et al. 2023). 

 

 

Figure 1 – Schematic relation between the crystal structures of Pb-perovskites 

(AB2
+X3) and lead-free perovskite derivatives. Source: (Giustino and Snaith 2016) 
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A more recently explored variation of LIHP for photovoltaics are the 

A3B3+
2X9 type compounds, where B is typically Sb3+ or Bi3+

. These compounds 

naturally exhibit several structural dimensionalities to incorporate the trivalent cations. 

Their crystal structures can range from 0D dimer units to 1D chain-like motifs and 2D 

layered networks (Hoefler, Trimmel, and Rath 2017).  Unlike traditional perovskites, 

where the Goldschmidt tolerance factor is used to assess formability, it cannot be 

applied to these compounds due to the gradual relaxation of ionic size restrictions as 

dimensionality decreases (Saparov and Mitzi 2016). The structural versatility of these 

bismuth and antimony compounds gains further appeal when considering that these 

perovskites present low toxicity, outstanding stability in ambient atmospheric 

conditions, long carrier diffusion lifetime, and large light absorption coefficient (Z. Jin et 

al. 2020). Particularly, antimony perovskites demonstrate energy levels most similar to 

Pb2+ (Xiao et al. 2017), along with higher absorption, smaller effective masses, and 

lower exciton binding energies compared to bismuth perovskites (B.-W. Park et al. 

2015; Chonamada, Dey, and Santra 2020). With its substantial reserves and an 

annual production of 53,000 tons (Tan et al. 2019), Sb-based perovskites emerge as a 

highly promising, eco-friendly alternative for lead-based systems in various 

optoelectronic applications (Thomas 2022). 

A prime example of the potential of Sb-based perovskites is the all-inorganic 

Cs3Sb2X9 (X = Cl, Br, or I), which achieved a power conversion efficiency (PCE) of 

3.25% (Singh et al. 2021) utilizing Cs3Sb2I9 as an absorber, outperforming the more 

widely researched Cs3Bi2I9 (Z. Jin et al. 2020; A. Wang et al. 2023). These perovskites 

have proven valuable also in optoelectronic applications such as LEDs (light-emitting 

diode) (A. Wang et al. 2023), with Cs3Sb2Br9 quantum dots (QDs) developed by Ma et 

al. (Ma et al. 2019) emerging as a leading solution for short-wavelength violet 

emission. Concerning the iodine perovskite Cs3Sb2I9, two distinct polymorphs exist: a 

2D layered form (space group P3m1), which is more popular due to its superior 

transport properties, and a 0D dimeric form (space group P63/mmc) (Saparov et al. 

2015), as illustrated in Figure 2. However, the presence of localized charge carriers in 

0D Cs3Sb2I9, coupled with its efficient self-trapped exciton (STE) emission, renders it 

an exceptional material for optoelectronic devices (Saidaminov et al. 2016; D. Chen et 

al. 2016). The dimeric Cs3Sb2I9 also presented the best results for random-access 

memory (ReRAM) devices among other 696 investigated compounds (Y. Park et al. 
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2021). Moreover, combining perovskites with different dimensionalities has shown to 

enhance efficiency and stability in PSCs, including the lead-free 0D Cs3Bi2I9/2D BiI3 

(Jena, Kulkarni, and Miyasaka 2019; Masawa et al. 2022). As of now, there are no 

known reports on mixed dimensionality Sb-based perovskites. These findings 

collectively underscore the potential of Cs3Sb2X9 compounds, despite their recent 

exploration, as materials for the next generation of eco-friendly photovoltaic and 

optoelectronic devices. 

 

Figure 2 – Crystal structures of both dimeric (0D) and layered (2D) polymorphs of 

Cs3Sb2I9. Layered form is also present for Cs3Sb2Br9 and Cs3Sb2Cl9 compounds. 

In the course of this thesis, a collection of computational studies has been 

conducted on Cs3Sb2X9 compounds and related structures, the research aimed to 

explore the optoelectronic properties, long-term stability, and potential for replacing 

lead halide perovskites, while addressing challenges such as limited carrier generation 

and transport in 2D MHIPs. Additionally, the study sought to investigate the effects of 

transition metal and halogen doping, utilize machine learning models to extensively 

explore the chemical space of these materials, and identify new promising compounds 

and stabilizing elements to optimize the performance of optoelectronic devices. Firstly, 

a theoretical investigation was performed on Cs3Sb2X9 (X= Cl, Br, I) perovskites 
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systematically exploring halogen doping, surface properties, and quantum 

confinement, as discussed in Chapter 3. Subsequently, the investigation delved into 

metal doping within the Cs3Sb2I9 compound, considering both polymorphs, as detailed 

in Chapter 4. Finally, the power of machine learning and the vast materials databases 

available today were harnessed to develop a multi-model methodology. This 

methodology was used to explore potential lead-free structures following the same 

layered structure as Cs3Sb2X9 while allowing the investigation of doping in multiple 

sites, as described in Chapter 6. This investigation is preluded, on Chapter 5, by the 

implementation of additional features on the machine learning framework MODNet 

(Materials Optimal Descriptor Network). These features could enhance the accuracy of 

the network in various tasks and were therefore incorporated into the perovskite 

screening process conducted. 

In the upcoming chapter, the theoretical framework necessary to comprehend the 

methodology and results of each of the conducted investigations will be established. 

The interplay of material properties, essential for achieving high-performance 

photovoltaic and optoelectronic devices, will be elucidated. We will examine how ab-

initio methods, particularly Density Functional Theory (DFT), can assist in estimating 

these properties and explain their underlying origins, thus promoting the development 

of novel materials through a deeper understanding. Finally, an introduction to how 

machine learning operates will be provided, and the important machine learning 

models employed in this work within the context of materials science will be described. 
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CHAPTER 2 — THEORETICAL FRAMEWORK 

2.1 Semiconductors, halide perovskites and optoelectronic properties 

This section discusses key ideas in semiconductor physics that underpin the 

whole inquiry presented in this thesis, linking atomic structure to material properties 

and device optimization for practical applications. We also explore the concepts of 

stability and synthesizability, which are critical for materials discovery, before closing 

with a general overview of halides perovskites properties and what yields their status 

as a leading-edge materials class in optoelectronics. 

2.1.1 Condensed matter and semiconductor physics 

The fundamental quantum description is essential to comprehend the properties 

of materials. Quantum mechanics sheds light on the interplay of features in the atomic 

scale to physical properties of technological interest by virtue of the operator-

observable relationship. This principle is a fundamental aspect of quantum mechanics, 

as it establishes the connection between the abstract mathematical entities that model 

the behavior of the subatomic particles, named wavefunctions, and the measurable 

properties of physical systems (Griffiths and Schroeter 2018). In this framework, a 

material is a system comprising M nuclei, N electrons and their interactions, all 

described by the many-body Hamiltonian (Cramer 2013) given by: 
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 (1) 

in this case, the system is described using atomic units, where fundamental physical 

quantities such as electron mass, electron charge, reduced Planck constant, and 

Coulomb constant (1 4𝜋𝜖0⁄ ) have a unit value. The Hamiltonian (Eq. 1) consists of 

several terms: the first and second terms represent the kinetic energy of electrons (�̂�𝑒) 

and nuclei (�̂�𝑁) respectively, while the third, fourth, and fifth terms account for the 

Coulomb interactions between electrons (�̂�𝑒𝑒), between nuclei (�̂�𝑁𝑁), and between 

nuclei and electrons (�̂�𝑁𝑒), respectively. At the heart of quantum mechanics, the 

Schrödinger equation stands as the fundamental equation directing the evolution of 

quantum systems, expressed as follows:  
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𝑖ℏ
∂Ψ({𝐫𝑖}, 𝑡)

∂𝑡
= �̂�Ψ({𝐫𝑖}, 𝑡). (2) 

Here, Ψ({𝐫𝑖}, 𝑡) represents the wavefunction of the system, which depends on the 

spatial coordinates of every particle in the system ({𝐫𝑖}) and time (𝑡). In various 

scenarios, such as when examining ground-state properties, the stationary version can 

be utilized by factoring out the temporal component from equation 2, resulting in: 

 �̂�Ψ({𝐫𝑖}) = 𝐸Ψ({𝐫𝑖}), (3) 

The wavefunction stands as a complete descriptor of a quantum system's state, 

encoding not only the probability distribution of particle positions over time (given by 

|Ψ({𝐫𝑖}, 𝑡)|
2) but also of any observable properties 𝑄. These observables are derived 

through the action of their respective operators (�̂�) on the wavefunction, as follows: 

 �̂� |Ψ⟩  →  𝑞𝑗 |ϕ𝑗⟩. (4) 

Here, the ket symbol (|⟩) denotes quantum states within the Dirac notation, 

representing vectors in the complex Hilbert space of all possible system states 

(Griffiths and Schroeter 2018). When measuring �̂�, the system's wavefunction, initially 

in a superposition of eigenstates |𝜙𝑖⟩ for the observable 𝑄, collapses into a specific 

eigenstate |𝜙𝑗⟩.This collapse yields the eigenvalue 𝑞𝑗 as the measured property's 

outcome. Thus, even if the wavefunction operates at the quantum level, it ultimately 

shapes and dictates the macroscopic physical properties. 

Because quantum mechanics is intrinsically statistical, identical particles, like 

electrons, are fundamentally indistinguishable in the sense that they cannot be 

uniquely labeled or differentiated by their intrinsic properties. This indistinguishability 

shapes their behavior, introducing statistical properties absent in classical physics. 

Particles such as electrons, protons, and neutrons fall into the category of fermions. 

These adhere to Fermi-Dirac statistics, governed by the Pauli exclusion principle. This 

principle asserts that identical fermions cannot occupy the same quantum state 

simultaneously, rooted in the antisymmetric property of their wavefunction. 

Mathematically, this is expressed as the requirement for the total wavefunction of 

these particles to change sign when any two particles are exchanged, such as: 

 Ψ(�⃗�1, �⃗�2, . . . , �⃗�𝑖, . . . , �⃗�𝑗, . . . , �⃗�𝑁) = −Ψ(�⃗�1, �⃗�2, . . . , �⃗�𝑗 , . . . , �⃗�𝑖, . . . , �⃗�𝑁), (5) 

where �⃗� = ( 𝑟, 𝜎 ) has the spatial and spin degrees of freedom. This property enforces 

the exclusion of certain quantum states for identical fermions, leading to the stability of 
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matter as it prevents multiple fermions from occupying the same quantum state 

simultaneously. As a result, electrons in atoms must occupy different energy levels, 

forming a discrete spectrum of atomic states (Griffiths and Schroeter 2018).  

When atoms are brought together to form a solid, the atomic energy levels 

interact and split into many closely spaced levels, forming a continuous spectrum of 

energy bands. The energy bands are separated by gaps where no states are allowed. 

The distribution of electrons among the bands depends on how the electrons of 

different chemical species interact and determines many physical properties of the 

solid, such as its electrical conductivity, optical absorption, and magnetic behavior 

(Kittel 2004). Depending on the size and position of the band gap separating occupied 

and unoccupied states, we can classify solids into three types: insulators, 

semiconductors, and metals. Each of these types is illustrated in Figure 3.  Insulators 

are solids that have a large band gap between the highest occupied band (called the 

valence band) and the lowest unoccupied band (called the conduction band). This 

means that electrons in insulators are tightly bound to their atoms and cannot move 

freely under an applied electric field. Semiconductors are solids that have a small band 

gap between the valence and conduction bands. This means that electrons in 

semiconductors can be excited from the valence band to the conduction band by 

thermal energy or light, creating free charge carriers that can conduct electricity. 

Metals are solids that have no band gap or a partially filled conduction band. This 

means that electrons in metals are free to move within the conduction band under an 

applied electric field  (Kittel 2004; Shur 2005).  

 

Figure 3 – Metal, semiconductor, and dielectric (insulator) band structures. Shaded 

patches show filled energy levels, each accommodating two electrons with opposite 

spins due to the Pauli exclusion principle. Source: (Shur 2005)   
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Beyond the influence of band gap size lies another crucial aspect: the crystalline 

structure. The arrangement of the atoms within solids profoundly impacts their 

optoelectronic traits, and for most materials, this arrangement follows a long-range 

periodic pattern defining a crystal. The crystal structure is defined as the combination 

of a periodic lattice and a base, which consists of repeating units, in this case, atomic 

positions (Kittel 2004). This lattice, described by vectors a1, a2, a3, retains its structure 

under translation by a vector T = n1∙a1 + n2∙a2 + n3∙a3, where ni are integers. In three-

dimensional space, symmetry operations limit the valid sets of lattice vectors to 14 

types, known as Bravais lattices, shown in Figure 4. These lattice vectors enable the 

modeling of infinite systems with a small primitive cell containing only a few atoms. 

Within the space defined by the translation vectors, as for all vectors T in the Bravais 

lattice, the potential is periodic: v(r) = v(r + T). 

 

Figure 4 – The 14 Bravais lattices which compose seven crystalline systems. Source: 

(Mascarenhas 2020) 

The periodic potential in crystals exerts a profound influence on electron behavior 

as the wavefunction's periodicity aligns with the crystal lattice. According to the Bloch 

theorem (Bloch 1929), solutions to the Schrödinger equation within a periodic potential 

can be expressed as plane waves modulated by periodic functions. Mathematically, a 

wavefunction Ψ(𝒓) for a particle, in this case, can be written as:  

 Ψ𝑘(𝑟) = 𝑒
𝑖𝑘⋅𝑟𝑢𝑘(𝑟), (6) 
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Here, Ψ𝑘(𝑟) represents the electrons’ wavefunction, 𝑒𝑖𝑘⋅𝑟 is a plane wave where the 

wave vector  𝑘  defines the crystal momentum (ℏ𝑘), and 𝑢𝑘(𝑟) is a periodic function 

describing the crystal lattice periodicity. Crystal momentum is a consequence of 

electron interaction with the periodic potential of the crystal lattice; therefore, it creates 

another dependency for the electron energy that can be described in band theory in 

the form of a dispersion relation, 𝐸(𝑘), for the single-electron states.  

The dispersion relation reveals allowed energy states for electrons across the 

lattice, crucial for understanding electron transitions between valence and conduction 

bands in semiconductors. These transitions dictate material properties governing light 

emission, absorption, and conductivity in optoelectronic devices like solar cells, LEDs, 

and lasers. Two special quanta, photons and phonons, drive these transitions.  

Photons, as carriers of electromagnetic radiation, enable electronic transitions through 

absorption or emission. However, due to the lack of rest mass, photons convey very 

small momenta. Conversely, phonons, originating from lattice vibrations facilitate 

crystal momentum transmission, aiding transitions between states with different 

momenta. However, while phonons efficiently transmit crystal momentum, their energy 

remains relatively small compared to photons. In combination, photons and phonons 

serve as crucial mediators, allowing electrons within a semiconductor to transition 

between the conduction and valence band states while upholding conservation laws 

(V. K. Jain 2022; Kittel 2004). 

Depending on how the transitions in a semiconductor are mediated the band gap 

can be defined as direct or indirect. In direct bandgap materials, the energy of the 

conduction band minimum (CBM) and the valence band maximum (VBM) coincide at 

the same momentum (𝑘). This alignment facilitates efficient absorption and emission of 

photons with energy of the band gap (Eg) due to their energy and momentum 

matching. On the other hand, indirect bandgap materials exhibit different momenta for 

the CBM and VBM, typically requiring the involvement of phonons to facilitate the 

transition, as shown in Figure 5. This mismatch limits the efficacy of photon absorption 

or emission, limiting their application in optoelectronic devices (Garrillo 2018). 
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Figure 5 – Comparison of photon absorption in direct (left) vs. indirect (right) bandgap 
semiconductors. Adapted from: (Garrillo 2018) 

This process in which an electron is promoted from the valence band to 

conduction band, leaving a corresponding hole in the valence band is named 

photovoltaic effect. This electron-hole pair usually remains bound by the Coulomb 

attraction force forming an exciton. Excitons resemble excited hydrogen atoms, with 

the electron orbiting the positively charged hole with a discrete energy spectrum 

positioned near the conduction band. The exciton binding energy typically ranges a 

few meV and the neutral exciton traverses the lattice, interacting with phonons, 

impurities, and imperfections. These interactions may result in either recombination, 

which restores the ground state and emits energy as light, or decomposition, which 

produces free carriers (electrons and holes) contributing to photoconductivity (V. K. 

Jain 2022).  

The free-electron dispersion follows the equation 𝐸 =  
ℏ2𝑘2

2𝑚
 where 𝑘 represents 

the wavevector of a planewave describing the free electron’s eigenstate. However, 

within the lattice, the periodic potential changes this behavior. It can be shown that 

free carriers in the vicinity of CBM or VBM will exhibit characteristics akin to free 

electrons, except the particle's inertia becomes inversely proportional to the curvature 

of the dispersion relation. This results in an effective mass, which is determined by: 

 
𝑚∗ =

1

1
ℏ2
 
𝑑²𝐸
𝑑𝑘²

 . 
(7) 

The effective mass will determine the transport of quasiparticles that are the carriers 

involved in the electronic excitation of semiconductors. Since the derivative in Eq. 7 is 

related to the "curvature" of the dispersion relation, bands with high curvature 

correspond to small effective masses (light quasiparticles), while flatter bands, i.e., 
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bands with low curvature, represent "heavier" quasiparticles. Furthermore, at the VBM 

the curvature will have negative values, and therefore, those electrons will present 

negative effective masses (the group velocity changes in opposition to the direction of 

the electromagnetic force). This condition is resolved by considering the equivalent 

condition of a positively charged quasiparticle, referred as "hole", thereby restoring 

proper signs to the transport properties (Wasserman 2005; Kittel 2004). Typically, 

holes also tend to have larger effective masses than electrons because valence band 

orbitals usually exhibit a more localized nature. In general, for optoelectronic 

applications, a small effective mass is desirable as it boosts the dynamics of free 

carriers. 

 It is crucial to note that electrons in the conduction band are only temporarily 

stable and will eventually shift to a lower energy level in the valence band, moving into 

an empty valence band state and removing a hole in the process. The energy 

difference between the electron's starting and final positions is released in this 

process, known as photo-carrier recombination. In inorganic semiconductors, there are 

three main types of this recombination: radiative (transferring energy as photons), non-

radiative (transferring energy as phonons), and Auger (transferring energy as kinetic 

energy to another electron in the conduction band), as illustrated in Figure 6. Radiative 

recombination tends to happen more frequently in materials with direct band gaps. On 

the other hand, non-radiative recombination typically prevails in indirect band gap 

materials, such as Si-based devices, favored by point defects and dislocations. In 

scenarios with high carrier density, Auger recombination emerges as a significant 

contributor to energy loss. This is particularly noticeable in highly doped materials and 

confined structures like quantum dots (F. Wang, Liu, and Gao 2019; Garrillo 2018). 

 

Figure 6 – Non-radiative (a), radiative (b), and auger recombination (c) mechanisms in 
inorganic semiconductors. The energy level of a defect or impurity in the material, 
commonly referred to as a trap, is indicated by ET in (a). Adapted from: (Garrillo 2018) 
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Structural imperfections within a crystal significantly impact carrier dynamics 

and recombination in semiconductors. These imperfections including point defects 

(vacancies, anti-sites, interstitials, etc.), dislocations, grain boundaries, and impurities 

(either unintentionally or intentionally introduced through doping), generate localized 

states with energies within the band gap, functioning as trapping sites for charge 

carriers. Two main categories of trap states exist: shallow level traps and deep level 

traps. 

Shallow traps typically present energies closer to the conduction or valence 

band and thus can readily capture or release charge carriers, significantly influencing 

conductivity and carrier concentrations. They can act as either donors or acceptors, 

introducing free carriers to the semiconductor. Acceptor defects lack electrons to bond 

with neighboring atoms, essentially introducing holes. At sufficient temperatures, these 

holes can ionize, moving deeper into the valence band as free carriers. After 

ionization, the acceptor carries a negative charge. Conversely, donor defects possess 

an extra electron, resulting in a localized extra negative charge within the bandgap. 

Thermal energy is usually enough to move this electron to the conduction band, 

turning the donor site into a positively charged site. In shallow traps, the wavefunction 

is fairly delocalized with size on the order of the Bohr exciton radius of the material 

(Grundmann 2010). 

In contrast, deep level traps have strongly localized wavefunctions and energy 

levels well within the bandgap, although there are exceptions. Due to their greater 

distance from the band edges, deep trap states are inefficient at providing free 

electrons or holes. Instead, they tend to capture free carriers, reducing conductivity. As 

a result, these centers typically establish routes for nonradiative recombination by 

directing electrons through the deep levels into the valence band. A material whose 

structural defects predominantly cause the formation of shallow states is referred to as 

defect-tolerant material (Kang and Wang 2017). However, there exist numerous 

situations where controlled deep traps are leveraged, for example, to modulate 

photoluminescence in semiconductors (Grundmann 2010; Hussain et al. 2022). 

Another crucial aspect for application is the optical response of semiconductors. 

The responses of periodic systems to an externally applied electric field, such as that 
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induced by the electromagnetic waves in light, are described by a complex dielectric 

function: 

 휀(𝜔) =  휀𝑟(𝜔) + 𝑖휀𝑖(𝜔), (8) 

The real part is related to the polarization of the material due to the applied electric 

field. It describes the phase shift of the field and is intimately related to the material's 

refractive index for light. The imaginary part arises from the dissipation of energy as 

the material absorbs the electric field for electronic transitions and interacts with the 

lattice. Therefore, the imaginary part of the dielectric function is closely related to the 

absorption spectra, which are crucial for applications like photovoltaics and 

photocatalysis. For a derivation of the dielectric function from first principles and 

subsequent derivation of the absorption coefficient for direct and indirect transitions, 

the reader is referred to Appendix A.1. 

The dielectric function plays a crucial role in understanding nonradiative 

recombination losses in semiconductors, especially through defect-assisted 

processes. For instance, when electrons encounter positively charged defects, their 

capture is driven by Coulomb attraction, described by a capture cross-section equation 

as: 

 
σ− =

𝑞4

16π(휀𝑠𝑘B𝑇)
2
 . (9) 

Here, 𝑞 represents the elementary charge, 휀𝑠 is the dielectric constant in the static limit 

(𝜔 → 0), 𝑘𝑏 is the Boltzmann’s constant and 𝑇 is the temperature. This equation 

reveals that at a constant temperature, 𝜎− decreases as the dielectric constant 

increases. This suggests that boosting the dielectric constant within semiconductors 

can reduce the defect capture cross-section. This change acts as a dielectric-

screening effect, weakening the trapping of charge carriers by defects and enhancing 

carrier transport. This principle applies similarly to holes (Su et al. 2021; Peter and 

Cardona 2010). 

 In addition to affecting trap carriers, the dielectric function plays a role in 

shaping the energy levels of excitons, characterized by hydrogen-like states indicated 

by 𝐸𝑛  ∝  𝑛
−1/2 as per the expression:  

 
𝐸𝑋
𝑛 = −

𝑚𝑟
∗

𝑚0

1

휀𝑠
2

𝑚0
 𝑒4

2(4πℏ)2
1

𝑛²
 , (10) 
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where mr
∗ denotes the exciton’s reduced effective mass. The exciton binding energy 

relates to this equation by 𝐸𝑋
𝑏  = − 𝐸𝑋

1. The term 
𝑚𝑟
∗

𝑚0

1

𝜀𝑠2
 scales to approximately 10−3, 

yielding values in the meV range that vary inversely with the dielectric constant 

(Grundmann 2010). This dependence underscores the importance of a high dielectric 

constant in the generation of free carriers by the dissociation of excitons. 

 

2.1.2 Semiconductors for optoelectronic devices 

Having established a foundation for the general properties of semiconductors, 

our attention now shifts to exploring the specific devices that use these materials and 

the required properties for each. Our focus lies particularly on optoelectronic 

applications associated with visible light, spanning photovoltaics, luminescence, and 

photocatalysis. The sought-after properties will be regularly discussed within the 

results presented in the forthcoming chapters. 

● Photovoltaics: Solar cells are devices that convert light energy into electrical 

energy through the photovoltaic effect. They consist of layers with an absorber 

material—like silicon in traditional cells or a perovskite compound in perovskite cells—

sandwiched between charge transport layers. Sunlight hitting the absorber creates 

excitons which separate into electrons and holes. These flow in opposite directions 

due to the built-in potential on the device, generating an electric current. Direct band 

gap materials are best suited for efficient energy conversion and ideal band gaps vary 

from around 1.2 eV for single junction cells to 1.75 eV for tandem cells with silicon. A 

high dielectric constant enhances performance by reducing charge trapping and 

recombination. Moreover, lower effective masses of the charge carrier, increase high 

carrier mobility, preventing recombination and improving overall efficiency in 

photovoltaic devices (Marongiu et al. 2019; Su et al. 2021). 

● Luminescence: Electro- and photoluminescence are the most common light 

emission processes. Electroluminescence, exemplified by the popular light-emitting 

diodes (LEDs), showcases the functionality of semiconductor junctions in emitting 

light. Here, the application of voltage induces electron movement within the 

semiconductor which recombine with holes releasing energy as photons (ℏ𝜔𝑝ℎ = 𝐸𝑔). 

Conversely, photoluminescence relies on external photon excitation to generate the 
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electron-hole pairs, serving various applications such as sensors, imaging, displays, 

and special light sources (Mousavi et al. 2014). Since the photon frequency is 

proportional to the band gap, the material used determines the color of the emitted 

light. The current leading technology for luminescence with semiconductors employs 

quantum dots (QDs)  or nanocrystals (Marongiu et al. 2019). The spatial confinement 

causes a significant decrease in the dielectric constant, leading to increased exciton 

binding energy which prevents excitons to dissociate prior to radiative decay (Zheng et 

al. 2015). Moreover, the spatial confinement increases the recombination probability of 

electron-hole pairs. This leads to exceptionally high photoluminescence quantum yield 

with sharp emission lines (Elward and Chakraborty 2013; Marongiu et al. 2019). 

However, confinement has its downsides, such as heightened Auger recombination 

and an abundance of surface states, causing non-radiative recombination. To mitigate 

these issues, enveloping particles in a core-shell structure helps balance electron/hole 

injections and quench surface states (W. K. Bae et al. 2013). Additionally, localized 

and heavy holes (high effective masses) with high mobility electrons also aid emission 

efficiency (W. H. Guo et al. 2020a; Chichibu et al. 2006).     

● Photocatalysis: Photocatalysis relies on semiconductors called photocatalysts, 

triggering or speeding up chemical reactions when exposed to light. These catalysts 

absorb photons, creating excitons that produce reactive species—such as free 

radicals or charged particles—on their surfaces. This process, crucially influenced by 

surface states, reduces the activation energy of reactions (W. D. Kim et al. 2016). 

Photocatalysts are integral in green technologies, utilizing renewable energy sources 

like sunlight to facilitate chemical transformations, promising advancements in clean 

energy production and environmental remediation. For instance, they are utilized in 

degrading pollutants during environmental remediation and in water-splitting reactions 

for hydrogen fuel production from water. An effective photocatalyst exhibits several 

key characteristics: (i) the capacity to absorb radiation across a broad spectrum of 

light, (ii) appropriate alignment of the semiconductor's energy bands concerning the 

redox reaction potentials for the aimed application, (iii) high mobility and extended 

diffusion paths for charge carriers (thus, low effective masses), (iv) thermodynamic 

and photoelectrochemical stability (Jiangtian Li and Wu 2015). Moreover, nanometer-

sized materials are usually advantageous as they offer a high surface area (more 
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reactive sites) and enable tunable band gaps through particle size control (Feliczak-

Guzik 2023). 

 

2.1.3 Stability and synthesizability  

In the quest to optimize semiconductor properties for cutting-edge optoelectronic 

applications, tools that help scientists discern stable and synthesizable compounds are 

the cornerstone bridging the gap between theoretical exploration and practical 

technology (Malyi et al. 2020; Zunger 2018). While the understanding of compound 

stability can be derived from first-principles, a single tool for its evaluation remains 

elusive. Instead, a suite of techniques and corresponding criteria are combined to 

increase confidence in a compound's stability. This study strongly focuses on using 

thermodynamic stability to measure stability, discussed in detail in this section. 

Dynamical stability is another important criterion, but presents cost constraints to be 

evaluated using first-principles as discussed on Appendix A.2. Specific applications 

might necessitate additional stability evaluations, such as photostability and 

electrochemical stability, yet these could involve multiple mechanisms, making 

prediction even more challenging (Chonamada, Dey, and Santra 2020; Jiangtian Li 

and Wu 2015).   

A material is deemed thermodynamically stable under a given set of conditions 

(temperature, pressure, chemical potentials, etc.) if its energy cannot be lowered by 

rearranging its atoms. Energy lowering can occur through two distinct cases: (1) phase 

transition to an alternative crystal structure (polymorph) at a fixed composition, or (2) 

phase separation (decomposition) into competing materials sharing the same average 

composition (Bartel 2022). The total energy of the material (𝐸𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑
 ) can be 

calculated from first-principles and subsequently used to compute the formation 

energy of the compound (𝐸𝑓
 
) from its constituent atoms by: 

 𝐸𝑓
 = 𝐸𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑

 −∑𝑛𝑖
 𝐸𝑖
 

𝑖

 , 
(11) 

where 𝑛𝑖
  is the number of atoms of element i in the compound, and 𝐸𝑖

  is the energy of 

the atom of element i, usually in its standard state. If the elemental energies 

considered are from isolated atoms, Equation 11 becomes the binding energy of the 

compound (Eb). A negative formation energy indicates only that the compound is 
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stable against decomposition into the constituent pure phases. However, the 

difference in formation energy enables direct comparison between two polymorphs, 

the first case for energy lowering, to determine the ground-state polymorph under 

given conditions. 

However, for the second option to lower energy, a more general and useful 

metric of thermodynamic stability is the decomposition energy (Estab or Ed) or convex 

hull distance. Estab is computed against all ground-state polymorphs across the 

relevant chemical space of interest using the convex hull formalism. Constructing the 

convex hull involves obtaining 𝐸𝑓
 
 for all ground-state polymorphs in the system, 

typically as a function of the normalized molar composition of N - 1 elements in the 

chemical space of interest with N unique elements. The hyperplane connecting all 

these ground-states polymorphs across compositions forms the convex hull. The 

convex hull analysis assesses whether a given material can lower its energy by 

decomposing into a linear combination of materials having the same average 

composition as the material of interest. If we consider compounds in a hypothetical 

chemical space A−X (e.g., A2X, AX, A2X7, etc.), an example convex hull is provided in 

Figure 7.  

 

Figure 7 – Convex hull phase diagram for hypothetical A−X system. Blue circles on 

the solid line represent thermodynamically stable phases and points above the hull are 

thermodynamically unstable with respect to phase separation. The dashed gray line 

refers to the hypothetical convex hull used to determine the decomposition reaction 

and energy for the stable phase, A2X5. Adapted from: (Bartel 2022) 

The convex hull is extremely helpful because it identifies materials lying on it as 

thermodynamically stable in terms of phase separation. Materials located above the 
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hull are considered unstable because decomposition to a linear combination of 

alternate compositions can reduce their energy. On the other hand, materials with a 

negative decomposition energy are positioned below the convex hull and are stable 

against decomposition. Hence, these compounds become part of the convex hull for 

subsequent calculations. 

A few thermodynamic considerations must be addressed concerning the 

decomposition energy. Energy calculations from first-principles, using traditional 

methods such as Density Functional Theory (Section 2.2), typically involve isolated 

systems in a vacuum at 0 K. However, 𝐸𝑓 can be transformed into a formation 

enthalpy, ∆𝐻𝑓, at a given temperature, T, by incorporating the zero-point energy 

correction and integrating the constant volume specific heat from 0 K to T. Both 

quantities, attainable via first principles through the phonon density of states (Togo 

and Tanaka 2015). It has been shown that formation energies generally remain 

unaffected by this conversion from 0 K energies to 298 K enthalpies, owing to error 

cancellation (Bartel et al. 2019). 

However, at very high temperatures, the appropriate thermodynamic potential is 

the Gibbs free energy, G = H - TS, directly linked to temperature through entropy and 

potentially influenced significantly by vibrational entropy (Fultz 2010). Another 

contributing factor to G is configurational entropy, typically prominent in disordered 

materials like solid solutions with various species, further contributing to stabilization of 

these compounds (Bartel 2022). With some exceptions, however, these contributions 

are not significant in ambient temperature and were not considered in this work.   

Finally, despite being the ultimate goal, evaluating synthesizability requires 

incorporating kinetic factors and experimental dependencies, making it challenging to 

address solely through theoretical physical chemistry. Typically, assessing 

synthesizability involves assuming that synthesizable materials do not possess 

thermodynamically stable decomposition products, essentially extrapolating from 

stability evaluations. However, this approach has limitations as it overlooks aspects 

like kinetic stabilization. Very recently, tools have emerged aiming for a broader 

evaluation of synthesizability beyond basic thermodynamics, yet their practical use 

remains somewhat restricted by extrapolating solely on composition (Antoniuk et al. 

2023). 
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2.1.4 Halide perovskites and doping 

Metal halide perovskites have become a very promising class of solution-

processable semiconductor materials for high-performance optoelectronic devices. 

They follow the traditionally defined general formula, ABX3, where A and B are cations, 

and X is a halide anion. However, more loose definitions considering the presence of 

organized BX6 octahedra coordinated by larger A cations has been more used recently 

to include perovskites with multiple dimensionalities which may deviate from the 

traditional stochiometric formula as illustrated in Figure 1 (Fakharuddin et al. 2019).  

The exponential rise of perovskite technology in photovoltaics, rivaling the 

established efficiency benchmarks set by traditional silicon, showcases the 

technological potential of these materials. In the case of solar cells, the hybrid organic-

inorganic MAPbI3 perovskite is the forerunner combining an unprecedented set of 

properties, namely (Frost et al. 2014):  

- A high absorption coefficient due to the strong overlap between the valence 

band and the conduction band, which are mainly composed of Pb 6s and I 5p 

orbitals. This results in a direct band gap and a large oscillator strength for 

optical transitions.  

- A highly tunable band gap, characteristic of most halide perovskites, can be 

attributed to the hybridization between the Pb 6s and I 5p orbitals, which can 

be modulated by changing the size and orientation of the organic cation, the 

halide anion, or the metal cation. For example, replacing MA with 

formamidinium (FA) or cesium (Cs) can lower the band gap, while replacing I 

with Br or Cl can increase the band gap.  

- A long carrier lifetime due to the low density of trap states and the high 

dielectric constant of the material. The low density of trap states is attributed 

to the self-healing mechanism of the perovskite structure, which can 

accommodate various defects and distortions without breaking the Pb-I 

bonds. The high dielectric constant is attributed to the polarizability of the 

organic cation and the lattice vibrations, which can screen the Coulomb 

interactions between the carriers and the defects.  

- High defect tolerance due to the low formation energy and the low ionization 

energy of the intrinsic defects, such as vacancies and interstitials. These 

https://pubs.acs.org/doi/pdfplus/10.1021/nl500390f
https://pubs.acs.org/doi/pdfplus/10.1021/nl500390f
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defects can act as shallow donors or acceptors, which can be easily 

compensated by the Fermi level or the external electric field. Moreover, the 

defects can also enhance the carrier mobility and the conductivity of the 

material by creating additional hopping sites or pathways. 

Many of these great properties are present in other halide perovskites and 

underscore the functional versatility of this material class that find applications in 

various fields besides solar cells. The tunable band gap allows for color control and 

high photoluminescence quantum yields can be obtained due to the high defect 

tolerance and dielectric function, this coupled with long carrier lifetimes, makes them 

suitable for optoelectronic devices, such as light-emitting diodes, lasers, and 

photodetectors (He and Liu 2023). Moreover, some halide perovskites exhibit 

fascinating magnetic and superconducting properties (A. Banerjee and Paul 2020; 

Siyuan Zhou et al. 2024), which open up new possibilities for spintronics, memory 

devices, and quantum computing (H. Kim et al. 2018; John et al. 2022). Furthermore, 

halide perovskites have shown promise in energy storage (L. Zhang et al. 2020), such 

as batteries, capacitors, and thermoelectrics (Haque et al. 2020), due to their high 

ionic conductivity, large capacitance, and low thermal conductivity. 

Exploring the structural and chemical versatility reveals the expansive potential of 

this formidable class of materials. Halide perovskites can adopt different 

dimensionalities, compositions, and properties by manipulating the A, B, and X 

components, as well as the crystallographic directions and the interplay between them. 

For example, by making cuts along different crystallographic directions, one can obtain 

perovskites with zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), 

from three-dimensional (3D) structures, each with distinct electronic, optical, and 

magnetic properties. By substituting different cations and anions, one can tune the 

band gap, charge transport, spin-orbit coupling, and lattice distortion of the 

perovskites, which affect their performance in various devices. By intercalating guest 

molecules, such as water, ammonia, or organic solvents, one can induce phase 

transitions, modulate the dielectric constant, or enhance the stability of the perovskites 

(Smith, Connor, and Karunadasa 2019; Kahwagi et al. 2020; Hoye et al. 2022). While 

around 3500 perovskites are present in experimental databases (J. Liang et al. 2022), 

it is estimated that due to the structural and chemical flexibility the potential number of 

perovskites can easily exceed 107 (Q. Tao et al. 2021; C. Li et al. 2020). 
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Since the dawn of semiconductor physics, doping has proved to be an effective 

way to modulate the fundamental properties of semiconductors. Due to their ionic 

structure with low formation energies, doping is comparatively easier and interesting in 

halide perovskites than other conventional semiconductors. In the case of perovskites, 

doping usually means partially replacing the original constituent elements with targeted 

ions even when concentrations are substantially higher than usual for semiconductors 

(L. Xu et al. 2019; G. Chen et al. 2020; Kumawat et al. 2019).  Doping with appropriate 

ions effectively contributes towards stabilizing the crystal structure, tuning the 

optoelectronic properties, and enhancing the device performance (Parveen and K. Giri 

2022; C.-H. Lu et al. 2020). Following is an overview of how doping affects each site 

within the halide perovskite individually (L. Xu et al. 2019; C.-H. Lu et al. 2020): 

- A-site doping: can affect the dimensionality, stability, and band gap of the 

perovskites. For example, replacing organic A cations with inorganic ones, 

such as Cs+, can increase the thermal and moisture stability of the 

perovskites, as well as reduce the band gap and enhance the light absorption. 

In inorganic perovskites, Cs+ can also be substituted by Rb+ or K+ to modulate 

the structural dimensionality and band gap (Lehner et al. 2015). 

- B-site doping: can alter the electronic structure, carrier concentration, and 

defect density of the perovskites. For instance, replacing Pb2+ with other 

metal cations, such as partially oxidized post-transition metals (In+, Tl+, Sn2+, 

Sb3+, Bi3+, etc.), can modulate the band gap and the carrier effective mass of 

the perovskites, as well as reduce the toxicity of Pb-based perovskites. 

Moreover, doping with transition metal cations, such as Mn2+, Fe2+, or Ni2+, 

can introduce localized energy levels and magnetic moments in the 

perovskites, which can enable spintronic and multiferroic applications 

(Amerling et al. 2021). 

- X-site doping: can influence the lattice constant, crystal phase, and optical 

properties of the perovskites. For example, changing the ratio or composition 

of the halide anions, such as Cl-, Br-, or I-, can adjust the lattice constant and 

the crystal phase of the perovskites, which can affect the strain, stability, and 

band gap of the materials. Furthermore, doping with pseudohalide or 

superhalogen anions, such as N3
−, SCN- and BH4

− can introduce new optical 
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features, enhance the photoluminescence and also improve stability (Lin et al. 

2021). 

The growing literature on tuning compositions in perovskites highlights limitless 

possibilities for exploration. As research delves deeper into the vast chemical space of 

halide perovskites, ab-initio simulations and machine learning have become 

indispensable for comprehending and predicting the diverse effects of these 

alterations (Q. Tao et al. 2021). These methodologies enable a faster, more 

systematic, and insightful exploration of material modifications and their potential 

impacts, surpassing the limitations of experimental investigations alone. The upcoming 

sections will explore these methodologies in detail. 

 

2.2 Density Functional Theory 

Over the past few decades, Density Functional Theory (DFT) has undergone a 

remarkable evolution, transforming from a theoretical tool with limited applicability to a 

cornerstone of modern materials science. Its emergence as a powerful computational 

method has revolutionized our understanding of electronic structure and properties of 

materials, offering unprecedented insights into their behavior at the atomic level. In this 

section, we provide an overview of the theory and computational implementation of 

DFT, highlighting its relevance in predicting materials properties. 

2.2.1 Hohenberg-Kohn and Kohn-Sham formalism 

The N-electron wave function solution for the Schrödinger equation shown in 

Equation 3 can be computationally demanding, especially for large systems. DFT 

arises as an alternative approach, which uses electron density, 𝑛(𝒓), to describe the 

many-electron system in which electron and nuclei coordinates were decoupled by 

Born-Oppenheimer approximation (see Appendix A.3). The Hohenberg-Kohn (HK) 

theorems provide the basis for DFT. The first theorem states that the ground state 

electron density uniquely determines the external potential. From the first HK theorem 

the energy functional of a system in a particular external potential 𝑣0 can be written as 

 𝐸𝑣0[𝑛] = ⟨Ψ[𝑛]|�̂� + �̂�𝑒𝑒 + �̂�0|Ψ[𝑛]⟩. (12) 

The notation |Ψ[𝑛]⟩ signifies that the quantum state of the system is explicitly 

dependent on the electronic density. The second theorem offers a variational 
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approach to obtain the ground state electron density by minimizing the energy 

functional. This is expressed in the following equation: 

 𝐸0 = 𝑚𝑖𝑛 
𝑛
 𝐸𝑣0[𝑛]. (13) 

The energy functional, denoted as 𝐸HK[𝑛], can be separated into two parts: one 

dependent of the external potential and a universal functional, which yields: 

 𝐸HK[𝑛] = 𝐸𝑣0[𝑛]  = 𝐹HK[𝑛]  + ∫𝑣0(𝒓)𝑛0(𝒓) 𝑑³𝒓 (14) 

The universal functional, 𝐹HK[𝑛], is defined as: 

 𝐹HK[𝑛] = ⟨Ψ[𝑛]|�̂� + �̂�𝑒𝑒|Ψ[𝑛]⟩ (15) 

The Hohenberg-Kohn theorems, while formally defining 𝐹HK, lack a practical 

calculation scheme. To address this limitation, Kohn and Sham introduced an efficient 

methodology for practical application of DFT.  

To describe the electron system, an auxiliary system consisting of a non-

interacting electron gas is introduced in Kohn-Sham’s approach (Kohn and Sham 

1965). This auxiliary system has the same ground state electron density as the actual 

system. The HK functional is expressed as: 

 𝐹HK[𝑛] =
1

2
∬
𝑛(𝐫)𝑛(𝐫′)

|𝐫 − 𝐫′|
d³𝐫d³𝐫′ + 𝑇0[𝑛] + 𝐸xc[𝑛] (16) 

The first term represents the Coulomb repulsion between electrons, while the 

second term accounts for the kinetic energy of a non-interacting electron gas with the 

same density as the real system. The last term, known as the exchange-correlation 

(XC) energy, incorporates contributions that reconcile the limitations of the simplified 

system with the characteristics of the actual physical system, ensuring a formally 

equivalent representation. These contributions include: (i) correcting the kinetic energy 

to describe the real interacting system, (ii) correcting the self-interaction energy 

resulting from the Coulomb term, (iii) accounting for exchange energy due to the 

required exchange anti-symmetry of the electron wave function, and (iv) considering 

correlation energy that captures the interdependence of electron dynamics. By varying 

the total energy expression (14) and (16) with respect to a set of one-electron 

wavefunctions, denoted as 𝜙𝑖(r), the Kohn-Sham (KS) equations are derived. These 

wavefunctions define the density for an N-particle system as: 
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 𝑛(𝒓) =∑|𝜙𝑖(r)|
2.

𝑁

𝑖

 (17) 

This leads to the following equation for the Kohn-Sham potential, 

 𝑣eff(𝐫) = ∫
𝑛(𝐫′)

|𝐫 − 𝐫′|
d³𝐫′ +

𝛿𝐸xc[𝑛(𝐫)]

𝛿𝑛(𝐫)
+ 𝑣𝑒𝑥𝑡(𝐫), (18) 

the Kohn-Sham equations are then given by the following equation: 

 [−
1

2
∇𝐫
2 + 𝑣eff(𝐫)]𝜙𝑖(𝐫) = 𝜖𝑖𝜙𝑖(𝐫). (19) 

The one-electron wavefunctions introduced in this approach are referred to as KS 

orbitals (𝜙𝑖(r)). They are utilized to construct the total wave function using a Slater 

determinant and to determine the ground state electron density through equation (17). 

The total energy of the system can be obtained as: 

 

𝐸𝑡𝑜𝑡 =∑ 

𝑁

𝑖=1

𝜖𝑖 −
1

2
∬
𝑛(𝐫)𝑛(𝐫′)

|𝐫 − 𝐫′|
d³𝐫 d³𝐫′ −∫𝑣𝑥𝑐(𝐫)𝑛(𝐫) d³𝐫 +

𝐸𝑥𝑐[𝑛(𝐫)] +∑  

𝑀

𝛼=1

∑  

𝑀

𝛽=𝛼+1

𝑍𝛼𝑍𝛽

|𝐑𝛼 − 𝐑𝛽|
.

 (20) 

Since the effective potential in the equation necessary to solve for the KS orbitals 

relies on the electron density, which is obtained from the KS orbitals themselves, the 

solution of the KS equations requires a self-consistent approach. The process begins 

with a trial set of KS orbitals, from which the electron density is computed using 

equation (17). Subsequently, the effective potential is determined using equation (18) 

and then utilized in equation (19) to calculate new KS orbitals. This iterative process of 

obtaining new electron density and effective potential continues until a predefined 

convergence criterion is met, such as a negligible change in the total energy.  

A crucial aspect to consider is spin-polarization, which is necessary for describing 

materials that exhibit unbalanced spins such as magnetic materials, excited states and 

systems containing transition metals. This also typically extends to structures that 

exhibit dangling bonds, such as crystalline defects, heterovalent doping, as well as 

surfaces and clusters, all of which are covered in this study. To incorporate the KS 

method within a spin-polarized framework, the electron density is defined with its spin 

components for occupied states. Spin-polarization can be introduced as follows:   
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 𝑛𝜎(𝐫) = {𝑛
↑(𝐫), 𝑛↓(𝐫)} = ∑  

𝜎=↑,↓𝑖,𝑜𝑐𝑐

∑ 

𝑁

𝜎𝑖

|𝜙𝜎𝑖(𝐫)|
2, (21) 

where σ represents the spin channel, and the curly brackets indicate the set of two 

spin components, in which σ indicates the spin channel and the curly brackets indicate 

the set considering two spin components, ↑ (up) and ↓ (down), used to express the 

electron density. Each KS orbital, 𝜙𝜎𝑖(ri), can be scaled by a factor that modulates the 

spin components. The set of single-electron KS equations can then be written in the 

form: 

 [−
1

2
∇𝐫𝑖
2 + 𝑣𝑒𝑓𝑓

𝜎 [𝑛↑(𝐫), 𝑛↓(𝐫)]]𝜙𝜎𝑖 = 휀𝜎,𝑖𝜙𝜎𝑖, (22) 

in this equation 𝑣𝑒𝑓𝑓
𝜎  denotes that the effective potential may have different values for 

different spin channels, leading to eigenvalues that depend on spin polarization. 

2.2.3 Local and semi-local XC functionals  

The KS scheme has the potential to offer an exact solution for electron systems 

under any potential. However, the precise form of the exchange-correlation energy 

remains unknown. To address this, exchange-correlation functionals of the density 

have been developed and their accuracy for different systems and properties varies. 

The simplest level of approximation is the local density approximation (LDA), proposed 

in the original Kohn-Sham paper (Kohn and Sham 1965). LDA considers the electron 

density at each point in space and uses the Hartree-Fock (HF) exchange energy for a 

uniform electron distribution, yielding the expression: 

 

𝐸𝑥𝑐
𝐿𝐷𝐴 = ∫𝑛(𝐫). ϵ𝑥

𝐿𝐷𝐴(𝑛(𝐫)) d³𝐫  + ∫𝑛(𝐫). ϵ𝑐
𝐿𝐷𝐴(𝑛(𝐫)) d³𝐫, 

where ϵ𝑥
𝐿𝐷𝐴(𝑛(𝐫)) =  −

3

4
(
3𝑛(𝐫)

𝜋
)

1

3
. 

(23) 

Nevertheless, the correlation term lacks an analytical form, prompting the 

development of parametrizations such as VWN (Vosko, Wilk, and Nusair 1980), PZ81 

(J P Perdew and Zunger 1981) and PW92 (John P. Perdew and Wang 1992) by fitting 

numerical results obtained from Monte Carlo calculations on the homogeneous 

electron gas (Ceperley and Alder 1980). While LDA offers computational efficiency, it 

often demonstrates limitations in predicting cohesive energies and tends to 
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underestimate lattice parameters in solids. This shortfall is largely attributed to its 

inability to effectively capture electron correlations. Despite its initial popularity, LDA's 

efficacy relies substantially on error cancelation mechanisms (Becke 2014).  

To enhance the capabilities of LDA, the generalized gradient approximation 

(GGA) introduces a dependence on the electron density gradient in formulating semi-

local functionals. Various functionals, like PW91 (John P Perdew, Ziesche, and 

Eschrig 1991) and PBE (J P Perdew, Burke, and Ernzerhof 1996), have emerged 

within the framework of GGA. PBE is an evolution from PW91 and offers a formulation 

less reliant on fitting parameters, making it more accessible and widely adopted, 

especially in the study of solids. The functional is again divided in exchange and 

correlation parts as follows: 

 

𝐸𝑥𝑐
𝑃𝐵𝐸 = ∫𝑛(𝐫) . ϵ𝑥

𝐿𝐷𝐴(𝑛(𝐫)) . 𝐹𝑥(𝑛(𝐫), |∇𝑛(𝐫)|) d³𝐫 ⏟                            
+

𝐸𝑥
𝑃𝐵𝐸

 

+ ∫𝑛(𝐫) . ϵ𝑐
𝑃𝑊(𝑛(𝐫)) . 𝐻(𝑛(𝐫), |∇𝑛(𝐫)|) d³𝐫 

⏟                          
𝐸𝑐
𝑃𝐵𝐸

 

(24) 

where ϵ𝑐
𝑃𝑊(𝑛(𝐫)) is PW91 parametrization for LDA correlation energy, Fx and H are 

parametrized analytical functions designed to satisfy energetically relevant constraints 

on the exchange correlation functional such as behavior on slowly (rapidly) varying 

density, strong (low) correlation regions, translational invariance, etc. Spin polarization 

is usually treated in these functionals including the local relative spin-polarization, 휁 

given by  

 휁(𝐫) =
𝑛↑(𝐫) − 𝑛↓(𝐫)

𝑛↑(𝐫) + 𝑛↓(𝐫)
. (25) 

This requires that the parametrization functions obey new constraints such as the spin-

scaling relationship (Oliver and Perdew 1979) and update the uniform electron gas 

quantities following the local spin-density approximation (LSDA) (Barth and Hedin 

1972). 

GGAs systematically improve the atomization or cohesive energies of a wide 

range of molecules and solids and correct the LDA’s overbinding. However, they are 

not a universal improvement over LDA as in both cases their accuracy relies 

substantially on system dependent cancellation of error (J P Perdew et al. 1992; 
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Hasnip et al. 2014). As of latest assessments (Swart Lab 2023), the PBE functional 

remains the most popular GGA and DFT functional in general, especially for solids. Its 

widespread adoption stems from its low computational cost and demonstrated 

accuracy across a wide range of compounds and properties (Lejaeghere et al. 2014). 

Throughout our investigations, after careful validation against other well-known 

functionals for the Cs3Sb2X9 compounds (detailed in Table B1), we predominantly 

employed the PBE functional due to its established efficacy and prevalence assuring 

comparability of our findings with existing research in the field. 

2.2.4 The band gap problem and self-interaction corrections 

Though LDAs and GGAs functionals have found success in characterizing 

various structural and chemical properties across a broad range of materials, they 

exhibit limitations in accurately predicting specific electronic properties, notably the 

band gap (Sham and Schlüter 1983). When utilizing the Kohn–Sham valence and 

conduction band eigenvalues to calculate the band gap, these approaches persistently 

underestimate band gaps of semiconductors and insulators, for strongly correlated 

systems, this tendency may even extend to mistakenly predicting metallic ground 

states (Hasnip et al. 2014).  

A major contribution to the band-gap error arises from the Hartree energy EH in 

the Hamiltonian, as given in the first term on the right-hand side of Eq. 18. By using 

the total density, it also includes a Coulomb repulsion between an electron and its own 

charge density. This spurious self-interaction is exactly cancelled by the exchange 

term in some non-DFT methods, such as Hartree-Fock theory (discussed below), but it 

is only partially cancelled by LDA or GGA exchange. Because the self-interaction 

energy is always positive, the energy of localized states is raised favoring 

delocalization what leads to a lower band gap or even spurious metallization (Tu et al. 

2007). This delocalization also manifests in the inability of semi-local DFT to reproduce 

the discontinuous potential change when electrons are transferred, known as the 

derivative discontinuity problem, which is quite relevant for reaction barriers (Mori-

Sánchez and Cohen 2014).  

Several approximations beyond GGA can mitigate the band gap problem. 

Commonly used ones are: (i) Meta-GGAs, which incorporate the Laplacian of the 

density (expressed as the kinetic energy density) providing more flexibility to the 
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functional (J. Tao et al. 2003); (ii) DFT + U, involving an on-site Hubbard-U potential to 

enhance electron localization, often applied to more localized d or f shells, thereby 

improving also magnetic properties (Anisimov, Aryasetiawan, and Lichtenstein 1997); 

(iii) Hybrid functionals, which include an empirical fraction of Hartree–Fock exchange 

to alleviate the band-gap problem (Becke 1993). For this work, the last two 

approaches were applied to study the Cs3Sb2X9 compounds since they provide a more 

reliable and systematic improvement to the band gap compared to Meta-GGAs 

(Borlido et al. 2020). 

In the Hartree–Fock (HF) method, the Fock (exact) exchange energy is not a 

density functional; instead, it relies on single-particle states, expressed as: 

 𝐸𝑥
𝐻𝐹 = −

1

2
∑∑∫𝑑³𝒓∫𝑑³𝒓′

𝑗𝑖

𝜙𝑖
∗(𝒓)𝜙𝑖(𝒓

′)
1

|𝒓 − 𝒓′|
𝜙𝑗(𝒓)𝜙𝑗

∗(𝒓′), 
(26) 

where the sums run over occupied orbitals. This exchange is inherently non-local and 

exactly cancels the spurious self-interaction from Hartree term. However, HF neglects 

electronic correlation completely. Since exchange is very long ranged, decaying only 

as 1/r, due to lack of correlation screening, HF yields excessively high excitation 

energies and greatly overestimates the band gap (John P. Perdew, Ernzerhof, and 

Burke 1996; Hasnip et al. 2014).  

Based on the realization that while HF exaggerates the fundamental gap, GGA 

(or LDA) functionals tend to underestimate it, hybrid XC functionals emerged, 

combining HF with GGA (or LDA) functionals. The PBE0 functional, for instance (John 

P. Perdew, Ernzerhof, and Burke 1996), retains the PBE functional's correlation term 

while blending the PBE exchange term with HF exchange at a 3:1 ratio,  

 𝐸𝑥𝑐
𝑃𝐵𝐸0 =

1

4
𝐸𝑥
𝐻𝐹 +

3

4
𝐸𝑥
𝑃𝐵𝐸 + 𝐸𝑐

𝑃𝐵𝐸. (27) 

The mixing ratio was derived via perturbation theory from the adiabatic connection 

theorem, aiming to optimize molecule atomization energies. These hybrid functionals 

strike a balance between HF and DFT, resulting in more realistic gap predictions.  

Modern functionals like the widely used HSE06 introduce a partition between long- 

and short-range contributions and are named screened hybrid functionals (Heyd, 

Scuseria, and Ernzerhof 2003).  
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Screened hybrids retain most of the benefits of global hybrids but significantly 

reduce the computational cost in extended systems (Vydrov et al. 2006). This method 

involves splitting the Coulomb operator into short (SR) and long ranges (LR), with the 

LR exchange only including PBE exchange, as follows: 

 
1

𝑟
=
𝑒𝑟𝑓(𝜔𝑟)

𝑟⏟    
𝐿𝑅

 + 
𝑒𝑟𝑓𝑐(𝜔𝑟)

𝑟⏟      
𝑆𝑅

. 
(28) 

The range separation utilizes the error function (erf(x)) and its complement (erfc(x) = 1 

- erf(x)). At ω → 0, the long-range term diminishes, while the short-range term mirrors 

the complete Coulomb operator. Tests with various ω values indicate that ω = 0.11 

bohr-1 = 0.206 Å-1 strikes a favorable balance between computational efficiency and 

accuracy through a wide range of compounds using HSE06 (Krukau et al. 2006).  

Despite significantly improved results for equilibrium geometry, band gap and heats of 

formation (Gerber et al. 2007) compared to standard (semi-)local DFT calculations 

employing hybrid functionals for periodic systems demands about an order of 

magnitude more time due to the computational expense associated with computing 

exact exchange via HF (Duchemin and Gygi 2010; Hasnip et al. 2014). 

The DFT+U method is a less computationally expensive alternative to hybrid 

functionals, only slightly pricier than (semi-)local functionals. It minimizes self-

interaction errors by substituting intra-atomic interactions in chosen subshells with 

empirically parameterized Coulomb (U) and exchange integrals (J) (Anisimov, 

Aryasetiawan, and Lichtenstein 1997). The widely used expression for DFT+U follows 

a rotationally invariant approach (Dudarev and Botton 1998), offering an effective U 

(𝑈𝑒𝑓𝑓 = �̅� – 𝐽,̅ overbar denoting spherical average) and employs the formula: 

 𝐸𝐷𝐹𝑇+𝑈 = 𝐸𝐷𝐹𝑇  + 
𝑈𝑒𝑓𝑓

2
∑[(∑𝑛𝑚1,𝑚1

𝜎

𝑚1

)− ( ∑ �̂�𝑚1,𝑚2
𝜎 �̂�𝑚1,𝑚2

𝜎

𝑚1,𝑚2

)]

𝜎

. (29) 

Here, 𝑛𝑚1,𝑚2
𝜎  represents on-site occupancy matrix elements for corresponding mth 

states in spin-channel σ. This equation adds a penalty functional to the total energy 

expression, promoting localization in orbitals by steering the on-site occupancy matrix 

towards idempotency. The similarity of the U correction in DFT+U to Hubbard’s model 

(Hubbard 1964) for realistic treatment of on-site interactions has earned it the 

nickname "Hubbard correction”. 
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In practice, Ueff is usually adjusted to match experimental results, similar to how 

hybrid functionals may require tweaking the Hartree–Fock exchange percentage 

(Verma and Truhlar 2016). Both methods' optimal values vary based on the system 

and property. In this study, different U values were screened for Cs3Sb2X9 (X = Cl, Br, 

I) in Chapter 3, considering band gap and energy level of electronic states from 

previous HSE06 calculations. More details on DFT+U application is provided in 

appendix B.2 Determination of Hubbard U parameters. Nonetheless, approaches to 

determine Hubbard values from first-principles exist such as the linear response 

method (Cococcioni and de Gironcoli 2005) and the more recent ACBN0 method 

(Agapito, Curtarolo, and Nardelli 2015) which iteratively calculates Hubbard values 

and approaches HSE06 for many semiconductors, detailed implementation provided in 

Appendix C.2.5. The ACBN0 method was applied in our investigation on Chapter 4 to 

provide better estimates of the electronic structure in doped structures in large 

supercells which can be prohibitively expensive to evaluate with hybrid functionals.  

So far, our discussion has been centered on providing a more precise depiction 

of solids through their first-principles interactions. However, actually calculating total 

energy, wavefunctions, and material properties requires a few critical elements: 

expressing KS orbitals using a finite basis set {𝜙} for the infinitely-many electrons in a 

solid, using efficient methods for ion representation, and optimized tools to extract 

meaningful data from wavefunctions. These considerations aim to capture a material's 

setup at its core while balancing computational expenses and will be explained in 

detail in subsequent sections. 

2.2.5 Periodic boundary conditions and the plane-wave basis set 

The resolution of the Kohn-Sham equations (19) can be simplified by taking 

advantage of this periodicity and exploiting properties of the reciprocal space as 

expressed in Bloch’s theorem (Equation 6). All solutions to the Kohn-Sham equation 

can be expressed in the form of a plane wave function multiplied by a function 𝑢𝑛𝒌, the 

Bloch orbital, conforming to the crystal’s periodicity: 

 𝜙𝑛𝒌(𝒓) = 𝑒
𝑖𝒌𝒓𝑢𝑛𝒌(𝒓). (30) 

As a result of the periodicity, the distinguishable k vectors are confined to a primitive 

cell of the reciprocal lattice, the first Brillouin Zone (BZ) (Jensen 2017).  
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It is worth noting that the quantum state label i from the single-electron orbital has 

been substituted by nk, where n represents the band index and k is the wave vector in 

the first BZ. At first sight, replacing the infinite number of electrons in a crystal with an 

infinite number of wave vectors k in the first BZ may seem equivalent. However, the 

wave functions at k-points that are sufficiently close exhibit significant similarity, and a 

sampling method can be applied. Numerous methods have been developed to identify 

specific sets of k-points for effectively sampling the BZ. In this study, the Monkhorst-

Pack scheme (Monkhorst and Pack 1976), widely recognized and employed in 

literature, was utilized for all simulations. 

Treating the electronic structure of solids in reciprocal space allows to compute 

several quantities, such as the electronic density, by simply integrating across the BZ. 

For instance: 

 𝑓(𝒓) =
Ω

(2𝜋)³
∫𝐹(𝒌)

 

𝐵𝑍

𝑑𝒌 =  ∑𝑤𝑗𝐹(𝒌𝑗)

 

𝑗

. (31) 

Here, 𝐹(𝒌) denotes the Fourier transform of real-space function f(r), Ω is the real 

space cell volume and 𝑤𝑗 represents the weighting factors that collectively sum up to 

one. Moreover, handling point group symmetry becomes simpler, allowing for a 

reduction in the number of k-points needed for sampling. This reduction is achieved by 

adjusting the weights and sampling points solely within the irreducible wedge of the 

first BZ. 

The Bloch orbital given by equation (30) can be expanded into plane waves as 

shown in the equation: 

 𝑢𝑛𝒌(𝒓) =  ∑𝑐𝑛𝒌(𝑮)𝑒
𝑖𝑮𝒓

 

𝐺

. (32) 

where cnk(G) represents the coefficient for the plane wave 𝑒𝑖𝑮𝒓, with G representing 

the reciprocal lattice vectors defined by G·R = 2πn, where n is an integer. The 

complete Bloch functions, can then be expressed as a discrete plane-wave expansion: 

 𝜙𝑛𝒌(𝒓) =  ∑𝑐𝑛𝒌(𝒌 + 𝑮)𝑒
𝑖(𝒌+𝑮)𝒓

 

𝐺

. (33) 

While an infinite number of reciprocal lattice vectors are needed for precise description 

of the orbitals, it has been observed that for sufficiently large |G|, the contribution of 

plane waves diminishes exponentially, allowing for truncation of the series without 
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significant information loss. Therefore, a finite basis set, determined by a chosen cutoff 

energy (Ecut), optimizes computational resources.  

Determining a suitable Ecut involves convergence tests on benchmark quantities 

usually total energy or the cohesive energy for solids. These tests involve 

systematically increasing the cutoff energy until the calculated properties converge to 

a stable value that does not significantly change with further increases in Ecut. This 

convergence ensures that the chosen Ecut captures the essential physics of the system 

while balancing computational efficiency. Similarly, the procedure extends to 

determining the number of sampled k-points within the irreducible Brillouin Zone (BZ), 

employing a predefined sampling scheme (Sholl and Steckel 2009).  

The representation of one-electron orbitals in plane waves offers advantages 

owing to its completeness and simplicity. It enables the utilization of optimized 

numerical libraries for Fourier transforms and allows for a high level of parallelization. 

These features also facilitate analytical calculations for energies and their derivatives, 

such as forces and stresses, in comparison to localized basis sets. However, when 

dealing with surfaces or isolated structures, the use of periodic boundary conditions 

demands supercells, necessitating the inclusion of empty space (vacuum) in the 

system to prevent spurious interactions between periodic replicas at the cost of 

increased computational resources. Typical values might range from 10 to 15 Å, but 

this can vary significantly depending on the specific system and a convergence test is 

advised. Similarly, for doping studies, employing a supercell approach in which the 

doping site can be considered sufficiently localized is essential and depends on the 

specific case (Martin 2020; Sholl and Steckel 2009).   

In this study, plane-wave basis sets were consistently employed in all 

simulations. Prior to each investigation, converged energy cutoffs and grid sizes for k-

point sampling were predetermined for the base compounds, choosing the most 

rigorous convergence criteria to be uniformly applied to all other structures. The 

criterion employed in this selection process aimed for a 0.001 eV/atom difference 

relative to the extrapolated cohesive energy for both k-point sampling and plane-wave 

energy cutoff. Additionally, all simulations used Γ-centered k-grids which preserves 

symmetry of the hexagonal and trigonal lattices (Patel, Dabhi, and Vora 2022). When 

dealing with surfaces and isolated systems, as addressed in Chapter 3, convergence 
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calculations were performed to define the required size of the vacuum layer by 

monitoring the total energy variation. Moreover, high-concentration doping or alloying 

were considered when introducing heteroatoms. This approach is suitable because the 

chemical flexibility of halide perovskites generally allows for high concentrations of 

substituent atoms (X. Zhang et al. 2019). Hence, we are not concerned in generating 

very localized states to study the effects of doping on the host material. 

2.2.6 Pseudopotentials and projector-augmented wave method 

The representation of tightly bound core states' sharp peaks and the oscillating 

valence states within the core region, due to the orthogonalization constraint, requires 

extremely short wavelength plane waves (high Ecut) for an accurate description of the 

atomic core. However, these highly localized core states have minimal impact on the 

material properties since they are mostly inert to the chemical environment. Therefore, 

for an efficient computation using plane waves, the pseudo-ion containing the nucleus 

and the core electrons is better approximated by a screened pseudopotential 

interacting with the valence electrons. The design of this pseudopotential aims for its 

scattering characteristics with valence electrons to mirror those of the all-electron 

potential but yielding a smooth wavefunction without nodes (Ψ𝑝𝑠𝑒𝑢𝑑𝑜) that decays 

exactly like the all-electron wavefunction (Ψ𝐴𝐸) outside a cutoff radius rc.   

There are two primary methods for constructing pseudopotentials: norm-

conserving and ultrasoft. Norm-conserving pseudopotentials prioritize accuracy and 

transferability between different systems by ensuring the same norm of the true and 

pseudo-wavefunctions within the pseudized core region (r ≤ rc), albeit resulting in 

relatively harder potentials. On the other hand, ultrasoft pseudopotentials relax the 

norm-conserving condition, resulting in smoother potentials that are still highly 

transferable but with reduced plane-wave cutoffs. Implementing these 

pseudopotentials in the Kohn-Sham equations involves replacing the ionic potential 

(vext(r) in equation (18)) with the pseudopotential, vps(r), while keeping other terms 

unchanged.  

Alternative to the pseudopotential approach, the projector augmented-wave 

(PAW) formalism (P. E. Blöchl 1994) is an extension of the former that preserves the 

core orbitals. This is achieved through a linear transformation from pseudo-orbitals,  

�̃�𝑛𝒌: 
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 𝜙𝑛𝒌  = �̃�𝑛𝒌 +∑[(𝜑𝑖 − �̃�𝑖) (∫ �̃�𝑖
∗(𝒓′)𝜙𝑛𝒌(𝒓′)𝑑³𝒓′)⏟              

𝑐𝑖

]

𝑖

. (34) 

Where the all-electron partial waves are represented by 𝜑𝑖 and are solutions of the 

radial Schrödinger equation for a non-spin-polarized reference atom at a specific 

energy and momentum. �̃�𝑖 serves as a smoother version of 𝜑𝑖 in the augmentation 

region (r ≤ rc), matching exactly outside of it. In the interstitial region between the PAW 

spheres, the orbitals �̃�𝑛𝒌  are identical to the exact orbitals 𝜙𝑛𝒌. However, inside the 

spheres, the pseudo-orbitals serve merely as a computational tool and offer an 

inaccurate approximation to the true orbitals. The last equation is required to map the 

auxiliary quantities �̃�𝑛𝒌 onto the corresponding exact orbitals through the projectors 𝑝𝑖
 , 

which are fitted to yield the appropriate coefficients 𝑐𝑖. In practice, core electrons 

remain fixed in the configuration used to generate the PAW dataset. Similarly, different 

configurations necessitate the production of new projectors, much like in the case of 

pseudopotentials (P. E. Blöchl, Kästner, and Först 2005). 

Selecting the appropriate pseudopotential or PAW dataset for simulations 

involves weighing computational cost against accuracy. Tools like the standard solid-

state pseudopotentials (SSSP) website aid in comparing various implementations 

across chemical elements (Prandini et al. 2018). In this work, we employed norm-

conserving pseudopotentials from the PseudoDojo project (van Setten et al. 2018) for 

the study in Chapter 3. For Chapter 4, we used ultrasoft GBRV pseudopotentials 

(Garrity et al. 2014), except for optical property calculations, which required norm-

conserving pseudopotentials. In those cases, we applied Vanderbilt pseudopotentials 

from the SG15 collection (Schlipf and Gygi 2015). These selections were the result of 

testing, considering the distinct computational demands and elemental compositions 

pertinent to each project. Finally, the PBE PAW pseudopotentials provided in the 

Vienna Ab initio Simulation Package  (VASP) v.5.4  (Kresse and Joubert 1999; Kresse 

and Furthmüller 1996) were applied in the calculations described on the project in 

Chapter 6 to enable direct comparison of total energies to materials databases.  
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2.2.7 Computational implementation 

The investigations in this thesis employed ab-initio electronic-structure 

calculations using plane waves and pseudopotentials within the density functional 

theory (DFT) framework as implemented in the widely used ab initio packages 

Quantum ESPRESSO (QE) (Giannozzi et al. 2009) for the studies on Chapters 3 and 

4, and VASP (Kresse and Furthmüller 1996) for calculations in Chapter 6. Despite 

implementation differences, both codes follow a similar underlying procedure, which 

will be sequentially discussed, with VASP notably optimized for PAW formalism. 

In essence, the primary role of a DFT code involves computing a system's 

energy and pertinent properties in its ground state. The suite of integrated codes 

revolves around core executables, such as pw.x in QE, focusing on tasks such as 

geometric configuration optimization and self-consistent potential evaluation (as 

defined in equation (18), resulting in the determination of charge density and total 

energy for a relaxed ground state structure. 

For solid-state applications, electron wave functions expanded using plane 

waves (equation (33), simplify the KS differential equations (equation (19) into the 

following eigenvalue problem (Fiolhais, Nogueira, and Marques 2003): 

 
∑

[
 
 
 1

2
|𝒌 + 𝑮|²𝛿𝑮𝑮′ + �̃�𝑒𝑥𝑡(𝑮 − 𝑮′) + 4𝜋

𝑛(𝑮 − 𝑮′)

(𝑮 − 𝑮′)²⏟        
�̃�𝐻𝑎𝑟𝑡𝑟𝑒𝑒(𝑮−𝑮

′)

+ �̃�𝑥𝑐(𝑮 − 𝑮′)

]
 
 
 
𝑐𝑛𝒌(𝑮

′) =

𝑮′

= 𝜖𝑛𝒌𝑐𝑛𝒌(𝑮), 

(35) 

where �̃� refers to the Fourier transform of the respective potential†. For each k-point 

included in the BZ sampling, there are as many equations as the number of plane 

waves coupled through the self-consistent electron density, given by: 

𝑛(𝒓)  =  ∑𝑤𝒌∑𝑓(𝜖𝑛𝒌)𝑐𝑛𝒌
∗ (𝑮′)𝑐𝑛𝒌(𝑮)𝑒

𝑖(𝑮−𝑮′)𝒓

𝑮,𝑮′

,

𝑛,𝒌

 

or, the equivalent in reciprocal space: 

𝑛(𝑮)  =  ∑𝑤𝒌∑𝑓(𝜖𝑛𝒌)𝑐𝑛𝒌
∗ (𝑮′ − 𝑮)𝑐𝑛𝒌(𝑮′).

𝑮′𝑛,𝒌

 

 

† Notice that the case G,G’= 0 is a special case of the equation since the Hartree potential and ion-ion 

interactions will diverge, but calculating the limit the divergence disappears and a constant value is obtained, refer 

to Eq. 6.31 from A Primer in Density Functional Theory (Fiolhais, Nogueira, and Marques 2003). 
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Where 𝑓(𝜖𝑛𝒌) represents the occupation number of the KS state 𝑛𝒌, each weighted by 

the corresponding contribution from BZ sampling, 𝑤𝒌. Reciprocal space calculations 

prove useful for certain aspects of the effective potential due to their computational 

advantages. For example, the kinetic energy is diagonal in reciprocal space and the 

Hartree potential becomes a simple product as shown in (35). However, when it 

comes to external and exchange-correlation potentials, real space computation is 

more effective. This requires a seamless conversion of data between these spaces, 

efficiently achieved by leveraging the Fast Fourier Transform algorithm (Frigo and 

Johnson 2005).  

The usual method to solve these equations involves matrix diagonalization, such 

as the block Davidson diagonalization algorithm (Davidson 1975), with the matrix size 

determined by the chosen energy cutoff Ecut. Solving via diagonalization scales with 

Ne³, where Ne is the number of electrons in a unit cell (Levitt and Torrent 2015).  Next, 

the KS equations are solved to find the single-particle eigenvalues and wave functions 

for a specific nuclear configuration. A new electron density is then calculated from 

these wave functions. Self-consistent changes in total energy or electron density from 

the previous step are verified at this point. Total energy differences below 10-6 eV/atom 

is an usual threshold for SCF cycle convergence, in QE this value is passed on the 

keyword conv_thr. If self-consistency is not reached, the current electron density is 

combined with the previous cycle's density to produce a new one. The mixing 

algorithm can be tuned and plays an important role on achieving convergence (A. S. 

Banerjee, Suryanarayana, and Pask 2016). When self-consistency is achieved, 

various quantities such as total energy, atomic forces, stress within the unit cell, and 

electronic band structures can then be computed for the atomic arrangement.  

If forces and stresses exceed a set tolerance, atomic positions and cell 

parameters are adjusted and electronic iterations restart. Frequently a quasi-Newton 

relaxation algorithm like BFGS (Billeter, Curioni, and Andreoni 2003) is used for the 

geometrical optimization. Every atomic iteration contains multiple electronic iterations 

and after several atomic iterations, the system should reach equilibrium, concluding 

the calculation. For geometrical optimization, a convergence threshold in total energy 

and another one for forces must be satisfied simultaneously, usual thresholds for 

these quantities are below 10-6 eV/atom and below 0.01 eV/Å, respectively. These 

correspond to the keywords etot_conv_thr and forc_conv_thr, respectively, in QE.  
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Once 𝑣𝑒𝑓𝑓 is known, the system's electronic density and the corresponding 

hamiltonian are established. pw.x can then be employed to solve the KS equations in 

a non-self-consistent manner, generating KS eigenvalues for specific scenarios — like 

along a specified path in the Brillouin Zone (BZ) for band structure calculations or on a 

denser k-point grid for density of states (DOS) and projected density of states (PDOS) 

calculations. From the converged electronic density, charge density plots can be 

generated, and Bader charge analysis performed. Moreover, the final wavefunctions 

and density of the ground-state structure serve as starting point to compute multiple 

dynamical properties such as phonon and optical spectra. 

 

2.2.8 From ground-state DFT simulations to materials properties 

Moving past the process of acquiring the ground-state wavefunction and 

electronic density of a material via Density Functional Theory (DFT), our focus now 

shifts to extracting materials properties that align with our outlined interests in section 

2.1.2.  

Within DFT framework, the total energy emerges as a cornerstone for computing 

several key properties such as binding energies and formation enthalpy. The formation 

enthalpies enable a comparative analysis of formability of a given compound and may 

help assess their thermodynamic stability via the convex hull approach (Barber, 

Dobkin, and Huhdanpaa 1996; Bartel 2022). In the context of perovskites this is 

particularly useful to evaluate heteroatom doping as done for halide alloying in Chapter 

3 and 4 and for B-site doping in Chapter 4. In fact, the science of point defects is 

deeply rooted on evaluating energies (Freysoldt et al. 2014). Total energies can be 

also used in surfaces to estimate surface free energy as described in Eqs. (B3) and 

(B4) and were applied to compare the surface formability between different directions 

for each of the Cs3Sb2X9 perovskites on Chapter 3.  

Band structure and DOS/PDOS diagrams are indispensable tools in ab-initio 

simulations, revealing the core elements of a material's electronic structure. In 

semiconductors, these analyses are critical for determining band gaps, distinguishing 

between direct and indirect band gaps, and assessing effective masses from the 

curvature of the bands. PDOS curves elucidate contributions of different atomic 

species and orbitals within both valence and conduction bands, pivotal knowledge for 
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tailoring materials for specific applications. Moreover, exploring the spatial projection 

of Kohn-Sham (KS) orbitals, such as in the examination of distributions of highest 

occupied/lowest unoccupied states, aids in understanding optoelectronic transitions. 

This is particularly useful for studying the impact of heteroatoms on band structure 

alterations, as demonstrated in Chapter 4, or for comparative analysis, as shown in the 

cluster investigation in Chapter 3. Spin-density plots, obtainable through similar 

projections, offer deeper insights into magnetic properties. Most discussions in this 

thesis stem from interpreting these curves and plots, which detailed obtention is 

described in Appendix A.4. 

Electronic structure changes can be further understood by analyzing the charge 

transfer through the charge density plots and charge analysis by methods such as 

Bader and Lowdin charge analysis, formalism detailed on Appendix A.5. In Chapter 4, 

this approach was frequently employed to assess the impact of B-site doping on 

surrounding halogens and comprehend difference in formation energies. Changes in 

charge distribution follow geometric alterations which result from proper geometric 

optimization of the initial structure. Consequently, the interplay among these properties 

offers deeper insights into atomic-level processes, enriching discussions and 

enhancing comprehension of material properties. The role of geometry and charge 

transfer was considered in all studied structures in this thesis, as an example, the role 

of geometry and charge transfer was crucial to trace the atomistic origin of the PDOS 

distribution and band gap for Cs3Sb2X9 interfaces and clusters on Chapter 3.    

While valuable insights into material properties derive from ground-state DFT 

calculations, these represent merely a fraction of the whole picture. Once the ground-

state density and wavefunction are acquired, leveraging them as inputs for higher-level 

calculations, such as many-body perturbation theory (MBPT) or density functional 

perturbation theory (DFPT), opens avenues to approximate a myriad of dynamical 

properties (Onida, Reining, and Rubio 2002; Yip 2005). These encompass response 

and spectroscopic properties such as phonon frequencies, elastic constants, thermal 

conductivity, dielectric tensors, electron energy-loss spectra, electronic excitations, 

optical absorption spectra, among others. Calculating these properties typically 

involves high computational costs. This is due to the need for computing derivatives of 

the wavefunction in reciprocal space, which requires solutions in denser k-grids to 

ensure adequate accuracy, alongside the standard computation of observables (P. 
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Giannozzi et al. 2017). In this work, optical absorption spectra within the independent-

particle approximation (Del Sole and Girlanda 1993) has been computed to better 

assess the viability of studied metal-doped Cs3Sb2I9 polymorphs as solar cell 

absorbers, the detailed methodology for this method is presented in Appendix A.6.  

The atomic-level insights gained from simulations highlight why DFT is prevalent 

in materials science, aiding in understanding structure-property relationships often 

elusive in experiments. These simulations help optimize material properties across 

various compositions and applications (Frauenheim et al. 2002). Today, the field 

benefits from large materials databases and high-throughput calculations, rapidly 

screening materials for diverse compositions and applications (Saal et al. 2013). The 

fusion of streamlined simulations with databases, alongside the integration of machine 

learning algorithms, marks a significant breakpoint in materials exploration, 

fundamentally enhancing predictive capabilities and expediting the discovery of novel 

materials (Y. Liu et al. 2017). These transformative advancements will be further 

clarified in the upcoming sections. 

2.3 High-throughput calculations and large materials databases 

With the advances in simulation methods combined with the large increase in 

computational capacity results in a major reduction in time used to perform 

calculations, so a relatively larger time is spent on simulations setup and analysis, as 

illustrated in Figure 8. This changed the theoretical workflow of the computational 

materials scientist and led to new strategies. Rather than conducting numerous 

manually crafted simulations, there's now the capability to automate input generation 

and execute hundreds of simulations concurrently and in sequence. This evolution 

represents what is commonly referred to as a high-throughput (HT) workflow (Schleder 

et al. 2019). 
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Figure 8 – The duration required for computations varies in relation to technological 

progress. As computer technology advances, the computational phase may become 

less time-intensive compared to the setup's construction and the subsequent analysis 

of results. Source: (Schleder et al. 2019) 

These high-throughput DFT calculations (HT-DFT) methods are typically 

executed through a tripartite process: (i) conducting electronic structure computations 

for numerous synthesized and hypothetical materials; (ii) methodically storing 

information in databases; and (iii) screening and data mining: typically involve verifying 

stability and identifying potentially innovative materials. Subsequently, new physical 

insights are derived through further calculations or experiments (Schleder et al. 2019; 

Körbel, Marques, and Botti 2016). Table 1 showcases popular HT-DFT tools, each 

with unique functionalities and varying complexities. Yet, they commonly support tasks 

like manipulating crystallographic structures, managing input/output for different DFT 

software, and conducting basic material property analysis. 
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Table 1 – Popular HT-DFT tools used in materials science. Adapted from: (Song et al. 

2020)  

Name Function URL 

Pymatgen 
Robust, open-source python library for 

materials analysis. 
https://pymatgen.org  

AFLOWπ 
Minimalist framework for high-throughput 

first principles calculations. 
http://aflowlib.org/src/aflowpi  

FireWorks 
Open-source code for defining, managing, 

and executing workflows. 

https://materialsproject.github.io/ 

fireworks  

AiiDA 
Workflow to automate complex numerical 

procedures. 
http://www.aiida.net  

Pymatflow 
Workflow simplifier for materials science 

research. 
http://pymatflow.readthedocs.org  

ASE 
Setup, steering, and analysis for atomistic 

simulations. 
https://wiki.fysik.dtu.dk/ase  

Atomate 
Workflow built on top of pymatgen, 

custodian, and FireWorks. 
https://atomate.org  

Custodian 
Simple, robust, and flexible just-in-time job 

management framework. 
https://pypi.org/project/custodian  

The screening or mining process involves applying specific criteria to a database 

to choose the best candidates based on desired attributes. This process filters 

materials in a step-by-step manner, eliminating those that do not meet the constraints. 

Top candidates are then assessed to understand why they excel and to predict 

potential further improvements. Materials meeting the criteria can be ranked based on 

defined merits, allowing further investigation or application (Y. Wu et al. 2013; 

Curtarolo et al. 2013).  

The constraints can serve as filters guided by prior knowledge of phenomena and 

properties, or as descriptors derived from machine-learning processes, as will be 

discussed later. Typically, the filtering process begins with an analysis of 

thermodynamic stability to pinpoint a subset of potentially stable materials. 

Subsequent filters are then tailored to the specific application being sought, available 

resources and research design following a funnel-type model as illustrated in Figure 9. 

For example, in fields like photovoltaics and optoelectronics, a desirable attribute is 

usually a band gap within the visible-light absorption/emission range and suitable 

effective masses. Materials excelling in these aspects might undergo further 

evaluation using more costly methods, such as hybrid functional calculations for more 

accurate band structure prediction. This assessment could also involve acquiring 

https://pymatgen.org/
http://aflowlib.org/src/aflowpi
https://materialsproject.github.io/fireworks
https://materialsproject.github.io/fireworks
http://www.aiida.net/
http://pymatflow.readthedocs.org/
https://wiki.fysik.dtu.dk/ase
https://atomate.org/
https://pypi.org/project/custodian
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optical absorption curves and confirming the material is stable. Dynamic and thermal 

stability may be verified through phonon dispersion curves and ab-initio molecular 

dynamics simulations (Q. Li et al. 2021; Cai et al. 2022). Ultimately, the materials 

acquired through this method are open to experimental testing. Present-day literature 

brims with successful cases of new materials discovered through the high-throughput 

screening approach (Sanvito et al. 2017; Schlexer Lamoureux et al. 2019; J. Yang and 

Mannodi-Kanakkithodi 2022; H. Luo et al. 2023). 

 

Figure 9 – The funnel type model of high-throughput computational screening. 

Source: (S. Luo et al. 2021)   

Methods for discovering novel materials using high-throughput (HT) techniques 

are closely tied to managing extensive datasets. The accessibility of this data, often 

available in theoretical databases, fosters collaboration within the scientific community, 

an important aspect in advancing innovative applications within this rapidly expanding 

field. Theoretical and experimental databases serve multiple purposes, such as 

enhancing battery technologies, exploring new catalysts, designing efficient 

thermoelectric materials, and creating high-performance optoelectronic devices 

(Schleder et al. 2019; Song et al. 2020). 

Table 2 highlights some of the largest materials databases, encompassing both 

experimental and computational data. Notably, the most popular for computational 
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data include the Materials Project, a result of the multimillion-dollar Materials Genome 

Initiative (A. Jain et al. 2013), alongside the subsequently launched AFLOWLIB 

(Curtarolo et al. 2012) and Open Quantum Materials Database (OQMD) (Saal et al. 

2013). The Materials Project contains over 150,000 materials, while OQMD features 

data on more than 1 million materials, and AFLOWLIB boasts over 3.5 million entries. 

All three databases share a core collection of over 50,000 experimentally obtained 

materials sourced from the widely used Inorganic Crystal Structure Database (ICSD)  

(Belsky et al. 2002; Nosengo 2016). 

 

Table 2 – Popular material databases. Multiple stands for inorganic and organic 

materials also for mixed experimental and computational data. Adapted from: (Song et 

al. 2020)  

Name Data type URL Free 

Materials Project Multiple https://materialsproject.org  √ 

ICSD Inorganic & Experimental https://icsd.fiz-karlsruhe.de  × 

AFLOWLIB Inorganic & Computational http://aflowlib.org  √ 

COD Multiple & Experimental http://crystallography.net  √ 

OQMD Multiple & Computational http://oqmd.org  √ 

NOMAD Multiple https://nomad-repository.eu  √ 

JARVIS Computational https://jarvis.nist.gov √ 

Materials Cloud Multiple  https://www.materialscloud.org  √ 

Materials Commons Computational https://materialscommons.org  √ 

CSD Multiple https://www.ccdc.cam.ac.uk  × 

 

Their differences lie in the hypothetical materials they include: the Materials 

Project focuses on materials with a reasonable chance of being synthesized, whereas 

AFLOWlib and OQMD loosen this restriction, accommodating compounds that may 

not ever be synthesized but offer significant insights into compound formability 

(Nosengo 2016; Balachandran et al. 2018). AFLOWlib specializes in providing 

extensive data on alloys and disordered materials (Toher and Curtarolo 2023), while 

OQMD offers particularly wide coverage of perovskites (Shen et al. 2022). Additionally, 

OQMD stands out as the most open among the three: users can download the entire 

database onto their computer, not just individual search results, fostering broader 

https://materialsproject.org/
https://icsd.fiz-karlsruhe.de/
http://aflowlib.org/
http://crystallography.net/
http://oqmd.org/
https://nomad-repository.eu/
https://www.materialscloud.org/
https://materialscommons.org/
https://www.ccdc.cam.ac.uk/
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accessibility and utilization. For these reasons, OQMD was our choice of dataset to 

model perovskite properties with machine learning models as explored on Chapter 6.  

In addition to using a standard set of pseudopotentials in their computations, all 

large materials databases employ fixed parameters for k-point sampling and plane 

wave energy cutoff. This speeds up screening while preserving adequate accuracy for 

fundamental properties (formation energies and crystal volume) (Hegde et al. 2023). 

Thus, a direct comparison of total energies is made possible by using the same 

simulation settings as those used for the database. We employed this strategy in our 

perovskite HT simulations with Atomate2 (Mathew et al. 2017; Ganose et al. 2024), 

replicating OQMD’s simulation settings. By analyzing the convex hull distance relative 

to OQMD entries, we were able to estimate the thermodynamic stability and 

decomposition products of the calculated structures to screen for viable compounds. 

While materials databases offer immense power, acknowledging their limitations 

is important. The limitations of materials datasets encompass two primary challenges. 

Firstly, there's a scarcity of high-quality data due to an imbalance between vast 

computational datasets, primarily derived from cost-effective methods like DFT with 

Generalized Gradient Approximation (GGA) or classic molecular dynamics, and a lack 

of comprehensive experimental data or data from more expensive, accurate 

computational methods. This results in a significant disparity in data points available 

for properties like formation enthalpies, band gaps, or thermal conductivity (Gong et al. 

2022). Secondly, these datasets often exhibit biases that affect their 

representativeness across the materials space. Biases range from favoring specific 

elements or compound types to excluding certain structural motifs or limiting primitive 

cell sizes. These biases hinder the broader applicability of these datasets, impacting 

their utility in comprehensive material understanding and machine learning 

applications (S. Kim et al. 2020; Muy et al. 2019). Nevertheless, the literature is 

teeming with successful machine learning applications in materials science and is 

effectively revolutionizing the field while these challenges are mitigated. In the next 

section, we thoroughly explore the implementations and implications of this research 

field. 
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2.4 Machine Learning for Materials Science 

The evolution of materials science mirrors the broader evolution of science and 

technology through history. Initially, empirical observations, particularly in metallurgy 

across different ages (stone, bronze, iron, steel), formed the foundation. Then, a few 

centuries ago, theoretical models and generalizations emerged, represented by 

mathematical laws like the laws of thermodynamics in materials science. However, the 

complexity of theoretical models grew over time, making analytical solutions 

impractical for many scientific problems. The advent of computers introduced a third 

paradigm—computational science. This paradigm enabled simulations of intricate real-

world phenomena based on the theoretical models from the second paradigm. 

Examples in materials science include density functional theory (DFT) and molecular 

dynamics (MD) simulations. Each scientific paradigm has contributed to advancing its 

predecessor, leading to the popularization of theory, experiment, and computation 

across various scientific fields (Agrawal and Choudhary 2016). 

Recently, the burgeoning volume of data generated by experiments and HT 

simulations has birthed the fourth paradigm—data-driven science. This paradigm 

integrates theory, experiment, and computation/simulation, unifying the earlier 

paradigms as illustrated in Figure 10. Because of the vast amounts of data collected in 

materials databases, this trend has gained traction in materials science, resulting in 

the emergence of materials informatics as a new field within the discipline (Agrawal 

and Choudhary 2016; Schleder et al. 2019). 

Materials informatics aims to discover the connection between materials 

attributes and their properties. Due to the complexity of the patterns across vast 

materials landscapes, machine learning (ML) models are generally utilized since they 

are essentially function approximators (Takeshima 2022). In this context, we seek to 

answer for a material xi, represented by appropriate descriptors as a vector or a graph 

(Damewood et al. 2023), what is its property 𝑦𝑖 = 𝑓(𝒙𝒊). There are three types of 

machine learning algorithms: supervised learning, unsupervised learning and 

reinforcement learning (Alloghani et al. 2020). Our focus in materials science is usually 

on supervised learning algorithms, which are models that map inputs to outputs, and 

attempt to extrapolate patterns learned in past data on unseen data. Supervised 

learning algorithms can be either regression models, in which we attempt to predict a 

continuous variable, such as the band gap — or classification models, where we try to 
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predict a binary or multi-class variable, such as whether a material is a metal or 

semiconductor/insulator (Dunn et al. 2020). Machine learning (ML) models offer a 

significant advantage for predicting material properties, as they can reduce the 

computational cost by orders of magnitude compared to ab initio simulations (Tawfik 

and Russo 2022). 

Following what is known as the supervised approach, the ML algorithm will tackle 

this problem by learning the patterns on a given dataset, this phase is denominated 

training and results in a ML model with the appropriate parameters that hopefully 

generalizes to other materials, outside the dataset, and provides predictions. The ML 

approach is expected to reveal feature-property connections that are not apparent to 

human observation. This contrasts with theoretical models, which are rooted in the 

underlying physical theories behind the data to make predictions. 

 

 

Figure 10 – Evolution of science through the four paradigms. Source: (Schleder et al. 
2019) 

2.4.1 Machine learning model training: strategies and tradeoffs 

There are numerous machine learning algorithms, each of which is better suited 

to a certain issue and/or dataset. This is consistent with the “No Free Lunch Theorem”, 

which states that no ML algorithm can be considered universally superior. This means 

that the goal of ML is not to find the best learning algorithm. Instead, we must 

determine what type of distribution is relevant to our specific application in materials 

science and which ML algorithm performs best on that data. As a result, we can try a 
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variety of algorithms to train a model, each with a distinct speed-interpretability-

accuracy tradeoff (Murphy 2012). In Figure 11 some of the most common ML 

algorithms and their tradeoffs are presented. An overview of common supervised and 

unsupervised ML algorithms is given in Appendix A.7 for the sake of brevity. The figure 

reveals that simple interpretable algorithms like classification rules or linear regression 

are often inaccurate due to limited parameters, while flexible deep neural networks 

achieve high accuracy but are often “black boxes” in interpretability. 

 

Figure 11 – The trade-off between interpretability and accuracy of some relevant 

ML models. Source:  (Morocho-Cayamcela, Lee, and Lim 2019) 

This compromise between interpretability and accuracy underlines the broader 

bias-variance tradeoff inherent in function approximators. (Vapnik 2000; Geman, 

Bienenstock, and Doursat 1992). Complex models, with a high number of parameters, 

possess the capability to capture nonlinear patterns across a high-dimensional space, 

incorporating the contributions of multiple descriptors. However, these models have 

several limitations, including the difficulty to extract meaningful relationships between 

predictions and descriptors, greater computing expense during training, and the 

inherent risk of overfitting — a situation where the model fittingly memorizes noise as if 

it were signal. This phenomenon tends to amplify variance in predictions for new data, 

as slight alterations in input data can lead to wide fluctuations in forecasts, although 

there are exceptions (Neal 2019). Conversely, simpler models with fewer parameters 

tend to suffer from underfitting. These models inadequately capture the essential 

relationships between descriptors and properties, resulting in systematic errors, or 
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bias, within their predictions. This presents a fundamental challenge: striking a balance 

between complexity and accuracy in machine learning models (Rashidi et al. 2019). 

To effectively address this challenge, it is crucial to evaluate a model's 

performance beyond its training data. Typically, this involves dividing the dataset into 

three separate subsets: training, validation, and test sets. Ensuring these subsets 

present similar statistical distribution is imperative for proper assessment of 

performance. The validation set becomes instrumental in optimizing the model's 

hyperparameters — parameters not altered during the training process. These 

hyperparameters often fine-tune the model's complexity, controlling the risks of 

underfitting or overfitting. Examples encompass the depth of a decision tree or the 

number of layers in a neural network, as well as parameters governing training speed 

and optimization capability, such as learning rates in neural networks. By training 

multiple models with distinct hyperparameters and assessing their performance on the 

validation set, the optimal hyperparameters can be identified. Subsequently, with fixed 

hyperparameters, the model undergoes training, and its predictions on the test set are 

compared against actual labels to evaluate performance. The separation into 

validation and test sets serves to prevent hyperparameter tuning that artificially inflates 

test set results, potentially compromising the model's generalizability during 

deployment. This meticulous process aims to strike an optimal balance, as depicted in 

Figure 12, ensuring that the model's performance holds true during external testing. 
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Figure 12 – Illustration of the bias-variance trade-off in machine learning. Training data 

can be fit to arbitrary precision using complex models, but the problem lies in 

generalizing to test data. Underfitting produces less variable predictions but high error 

rate and bias, while overfitting results in low bias and high variance. The ideal zone 

lies between overfitting and underfitting zones, requiring multiple adjustments to 

generalize well to validation and testing data. Source: (Rashidi et al. 2019)  

Moreover, presenting and effectively utilizing sufficient data is crucial for training 

a model capable of delivering reliable predictions in applications. This is especially 

relevant in materials science where data collection can be very costly; experimental 

data is expensive to obtain, and relying on DFT theoretical calculations still presents a 

significant cost, particularly for properties that are not directly obtained from ground-

state calculations (Rodrigues et al. 2021; Pilania 2021). Fortunately, methodologies 

have emerged to efficiently leverage available data, such as cross-validation and 

ensemble methods (elaborated upon in Appendices A.8 and A.9). Equally essential in 

model training is the selection of appropriate descriptors for prediction and the careful 

curation of these features to prevent under- or overfitting, as will be explored in the 

following section.  

2.4.4 Descriptors and feature selection 

Descriptors, interchangeably referred to as features or variables, encapsulate the 

characteristics of data points within a dataset, constituting the feature vector 𝒙𝒊 used to 

predict a corresponding property, or set of properties, 𝑦𝑖, through the ML approximated 

function 𝑓. In the field of materials informatics, features encode information regarding 

chemical compositions, crystal structures, bonding patterns, and more (Seko, Togo, 
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and Tanaka 2018). Even with advanced algorithms, poor descriptors will consistently 

result in unsatisfactory ML models. Hence, using effective descriptors which can 

correlate with the target property is essential for accurate predictions. Nonetheless, 

apart from predictive power, three other critical elements determine the quality of 

descriptors, as outlined by Tawfik and Russo (2022): 

- Meaningfulness: Descriptors should align with physical or chemical principles. 

This is important to preserve the interpretability of the results and help guide 

design principles.  

- Computational efficiency: The computational cost of deriving a descriptor 

should be substantially lower than that of calculating the target property. 

- Number of entries in the descriptor: When the descriptor is calculated for the 

material, it should provide suitable number of entries to add to the feature 

vector (e.g., no more than a few hundreds). This simplifies the ML model, 

since numerous descriptors strain storage, processing, and result in opaque, 

"black-box" ML models. 

These four criteria—Meaningful, Efficient, small Number of descriptors, Accurate 

(MENA)—comprise the benchmarks for ML descriptors in materials science. When it 

comes to predict DFT-calculated properties in materials science, descriptors can be 

categorized into four classes, namely, elemental, geometry-based, electronic structure 

and ab-initio based features. This categorization reflects a gradual progression, where 

each category elevates accuracy with the tendency to also introduce increasing levels 

of complexity and computational demands. Let's now examine each category in detail: 

- Elemental Descriptors: Represent the simplest category, swiftly calculated 

and intimately connected to elemental traits within a material's structure, such 

as atomic numbers or elemental melting points. However, their lack of 

uniqueness can compromise accuracy, especially when detailed structural 

information is crucial, such as in dealing with polymorphs.  

- Geometry-Based Descriptors: Drawing from material geometry these features 

encompass both translationally-invariant geometric and elemental properties. 

They include symmetry groups, property-labelled materials fragments 

(PLMFs) (Isayev et al. 2017), geometrical fingerprints, and symmetry 

functions. While some descriptors in this class, like symmetry functions, 



 
 

75 
 

involve mathematically complex operations, they are generally 

computationally feasible.  

- Electronic Structure Descriptors: By delving into electronic properties at the 

atomic level, these features provide valuable insights. However, since they 

encode information locally their ability to grasp physical properties of the 

entire structure is still limited, examples of this class include the electronic 

structure attributes (Ward et al. 2016), molecular orbital attributes (Welborn, 

Cheng, and Miller 2018) and methods combining local structure with atomic 

electronic information such as smooth overlap of atomic positions (SOAP) 

(Bartók, Kondor, and Csányi 2013) and orbital field matrix (OFM) (Lam Pham 

et al. 2017). 

- Ab Initio-Based Descriptors:  Since they correspond directly to physically-

computed quantities such as total electronic energy and molecular orbital 

energies, they are highly meaningful. However, these descriptors require ab 

initio calculations either partial or complete at a lower level of theory what 

entails a heightened computational cost. A prime example are the ROSA 

(Robust One-shot Ab-initio) descriptors by Tawfik and Russo (Isayev et al. 

2015; Tawfik and Russo 2022). 

When selecting which features will be in our model, it is crucial to weigh the 

computational cost of descriptors against their predictive value for the property or 

properties of interest. An excessive number of features can trigger a problem known 

as “curse of dimensionality”, causing sparsity of the dataset that hampers the 

algorithm’s capacity to learn meaningful patterns in the data. Moreover, high-

dimensionality amplifies the impact of fluctuations and outliers, promoting overfitting 

and undermining generalization. To address this issue, we should first consider how to 

represent local features of a material.  

A compound, denoted as 𝜉, can be represented by a collection of atomic 

descriptions, each encapsulating its elemental and structural details within the unit cell. 

This setup allows to create a matrix where a total of 𝑁𝑎
(𝜉)

 rows represent the different 

atoms in the unit cell of the compound, and a total of 𝑁𝑥 columns represent the 

elemental, structural and electronic local features (i.e., 𝑁𝑥 = 𝑁𝑥,𝑒𝑙𝑒𝑚 + 𝑁𝑥,𝑠𝑡 + 𝑁𝑥,𝑒𝑙𝑒𝑐), 

the final representation of this feature matrix becomes: 
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 𝑿(𝜉) =

(

 
 
 

𝑥1
(𝜉,1)

𝑥2
(𝜉,1)

⋯ 𝑥𝑁𝑥
(𝜉,1)

𝑥1
(𝜉,2)

𝑥2
(𝜉,2)

⋯ 𝑥𝑁𝑥
(𝜉,2)

⋮ ⋮ ⋱ ⋮

𝑥1
(𝜉,𝑁𝑎

(𝜉)
)
𝑥2
(𝜉,𝑁𝑎

(𝜉)
)
⋯ 𝑥𝑁𝑥

(𝜉,𝑁𝑎
(𝜉)
)
)

 
 
 
, (36) 

where 𝑥𝑛
(𝜉,𝑖)

 denotes the nth representation of atom 𝑖 in compound 𝜉. However, this 

representation is not agnostic to the number of atoms in the unit cell. To use this 

representation effectively in machine learning algorithms on datasets containing 

materials with varying numbers of atoms in the unit cell, one might consider capping 

the representation by the largest unit cell and padding the others with zeros.  

Nevertheless, this approach would introduce sparsity and bias the algorithm towards 

correlating with the number of atoms rather than focusing on the chemical and 

structural characteristics. A more effective approach considers the distribution of the 

local features among the constituent atoms, effectively calculating basic statistics such 

as mean, standard deviation, maximum, minimum, range, etc., across the columns of 

the matrix 𝑿(𝜉) to generate the feature vector xi (Seko, Togo, and Tanaka 2018), this is 

illustrated in Figure 13. 

 

Figure 13 – Schematic illustration of the generation of generalizable compound 

descriptors from local features. Source: (Seko, Togo, and Tanaka 2018). 

The generation of descriptors has become highly automated in today's context, 

facilitated by packages such as MatMiner (Ward et al. 2018) which can generate 

thousands of individual descriptors, roll descriptive statistics and combine them into 

mathematical functions. An overview of the numerous featurizers included in MatMiner 

is presented in Figure 14. However, an abundance of descriptors may not bolster our 

machine learning (ML) model. Instead, it could exacerbate the curse of dimensionality, 

cluttering the model with numerous features that introduce noise. Therefore, we 
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commence the first step in the process—known as feature engineering—by 

undertaking feature selection. 

 

Figure 14 – Matminer includes several featurizers across five modules: composition, 

site, structure, bandstructure, dos. Each featurizer produces numerous features, 

enabling MatMiner to generate thousands of unique features. Source: (Ward et al. 

2018). 

In feature selection, the primary goal is to retain the most relevant and 

informative features that significantly contribute to the model's predictive power, while 

excluding irrelevant or redundant ones. Techniques like statistical-based and model-

based selection aid in this process. Model-based selection involves using interpretable 

machine learning models, typically decision tree ensembles, to estimate feature 

importance. Conversely, statistical-based selection assesses the relationship between 

features and the target variable or within features themselves to identify redundancy 

(Venkatesh and Anuradha 2019). 

A prime example of statistical-based selection is integrated into the MODNet 

framework, further explored on Section 2.4.9.3, which utilizes normalized mutual 

information (NMI) to select optimal features to the model. NMI is calculated as follows: 

 
𝑁𝑀𝐼(𝑋, 𝑌) =

𝑀𝐼(𝑋, 𝑌)

(
𝐻(𝑋) + 𝐻(𝑌)

2 )
. 

(37) 
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Here, MI denotes the mutual information (Kraskov, Stögbauer, and Grassberger 

2004), and H represents the information entropy (𝐻(𝑋) = 𝑀𝐼(𝑋, 𝑋)). NMI yields a 

normalized value and offers greater flexibility and resistance to outliers to capture 

associations between variables compared to the Pearson correlation coefficient which 

assumes linearity. MODNet’s feature selection computes NMI of all features 𝑓 ∈ ℱ with 

the target variable (y) to select the first optimal feature, and subsequently implements 

a relevance and redundancy (RR) score which is repeatedly computed with the 

already selected features set 𝑓𝑆 ∈ ℱ𝑆: 

 𝑅𝑅(𝑓) =
𝑁𝑀𝐼(𝑓, 𝑦)

[𝑚𝑎𝑥𝑓𝑆∈ℱ𝑆(𝑁𝑀𝐼(𝑓, 𝑓𝑆))]
𝑝 + 𝑐

, (38) 

where (p, c) are hyperparameters determining the balance between RR which vary 

with the number of features and were benchmarked to be 𝑝 = 𝑚𝑎𝑥(0.1, 4.5 − 𝑛0.4) and 

c=10−6𝑛3. The selection proceeds until the number of features reaches a threshold, 

which can be fixed arbitrarily or, ideally, optimized to minimize model error (De Breuck, 

Hautier, and Rignanese 2021).  

While MODNet's process excels in comparison to other model-based selections 

when benchmarked against various frameworks, the cross-NMI computation becomes 

intensive as it scales with 𝑛2 where 𝑛 is the number of features in the initial set. 

Therefore, in this study, when the initial descriptors in the feature vector 𝒙𝑖 exceeded 

1500, they were reduced to 1500 using the feature importance score derived from the 

decision tree ensemble model, XGBoost (T. Chen and Guestrin 2016). 

After the critical phase of feature selection, other tools in the feature engineering 

toolbox ought to be considered before the machine learning model is trained. These 

include important data preprocessing steps such as normalization, one-hot enconding, 

missing data imputation, and dimensionality reduction. Also, an essential step is the 

selection of an appropriate error metric for the problem at hand. The topic of data 

preprocessing methods is covered in detail in Appendices A.10 and A.11, while the 

subsequent section elaborates on the choice of the error metric. 

2.4.7 Error metrics  

Once the method and model type are established and the data properly 

processed, choosing an error metric aligned with the property measured is the last 

important decision. The error metric forms the core of the loss function (see Equation 
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A30), affecting the optimization of model's hyperparameters and weights. Selection 

depends on factors like property nature, acceptable error, prediction variance, and 

interpretability preferences. There are numerous error metrics in ML, and customized 

metrics for specific applications are frequently developed. However, we will focus on 

the metrics traditionally used in materials science problems. These metrics fall into two 

primary categories: regression and classification metrics, each named according to the 

nature of the task they address. Beginning with the regression metrics, we have: 

• Mean Squared Error (MSE): The most common to estimate fitting accuracy in 

regression. 𝑀𝑆𝐸 = (
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1 ), where �̂�𝑖 is the predicted value of the i-th 

example and 𝑦𝑖 is the actual value. It is closely linked to the estimation of a 

distribution parameter (θ) through 𝑀𝑆𝐸 = 𝐸[(휃̂ − 휃)² ] =  𝐵𝑖𝑎𝑠(휃̂)² + 𝑉𝑎𝑟(휃̂). 

• Root Mean Squared Error (RMSE): Derived by taking the square root of MSE, it 

recovers the original unit, facilitating model accuracy interpretation. 

• Mean Absolute Error (MAE): This is also a very common metric given by 

𝑀𝐴𝐸 = (
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|)
𝑛
𝑖=1 , it is less sensitive to outliers than MSE and preserves 

the original unit, commonly used in materials science (Dunn et al. 2020). 

• Mean Absolute Percentage Error (MAPE): A normalized version of MAE 

expressed as a percentage; MAPE = (100% ×
1

𝑛
∑

|𝑦𝑖−�̂�𝑖|

|𝑦𝑖|
)𝑛

𝑖=1 . 

• Coefficient of Determination (R²): Measures the proportion of variance 

explained by the model, mathematically 𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 , where the total sum of 

squares is 𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦𝑖 − �̅�)
2

𝑖  and the residual sum of squares is given by 

𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦𝑖 − �̂�𝑖)
2

𝑖 . When 𝑅2  = 1 a perfect fit of the actual data is obtained, 

explaining all variance in the dependent variable. However, R² can mislead in 

cases of overfitting or a high feature-to-sample ratio (Schleder et al. 2019). 

In the case of classification tasks, the confusion matrix is a very usual 

visualization method and gives insight on important quantities for the classification 

task. In this matrix, illustrated in Figure 15, each row and column corresponds to 

predicted and actual values, allowing a clear representation of outcomes. The resulting 

matrix contains four distinct cells: true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN). TP denotes instances where both actual and predicted 

values are positive, TN signifies instances where the actual value is positive while the 
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model predicts a negative value, FP represents cases where the actual value is 

negative, but the model predicts a positive value, and FN indicates situations where 

both actual and predicted values are negative. 

 

Figure 15 – The confusion matrix showcases the number of correctly predicted 

elements in the diagonal entries and incorrectly predicted ones in the off-diagonal 

entries. Adapted from: (Das, Sahoo, and Pradhan 2022). 

From these quantities we can extract important evaluation metrics for 

classification tasks: 

- Accuracy: The ratio of correct predictions to the total predictions, calculated 

as (TP + TN) / (TP + TN + FP + FN). It is valuable for balanced classes but 

can mislead with imbalanced classes. 

- Precision: The ratio of true positives to the sum of true positives and false 

positives, calculated as TP / (TP + FP). Useful when the cost of false 

positives is high. 

- Recall: The ratio of true positives to the sum of true positives and false 

negatives, calculated as TP / (TP + FN). Valuable when the cost of false 

negatives is high. 

- F1 score: The harmonic mean of precision and recall, calculated as 2 * 

(precision * recall) / (precision + recall). Important when both precision and 

recall matter, this metric is more reliable for unbalanced classes. 

The receiver operating curve (ROC) is also routinely used to understand model’s 

ability to differentiate classes, being the plot of the true (T) positive rate TPR = (
TP

TP+FN
) 

versus the false positive rate FPR = (
𝐹𝑃

𝐹𝑃+𝑇𝑁
) with changing threshold (Schleder et al. 

2019; Pedregosa et al. 2011). The ROC curve is illustrated on Figure 16, this leads to 
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another metric the Area under the ROC curve (AUCROC). In the ideal case of AUC = 

1, we have a perfect classifier that achieves ideal separability between classes, 

exhibiting no false positives or false negatives. 

 

Figure 16 – The area under the ROC curve is an indicator of a model's ability to 

accurately classify data. Source: (‘Receiver Operating Characteristic’ 2023). 

Cross-entropy is another versatile classification error metric well-suited for neural 

networks due to its differentiability. It can be either binary or categorical cross-entropy, 

depending on whether there are two classes or more, respectively. For binary cross-

entropy (BCE), a sigmoid function converts logits to probabilities, given by: 

where 𝑦𝑖 is the true label (0 or 1) and 𝑝𝑖 is the predicted probability. In categorical 

cross-entropy (CCE), the Softmax function transforms logits (𝑧𝑖) for each class into 

probabilities, defined as:  

where C is the number of classes, 𝑦𝑖𝑗 is the indicator function (1 if sample 𝑖 belongs to 

class 𝑗), and 𝑝𝑖𝑗 is the predicted probability of sample 𝑖 in class 𝑗. 

In this work, MAE was the primary choice for regression tasks due to its ease of 

interpretation and popularity. However, for tasks like training autoencoders as 

 𝐵𝐶𝐸(𝑖) = −𝑦𝑖 log(𝑝𝑖) − (1 − 𝑦𝑖) log(1 − 𝑝𝑖)), (39) 

 

𝑝𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐶
𝑗=1

, 

𝐶𝐶𝐸(𝑖) = −∑𝑦𝑖𝑗

𝐶

𝑗=1

log(𝑝𝑖𝑗), 

(40) 



 
 

82 
 

addressed in Chapter 5, MSE was preferred because it places a heavier penalty on 

outliers. For classification, we opted for the AUCROC metric, implemented using the 

Scikit-learn package (Pedregosa et al. 2011). We also applied cross-entropy as the 

loss function for optimization, primarily due to its compatibility with neural networks. 

2.4.8 Neural networks and deep learning 

ML methods like regression, random forests, and support vector machines have 

long been staples in materials science (Carr et al. 2009; Madden and Howley 2009; 

Podolyan, Walters, and Karypis 2010; Majid, Khan, and Choi 2011; Carrete et al. 

2014). These models excel when datasets are small. However, to harness the vast 

repositories of materials information and the increasing output data in materials 

research, more advanced algorithms capable of capturing complex interactions within 

extensive chemical spaces become essential. Artificial neural networks (ANNs) and 

their more sophisticated progression, deep neural networks (DNNs), lead this current 

surge of ML frameworks in materials research (Choudhary et al. 2022). ANNs are 

pervasive and influential machine learning algorithms to model input-output 

correlations. Their architecture, depicted in Figure 17, begins with an input layer that 

houses the input data within its nodes. Subsequently, hidden layers, composed of 

multiple nodes, also called neurons, fully connect with nodes in successive layers. 

These interconnections are visually represented by connecting lines, culminating in the 

final output layer. This parallelism to the intricate connectivity of biological neural 

networks (Barrett, Morcos, and Macke 2019) empowers ANNs to decipher nuanced 

patterns and correlations necessary for the complex materials science problems. In 

fact, neural networks can potentially estimate any function to arbitrary accuracy, 

according to the "universal approximation theorem" (Hornik, Stinchcombe, and White 

1990). 
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Figure 17 – Diagram of a neural network that shows how inputs are processed through 

the network’s layers to produce an output. The diagram also illustrates how activation 

functions like Tanh, ReLU, Sigmoid, and Linear are applied in the hidden layers and 

final output. Source: author. 

A Deep Neural Network (DNN) is formed when an ANN includes multiple hidden 

layers. The most common type of DNN is the Feedforward Neural Network or 

Multilayer Perceptron (MLP), where information flows unidirectionally from input to 

output. Discussion on other models is left on Appendix A.14. In a MLP, each layer 

receives an output denoted as 𝒉𝑙 = [ℎ1
𝑙 , ℎ2

𝑙 , . . ., ℎ𝑛𝑙
𝑙 ], corresponding to the 𝑛𝑙 nodes in 

that layer. This output multiplies a weight matrix that contains entries for every 

combination of neurons between the current and next layers, forming an 𝑛𝑙+1 × 𝑛𝑙 

matrix explicitly defined as: 

 𝑾(𝑙) =

(

 
 

𝑤11
𝑙 𝑤21

𝑙 ⋯ 𝑤(n𝑙)1
𝑙

𝑤12
𝑙 𝑤22

𝑙 ⋯ 𝑤(n𝑙)2
𝑙

⋮ ⋮ ⋱ ⋮
𝑤1(n𝑙+1)
𝑙 𝑤2(n𝑙+1)

𝑙 ⋯ 𝑤(n𝑙)(n𝑙+1)
𝑙

)

 
 
, (41) 

Each node in the layer contains a bias, forming  𝒃𝑙 = [𝑏1
𝑙 , 𝑏2

𝑙 , . . ., 𝑏n𝑙
𝑙 ], which is added 

to the multiplication results. This addition generates the subsequent 𝒉𝑙+1 following the 

formula: 

 𝒉(𝑙+1) = 𝑓𝑎𝑐𝑡(  𝒉
(𝑙) ∙ 𝑾(𝑙) + 𝒃(𝑙)⏟          

𝒛(𝑙)

 ). 
(42) 
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Here, 𝑓𝑎𝑐𝑡 represents the activation function applied to the output of the previous step, 

𝒛(𝑙). Activation functions play a crucial role by introducing non-linearity into neuron 

outputs. Without them, the network would be constrained to linear regression models, 

incapable of capturing the intricate non-linear relationships present in data. ReLU, 

Tanh and Sigmoid functions, illustrated in Figure 17, are commonly used in hidden 

layers to capture these complex relationships (Dubey, Singh, and Chaudhuri 2021).  

The final layer in the network is the output layer, representing the modeled 

quantity. The final output (y) of an ANN with 𝐿 layers is expressed as:  

where 𝒉(𝐿) is the output of the last hidden layer with 𝑛𝐿 nodes. This output multiplies 

the weight matrix 𝑾(𝐿) of the final layer. For output layers, the activation function 𝑔 

usually employs the sigmoid activation for classification tasks due to its bounded 

nature, and linear activation for regression tasks.  At this point, the final result is 

compared to the actual values in the supervised learning approach, utilizing the 

predefined loss function for the problem. Subsequently, the gradients of this loss 

function drive iterative updates to the network's weights and biases through a process 

known as backpropagation. 

Backpropagation is a crucial algorithm in training neural networks, operating in 

two main phases. First, during the forward pass, input data travels through the 

network, generating predictions. Second, in the backward pass (backpropagation), it 

computes the gradients of the loss function with respect to the network's weights and 

biases, propagating errors backward through the layers. These gradients guide the 

adjustment of weights to minimize the difference between predicted and actual 

outputs, refining the network's performance in each iteration (epoch). The efficacy of 

this process is significantly influenced by the choice of activation function, as it shapes 

the model's learning behavior and adaptability. For instance, ReLU helps mitigate the 

problem of vanishing gradients, while Tanh aids when the optimization problem 

benefits of bounded outputs and symmetry (Goodfellow, Bengio, and Courville 2016; 

Murphy 2012). Additionally, hyperparameters like learning rate, batch size, batch 

normalization, and regularization techniques play pivotal roles in shaping the neural 

network's training (a comprehensive explanation of these hyperparameters is provided 

in Appendix A.13). Advances in the backpropagation algorithm (Hinton and 

 𝒚 = 𝑔(𝒉(𝐿) ∙ 𝑾(𝐿) + 𝒃(𝐿)), (43) 
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Salakhutdinov 2006; Baydin et al. 2018) and refinement of the hyperparameters gave 

rise to the popularity of Deep Neural Networks (DNNs) that are widely used today 

(Awad and Khanna 2015). 

Traditionally, these networks operate with structured data presented as a feature 

vector. Ideally, this vector contains entries that significantly correlate with the desired 

output function. While deep learning models have shown exceptional success in 

handling speech, images, or time-series data—where an inherent linear structure can 

be harnessed—managing unstructured data, such as atomic structures, demands 

different tools. Properties arising from atomic structures do not merely result from the 

spatial arrangement of atoms in Euclidean space; they also encompass the nature of 

their bonds, functional groups, and overall connectivity (Bronstein et al. 2017; 

Choudhary et al. 2022). As a result, using descriptors to indirectly capture these 

interactions for input into neural networks, as described in section 2.4.4, has inherent 

limitations in capturing these properties. 

Fortunately, deep learning techniques offer an alternative approach by 

representing atomic structures using graphs. These graphs, denoted as G=(V,E,U), 

consist of nodes or vertices (V) holding atomic element information, edges (E) store 

bond attributes and capture structural connectivity through adjacency lists, and a 

global attribute vector U which serves as a master node or context vector, bridging 

information transmission among all nodes and edges (Sanchez-Lengeling et al. 2021). 

An illustration of a graph for a material fragment is presented below in Figure 18. 

These graphs are subsequently fed into graph neural networks (GNNs), specialized 

deep neural networks tailored for graphs. GNNs excel at capturing underlying 

connectivity patterns within atomic structures, typically through message passing. 

 

Figure 18 – Schematic of how material information is usually encoded in a graph. 

Adapted from: (C. Chen et al. 2019). 
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Message passing involves two key steps: aggregating information from 

neighboring nodes and subsequently updating the state of the receiving nodes and 

edges based on this aggregated data. This process, illustrated in Figure 19, applies 

pooling to aggregate information from neighboring nodes while also transferring 

information along the edges. Importantly, aggregation remains permutation invariant, 

enabling the GNN to operate consistently regardless of the order in which neighboring 

nodes are embedded. This ensures that the network learns from the graph structure 

rather than node sequence or arrangement. MLPs are then employed to transform 

these vectors and update the graph information. This form of GNN utilizing 

aggregation is termed a graph convolutional network (GCN), which stands as the most 

widely applied form, although other variations exist based on the specific 

transformations during message passing. 

 

Figure 19 – Diagram of a GCN architecture that pools neighboring nodes within a 

degree's distance to update node representations of a graph. Final graph is 

transformed in predictions via MLP. Adapted from: (Sanchez-Lengeling et al. 2021) 

Several message passing layers can be stacked to propagate information more 

extensively through the nodes. There are also additional pooling layers that facilitate 

the transfer of information between nodes and edges to the master node. GNNs are 

highly adaptable, allowing it to effectively capture structural connectivity within graphs. 

Moreover, another advantage of the GNN lies in its seamless ability to make 
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predictions for individual nodes and edges. This capability holds significant potential in 

materials science, enabling predictions not only for global properties but also for local 

chemical information within the structure. However, this flexibility comes with the need 

for an extensive dataset to train all their internal parameters, which is not the usual 

case in materials science. 

An insightful summary of deep learning's integration into the artificial intelligence 

(AI) ecosystem is given in Figure 20, which also shows the variety of materials science 

data sources and potential neural network architectures. The implementation of many 

of these new technologies was possible by the development of libraries like 

Tensorflow (Abadi et al. 2016), PyTorch (Paszke et al. 2019) and MXNet (T. Chen et 

al. 2015), these libraries provide a high-level interface for building and training DNNs. 

Tensorflow, Google's powerful open-source framework, was our tool of choice to 

construct, train and deploy DNN models in this work. Tensorflow is integrated to the 

high-level application programming interface (API) Keras (Chollet 2015), which 

simplifies neural network development with its user-friendly interface and rapid 

prototyping features. 

 

 

Figure 20 – Schematic overview of deep learning (DL) methods within the field of 

artificial intelligence. Instances of DL application on materials science are shown. 

Source: (Choudhary et al. 2022). 
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2.4.9 Deep learning solutions in materials science 

In the field of materials science, DNNs have been used to predict the properties 

of materials, including their optoelectronic, magnetic, and thermo-mechanical 

properties (Choudhary et al. 2022). To cite a few recent examples, DNNs were used to 

predict the electronic density of states for materials classes of arbitrary compositional 

and structural diversity (Fung, Ganesh, and Sumpter 2022), as well as their thermal 

transport (Qian and Yang 2021), and even phonon structure (Gurunathan, Choudhary, 

and Tavazza 2023), all with state-of-the-art results.  

When using material structural and chemical information to train deep learning 

models, two primary approaches emerge. The first employs feature-based models 

which prioritize meaningful descriptors and efficient selection to enhance prediction 

accuracy. While proficient at correlating chemical data with target properties, these 

models might struggle to capture complex relationships between structural features 

and properties. Nevertheless, with appropriate descriptors, they exhibit notable 

accuracy, even with limited datasets (D. Jiang et al. 2021). 

The second approach involves graph-based models, particularly Graph Neural 

Networks (GNNs), which leverage structural information represented as graphs. These 

models excel in capturing complex relationships, achieving state-of-the-art 

performance. However, their effectiveness often hinges on large datasets to reach 

their full potential (De Breuck, Hautier, and Rignanese 2021; Shunning Li et al. 2022). 

Despite this requirement, GNNs currently stand as the prevailing and highly accurate 

AI method for predicting various material properties based on structural information 

(Choudhary et al. 2022). This method differs in being less reliant on highly engineered 

descriptors but sacrifices interpretability due to the multitude of parameters and 

message passing blocks.  

In the upcoming subsections, we will delve into some of the most relevant ML 

frameworks, both graph-based and feature-based, and explore their contributions as 

utilized in this thesis. 
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2.4.9.1 MEGNet 

MatErials Graph Network (MEGNet) is a machine learning framework based on 

the GCN architecture aimed at predicting molecular and crystal properties (C. Chen et 

al. 2019). It relies as input the atomic numbers, coordinates, and cell information in the 

case of crystals. Through its graph convolution layers, MEGNet models grasp the 

essence of atoms, bonds, and structures by learning embeddings. These models 

stand out for their exceptional performance in various properties such as formation 

energy, band gap, and elastic modulus in both molecular and crystal domains. 

One significant breakthrough of MEGNet models lies in their pioneering approach 

to efficiently predict multiple targets, especially when these targets share a physical 

relationship, like in thermodynamic potentials. This achievement is realized by 

integrating suitable global state attributes. Moreover, MEGNet models demonstrate 

that the learned element embeddings, representing the unique chemical 

characteristics of each element, encapsulate periodic chemical trends. These 

embeddings can be transferred from a property model trained on a larger dataset, 

such as formation energies, to enhance property models with limited data, such as 

band gaps and elastic moduli. 

MEGNet has shown remarkable effectiveness in predicting general materials 

properties, achieving state-of-the-art accuracy in formation energies. However, a 

significant limitation of MEGNet is its reliance on precise atomic positions for accurate 

results. Traditional GNNs like MEGNet lack physical constraints to maintain energy 

continuity with variations in atomic positions. This limitation hinders the computation of 

forces and stresses necessary for proper geometry optimization. As a result, the 

atomic configuration can only be derived via DFT structural relaxations or experiments, 

contradicting the objectives of materials discovery, where the pursuit of an equilibrium 

geometry is often the primary focus rather than the starting point (Choudhary et al. 

2022).  

2.4.9.2 M3GNet and CHGNet 

The three-body interactions neural network (M3GNet) differs from traditional 

GNNs by explicitly incorporating two- and three-body interactions into its framework 

(C. Chen and Ong 2022). This unique feature enables the model to be trained on and 

generate forces and stresses, essentially functioning as a universal machine-learning 
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interatomic potential (MLIP) describing the structure’s potential energy surface. 

Consequently, M3GNet can seamlessly obtain the equilibrium configuration from an 

initial structure. 

This accomplishment relies on employing a graph G=(V,E,X,M,U), in which 

besides node (V), bond (E) and global attributes (U), the coordinates for each atom 

are passed on X, and also the 3 × 3 lattice matrix is passed on M, essential for 

obtaining tensorial quantities such as forces and stresses. The model architecture 

resembles the traditional GCN, except for a bond update function. Considering a 

generic bond 𝑒𝑖𝑗 ∈ E, the update function will consider all atoms 𝑘 in the neighborhood 

of atom 𝑖, using their attributes 𝑣𝑘 ∈ V,  every distance 𝑟𝑖𝑗 and three-body angles 휃𝑖𝑗𝑘 

to generate the updated 𝑒𝑖𝑗
′ . Subsequently, this updated bond follows typical graph 

convolution with V and U attributes.  

This process is sequential and repeats for the specified number of GNN blocks 

defined in the architecture, culminating in final values for the vertex attributes. These 

attributes undergo processing via a gated multilayer perceptron to produce individual 

atomic energies, aggregated to the final energy of the structure. Using auto-

differentiation (Bücker et al. 2006), forces and stresses are derived as f = −∂𝐸/∂x and 

σ = 𝑉−1∂E/∂𝝐, where x are the atomic coordinates, 𝑉 represents the volume, and 𝝐 

denotes the strain. 

 M3GNet training utilized the large dataset of structural relaxations by Materials 

project comprising of more than 187,000 energies, 16,000,000 forces and 1,600,000 

stresses. M3GNet demonstrates notably superior accuracy and consistency in its 

formation energies compared to MEGNet. This is evident from the substantial 

performance leap of M3GNet over MEGNet in the Matbench “Materials Discovery” 

task (Riebesell et al. 2023), reflected in the MAE on the convex hull distance: 0.07 

eV/atom for M3GNet versus 0.13 eV/atom for MEGNet.  

More recently, a new model was developed for MLIP named CHGNet (B. Deng et 

al. 2023), standing for Crystal Hamiltonian Graph Neural Network, which builds upon 

the original architecture of M3GNet and is trained in an even more extensive dataset. 

CHGNet incorporates magmoms (the initial magnetic moment of individual atoms) as a 

proxy for inferring the atomic charge in atomistic simulations, thereby substantially 
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improving the regularization of the MLIP. CHGNet showcases a MAE of 0.06 eV/atom 

on the Matbench discovery task. It distinguishes itself from competing models by 

reaching an R² value of 0.69, while the determination coefficient of M3GNet remains at 

0.58, marking its superior performance. 

CHGNet is recognized for its high accuracy and robustness across various 

chemical contexts, qualifying it for practical application in high-throughput materials 

discovery, as evaluated by Matbench (Riebesell 2024). By enabling the rapid 

production of equilibrium structures, it accelerates the optimization and evaluation 

processes for DFT calculations. CHGNet also demonstrates promising accuracy in 

estimating the ab-initio demanding phonon band structures and phonon density of 

states for dynamical stability. However, it is important to analyze results on a case-by-

case basis for this application. Alternatively, optimized structures can also be used to 

assess properties using traditional graph-based models or to generate structural 

descriptors for the subsequent prediction of properties in feature-based models. 

2.4.9.3 MODNet 

The Material Optimal Descriptor Network (MODNet) is a feature-based machine 

learning framework designed to predict materials properties from composition or 

atomic structure (De Breuck, Hautier, and Rignanese 2021). It utilizes a feedforward 

neural network fed with a limited number of descriptors derived from chemical, 

physical, and geometrical considerations, typically a subset of MatMiner descriptors. 

MODNet's design aims to maximize data efficiency, especially for tasks where 

obtaining large training sets is challenging or costly, as commonly seen in 

experimental datasets or computationally demanding ab-initio properties.  

MODNet consistently outperforms MEGNet, especially in scenarios with a small 

number of training samples, typically below ~4,000 samples, even when leveraging 

transfer learning from larger models. MODNet’s performance also outshines random 

forest (RF) algorithms and neural network models lacking built-in feature selection. In 

Table 3, the scaled MAE for different tasks in Matbench is presented for MODNet, 

MEGNet and RF.  
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Table 3 – Scaled errors for MODNet, MEGNet and a random forest framework (RF-

SCM/MagPie) in different MatBench tasks with progressively larger dataset size. Data 

highlighted in green denotes the best algorithm in the corresponding task. Source: 

(Dunn 2024) 

Task* 
Dataset 

size 

General Purpose Algorithm /  
Scaled Error** 

MODNet MEGNet 
RF-

SCM/MagPie*** 

Ex 2D materials (regression) 636 0.4939 0.8061 0.7476 

Refractive index (regression) 4,764 0.3353 0.4193 0.5189 

Log10KVRH (regression) 10,987 0.1890 0.2306 0.2830 

Ef perovskites (regression) 18,928 0.1603 0.0621 0.4160 

Eg DFT (regression) 106,113 0.1657 0.1457 0.2127 

Metallicity DFT (classification) 106,113 0.1924 0.1957 0.1814 

Ef DFT (regression) 132,752 0.044 0.025 0.1157 

*Specifics on each task can be found on matbench.materialsproject.org  

**Regression tasks used scaled MAE, defined as the ratio of mean absolute error to mean absolute 
deviation, and classification used (1-AUCROC)/0.5 as error metrics. 
***This algorithm employs Sine Coulomb Matrix and MagPie descriptors within a random forest framework. 
 

MODNet’s superior performance in smaller datasets stems from its sophisticated 

feature-selection process (explained in section 2.4.4) and a comprehensive 

hyperparameter optimization facilitated through a genetic algorithm (De Breuck, 

Heymans, and Rignanese 2022).  Additional points to highlight are MODNet’s flexible 

architecture enabling joint-learning which enhances prediction in related properties 

and the efficiency of the selection algorithm in grasping the underlying physics driving 

the predictions. 

2.4.9 Machine learning for materials discovery  

Material science can be viewed as a combinatorial puzzle of mixing and 

arranging atoms to create new sets of properties (Riebesell et al. 2023). Davies et al. 

(2016) identified astounding 1010 possible quaternary materials by electronegativity 

and charge-balancing rules with even more unexplored quinternary and higher 

combinations, representing a vast realm of untapped potential in materials discovery. 

Uncovering new materials propels technological advancements, particularly in 

optimizing optoelectronic devices, the main subject herein discussed. Determining 

stability and properties via DFT is accurate but too costly for such a broad exploration. 
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ML then emerges as the prime tool for navigating this expansive chemical space 

efficiently as illustrated in Figure 21. 

High-throughput ML screening in materials science follows two main steps: 

creating diverse candidate structures and employing ML frameworks to filter for 

stability and other crucial properties. Given the vast search space, integrating active 

learning techniques, in which the ML model selects the most informative data points to 

learn from, is practically mandatory (Appendix A.15 elaborates on active learning). 

Very recently, Google’s Graph Networks for Materials Exploration (GNoME) utilized 

large-scale active learning and identified 2.2 million new structures, increasing the 

catalog of thermodynamically stable materials by about an order of magnitude 

(Merchant et al. 2023). Following similar principles, we conducted a ML high-

throughput screening employing CHGNet and MODNet in an active learning cycle, 

specifically targeting doping in 2D layered perovskites with the prototype formula 

A3B2X9, as discussed in Chapter 6. 

 

Figure 21 – Illustration of capacity of different methods to discover materials with 

increasing complexity as a function of time, transitioning from trial and error to high-

throughput calculations and machine learning aided by statistical methods (TARGET). 

Source: (Lookman et al. 2019). 

ML models excel in predicting DFT formation energies but struggle with 

decomposition enthalpy, a critical factor in the discovery of stable materials (Bartel 

2022). This underscores the importance of proper choice and optimization of the ML 

models used for materials discovery. Both feature-based and graph-based models 
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strive to approximate a universal materials featurizer, ideally capturing all physical 

properties within descriptors to correlate with any target property of interest. Graph-

based models, while proficient in learning atom and bond embeddings, lack 

transferability and interpretability. In contrast, feature-based models prioritize 

interpretability and, with a thoughtful choice of descriptors, perform well even with 

limited data. However, they underperform compared to GNN models with extensive 

datasets. In Chapter 5, we pinpoint areas for improvement in feature-based models, 

delving into the integration of advanced electronic structure descriptors and GNN 

models features in a suitable framework for materials discovery. 
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CHAPTER 3 — Lead-Free Cs3Sb2X9 (X = Cl, Br, I) Perovskites: Halide 

Alloying, Surfaces, Interfaces, and Clusters  

doi.org/10.1007/s10853-023-09228-2  

 

3.1 RESEARCH PROBLEM 

Halide alloying is a promising strategy to achieve significant improvements in the 

power conversion efficiency, stability, and color tunability of lead-free perovskite solar 

cells and LEDs (A. Wang et al. 2023; Wei et al. 2023). This approach has already 

been applied to tune the band gap tuning and improve electronic properties of 

Cs3Sb2X9 compounds. For example, Br/I mixed halide perovskite Cs3Sb2Br9-nIn 

demonstrated tunable optical band gaps and enhanced photocatalytic efficiency for 

CO2 photoreduction (Malavasi et al. 2023; D. Wu et al. 2022). Chlorine alloying in 

Cs3Sb2I9 stabilized its layered phase (F. Jiang et al. 2018) also increasing solar cell 

power conversion efficiency (Paul, Pal, and Larson 2020; Jihong Li et al. 2022). Cl/Br 

alloyed Cs3Sb2Cl9−nBrn exhibited a band gap transition from indirect to direct with Br 

substitution, as studied by Pradhan et al. (Pradhan, Jena, and Samal 2022). Despite 

some theoretical insights into halogen alloying effects in Cs3Sb2X9 perovskites (F. 

Jiang et al. 2018; Pradhan, Jena, and Samal 2022), a systematic comparison of single 

halogen substitutions in all compounds of this group is still lacking. 

Moreover, surface studies of Cs3Sb2X9 perovskites are scarce, with 

investigations mainly focused on Cs3Sb2Br9 surfaces such as (0001), (1000) and 

(202̅1) (C. Lu et al. 2020; P. Liu et al. 2020). Chlorine-doped Cs3Sb2I9 (0001) and 

(202̅1) planes were studied only to understand thiourea adsorption (Pradhan, Jena, 

and Samal 2022). Thus, a detailed investigation of surfaces for each Cs3Sb2X9 halide 

perovskite is necessary. Additionally, heterostructures and their interfaces play a 

crucial role in optoelectronic applications, but to our knowledge only 

Cs3Sb2X9/Cs3Bi2X9 has been recently investigated theoretically (Long, Zhang, and 

Cheng 2022). No study has yet addressed interfaces of different halogens, despite the 

material's success in optoelectronics and extensive heterostructure investigations in 

lead-based counterparts (Xiaoming Li et al. 2016; G. Zhang et al. 2020). Furthermore, 

DFT simulations in confined structures of the lead-free perovskite could clarify, for 

instance, the factors contributing to a significantly higher photoluminescence quantum 
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yield (PLQY) in Cs3Sb2Br9 perovskite compared to chlorine and iodine analogues (Ma 

et al. 2019). 

In order to systematically address the knowledge gaps identified in our research, 

the results of this study are presented in four sections: Halide alloying, Surface 

properties, Band alignment and interfaces, and Perovskite clusters. The first 

subsection, 'Halide alloying' will concentrate on a thorough examination of the 

geometry, electronic structure, and energetics of the Cs3Sb2X9-nYn systems (X, Y = Cl, 

Br, I). This analysis aims to shed light on the impact of halide alloying on the properties 

of the perovskite structure. The subsequent subsection, 'Surface properties,' will delve 

into the characteristics of low index surfaces, specifically (0001) and (1000), for each 

halide perovskite. Understanding how these surfaces interact and influence the 

perovskite's properties is essential for applications in various fields. Moving forward, 

the third subsection, 'Band alignment and interfaces' will explore the band alignment 

and interface properties of two key interfaces: Cs3Sb2I9|Cs3Sb2Br9 and 

Cs3Sb2Br9|Cs3Sb2Cl9. This investigation will offer insights into the behavior of 

interfaces and their role in device performance. Lastly, the 'Perovskite clusters' 

subsection will involve calculations on perovskite clusters, simulating confined systems 

that resemble the conditions found in nanocrystals. Understanding the behavior of 

these clusters is critical for applications in nanotechnology and materials science. 

 

3.2 METHODOLOGY 

Crystal structure for cesium antimony halide perovskites with formula Cs3Sb2X9 

(X = Cl, Br, I) were based on the description of Arakcheeva et al.(Arakcheeva et al. 

1999) deriving from the traditional ABX3-type perovskites with two-thirds of 

occupancies of B site. The trigonal phase (space group P3̅m1, no. 164), exists for 

each halogen variant of Cs3Sb2X9, and their corresponding crystallographic data was 

obtained from literature (Arakcheeva et al. 1999; Kun et al. 1993; Kihara and Sudo 

1974). This is the base structure for all our simulations and is also most studied phase 

due to its layered 2D form enabling better transport properties (Y. L. Liu et al. 2019). 

First principles plane-wave density functional theory (DFT) calculations were 

performed in the QUANTUM-ESPRESSO code package (Giannozzi et al. 2009). 

Exchange-correlation effects were characterized using the generalized gradient 
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approximation (GGA) Perdew-Burke-Ernzerhof (PBE) functional (J P Perdew, Burke, 

and Ernzerhof 1996). Norm-conserving, full-relativistic pseudopotentials from the 

PseudoDojo project (van Setten et al. 2018) were used to represent all elements. The 

plane-wave cutoff energy for the calculations was set at 1200 eV. To obtain the 

electronic properties and optimize the structures, Brillouin zone integrations were 

conducted using a Monkhorst-Pack grid (Monkhorst and Pack 1976) of 5 × 5 × 3 k-

points for self-consistent calculation of bulk systems, 5 × 5 × 1 for slabs and interfaces 

and only Γ point sampling for clusters. The BFGS quasi-newton algorithm (Billeter, 

Curioni, and Andreoni 2003) was employed for ion and cell parameter relaxation, with 

convergence thresholds for energy and forces set to 10-6 eV/atom and 10−5 eV/Å, 

respectively, for slabs and clusters the corresponding values are increased to 10-5 

eV/atom and 10−4 eV/Å. Density of states,  band structures and Bader charges are 

then obtained in the optimized structures.  

In addition, hybrid functional calculations using the HSE06 functional (Heyd, 

Scuseria, and Ernzerhof 2003) were performed for the bulk structures. To attain similar 

precision in supercell calculations with viable computational cost, a correction model 

based on Hubbard correction +U was implemented to reproduce the main features of 

HSE calculation, particularly the band gap (detailed procedure in Supporting 

Information, Appendix B.2), U values determined for the pristine perovskites were then 

transferred to other structures. The structures examined after the bulk calculations, 

along with their corresponding calculation details, are outlined in the following:  

- Halide alloying: to investigate the effect of alloying on band gap and cell 

parameters, all Cs3Sb2X9-nYn (X,Y = Cl, Br, I) structures with integer values of 𝑛 

ranging from 0 to 9 were calculated. The selection of substitution sites is 

discussed in detail in the Supporting Information (Appendix B.3). Furthermore, 

thermodynamic properties such as interaction parameters and miscibility gap 

temperature were evaluated. 

- Surfaces: low-index surfaces (0001) and (1000) were selected to study the 

surface energetics of the Cs3Sb2X9 system. For each halogen, calculations 

were performed considering Cs-X termination, as AX-termination has 

consistently been found to be the most stable in halide perovskites (Y. Yang et 

al. 2018; Nazari, Azar, and Doroudi 2020; Di Liberto, Fatale, and Pacchioni 

2021). A model comprising 16 atomic layers was utilized, and a vacuum 
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distance of 13 Å proved sufficient to eliminate electrostatic interactions between 

periodic replicas. Total energies were calculated for both relaxed and unrelaxed 

slabs. 

- Band alignment and interface: an interface was created along the [0001] 

direction, which is the most commonly observed growth direction (Jihong Li et 

al. 2022), between Cs3Sb2I9|Cs3Sb2Br9 and Cs3Sb2Br9|Cs3Sb2Cl9 structures. 

This interface was computed to determine the average potential difference, 

establish band offsets between the structures, and calculate electronic 

properties. This method has been previously described (Weston et al. 2018). 

- Perovskite clusters: For each halide perovskite, clusters were constructed using 

the NanoCrystal tool (Chatzigoulas et al. 2018). The smallest CsX-terminated 

structure was constructed and consisted of a non-stoichiometric Cs13Sb6X30 

cluster with 49 atoms. In these clusters, the Sb atoms were not exposed, and 

six complete SbX6 octahedra were observed. The clusters exhibited both 

longitudinal (0001) and lateral (1000) surfaces in similar proportions. Surface 

passivation was not deemed necessary as the clusters displayed well-defined 

bands resembling bulk perovskites without localized midgap states. Cl doping 

on the iodine cluster was explored on both longitudinal faces and edges to 

assess the preferential doping site in the nanostructure.  

3.4 RESULTS AND DISCUSSION 

3.4.1 Bulk perovskites 

Our study commenced by replicating the existing findings on Cs3Sb2X9 (X = Cl, 

Br, I) perovskites, and simultaneously introducing the DFT+U approach. Band gap and 

lattice parameters for each of the perovskites were calculated using PBE exchange-

correlation functional (tests with other functionals in Supporting Information, Appendix 

B.1) and are presented in Table 4. Errors between the calculated lattice parameters of 

Cs3Sb2X9 and their experimental values (Kihara and Sudo 1974; Jian Zhang et al. 

2017; Yamada et al. 1997) are below 3% and are also consistent with previous 

theoretical values (Saparov et al. 2015; Y. L. Liu et al. 2019) endorsing the present 

theoretical level and parameters for calculation. Band gap values are significatively 

smaller than experimental ones (Yamada et al. 1997; Blasse 1983; Jian Zhang et al. 

2017), as expected for traditional DFT functionals, on the other hand, hybrid HSE 

functional yields a better approximation of this property due to higher theoretical level 
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including electron exchange explicitly. To achieve similar accuracy for band gap, 

Hubbard +U values were determined for each perovskite following the methodology 

which is detailed on Supporting Information (Appendix B.2) attaining similar atomic 

charges and electronic structure to HSE calculation when applying in the 

corresponding halogens UCl = 4.5 eV, UBr = 2.5 eV and UI = 3 eV. 

Table 4 – Band gap and lattice parameters with different functionals compared to 

experimental values for Cs3Sb2X9 (X = Cl, Br, I). Deviations from experimental lattice 

constants for the different functionals are given in percentages under 𝛥𝑎,𝑏 and 𝛥𝑐. 

 Band gap 

(eV) 

Lattice constants (Å) 
Δa,b (%) Δ𝑐(%) 

a,b c 

Cs3Sb2Cl9 

Expt. (Blasse 1983) 3.09 7.633 9.345   

HSE 3.20 - -   

HSE (Y. L. Liu et al. 2019) 3.11 - -   

PBE 2.45 7.836 9.476 +2.662 +1.401 

PBE+U (UCl=4.5eV) 3.08 7.841 9.532 +2.725 +2.001 

PBE (Y. L. Liu et al. 2019) 2.44 7.827 9.472 +2.541 +1.359 

Cs3Sb2Br9      

Expt. (Jian Zhang et al. 2017) 2.36 7.930 9.716   

HSE 2.34 - -   

HSE (Y. L. Liu et al. 2019) 2.60 - -   

PBE 2.00 8.144 9.932 +2.698 +2.227 

PBE+U (UBr=2.5eV) 2.37 8.167 9.898 +2.988 +1.873 

PBE (Y. L. Liu et al. 2019) 2.01 8.138 9.943 +2.623 +2.336 

Cs3Sb2I9      

Expt. (Yamada et al. 1997) 2.06 8.420 10.386   

HSE 2.10 - -   

HSE (Y. L. Liu et al. 2019) 2.04 - -   

HSE (Saparov et al. 2015) 2.06 - -   

PBE 1.58 8.660 10.647 +2.853 +2.517 

PBE+U (UI=3.0 eV) 2.04 8.641 10.641 +2.624 +2.455 

PBE (Saparov et al. 2015) 1.55 8.661 10.625 +2.862 +2.301 

PBE (Y. L. Liu et al. 2019) 1.56 8.664 10.633 +2.898 +2.378 

(*) All HSE calculations used PBE lattice parameters. 
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Electronic structure of the different perovskites calculated with Hubbard 

correction are shown in Figure 22, total and partial density of states (PDOS) reveal 

that both conduction (CB) and valence bands (VB) are composed of Sb 5p, Sb 5s and 

halogen outermost p orbitals. Halogen and Sb p orbitals overlap on most of the CB of 

these materials forming antibonding orbitals and are also prevalent on lower energy 

levels of VB. Although, highest energy levels on VB are composed of hybridized Sb 5s 

and halogen p orbital producing antibonding orbitals at valence band maximum (VBM) 

as well, thus the electronic transition from valence to conduction band minimum (CBM) 

occurs between antibonding orbitals which is associated with better photovoltaic 

properties (Brandt et al. 2015). The obtained results and band structures are in 

agreement with previous theoretical and experimental studies (Y. L. Liu et al. 2019; 

Saparov et al. 2015) which demonstrate a direct band gap in the bromine perovskite 

and an indirect, very close to direct, band gap in Cs3Sb2I9 and Cs3Sb2Cl9.  
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Figure 22 – Density of states and band structure of Cs3Sb2X9 perovskites after 

Hubbard correction (a) Cs3Sb2Cl9 perovskite with UCl = 4.5 eV, (b) Cs3Sb2Br9 

perovskite UBr = 2.5 eV and (c) Cs3Sb2I9 perovskite UI = 3 eV. 

3.4.2 Halide alloying 

To assess how halide alloying influences geometry, stability and electronic 

properties of Cs3Sb2X9, quantities such as lattice parameters, band gaps, binding 

energy and formation enthalpy were evaluated for the range of compositions of 

Cs3Sb2X9-nYn (X, Y = Cl, Br or I), from n = 0 to n = 9. To maintain conciseness, we 

provide a comprehensive methodology for calculating these parameters in the 
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Supporting Information (Appendix B.3) and proceed directly to the discussion of the 

results. 

Figure 23 results for lattice constants and band gap are presented, lattice 

constants do not vary linearly with composition and a second-order Vegard’s law was 

used for fitting the data and obtain bowing parameters. Values for fitting parameters 

are presented in Table B4, 𝑎 and 𝑏 lattice parameter bowing is larger than for 𝑐 

parameter as expected due to most metal-halogen bonds laying on the 𝑎𝑏 plane, the 

bowing parameter also increases progressively following the trend of anion radius 

difference, Cl− (1.67 Å), Br− (1.84 Å), and I− (2.07 Å). For 𝑐 lattice parameter, bowing is 

almost negligible for Cl-Br and Br-I alloys and becomes significant only for Cl-I alloy in 

which radius difference is larger. Regarding band gap of the alloys, a negative bowing 

in band gap is observed for Cs3Sb2Cl9-nIn and a positive bowing is observed for 

Cs3Sb2Br9-nIn, therefore these two alloys present similar band gap in the heavy-

halogen-rich region (n≈9) despite large difference in anion radius between them. 

 

Figure 23 - Lattice parameters and band gap of Cs3Sb2X9-nYn solid solutions as a 

function of composition (x=Y/(X+Y)). 

The calculated binding energies of Cs3Sb2X9-nYn (X,Y = Cl, Br or I) solid solutions 

are shown in Figure 24 as function of relative halogen composition, x = Y/(X+Y), thus 

x=0 corresponds to pure Cs3Sb2X9 and x=1 corresponds to pure Cs3Sb2Y9. For all 
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solid solutions, one can observe a linear relationship for binding energy as function of 

halogen composition, and the fitting line correlates with a coefficient over 0.99, as 

given in Table B4. For pure perovskites, Cs3Sb2Cl9 has the higher binding energy 

(3.67 eV/atom) and a decrease is observed along with increasing the atomic number 

of the halogen yielding 3.02 eV/atom for Cs3Sb2Br9 and 2.71 eV/atom for Cs3Sb2I9. 

These results can be related to chlorine having the highest electronegativity followed 

by bromine and iodine, therefore larger charge transfer and more ionic character in the 

bonds of chlorine perovskite are responsible for its larger energy. The variation of 

binding energy with composition, resulting from halide alloying, can be fitted to a 

straight line which connects two pure phases. Considering the effect of increasing 

heavy halogen composition, Cs3Sb2Br9-nIn presents the smallest binding energy 

variation (~0.30 eV/atom), followed by Cs3Sb2Cl9-nBrn (~0.66 eV/atom) and     

Cs3Sb2Cl9-nIn solid solutions which presents the largest variation (~0.96 eV/atom). 

Therefore, incorporating  chlorine in the heavier iodine perovskites increases crystal 

stability, hence another factor for improved performance seen in Cs3Sb2Cl9-nIn devices 

(Paul, Pal, and Larson 2020; Jihong Li et al. 2022; Peng et al. 2020).  

Binding energy informs about bond strength in solid solutions, while the enthalpy 

of formation gauges the thermodynamic favorability of their creation from constituent 

phases. Formation enthalpy of alloys can be used to describe their miscibility from a 

thermodynamic principle of regular solution formation, formation enthalpy can be 

estimated from DFT total energies through the following formula: 

 Δ𝐻𝑓 = 𝐸𝐶𝑠3𝑆𝑏2𝑋9−𝑛𝑌𝑛– (1 − 𝑥)𝐸𝐶𝑠3𝑆𝑏2𝑋9 − 𝑥𝐸𝐶𝑠3𝑆𝑏2𝑌9 , (44) 

where 𝐸𝐶𝑠3𝑆𝑏2𝑋9 and 𝐸𝐶𝑠3𝑆𝑏2𝑌9 are the total energies of pure Cs3Sb2X9 and Cs3Sb2Y9 

and 𝐸𝐶𝑠3𝑆𝑏2𝑋9−𝑛𝑌𝑛 is the total energy of the Cs3Sb2X9-nYn solid. The formation enthalpy 

ΔHf(x) as given in Eq. (44) represents the energy cost of mixing X and Y halogens in 

the lattice. Changes in formation enthalpy as a function of composition is shown in 

Figure 24. For all Cs3Sb2X9-nYn  solid solutions there is an upward bowing in their 

ΔHf dependence on x, implying a preference for decoherent phase separation into 

Cs3Sb2X9 and Cs3Sb2Y9 at zero temperature. Comparing these ΔHf(x) curves for every 

solid solution, the formation enthalpies for Cs3Sb2X9-nYn  are in the order Cs3Sb2Cl9-

nBrn <  Cs3Sb2Br9-nIn < Cs3Sb2Cl9-nIn  for the same x. Therefore, halogen mixing is 

easier with halogens with similar ionic size. Larger formation enthalpy energies are 
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concentrated on the heavy-halogen-rich side of the ΔHf(𝑥)  curve (x > 0.5), 

demonstrating that limited solubility might occur when a lighter halogen is added to 

heavier halide perovskites. 

 

Figure 24 – Binding energy (left) and formation enthalpy (right) of mixed halide 

perovskites (Cs3Sb2X9-nYn) solid solutions as function of composition, 𝑥 (=Y/(X+Y)). 

    Conventional solid-solution theory states that formation enthalpy is a quadratic 

function of composition (x = Y/(X+Y)) for a binary alloy, hence the following 

relationship should apply:  

 Δ𝐻𝑓 = Ω𝑥(1 − 𝑥), (45) 

where Ω is the interaction parameter, which is smaller for solutions with higher 

solubility. Temperature influences directly the ability of stable solutions to form and a 

critical temperature over which alloys are fully mixable, named miscibility gap 

temperature (TMG),  can be estimated from fitted interaction parameter Ω ensuing from 

regular solution model as TMG = Ω/(2𝑘𝑏) (Shu et al. 2013).   

Solid solutions for Cs3Sb2X9-nYn present significant deviations from the regular 

solution especially due to asymmetry arising from difficulty of incorporating lighter 

halogens in heavy-halogen perovskites. An additional factor is the  presence of peaks 

on 𝑥 = 33.3% for Cs3Sb2Cl9-nBrn and 𝑥 = 66.6% for Cs3Sb2Br9-nIn, and negative Δ𝐻𝑓 for 

𝑥 < 33.3% in  Cs3Sb2Cl9-nBrn, these observations might be a cue on the presence of 

ordered structures close to these compositions as reported in experiments with other 
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halogen containing structures (Yin, Yan, and Wei 2014; Pramchu, Jaroenjittichai, and 

Laosiritaworn 2019; Zhao, Liu, and Dai 2016). Some reduction of formation energy 

and formation of ordered mixed halide compounds has been attributed to an overall 

Coulomb energy gain in the structure due to diminished repulsion between different 

halogens (Yin, Yan, and Wei 2014).  

Estimated interaction parameters increase from Cs3Sb2Cl9-nBrn (Ω ≈ 19 meV/ 

atom)  and Cs3Sb2Br9-nIn (Ω ≈ 44 meV/atom) to Cs3Sb2Cl9-nIn (Ω ≈ 96 meV/atom), for 

Cl-Br and Br-I alloys interaction parameter can be considered small and yield a 

miscibility gap temperature (Tmg) of only 108 K and 254 K, respectively, suggesting 

that component-uniform Cs3Sb2Cl9-nBrn and Cs3Sb2Br9-nIn solid solutions can be 

prepared at the standard growth temperature below 450 K (Singh et al. 2018; Saparov 

et al. 2015), in fact substitution must be easy since regular solution model tends to 

overestimate Tmg (Shu et al. 2013). In a very recent study, Cs3Sb2Cl9-nBrn solid solution 

was proved and the same linear relationship of halogen composition with band gap 

was shown (J. Lee et al. 2023). The Ω value for Cs3Sb2Cl9-nIn is considerably larger 

resulting in Tmg = 558 K, substantially higher as expected due to large lattice mismatch 

between the pure perovskites. Thus, miscibility is predicted to be very limited for this I-

Cl perovskite solid solution, in agreement with experimental reports (Paul, Pal, and 

Larson 2020). 

 

3.4.3 Surfaces 

Surfaces have been investigated for Cs3Sb2Br9 (C. Lu et al. 2020; P. Liu et al. 

2020) but a comparative study encompassing low-index surfaces for all three 

Cs3Sb2X9 perovskites is currently lacking. Table 5 presents the surface energy results 

for CsX-terminated slabs, showcasing both (0001) and (1000) surfaces. Our findings 

align with previous calculations conducted on Cs3Sb2Br9 (C. Lu et al. 2020), revealing 

that (1000) surfaces exhibit greater stability than (0001) surfaces. Furthermore, our 

results demonstrate a similar trend observed in halogen surfaces of CsPbX3 (Nazari, 

Azar, and Doroudi 2020), where surface stability follows the order Cl, Br, I. However, it 

is noteworthy that in Cs3Sb2X9, the reduction in surface free energy is more 

accentuated for bromide and iodine surfaces than what is observed in CsPbX3 

surfaces. 
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Table 5 – Surface free energy (𝛾) and cleavage energy (𝛾cle) for Sb-X terminated slabs 

for each halide perovskite. 

 𝛾 (𝑒𝑉/Å𝟐) 𝛾cle (𝑒𝑉/Å𝟐) 

(0001) surface  

Cs3Sb2Cl9 0.0567 0.0691 

Cs3Sb2Br9 0.0366 0.0479 

Cs3Sb2I9 0.0303 0.0418 

(1000) surface   

Cs3Sb2Cl9 0.0111 0.0173 

Cs3Sb2Br9 0.0073 0.0093 

Cs3Sb2I9 0.0060 0.0081 

To analyze the geometry of the relaxed slabs, Figure 25 presents a plot 

illustrating the element counts in each coordinate, starting from the top of the (1000) 

slabs. By comparing the distribution of atoms in the unrelaxed slabs (bottom) to the 

relaxed slabs (top) in the figure, noticeable changes can be observed. Specifically, it 

can be observed that in each of the halide perovskites, the Cs atom is drawn further 

into the slab. This shift is more pronounced in iodine perovskite and less significant in 

chlorine perovskite, attributed to their varying electronegativities. In the second 

perovskite layer, the effects differ depending on the halide. In chlorine perovskite, the 

Cs and Cl atoms remain in proximity while the Sb atom is pushed away. On the other 

hand, in iodine perovskite, the I-Sb bond is strengthened while Cs recedes into the 

slab. In the case of bromine perovskite, due to its intermediate electronegativity 

between chlorine and iodine, only a moderate distortion occurs in the second layer. As 

a result, its geometry more closely resembles that of the bulk in contrast to the other 

halide perovskites. 
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Figure 25 – Geometric analysis of the top layers of (1000) CsX-terminated surface of 

halide perovskites. Top of figure illustrates unrelaxed and relaxed Cs3Sb2I9 slabs, 

measurements start on the outermost surface atom as shown. (a), (b) and (c) present 

element counts in given position for both relaxed and unrelaxed slab for Cs3Sb2Cl9, 

Cs3Sb2Br9 and Cs3Sb2I9, respectively. 

The recession of Cs atoms in the first layer following halide electronegativity is 

also observed in the (0001) slabs, with considerably less distortion, as shown in 

supplementary Figure B5. Furthermore, negligible distortion occurs in subsequent 

perovskite layers on these slabs. Consequently, the larger surface free energy of the 

(0001) surface compared to the (1000) surface can be attributed to its greater 

cleavage energy and reduced capacity to stabilize dangling bonds in surface atoms 

through geometry relaxation. 

Total and partial density of states is presented for each of the Cs-X terminated 

slabs in Figure 26. A substantial difference in the band edge states is observed 

between the (0001) and (1000) surfaces. Specifically, (0001) surfaces display a 

significant reduction in the band gap due to the shift of Sb 5s states to higher energies 

and the presence of unpaired spin states that extend the VB edge. This result 

indicates a surface that is more active for photocatalysis. Since the (0001) surface is 

more readily obtained experimentally (Jihong Li et al. 2022), the results observed 

throughout the literature for photocatalysis (C. Lu et al. 2020; J. Lee et al. 2023; G. 

Chen et al. 2020) with these materials can be understood based on these surface 
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properties. This idea is reinforced by the work of C. Lu et al. (2020) which showed that 

Cs3Sb2Br9 (0001) surfaces had a lower free energy for CO2 reduction than (1000). Our 

findings also indicate that this effect is particularly pronounced in the chlorine 

perovskite, reducing the band gap by approximately 1 eV compared to the bulk band 

gap value. The Fermi level appears in the middle of the opposing spin states prior to 

the band gap, and the lack of a gap between the occupied and unoccupied states 

implies that this surface may be highly reactive, acting as an electron trap due to 

dangling halogen bonds. This suggests that, in addition to the bromine and iodine 

perovskites that have been explored in photocatalysis, Cs3Sb2Cl9 and chlorine-doped 

Cs3Sb2Br9 or Cs3Sb2I9 could also yield favorable results. 

On the other hand, (1000) surfaces display a well-defined band gap that 

separates the VB and CB, and the band gap energy is not significantly reduced in 

comparison to the bulk structure. This suggests that the transport properties will not be 

significantly affected by the presence of such surfaces. The bromide (1000) surface, in 

particular, displays a remarkably close band gap energy to its bulk counterpart, which 

is a direct consequence of its lower distortion as analyzed in Figure 25(b). Thus, 

promoting the growth of the (1000) surface of Cs3Sb2Br9 may be a viable option for 

maintaining good transport properties, especially for photovoltaic applications in which 

surface states can greatly compromise device efficiency. Recently, Sachchidanand et 

al. (2021) investigated numerically Cs3Sb2Br9 for photovoltaic application and their 

results were promising, this work reinforces their suggestion and also recommends 

surface control to achieve greater performance.  
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Figure 26 – Partial density of states for each of the halide perovskite Cs-X terminated 

slabs (0001) surfaces is shown in plots (a-c) and (1000) surface is shown in plots (d-f).  

3.4.4 Interfaces and band alignment 

Heterostructures and interfaces play a crucial role in optoelectronic applications, 

but research on lead-free perovskites such as Cs3Sb2X9 remains scarce. Theoretical 

calculations on these systems can offer valuable insights into electronic properties and 

carrier dynamics, contributing to the optimization of halide perovskite-based devices. 

To address this, we constructed supercells containing Cs3Sb2Br9|Cs3Sb2Cl9 and 

Cs3Sb2I9|Cs3Sb2Br9 perovskites along the [0001] direction, as presented in Figure 

27(a,c),  to explore interfaces and band alignment within these materials. Geometry 

and relative positions of VB levels through potential alignment calculation were 

evaluated in these structures. In Figure 27(a) and 27(c) relaxed atomic positions are 

presented with unrelaxed initial positions presented as contours with same atomic 

colors. Both interface supercells had their atomic positions and lattice parameters 

relaxed, supercells relaxed to the average lattice parameter of two pristine lattices with 

no significant deviation (see Table B6), on the other hand, atomic positions presented 

relevant displacements on both structures.  
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For Cs3Sb2I9|Cs3Sb2Br9, displacements were more concentrated on the 

Cs3Sb2Br9 region and for Cs3Sb2Br9|Cs3Sb2Cl9 displacements were appreciable in the 

Cs3Sb2Cl9 region as can be appreciated in Figure 27(a,c). This can be understood 

based on the Coulomb energy difference experienced by the cation-X bonds in the 

interface, bonds with the least electronegative halogen increase while bonds with the 

most electronegative element shorten due to a displacement of metal ions toward 

most electronegative region. Bader charges for Sb presented in Figure 27(b,d) show 

clearly the different charge environment experienced by the cations depending on the 

bonding halogen.  

 

Figure 27 – Interfaces of Cs3Sb2Br9|Cs3Sb2Cl9 and Cs3Sb2I9|Cs3Sb2Br9 in (a) and (c) 

with relaxed atomic positions (initial positions outlined in the background). In (b) and 

(d), average planar potential (�̅�) and its macroscopic average (�̿�) perpendicular to the 

interface are shown, along with Bader charge per atom in each layer. (e) Illustrates the 

band alignment of the three halide perovskites based on band offset calculations. 

In Figure 28, partial density of states for supercell structures is presented for both 

Cs3Sb2Br9|Cs3Sb2Cl9 and Cs3Sb2I9|Cs3Sb2Br9, full density of states is presented for 

each interface in Figure 28(a) and (d), these states are also projected for each 

material. Bromide states present a slightly reduced gap when in contact to chlorine 

than to iodine, chlorine being more electronegative disturbs bromine-cation states 

close to VBM to higher energy levels (reducing band gap) as the electron cloud is 

pulled toward the more electronegative ion. Analyzing the projections for chlorine and 

iodine in Figure 28(c) and (d), respectively, there is also a clear reduction from pristine 

band gap values for these compounds that can be associated to reduced repulsion 

between halogens due to Coulomb energy gain (Yin, Yan, and Wei 2014) shifting 

energy levels to lower energies in the CB.  
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Figure 28 – Partial density of states of supercell interfaces for (a-c) 

Cs3Sb2Br9|Cs3Sb2Cl9 and (d-f) Cs3Sb2I9|Cs3Sb2Br9 along with separated projections for 

each side on the interface. 

The relative changes of DOS when interface is formed also provide information 

on possible carrier dynamics for these perovskite combinations. In VB there is a 

balanced contribution of both Cs3Sb2I9 and Cs3Sb2Br9 in the Cs3Sb2I9|Cs3Sb2Br9 case, 

on the other hand, for Cs3Sb2Br9|Cs3Sb2Cl9 valence states of Cl 3p and Br 4p are well 

separated suggesting chlorine perovskite is likely to act as a strong hole injector for 

Cs3Sb2Br9. Therefore, a core-shell structure as Cs3Sb2Br9@Cs3Sb2Cl9 should be 

efficient for LEDs with the chlorine shell acting both as a diffusion barrier and carrier 

injector. Similar systems working with this principle have already been developed for 

CsPbBr3-xClx perovskites (P. Zhang et al. 2018; Y. R. Park et al. 2021).  For the CB, 

there is a significant tailing of iodine states in Cs3Sb2I9|Cs3Sb2Br9 that directly 

influences the band gap, therefore, this combination increases the defect tolerance 

compared to Cs3Sb2I9 only and makes this material an interesting candidate for 

photovoltaic applications. Similar conclusions have been drawn for CsPbX3-xYx 

structures, in which a high iodine content was linked to larger diffusion lengths making 

them appropriate for photovoltaic devices (P. Zhang et al. 2018).  
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The aforementioned findings also corroborate our previous observations on band 

gap bowing for mixed halide perovskites; mixed iodine and bromine perovskites 

benefit from a stronger tailing and mixing of halide states, resulting in a larger bowing 

parameter. In contrast, for mixed chlorine and bromine perovskites, this interaction is 

significantly smaller, causing the band gap to follow a linear trend with halogen 

composition which was corroborated recently (J. Lee et al. 2023). The difference in 

mixing in the different halides can be clearly seen in the potential curves in Figure 

27(b,d), where Cs3Sb2Br9|Cs3Sb2Cl9 reaches bulk potential approximately 8 Å away 

from the interface, whereas Cs3Sb2I9|Cs3Sb2Br9 reaches bulk potential in 

approximately 12 Å away from the interface due to stronger coupling. 

To conclude our analysis in the carrier dynamics on these interfaces, accurate 

band alignment assessment is crucial. To evaluate VB offsets between different 

Cs3Sb2X9 perovskites separate calculations for each bulk material are performed and 

the VBM with respect to average electrostatic potential in the material is determined. 

However, simply taking the difference of VBM between different materials is not 

sufficient to determine the band offset since VBM is ill-defined for bulk calculations 

with periodic boundary conditions (Kleinman 1981). A more reliable and accurate way 

to determine band offsets is to correct this difference through a potential alignment 

performed on supercell interface calculation as given by the formula (Van De Walle 

and Martin 1987; Weston et al. 2018; Hinuma et al. 2014): 

 Δ𝐸𝑣 = (𝐸𝑣
𝐵 − 𝐸𝑣

𝐴) + Δ𝑉, (46) 

where 𝐸𝑣
𝐴 and 𝐸𝑣

𝐵 represent the VBM of materials A and B relative to bulk average 

electrostatic potential, and Δ𝑉 is the potential alignment obtained from the superlattice 

calculation of the interface. For Cs3Sb2X9 perovskites, Δ𝑉 is determined from planar 

averaged electrostatic potential (�̅�) and its macroscopic average (�̿�) for supercell 

interfaces Cs3Sb2Br9|Cs3Sb2Cl9 and Cs3Sb2I9|Cs3Sb2Br9 as presented in Figure 

27(b,d). Details on the calculation followed methodology described elsewhere (Weston 

et al. 2018). Detailed results for the bulk VBM values, average potentials and band 

offsets are presented in Supporting Information (Table B7), final results for band 

alignment including band gap and band offsets are presented in Figure 27(e). VBM of 

perovskites rise in energy from higher to lower electronegativity meaning that holes will 

be less energetic in iodine than chlorine. These results agree qualitatively with 
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previous report from Liu et al. (2019) using electron affinity of the materials, although 

calculation of band alignment is deemed more precise when actual interface 

calculations are performed (Hinuma et al. 2014) as in this work. CB energy levels are 

close in energy for all perovskites and bromine perovskite present the lowest CBM 

level according to our calculations, therefore Cs3Sb2Br9 has the greatest electron 

affinity of the three halide perovskites. Traditional band alignment using HSE 

normalized VBM values combined with PBE calculated potential alignment (Weston et 

al. 2018), as presented in Figure B6, reach same conclusion of PBE+U band 

alignment despite small offset differences (Table B8).  

Previous work from Liu et al. (2019) reports higher electron affinity for Cs3Sb2Cl9 

perovskite instead of Cs3Sb2Br9, this may be due to their large band gap deviation 

obtained for Cs3Sb2Br9 (2.60 eV in HSE vs. 2.30 eV in experiment). In this work, both 

HSE06 and PBE+U calculations presented a small deviation (~0.1 eV) to 

experimentally reported gap. If this result is verified by experiment, a heterostructure 

such as Cs3Sb2Br9@Cs3Sb2Cl9 would be promising for photoluminescence since 

Cs3Sb2Cl9 would both confine charge carriers and inject electrons and holes for 

recombination in Cs3Sb2Br9. The construction of similar core-shell structures is 

feasible for CsPbX3 as has been reported for CsPbBr3@PbBrx (Xiaoming Li et al. 

2016) and CsPbBr3@CsPbBr3-xClx (G. Zhang et al. 2020). Moreover, G. Zhang et al. 

(2020) have proved that despite strong anion exchange in CsPbX3 perovskites stable 

heterojunctions could still be synthesized in appropriate conditions, thus, similar 

heterojunctions for Cs3Sb2X9 to harness favorable band alignment are presumably 

possible.  

3.4.5 Clusters 

Despite the promising applications, theoretical investigation for Cs3Sb2X9 

perovskites under spatial confinement is still lacking. To fill this gap, a non-

stoichiometric Cs13Sb6X30 cluster with 49 atoms was investigated for its geometry and 

electronic structure properties. In this cluster, the SbX6 coordination was preserved to 

avoid dangling Sb bonds. The partial density of states for the halogen Cs13Sb6X30 

clusters is presented in Figure 29. Spatial confinement produces larger band gaps 

compared to bulk counterparts, which is expected and agrees with experimental 

observations (Ma et al. 2019). Since the clusters are non-stoichiometric with excessive 



 
 

114 
 

Cs and X, the halogen p orbitals and Sb 5p, which form the CB in bulk perovskite, 

exhibit some polarization and stretch a few tenths of an eV towards the VB due to 

stronger binding with available Cs electrons. Nevertheless, the bands are well defined, 

presenting similar qualities of VB and CB of bulk materials, and it is reasonable to 

consider the models a good approximation to evaluate the properties of this material 

under spatial confinement. The band gap differences from bulk perovskites were +0.02 

eV and +0.24 eV for chlorine and iodine halogen clusters, respectively, compared to 

+0.39 eV for the bromide cluster. These findings give atomistic origins for what has 

been observed in Ma et al.'s work (2019), Cs3Sb2Cl9 quantum dots with a size of 5.0 

nm and Cs3Sb2I9 quantum dots with a size of 5.8 nm presented similar band gaps to 

the reported gap in bulk perovskite, 3.22 eV (3.09 eV in bulk by Blasse, 1983) and 

1.93 eV (1.95 eV in bulk by Saparov et al. 2015), respectively. Similarly, Cs3Sb2Br9 

quantum dots presented a band gap of 3.03 eV in that work, a relevant difference from 

the 2.36 eV reported for bulk single-crystal Cs3Sb2Br9 (Jian Zhang et al. 2017). 

 

Figure 29 – Partial density of states for clusters of Cs13Sb6X30 for each of the halogens 

Cl, Br and I. HOMO and LUMO states are also presented for each cluster. 
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Smaller band gap increase for chlorine and iodine can be understood based on 

geometrical changes and charge transfer in the clusters. By analyzing the difference in 

average bond lengths, in Table 6, and the average Bader charges in each atom 

between clusters and bulk, in Table 7, we notice that Cs3Sb2Br9 cluster has the lowest 

differences in bond length and in the charge of Sb and Cs. For the Cs3Sb2Cl9 cluster, 

as in the case of the (0001) CsCl-terminated surface of Cs3Sb2Cl9, Sb ions accumulate 

charge due to stronger Cs-Cl bonds, leading to higher energy states in the VB and a 

lower band gap. In the case of the Cs3Sb2I9 cluster, similar charge accumulation in Sb 

ions occurs, but the effect is dominated by exposed Cs atoms moving inward to bond 

more strongly with iodine. This distortion in SbI6 octahedra results in elongated Sb-I 

bonds. Thus, for both iodine and chlorine clusters, there is an attraction that can be 

seen clearly when we investigate geometry changes in the cluster (more details in 

Supporting Information B.5), showing that Sb is repelled in favor of Cs-Cl or Cs-I bond 

formation. Conversely, the bromine cluster, presumably due to intermediate 

electronegativity, exhibits a balance that avoids strong contraction of Cs-Br, leading to 

lower distortion. Therefore, based on previous results, the small band gap increments 

of iodine and chlorine clusters compared to bulk can be understood based on larger 

Sb-X bonds that induce lower interatomic potentials, counteracting the effect of spatial 

confinement in the band gap. In addition to our primary investigations, we explored the 

effects of halogen alloying within the clusters. Our focus was on the substitution of 

iodine with chlorine, a process conducted at both the longitudinal face and edge sites. 

Notably, our findings reveal the most significant influence of substitution occurring at 

the edge sites. For more detailed information, including specific data and figures 

(Figure B9), refer to the Supporting Information (Appendix B.5 Clusters). 
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Table 6 – Average bond length of Cs-X and Sb-X bonds for bulk Cs3Sb2X9 perovskites 

and Cs13Sb6X30 clusters. ∆d indicates the difference between average bond lengths in 

cluster and bulk structures. 

  Average bond length (Å)  

material bonds bulk cluster ∆𝑑 (bulk-cluster) 

Cs3Sb2Cl9 Cs-Cl 3.879 3.640 -0.239 

 Sb-Cl 2.609 2.739 +0.130 

Cs3Sb2Br9 Cs-Br 4.059 3.876 -0.182 

 Sb-Br 2.782 2.863 +0.081 

Cs3Sb2I9 Cs-I 4.341 3.968 -0.372 

 Sb-I 2.988 3.092 +0.103 

  

 

 

Table 7 – Average Bader charge of elements in bulk Cs3Sb2X9 perovskites and 

corresponding Cs13Sb6X30 clusters. ∆e indicates the difference between average 

Bader charges in cluster and bulk structures. 

  
Average Bader charges 

(𝑒) 
 

 Element bulk Cluster 
∆𝑒 (bulk-

cluster) 

Cs3Sb2Cl9 Cs -0.9116 -0.9004 -0.0112 

 Sb -1.7993 -1.7155 -0.0838 

 Cl +0.7037 +0.7332 -0.0295 

Cs3Sb2Br9 Cs -0.8866 -0.8858 -0.0008 

 Sb -1.4626 -1.4127 -0.0499 

 Br +0.6206 +0.6663 -0.0457 

Cs3Sb2I9 Cs -0.8745 -0.8524 -0.0221 

 Sb -1.1759 -1.1210 -0.0549 

 I +0.5529 +0.5936 -0.0407 
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The lower distortion of Cs13Sb6Br30 is reflected in the charge density distribution 

corresponding to states below and above band gap, as presented on the right-side of  

Figure 29 for each halogen cluster.  Meanwhile, iodine and chlorine clusters exhibit 

localization of charge, leaving some SbX6 octahedra with negligible contributions. 

Cs13Sb6Br30, on the other hand, shows a more homogeneous charge distribution for 

these states. A less localized distribution of HOMO-LUMO states throughout the 

structure has been associated with stronger optical transitions in halide perovskite 

clusters (Koliogiorgos et al. 2018). This seems to corroborate experimental 

observations reported by Ma et al. (Ma et al. 2019), in which Cs3Sb2Br9 QDs 

presented larger PLQY than other halide perovskite QDs.  

Jian Zhang et al. (2017) also reported exceptional PLQY for colloidal Cs3Sb2Br9 

QDs, which was attributed to high exciton binding energy and good surface 

passivation. High exciton binding energy in inorganic semiconductors is linked to 

greater valence electron localization from reduced electronic screening (Dvorak, Wei, 

and Wu 2013), indicating lower electronic screening in Cs3Sb2Br9 compared to 

Cs3Sb2Cl9 and Cs3Sb2I9. Our calculations also hint at a lower screening in bromine 

perovskite, as a lower Hubbard U value (UBr = 2.5 eV) is necessary to reproduce bulk 

electronic structure at HSE level than iodine and chlorine perovskites (UI = 3 eV and 

UCl = 4.5 eV, respectively). For instance, a surprisingly small Hubbard value for 

transition metals in oxide perovskites of 4d series, compared to 5d series, has been 

linked to weaker screening effects and larger exciton binding energy (Vaugier, Jiang, 

and Biermann 2012; Varrassi et al. 2021). This may be the case in Cs3Sb2Br9 and 

future studies should include explicit many-body corrections to further investigate this 

matter. Additionally, calculating larger structures could offer clearer insights into 

confinement effects and surface properties in these materials. 
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3.5 CONCLUSION 

Our exploration of halide mixing provided insights into band gap variations, 

structural shifts, and potential ordered structures. Investigation into enthalpy of 

formation revealed potential uniform solid solutions for 𝐶𝑠3𝑆𝑏2𝐶𝑙9−𝑛𝐵𝑟𝑛 and 

𝐶𝑠3𝑆𝑏2𝐵𝑟9−𝑛𝐼𝑛, with higher temperatures required for full alloying in 𝐶𝑠3𝑆𝑏2𝐶𝑙9−𝑛𝐼𝑛. 

(1000) surfaces retained electronic properties advantageous for photovoltaics 

hindering recombination. Conversely, (0001) surfaces exhibited significant band gap 

reduction, suggesting reactivity suitable for photocatalysis. These findings underscore 

the impact of surface orientation on electronic properties. Regarding interfaces, more 

efficient LEDs are suggested to be obtained from Cs3Sb2Br9@Cs3Sb2Cl9 harnessing 

the chlorine shell as a diffusion barrier and carrier injector. Defect tolerance of 

Cs3Sb2I9|Cs3Sb2Br9 was indicated, making it valuable for photovoltaics exploration. 

Cluster simulations estimated Cs3Sb2X9 nanocrystal properties, suggesting geometry's 

role in superior photoluminescence observed in prior experiments with Cs3Sb2Br9 

nanocrystals. Halogen substitution's impact on cluster sites unveiled edge sites' 

importance for band gap tuning. In summary, the present study underscores the 

potential of lead-free Cs3Sb2X9 perovskites for stable and efficient solar cells and 

optoelectronic devices. The study bridges knowledge gaps in halogen alloying, surface 

analysis, heterostructures, and confined structures within these materials. The results 

lay groundwork for further optimizing and developing Cs3Sb2X9 perovskites to enhance 

their efficiency across diverse optoelectronic applications. 
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CHAPTER 4 — Doping effects on the optoelectronic properties and 

the stability of Cs3Sb2I9: Density Functional Theory insights on 

photovoltaics and light-emitting devices 

doi.org/10.1016/j.jsamd.2024.100700 

 

4.1 RESEARCH PROBLEM 

Cs3Sb2I9 polymorphs possess great potential as lead-free materials across a 

wide range of technologies. Literature shows that the unprecedented success of the 

pioneering lead halide perovskites in applications relies heavily on doping, which 

enables fine-tuning of key properties such as bandgap, photoluminescence (PL) 

intensity, carrier lifetime, charge mobility, and the induction of catalytic active sites 

(Saliba et al. 2016; Kumawat et al. 2019; Raza et al. 2021). Moreover, doping plays a 

vital role in controlling defect density and enhancing the stability of halide perovskites 

(S. Chen et al. 2023). It is noteworthy that these strides in doping have often been 

preceded or run parallel with comprehensive theoretical simulations.  Nonetheless, 

research on halogen or cation doping in Cs3Sb2I9 perovskites although on the rise 

(Malavasi et al. 2023; G. Chen et al. 2020; X. Wang et al. 2020; F. Jiang et al. 2018; 

Paul, Pal, and Larson 2020; Jihong Li et al. 2022; Singh et al. 2019) still leave a wide 

avenue for further theoretical and experimental investigations, particularly in the under-

explored dimer-phase. 

Seeking to bridge this research gap, we employed Density Functional Theory 

(DFT) to assess the effects of specific metal and halogen dopants on the 

optoelectronic properties of Cs3Sb2I9 perovskite polymorphs. The metal dopants 

included ions of similar ionic radius to Sb3+, namely Ag, In, Mo, Nb, and Sc, while the 

halogens were chlorine and bromine, as substitutes for iodine. For each specific 

dopant, we analyzed the resulting changes in electronic structure, geometry, and 

absorption coefficients. Additionally, we examined defect formation energies and 

convex hull distances to gauge the stability and viability of these modifications. Our 

findings revealed significant potential for strategic metal and halogen doping to tailor 

the optoelectronic properties of Cs3Sb2I9 polymorphs underscoring the distinctions 

between them. 

 

https://doi.org/10.1016/j.jsamd.2024.100700
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4.2 METHODOLOGY 

In this study, we employed a comprehensive methodology to investigate the 

properties of metal doped and halogen doped Cs3Sb2I9 perovskite considering both 

layered (space group P3m1) and dimeric (space group P63/mmc) polymorphs. The key 

components of our methodology are as follows: 

- Ab-initio calculations: we conducted Density Functional Theory (DFT) 

calculations using Quantum ESPRESSO (Giannozzi et al. 2009) with the PBE 

exchange-correlation functional for all studied structures. Ultrasoft GBRV 

pseudopotentials (Garrity et al. 2014) were utilized to describe electron-ion 

interactions. Kohn-Sham orbitals were expanded in a plane-wave basis set with 

energy cutoffs of 50 Ry for wave functions and 300 Ry for charge density. 

Brillouin zone integration was performed using a 4×4×2 Γ-centered Monkhorst-

Pack grid. We ensured self-consistency in total energy with tolerances of less 

than 10⁻⁸ Ry/atom for electronic energy and 10⁻⁶ Ry/atom for ionic minimization. 

For structural relaxation, the BFGS quasi-Newton algorithm was employed 

(Billeter, Curioni, and Andreoni 2003), and atomic positions were relaxed until 

residual forces on each atom were less than 10⁻⁴ Ry/Bohr. We evaluated 

various electronic properties, including the density of states, band structure, 

band gap energy, effective masses, and charge analysis.  

 

- Metal and halogen doped structures: To investigate the effects of metal doping, 

we considered transition metals, M = Ag, In, Mo, Nb, Sc, which presented +3 

oxidation states with similar ionic radii to Sb, based on the data of Shannon 

(Ouyang 2020; Shannon 1976) as shown in Table C1 on Supporting 

Information,  for substitution in Cs3Sb2I9 perovskite structures. Additionally, we 

explored bismuth (Bi) doping for comparison purposes due to its isoelectronic 

configuration to Sb3+.  Doped 1×1×2 supercells were created by replacing one 

Sb atom with a metal cation — yielding Cs3Sb1.5M0.5I9 as composition. In the 

case of halogen doping two iodine atoms of Cs3Sb2I9 were replaced by either Br 

or Cl — producing a Cs3Sb2I7Y2 (Y = Cl, Br) composition —  since there are two 

distinct halogen sites 6h and 12k for Cs3Sb2I9 (P63/mmc) and 6i and 3e for 
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Cs3Sb2I9 (P3m1) energy analysis was conducted to determine the substitution 

sites. 

- Formation energy calculations: we calculated the formation energy for defect 

substitution using Equation (47) (Freysoldt et al. 2014), as follows: 

 𝐸𝑓[𝐷] = 𝐸𝑡𝑜𝑡[𝐷] − 𝐸𝑡𝑜𝑡[𝐶𝑠3𝑆𝑏2𝑋9] ±∑𝑛𝑖𝜇𝑖

⬚

𝑖

 (47) 

where the formation energy of a neutral charge defect 𝐸𝑓[𝐷] is calculated by the 

difference in total energy of a supercell with defect, 𝐸𝑡𝑜𝑡[𝐷], and the energy of 

pristine supercell of Cs3Sb2I9 added to the energy corresponding to the removal 

(−) or addition (+) of elements to form the defect proportionally to number of 

ions, 𝑛𝑖,  multiplied by 𝜇𝑖, corresponding to the chemical potential of this 

element.  

- Optical properties calculations: to assess the optical properties of the materials, 

we computed the dielectric function, ε(ω), using the SIMPLE code (Prandini et 

al. 2019) in Quantum ESPRESSO. We employed Vanderbilt pseudopotentials 

from SG15 (Schlipf and Gygi 2015) databases and considered relativistic 

effects at the scalar level. Real and imaginary components of the dielectric 

function were used to determine optical constants. These calculations were 

conducted for both polymorphs of the Cs3Sb2I9 structure and the respective 

doped systems, utilizing a 10×10×4 grid of k-points which yielded well 

converged results for the 28 atoms supercells. 

- ACBN0 calculations: To address the underestimation of band gap prediction by 

the PBE exchange-correlation functional, we conducted an analysis employing 

the pseudo-hybrid ACBN0 method (Agapito, Curtarolo, and Nardelli 2015), 

which applies the DFT+U ansatz with iteratively calculated Hubbard values, 

detailed implementation provided in Appendix C.2.5. These additional 

calculations were performed on pristine structures and selected metal-doped 

structures to provide better band gap approximations.  
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4.3 RESULTS AND DISCUSSION 

4.3.1 Cs3Sb2I9 polymorphs 

The initial coordinates for Cs3Sb2I9 polymorphs were obtained from the literature 

(Kihara and Sudo 1974) and are shown in Table C2. The deviations in the relaxed 

lattice parameters from the experimental values consistently remained under 4%, 

surpassing the level of accuracy observed in previous first-principles calculations as 

depicted in Table C2. The halogen-antimony bond sizes also closely matched the 

experimental values, with an error margin of less than 0.02 Å, demonstrating the 

accuracy of the theoretical method in reproducing the system geometry.  

Figure 30 shows the band structures and projected density of states. For both 

polymorphs, the valence band is mainly composed of the I 5p and Sb 5s orbitals, while 

the conduction band has contributions from the iodine 5p and antimony 5p orbitals. 

The presence of antibonding coupling between Sb lone-pair 5s orbital and I 5p in the 

higher levels of the valence band resembles the Pb lone-pair 6s and I 5p orbital 

antibonding coupling that is attributed to a better defect tolerance in the CH3NH3PbI3 

perovskite (Y. L. Liu et al. 2019). In both polymorphs, the valence band maximum lies 

in between two high symmetry points, K and Γ, indicated as K* in Figure 30, while the 

conduction band minimum lies on Γ the point. The trigonal structure presents an 

indirect band gap of 1.52 eV, yet the direct transition at Γ-Γ requires only slightly higher 

energy photons, resulting in a band gap of 1.59 eV which enables faster transitions in 

this structure. The hexagonal structure presents an indirect band gap of 1.81 eV, while 

the lower energy direct transition (M–M) occurs with a band gap energy of 2.14 eV. 

Indeed, DFT systematically underestimates band gap compared to experimental 

values, nevertheless, the disparities in band gaps observed in this study align with 

previous theoretical reports (see Table C3) and fall within the expected range for 

halide perovskites (Leppert, Rangel, and Neaton 2019). Analysis of the charge density 

plots, average Bader charges and binding energies are depicted for both polymorphs 

in the Supporting Information (Appendix C.2.1), reinforcing the enhanced 

thermodynamical stability of the hexagonal structure, which is obtained in a facile 

approach in a solution based synthesis (Singh et al. 2018; Saparov et al. 2015). 

Additionally, from the effective mass analysis (Table C5), a lower electron and hole 

effective masses in the P3m1 structure can be observed, compared to the P63/mmc 

polymorph, due to the higher structural dimensionality in the former. 
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Figure 30 – Band structures and projected density of states for (a) Cs3Sb2I9 (P3m1), 

and (b) Cs3Sb2I9 (P63/mmc). Fermi level is at 0 eV. 

 

4.3.2 Doping with transition metals   

Figure 31 shows the Cs3Sb2I9 polymorphs with the replacement of one Sb atom 

by one dopant metal atom (M) in the respective unit cell. The influence of substitutional 

doping at the Sb site, on the lattice parameters for both polymorphs is presented in 

Table 8. Even with the high doping concentration explored, the lattice parameters 

display only minor deviations, amounting to less than 1.3%. This remarkable result 

demonstrates that structures with the chosen dopants, which possess a comparable 

ionic radius to Sb3+, can be synthesized. The I–M bond distance is calculated 

considering the average of these bonds in the octahedra. As one can observe the 

values obtained from doped structures are slightly shorter than those from pristine 

structures, except for Bi doping. In the trigonal structure doped with indium, the slight 

lattice expansion is related to the larger ionic radius of indium compared to antimony. 

Surprisingly, this effect is absent in the hexagonal structure, strongly suggesting a 

more effective accommodation of the dopant within the 0D hexagonal P63/mmc 

polymorph. This is better illustrated by the wider distribution of the highest occupied 

state density in the hexagonal structure compared to the trigonal (Figure C6) and the 

smaller deviations on the octahedra InI6 compared to SbI6 in each polymorph (Table 

C7 and C8, check 𝚫aaxis, 𝚫amin and 𝚫amax ). Except for Bi doping, which exhibits a larger 

ionic radius, and the unexpected cases of Nb and Sc doping in the 0D polymorph, the 

lattice parameter 𝑐 generally decreases for most dopants. These results can be 
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attributed to the larger rotations that the NbI6 and ScI6 octahedra present in these 

structures (Table C8, check Δ𝜑, Δ휃 and Δ𝜓 )  and their larger M–X–M angles (Table 

C9). 

 

Figure 31 – Generic structures of (a) Cs3Sb2I9 (P63/mmc), and (b) Cs3Sb2I9 (P3m1) 

doped with metal (M). 

 

Table 8 – Distortion of lattice parameters according to the metal doping in the 

structures and average bond distance for the halogen-dopant bond, DI-M. 

Lattice and M atom 

Lattice parameters 

(Å) 
Lattice deviations (Å) 

DI-M (Å) 

a, b c 𝛥𝑎,𝑏 (%) 𝛥𝑐  (%) 

Cs3Sb2I9 

(P63/mmc) 
     

Pristine (Sb) 8.543 21.642 − − 3.050 

Ag 8.496 21.721 −1.21 −0.52 2.995 

In 8.554 21.713 −0.51 −0.48 3.009 

Mo 8.479 21.604 −1.09 −0.99 2.848 

Nb 8.476 21.846 −0.93 0.74 2.895 

Sc 8.525 21.706 −0.72 0.55 2.951 

Bi 8.664 21.840 0.49 2.80 3.118 

Cs3Sb2I9 (P3m1)      

Pristine (Sb) 8.622 21.246 − − 3.009 

Ag 8.522 21.027 −1.16 −1.03 2.970 

In 8.629 21.175 0.08 −0.33 2.984 

Mo 8.585 21.115 −0.42 −0.62 2.836 

Nb 8.595 21.151 −0.31 −0.45 2.880 

Sc 8.619 21.162 −0.02 −0.40 2.921 

Bi 8.678 21.373 0.65 0.59 3.047 
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Figure 32 presents the projected density of states for the doped Cs3Sb2I9 

structures in the P63/mmc and P3m1 polymorphs. The band structures for each of the 

doped Cs3Sb2I9 structures in the P63/mmc and P3m1 polymorphs are shown in Figure 

C10 and C11, respectively.  

 

Figure 32 – Projected density of states for Cs3Sb2I9 (P3m1) (left) and Cs3Sb2I9 

(P63/mmc) (right) doped with (a) Ag, (b) In, (c) Mo, (d) Nb, (e) Sc, and (f) Bi, 

respectively. Fermi level at 0 eV. 

● Ag doping: the difference in band structures in Cs3Sb1.5Ag0.5I9 is attributed to 

the interaction between Ag 4dxz orbitals and I 5p orbitals at the band edge in P3m1 

structure, while P63/mmc shows Ag 4dz² orbitals along with I 5p orbitals in the valence 

band maximum (VBM). The distinct orbital contributions can be clearly seen in the 

highest occupied state density in Figure C6. Ag doping decreases the band gap in 

both polymorphs through the involvement of partially filled Ag 4d and I 5p orbitals at 

the top of valence band, creating a slight imbalance in up and down spin populations. 

This introduces unoccupied states, resulting in metallic behavior. The Ag doping of the 
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Cs3Sb2I9 P63/mmc polymorph, results in decreased band gap with a direct gap (Γ–Γ), 

making it promising candidate for optoelectronic applications.  

● In doping: doping with In maintains well-defined band gaps, with I 5p and In 5s 

orbitals in the conduction band and I 5p and Sb 5s orbitals in the valence band, 

resulting in a reduction of the band gap and the preservation of Sb 5s orbitals at the 

top of the valence band. This is an interesting observation, as indium is the only 

element among the selected dopants with a partially filled p orbital in the valence level 

(similar to Pb, Sb, and Bi). Cs3Sb1.5In0.5I9 shows a significant decrease in the band 

gap, particularly in the P63/mmc polymorph, where the band with the highest In 

contribution is more dispersed compared to the trigonal P3m1 polymorph. This is 

evident in the highest occupied state density (Figure C6), with P3m1 exhibiting 

localized density within the InI6 layer, while In-doped P63/mmc perovskites show a 

more pronounced spread to the SbI6 layers. Indium doping in both polymorphs leads 

to a more indirect transition, which can be attributed to the distinct electronic 

configuration of indium ([Kr] 5s² 4d10 5p¹), introducing 5s² orbitals in the conduction 

band, while the pristine antimony perovskite primarily relies on overlapping p orbitals in 

the conduction band. 

● Mo and Nb doping: Mo doping results in a fully occupied mid-gap state 

composed of I 5p and Mo 4d orbitals and the conduction band is composed of Mo 4d, I 

5p, and Sb 5p orbitals. Nb-doped structures present similar metallic character of the 

Ag-doped structure due to a partially filled mid-gap state formed by Nb 4d and I 5p 

orbitals. It can also be noticed in the Mo and Nb-doped band structures that mid-gap 

states shift more towards the conduction band in the P3m1 polymorph than in the 

P63/mmc perovskite, this can be understood from the formation of overlapping Sb-M 

states in the P63/mmc structure, which can be seen in the highest occupied charge 

density of these structures in Figure C6. Therefore, due to a favorable orientation of 

octahedra in the 0D structure, which allows Sb–M overlapping, there is a lowering of 

the energy of the mid-gap states in comparison to the layered 2D structure. The 

presence of electronic structure with mid-gap states in Mo- and Nb-doped Cs3Sb2l9 

suggests that the dopants may act as recombination centers and their particular d-d 

transition can be exploited for luminescence applications as has been done recently 

with Mn-doped Cs3Sb2Cl9 (X. Wang et al. 2020). Additionally, a quite localized spin 
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polarization for these structures is shown in Figure C4, which may potentially be 

manipulated to create spintronic devices or for catalysis. 

● Sc and Bi doping: doping with Sc and Bi, due to their isoelectronic valence to 

Sb, does not alter substantially the density of states and only an increase in band gap 

is observed. Sc and Bi states are mostly concentrated in the conduction band, 

preserving pristine transitions between valence and conduction band. Shifts towards 

higher energy levels of Sc and Bi dopant states can also be seen in the trigonal 

structure compared to the hexagonal one, which is again attributed to favorable M–Sb 

interaction enabled by the 0D structure. The Sc-doped structure also presented a 

narrowing in the difference between the direct and indirect gap in the hexagonal 

structure, favoring a direct transition. The more direct band gap in Sc doped structure 

is explained by the electronic configuration of [Ar] 4s² 3d¹ in Sc that introduces 3d 

states just above the CBM mediating transitions from the VBM.  

Table 9 presents a comparison of effective masses in the k[001] direction between 

doped and pristine structures. A detailed discussion of these results is provided in the 

Supporting Information (Appendix C.2.3).  The doped structures exhibited increased 

effective electron masses in the k[001] direction for all dopants except Bi, which showed 

a slight decrease. The most significant increase in electron effective masses was 

observed in the In- and Mo-doped P63/mmc and In- and Nb-doped P3m1 structures. 

The Cs3Sb2I9 doped structures generally maintained similar hole effective masses, 

except for Ag and Mo-doped structures due to the introduction of localized d states in 

the valence band. For Sc and Bi-doped structures, effective masses resembled those 

of the pristine hexagonal polymorph, but there was a significant increase in hole 

masses in the trigonal polymorph. This effect was particularly pronounced in the Bi-

doped Cs3Sb1.5Bi0.5I9 P3m1 due to the overlap of Bi 6s states in the valence band. 
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Table 9 – Calculated effective masses, direct and indirect band gap for the metal-

doped and pristine Cs3Sb2I9 polymorphs. 

Structure 

Effective mass (m*) 

k[100] direction 
Indirect gap 

(eV) 

Direct gap 

(eV) 

Δ(direct-

indirect) gap 
electrons holes 

Cs3Sb2I9 

(P63/mmc) 
     

Pristine (Sb) 0.32 1.10  1.81 (K*–Γ) 1.94 (M–M) 0.13 

Ag 0.38 - - 1.67 (Γ–Γ) - 

In 0.82 1.18 0.96 (K–Γ) 1.38 (Γ–Γ) 0.42 

Mo 0.61 - 1.32 (L–Γ) 1.38 (M–M) 0.06 

Nb 0.46 1.23 0.51 (K–Γ) 0.57 (M–M) 0.06 

Sc 0.44 1.08 1.86 (K–Γ) 1.94 (M–M) 0.08 

Bi 0.29 1.35 1.94 (K–Γ) 2.10 (M–M) 0.16 

Cs3Sb2I9 (P3m1)      

Pristine (Sb) 0.31 1.09 1.52 (K*–Γ) 1.54 (Γ–Γ) 0.02 

Ag 0.36 1.46 1.27 (K*–A)a 1.38 (A–A)a 0.11 

In 0.72 1.03 1.14 (K*–Γ) 1.25 (A–A) 0.11 

Mo 0.33 1.94 1.01 (L–H) 1.07 (H–H) 0.06 

Nb 0.94 1.63 1.43 (K*– Γ)a 1.54 (Γ–Γ)a 0.11 

Sc 0.42 1.36 1.77 (K*–A) 1.84 (A–A) 0.07 

Bi 0.29 - 1.62 (K*–Γ) 1.65 (Γ–Γ) 0.03 

* K* is a point in the K - Γ high-symmetry line. a the structure is metallic, the value shown is 

estimated considering a slight change in the Fermi level. 

It is important to remark that while the Ag and Nb doped structures may not be 

ideal for optoelectronic applications due to their predicted metallic nature, it is crucial 

to note that the presence of intrinsic defects, which were not considered in this study, 

can alter the Fermi level. Consequently, in an experimental setting, the semiconductor 

behavior could potentially be restored. Therefore, investigating these compounds 

remains relevant and worthwhile (Freysoldt et al. 2014).  

The calculated formation energies for the insertion of dopant atoms into the 

structures, along with the average Bader charge of iodine atoms (bonded to M) and 

doping metals (M), are presented in Table 10. A trend of increasing formation energy 

can be observed; Sc < In < Nb < Ag < Mo. It is worth noting that for Sc and In, the 

obtained energy value suggests a spontaneous substitution of Sb. Considering that 

dopants are bonded to halogens, charge transferring to the halogen is expected and 

would stabilize the structure more effectively, reducing the formation energy. However, 

the descending order of charge donation for the halogen is as follows: Sc > Nb > In > 

Mo > Ag. Despite Nb donating more charge to the halogen than In, Nb exhibits higher 
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formation energy, and a similar trend is observed for Mo and Ag.  Therefore, factors 

beyond charge donation, such as the presence of unpaired electrons, can influence 

the formation energy. This is likely the case for Nb, Mo, and Ag, which have highest 

formation energies and unpaired electrons. Additional insights about the formation 

energies obtained from charge density plots and a multilinear regression model 

confirm the importance of charge transfer ability of the dopant. These findings are 

detailed in the Supporting Information (Appendices C.2.1 and C.2.4). 

The introduction of Ag, In, Sc, and Bi in the dimer polymorph leads to a decrease 

in formation energy compared to the layered polymorph. This result can be attributed 

to better coordination with the halogen atoms and a structure that can withstand more 

deformation. Conversely, in the case of Mo- and Nb-doped perovskites, the formation 

energy increases in the dimer polymorph. This can be attributed to the destabilization 

of the adjacent SbI6 octahedra by the high-coordination metals. 

Table 10 – Formation energies for metal doping (Ef[D]), average Bader charge of 

iodine in the dopant-halogen bonds and average Bader charge for the dopant (M). 

Lattice and M atom Ef[D] (eV) 
Avg. Bader 

charge (I–M) 

Avg. Bader 

charge (M) 

Cs3Sb2I9 (P63/mmc)    

Pristine (Sb) - -0.492 0.947 

Ag 1.929 -0.411 0.364 

In -0.492 -0.522 1.058 

Mo 2.050 -0.513 1.025 

Nb 0.598 -0.553 1.313 

Sc -3.627 -0.644 1.719 

Bi -0.551 -0.526 1.098 

Cs3Sb2I9 (P3m1)    

Pristine (Sb) - -0.496 0.944 

Ag 1.995 -0.424 0.322 

In -0.245 -0.538 1.058 

Mo 1.218 -0.539 1.010 

Nb 0.407 -0.581 1.287 

Sc -3.345 -0.646 1.675 

Bi -0.476 -0.516 1.041 
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To assess the thermodynamic stability of these materials and determine their 

potential for experimental synthesis, we performed a convex hull distance calculation 

for each composition (Barber, Dobkin, and Huhdanpaa 1996). The corresponding 

convex hull compounds to each doped structure stoichiometry was obtained from 

Open Quantum Materials Database (OQMD) and the grand canonical linear 

programming (GCLP) method (Saal et al. 2013; Kirklin et al. 2015). The algorithm 

considers energies of all phases in the Cs–Sb–I–M quaternary phase diagram at 0 K 

and zero pressure, providing the most stable linear combination of phases for a given 

stoichiometry. By comparing the total energy of the doped structures to those of the 

competing phases in the convex hull, we obtained the convex hull energies (Ehull) 

which are used to evaluate stability of the doped structure, Cs3Sb1.5M0.5I9 using the 

following formula for the convex hull distance or stability, Estab:  

 𝐸𝑠𝑡𝑎𝑏 = 𝐸Cs3Sb1.5M0.5I9–𝐸ℎ𝑢𝑙𝑙 (48)  

A “negative” convex hull distance indicates stability, suggesting a spontaneous 

formation of the considered compounds. Alternatively, a slightly looser definition 

(Emery and Wolverton 2017) considers 𝐸𝑠𝑡𝑎𝑏 below 25 meV per atom (approximately 

kT at room temperature) as viable accounting for nearly-stable structures and possible 

uncertainties/errors associated with DFT. 

Convex hull stability trends closely align with those observed for formation 

energies as shown in Table 11. The greater stability of the doped hexagonal structures 

compared to their trigonal counterparts is not solely due to Cs3Sb2I9 (P3̅m1) having a 

5.6 meV/atom higher formation energy than Cs3Sb2I9 (P63/mmc). The atomic 

arrangement of the hexagonal structure promotes more favorable bonding, indicated 

by larger binding energies (Table C4), and greater flexibility, as seen when the lattice 

parameters of the two polymorphs are compared (Table 8). As one can observe, Ag 

doped is the only structure exceeding the stability threshold of 25 meV, indicating that 

it should not be easily synthesized unless an appropriate defect or dopant is 

introduced during the synthesis. On the other hand, Sc and Bi doped structures 

exhibited negative convex hull distance, indicating higher stability. Therefore, Sc and 

Bi may be considered as dopants to improve the resistance of degradation and reduce 

the Urbach energy of these compounds, which is currently an issue (Chonamada, 

Dey, and Santra 2020). In the case of Sc doping, the greater stability should not 
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decrease effective masses substantially and the band gap may become less indirect. 

Moreover, co-doping Sc and Bi along with the other studied dopants (In, Nb, Mo, and 

Ag) may offer ways to further stabilize these compounds, resulting in crystals with 

smaller band gaps.  

Table 11 – Convex hull compositions and distance of the convex (𝐸stab) hull for each 

considered dopant in both polymorphs of Cs3Sb2I9. 

 

Dopant 

 

Convex hull composition 

𝐸stab (meV/atom) 

Cs3Sb2I9 

(P63/mmc) 

Cs3Sb2I9 

(P3̅m1) 

- Cs3Sb2I9 (P63/mmc) 0 5.58 

Ag 0.25 Cs2AgI3 + 0.75 AgI + 1 CsI3 + 1.5 Cs3Sb2I9 31.24 38.44 

In 0.5 CsI + 1 CsInI4 + 1.5 Cs3Sb2I9 7.04 9.58 

Mo 1 CsI + 0.5 CsI3 + 1.5 Cs3Sb2I9 + 1 MoI2 19.97 24.96 

Nb 0.9 Cs2NbI6 + 1.4 Cs3Sb2I9 + 0.1 NbSb2 13.68 18.78 

Sc 1.5 CsI + 1.5 Cs3Sb2I9 + 1 ScI3 -5.03 -1.41 

Bi 0.5 Cs3Bi2I9 + 1.5 Cs3Sb2I9 -0.97 2.80 

 

The absorption coefficients for the pristine and doped structures for both 

polymorphs were calculated and are shown in Figure 33. Among the range of greatest 

interest for photovoltaic applications (between 1 and 2 eV approximately), the structure 

doped with In presented the highest values of absorption coefficient. In the same 

range, the second higher absorption is obtained from Ag doping, followed by Mo and 

Nb. On the other hand, absorption below 1 eV is observed for Mo and Nb doping, in 

agreement to their smaller band gaps. Due to mid-gap states and unfavorable Fermi 

level these structures may not be so efficient for charge carrier generation. 
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Figure 33 – Absorption coefficient for (a) Cs3Sb2I9 (P3m1), and (b) Cs3Sb2I9 (P63/mmc) 

pristine and doped with Ag, In, Mo, Nb, and Sc, considering one unit cell and one 

dopant atom. 

Taking into consideration the results discussed, the prospects of each doped 

structure are compiled as follows: 

● Ag doping: Ag doping results in a lower band gap, enhancing absorption and 

making the gap direct in the dimer form. However, introducing Ag into the Cs3Sb2I9 

structure requires high energy. Therefore, Ag must be considered in co-doping with an 

element that further stabilizes the lattice such as In or Sc. Previous reports 

demonstrate the potential of Ag doping in inorganic halide perovskites. 

Cs2AgInBr6(1−x)Cl6x structured phases have been reported (Y. Liang 2021), while Ag+ 

doping on CsPbBr3 nanocrystals improves conductivity and charge-carrier mobility 

(Shu Zhou et al. 2019). In addition, Ag doping in MAPbI3 have been found to enhance 

charge transport efficiency, reduce trap states, and improve PCE (Hao et al. 2021). 

These findings suggest the potential application of these doped structures in LEDs and 

photovoltaics.  

● In doping:  indium doped structures presented promising results for 

photovoltaic applications with improved absorption coefficients, a well-defined and 

small band gap, and small hole effective masses. This result is in alignment with 

literature observations, which predicts Cs3In2I9 to be a very efficient light absorber with 

an optimal band gap of only 1.25 eV, although, to the best of our knowledge, no 

experimental results have been reported up to now for this material (W. H. Guo et al. 

2020a). The 2D Cs3In2I9 presents an ideal band structure for solid-state lighting with a 
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direct band gap at the Γ point, strong electron dispersion at the CBM and weak hole 

dispersion at the VBM, and light (heavy) electron (hole) effective mass. The studied 

Cs3Sb1.5In0.5I9 shows potential for similar applications but has shown viability 

considering convex hull energy and is worth candidate for synthesis.  

● Mo and Nb doping: with an increased light absorption in the visible range due 

to mid-gap states introduced by the dopants, Mo- and Nb-doped Cs3Sb2I9 may be 

useful for luminescence applications. These dopants are better incorporated in the 

layered form which has better transport properties, and Nb substitution has lower 

formation energy. The d-d transition introduced by the dopants may yield bright sharp 

emissions as seen for similar materials (X. Wang et al. 2020). Additionally, there has 

been reports of Mo-doping in perovskites for photocatalysis and sensors (Z. Zhang et 

al. 2019; Kwak et al. 2019), Nb-doping in halide perovskites is also reported for 

photocatalysis (Z. Guo et al. 2019)  and even for improved PCE and reduced 

hysteresis (Patil, Mali, and Hong 2020).  

● Sc and Bi doping: Although these dopants do not lead to significant 

improvements in optical absorption in Cs3Sb2I9 due to a slightly higher band gap, they 

can play a crucial role in stabilizing the lattice, particularly in the dimer phase. This is 

of great importance because reducing the Urbach energy is a key factor in 

approaching efficiencies closer to the theoretical estimates for these materials in 

photovoltaics (Singh et al. 2018). Reports on Sc-doping in perovskites are limited, 

however a few studies indicate its potential for enhancing electrochemical catalysis 

(Jeong et al. 2018; M. Xu et al. 2020).  

Finally, ACBN0 calculations were then performed on both pristine and doped 

structures (In-doped and Sc-doped) for each polymorph, as illustrated in Figure 34. In-

doped and Sc-doped structures were chosen based on their respective optical 

properties and enhanced stability. Notably, our results exhibit remarkable agreement 

with experimental band gaps for the pure structures, akin to findings from prior 

research where PBE+U was applied to Cs3Sb2X9 (X = Cl, Br, I) structures (Gouvêa et 

al. 2024). In the case of In-doped structure the calculated band gap is 1.76 eV for the 

2D structure and 1.47 eV for the 0D polymorph indicative of its promising potential for 

optoelectronic applications. Conversely, the band gap of the Sc-doped structure 

increases compared to pristine structures, aligning with the trends observed in PBE 
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calculations. Furthermore, our analysis reveals no significant disparities in direct and 

indirect band gaps when employing the more accurate functional, as detailed in Table 

C11. 

 

Figure 34 – Band structure and projected density of states for pristine, In- and Sc-

doped Cs3Sb2I9, obtained via the ACBN0 method. Panels (a-c) display the results for 

the P3m1 polymorph, while panels (d-f) show those for the P63/mmc polymorph. 

4.3.3 Doping with halogens   

To the best of our knowledge, there are no previous reports on the effects of 

halogen doping in both polymorphs of Cs3Sb2I9 while evaluating the differences 

between the structures. Since, homogeneous solid solutions have been reported for 

the layered polymorph (Ma et al. 2019), we deemed it appropriate to perform a 22% 

halogen substitution using chlorine and bromine. This concentration is sufficiently high 

to assess the differences but not so high that significant structural changes are likely to 

occur. Both polymorphs exhibit two distinct sites for halogen incorporation: a bridging 

site (3e in P3̅m1, 6h in P63/mmc) and a terminal site (6i in P3̅m1, 12k in P63/mmc). We 

analyzed the energy differences for substitutions in each of these sites (Table C12). 
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Our results indicate that the energy difference between the sites is lower than the 

thermal energy at room temperature (kT ≅ 25 meV) for bromine substitution in both 

structures. This suggests that bromine substitution should occur simultaneously in 

both sites for both structures. In the case of chlorine substitution, the energy difference 

is significant, particularly for the trigonal structure, favoring substitution in the terminal 

site. Experimental evidence has shown that in Cs3Sb2Br9 (P3̅m1), halogen 

substitutions tend to saturate the terminal sites first (Pradhan, Jena, and Samal 2022). 

Therefore, we have chosen to incorporate both terminal and bridging substitutions in 

the hexagonal form and only terminal substitutions in the trigonal structure (Figure 

C14). 

Despite the relatively high levels of halogen doping, the percent deviation from 

the pristine lattice parameters, due to the introduction of smaller and more 

electronegative elements, was found to be less than 2.0%, as shown in Table 12. 

Furthermore, halogen doping was found to induce a symmetry breaking in Cs3Sb2I9 by 

promoting a ≠ b.  

Table 12 – Distortion of the lattice parameters for the structures with halogen doping. 

Structure 
Lattice parameters (Å) Lattice deviations (Å) 

a b c 𝛥𝑎  (%) 𝛥𝑏 (%) 𝛥𝑐 (%) 

Cs3Sb2I9 (P63/mmc)       

Pristine 8.543 8.543 21.642 - - - 

Cs3Sb2Br2I7 8.494 8.470 21.365 -0.57 -0.85 -1.28 

Cs3Sb2Cl2I7 8.499 8.378 21.342 -0.51 -1.92 -1.39 

Cs3Sb2I9 (P3m1)       

Pristine 8.622 8.622 21.246 - - - 

Cs3Sb2Br2I7 8.577 8.542 21.120 -0.52 -0.92 -0.59 

Cs3Sb2Cl2I7 8.541 8.481 21.019 -0.93 -1.63 -1.07 

As observed in the projected density of states for the structures with halogen 

doping (Figure C15 and B15), the conduction band is mainly formed by the orbitals I 

5p, Sb 5p in addition to contributions from the dopants Cl 3p or Br 4p. The valence 

band is composed of orbitals I 5p, Sb 5s, and Cl 3p or Br 4p according to the 

respective doping. In the band structures, presented in Figure 35, one can observe 

that the halogen doping leads to an increase in band gap energy, a trend that is 

particularly evident in the Cl-doped structures. This results was already expected since 
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1D orthorhombic Cs3Sb2Cl9 (Pmcn) and 2D Cs3Sb2Cl9 (P3m1) present band gaps of ~ 

3.4 eV and ~ 3 eV, respectively (B. Pradhan et al. 2018; Vargas et al. 2017), 

explaining also a larger relative increase of the band gap for the dimer perovskite 

which has lower dimensionality. Moreover, more electronegative halogens tend to form 

lower energy VB states widening the band gap. In the case of Br doping, the impact on 

the band dispersion is milder since its size and electronegativity are closer to that of 

iodine. 

 

Figure 35 – Band structures for (a) Cs3Sb2I9 (P63/mmc), and (b) Cs3Sb2I9 (P3m1) 

doped with Cl, and Br. Fermi level at 0 eV. 

Table 13 shows the transitions responsible for the direct and indirect gap in each 

structure, considering the influence of the doping in comparison to the pristine 

structures. In all cases, the lowest energy transitions are indirect, with the VBM 

localized in a reciprocal space point, represented by K*, in the high-symmetry line K–Γ. 

Surprisingly, Br doping in the dimer structure results in a more indirect gap compared 

to Cl doping. This behavior can be associated with the splitting of the halide p-states, 

which has been linked to indirect-direct transition in Cs3Sb2Cl9−xBrx in a recent study 

(Pradhan, Jena, and Samal 2022). This idea is further supported by the observation of 

energy level splitting in the high and low mass bands of Cs3Sb2I9 (P63/mmc) at the K 

point and at the segment L–H. Conversely, the direct-indirect transitions in the layered 

polymorph remain consistent, with no relative changes, regardless of the dopants.   

There is an increase in hole effective mass with doping, especially for Cl-doped 

structure as shown in Table 13. The Br-doped structure presents a more dispersed 

band structure than the Cl-doped structure and in a few cases a slightly lower effective 

mass is seen for Br-doped structures compared to pristine for electron and hole 

effective masses in the k[001] of the hexagonal polymorph and for the electron and hole 
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effective mass in the k[100] of the trigonal structure. These can be associated with a 

splitting of the halide states caused by the Br incorporation. 

Our findings suggest that despite the substantial contractions observed in the 

lattice parameters (Table 12), the deviations in effective masses remain minimal. 

Therefore, the halogen-doped structures hold promise for incorporating additional 

dopants, such as Bi, which tend to expand the unit cell, without causing significant 

disruptions to transport properties. 

Table 13 – Calculated effective masses, direct and indirect band gap for halogen-

doped Cs3Sb2I9 polymorphs compared to the pristine structures. 

Structure 

Effective mass (m*) 
Indirect Eg 

(eV) 

Direct Eg 

(eV) 

ΔEg 

(direct-

indirect) 

electrons holes 

k[100] k[001] k[100] k[001] 

Cs3Sb2I9 

(P63/mmc) 
       

Pristine 0.32 1.33 1.10 1.05 1.81 (K*–Γ) 1.94 (M–M) 0.13 

Cs3Sb2Br2I7 0.39 1.20 1.16 0.96 1.95 (K*–Γ) 2.13 (M–M) 0.18 

Cs3Sb2Cl2I7 0.39 1.88 1.44 1.31 2.18 (K*–Γ) 2.31 (M–M) 0.13 

Cs3Sb2I9 (P3m1)        

Pristine 0.31 0.40 0.80 0.33 1.52 (K*–Γ) 1.53 (Γ–Γ) 0.01 

Cs3Sb2Br2I7 0.30 0.51 0.79 0.41 1.67 (K*–Γ) 1.68 (Γ–Γ) 0.01 

Cs3Sb2Cl2I7 0.32 0.63 0.87 0.48 1.76 (K*–Γ) 1.77 (Γ–Γ) 0.01 

 

The analysis of the calculated Bader charges demonstrated that Br- and Cl- 

deplete more electronic charge from Sb as compared to I- (see Table C13). Namely, a 

shorter Sb–X bond distance and increased structural distortion is observed when 

doping with Cl- (density plots in Figure C17 and C17). Further discussion over the 

charge analysis can be found in the Appendix C.3. Finally, the optical absorption of the 

halogen-doped Cs3Sb2I9 polymorphs was also calculated to evaluate their differences, 

as illustrated in Figure C19. Other than the expected shift in the absorption edge due 

to variations in the band gap, there was a slight decrease in the absorption coefficient 

in the visible-UV range with halogen doping in the 2D perovskite compared to the 

pristine form. This decrease was slightly more apparent for the 0D perovskite in the 

UV region, where there was also a small shift towards higher energies. 
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Our findings suggest that the more electronegative halogens induce changes in 

band gap energy, band gap transition, and effective masses in the dimer polymorph, 

while the impact on the layered form is comparatively less pronounced. Despite the 

substantial contractions observed in the lattice parameters with halogen doping, the 

deviations in effective masses remain minimal. Therefore, coupled with the negative 

formation energy for the substitution, Cl and Br-doped Cs3Sb2I9 hold promise for 

incorporating additional dopants which tend to expand the unit cell (such as Bi) without 

causing significant disruptions to transport and optical properties. 

4.4 CONCLUSION 

Indium-doped structures demonstrated well-defined small band gaps and the 

highest absorption coefficient within the desired range of interest for photovoltaic 

applications, in addition to small hole effective masses, and stability attested by the 

convex hull distance. Silver doping led to a lower band gap, direct band gap in the 

dimer structure and enhanced absorption, making it a candidate for LED and 

photovoltaic applications. Doping with molybdenum and niobium increased light 

absorption in the visible range due to the introduction of mid-gap states, suggesting 

potential use in luminescence applications. Scandium and bismuth doping played a 

crucial role in stabilizing the lattice, although optical absorption slightly decreased. Sc-

doping may aid in reducing the high Urbach energy of these materials, thereby 

improving their performance, particularly in photovoltaics. The P63/mmc structure 

demonstrated superior flexibility and stability for dopant incorporation, and its high 

band gap and indirect transition could be addressed through doping, highlighting the 

potential of this often-overlooked polymorph. Halogen doping, as evaluated in this 

study, had a more pronounced impact on the dimer polymorph, resulting in increased 

band gaps but also improving structure stability. The changes in effective mass 

caused by halogen doping were small, accompanied by a contraction of lattice 

parameters that could facilitate the incorporation of larger dopants like bismuth. This 

report sheds light on the potential of lead-free Cs3Sb2I9 polymorphs for a broad range 

of applications. It emphasizes the opportunities for improvement in these materials 

through fine-tuning their properties via doping. 
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CHAPTER 5 — Boosting feature-based machine learning models for 

materials science: encoding descriptors and graph-based features 

for enhanced accuracy and faster featurization in MODNet 

 

5.1 RESEARCH PROBLEM 

Feature-based models, representing materials by descriptors crafted based on 

empirical knowledge, and graph-based models, using graph representations of the 

structure leveraging the power of graph neural networks (GNNs) are popular choices 

for machine learning in materials science (Choudhary et al. 2022; De Breuck, Hautier, 

and Rignanese 2021; Zhang et al. 2022). It has been shown for molecular properties 

that descriptor-based models can perform comparably well to GNNs in various 

chemical endpoints (Jiang et al. 2021). Arguably, feature-based models represent the 

most interpretable approach, guiding researchers in developing design principles to 

optimize a given property (or set of properties) and remaining effective even with small 

datasets.  

General-purpose feature-based algorithms, such as MODNet (De Breuck, 

Hautier, and Rignanese 2021) and Automatminer (Dunn et al. 2020), utilize an 

extensive set of features from suites like MatMiner (Ward et al. 2018). Unfortunately, 

general electronic structure featurizers (Tawfik and Russo 2022) like Orbital Field 

Matrix (OFM) and Smooth Overlap of Atomic Positions (SOAP) (Pham et al. 2017; 

Bartók, Kondor, and Csányi 2013), despite enhancing predictions in ML models, 

including GNNs (X. Yang 2022), can be challenging to apply for large-scale screening. 

Their featurization is time-consuming and introduces numerous descriptors, 

complicating their application alongside other featurizers due to the curse of 

dimensionality. On the other hand, graph-based models achieve the highest 

accuracies when a sufficiently large dataset (> 10,000) is provided (Dunn 2024). Due 

to these limitations, graph-based models perform better when screening large 

chemical spaces, as is typically the case in materials discovery tasks. 

In this context, we propose employing graph-based models as auxiliary tools to 

promptly generate features that complement feature-based models, aiming to enhance 

accuracy. This involves harnessing pre-trained graph-based models, leveraging their 

knowledge acquired from properties with large available datasets, and utilizing a 
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graph-based model trained to generate a latent-space version of general electronic 

structure descriptors. This latter approach enables us to simultaneously avoid lengthy 

featurization and the introduction of numerous descriptors from these featurizers. 

Utilizing feature-based models offers the crucial benefit of interpretability, which can be 

efficiently harnessed through the SHAP method (Lundberg and Lee 2017) to explore 

and advance the domain knowledge in materials science. Moreover, since feature-

based models can readily offer interpretable design rules, they are highly suitable for 

guiding active learning for materials discovery with statistically robust features, a 

challenge currently being addressed in the field (Choubisa et al. 2023).  

We observed a significant boost in accuracy in predictions for the task of heat of 

formation in perovskites utilizing the new features, approaching the benchmarked 

values for GNN models. The strategy holds up when it is further tested for 

generalizability in more difficult tasks, such as predicting band gap and stability for the 

subset of compounds in the Open Quantum Materials Database (OQMD) that contain 

halogens. Chemical insights are drawn for each of these tasks, and the role of the 

different included features in the proposed approach is thoroughly investigated. 

5.2 METHODOLOGY 

To harness the power and speed of GNNs into feature-based models we propose 

the construction of GNN featurizers following three general approaches: 

1. Compress the patterns of general electronic structure descriptors such as OFM 

and SOAP with an autoencoder (definition on Appendix A.12), a GNN can then 

be trained to promptly produce the encoded representation avoiding the 

expensive featurization. 

2. Integrate pre-trained GNN models trained on properties with abundant datasets 

(formation energy, band gaps, etc.) into the feature-based model. The model is 

truncated to extract values from a hidden layer of the final MLP instead of the 

target property. These values serve as descriptors in the feature dataset. 

3. Train an adjacent GNN model on the training data, again take the values from 

a hidden layer of the final MLP and use as input for the feature-based model. 

The general process is depicted in Figure 36. The procedures were 

implemented in MODNet extending the default MatMiner featurizer included in 

MODNet v.0.1.13 from the original MODNet publication (De Breuck, Hautier, and 
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Rignanese 2021). OFM was chosen as the general electronic structure featurizer, and 

MEGNet was the preferred GNN framework for the investigation. This newly extended 

featurizer was named the OMEGA featurizer, standing for “encoded OFM + pre-trained 

MEGNet + Adjacent MEGNet models”. This procedure is versatile, and alternative 

implementations could have been considered, such as using SOAP instead of OFM 

and more recent GNNs like ALIGNN (Choudhary and DeCost 2021).  Furthermore, an 

alternative version of the featurizer, named the OMEGAfast featurizer, also offers a 

GNN model to quickly obtain a latent-space representation of the default MatMiner 

features, thereby further streamlining the featurization process. 

 

 

Figure 36 – Illustration of the proposed procedure to harness GNN models as fast 

featurizers for general electronic structure descriptors. Information from pre-trained 

GNN models on larger datasets or on the training data can also be leveraged by taking 

the values on hidden layers before the target as features. 

The dataset of formation energy for perovskites named 

matbench_perovskites (MatBench v.0.1) was used as a proof-of-concept for all 

tests to implement the new featurizers. This dataset was selected because it 

represents the smallest benchmark task, comprising 18,928 samples, where the 

deviation between graph-based and feature-based models becomes significant. The 

benchmarked mean absolute errors (MAE) for MEGNet, MODNet, AutoMatMiner and 

RF/SCM-MagPie on this task are shown in Table 14.   
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Table 14 – Mean absolute errors for MatBench task of heat of formation of perovskites 

(matbench_perovskites) with different algorithms. Source: (Dunn 2024) 

General Purpose Algorithm 
MAE on task 

matbench_perovskites (eV) 

MEGNet 0.0352 (±0.0016) 

MODNet 0.0908 (±0.0028) 

AutoMatMiner 0.2005 (±0.0085) 

RF-SCM/MagPie 0.2355(±0.0034) 

Our approach was to compare results of the default MatMiner featurizer on 

MODNet on this task with the implementations of additional features and substituting 

the MatMiner features with latent-space representations. We evaluated the effects of 

different latent-space sizes and considered reconstruction loss on the latent-space 

representation. The following outlines the detailed implementation and evaluation 

procedures for each of the GNN featurizers: 

● OFM-encoded GNN featurizer: The OFM featurizer captures valence electron 

interactions at each site of the structure by employing a weighted vector outer product 

of one-hot encoded valence orbitals for every atom (further details can be found in 

Appendix D.1 Orbital field matrix featurizer). To represent the entire structure, the 

average of all local OFMs is calculated. To create the OFM GNN featurizer, we initially 

featurize the matbench_mp_gap dataset (MatBench v.0.1) comprising 106,113 

structures. All structures are featurized using OFM, and an autoencoder is trained to 

discover a latent space representation of the obtained features. A few compressions 

are tested to assess the impact on performance in the matbench_perovskites 

task. Subsequently, the latent OFM features are taken as target and a GNN model is 

trained to generate the latent OFM features directly from the initial structures. 

● MatMiner-encoded GNN featurizer: Following the same procedure done with the 

OFM featurizer, we encoded the features obtained by applying the default MatMiner 

featurizer of MODNet v.0.1.13 on the matbench_mp_gap dataset, this featurizer 

includes a total of 1336 MatMiner features. We assessed the results of different levels 

of compression in the matbench_perovskites and matbench_mp_gap tasks. 

Subsequently, the latent MatMiner features are used at the chosen level of 

compression as the target to train a GNN model to generate the latent MatMiner 

features directly from the initial structures. 
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● Pre-trained MEGNet models as featurizers: Five pre-trained MEGNet models 

released by Materials Virtual Lab (C. Chen et al. 2019) were used as featurizers for 

MODNet by taking the values produced in the MLP layers preceding the output value. 

Specifically, the models trained for formation energy, fermi energy and the elastic 

constants KVRH and GVRH on the 2019.4.1 Materials Project crystals dataset, as well as 

the band gap regression model trained on the 2018.6.1 Materials Project crystals 

dataset. The default MEGNet architecture comprises MEGNet blocks followed by an 

MLP with two dense layers—one with 32 neurons and another with 16 neurons—

before producing the target property (see Figure D2 in Appendix D.2). We 

experimented by using each of these layers as features for the model, identified in this 

work as MEGNetPreL32 and MEGNetPreL16, respectively. The resulting values are 

concatenated and added to the final feature vector, resulting in 160 descriptors for the 

MEGNetPreL32 featurizer and 80 descriptors for the MEGNetPreL16 featurizer. The 

models were then evaluated on the matbench_perovskites task. 

● Pre-trained adjacent MEGNet models as featurizer: By training a MEGNet model 

beforehand on the training dataset, we can leverage its flexibility to enhance accuracy 

in MODNet, functioning as an adjacent model. Adjacent MEGNet models are trained 

for each fold of the train-test split and elemental embeddings were transferred from the 

MP-crystals-2018.6.1 (C. Chen et al. 2019) heat of formation task. All adjacent models  

hyperparameters employed were the default values as of MEGNet v.1.3.2, as 

described in Appendix D.3. We utilized the same optimal MLP layer defined for the 

pre-trained models as the output for this featurizer. 

Finally, the features generated with the GNN featurizers are all tested, and their 

results are discussed in comparison to the pristine features and the dimensionally 

reduced ones. The synergic effect of including all these features is evaluated for 

performance on the matbench_perovskites task. Additional tests are also 

conducted in two tasks with comparable dataset sizes, predicting the stability and 

band gap of halides obtained from the OQMD database.  

To identify the key features utilized by the MODNet model in models 

incorporating GNN/latent-space features, we employed SHAP value analysis. 

Subsequently, we trained surrogate models to obtain the most relevant GNN/latent-

space features from the interpretable features. Applying SHAP analysis on these 
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models, we uncovered the correlation between the most relevant GNN/latent-space 

features and more intuitive chemical descriptors, contributing to restore model's 

interpretability (detailed description of method on Appendix D.4). 

5.3 RESULTS AND DISCUSSION 

5.3.1 GNN featurizers for latent-space representations 

Using the default MatMiner featurizer in MODNet, the MAE obtained for the 

matbench_perovskites task on perovskites’ heat of formation was 0.0888 eV. This 

result falls within the error margin of 0.0028 eV from the benchmarked MAE for this 

task with MODNet (refer to Table 14). This value serves as the reference for all 

subsequent implementations to evaluate performance gain on this task. 

The first implementation was the addition of OFM features to the original 

MatMiner features, as presented in Table 15. The inclusion of OFM features led to a 

performance boost compared to using solely the default MatMiner features for 

prediction. Despite nearly doubling the number of features, the inclusion of more 

specific chemical information on the orbital interactions in each structure proved 

beneficial to the model. It is noteworthy that the curse of dimensionality is mitigated 

through MODNet's robust feature selection algorithm and subsequent hyperparameter 

optimization through genetic algorithm to choose an optimal subset of features for the 

given problem. 

An autoencoder is then trained to compress the OFM features from the larger 

matbench_mp_gap dataset to obtain a latent space representation. Different 

compressions are evaluated after hyperparameter tuning, and detailed results are 

provided in Appendix D.3. In Table 14, two of these autoencoders, with compression 

ratios (c.r.) of 20% and 10%, are used on the previous OFM features, replacing them 

with a latent-space representation to train and perform new predictions. The latent-

space representation at a 20% c.r. further enhances the improvement compared to the 

original OFM features. This improvement can be attributed to an indirect transfer 

learning of chemical patterns in the larger chemical space sampled by the 

autoencoder. It may also benefit from a more compact number of features that better 

capture the chemical properties. When the latent space is reduced to 10% of the 

original dimensions, the boost compared to the original MatMiner featurizer can still be 
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observed, but this smaller representation doesn’t capture enough chemical information 

to surpass the addition of the original OFM features.  

Finally, we validate the usage of the autoencoder to reduce the dimensionality 

of the OFM features by comparing the performance of the PCA-reduced features (also 

in the matbench_mp_gap dataset) with dimensions matching the 20% c.r. 

autoencoder, which produced the best results. These latent features are henceforth 

called ℓ-OFM for brevity. We observe a smaller but not significant performance 

reduction when using the PCA-reduced features compared to the encoder, as 

highlighted in the entries on Table 15. 

Table 15 – Mean absolute errors for MODNet models on matbench_perovskites 
task including pristine OFM features and different latent space reductions on top of the 

default MatMiner features. 𝑛 represents the number of features after removing 

constant features across the dataset. Shaded rows highlight the chosen latent-space 

representation using autoencoder and the PCA-reduced representation with same 

dimensions for comparison. In parentheses, percentage MAE deviation from the 

default MatMiner featurizer in MODNet. 

Features 𝒏 MAE (eV) 

Default MatMiner (MM) 1020 0.0888 

MM + original OFM 1020 + 943 
0.0751 

(−15.3%) 

MM + latent OFM 20% c.r. 

(ℓ-OFM) 
1020 + 188 

0.0743  

(−16.2%) 

MM + latent OFM 10% c.r. 1020 + 94 
0.0777  

(−12.4%) 

MM + PCA reduced OFM 
(𝑛 = 188)  

1020 + 188 
0.0748  

(−15.7%) 

 We now proceed to evaluate the impact of using a latent-space representation 

of the MatMiner features compared to their original implementation. In this case, we 

also analyzed results in both matbench_perovskites and matbench_mp_gap to 

solidify the choice of the best encoder, as shown in Table 16.  In the task of perovskite 

heat of formation, a general improvement in results is observed when using the latent-

space features. This improvement is attributed to transfer learning from the larger 

dataset used for encoding. Transitioning to the band gap prediction task, which uses 

the same dataset employed to encode the features, an initial improvement is seen 

when converting to a latent-space of the same size. This improvement is expected due 
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to the encoding being practically lossless and better capturing the chemical 

information in the entire dataset. However, as the compression increases, 

performance degrades, and in both datasets, a sharp decline is evident when going 

from a 60% to a 40% compression ratio. This supports our conjecture that the 

observed improvement in the task with a smaller dataset is attributed to the 

autoencoder functioning as a proxy for transfer learning to the feature-based model, 

akin to the role played by transferring elemental embeddings trained on larger 

datasets in graph-based models (C. Chen et al. 2019). It is plausible that training the 

autoencoder on a larger dataset could capture more robust chemical correlations, 

thereby potentially enhancing the results for band gap prediction as well. 

Comparing the 60% c.r. with PCA reduction at the same size on the highlighted 

cells in Table 16, unlike the case of OFM features, there is a significant difference in 

favor of the encoder. The improved results observed for the encoded features can be 

attributed to the enhanced capacity of the autoencoder to capture non-linearity in its 

representation of the latent space. This is particularly important for the highly 

heterogeneous features in the MatMiner featurizer. This result reinforces our choice of 

the 60% c.r. encoder for MatMiner features, henceforth called ℓ-MM, by providing a 

lower number of features with relatively low degradation and advocating for the use of 

encoders in general instead of PCA-reduced features for latent-space representation.  
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Table 16 – Evaluation of the effects of dimensionality reduction on default MatMiner 

features used on MODNet model on Matbench tasks matbench_perovskites and 

matbench_mp_gap. 𝑛 is the number of features (constant features across the dataset 

removed) for the respective model and N the number of samples comprised in the 

dataset. In parentheses, percentage MAE deviation from the default MatMiner 

featurizer in MODNet for each task. 

Features used 

Task 

matbench 

perovskites 

(N=18,928) 

matbench 

mp_gap 

(N=106,113) 

𝒏 MAE (eV) 𝒏 MAE (eV) 

Default MatMiner  1020 
0.0888 

±0.0028 
1264 

0.2724 

±0.0052 

Latent MatMiner without 
compression (1:1 latent space)  

1264 
0.0767  
(−13.6%) 

1264 
0.2542  
(−6.7%) 

Latent MatMiner 80% c.r. 1011 
0.0788  

(−11.3%) 
1011 

0.2809  

(+3.1%) 

Latent MatMiner 60% c.r.  

(ℓ-MM) 
758 

0.0793 

 (−10.7%) 
758 

0.2911 

(+6.8%) 

Latent MatMiner 40% c.r. 505 
0.0844  
(−4.9%) 

505 
0.3280 

 (+20.4%) 

PCA reduced MatMiner  
(𝑛 = 758) 

758 
0.0816 

 (−8.1%) 
758 

0.2968 

 (+8.9%) 

The latent-space features, while providing a boost for the smaller dataset, still 

require the featurization of the original features to be subsequently encoded. To 

circumvent the expensive featurization process, we train MEGNet models to directly 

derive features from the structures, serving as featurizers. The detailed 

implementation and hyperparameter tuning are presented in Appendix D.3. It was 

observed that with proper hyperparameter tuning, the errors remained relatively low for 

the reconstruction of the original latent space considering the number of targets. The 

mean absolute error (on data normalized to the unit interval) was approximately 0.03 

for the 758 latent-space features using the MatMiner GNN featurizer and about 0.01 

for the 108 latent-space features using the OFM GNN featurizer. 

In Table 17, the results for predicting perovskite heat of formation with MEGNet 

featurizers are presented. We observe a contrasting decline in efficiency when 

obtaining the latent MatMiner features with MEGNet compared to the original latent 

features. The error introduced by the MEGNet model, albeit seemingly small, was 
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large enough to increase the MAE by over 0.025 eV. However, it is important to note 

that this result is still significantly better than benchmarked values from Automatminer 

and random forest, as presented in Table 14. The situation is much more favorable for 

the case of OFM features, in which the latent features obtained from the MEGNet 

model only decrease the performance by 0.0051 eV compared to the pristine latent 

features. Using latent features from both MEGNet models in combination reduces the 

error obtained from the application of MEGNet-derived latent MatMiner features alone, 

as expected, but not enough to boost performance compared to the default MODNet 

implementation.  

These results underscore the importance of controlling errors in the GNN model 

using this approach, as there is a cumulative reconstruction error from the latent-space 

representation and the derivation from the MEGNet model that may lead to a 

substantial loss of chemical information. Training on a larger and more diverse dataset 

with careful curation of features is recommended based on these results, especially in 

heterogeneous featurizers such as the MatMiner featurizer applied here. 

Table 17 – Mean absolute errors for MODNet models on matbench_perovskites 
task comparing the inclusion of latent features originally obtained from the 

autoencoder and through the MEGNet featurizers. 𝑛 represents the number of features 

after removing constant features across the dataset. In parentheses, percentage MAE 

deviation from the default MatMiner featurizer in MODNet. 

Features MAE (eV) 

Default MatMiner (MM) 0.0888 

ℓ-MM 
0.0793 

 (−10.7%) 

MEGNet ℓ-MM 
0.1052 

(+18.5%) 

MM + ℓ-OFM 
0.0743  

(−16.2%) 

MM + MEGNet ℓ-OFM 
0.0794  

(−10.6%) 

MEGNet ℓ-MM +  

MEGNet ℓ-OFM 

0.0973  

(+9.6%) 
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5.3.2 GNN featurizers from pre-trained models 

As previously outlined in the methodology, our investigation focuses now on 

determining the more effective of the two final layers of the MLP in MEGNet pre-

trained models, sourced from the Materials Virtual Lab, for use as features in 

prediction. In Table 18, we present a performance comparison for the 

matbench_perovskites task, incorporating the layers with 32 neurons (referred to as 

MEGNetPreL32) and the layers with 16 neurons (referred to as MEGNetPreL16). 

Additionally, we conducted assessments on randomly selected subsets comprising 

5000 samples and 1000 samples from the initial matbench_perovskites dataset to 

verify the consistency of our findings for smaller datasets. 

Our analysis reveals a consistent enhancement in performance with the inclusion 

of the MEGNetPreL32 featurizer over the MEGNetPreL16 featurizer, irrespective of 

dataset size. This improvement is attributed to a more general latent-space 

representation in the earlier layers of the model, which MODNet can effectively 

leverage. Notably, the percentage reduction in MAE compared to exclusive use of 

MatMiner features increases as the dataset size decreases. This underscores the 

transfer learning essence of this technique, transferring pre-acquired chemical 

knowledge to enhance performance on small datasets. 

Table 18 – Mean absolute errors for MODNet models on matbench_perovskites 
task and subsets comparing the inclusion of features from pre-trained MEGNet models 

distributed by Materials Virtual Lab. 𝑁 represents the size of the dataset used for the 

prediction. In parentheses, percentage MAE deviation from the default MatMiner 

featurizer in MODNet for each task. 

Features 

Task 

matbench 

perovskites 

(N=18,928) 

matbench 

perovskites 

(N=5,000) 

matbench 

perovskites 

(N=1,000) 

MAE (eV) MAE (eV) MAE (eV) 

Default 
MatMiner (MM) 

0.0888 0.1667 0.2802 

MM +  

MEGNetPreL16 

0.0752 

(−15.3%) 

0.1202 

(−27.9%) 

0.1862 

(−33.5%) 

MM +  
MEGNetPreL32 

0.0726 

(−18.2%) 

0.1167 

(−30.0%) 

0.1749 

(−37.6%) 
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We proceed to examine the effects of combining latent-space representations 

from the MatMiner and OFM featurizers with the best-performing MEGNetPreL32 

featurizer, as outlined in Table 19. It is evident that, despite the substantial contribution 

of pre-trained MEGNet models to accuracy, the addition of OFM latent features brings 

further improvement, highlighting a synergistic effect when these featurizers are 

integrated. The combined latent representations result in a total percent reduction of 

26.5% in MAE over the default MatMiner featurizer in MODNet.  

Table 19 – Mean absolute errors for MODNet models on matbench_perovskites 
task comparing the inclusion of OFM latent features and both OFM latent features and 

MEGNetPreL32 features. In parentheses, percentage MAE deviation from the default 

MatMiner featurizer in MODNet. 

Features MAE (eV) 

Default MatMiner (MM) 0.0888 

MM + ℓ-OFM 
0.0743  

(−16.2%) 

MM + MEGNetPreL32 
0.0726 

(−18.2%) 

MM + ℓ-OFM + MEGNetPreL32 
0.0629 

(−29.1%) 
  

ℓ-MM 
0.0793 

 (−10.7%) 

ℓ-MM + ℓ-OFM 
0.0728 

(−18.0%) 

ℓ-MM + MEGNetPreL32 
0.0729 

(−18.0%) 

ℓ-MM + ℓ-OFM + MEGNetPreL32 
0.0653 

(−26.5%) 

 

The latent-space and GNN derived features incorporated in these models, as 

opposed to the original features derived from chemical principles, lack direct 

interpretability. Figure 37 showcases some of the most relevant features in the 

MODNet model with the set of features "MM + ℓ-OFM + MEGNetPreL32" determined 

through SHAP plot, and their relationship to interpretable features with highest SHAP 

value, determined through surrogate models (complete SHAP summary plots and 

detailed obtention presented in Appendix D.4.1). SHAP analysis proved to be a more 

reliable feature importance assessment than the built-in feature selection algorithm in 

MODNet, as discussed in Appendix D.4.1. The MEGNet pretrained features of the 
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formation energy model were the most relevant for the model prediction. When 

decomposed into chemical descriptors, we can observe that more electronegative 

elements (MagpieData_minimum_Electronegativity, in Figure 37) tend to increase the 

heat of formation, just as increased difference in the number of electrons in the 

valence shell (Magpie_avg_dev_NUnfilled) or elemental ground-state band gap 

(MagpieData_maximum_GSbandgap). The heat of formation of perovskites also 

expectantly increases when the interaction of orbitals s² and p4 is present (OFM: s^2-

p^4), characteristic of many oxide perovskites, conversely to when two pnictogen 

elements are present (OFM: p^3-p^3), which creates weaker chemical bonds. The 

observation on combining pnictogens was observed before for perovskites in the high-

throughput screening performed by Schmidt et al. (2021), in which, no system alloying 

two pnictogens presented decomposition energy below 100 meV/atom. The same 

effect is seen when Voronoi distances increase (VoronoiFingerprint, 

mean_Voro_dist_minimum), which corresponds to larger A-site cations, which usually 

indicate higher stability in perovskites (Sa et al. 2022). Among the MatMiner features 

ranking higher in the model output, we observe that presence of d orbitals tends to 

reduce the heat of formation, just as the presence of transition metals in general. A 

higher melting temperature, characteristic of higher binding energy, also correlates 

with a higher heat of formation. Analyzing the decomposition of the ℓ-OFM features, a 

couple observations can be drawn, such as mixed anion perovskites inducing weaker 

bonds (OFM: p^4-p^3) just as is the case of halide perovskites in general (OFM: p^5-

s^2).   
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Figure 37 – SHAP analysis of top features in MODNet model for perovskite formation 

energy with "MM + ℓ-OFM + MEGNetPreL32" features. Encoded MEGNetPreL32 and 

ℓ-OFM features are decomposed into original MatMiner and OFM features, (+) 

indicates proportional variation and (-) indicates inversely proportional variation to the 

encoded features. 

5.3.3 Adjacent GNN featurizer and final results 

The latest addition to the proposed OMEGA featurizer involves incorporating an 

adjacent MEGNet model specifically trained for the target property using the same 

dataset. Although this introduces an additional computational burden due to the need 

to train an extra model, it offers the advantage of harnessing the flexibility of a GNN to 

enhance accuracy. Moreover, it still provides a means to partially regain interpretability 

on these features, as the model utilizes interpretable features that can be linked to 

those obtained from the GNN featurizer. The adjacent model underwent training with 

fixed default hyperparameters, utilizing elemental embedding from the formation 

energy task as recommended in the original MEGNet publication. This model can 

hence be used as a featurizer by extracting values from the dense layer with 32 

neurons in the final MLP. This choice was based on the optimal performance observed 

for pre-trained models extracting this specific layer. 
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In Table 20, we integrate the adjacent model with other GNN featurizers for 

perovskite heat of formation. We evaluate both scenarios: retaining the MatMiner 

features or creating their latent representation using the GNN featurizer. The results 

highlight that GNN featurizers have an incremental effect on the accuracy of the 

model. The adjacent model decreases MAE by 0.0188 eV compared to adding only 

MEGNet ℓ-OFM and MEGNetPreL32 to the original MatMiner features. Additionally, it 

reduces MAE by 0.0227 eV compared to adding the same components to the latent-

space MatMiner features generated by MEGNet, reaching almost same level of 

accuracy as when MatMiner featurization is performed. This result underscores that 

the adjacent model dominates the predictions. 

When we analyze the most important features to the MODNet OMEGA model in 

Figure 38 through SHAP value analysis (full SHAP plots presented in Appendix D.4.2), 

we can observe similar contributions to the "MM + ℓ-OFM + MEGNetPreL32" model  

appear for the MatMiner, ℓ-OFM and PreMEGNetL32 features. However, the model is 

dominated by the adjacent GNN model features, from which the top three features are 

also presented in the corresponding decomposition in MatMiner descriptors in Figure 

38. Compared to the decompositions of the pre-trained MEGNet models in Figure 37, 

the adjacent model correlates to more subtle patterns, such as geometrical fingerprints 

and coulomb matrix eigenvalues. This can be attributed to the flexibility of the GNN 

model, which exploits highly non-linear relationships to enhance accuracy.  

Nonetheless, our results reveal that using the proposed design, the intricate 

patterns leveraged for the enhanced accuracy of the GNN models can be explored 

through the combined training with easily interpretable chemical descriptors and SHAP 

value analysis. This provides greater interpretability with an accuracy that approaches 

benchmarked GNN results for the task (see Table 14). Moreover, by applying GNN 

models to produce latent-space features for MatMiner and OFM chemical descriptors, 

the computational cost of the featurization process is reduced, making it more viable 

for high-throughput materials screening. 
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Table 20 – Mean absolute errors for MODNet models on matbench_perovskites 
task comparing the inclusion of all GNN featurizers over original MatMiner features 

and over MEGNet model generated latent-space MatMiner features. In parentheses, 

percentage MAE deviation from the default MatMiner featurizer in MODNet. 

Features MAE (eV) 

Default MatMiner (MM) 0.0888 

MM + MEGNet ℓ-OFM 
0.0794 
(−10.6%) 

MM + MEGNet ℓ-OFM + MEGNetPreL32 
0.0683 

(−23.1%) 

 OMEGA  

( MM + MEGNet ℓ-OFM + 
MEGNetPreL32 + Adjacent ) 

0.0495 

(−44.2%) 

  

MEGNet ℓ-MM 
0.1052 
(+18.5%) 

MEGNet ℓ-MM + MEGNet ℓ-OFM 
0.0973 
(+9.6%) 

MEGNet ℓ-MM + MEGNet ℓ-OFM + 
MEGNetPreL32 

0.0726 

(−18.2%) 

OMEGAfast  

(MEGNet ℓ-MM + MEGNet ℓ-OFM + 

MEGNetPreL32 + Adjacent) 

0.0499 

(−43.8%) 

 

 



 
 

155 
 

 

Figure 38 – SHAP analysis of selected top features in MODNet model for perovskite 

heat of formation with OMEGA features. Adjacent GNN model features are 

decomposed into original MatMiner and MEGNet ℓ-OFM features, where a few are 

shown, (+) indicates proportional variation and (-) indicates inversely proportional 

variation to the encoded features. 

To further explore the proposed method, two additional tasks were evaluated: 

predicting the convex hull distance and band gaps of halogen-containing materials 

from the OQMD dataset. The OQMD dataset was filtered by the presence of halogens, 

namely F, Cl, Br, and I. After testing, we observed that the models would generalize 

better after removing structures whose stability (determined from the convex hull) was 

above the threshold of 2.9 eV/atom, corresponding to 0.1% of the structures, and 

keeping only those structures with distinct compositions. This resulted in a dataset with 

31,271 samples to train for stability. This dataset was further filtered for structures with 

band gaps above 0.5 eV, resulting in 8,518 structures for training in band gap 

prediction. 
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These tasks are more challenging than our proof-of-concept task on 

perovskites. Since the GNN featurizer for OFM and the pre-trained models from the 

Materials Virtual Lab were all trained on the Materials Project dataset, which has 

limited information on halides, we anticipate lower generalization for this dataset (Shen 

et al. 2022). To estimate the convex hull distance, in particular, is notoriously difficult 

and presents a current challenge on materials screening (Bartel 2022). The results are 

presented on Table 21, where we observe minimal influence on stability predictions 

when including the MEGNet ℓ-OFM featurizer. However, significant improvement is 

seen when including MEGNetPreL32, further enhanced by the addition of the adjacent 

model. For the band gap task, MEGNet ℓ-OFM still fails to provide significant 

improvement to the model, but MEGNetPreL32 and adjacent model GNN featurizers 

compensate with a notable enhancement. 

Table 21 – Mean absolute errors for MODNet models on tasks of prediction of convex 

hull distance and band gap on the subset of halogen-containing materials from OQMD, 

comparing the inclusion of all GNN featurizers over original MatMiner features. In 

parentheses, percentage MAE deviation from the default MatMiner featurizer in 

MODNet on the given task. 

Features 

Task 

OQMD halogen Ehull 

(N=31,271) 

OQMD halogen Eg 

(N=8,518) 

MAE (eV) MAE (eV) 

Default MatMiner (MM) 0.0556 0.4557 

MM + MEGNet ℓ-OFM 
0.0561 
(+0.8%) 

0.4501 
(−1.2%) 

MM + MEGNet ℓ-OFM + 

MEGNetPreL32 

0.0538 

(−3.2%) 

0.3835 

(−15.8%) 

OMEGA 
0.0519 
(−6.7%) 

0.3784 
(−17.0%) 
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Figure 39 – SHAP analysis of selected top features in MODNet model for OQMD 

halogen task for stability (a) and band gap (b) with OMEGA features. Adjacent model 

and MEGNet ℓ-OFM features are decomposed into chemical descriptors, which a few 

with highest impact on the group of features are shown. 

In Figure 39, the OMEGA features with the highest importance on the 

corresponding MODNet model output are presented. For the stability task, the 

selected features are presented in Figure 39(a). A stronger influence of the original 

MatMiner features than any of the additional OMEGA features is observed. This is 

consistent with the marginal improvement in performance, showing only 6.7% 

reduction in MAE when all additional OMEGA features are included, in contrast to the 

results of perovskites’ heat of formation model. This reflects the difficulty of predicting 

stability from materials structures even with state-of-the-art GNN models (Riebesell 

2024). The importance of the features determined by SHAP is also quite 

homogeneous throughout the plot with no clear dominant features. This is more 

evident when looking at the extended SHAP plot in Figure D9. This observation 

underscores the importance of crafting new materials descriptors that better correlate 

with this property. From this analysis, we also find significant importance attached to 

geometric descriptors, such as geometrical fingerprints, symmetry, and bond lengths, 

alongside traditional chemical descriptors like electronegativity difference, valence 

orbital filling, and estimated melting temperature. These features are prominent in both 

the top MatMiner features and adjacent model decompositions. MatMiner’s band 

structure featurizer, which composes of the electronegativity of the elements, also 

figures in the top features, along with a couple of ℓ-OFM features whose most relevant 
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features are linked to the chalcogenides (linked to the p4 valence shell contributions). 

This is supported by the prevalence of chalcogenides in inorganic materials. 

In the case of the band gap task for the OQMD halogen, the OMEGA features 

take precedence as seen in Figure 39(b). Not surprisingly, features from the pretrained 

MEGNet model for band gap regression are positioned at the top. These features can 

be correlated to chemical descriptors such as electronegativity difference, 

HOMO/LUMO energies of the atomic orbitals, filling of the valence band, and transition 

metal presence/d-orbital valence filling. Decomposing the adjacent model features 

reveals similar chemical descriptors contributing (see extended SHAP plot on Figure 

D14), along with additional geometrical descriptors, aiding in fine-tuning the model and 

explaining the increase in accuracy as shown in Table 21. 

 

5.4 CONCLUSION 

Our results validate the approach of integrating pre-trained GNN models as 

featurizers in feature-based models, enhancing their competitiveness for larger 

datasets. The final implementation in this investigation, named OMEGA featurizer, 

employed MEGNet models to produce features based on pretrained models and to 

swiftly derive latent-space OFM features. We showcase the efficacy of the OMEGA 

featurizer on the task of perovskite heat of formation prediction. Compared to the 

default featurizer in MODNet, the OMEGA featurizer reduces the MAE by 44.2%, 

achieving an accuracy close to benchmarked GNN models for this task. Furthermore, 

the generalizability of the OMEGA featurizer on additional tasks is demonstrated, 

including predicting the convex hull distance and band gaps of halogen-containing 

materials from the OQMD dataset. The results highlight the effectiveness of the 

OMEGA featurizer, particularly for the band gap prediction task. 

Additionally, this novel approach bridges the interpretability gap between easily 

interpretable feature-based models and highly accurate but less interpretable GNNs. 

By analyzing feature importance with SHAP plots and employing surrogate models, we 

can extract relevant chemical information from GNN features used for prediction. This 

paves the way for exploring these models to screen vast chemical spaces, facilitating 

chemically guided active learning due to their inherent interpretability. In conclusion, 

the incorporation of GNN features into feature-based models offers a versatile and 
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powerful method to boost predictions. It enables leveraging pre-trained GNN 

knowledge, reduces featurization costs, and enhances model accuracy while partially 

retaining interpretability through dimensionality reduction and decomposition 

techniques like SHAP analysis. This paves the way for more accurate, efficient, and 

interpretable materials discovery through feature-based modeling. 
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CHAPTER 6 — Machine Learning-Assisted Exploration of 111-Type 

2D Perovskite Structures for Photovoltaic and Optoelectronic 

Applications: A High-Throughput Screening Approach 

 

6.1 RESEARCH PROBLEM  

Perovskites with ordered vacancies along the <111> direction, with chemical 

formula A3B2X9 (where A is a monovalent cation, B is a trivalent cation such as Bi3+ or 

Sb3+, and X is a halide anion), form the most representative subgroup of all-inorganic 

2D metal halide perovskites (MHPs). These structures have drawn tremendous 

interest due to low toxicity, long-term stability, and remarkable optoelectronic 

properties (Z. Jin et al. 2020), holding promise to substitute the highly toxic and 

moisture-sensitive lead halide perovskites and also circumvent the problem of limited 

carrier generation and transport of 2D MHPs with organic spacers (Acharyya, Kundu, 

and Biswas 2020; Blancon et al. 2020). Most of these layered materials will present in 

the trigonal (𝑃3̅𝑚1) crystal system, with a few crystallizing in the monoclinic phase 

(e.g, Rb3Bi2I9, space group 𝑃21/𝑛) (Tomaszewski 1994; S. Y. Kim et al. 2019). 

Most investigations in the literature focus on varying the elements within the A-, 

B-, or X-sites in perovskites to seek compounds that offer improved optoelectronic 

properties and enhanced stability under environmental conditions. There has also 

been interest in halogen alloying and B-site doping studies for these (111)-type 

perovskites (K.-H. Hong et al. 2017; Pradhan, Jena, and Samal 2022; Gouvêa et al. 

2024; Exner et al. 2024). However, it is recurrently observed in perovskite literature 

that combining cation and anion doping is a common strategy to enhance their 

properties. For instance, top-tier lead halide perovskites are formed by concurrent 

cation and halogen doping, such as FA0.992MA0.008PbI2.976Br0.024, which reaches 

certified PCE of 25,2% (Mica et al. 2020; Yoo et al. 2021). Therefore, conducting 

comprehensive studies that screen a wide range of elements and enable mixed-cation 

mixed-halide (111)-type perovskites is imperative for better understanding the potential 

of these materials and hopefully enhancing their performance for practical 

applications. 

Recent advancements in computational materials databases and machine 

learning methods have made it feasible to screen large compositional spaces for 
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stable structures with desired properties (Schleder et al. 2019; J. Yang and Mannodi-

Kanakkithodi 2022). However, most of these investigations still focus on permutations 

of elements for a fixed set of stoichiometries and space groups. They lack flexibility to 

infer stability for systems under multi-site doping. A significant challenge in predicting 

these complex configurations lies in the necessity for relaxed structures to accurately 

predict properties in machine learning models, typically trained on DFT-relaxed 

structures. A potential solution to this challenge is to develop machine learning models 

that are invariant to geometrical changes under relaxation (Schmidt et al. 2021; B. 

Zhang et al. 2022) or to fine-tune the original models for improved predictions on 

unrelaxed structures (Choubisa et al. 2023). Thankfully, the development of machine-

learning interatomic potentials (MLIP) using many-body graph convolution networks, 

such as M3GNet (C. Chen and Ong 2022) and CHGNet (B. Deng et al. 2023), now 

enables the determination of energetics and derivation of equilibrium geometry for a 

given structure with an arbitrary unit cell, facilitating the acquisition of final geometries 

for individual atom substitutions. 

In this study, we introduce a high-throughput screening approach that combines 

a bond length invariant ML model with MLIPs. This tandem approach, facilitated by an 

active learning loop, identifies a subset of candidate (111)-type perovskite structures 

meeting stability and band gap criteria from a pool of over 100 million structures with 

mixed-cation and mixed-anion compositions. Our work aligns with recent 

advancements addressing multi-site doping (Choubisa et al. 2020; 2023), and active 

learning methods for materials discovery such as Google's Graph Networks for 

Materials Exploration (GNoME), which incorporates tandem frameworks and ab-initio 

random structure searching techniques (Merchant et al. 2023). A notable distinction of 

our approach is the utilization of the feature-based Materials Optimal Descriptor 

Network (MODNet) for predictions (De Breuck, Hautier, and Rignanese 2021). As a 

feature-based model MODNet offers enhanced interpretability, providing insights into 

chemical patterns for materials design and further exploration and by simply selecting 

the appropriate subset of features, MODNet can work with full structure information or 

only their prototype geometry can be taken into consideration. The framework yields a 

group of candidate structures, which, upon preliminary verification with ab initio 

calculations, reveals good qualitative agreement to identify thermodynamically stable 
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structures by convex hull distance calculation and quite good predictions for the band 

gap value. 

 

6.2 METHODOLOGY 

We began with a 1 × 1 × 2 supercell structure of A3B2X9 (𝑃3̅𝑚1) as a prototype 

for the (111)-type perovskite. For site A, we considered Rb, Cs, and K; for site B, the 

following 28 elements: Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Se, Sr, Y, 

Zr, Nb, Mo, Ag, In, Sn, Sb, Te, Ba, Pb, Bi; and finally, for site X, halogens and 

chalcogens: Cl, Br, I, O, S. The choice of these elements was based on the literature 

on perovskite materials (details on Table E). We restricted the number of substitutions 

at each site according to the stoichiometry A6-2xA’2xB4-yB’yX18-2zX’2z where x, y and z 

are valid integers and at least two-thirds of X sites are occupied by halogens. The 

base composition allows for multi-site doping with up to two different elements on each 

elemental site (all the sites occupied by the same element in pristine A3B2X9 structure). 

These structures were then generated for the supercell with up to 6 permutations of 

elements for each elemental site, resulting in up to 216 elemental rearrangements for 

each composition. The unit cell dimension of each of these structures is scaled based 

on the ionic radius of the elements (details on Appendix E.1). This leads to a total of 

100,627,800 arrangements with 470,610 distinct compositions. 

The method proposed follows 5 steps of ML-guided screening, as illustrated in 

Figure 40, the screening applies the CHGNet model as MLIP and custom ensemble 

MODNet models for stability and band gap, comprehensive details on their 

implementation is provided in Supporting Information (Appendix E.4).   

1. One-shot CHGNet screening: a one-shot energy evaluation with CHGNet 

reduces the initial pool of permutated structures to a single optimal structure 

for each composition.  

2. Unrelaxed structure screening: screening is performed with an ensemble 

MODNet model trained on features invariant to precise structural information 

obtained on relaxation, through the implementation of a special featurizer 

(InvariantMatMiner2023). This model is trained for stability on OQMD dataset 

with addition of in-group data on alloyed (111)-perovskites (Gouvêa et al. 

2024; Exner et al. 2024), detailed implementation of the featurizer and effects 
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of in-group data addition are discussed on Appendix E.4. After excluding 

protostructures with stability thresholds > 35 meV/atom, an initial dataset with 

15,000 structures for active learning is constructed, taking 70% (10,500 

structures) exhibiting lowest upper stability bound and 30% (4,500 structures) 

that optimize an acquisition function considering estimated uncertainty and 

entropy.  

3. Active learning cycle: the initial 15,000 structures previously selected 

undergo constrained relaxation with CHGNet. The final energy for each 

structure is used to evaluate their decomposition energy (𝐸𝑠𝑡𝑎𝑏
𝐶𝐻𝐺𝑁𝑒𝑡) through 

OQMD’s formation energy convex hull. An ensemble MODNet model is then 

trained to predict 𝐸𝑠𝑡𝑎𝑏
𝐶𝐻𝐺𝑁𝑒𝑡 in all structures not considered in the initial/updated 

dataset for active learning. The same thresholds are applied to select a new 

subset of 2,500 structures to include in the active learning cycle.  The active 

learning cycle ends when only structures with estimated 𝐸𝑠𝑡𝑎𝑏
𝐶𝐻𝐺𝑁𝑒𝑡 > 45 

meV/atom remain on the pool. 

4. Advanced model ML screening: screened structures are featurized with a 

more advanced MODNet featurizer (OMEGA+ROSA, details in Appendix E.3) 

and ensemble MODNet models are now trained on halogen-containing 

OQMD dataset for stability, band gap classification and band gap prediction. 

The threshold applied on each of these models is shown in Figure 40, 

resulting in a final set of structures to be evaluated by DFT calculations.   

5. ML phonon frequency screening : the advent of the more precise MLIP 

allows to estimate the dynamic stability through vibrational properties even for 

large structures in a matter of minutes. This tool was applied with CHGNet’s 

MLIP and the detection of negative frequencies in the phonon density of 

states (PhDOS) below a threshold of -0.35 THz was applied to exclude 

possibly dynamically unstable structures.   

Since a great number of structures was still present after applying the filters, we 

reduce structures with same elements in B-site to their optimal composition in terms of 

predicted stability with the OMEGA+ROSA MODNet model. Finally, high-throughput 

DFT calculations were performed with Atomate2 (Ganose et al. 2024) employing 

VASP 5.4.4 and PBE PAW pseudopotentials (Kresse and Joubert 1999; Kresse and 
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Furthmüller 1996) on a subset of these structures from which total energies were used 

to determine stability relative to OQMD’s convex hull. 

 

 

Figure 40 – Schematic diagram of the high-throughput screening method assisted by 
machine learning, divided into five0 steps, namely: (1) reduction to optimal 
configurations for each composition, (2) simple ML screening to generate initial set for 
active learning, (3) active learning cycle for stability by CHGNet, (4) full featurization of 
final active learning set and prediction of finely tuned models to obtain final structures, 
(5) calculation of ML phonon density of states to screen structures based on most 
negative phonon frequency.  
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6.3 RESULTS AND DISCUSSION 

In the CHGNet one-shot screening, for each unique composition, an optimal 

structure with the lowest energy is selected among the set of generated structures. In 

Figure 41, some of these structures are presented for a few selected compositions, 

exhibiting the selected structure along with some higher energy counterparts. From the 

analysis, it is evident that CHGNet appropriately captures the main factors contributing 

to minimizing the total energy. Beginning with the mixed-anion Cs3Sb2(BrCl2)3 in Figure 

41(a), it can be observed that structures with bromine more homogeneously 

distributed exhibit lower energies. This observation is corroborated by DFT 

calculations involving the same alloy (Gouvêa et al., 2024). CHGNet also successfully 

captures the tendency of halogen alloying on these perovskites to saturate terminal 

sites first, as observed experimentally (Pradhan, Jena, and Samal, 2022). This is 

evident by the highest energy among candidate structures being observed when 

bromine is concentrated on the bridging sites. 

In the example of Cs3GaBiBr9 as a B-site mixed-cation structure in Figure 41(b), 

CHGNet deems the structure presenting intercalating layers of the distinct B atoms in 

the c-axis direction more stable. This result can be intuitively understood by observing 

that in this case, the strain caused by the different cation sizes is distributed along the 

2D layer structure. A more special case of mixed-anion mixed-cation is seen in Figure 

41(c) for Cs3Sc1.5Nb0.5SBr8. Since Nb tends to present an oxidation state of +4 or +5, it 

is expected that the chalcogen in the structure is attracted towards it. CHGNet follows 

the expected chemical behavior, attributing the configuration in which S atoms are 

closer to the Nb site with consistently lower energy. For the last case presented in 

Figure 41(d), for the mixed A-cation composition Cs2RbIn2Br9, CHGNet seems to 

capture that the smaller cation Rb should be placed in the terminal sites facing the 

gaps in the layered structure instead of the sites right within the layer. This evaluation 

can also be intuitively understood in terms of strain minimization, since a smaller 

cation in the center of the layer would induce an increased tilt in the perovskite 

octahedra. 
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Figure 41 – Selection through the CHGNet one-shot screening of mixed-cation 

and/or mixed-anion structures presenting optimal and sub-optimal arrangements for 

their given composition, namely: (a) Cs3Sb2(BrCl2)3, (b) Cs3GaBiBr9, (c) 

Cs3Sc1.5Nb0.5SBr8 and (d) Cs2RbIn2Br9. Spots associated with an increase in total 

energy are highlighted in the figure.  

For the second phase of the screening, we trained the protostructure model to 

select starting structures for the AL cycle. The metrics of the protostructure model are 

presented on Table 22 for validation and test metrics (details on training and 

evaluation in Appendix E.2). The metrics are within expectations for a feature-based 
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model which does not take into consideration the full structural information, GNN 

models with graph-attention for unrelaxed structures in much larger datasets report 

MAE of 30 meV/atom (Schmidt et al. 2021) and fine-tuning of best performing GNNs 

for unrelaxed structures report MAE of 34 meV/atom (Choubisa et al. 2023). An 

important criterion for assessing the accuracy of the model for our application is to 

verify the estimated stability of experimentally reported (111)-type perovskites, as 

shown in our results in Table E3. By utilizing the upper limit on the decomposition 

energy (prediction + model uncertainty), all experimentally reported structures were 

found to fall within a threshold of 15 meV/atom. To account for the possible biases of 

the model, an additional 20 meV/atom margin was included, setting our threshold at 35 

meV/atom to exclude highly unlikely structures from our initial active learning training. 

Table 22 – Evaluation metrics for the protostructure-based and the structure-based 

models to estimate stability.  

Model Name 

( Featurizer name )  

MAE 

(meV/atom) 
R² 

Validation Test Validation Test 

Protostructure-based stability estimator 

(InvariantMatminer2023) 
34.5 60.6 0.933 0.808 

Structure-based stability estimator 

(OMEGA + ROSA) 
28.1 49.0 0.962 0.877 

Structure-based band gap estimator 

(OMEGA + ROSA) 
0.19 0.37 0.981 0.905 

 AUCROC   

 Validation Test   

Structure-based band gap classifier 

(OMEGA + ROSA) 
0.866 0.768 

  

The active learning cycle begins by relaxing the 15,000 selected structures 

screened from the previous step through CHGNet. The active learning model appears 

to reach a plateau in accuracy with just 15,000 structures. Detailed information on the 

metrics with an increasing dataset is provided in Appendix E.4. The active learning 

cycle was halted when only structures with 𝐸𝑠𝑡𝑎𝑏
𝐶𝐻𝐺𝑁𝑒𝑡 > 45 meV/atom were being added 

to the next cycle, resulting in 6 cycles of AL. This threshold was determined based on 

previous criteria involving the stability of experimental structures and an additional 
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margin to account for a tendency of our estimated decomposition energy from 

CHGNet relaxed structures to shift towards higher values. This shift can be verified in 

Table 23. Furthermore, we observed a significant number of structures with large 

negative decomposition energy through CHGNet energies. This reflects the low 

coverage of current materials databases for multinary materials and has only recently 

been addressed by large-scale simulation efforts, including quaternary and quintenary 

materials (Merchant et al. 2023). The MODNet OMEGA+ROSA stability estimator 

provides a more reasonable estimation for these structures since it is based on 

general chemical descriptors that are not directly influenced by an incomplete convex 

hull, as demonstrated in Figure 42.  

Table 23 – Estimated decomposition energy (Estab), probability of being semiconductor 

(psemi) and band gap (Eg) from structure-based MODNet models along with CHGNet 

estimated stability (𝐸𝑠𝑡𝑎𝑏
𝐶𝐻𝐺𝑁𝑒𝑡) and most negative phonon frequency (ωmin) for selected 

(111)-type perovskites. Theoretical band gap (DFT Eg) is also presented for 

experimentally reported structures. 

Composition of 

(111)-type structures 

Predictions from structure-based 

MODNet models 𝐸𝑠𝑡𝑎𝑏
𝐶𝐻𝐺𝑁𝑒𝑡 

(meV/atom) 

 

ωmin 

(Thz) 

DFT Eg 

(eV) Estab 

(meV/atom) 
𝑝𝑠𝑒𝑚𝑖 Eg (eV) 

Experimentally reported      

Cs3Sb2I9 
(ICSD: #39822) 

-5.5 0.80 1.73 9.4 -0.04 1.72 

Cs3Sb2Br9 

(ICSD: #39824) 
-17.5 0.88 2.01 5.8 -0.25 1.98 

Cs3Sb2Cl9 

(ICSD: #22075) 
-8.6 0.84 2.54 9.7 -0.16 2.47 

Cs3Sb2BrCl8 

(ref: §1) 
-4.5 0.80 2.34 9.4 -0.27 2.38 

Cs3Sb2Br2Cl7 

(ref: §1) 
1.6 0.92 2.34 8.8 -0.26 2.34 

Cs3Sb2(BrCl2)3 

(ref: §1) 
0.0 0.96 2.32 9.1 -0.30 2.29 

Cs3Fe2Cl9 
(ICSD: #22074) 

13.6 0.60 0.92 11.1 -0.15 0.53 

Rb3Sb2Br9 
(ICSD: #39823) 

-24.3 0.84 2.04 3.6 -0.22 2.07 

Cs3Bi2Br9 
(ICSD: #1142) 

-31.5 0.76 2.58 12.8 -0.28 2.60 

     (continues) 
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Table 23 – (continued) 

Composition of 
(111)-type structures 

Predictions from structure-based 

MODNet models 
𝐸𝑠𝑡𝑎𝑏
𝐶𝐻𝐺𝑁𝑒𝑡 

(meV/atom) 

 

ωmin 

(Thz) 

 

Estab 
(meV/atom) 

𝑝𝑠𝑒𝑚𝑖 Eg (eV) 

Oxygen containing      

CsRb2CaNbI8O 13.2 0.92 1.69 21.7 -0.46  

Cs3TiMnBr8O 11.0 0.72 1.36 22.7 -0.83  

Cs3CaNbI8O 12.1 0.88 1.82 0.1 -0.37  

Cs2KY1.5Se0.5Br8O       7.8 0.88 2.56 26.0 -0.58  

Cs3Y1.5Se0.5Br8O       8.2 0.88 2.79 3.0 -0.35  

Cs2RbY1.5Se0.5Br8O       8.6 0.92 2.66 15.5 -0.45  

Sulphur containing (12 most stable and 1 containing two S per formula)   

Cs3Sc1.5Nb0.5SBr8 -15.5 0.88 2.44 14.6 -0.35  

CsRb2Sc1.5Nb0.5SBr8 -5.6 0.80 2.38 34.1 -0.22  

Rb3Sc1.5Nb0.5SBr8 -3.1 0.88 2.43 32.3 -0.08  

Cs3CaVSBr8 -1.0 0.76 1.65 16.5 -0.16  

Cs2RbCaVSBr8      -0.5 0.76 1.58 24.1 -0.31  

Cs3CrInSBr8 0.0 0.88 1.27 25.1 -0.10  

CsRb2CaVSBr8 1.7 0.72 1.50 26.4 -0.36  

Cs3Y1.5V0.5SBr8       2.6 0.68 2.01 26.0 -0.26  

Cs3Sc1.5VSBr8 3.9 0.72 1.87 2.5 -0.17  

Cs3YTiSBr8 4.5 0.76 1.61 23.3 -0.41  

Cs3YFeSBr8 4.8 0.84 1.20 19.4 -0.27  

CsRb2TiSbSBr8       4.9 0.76 1.48 29.2 -0.27  

Cs3Sc1.5MnS2Br7 7.7 0.8 1.75 20.9 -0.20  

(ref: §1) - (Pradhan, Jena, and Samal 2022) 
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Figure 42 – Histograms of estimated decomposition energies (Estab) for machine-

learning relaxed structures in the active learning cycle. Comparison of Estab calculated 

from CHGNet total energy and predicted with the structure-based MODNet model. 

Finally, the resulting structures are evaluated using models trained with the 

advanced featurizer, which considers full structural information. The estimated stability 

of experimentally reported structures using these models is also presented in Table 

23. In this case, significant improvements in estimates compared to protostructure-

based models (Table E3) are observed, with values closer to the convex hull (Estab = 0 

meV/atom), particularly for halogen-alloyed structures. The evaluation metrics of these 

models are presented in Table 22, where a significant improvement is observed for the 

model employing the OMEGA+ROSA featurizer, although it is trained only on the 

halogen-containing dataset, compared to the protostructure-based model, trained on a 

much larger dataset (details in Appendix E.2). Training the models using the 

OMEGA+ROSA featurizer on a larger dataset should improve the accuracy of the 

model, as it appears to lose accuracy due to overfitting to the training data, thereby 

degrading accuracy in the test set. Efforts in this direction are deferred to future work, 

as the model has proven useful for the proposed application despite this limitation.  

Since MODNet models are feature-based, the importance and effects of each 

feature on the model output is straightforward via SHAP analysis. Figure 43 

showcases the SHAP analysis for stability and band gap estimators. The 
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OMEGA+ROSA featurizer contains GNN features and ab-initio based features (details 

in Appendix E.3) which may not be directly interpretable. These features are then 

correlated with interpretable chemical or geometrical descriptors included in the model 

training, via SHAP plots from surrogate models. Appendix E.5 provides a 

comprehensive version of each model's SHAP plots (Figure E3 and E6), along with the 

decomposition into interpretable features for the most important groups (Figure E4, 

E5, E7 and E8).  

For the stability model, in Figure 43(a), no single dominant feature is observed 

with many high-ranking features presenting similar impact on the model output. The 

model heavily relies on GNN features for capturing complex patterns, as anticipated 

due to the inherent difficulty in predicting material stability. SHAP analysis reveals a 

correlation of the exchange-correlation contribution in total energy 

(ROSA|e_xc_per_atom) and Estab. Additionally, ROSA's estimated kinetic and entropy 

energy contributions (ROSA|e_kinetic_per_atom and ROSA|e_entropy_per_atom) are 

relevant to the model. Expected chemical descriptors related to estimated melting 

temperature (Magpie_data_avg_dev_MeltingT and Magpie_data_mean_MeltingT) 

also rank highly. GNN adjacent model features collectively contribute significantly, 

correlating with chemical descriptors such as electronegativity, presence of transition 

metals, and various geometrical descriptors. In the SHAP analysis of the band gap 

estimator, shown in Figure 43(b), the PBE band gap estimated by the ROSA featurizer 

(ROSA|Band_Gap_PBE) stands out in predictions. This feature correlates with explicit 

descriptors such as electronic entropy contribution (ROSA|e_entropy_per_atom), 

presence of d valence electrons (frac_d_valence_electrons) and transition metals 

(transition_metal_fraction), which help distinguish metallic from semiconductor 

materials. ROSA's eigenvalues above and below the Fermi level (Eigenvalue+1 and 

Eigenvalue-1), directly linked to the PBE band gap, also rank among the top features, 

offering additional insight through their decompositions. Furthermore, pre-trained GNN 

features for band gap prediction in the OMEGA featurizer significantly impact output, 

correlating with valence shell information. Meanwhile, adjacent GNN model features 

enhance flexibility in capturing the influence of multiple geometrical descriptors on 

predictions. 
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Figure 43 – SHAP analysis of selected top features in structure-based MODNet 

models for (a) stability  and (b) band gap. Groups of features based on GNN models 

and ROSA features such as PBE band gap and eigenvalues are decomposed into 

interpretable chemical/geometrical descriptors, which a few with highest impact on the 

group of features are shown. 
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The ML screening proceeds by applying the structure-based models to the final 

pool of candidate materials, selecting those with predicted Estab below 15 meV/atom, 

classified as semiconductors  (𝑝𝑠𝑒𝑚𝑖  > 0.5), and with a predicted band gap less than 3.5 

eV. These thresholds were determined based on the results of the experimentally 

reported (111)-type perovskite structures in Table 23. A total of 4432 structures are 

screened in this process, and an overview of their distribution and estimated properties 

is presented in Figure 44. Figure 44(a) illustrates the frequency of each B-site cation in 

the screened structures. It indicates that Sc, Y, and Sb-containing (111)-type 

perovskite structures are likely the most frequent on the convex hull. Additionally, In, 

Mn, and Ga also exhibit a high frequency. These observations are sensible since all 

these elements frequently appear in the +3 oxidation state in perovskites, as expected 

for the prototype formula of these materials. Bismuth, which forms well-known A3B2X9 

perovskites, is not frequent in the filtered structures. This is expected and can be 

attributed to the larger cation size, making it unfit to form these 2D layered structures 

with most other cations considered in the screening, leading to a lower count. 

However, when observing the B-cation combinations with the lowest Estab in 

Figure 44(b), we notice that Bi-containing perovskites, although fewer in number, tend 

to form quite stable structures, aligning with experimental observations. Sb-containing 

perovskites also present quite stable structures, but even lower Estab structures appear 

in compounds containing Y and Sc. Previous work (Exner et al. 2024) has shown that 

Sc doping presents a stabilizing effect in the Cs3Sb2I9 lattice. The model also 

perceives the chemically similar yttrium as a stabilizer for (111)-type perovskites. 

Other elements previously considered for Sb substitution due to similar cation size 

also appear as potentially stable structures, such as Ag, In, Mo, and Nb. Additionally, 

the model identifies Ga, Ge, and Cr as potentially stable in the B-site of these 

perovskites, a novel observation to the best of our knowledge. When comparing these 

observations with the lowest band gap predicted for every B cation combination in 

Figure 44(c), we observe that perovskites containing transition metals V, Mn, Fe, and 

Cu, although predicted to produce the lowest band gaps, are not favored in stability. A 

better compromise is observed for Ag, Cr, and In-containing materials. 
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Figure 44 – Overview of distribution and estimated properties for the structures 

selected by screening through the structure-based ML models. Panel (a) shows B-site 

element frequency for most stable structures (predicted Estab < 5 meV/atom). Panels 

(b) and (c) present the lowest Estab and band gap values, respectively, for structures in 

each possible combination of B cations. 

Another interesting observation concerns the presence of chalcogens in the 

screened structures. Only 30 structures passing the screening contained sulfur, and 

merely 6 structures contained oxygen. Moreover, although the screening 

encompassed structures containing up to one-third of the anion sites occupied by 

chalcogens (3 out of 9 X-sites in the A3B2X9 unit formula), the final pool predominantly 

contained chalcogen-containing perovskites with a single chalcogen element per unit 

formula. In fact, there was a single structure containing two sulfur atoms per unit 
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formula (see Table 23). These observations align with the challenging incorporation of 

these elements to form chalcohalides, which is a well-documented challenge in the 

literature (F. Hong et al. 2016; Theofylaktos et al. 2019).   

As a final screening step, CHGNet was employed to obtain PhDOS which were 

analyzed for all structures from the previous phase. We observed that experimentally 

reported structures exhibited negative frequencies with absolute values consistently 

lower than those of oxygen-containing structures and structures with multiple 

substitutions, as shown in Table E6. This observation is indicative of improved 

dynamical stability, as multiple substitutions and oxygen incorporation are common 

destabilizing factors for halide perovskites (Chonamada, Dey, and Santra 2020; 

Aristidou et al. 2017). Therefore, based on the values of the minimum phonon 

frequency (ωmin) for the experimentally reported structures in Table 23, a threshold of 

−0.35 THz was established to filter structures by estimated dynamical stability. This 

process resulted in a final pool of 2991 candidate structures.  

The final pool of materials still contains an extensive number of structures for 

high-throughput DFT calculations. However, considering the current precision of 

employed machine learning methods and the unaccounted kinetic stabilization, there's 

no specific justification for imposing stricter thresholds. Therefore, we adopted a 

strategy to sample structures for ab-initio calculation based on their respective group 

of B-site compositions. This procedure is adopted because the transition metal in the 

B-site typically plays the most defining role in perovskite properties. We illustrate this 

method of grouping the structures in Table 24, presenting structures for various B-site 

compositions. 
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Table 24 – Predicted stability and band gap for selected (111)-type structures 

screened in this work, results are presented for specific groups of B-site composition 

sorted in order of increasing predicted Estab. 

Composition of (111)-

type structures 

Predictions from structure-

based MODNet models Composition of  

(111)-type structures 

Predictions from structure-

based MODNet models 

Estab 

(meV/atom) 
 𝑝𝑠𝑒𝑚𝑖 Eg (eV) 

Estab 

(meV/atom) 
 𝑝𝑠𝑒𝑚𝑖 Eg (eV) 

B-site: (Bi,Sb)   B-site: (In), 6 most stable   

Cs3BiSbBr9 -7.3 0.76 2.02 Cs3In2Cl9 -12.6 0.72 2.64 

Cs3Bi1.5Sb0.5Br9 
-7.1 0.80 2.18 Cs3In2Br9 -12.6 0.72 1.81 

Rb3Bi1.5Sb0.5Br9 
-2.5 0.68 2.29 Rb3In2Br9 -11.1 0.52 1.63 

Cs2RbBi1.5Sb0.5Br9 -1.3 0.80 2.22 Rb3In2Cl9 -8.62 0.80 2.83 

Cs3Bi0.5Sb1.5Br9 
-0.8 0.80 2.01 Cs2RbIn2Br9 -5.45 0.84 1.72 

Cs3Bi1.5Sb0.5I9 -0.8 0.84 1.76 Cs3In2I9 -1.33 0.88 0.92 

Cs3Bi0.5Sb1.5I9 -0.6 0.88 1.73 B-site: (In,Sc), most stable   

Cs2RbBiSbBr9 3.4 0.72 2.13 Cs3Sc0.5In1.5Br9 -15.2 0.92 2.26 

B-site: (Bi,Ga)    B-site: (In,Y), 2 most stable   

Cs3GaBiBr9 -4.3 0.84 2.16 Cs3YInBr9 -19.1 0.84 2.76 

Cs3Ga1.5Bi0.5Br9 -0.2 0.88 1.85 Cs3Y0.5In1.5Br9 -18.2 0.84 2.24 

B-site: (Ga), most stable   B-site: (In,Sb), 2 most stable   

Cs3Ga2Br9 -9.2 0.72 1.67 Cs3In1.5Sb0.5Br9 -9.2 0.84 1.81 

B-site: (Cr), most stable   Cs3InSbBr9 -9.0 0.80 1.85 

Rb3Cr2Br9 14.1 0.60 0.95 Cs3In0.5Sb1.5Br9 -7.8 0.80 1.72 

B-site: (Co), most stable   B-site: (Sc,Ni), most stable   

Rb3Co2Cl9 5.1 0.88 0.90 Cs2RbSc1.5Ni0.5(BrCl2)3 10.0 0.88 2.05 

B-site: (Fe,Sb), most stable   B-site: (Y,Sn), 2 most stable   

Cs3FeSb(Br2Cl)3      12.8 0.76 0.98 Cs3Y1.5Sn0.5Br5Cl4 0.9 0.92 3.4 

B-site: (Sc,Nb), most stable   Cs2RbY1.5Sn0.5Br5Cl4 2.4 0.92 3.3 

Cs3Sc1.5Nb0.5SBr8     -15.5 0.88 2.43 B-site: (Y,Fe), 2 most stable   

B-site: (Sc,Ag), most stable   Cs3Y1.5Fe0.5Br4Cl5       4.5 0.76 1.73 

Cs3ScAgBr7Cl2 2.4 0.80 1.86 Cs3YFeSBr8   4.8 0.84 1.20 

In Table 24, the structures screened for the B-site composition containing Bi and 

Sb reveal the system of structures Cs3BixSb1-xBr9 as quite stable, which finds 

corroboration in recent experimental literature for these materials (Giovilli et al. 2023). 
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Additionally, we can observe the presence of the lowest band gap representative, 

Cs3Bi0.5Sb1.5I9, which also agrees with experiments for these iodine perovskites (G. 

Chen et al. 2020). Moreover, the screening ruled out the presence of Cs3Bi2I9 which 

cannot form the layered perovskite structure and appears in experiments solely as a 

0D perovskite. Indium-based perovskites are also suggested to be quite stable. For 

example, the Cs3In2X9 (X= Cl, Br, I) compounds, which were previously reported in a 

ab-initio screening for (111)-type perovskites (W. H. Guo et al. 2020b). However, due 

to the greater flexibility, our method also suggests Cs3In1.5Sb0.5Br9, Cs3YInBr9, 

Cs3Sc0.5In1.5Br9, which may have better chance of being accomplished experimentally 

since no reports on the synthesis of Cs3In2Br9 (P3̅m1) are known to us. The role of Sc 

and Y as stabilizers is reinforced and aligns with previous experiments which have 

shown benefit in incorporating these elements in lead-halide perovskites. For example, 

the Sc addition improved the morphology and carrier lifetimes of MAPbI3−xClx films 

(Shufang Li et al. 2020) and Y has been found to improve crystallinity and power 

conversion efficiencies when added to CsPbBr3 and CsPbI3 to enhance the PL of 

perovskite LEDs (Q. Wang et al. 2019). Moreover, the Ag-containing Cs3ScAgBr7Cl2 

also ranks high in stability and low in band gap this aligns with Ag and In being B 

cations consistently investigated for low band gap double perovskites (Menedjhi et al. 

2021; Z. Liu et al. 2021).  

Novel compositions are seen involving gallium and the frequently studied 

antimony and bismuth for these 2D perovskites. Compounds such as Cs3Ga1.5Bi0.5Br9 

and Cs3Ga1.5Sb0.5Br9 are predicted to be stable with fairly low band gaps, aligning with 

very recent reports incorporating gallium with success in the inorganic Cs2AgBiBr6 to 

increase optical absorption (Ihtisham-ul-haq et al. 2024). We also highlight other 

structures with predicted low band gaps following the prototype A3B2X9 structure such 

as Cs3Ga2Br9, Rb3Cr2Br9 and Rb3Co2Cl9, to be investigated. Another important trend 

observed in the model predictions is the presence of mixed anions and also mixed-A 

cations promoting stability when the B-cations present in the structure differ in their 

usual oxidation state and/or ionic radius. This is a common mechanism to engineer 

perovskites (Hu et al. 2019) which the models are able to grasp and is demonstrated 

throughout the results in Table 24. Examples include Cs3FeSb(Br2Cl)3, 

Cs3Y1.5Sn0.5Br5Cl4, Cs2RbSc1.5Ni0.5(BrCl2)3, Cs3Y1.5Fe0.5Br4Cl5 and Cs3Sc1.5Nb0.5SBr8.  
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Overall, the proposed screening method filtered a significant number of B-cation 

element combinations deemed unfavorable, as indicated by the missing spots in  

Figure 44(b), but it still suggests numerous structures and systems worth further 

investigation. In Figure 45, we present ab-initio calculated band structures for a 

preliminary subset of the screened structures, whose stability against OQMD’s convex 

hull is detailed in Table 25. These calculations revealed that the ternary compounds 

Cs3Ga2Br9 and Rb3Cr2Br9 exhibit band gaps lower than those of the more commonly 

studied Cs3Sb2Br9 and Cs3Bi2Br9, along with direct/nearly-direct band gaps. Notably, 

Cs3Ga2Br9 demonstrates more dispersive valence and conduction bands, implying 

superior transport properties compared to Rb3Cr2Br9. However, Cs3Ga2Br9 has a 

decomposition energy of 32.6 meV/atom, beyond the expected range for stability, 

while Rb3Cr2Br9 exhibits a decomposition energy of 14.3 meV/atom, within the usual 

error margin attributed to DFT-assessed stability. Despite this, analyzing Cs3GaBiBr9 

reveals a negative decomposition energy with a relatively small band gap, further 

highlighting the potential of Ga-containing (111)-type perovskites for exploration. 

Additionally, Cs3Bi0.5Sb1.5Br9, Cs3Sc0.5In1.5Br9 and Cs3GaBiBr9 exhibit direct/nearly-

direct band gaps close to the values predicted by the band gap regressor model, with 

the first two demonstrating more dispersive conduction and valence bands. These 

structures also display negative decomposition energies, indicating thermodynamic 

stability within the given convex hull. Another noteworthy candidate is Cs3Y0.5Fe1.5Br9, 

boasting a direct band gap of 1 eV, deviating 0.7 eV from the predicted value of 1.7 

eV. Furthermore, this structure exhibits a localized state with spin inversion in the 

conduction band, suggesting potential applications in magnetic storage devices or 

spintronics if synthesizable. Additional ab-initio band structure calculations for selected 

compounds are presented in Figure E9 and E10. 

Although the ab-initio evaluation is preliminary, it already confirms the trends of 

enhanced stability for Y and Sc-containing (111)-type perovskites and offers 

perspective on novel chemical systems containing Ga and Cr for this class of 

materials. Moreover, from the structures sampled in these preliminary calculations, the 

predicted stability and the stability evaluated with ab-initio methods, presented in  

Table 25, show good qualitative agreement, with only a few structures wrongly 

predicted within the stability range. Namely, Cs3Ni2Br9, Cs2RbSc1.5Ni0.5(BrCl2)3, 
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Cs2RbSc1.5Ag0.5(Br2Cl)3, and the previously mentioned Cs3Ga2Br9. This observation 

underscores the power of the proposed framework for materials discovery. 

 

 

Figure 45 – Electronic band structure of a selection of the ML screened structures 

obtained in this work.   
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Table 25 – Decomposition energy (Estab) determined from ab-initio calculations utilizing 

OQMD’s convex hull for selected (111)-type structures screened in this work. The 

predicted decomposition energy from our structure-based model is presented for 

comparison as 𝐸𝑠𝑡𝑎𝑏
𝑀𝐿

.  

Composition of (111)-

type structures 

Estab 

(meV/atom) 

𝐸𝑠𝑡𝑎𝑏
𝑀𝐿

 

(meV/atom) 

Cs3Ga2Br9 32.6 −9.1 

Rb3Cr2Br9 14.3 14.1 

Cs3YFe(Br2Cl)3 −34.3 6.3 

Cs3GaBiBr9 −17.7 −4.3 

Cs3Sc0.5In1.5Br9 −28.0 −15.2 

Cs3Bi0.5Sb1.5Br9 −2.7 −0.8 

Rb3Sc2Cl9 −6.4 3.2 

Rb3Cr2Br9 −43.0 −20.3 

Cs3Co2Br9 3.1 −3.0 

Rb3Co2Br9 −8.0 −2.0 

Cs3Ni2Br9 53.0 −41.0 

Cs3Sc1.5Nb0.5SBr8 7.2 14.6 

Cs3Sc1.5V0.5SBr8 34.8 22.0 

Cs2RbSc1.5Ni0.5(BrCl2)3 49.8 −27.0 

Cs3Sc1.5Co0.5(Br2Cl)3 3.9 −13.1 

Cs2RbSc1.5Ag0.5(Br2Cl)3 41.0 −21.0 

Cs3In1.5Ge0.5Br9 6.9 −47.2 

Cs3Y0.5Sb1.5Br9 −8.5 −8.2 

Cs3FeSb(Br2Cl)3 12.1 0.0 
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6.4 CONCLUSION 

Starting from over 100 million candidate structures for (111)-type halide 

perovskites the framework proposed on this work leveraged the power of MODNet 

model enhanced with an advanced featurizer and CHGNet MLIP to reach a final pool 

of structures that reflected experimentally observed trends of perovskite formability 

and band gap. The selection of structures which were evaluated with DFT calculations 

revealed possibly missed ternary structures such as Cs3Ga2Br9 and Rb3Cr2Br9 which 

present lower band gaps than the more explored Cs3Sb2Br9 and Cs3Bi2Br9. Structures 

containing Sc and Y were predicted as stabilizers for (111)-type perovskites. Mixed A-

cations and anions also figured to be potential stabilizers of these structures, 

contributing also to tuning band gap and carrier effective masses. 

 Overall, the results obtained showcase the ability of our method to successfully 

screen a large compositional space considering multiple atomic configurations by 

leveraging the power of machine learning and big data. Several interesting chemical 

systems can be found much more easily using this approach allowing for accelerated 

materials discovery. Through intuitive chemical descriptors and enhanced flexibility, 

this method provides several candidate compositions to stabilize perovskites through 

multi-site doping and can be used as a well-informed guide for experimentalists to 

achieve tailored material properties. 
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CHAPTER 7 

CONCLUSION AND FUTURE PROSPECTS 

This thesis investigated the promising class of lead-free 2D MHIPs using 

computational methods based on ab-initio properties. DFT was harnessed to unravel 

the atomistic origins of experimentally observed MHIP properties and identify 

pathways for optimizing these materials through compositional tuning and structural 

manipulation. Furthermore, by leveraging cutting-edge ML tools trained on DFT data, 

our research predicted novel MHIPs with targeted optoelectronic properties, 

accounting for the possibility of multi-element alloying/doping for fine-tuning these 

properties. This combined approach opens avenues for exploring advanced MHIP 

materials with precise control over functionalities. Additionally, it provides valuable 

guidance to experimentalists for their discovery through intuitive chemical descriptors 

and decomposition energy estimates. We review our main findings and offer prospects 

for further research on this theme in the next paragraphs.   

Chapter 3 investigated the currently most representative subgroup of MHIPs, the 

cesium antimony halide perovskites Cs3Sb2X9 (X= Cl, Br, I) (space group: P3̅m1). Our 

investigation into halide mixing revealed insights into band gap variations and 

structural shifts, indicating potential ordered structures. We found that (1000) surfaces 

retain electronic properties beneficial for photovoltaics, while (0001) surfaces exhibit 

significant band gap reduction, suggesting reactivity suitable for photocatalysis. 

Efficient LEDs may be obtained from Cs3Sb2Br9@Cs3Sb2Cl9 interfaces, utilizing the 

chlorine shell as a diffusion barrier. Defect tolerance was observed in 

Cs3Sb2I9|Cs3Sb2Br9 interface, valuable for photovoltaics. Additionally, cluster 

simulations suggested geometry's role in photoluminescence observed experimentally, 

with edge sites crucial for band gap tuning. Overall, our simulations showcase the 

predictive power of DFT for in-depth comprehension of this group of materials 

exploring the effects of compositional tuning, surface engineering, interface formation 

and dimensionality reduction. This investigation has practical implications for further 

optimization of Cs3Sb2X9 perovskites for stable and efficient solar cells and 

optoelectronic devices. 

In Chapter 4, the effects of metal and halogen doping on both polymorphs of 

Cs3Sb2I9 (space groups P3̅m1 and P63/mmc) were explored. The goal was to enhance 
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stability and optical absorption of this material, which has the lowest band gap among 

Cs3Sb2X9 perovskites. Only substitutional metals with a +3 oxidation state ion and 

comparable ionic radius to Sb3+ were considered. In-doped Cs3Sb1.5In0.5I9 showed 

potential stability with increased optical absorption, yielding band gaps of 

approximately 1.5 eV (P63/mmc) and 1.7 eV (P3̅m1), as per ACBN0 calculated band 

structures. Additionally, Sc-doped Cs3Sb1.5Sc0.5I9 contributed to lattice stabilization with 

only a slight increase in band gap, suggesting a method to reduce Urbach energy and 

improve device performance. A similar observation is seen on halogen doping which 

exhibited negative formation energy with a significant lattice shrinkage compared to 

the pristine Cs3Sb2I9 structure. Halogen doping also led to lattice shrinkage and 

negative formation energy, indicating potential for combining halogen and Sc doping to 

incorporate other metals such as Ag, Mo, Nb, and Bi, which exhibited positive 

decomposition energies when incorporated alone. Collectively, these observations 

triggered our interest in investigating concomitant doping in the elemental sites of 

these perovskites to optimize their performance. Our exploration of the vast chemical 

space of doping within these halide perovskites has been facilitated by a novel 

methodology integrating state-of-the-art machine learning techniques, culminating in 

our subsequent articles.  

Machine learning plays a crucial role in materials discovery, with two prominent 

approaches: feature-based and graph-based models. Feature-based models are 

interpretable and efficient for small datasets, but their electronic structure featurizers 

can be computationally expensive and introduce high dimensionality. Conversely, 

graph-based models excel with large datasets but lack interpretability. The research 

devised in Chapter 5 addresses this by proposing a method to bridge the gap. We 

leverage pre-trained graph models to generate informative features for feature-based 

models. This approach aims to achieve high accuracy while retaining interpretability, 

vital for guiding materials design. The newly developed OMEGA featurizer utilizes pre-

trained graph models to generate features, consistently improving prediction accuracy.  

Furthermore, the interpretability of feature-based models is partially retained through 

techniques like SHAP analysis, allowing researchers to extract chemical insights from 

the generated features. This paves the way for a more efficient and interpretable 

materials discovery process, facilitating large-scale chemical space exploration and 

chemically interpretable active learning. 
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In Chapter 6, a ML workflow was developed to screen over 100 million candidate 

structures for (111)-type halide perovskites, leveraging MODNet model with an 

advanced featurizer and CHGNet MLIP. This approach successfully identified a final 

pool of structures reflecting experimentally observed trends in perovskite formability 

and band gap. The selection of structures, evaluated through DFT calculations, 

revealed potentially overlooked ternary compounds like Cs3Ga2Br9 and Rb3Cr2Br9 with 

lower band gaps than commonly studied Cs3Sb2Br9 and Cs3Bi2Br9. Furthermore, the 

prediction of Sc and Y as stabilizers for (111)-type perovskites, along with the 

identification of mixed A-cations and anions as potential stabilizers, showcased the 

method's ability to tune band gaps and carrier effective masses. This study 

demonstrates the effectiveness of ML and big data in accelerating materials discovery, 

providing valuable insights for designing tailored perovskite materials for various 

applications. 

Future prospects of this work include a more comprehensive exploration of the 

(111)-type perovskite structures identified by the proposed machine learning screening 

method, particularly those involving gallium and chromium in their composition. A 

focused evaluation of ab-initio properties of these structures, including alloying, is 

necessary to guide experimental efforts for their obtention. While our machine learning 

screening framework has demonstrated success, we anticipate improved accuracy 

through training the models on larger datasets utilized in state-of-the-art GNN models. 

Additionally, enhancing the proposed featurizer for the MODNet model including more 

recent GNN featurizers beyond MEGNet and encoding electronic descriptors in 

datasets larger than the Materials Project would be beneficial. Following the same 

rationale, utilizing adjacent GNN models including attention mechanisms may provide 

improved accuracy and facilitate the interpretability of GNN features. Another option is 

to train elemental embeddings alongside the chemical descriptors to provide an 

additional layer of interpretable information for the MODNet models.  
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APPENDICES 

APPENDIX A: Supporting Information for Theoretical Background 

A.1 Derivation of dielectric constant and absorption coefficient 

Formally, the absorption process can be approximated with a perturbation on 

the Hamiltonian operator in Equation 2. This perturbation, accounting for the 

electromagnetic field of light, can be simplified to first order as: 

 �̂�′ = �̂�em  ≈ q�̂� ∙ �̂�, (A1) 

which represents an electrical dipole. This expression is used to evaluate the transition 

probability rate (R) as a function of photon energy from electrons from the initial (𝑖) 

state on the valence band (𝑣) to the final (f) state on the conduction band (𝑐), using 

Fermi’s golden rule: 

 
𝑅(ℏ𝜔) =

2𝜋

ℏ
|�̂�𝑓𝑖

′ |
2
𝛿(𝐸𝑓 − 𝐸𝑖 − ℏ𝜔) = 

=
2𝜋

ℏ
∫ ∫ |⟨𝑐|�̂�em|𝑣⟩|

2
𝛿(𝐸𝑐(𝒌𝑐) − 𝐸𝑣(𝒌𝑣) − ℏ𝜔)𝑑𝒌𝑐𝑑𝒌𝑣

 

𝒌𝑣

 

𝒌𝑐
, 

(A2) 

where 𝛿 denotes the Dirac-delta function. The term ⟨𝑐|�̂�em|𝑣⟩ is directly associated 

with momentum matrix elements from k-p theory (Grundmann 2010), denoted 𝑝cv. 

Considering the light-induced momentum is very small, we can limit integration to valid 

k-points, where 𝒌c = 𝒌v.  By calculating the lost power of the electric field, the 

imaginary part of the dielectric function is obtained as follows: 

 
휀𝑖 (𝜔) =

1

4𝜋𝜖0
(
2𝜋𝑒

𝑚𝜔
)
2

|𝑝𝑐𝑣|
2∫𝛿(𝐸𝑐(𝒌) − 𝐸𝑣(𝒌) − ℏ𝜔)𝑑𝒌

 

𝒌

 (A3) 

And through the Kramers-Kronig relations (Grundmann 2010), the real part can be 

derived from (10) as: 

 
휀𝑟 (𝜔) = 1 +∫

𝑒²

𝜖0𝑚𝜔𝑐𝑣
2  
2|𝑝𝑐𝑣|

2

𝑚ℏ𝜔𝑐𝑣
  

1

1 − (𝜔 
2 /𝜔𝑐𝑣

2 )
𝑑𝒌.

 

𝒌

 (A4) 

At this point, an explicit formulation for the integral concerning the possible 

transitions can be found. If the density of states (DOS) of a system is defined as the 

number of allowed states per unit energy lying in the energy range between E and 

E+𝑑E, represented by: 

 𝑛(𝐸) =∑𝛿(𝐸 − 𝐸𝑖)

𝑖

 
(A5) 
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For all eigenstates |𝑖⟩ of the system. Similarly, we can define a joint density of states 

(JDOS) to measure the number of allowed optical transitions between the occupied 

valence band electronic states and the unoccupied conduction band electronic states 

separated by a given photon energy.  Assuming a parabolic three dimensional (and 

doubly degenerated on spin) from a minimum point in band separation (Peter and 

Cardona 2010), results in : 

 
𝑛𝑗(𝐸) = {

𝐴(𝐸 − 𝐸𝑔)
1
2⁄  , 𝐸 > 𝐸𝑔

0, 𝐸 < 𝐸𝑔 
 (A6) 

The equivalence with the integral in Eq. 10 can be observed. By substituting 

∫𝑛𝑗(𝐸𝑐𝑣)𝑑𝐸𝑐𝑣 in Eq. 10 and considering the relationship of the absorption coefficient, 

𝛼, with 휀𝑖 :  

 𝛼 =
𝜔

�̃�𝑐
휀𝑖 , (A7) 

Where �̃� is the refractive index. This leads to the well-known relationship for the 

absorption coefficient of direct transitions: 

 𝛼 ∝  (ℏ𝜔 − 𝐸𝑔)
1
2⁄  (A8) 

In the case of an indirect band gap, extending Fermi's golden rule is necessary to 

include second-order perturbation, allowing accommodation for both phonon-electron 

and photon-electron interactions as detailed elsewhere (Peter and Cardona 2010). 

The indirect transitions can be derived following a similar path as for direct transitions 

but now results in a quadratic dependence on energy: 

 𝛼 ∝  (ℏ𝜔 − 𝐸𝑔 − ℏ𝜔𝑝ℎ
 )2 (A9) 

where 𝜔𝑝ℎ
  is the phonon frequency. Despite the higher order, the two-particle process 

is much less probable than simple photon absorption and the coefficient is about 10−3 

smaller. 

Moreover, in experiments, another commonly observed feature is an exponential 

tail in the absorption coefficient below the band gap, referred to as the Urbach tail, 

expressed as: 

 
𝛼 =  𝛼0. 𝑒𝑥𝑝 (

ℏ𝜔 − 𝐸𝑓

𝐸0
), (A10) 

in this Ef < Eg being named Urbach focus and E0 is the characteristic width of the 

absorption edge or Urbach energy. The Urbach tail is attributed to transitions between 
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band tails below the band edges. These tails may originate from imperfections in the 

crystal lattice, such as defects or doping, and fluctuations in electronic energy bands 

caused by lattice vibrations. For most semiconductors, E0 is typically around 50 meV 

or less. However, amorphous materials and some halide perovskites may exceed 100 

meV (Bacalis, Economou, and Cohen 1988; S. Y. Kim et al. 2019). 

 

A.2 Dynamical stability 

Thermodynamic stability is assessed by considering equilibrium conditions under 

specific external parameters, like temperature and pressure, to determine a material's 

formation from its constituent phases. However, once established the candidate 

material can be formed, an essential consideration emerges: the potential for it to 

transform into an alternative structure not initially accounted for. At equilibrium, 

regardless of the atomic movements, the system's potential energy consistently 

increases. Thermodynamic stability, crucial as it is, does not encompass how a system 

responds in real-time to external changes or kinetic influences. This limitation prompts 

the necessity to explore dynamical stability (Malyi, Sopiha, and Persson 2019; Bartel 

2022). 

Dynamical stability measures system's resilience to perturbations such as 

vibrations or small displacements. Phonon analysis and ab-initio molecular dynamics 

(AIMD) are two methods gauge this stability by examining a material's vibrational 

modes or simulating atomic motion using quantum mechanics. These approaches 

offer deeper insights than thermodynamics alone but often demand substantial 

computational resources. Phonon analysis calculates the dynamical matrix to describe 

atomic forces and interactions, requiring extensive computation due to the need for 

high precision, especially for systems with many atoms. Meanwhile, AIMD simulates 

real-time dynamics, demanding numerous cost intensive steps to model the quantum 

mechanics of electrons and ions accurately. Thus, both techniques demand significant 

computational resources and time, making their application usually resource-

prohibitive for high-throughput calculations (Mortazavi et al. 2020; Bartel 2022).  

Dynamical stability assessment wasn't considered in this work because the 

examined structures were either known to be stable (halogen-alloyed Cs3Sb2X9 on 

Chapter 3) or we focused on doping the structure, aiming for lower concentrations 
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(transition metal-doped Cs3Sb2I9 on Chapter 4 and multiple composition screening on 

Chapter 6). In both cases, thermodynamic stability holds more significance as it offers 

a reliable means to compare structures within the same chemical system or infer 

stability at lower concentrations in doping scenarios (Gebhardt and Rappe 2018; Xiao 

et al. 2017; Pramchu, Jaroenjittichai, and Laosiritaworn 2019). 

For instance, structures doped at a 25% concentration, as explored in the 

investigation conducted in Chapter 4 for Cs3Sb2I9 polymorphs, if deemed stable by 

thermodynamic criteria, are highly likely to maintain stability at lower concentrations. 

Conversely, an imaginary phonon frequency in the same structure and concentration 

might imply instability or suggest an alternative structure that cannot be inferred for 

lower concetration. This dependency arises because phonon analysis is significantly 

concentration dependent (J. Zhou et al. 2015). Additionally, imaginary modes can 

sometimes vanish when considering phonon-phonon interactions in temperature-

dependent phonon spectra calculations or might result from approximations in the 

chosen density functional (Bartel 2022). Similarly, AIMD simulations imply even higher 

computational cost and cannot be used to infer stability on lower concentrations. 

Nevertheless, exploring the dynamical stability of specific doped structures 

across various concentrations—particularly those with most negative decomposition 

energies in our investigations—has the potential to yield valuable insights. This 

possibility is being considered for future research. 

A.3 Born-Oppenheimer approximation 

The ground-state properties of a physical system are obtained by solving the 

time-independent Schrödinger equation to determine the wavefunction Ψ({𝐑𝛼}, {𝐫𝑖}) as 

given by: 

 �̂�Ψ({𝐑𝛼}, {𝐫𝑖}) = 𝐸Ψ({𝐑𝛼}, {𝐫𝑖}), (A11) 

in this context, {𝐑𝛼} represents the positions of nuclei, while {𝐫𝑖} represents the 

positions of electrons. The total energy of the system is denoted by 𝐸. However, the 

Schrödinger equation has analytical solutions only for simple systems, therefore for 

many-body problems, numerical methods and approximations are necessary. One 

widely used approximation is the Born-Oppenheimer approximation (Born, Huang, and 

Lax 1955), which decouples the dynamics of electrons and nuclei. This approximation 

relies on the difference in time scales between nuclear and electron motion, allowing 
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electrons to quickly adapt to changes in atomic positions. By separating the electronic 

and nuclear motions, the wave function can be expressed as the product of a nuclear 

and an electronic component, for example: 

 Ψ({𝐑𝛼}, {𝐫𝑖}) = 𝜒𝑛({𝐑𝛼})𝜓𝑛({𝐑𝛼}
′, {𝐫𝑖}), (A12) 

where {𝐑𝛼}
′ indicates that the dependence on the nuclear positions is parametric in 

the electronic function. Consequently, equation (2) is separated in a nuclear part and 

an electronic part, simplifying to 

 �̂�𝑒𝑙𝜓𝑛({𝐫𝑖}, {𝐑𝛼}
′) = 𝜖𝑛({𝐑𝛼})𝜓𝑛({𝐫𝑖}, {𝐑𝛼}

′), (A13) 

where the electronic Hamiltonian is given by �̂�𝑒𝑙 = �̂�𝑒 + �̂�𝑒𝑒 + �̂�𝑁𝑒. The total energy for 

fixed nuclear positions, 𝐸𝑛({𝐑𝛼}), incorporates a constant nuclear repulsion term and 

defines a potential energy surface for the nuclear dynamics which can be solved 

separately. While this approach remains valid for a wide range of systems, it may 

encounter limitations in cases where there is significant coupling between electronic 

excitations and nuclear vibrations. In the context of the present study, the properties 

investigated in the materials did not require consideration of such coupling and could 

be effectively examined using the Born-Oppenheimer approximation. 

 

A.4 (Projected) Density of states 

Density of states (DOS) for a solid is defined as the number of one-electron 

levels between energies E and E+dE. Within the Kohn-Sham formalism, the equation 

is given by (Martin 2020): 

 
𝑔(𝐸) =  

1

𝑁𝑘
∑∑𝛿(휀𝑛𝒌 − 𝐸)

𝒌𝑛

, (A14) 

where 𝑁𝑘 is the number of sampled k-points and 휀𝑛𝒌 denotes the energy of an electron, 

the DOS has units of inverse energy. Throughout the literature, a duplication of each 

dimension of the k-grid (yielding an eightfold denser grid), ensures well-converged 

Density of States (DOS) curves. We applied the same procedure in this work, passing 

the converged electronic density as input for a non-self-consistent field (NSCF) 

calculation with the denser k-point grid (Michael Y. Toriyama et al. 2022).  

Considering the case of the projected density of states (PDOS), the same 

integration is performed with a further projection of the wavefunctions onto 
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orthogonalized atomic wavefunctions (Soriano and Palacios 2014) producing the 

following expression: 

 
𝑔𝜇(𝐸) =  

1

𝑁𝑘
∑∑∑𝑐𝑛𝜈,𝒌

∗ 𝑐𝑛𝜇,𝒌𝑆𝜈𝜇𝛿(휀𝑛𝒌 − 𝐸)

𝜈,𝜇𝒌𝑛

, 
(A15) 

represents the density of states on the projection orbital 𝜇,  where 𝑆𝜈𝜇 represents the 

overlap matrix of the atomic basis and the coefficients correspond to the projections of 

the KS orbitals 𝜙𝑛𝒌.  

Additionally, an appropriate handling of occupations is necessary to evaluate the 

DOS. Throughout this thesis, the smearing method with a gaussian smearing of 0.005 

eV has been proven successful to converge the electronic density even in the 

presence of dopants and improved the geometric optimization cycle. However, to 

generate DOS and PDOS curves the NSCF calculation is performed applying the 

tetrahedron method (Peter E. Blöchl, Jepsen, and Andersen 1994) which is proven to 

provide more accurate curves with lower number of k-points (M. Y. Toriyama et al. 

2021).  

A.5 Bader and Löwdin charge analysis 

Bader charge analysis (Bader 1990) was utilized to partition charges within the 

atoms of the structures investigated in this work. This method involves dividing space 

into Bader volumes using surfaces where the gradient of electron density equals zero. 

Therefore, at each point on these surfaces, 𝛁𝑛(𝑟) = 0. Each Bader volume 

encompasses the maximum of electron density associated with an ion's position. 

Consequently, this method enables the breakdown of electron density contributions 

from each atom by integrating density across these volumes, resulting in Bader 

charges, 𝑞𝑖
𝐵𝑎𝑑𝑒𝑟 for the atoms. The Bader charges were all computed using the Bader 

Charge Analysis code (Henkelman, Arnaldsson, and Jónsson 2006), while the Bader 

effective charges 𝑞𝑖
𝑒𝑓𝑓

 for each atom were derived as 𝑞𝑖
𝑒𝑓𝑓
 =  𝑍𝑖

𝑣𝑎𝑙  −  𝑞𝑖
𝐵𝑎𝑑𝑒𝑟, where 

𝑍𝑖
𝑣𝑎𝑙 represents the number of valence electrons explicitly included in the 

pseudopotential of the atomic species 𝑖 in the DFT calculation. 

Considering the projection of the wavefunctions onto orthogonalized atomic 

wavefunctions, represented with greek letters, we can define the density matrix P and 

the overlap matrix S for the system as: 
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 𝑃𝜈𝜇 = ∑∑∑𝑓(휀𝑛𝒌)𝑐𝑛𝜈,𝒌
∗ 𝑐𝑛𝜇,𝒌

𝜈,𝜇𝒌𝑛

, 
(A16) 

and, 

 
𝑆𝜈𝜇 = ⟨𝜈|𝜇⟩  =  ∫𝜈

∗. 𝜇  𝑑3𝒓 (A17) 

where 𝑓(휀𝑛𝒌) is the occupation of the quantum state 𝑛𝒌, it is straightforward that the 

number of electrons Ne is equal to: 

 𝑁𝑒 = ∑(𝐏𝐒)𝜈𝜇
𝜈,𝜇

  
(A18) 

One can then decide to partition the electron population by associating non-

intersecting subsets of the basis set to atoms, typically by taking those centered on 

atom A as belonging to A. We will denote this as 𝜈∈A and define the Mulliken charge 

on A  as: 

 𝑞𝐴
𝑚𝑢𝑙𝑙𝑖𝑘𝑒𝑛 = 𝑍𝐴 −∑∑(𝐏𝐒)𝜈𝜇

𝜇𝜈∈𝐴

  
(A19) 

where 𝑍𝐴 is the atomic number of atom A (Jensen 2017). Löwdin charges are a direct 

refinement of the Mulliken method aiming to conserve the dipole moment in a two-

center charge distribution (Löwdin 1953) and are obtained from the following 

transformation: 

 
𝑞𝐴
𝑚𝑢𝑙𝑙𝑖𝑘𝑒𝑛 = 𝑍𝐴 −∑∑(𝐒

1
2𝐏𝐒−

1
2)𝜈𝜇

𝜇𝜈∈𝐴

  
(A20) 

Löwdin charges are straightforwardly obtained along the projection performed in the 

PDOS calculation in the DFT codes considered here. These types of analysis are 

particularly susceptible to the basis set and therefore may not reflect real charge 

distribution when using simple atomic wavefunctions. Additionally, intramolecular basis 

set superposition error is also an important factor that is hard to measure on these 

methods (Jensen 2017). 

Bader charge analysis stands out as a more dependable and theoretically 

robust method compared to projections on atomic basis sets for assessing charge 

transfer. Its strength lies in its inherent topological nature, whereas techniques like 

Löwdin charges often face issues due to the absence of rotational invariance 

(Davidson and Clark 2022). Consequently, Löwdin charges found less frequent 

application on our study, despite their valuable projection information. For instance, 
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they were useful in analysing spin-density distribution among dopants, as illustrated in 

Table C6. 

A.6 Optical properties calculation 

A natural physical quantity to study in first-principles simulations of optical 

properties is the full dielectric function, a complex frequency-dependent quantity. In the 

following we will show the basic equations that relate this macroscopic property of a 

material to its underling microscopic electronic structure. The general expression of 

the independent particle dielectric function1 is simplified in the optical limit to the IP 

dielectric function into two separate contributions, an intraband Drude-like term to the 

conduction electrons at the Fermi surface and an interband term due to vertical 

transitions between occupied and unoccupied bands: 

 휀𝐼𝑃(�̂�, 𝜔) = 휀𝐼𝑃
𝑖𝑛𝑡𝑒𝑟(�̂�, 𝜔) + 휀𝐼𝑃

𝑖𝑛𝑡𝑟𝑎(�̂�, 𝜔) (A21) 

where 

 
휀𝐼𝑃
𝑖𝑛𝑡𝑒𝑟(�̂�, 𝜔) = 1 −

4𝜋

𝑉
∑ ∑

|⟨𝜙𝑛𝒌|�̂� ∙ 𝒗|𝜙𝑛𝒌⟩|
2

(𝐸𝑛′𝒌 − 𝐸𝑛𝒌)
2

𝑓𝑛𝒌 − 𝑓𝑛′𝒌
𝜔 − (𝐸𝑛′𝒌 − 𝐸𝑛𝒌) + 𝑖휂

𝑛≠𝑛′𝒌

, (A22) 

and, 

 
휀𝐼𝑃
𝑖𝑛𝑡𝑟𝑎(�̂�, 𝜔) =

𝜔𝐷
2 (�̂�)

𝜔(𝜔 + 𝑖𝛾)
, (A23) 

where the Drude plasma frequency is obtained from: 

 
𝜔𝐷
2 (�̂�) =

4𝜋

𝑉
∑∑|⟨𝜙𝑛𝒌|�̂� ∙ 𝒗|𝜙𝑛𝒌⟩|

2 (−
𝜕𝑓

𝜕𝐸
)

𝑛𝒌

. (A24) 

This last contribution is only relevant when metallic behavior is presented. The velocity 

operator term‡ is v = −i[𝒓, 𝐻𝐾𝑆], 휂 and 𝛾 are empirical broadening terms, and 𝑓𝑛𝒌 gives 

the occupation according to the Fermi-Dirac distribution of the KS Bloch state 𝜙𝑛𝒌. 

In this work the SIMPLE code (Prandini et al. 2019) distributed in the Quantum 

ESPRESSO package was applied to obtain the dielectric function as defined above, 

this implementation makes use of the Shirley interpolation method which obtains a set 

of basis functions best suited for integrations in the Brillouin zone reducing the 

computational cost expressively (Shirley 1996; Prendergast and Louie 2009). The 

basic idea of this optimal basis (OB) method is to obtain a reduced set of basis 

 

‡ [𝒓, 𝐻𝐾𝑆] designates a commutator operation, which translates in this case to: (𝒓𝐻𝐾𝑆 − 𝐻𝐾𝑆𝒓) 
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functions, indicated with the notation {𝑏𝑖}, to represent the periodic part of the Bloch 

wavefunctions at any k-point inside the BZ. This basis set is constructed starting from 

the periodic KS states {𝑢𝑛𝒌} calculated on an initial grid of Nk k-points, holding the 

following relationship: 

 

𝑢𝑛𝒌(𝒓) ≅∑�̃�𝑖
𝑛𝒌

𝑁𝑏

𝑖=1

𝑏𝑖(𝒓). (A25) 

Once the OB is constructed it is possible to obtain the periodic part of the Bloch 

wavefunctions at a generic k-point following a interpolation procedure (Prendergast 

and Louie 2009). This allows to perform the fine samplings of the BZ required for the 

calculations. The dimension Nb of the OB is directly dictated by the threshold sb 

passed by the user, in our case sb = 0.1 bohr³ yielded well converged curves.  

The calculation of the matrix elements of the Hamiltonian in terms of OB and the 

subsequent diagonalization of the matrix for each k-point gives the coefficients �̃�𝑖
𝑛𝒌 and 

the band energies Enk for all the bands included in the calculation. Finally, one only 

needs to compute the matrix elements of the k-dependent velocity operator which 

becomes: 

 𝒗(𝒌) = −𝑖[𝒓, 𝐻𝐾𝑆]  =  −𝑖∇ + 𝒌 − 𝑖 [𝑟, 𝑉𝑛𝑙(𝒌)]. (A26) 

The first two two terms are easily obtained from the first diagonalization of the 

transformed Hamiltonian, the last term involving the commutator of the non-local part 

of the pseudopotentials requires additional computation.  

Since the SIMPLE code supports only norm-conserved pseudopotentials, 

Vanderbilt pseudopotentials of SG15 (Schlipf and Gygi 2015) databases were used for 

all computations of the dielectric function in this work. The pseudopotentials included 

relativistic effects at the scalar level while the dielectric function was calculated 

including non-local contribution from the pseudopotentials to the velocity matrix 

elements. Once established the dielectric function, it is possible to compute the 

reflectivity, introducing the refractive index n and extinction k, as follows: 

 [𝑛(𝜔)+ 𝑖𝑘(𝜔)]2 =ε(ω). (A27) 

The reflectivity formula is then given by:  

 
𝑅(𝜔) =

[𝑛(𝜔) − 1]2 + 𝑘(𝜔)2

[𝑛(𝜔) + 1]2 + 𝑘(𝜔)2
, (A28) 
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while the absorption coefficient is given by: 

 
𝛼(𝜔) =

4. 𝜋. 𝑘(𝜔)

𝜆
 . (A29) 
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A.7 Overview of machine learning algorithms 

Here is a brief overview of some of the most popular supervised learning 

algorithms (Ethem Alpaydd n. 2009; Pedregosa et al. 2011): 

- Linear Regression: a simple algorithm that models a linear relationship 

between inputs and a continuous numerical output variable. Easily interpretable 

results by its output coefficient, faster to train than other machine learning 

models. However, assumes linearity between inputs and output usually 

underfitting for small or high-dimensional datasets. It is also very sensitive to 

outliers. 

- Logistic Regression: models a linear relationship between inputs and 

categorical outputs using a sigmoid curve. It is easy to interpret but the 

assumed linearity frequently leads to overfitting with small or high-dimensional 

data. 

- K-Nearest Neighbors (KNN): a non-parametric algorithm that stores all 

training data with labels. It predicts by finding the k nearest neighbors in feature 

space based on distance metrics, assigning a class via majority vote. Simple 

and distribution-agnostic, but time-consuming for large datasets, sensitive to 

noise and outliers, and requires proper feature scaling for accuracy. 

- Support Vector Machines (SVM): a parametric algorithm that finds the optimal 

hyperplane that maximizes the margin between two classes in the feature 

space. Effective in high dimensional spaces and robust to outliers, SVM can 

also handle non-linear data with kernel functions. However, it is prone to 

overfitting with noisy data and can be quite expensive and sensitive to 

parameter choices. 

- Decision Trees: this non-parametric algorithm utilizes a tree-like structure to 

partition data based on informative features, supporting numerical and 

categorical data without the need for feature normalization. Known for its 

interpretability, easy visualization, and swift training, it also adeptly manages 

non-linearities. However, large trees may lead to overfitting, and its sensitivity to 

noise and missing values can bias trees, particularly if certain classes 

dominate. 

- Decision Trees Ensemble: involves combining multiple decision trees and 

aggregating their predictions through methods like majority voting or averaging. 
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Techniques like random forests and gradient boosting fall under this category, 

addressing overfitting and variance issues associated with individual trees to 

enhance accuracy. Random forests randomly select subsets of features and 

samples to build multiple decision trees, they aggregate predictions through 

voting or averaging. Gradient Boosting Machines construct decision trees 

sequentially, correcting errors of preceding trees. They excel in accuracy by 

refining predictions iteratively but are more prone to overfitting and demand 

longer training times than random forests. While effective for large, high-

dimensional datasets, drawbacks of ensemble decision trees include reduced 

interpretability of individual trees and increased computational resources 

needed for training. 

- Neural Networks (NNs): a parametric algorithm that consists of multiple layers 

of interconnected nodes that can learn complex non-linear functions from data 

through forward and backward propagation. Present higher accuracy for large 

datasets and can be easily adapted to other problems (transfer learning). 

Neural networks are, however, very difficult to interpret and in the case of dense 

neural networks they essentially become a black box. These networks demand 

substantial computational resources during training and present numerous 

hyperparameters to tune. Additionally, their versatility results in a whole class of 

possible models based on the type of layers employed.  

When the objective involves capturing and processing the inherent structure and 

patterns within the data, unsupervised ML algorithms can be very useful. Their primary 

objective involves discerning hidden relationships, clustering similar data points, and 

condensing the information into a more manageable and meaningful representation. 

There are two main types of unsupervised learning algorithms: clustering and 

dimensionality reduction. Clustering algorithms partition the data into groups (clusters) 

based on some measure of similarity or distance. Dimensionality reduction algorithms 

reduce the number of features or dimensions of the data while preserving its essential 

information. Here is a brief overview of some of the most popular unsupervised 

machine learning algorithms (Ethem Alpaydd n. 2009; Pedregosa et al. 2011): 

- K-Means Clustering: a simple algorithm that assigns each data point to one of 

K clusters based on the distance to the cluster centroid. Easy to implement and 
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interpret, this method is scalable to large datasets. Requires previous 

knowledge or screening to determine the best value for K. Sensitive to outliers 

and initial conditions, assumes spherical clusters around the centroid. 

- Hierarchical Clustering: forms cluster hierarchies by merging or splitting 

clusters based on their sizes. It is versatile with no fixed cluster count 

requirement. However, can be computationally intensive, sensitive to outliers, 

and optimal clustering level selection can be challenging to determine. 

- DBSCAN (Density-Based Spatial Clustering of Applications with Noise): 

DBSCAN identifies clusters by density fluctuations, useful for spatial data 

analysis and outlier detection. It is adaptive with varied cluster shapes, robust 

against outliers, but requires parameter tuning and may struggle with varying 

density clusters. 

- Principal Component Analysis (PCA): PCA reduces data dimensionality, 

retaining maximum variance. Common for data visualization, and feature 

extraction, it reduces noise and enhances efficiency. Yet, it assumes linear 

feature relationships, reduces interpretability compared to the original features, 

and might not retain local structure. 

- Kernel PCA (KPCA): Kernel PCA is an advanced version of PCA designed for 

handling complex, nonlinear data relationships. It uses a "kernel trick" to map 

data into a higher-dimensional space, making it easier to identify intricate 

patterns and connections that linear techniques might miss. However, 

interpreting results might be more challenging compared to the original 

features, and like PCA, KPCA might not fully retain the local structure of the 

data. 

- Autoencoders: Autoencoders are a type of artificial neural network primarily 

used for unsupervised learning tasks, focused on data reconstruction and 

representation learning. They consist of an encoder-decoder architecture 

designed to compress and then reconstruct input data. In contrast to PCA, can 

learn complex, non-linear transformations, capturing intricate data relationships. 

However, most of the interpretability of the original features is lost in the 

encoding. More details on autoencoder architecture are provided on section 

A.12. 
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A.8 Cross-validation 

𝐾-fold cross-validation is a technique for making near-optimal use of available 

data by repeating model training and validation on different subsets of data, often 

using a large training set and a small validation set in each iteration. The train set is 

divided into 𝐾 subsets, and the model is trained using 𝐾 − 1 of the subsets and 

validated using the set that was not utilized for training (Refaeilzadeh, Tang, and Liu 

2009). This process is repeated 𝐾 times, with the average of all validations used to 

calculate overall performance as: 

 𝐶𝑉(𝑓) =
1

𝐾
∑∑𝐿(�̂�𝑘

(𝑖)
, 𝑦(𝑖))

𝑛𝑘

i=1

𝐾

𝑘=1

 (A30) 

where L is some loss function appropriate to the problem, and �̂�𝑘
(𝑖)

 is the 

predicted label of the i-th training example of the model 𝑓 trained using the subset of 

the training data excluding subset 𝑘, which is of size 𝑛𝑘. Cross-validation is repeated 

with different hyperparameter combinations until the best ones are found, at which 

point the model is trained with the chosen hyperparameters on the whole cross-

validation data and applied to the separate test set, as illustrated in Figure A1. This 

approach, known as cross-validation and testing is the most popular data partitioning 

method in ML (Refaeilzadeh, Tang, and Liu 2009). Regarding the number of splits, 

employing a five to tenfold cross-validation usually achieves a favorable balance 

between preventing overfitting and maintaining an adequately sized training dataset 

(Korjus, Hebart, and Vicente 2016).  

 

Figure A1 – Cross-validation and testing involves splitting data into a test set and 

cross-validation set where models are trained and validated to find optimal 

hyperparameters, the prediction accuracy is evaluated on the holdout test set. Source: 

(Korjus, Hebart, and Vicente 2016) 
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Alternatively, one can also apply nested cross-validation (NCV), a more costly 

alternative in which K-fold split is first performed to divide in “training + validation” and 

test sets, subsequently, each of these folds undergo K-fold cross-validation, as shown 

in Figure A2. This method guarantees that each data point appears once in the test set 

and provides more robust metrics. For this reason the nested cross-validation is used 

in the famous benchmarking initiative for ML models on materials science, the 

MatBench (Dunn et al. 2020).  Although NCV maximizes data efficiency, it also comes 

with limitations. It introduces favorable bias when evaluating unseen data because 

each data point appears frequently in the training data during evaluation (K-1 times). 

This hampers the interpretability of hyperparameters and model weights. However, 

NCV excels in tasks such as understanding statistical dependence and serves as a 

valuable benchmarking tool by removing test set bias.  

 

Figure A2 – In nested cross-validation training and validation sets in inner folds 

determine optimal hyperparameters and performance is evaluated across multiple 

folds for robustness. Source: (Korjus, Hebart, and Vicente 2016) 

In this work, NCV was applied only when comparing to metrics obtained in 

MatBench as done in the study conducted in Chapter 5. Otherwise, the traditional 

cross-validation and testing approach was adopted since it provides more meaningful 

hyperparameters and weights to interpret, as well as performance metrics more likely 

to hold in unseen data. To compensate for its lower data efficiency, we used a 5-fold 

cross-validation or 10-fold in the case the dataset was small, we also used a small test 

dataset of 2% to 5%, separating roughly 10.000 samples that retained the statistical 

distribution of the features.  
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Data partitioning is trivially done using the Scikit-learn package (Pedregosa et al. 

2011) through the functions train_test_split and KFold from the 

model_selection module as described on the official documentation (‘3.1. Cross-

Validation’ 2023). Additionally, for classification tasks, Scikit-learn offers a variant 

called StratifiedKFold. This particular method ensures that the percentage of 

samples in each class is maintained across validation and test sets, effectively 

preventing class imbalance issues. 

A.9 Ensemble methods 

Ensemble methods are a powerful machine learning tool where multiple models 

are combined to improve predictive performance. These methods work by aggregating 

predictions from several base models to produce a more accurate and robust final 

prediction. They can significantly enhance the overall performance by leveraging the 

strengths of individual models and minimizing their flaws (Pedregosa et al. 2011; 

Dietterich 2000). Ensemble methods encompass various techniques, including but not 

limited to: 

4. Aggregation: this method constructs multiple models using different subsets of 

the training data, then combines their predictions by averaging or voting to 

reduce overfitting and variance. Aggregating models based on bootstrap 

resampling is termed bagging (Breiman 1996). 

5. Boosting: it involves sequentially training models where each subsequent 

model focuses on the examples that previous models found difficult, thereby 

improving overall predictive accuracy. 

6. Stacking: here, predictions from diverse models are used as inputs to a meta-

model that learns how to best combine these predictions to generate the final 

output. 

Ensemble methods are particularly advantageous in situations where individual 

models might struggle due to the complexity or noise in the data. By leveraging 

diverse models, they can often yield superior performance compared to using a single 

model. Nevertheless, they do incur increased computational costs because combining 

and training multiple models can require a lot of resources.  

In our study, ensemble aggregation was systematically used on our ensemble 

MODNet models based on the Deep Ensemble framework (Lakshminarayanan, 
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Pritzel, and Blundell 2017). This method enhances the robustness of predictions and 

allows for the construction of confidence intervals and quantification of uncertainty in 

individual predictions (De Breuck, Evans, and Rignanese 2021). Additionally, we 

aggregated models from each k-fold in cross-validation through averaging, forming an 

ensemble to efficiently evaluate performance and enhance uncertainty predictions for 

active learning (see section A.15), saving considerable time compared to retraining on 

the entire cross-validation set. 

 

 

A.10 Data preprocessing: normalization and one-hot encoding  

Normalization is an essential step in data preprocessing for continuous variables 

in ML algorithms. It ensures that the features are on the same scale, preventing larger-

magnitude features from overshadowing others. Normalization can also reduce 

outliers and improve overall quality and consistency of the data, which in turn improves 

the ability of predictive models to detect patterns and make accurate predictions.  

Scale consistency is essential for faster convergence in ML algorithms, 

particularly those reliant on gradient descent such as neural networks, linear 

regression, and gradient boosting machines (defined on Appendix A.4). A comparative 

study of normalization methods (Cabello-Solorzano et al. 2023) for a range of machine 

learning algorithms demonstrated that, irrespective of the normalization method used, 

very few algorithms are essentially unaffected by normalization, highlighting its 

significance.   

The most common normalization techniques are: range scaling, feature clipping, 

log scaling, and z-score scaling (‘Normalization | Google for Developers’ 2023), 

presented in detail below: 

1. Range scaling: This technique converts the feature values from their natural 

range into a standard range, usually 0 and 1 (or sometimes -1 to 1). The 

formula for scaling to a range is:  

 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (A31) 
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Scaling to a range is a good choice when the feature values are 

approximately uniformly distributed across the range, and there are no 

extreme outliers that cannot be safely removed by clipping. For example, bulk 

modulus or band gaps from semiconductors. 

2. Log scaling: This technique computes the logarithm of the feature values to 

compress a wide range to a narrow range. The formula for scaling follows:  

Log scaling is useful when the feature values follow a power law distribution, 

meaning that a few values have many points, while most values have few 

points. For example, thermal and electrical conductivity distributions 

(Sierepeklis and Cole 2022). The log scaling will change the data distribution 

making it more suitable for linear models.  

3. Feature clipping: This technique caps the feature values above (or below) a 

certain threshold to a fixed value. The threshold is defined based on domain 

knowledge and the application. A traditional clipping strategy is to clip by z-

score to ±Nσ (limit to ±3σ, for example) where σ is the standard deviation. In 

materials science, it is typical to employ clipping techniques, aiming to remove 

outliers or restrict data within a defined range. This helps eliminate abnormal 

data points that could arise from theoretical or experimental limitations, human 

error, or when the model's objective is to predict within a predetermined range. 

4. Z-score scaling or Standardization: This technique represents the feature 

values as the number of standard deviations away from the mean. The formula 

for z-score is: 

where  𝜇 is the feature’s mean value and 𝜎 its standard deviation. Z-score is a 

good option when the feature values have a normal (or Gaussian) distribution, 

meaning that most values are close to the mean, and the distribution is 

symmetric. Z-score ensures that the feature values have a mean of 0 and a 

standard deviation of 1, which can make the model more robust and less 

sensitive to outliers. 

The distribution and properties of the features have an impact on the choice of 

the normalization method. Therefore, it is essential to experiment with different 

 𝑥𝑙𝑜𝑔 = 𝑙𝑜𝑔(𝑥 + 1) (A32) 

 𝑥𝑧 =
𝑥 − 𝜇

𝜎
 (A33) 
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approaches and evaluate how they affect model quality and performance. For all ML 

model training conducted normalization of the features was performed through the 

package Scikit-learn (Pedregosa et al. 2011), more precisely through the module 

sklearn.preprocessing. This module offers the functions MinMaxScaler for a 

range scaling of [0,1] by default, StandardScaler for z-score normalization, and log 

scaling (or any other function transformation) can be easily applied through 

FunctionTransformer. Clipping outliers can be achieved through straightforward 

data manipulation using NumPy, the fundamental python package for numerical 

computing. 

For categorical features, like the crystal system of a material (one of the seven 

Bravais lattices) or the orbital character of HOMO (s, p, d, or f), preprocessing is 

essential to align them with the matrix structure required to optimize the 𝑓 function 

approximated by the ML algorithm. There are primarily two approaches for handling 

these features. 

One method involves using an ordinal encoder, which transforms each 

categorical feature into an integer. However, this numerical representation may imply 

an order among categories to the algorithm (similar to positions in a race), often 

misrepresenting the inherent meanings of these categories. Therefore, the preferred 

alternative, especially when categories carry individual meanings, is to utilize a one-

hot encoder. This encoder assigns a '1' to indicate a match with a category and '0' 

otherwise. 

For instance, consider the crystal system example. The feature vector would 

encompass seven entries, each corresponding to one of the Bravais lattices. If a 

material belongs to the tetragonal crystal system, the feature vector would have a '1' in 

the tetragonal entry, while the rest would hold '0's. This method preserves the inherent 

meanings of categories without implying any order among them.  

Similar to the normalization functions, the sklearn.preprocessing module 

includes a function called OneHotEncoder that automatically creates a new feature 

vector and assigns suitable values to each data point by learning from the entire 

training dataset. Examples of this fitting process are demonstrated in the official 

documentation for continuous and categorical features (‘6.3. Preprocessing Data’ 

2023). 
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A.11 Data preprocessing: imputation and dimensionality reduction 

Imputation is an essential step in machine learning preprocessing that helps 

maintain dataset’s integrity by addressing missing data. Techniques for handling this 

issue involve estimating and substituting missing values to enhance model accuracy 

and rectify biases caused by non-random missing data. Traditional imputation 

methods, such as mean/median/mode imputations, replace missing values with the 

corresponding statistics, yet they fail to preserve dataset variance and will bias results 

when data is not missing at random. More sophisticated methods train machine 

learning models to predict missing values based on other features. These methods 

vary from simple regression models to random forests and complex neural networks. 

However, they perform better when some randomness in the missing values exists 

(Jäger, Allhorn, and Bießmann 2021). 

In datasets used for predicting properties based on structures and composition 

from theoretical materials databases, missing data in the feature dataset often arises 

from limitations in the descriptors used and is therefore not random. Tools like 

MatMiner, during batch featurization, might apply featurizers to structures and 

compositions not originally intended for them, resulting in missing data for certain 

descriptors. This occurs, for instance, with Miedema descriptors, which lack elemental 

data on halogens and many semimetals, rendering them unable to compute 

descriptors for materials containing these elements. Another common scenario 

involves electronic and structural descriptors that rely on accurate bonds to generate 

materials fingerprints. At times, parameters used to compute nearest-neighbors, such 

as cutoff radius, fail for specific structures, leading to missing descriptors. 

When training a broad model on a sizable dataset, these problematic featurizers 

often perform well on most data. However, in cases where they fail, descriptors can be 

imputed by assigning a value beyond the typical feature range as a placeholder (e.g. 

using -1 in the normalized features) for those materials. Similarly, for categorical 

features, a new placeholder class is created for the missing values. This preserves 

information from cases that work as expected, while containing the bias introduced by 

missing features. This was the approach to handle missing values used in this work, 

however, it is crucial to note, remains a compromise. The ideal treatment would 
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involve redesigning the featurizer to handle each case properly, which is not always 

feasible. 

The final step in preprocessing involves dimensionality reduction, ideally suited 

after prior steps have taken place. The concept here is to convert features into a 

lower-dimensional space by crafting new features that retain crucial information. This 

differs from feature selection, which targets the most relevant subset of features based 

on their importance to the target variable (Sorzano, Vargas, and Montano 2014). 

However, dimensionality reduction might not be necessary (or advisable) when 

employing more complex ML algorithms like neural networks. 

Dimensionality reduction serves various purposes in machine learning. While it 

can mimic feature selection by extracting pertinent information, its primary aim lies in 

enhancing ML model performance. By reducing the number of features while 

preserving essential information, these techniques address computational complexity, 

overfitting, and the curse of dimensionality. This usually leads to refining the speed 

and accuracy of machine learning models. However, it is also possible to degrade 

results, especially when the features with low variance are the most informative. 

Moreover, dimensionality reduction lowers the interpretability of the results by 

obscuring the contributions of the original features behind the reduced components. 

Several methods for dimensionality reduction exist, they are usually categorized 

as unsupervised ML algorithms (see appendix A.4), not requiring labeled data. The 

most famous method for reducing dimensionality is Principal Component Analysis 

(PCA) (Sorzano, Vargas, and Montano 2014). When provided with a set of 

observations x in an M-dimensional space (ℝ𝑀), PCA serves to identify the most 

optimal subspace of a specific dimension 𝑚, based on the least-square error criteria. 

This algorithm is based on the search  of  orthogonal  directions  explaining  as  much  

variance  of  the  data  as  possible. In terms of dimensionality reduction, it can be 

formulated as the problem of finding 𝑚 orthonormal directions 𝒘𝑖 minimizing the error: 

where 〈𝒘i, 𝒙〉 denotes the projection of x on the 𝑖-th reduced vector 𝒘i. The 

approximation to the original vectors is given simply by �̂� = ∑ 〈𝒘i, 𝒙〉𝒘i
m
i=1 . As depicted 

in equation (36), the PCA method assumes linearity in projections, thus not performing 

 J𝑃𝐶𝐴 = 𝐸 {‖𝐱 −∑〈𝒘𝑖, 𝒙〉𝒘𝑖

m

i=1

‖

2

}, (A34) 
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optimally when the data's inherent structure includes intricate non-linear 

dependencies. In such cases, non-linear dimensionality reduction techniques such as 

Kernel PCA (KPCA) or autoencoders would be better suited. A more advanced 

alternative for dimensionality reduction to capture non-linear patterns is to use 

autoencoders which rely on neural networks to find a latent space representation of 

the data and are discussed specifically on the subsequent Appendix A.12. 

 

A.12 Autoencoders 

An autoencoder is a specific class of artificial neural network employed in 

unsupervised learning. Its primary objective is to encode input data into a lower-

dimensional representation and subsequently decode it back (Hinton and 

Salakhutdinov 2006). This architectural framework comprises two main components: 

an encoder, responsible for mapping input data to a compact latent space, and a 

decoder, which reconstructs the original data, as illustrated in Figure A3. During 

training, the network seeks to minimize the mean squared error in the reconstruction 

using backpropagation. 

The distinctive advantage of autoencoders over other dimensionality reduction 

techniques lies in their heightened capacity to capture intricate, non-linear patterns 

present in the input data. Autoencoders have found noteworthy applications in 

materials science, particularly for feature learning and materials representation 

(S. Stein et al. 2019; W. Jin, Barzilay, and Jaakkola 2018; Damewood et al. 2023). 

Their utilization facilitates the extraction of meaningful features from raw data, enabling 

more effective representation and interpretation of material properties. More recently, 

variational autoencoders (VAEs) were introduced which during encoding impose a 

constraint to obtain a regularized latent space. This regularization allows to obtain 

valid input by sampling the latent space, making them valuable for solving inverse 

design problems in materials science (S. Lu et al. 2022; Ren et al. 2022). 

In this work, traditional autoencoders were used to learn encoded 

representations of the general electronic descriptor Orbital Field Matrix and also for 

general descriptors from MatMiner featurizers. The encoded representation, due to 

lower number of descriptors, is much easier to be generated by a machine learning 

model in a high-throughput screening. 
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Figure A3 – Illustration depicting an autoencoder, a bottleneck architecture that 

converts a high-dimensional input into a latent low-dimensional representation 

(encoder) and then reconstructs the input using this latent representation (decoder). 

Source: the author. 
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A.13 Hyperparameters in neural networks 

Neural networks present several hyperparameters for tuning, here is presented 

an overview of the more traditional ones (Goodfellow, Bengio, and Courville 2016; 

Choudhary et al. 2022): 

● Learning rate (LR): Learning rate determines the step size taken during 

optimization. A higher LR can speed up convergence but may lead to overshooting. A 

lower LR might converge slowly but could help in reaching a more optimal solution. 

Some common techniques to improve over a fixed LR include: 

- Learning rate scheduling: This method involves altering the LR during 

training according to a predefined schedule or pattern. The aim is to improve 

convergence or performance by adjusting the LR dynamically. It may be 

through a gradual increase of the LR at the beginning of training (warm-up) or a 

reduction when a number of epochs has passed (step decay).  

- Learning rate callback: For this case the LR is adapted based on the 

validation loss through a callback function, when the validation loss stops 

improving for a given number of epochs the learning rate is reduced. This is 

implemented through the ReduceLROnPlateau callback in Keras, for 

example. 

- Adaptive learning rates: These are improvements over the plain stochastic 

gradient descent and include the algorithms that may be used to update the 

weights in an adaptive manner. 

● Stochastic Gradient Descent (SGD): During backpropagation network weights are 

iteratively updated via SGD algorithms to minimize the loss function until the desired 

accuracy is achieved, some of the most usual algorithms for SGD include: 

- RMSprop: Maintains per-parameter learning rates that are adapted based on 

the average of recent magnitudes of the gradients. 

- Adagrad: Adjusts the learning rate for each parameter based on the historical 

gradients for that parameter. 

- Adam Optimizer: The most popular choice currently, this optimizer adjusts 

the learning rate adaptively for each parameter in the model based on the 

history of gradients calculated for that parameter effectively combining benefits 

of the previous methods. 
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● Batch size: Choosing batch size involves trade-offs, larger batches offer 

computational efficiency and stable updates but may hinder generalization, while 

smaller batches promote generalization with more noise in updates, working similarly 

to a regularization technique, but might be computationally inefficient. Using powers of 

2 for the batch size (8, 16, 32, etc.) is common practice since it aligns with hardware 

optimizations to use GPUs. Batch size selection requires testing to ensure it suits the 

model, dataset, and available computational resources. 

● Batch normalization: Batch normalization is a method crucial for enhancing the 

efficiency and stability of neural network training. It works by standardizing the inputs 

for each layer, effectively managing the flow of gradients throughout the network. This 

mitigates issues like vanishing or exploding gradients, which can impede learning 

progress. By ensuring gradient stability, batch normalization accelerates the learning 

process, enabling the use of higher learning rates resulting in quicker and more 

effective network training. 

● Regularization techniques: These strategies keep neural networks from overfitting, 

which is typical given their enormous capacity to approximate the training data. Most 

common techniques include: 

- L1 & L2 Regularization: These techniques involve adding penalty terms to 

the loss function based on either the absolute (L1) or squared (L2) values of the 

model's weights. They coerce the model to favor smaller weights, effectively 

promoting simpler solutions and reducing sensitivity to noise. 

- Dropout: This technique randomly deactivates some neurons during training, 

forcing the network to learn more robust and generalized features. By 

preventing co-adaptation among neurons, dropout enhances the network's 

resilience to overfitting. 

- Early stopping: This method halts the training process once the model's 

performance on a validation dataset starts deteriorating, thereby preventing the 

network from overly fitting the training data and improving its ability to 

generalize to new examples. In Keras, the implementation of early stopping 

involves using the EarlyStopping callback method. This method requires 

specifying a patience value, which determines the number of epochs the 
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model can go without seeing an improvement in the validation loss before 

stopping the training process. 

 

 

A.14 Alternative DNNs in materials science  

Deep neural networks (DNNs) have revolutionized the field of machine learning 

by enabling the development of more accurate models for complex tasks. They have 

been used to achieve state-of-the-art performance in many applications, including 

image recognition, speech recognition, and natural language processing (Simonyan 

and Zisserman 2015; Graves et al. 2006; Wolf et al. 2020). DNNs have also been 

used to develop models for drug discovery, medical image analysis, and climate 

science (Lavecchia 2019; J.-G. Lee et al. 2017; Ardabili et al. 2020). Besides the 

simple feedforward neural networks (FNN) other types of artificial networks exist 

differing from the simple form by application of other types of transformation in each 

layer and more elaborate relationships between the layers, such as Convolutional 

Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long Short-Term 

Memory (LSTM) networks (Alzubaidi et al. 2021; Sherstinsky 2020). There are also 

neural networks suited to create generative models which excel at generating data 

samples that resemble those in the training set, making them particularly useful for 

inverse design problems. The most common examples include variational encoders 

(VAE) and generative adversarial networks (GAN). Recently, attention mechanisms 

have also been used to improve performance on many of these examples (Vaswani et 

al. 2017). While these models are utilized in materials science, their adoption is still not 

as extensive as FNNs and GNNs. Typically, they are employed in conjunction with 

these more conventional models (Choudhary et al. 2022). 
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A.15 Active learning  

Active learning is a machine learning paradigm in which a model is trained on a 

dataset that is dynamically expanded by iteratively selecting the most informative 

examples for labeling. Unlike traditional supervised learning, where a fixed and fully 

labeled dataset is used for training, active learning actively chooses which instances 

from an unlabeled dataset should be labeled and added to the training set. The goal is 

to maximize the model's performance with a minimal number of labeled examples. 

This approach can be seen as a specific application of adaptive experimental design, 

where statistical inference is facilitated through machine learning models (Lookman et 

al. 2019). Figure A4 illustrates this concept, particularly in the context of materials 

science. 

In active learning, the acquisition function is the component guiding the selection 

of instances from the unlabeled pool for labeling and inclusion in the training set. 

Common acquisition functions, such as uncertainty of the surrogate model or 

maximum entropy sampling, aim to select difficult-to-predict or diverse data points 

from the unlabeled dataset (Margatina et al. 2021). These metrics prioritize 

exploration, enhancing the model's generalization. In optimization tasks like materials 

discovery, achieving a balance is crucial. Thus, the acquisition function must navigate 

between exploring uncertain regions (exploration) and leveraging existing model 

knowledge to optimize the objective function (exploitation). This balance ensures 

effective active learning in scenarios where data labeling is resource-intensive, and 

optimizing the model's performance is paramount. 

The active learning cycle usually looks like:  

1. Initial Model Training: train a model on the initial labeled dataset. 

2. Uncertainty Estimation: Utilize the current model to predict labels for 

unlabeled instances, incorporating uncertainty estimates. 

3. Instance Selection: Provide relevant variables (such as predictions, 

uncertainty, entropy) to the acquisition function. Identify instances that 

maximize the acquisition function, as these are likely to provide the most 

benefit to the model. 

4. Labeling: Manually label the selected instances or obtain labels through some 

external means. 
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5. Model Update: Add the newly labeled instances to the training set and retrain 

the model. 

6. Repeat: Iterate through the process by going back to step 2 until a 

satisfactory model performance is achieved or a certain budget for labeling is 

exhausted. 

This cyclic process ensures an iterative and dynamic approach to learning, where 

the model progressively improves its performance with minimal labeled data. 

 

Figure A4 - The adaptive design paradigm to iteratively learn a surrogate model and 

use acquisition function to balance exploitation and exploration of the search space of 

unexplored materials to select the next best experiment or calculation. Adapted from: 

(Lookman et al. 2019) 
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APPENDIX B: Supporting Information for “Lead-Free Cs3Sb2X9         

(X = Cl, Br, I) Perovskites: Halide Alloying, Surfaces, Interfaces,     

and Clusters” 

B.1 Functional testing  

Table B1 presents lattice parameters and band gap for PBE (J P Perdew, Burke, 

and Ernzerhof 1996), PBEsol (John P. Perdew et al. 2008), LDA (PZ) (J P Perdew and 

Zunger 1981) and rVV10 (Sabatini, Gorni, and De Gironcoli 2013) functionals. 

Smallest deviations in geometry were obtained for PBEsol and rVV10 functionals, van 

der Walls corrected functional is especially better on the c parameter of the material 

and are most suitable to analyze properties highly dependent on geometry. LDA 

functional failed in reproduce lattice parameters and band gap as GGA 

parametrizations. Despite success of PBEsol and rVV10 for geometry, band gap is 

closer to experiment in traditional PBE functional. Additionally, PBE is shown to be 

more suitable than PBEsol for Hubbard correction using the Dudarev approximation of 

Ueff=U-J (Dudarev and Botton 1998) due to larger correlation between U and J 

parameter (Tavadze et al. 2021). Therefore, since deviations in lattice parameters 

remain small, PBE was chosen to proceed the electronic calculations and as base 

functional to apply Hubbard correction in this work.  

Table B1 - Band gap and lattice parameters with different functionals compared to 

experimental values for Cs3Sb2X9 (X = Cl, Br, I). Deviations from experimental lattice 

constants for the different functionals are given in percentages under 𝛥𝑎,𝑏 and 𝛥𝑐. 

Species Band gap (eV) 

Lattice constants 

(Å) 𝚫𝐚,𝐛 (%) 𝚫𝒄(%) 

a,b c 

Cs3Sb2Cl9      

Expt.1 3.09 7.633 9.345   

PBE 2.45 7.836 9.476 +2.662 +1.401 

PBEsol 2.21 7.594 9.232 -0.505 -1.208 

PZ 2.02 7.276 9.052 -4.669 -3.131 

rVV10 2.27 7.484 9.305 -1.952 -0.428 

Cs3Sb2Br9      

Expt.² 2.30 7.930 9.716   

PBE 2.00 8.144 9.932 +2.698 +2.227 

PBEsol 2.00 7.856 9.634 -0.935 -0.844 

PZ 1.87 7.597 9.442 -4.200 -2.823 

rVV10 1.75 7.823 9.703 -1.348 -0.129 

 



 
 

243 
 

Table B1 – (continued) 

Species Band gap (eV) 

Lattice constants 

(Å) 𝚫𝐚,𝐛 (%) 𝚫𝒄(%) 

a,b c 

Cs3Sb2I9      

Expt.³ 2.06 8.420 10.386   

PBE 1.58 8.660 10.647 +2.853 +2.517 

PBEsol 1.32 8.363 10.284 +2.850 +2.512 

PZ 1.16 8.161 10.096 -3.079 -2.786 

rVV10 1.28 8.410 10.393 -0.120 +0.068 

1 - Jian Zhang et al. 2017 ;  2 - Jian Zhang et al. 2017; 3 - Yamada et al. 1997 

 

B.2 Determination of Hubbard U parameters 

A point of note when applying Hubbard corrections is that such corrections are 

mainly intended to localized states such as d orbitals which are unsatisfactorily 

modelled by traditional DFT and can be adequately justified in this case. The value of 

Hubbard potential can even be calculated from first-principles based on several 

approximations for highly localized orbitals (Aryasetiawan et al. 2006). When Hubbard 

values are determined empirically and applied on p or s orbitals only to correct the 

band gap underestimation from DFT it may lead to controversial physical results and 

therefore careful study is required. Literature presents both exceedingly good physical 

descriptions using empirical U on non-localized orbitals (Calzolari and Nardelli 2013; 

X. Y. Deng et al. 2014; Sharma, Mishra, and Kumar 2019; Flores et al. 2018) as well 

as failed approaches (Shao 2008; Janotti and Van de Walle 2011) and the quality of 

the results has to be assessed in a case-by-case basis. Moreover, several approaches 

considering U on non-localized orbitals have produced excellent  results recently, this 

is the case of Bayesian optimization for machine learning Hubbard U values (M. Yu et 

al. 2020) and also the more sophisticated pseudo-hybrid functionals such as ACBN0 

(Agapito, Curtarolo, and Nardelli 2015; May and Kolpak 2020).  

In this study to obtain an electronic structure more coherent to hybrid functional 

calculations, Hubbard +U term was supplemented in the PBE functional acting on the 

5p orbital of Sb and p orbitals of the halogen which were the most significant on 

valence band and conduction band of the perovskites. The Hubbard values applied on 

these orbitals are denoted respectively, as USb and UX henceforth. The values of U 

were determined empirically varying the USb in steps of 2 eV and varying the UX in 

steps of 0.5 eV keeping the structure fixed in the experimental atomic positions and 
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cell parameters, band gap and total forces on the cell were measured for each 

combination. The combinations showing lower forces and band gap closer to 

experiment were selected to a second phase in which the structures were fully relaxed 

and the UX was tuned in steps of 0.1 eV to obtain the experimental gap. Finally, the 

final structures had the projected density of states (PDOS) calculated and compared to 

the PDOS obtained with pure PBE functional and the hybrid HSE functional. The 

Hubbard values which could provide better description of the band gap, projected 

density of states, geometry, and Bader charge in the atoms, taking experimental and 

HSE results as reference, were chosen to proceed the simulations.  

Hubbard values of Sb of 4 eV and 6 eV presented considerably larger forces in 

first screening in Cs3Sb2Br9 and Cs3Sb2I9 perovskites leading to lattice parameters 

much larger than experiment, therefore only structures of USb of 0 and 2 eV were 

studied further for consistency. The final parameters for each structure, fully relaxed 

and with optimal halogen Hubbard value, are shown in Table B2 along with the band 

gap value. HSE06 calculations were then performed using the lattice parameters 

relaxed with PBE of each perovskite to compare with PBE+U electronic structure. 

Table B2 - Hubbard parameters for halogen with USb = 0 eV and USb = 2 eV for 

Cs3Sb2X9  relaxed structure yielding experimental band gap values, lattice parameters 

for structure also shown.  

 

USb 

(eV) 

UX=Cl, Br or I 

(eV) 

Band gap  

(eV) 

Lattice constants (Å) 

a,b c 

Cs3Sb2Cl9      

Expt.1    3.09 7.633   9.345 

HSE 0 0 3.20 - - 

PBE 0 0 2.45 7.876 9.476 

PBE+U 0 4.5 3.08 7.881 9.532 

PBE+U 2 5.5 3.12 7.868 9.513 

Cs3Sb2Br9      

Expt.²    2.30 7.930  9.716 

HSE 0 0 2.34 - - 

PBE 0 0 2.00 8.144 9.932 

PBE+U 0 2.5 2.37 8.168 9.898 

PBE+U 2 2.8 2.30 8.139 9.875 

Cs3Sb2I9      

Expt.³    2.06 8.420   10.386 

HSE 0 0 2.10 - - 

PBE 0 0 1.58 8.660 10.647 

PBE+U 0 3 2.04 8.641 10.641 

PBE+U 2 4 2.07 8.617 10.559 
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We observe that when USb is increased the localization of Sb 5p orbital causes a 

further reduction of the band gap which, in turn, increases optimal UX values to keep 

the experimental band gap. Larger USb also reduce the lattice parameters slightly. 

Band gaps for all Hubbard corrected structures could be made close to the available 

experimental and theoretical data in the literature with moderate Hubbard values. 

Since merely obtaining experimental band gap does not justify applying Hubbard 

corrections, partial density of states of the structures were compared to the well-

established HSE06 functional for every perovskite in Figure B1. Hubbard corrections 

shifted the states to positions much closer to those calculated by HSE06, it is also 

clear that when 𝑈𝑆𝑏 is implemented the results depart from HSE06 suggesting a worse 

approximation and therefore USb = 0 eV was elected. In order to understand how 

interatomic charge distributions would vary between functionals, Bader analysis based 

on the atom-in-molecule (AIM) theory was conducted (Tang, Sanville, and Henkelman 

2009). Average ionization charge on each element was calculated for PBE, PBE+U (U 

on halogen only) and HSE functionals and results are presented in Table B3.  It is 

clear from the results in Table B3 and Figure B1 that the atomic charges with PBE+U 

functional yield results closer to what is calculated by hybrid functional HSE06 

suggesting that the Hubbard correction adopted here is successful in reproducing a 

higher level of theory. 
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Table B3. Average ionization charge for each ion on the perovskites Cs3Sb2X9 (X = Cl, 

Br, I) calculated with Bader charge theory. Hubbard correction on PBE+U are, 

respectively for chlorine, bromine and iodine perovskites, UCl = 4.5 eV, UBr = 2.5 eV 

and UI = 3 eV.  

  Functional 

Species  PBE PBE+U HSE 

Cs3Sb2Cl9 
Cs 

charge 
-0.8934 -0.9116 -0.9132 

 
Sb 

charge 
-1.5813 -1.7993 -1.8265 

 
Cl 

charge 
+0.6491 +0.7037 0.7102 

Cs3Sb2Br9 
Cs 

charge 
-0.8746 -0.8866 -0.8868 

 
Sb 

charge 
-1.3158 -1.4626 -1.4412 

 
Br 

charge 
+0.5840 +0.6206 +0.6159 

Cs3Sb2I9 
Cs 

charge 
-0.8628 -0.8745 -0.8773 

 
Sb 

charge 
-0.9596 -1.1759 -1.1747 

 
I 

charge 
+0.5009 +0.5529 +0.5534 
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Figure B1 - Comparison of density of states of Cs3Sb2X9 (X = Cl, Br, I) with different 

functionals, vertical lines in maximums of HSE functional DOS are shown to compare 

with lower level functionals PBE and PBE+U. 
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Figure B2 - Band structures of (a) Cs3Sb2Cl9, (b) Cs3Sb2Br9, (c) Cs3Sb2I9 calculated by 

PBE and PBE+U functional. The red and blue solid lines represent the PBE and the 

PBE+U bands, respectively. The energy 0 eV represents the Fermi level. 



 
 

249 
 

B.3 Halogen alloying 

Cs3Sb2X9 (𝑃3̅𝑚1)  features two inequivalent halogen sites: a bridging site (3e) 

and a terminal site (6i). We calculated the formation energy for Cl substitution in 

Cs3Sb2I9 to assess the cost of substitution at these sites. The results showed a 0.139 

eV difference in formation energy, with Cl(i) substitution having lower energy. Thus, 

terminal sites are preferred for substitution, consistent with Pradhan et al.'s findings (A. 

Pradhan, Jena, and Samal 2022). However, as the difference is easily accessible in 

experiments and decreases for halogens of similar size, we adopted a more realistic 

approach: substituting two terminal sites, followed by one bridging site, until all 9 sites 

were fully substituted. We also maintained the maximum distance between the 

minority halogens during substitutions. 

Crystal structures present smaller total energy than isolated atoms implying that 

crystals are more stable and will require energy to break their bonds and decompose. 

This energy is referred as binding energy (Eb) and can be determined from DFT total 

energy through the following formula, adapted for the case of 𝐶𝑠3𝑆𝑏2𝑋9−𝑛𝑌𝑛 solid 

solutions:  

𝐸𝑏   =
𝐸[Cs3Sb2X9−nYn] − ∑ 𝑛𝑖𝐸[𝑖]𝑖

∑ 𝑛𝑖𝑖
, (B1) 

where E[𝐶𝑠3𝑆𝑏2𝑋9−𝑛𝑌𝑛] is the total energy of 𝐶𝑠3𝑆𝑏2𝑋9−𝑛𝑌𝑛 solid solution, 

ni and E(i) are the number of i atoms in the cell and the energy of an isolated atom, 

respectively. Eb is negative for any stable compound and larger (more negative) 

binding energies values result in a more stable solid solution.  

Variation of lattice parameters with compositions was modelled according to 

Vegard’s law as given by the formula: 

 
{
𝑎𝐶𝑠3𝑆𝑏2𝑋9−𝑛𝑌𝑛(𝑥) = (1 − 𝑥)𝑎𝐶𝑠3𝑆𝑏2𝑋9 + 𝑥𝑎𝐶𝑠3𝑆𝑏2𝑌9 + 휃𝑥(1 − 𝑥)

𝑐𝐶𝑠3𝑆𝑏2𝑋9−𝑛𝑌𝑛(𝑥) = (1 − 𝑥)𝑐𝐶𝑠3𝑆𝑏2𝑋9 + 𝑥𝑐𝐶𝑠3𝑆𝑏2𝑌9 + 휃𝑥(1 − 𝑥)
 (B2) 

Where θ represents the bowing parameter for the lattice constants. Band gap 

variation with composition was also modelled with second-order Vegard’s law to 

determine their bowing parameter, referred as 𝑏𝑔.  

Results of calculations considering the Cs3Sb2X9-nYn (X,Y = Cl, Br, I) structures 

with n integer varying from 0 to 9 are shown in Figure B3 presenting band gap, area 

enclosed by �⃑� and �⃑⃑� lattice vectors (𝐴𝑎𝑏) and 𝑐 lattice parameter for both PBE and 
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PBE+U case. PBE+U as applied in this work also proves successful in modelling the 

alloys and this can be validated when comparison is made with HSE and PBE 

calculations. Lattice parameters applying Hubbard correction presented a slightly 

increase in comparison to pristine PBE as shown by the trends on 𝐴𝑎𝑏 and 𝑐 in the 

graph. Regarding band gaps, Hubbard corrections applied on the individual halogens 

in the composite structures were successful in predicting band gaps in accordance 

with HSE results with less than 2% error (Table B5) which increases trust in applying 

PBE+U method to investigate halogen alloyed structures. Convergence test was 

performed for n=4 in the three solid solutions considered, convergence showed that 

the increase of energy cutoff and k-points changes the band gap by less than 0.01 eV 

and the alloy formation energy by less than 0.1 meV/atom. 

Table B4 – Fitting parameters for binding energy, lattice parameters, band gap and 

formation enthalpy of the Cs3Sb2X9-nYn solid solutions. Pearson correlation coefficient 

(cp) is shown for fitting curve. 

Solid solution 
Property and fitting parameter 

Eb : m ¹ 𝑎, 𝑏 : 휃 ² 𝑐 : 휃 ³ 𝐸𝑔 : 𝑏𝑔 
4 Δ𝐻𝑓 ∶ Ω 

5 

Cs3Sb2Cl9−n𝐵𝑟n 
0.6560 

(cp=0.999) 

0.6525  

(cp=0.981) 

0.032 

(cp=0.991) 

-0.0498 

(cp=0.9921) 

18.682 

(cp=0.7188) 

Cs3Sb2Br9−nIn 
0.3087 

(cp=0.998) 

0.8419 

(cp=0.982) 

-0.041 

(cp=0.995) 

0.3049 

(cp=0.9915) 

43.796 

(cp=0.8877) 

Cs3Sb2𝐶𝑙9−n𝐼n 
0.9650 

(cp=0.989) 

1.4222 

(cp=0.989) 

0.327 

(cp=0.996) 

-0.3950 

(cp=0.9844) 

96.209 

(cp=0.9472) 

(1)𝐸𝑏 = 𝐸𝑏[𝐶𝑠3𝑆𝑏2𝑋9](1 − 𝑥) + 𝐸𝑏[𝐶𝑠3𝑆𝑏2𝑌9]𝑥 = 𝑚𝑥 + 𝐸𝑏[𝐶𝑠3𝑆𝑏2𝑋9] 

(2) 𝑎𝐶𝑠3𝑆𝑏2𝑋9−𝑛𝑌𝑛(𝑥) = (1 − 𝑥)𝑎𝐶𝑠3𝑆𝑏2𝑋9 + 𝑥𝑎𝐶𝑠3𝑆𝑏2𝑌9 + 휃𝑥(1 − 𝑥) 

(3) 𝑐𝐶𝑠3𝑆𝑏2𝑋9−𝑛𝑌𝑛(𝑥) = (1 − 𝑥)𝑐𝐶𝑠3𝑆𝑏2𝑋9 + 𝑥𝑐𝐶𝑠3𝑆𝑏2𝑌9 + 휃𝑥(1 − 𝑥) 

(4) 𝐸𝑔𝐶𝑠3𝑆𝑏2𝑋9−𝑛𝑌𝑛(𝑥)
= (1 − 𝑥)𝐸𝑔𝐶𝑠3𝑆𝑏2𝑋9

+ 𝑥𝐸𝑔𝐶𝑠3𝑆𝑏2𝑌9
+ 𝑏𝑔𝑥(1 − 𝑥) 

(5) Δ𝐻𝑓 = Ω𝑥(1 − 𝑥) 
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Figure B3 - Band gap, area enclosed by �⃑⃑⃑� and �⃑⃑⃑� lattice vectors (𝑨𝒂𝒃) and 𝒄 lattice 

parameter of Cs3Sb2X9-nYn (X,Y = Cl, Br, I) perovskites with n integer varying from 0 to 

9. Calculations were performed for both PBE, PBE+U ( UCl=4.5 eV, UBr=2.5 eV, UI=3 

eV ). HSE06 calculations are also presented for Cs3Sb2Cl5Br4, Cs3Sb2Cl5I4 and 

Cs3Sb2Br5I4 to obtain band gap. 

 

Table B5 – HSE and PBE+U results on band gap of Cs3Sb2Cl5Br4, Cs3Sb2Cl5I4 and 

Cs3Sb2Br5I4. 

 
HSE PBE+U Error % 

Cs3Sb2Cl5Br4 2.822 2.778 1.76 

Cs3Sb2Cl5I4 2.524 2.600 1.63 

Cs3Sb2Br5I4 2.238 2.253 1.26 

In Figure B4 density of states for the intermediate composition perovskite 

Cs3Sb2Cl5Br4 is shown, we can see the agreement is not only on band gap but DOS 

composition in general is very similar between the PBE+U and HSE especially on first 

2 eV of valence band and all of the conduction band. 
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Figure B4 - Density of states of Cs3Sb2Cl5Br4 comparing PBE+U corrected and HSE. 

 

B.4 Surfaces and interface calculations  

Surface energy of stoichiometric symmetric slabs can be easily calculated by the 

traditional equation: 

𝛾 =
(𝐸𝑡𝑜𝑡𝑎𝑙–𝑛𝐸𝑏𝑢𝑙𝑘)

2𝐴
 (B3) 

Where γ is the surface energy of one facet, 𝐸𝑡𝑜𝑡𝑎𝑙 is the total energy of the 

relaxed surface slab, 𝐸𝑏𝑢𝑙𝑘 is the total energy of bulk perovskite material per formula, n 

is the number of bulk perovskite formula in the slab, and A is the surface area of the 

slab model. To expand this definition to non-stoichiometric and asymmetric slabs, one 

must first consider that surface energy consists of cleavage (𝐸𝑐𝑙𝑒) and relaxation (𝐸𝑟𝑒𝑙) 

energies (Tian et al. 2018; J. M. Zhang et al. 2008), and therefore can be written as: 

𝛾 =
(𝐸𝑐𝑙𝑒 + 𝐸𝑟𝑒𝑙)

𝐴
 (B4) 

When cleaving, two surface terminations are formed and the cleavage energy is 

divided between them equally. In Cs3Sb2X9, Sb-X termination corresponds to a 

stoichiometric slab and these can be used to find cleavage energy through: 
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𝐸𝑐𝑙𝑒 =
(𝐸𝑢𝑛𝑟𝑒𝑙𝑎𝑥–𝑛𝐸𝑏𝑢𝑙𝑘)

2
 (B5) 

where 𝑬𝒖𝒏𝒓𝒆𝒍𝒂𝒙 is the total energy of the unrelaxed stoichiometric slab. 

 

Figure B5 – Geometric analysis of the top layers of (0001) CsX-terminated surface of 

halide perovskites. Top of figure illustrates unrelaxed and relaxed Cs3Sb2Br9 slabs, 

measurements start on the outermost surface atom as shown. (a), (b) and (c) present 

element counts in given position for both relaxed and unrelaxed slab for Cs3Sb2Cl9, 

Cs3Sb2Br9 and Cs3Sb2I9, respectively. 

Table B6 - Supercell parameters of interfaces (1000) compared to original surfaces 

parameters. 

 𝑎 (Å) 𝑏 (Å) 

(1000) surface   

Cs3Sb2Cl9 7.883 9.489 

Cs3Sb2Br9 8.144 9.932 

Cs3Sb2I9 8.660 10.647 

(1000) interface   

Cs3Sb2Cl9/ Cs3Sb2Br9 8.013 9.710 

Cs3Sb2Br9/ Cs3Sb2I9 8.402 10.290 

Table B7 – Valence band maximum obtained from bulk Cs3Sb2X9 and calculated 

potential alignment (𝛥𝑉) calculated to determine valence band offsets (𝛥𝐸𝑣) for 

Cs3Sb2Cl9/Cs3Sb2Br9 and Cs3Sb2Br9/Cs3Sb2I9 interfaces. All quantities determined 

from PBE+U calculations. 

Pristine bulk VBM Interfaces Δ𝑉 ΔE𝑣 

Cs3Sb2Cl9 2.923 
Cs3Sb2Cl9/ 

Cs3Sb2Br9 
0.915 0.645 

Cs3Sb2Br9 2.654 
Cs3Sb2Br9/ 

Cs3Sb2I9 
1.086 0.530 

Cs3Sb2I9 2.098    



 
 

254 
 

Table B8 – Valence band maximum obtained from bulk Cs3Sb2X9 in HSE theory level 

and calculated potential alignment (𝜟𝑽) calculated from supercells using PBE 

functional. Valence band offsets (𝜟𝑬𝒗) for Cs3Sb2Cl9/Cs3Sb2Br9 and 

Cs3Sb2Br9/Cs3Sb2I9 interfaces are calculated from these quantities. 

Pristine bulk VBM Interfaces Δ𝑉 ΔE𝑣 

Cs3Sb2Cl9 3.024 
Cs3Sb2Cl9/ 

Cs3Sb2Br9 
0.873 0.550 

Cs3Sb2Br9 2.702 
Cs3Sb2Br9/ 

Cs3Sb2I9 
1.119 0.588 

Cs3Sb2I9 2.170    

 

 

Figure B6 - Band alignment illustration of the three halogen perovskites based on 

calculations of band offsets using HSE VBM and gaps along with PBE potential 

alignment offset. 
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B.5 Clusters 

To evaluate the energy of formation of the substitutional Cl defect, the following 

formula based on total DFT energies was performed (Freysoldt et al. 2014): 

 𝐸𝑓[𝐷] = 𝐸𝑡𝑜𝑡[Cs30Sb6𝐼29𝐶𝑙] − ( 𝐸𝑡𝑜𝑡[Cs30Sb6𝐼30] − 𝜇𝐼 + 𝜇𝐶𝑙 ) (B6) 

Where 𝐸𝑡𝑜𝑡[Cs30Sb6𝐼29𝐶𝑙] is the total energy of the chlorine doped structure, 

𝐸𝑡𝑜𝑡[Cs30Sb6𝐼30] is the total energy of the pristine Cs13Sb6I30 cluster and 𝜇𝐼 and 

𝜇𝐶𝑙 represents the potential energy reservoir of chlorine and iodine atoms, respectively, 

calculated from the diatomic gas phase.  

 The pattern of larger gap difference for bromide cluster is reproduced for PBE 

only calculations, as shown in Figure B7, and therefore the possibility of Hubbard 

correction inducing this behavior observed with PBE+U is dismissed although the gap 

difference is slightly larger with Hubbard correction. 

 

Figure B7 – Partial density of states for different Cs3Sb2X9 clusters for X = Cl (a), Br (b) 

and I (c) comparing results with PBE and PBE+U. 
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Figure B8 presents the position of every atom in the clusters as a function of 

distance from the cluster center. The relaxed geometry is compared to the unrelaxed 

geometry derived directly from the corresponding bulk perovskite positions. For the 

iodine perovskite cluster, external Cs atoms suffer the strongest contraction compared 

to other halogen clusters, almost 1 Å. This contraction reaches for inner iodine atoms 

and is responsible for shortening the Cs-I bond seen in the clusters. For the chlorine 

perovskite cluster, we see that external Cs atoms suffer less contraction due to the 

strong bonding between chlorine and Cs. Close to the center, we also observe that the 

Cs atoms become more involved in the bonding with chlorine, as the Sb-Cl bond 

increases, reinforcing the Cs-Cl bond. 
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Figure B8 – Geometric analysis of halogen perovskite clusters Cs13Sb6X30. On the 

right, an illustration of unrelaxed and relaxed clusters is presented, along with the 

convention used for measuring the atomic positions radially in the XY-plane. On the 

left, the element counts are provided for both relaxed and unrelaxed clusters at a given 

position, as measured in the radius from the XY-plane, where 0 represents the center 

of the cluster. 



 
 

258 
 

To assess halide alloying effects in these clusters, we tested substituting iodine 

with Cl in the Cs13Sb6I30 cluster, at both the longitudinal face and edge sites, as shown 

in Figure B9(a). Face site substitution resulted in a higher Bader charge transfer from 

the bonding Sb atom, -1.276𝑒, compared to edge site substitution, -1.264𝑒. As Cl 

maintains an overall charge of +0.70𝑒 in both sites, this stems from a more favorable 

geometric orientation enhancing charge transfer at the face site. Formation energy for 

Cl substitution was -0.90 eV for the face site, indicating spontaneous substitution. A 

slightly larger formation energy of -0.85 eV was found for edge site substitution. 

Examining the substitutional site's effects on density of states and spin polarization in 

Figure B9(b), Cl in edge sites significantly impacts conduction and VB edges and spin 

polarization. 

 

 

Figure B9 – Face and edge sites are highlighted as f and e, respectively, in Cs13Sb6I30 

cluster (a), along with density of states plots and spin polarization for each site (b). 
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APPENDIX C: Supporting Information for “Doping effects on the 

optoelectronic properties and the stability of Cs3Sb2I9: Density 

Functional Theory insights on photovoltaics and light-emitting 

devices” 

C.1 Pristine structures  

Table C1 - Atomic and ionic radii for Sb and selected elements for Sb substitution in 

this work, ionic radius difference to Sb in percentage is also presented. 

 Sb Ag In Mo Nb Sc Bi 

Atomic radius (Å) 1.33 1.65 1.56 1.90 1.98 1.84 1.43 

Effective ionic radius (Å)a 0.76 0.75 0.80 0.69 0.72 0.74 1.03 

Ionic radius difference to Sb 
(%) 

0.00 -1.71 +5.26 -9.21 -5.26 -2.63 +35.5 

a ionic radius for oxidation state +3 and coordination number (CN) = 6. 
 

 

 

Table C2 – Reference atomic coordinates for both polymorphs of Cs3Sb2I9 compound 

used in this work, obtained from (Yamada et al. 1997).  

 Atom Site X Y Z 

Dimer Cs 2b 0 0 0.25 

 Cs 4f 0.3333 0.6667 0.0850 

 Sb 4f 0.3333 0.6667 0.8453 

 I 6h 0.4929 0.9858 0.25 

 I 12k 0.1653 0.3306 0.9189 

Layered Cs 1a 0 0 0 

 Cs 2d 0.6667 0.3333 0.672 

 Sb 2d 0.6667 0.3333 0.196 

 I 3e 0.5 0.5 0 

 I 6i 0.149 0.851 0.646 
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 Table C3 - Lattice parameters a, b, and c, I–Sb bond length and band gap energy Eg 

of for the Cs3Sb2I9 structure. 

Structure 
Lattice parameters (Å) 

Lattice deviations 

(Å) DI-Sb (Å)§ Eg (eV) 

a, b c 𝛥𝑎,𝑏 (%) 𝛥𝑐  (%) 

Cs3Sb2I9 (P63/mmc)       

Calculated 8.543 21.642 2.32 3.47 3.213 1.81 

Theoretical 

(PBE/PW)*1 
8.682 21.763 3.99 4.05 - 2.00 

Experimental 8.349*3 20.936*3 - - 3.198*3 2.43*4 

Cs3Sb2I9 (P3m1)       

Calculated 8.622 10.623 2.40 2.28 3.18 1.52 

Theoretical (PBE)*2 8.664 10.633 2.90 2.38 3.18 1.55 

Experimental 8.420*3 10.386*3 - - 3.164*3 2.00*5 

*Sources: 1 (Berri 2020) , 2 (Y. L. Liu et al. 2019), 3 (Yamada et al. 1997),  

4 (Correa-Baena et al. 2018) , 5 (Saparov et al. 2015). 

§ Bond lengths I-Sb are measured in the 6h and 3e iodine atoms to match experimental data 

on the respective polymorphs.  

 

 

Figure C1 - (a) Charge density plots and contour maps (lines in black) for (a) Cs3Sb2I9 

(P63/mmc) and (b) Cs3Sb2I9 (P3m1) in the direction shown in the plane represented in 

the corresponding unit cells. 
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The charge density plots for Cs3Sb2I9 structures shown in Figure C1 shows a 

distinctly higher electronic density along I-Sb bonds in P3m1 polymorph due to slightly 

shorter I-Sb bonds. Moreover, the average Bader charges per atom (in units of the 

electron charge, e) for the pristine structure are shown in Table C4. The hexagonal 

structure presents a slightly larger charge transference suggesting a more ionic 

character which is associated to a higher binding energy compared to the trigonal 

structure (5 meV/atom binding energy difference). 

Table C4 - Average Bader charges and binding energies for pristine Cs3Sb2I9 

structures. 

Structure Eb (eV/atom) Element Average Charge (e) 

Cs3Sb2I9 (P63/mmc) -1.040 Cs 0.860 

  Sb 0.947 

  I -0.503 

Cs3Sb2I9 (P3m1) -1.035 Cs 0.858 

  Sb 0.944 

  I -0.496 

The effective masses of electrons and holes in different directions for two 

polymorphs of Cs3Sb2I9 are displayed in Table C5. The electrons have lower effective 

mass values in the k[100] direction, which is parallel to the octahedra array, making it 

the preferred transport direction for both polymorphs. The results are similar to 

previous findings (McCall et al. 2018) regarding the presence of a nearly flat band in 

the hexagonal Cs3Sb2I9 structure. The electron effective mass is significantly different 

between the k[100]  (0.32 me) and k[001] (1.33 me) directions, demonstrating the high 

anisotropy of the dimer polymorph. The layered polymorph exhibits a more isotropic 

band structure for the conduction band at the Γ point, with low electron effective 

masses in both directions. The electron and hole effective masses in the P3m1 

structure are lower compared to the P63/mmc structure due to the higher 

dimensionality in the former.  

Table C5 - Calculated effective masses for the pristine Cs3Sb2I9 structures. 

Structure 

Effective mass (m*) 

electrons holes 

k[100] k[001] k[100] k[001] 

Cs3Sb2I9 (P63/mmc) 0.32 1.33 1.10 1.05 

Cs3Sb2I9 (P3m1) 0.31 0.40 0.80 0.33 
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C.2 Doping with transition metals 

C.2.1 Electronic states and charge analysis 

 

Figure C2 - Charge density and contour map (in black) of (a) pristine Cs3Sb2I9 

(P63/mmc) in the direction shown in the plane represented in (b) the unit cell, and 

doped with (c) Ag, (d) In, (e) Mo, (f) Nb, (g) Sc, and (h) Bi, respectively.  
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Figure C3 - Charge density and contour map (in black) of (a) pristine Cs3Sb2I9 (P3m1) 

in the direction shown in the plane represented in (b) the unit cell, and doped with (c) 

Ag, (d) In, (e) Mo, (f) Nb, (g) Sc, and (h) Bi, respectively. 

Charge density plots for pristine and metal-doped Cs3Sb2I9 perovskites for both 

polymorphs (Figures C2 and C3). Notably, Mo- and Nb-doped shows significant 

charge accumulation around the dopants, deviating from the expected +3 ionic radius 

configuration, indicating poor coordination with iodine. Conversely, despite Sc having a 

comparable atomic radius to Mo and Nb, Sc-doped perovskite exhibits a spread of 
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charge reaching for the iodine atoms in the octahedra suggesting a better 

coordination. Moreover, Bi containing perovskites, despite bismuth’s larger radius, 

display a charge distribution similar to Sb due to their isoelectronic valence shell. 

 

Figure C4 - Spin polarization for Cs3Sb2I9 (P63/mmc) doped with (a) Mo, and (b) Nb, 

respectively, and for Cs3Sb2I9 (P𝟑m1) doped with (c) Mo, and (d) Nb, respectively. 

 

Based on the Löwdin charges presented in Table C6 indicating the spin 

polarization per orbital of the dopant atom, we could observe that Mo contributes with 

a higher total and partial polarization than Nb for both Cs3Sb2I9 structures. This can be 

explained from the Ligand Field Theory viewpoint, considering that the octahedral field 

formed by the halogen ligands — weak field ligands — is a high spin configuration. 

Therefore, in comparison with the Nb d3 configuration, the Mo d4 electronic structure is 

expected to present higher total polarization. 
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Table C6 - Löwdin charges for Mo and Nb as dopants. 

Structure Dopant 
Polarization 

s                 p                d 
Total polarization 

Cs3Sb2I9 (P63/mmc) Mo -0.0428 -0.0354 -2.7816 -2.8598  
Nb -0.0324 -0.0263 -1.9032 -1.9619 

Cs3Sb2I9 (P3m1) Mo -0.0432 -0.0361 -2.8044 -2.8836 

 Nb -0.0326 -0.0260 -1.8935 -1.9521 

 

 

Figure C5 – Charge density of the highest occupied Kohn-Sham state Cs3Sb1.5M0.5I9 

(M=Sc,Bi) and pristine Cs3Sb2I9, both P𝟑m1 (top) and P63/mmc (bottom) polymorphs. 
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Figure C6 – Charge density of the highest occupied Kohn-Sham state in Cs3Sb1.5M0.5I9 

(M=Ag, In, Mo, Nb), both P𝟑m1 (top) and P63/mmc (bottom) polymorphs. 

 

Figure C7 – Charge density of the lowest unoccupied Kohn-Sham state in 

Cs3Sb1.5M0.5I9 (M=In, Sb, Sc), both P𝟑m1 (top) and P63/mmc (bottom) polymorphs. 
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C.2.2 Geometric analysis 

To verify the geometrical changes that the metal or halogen substitution yielded 

to the metal-halogen octahedra a careful analysis was carried out involving isolation of 

the octahedra in the structure and standardization through appropriate projections. 

The orientation of the octahedra in space is characterized by the rotation angles 𝜑, 휃 

and 𝜓, measurements of the laterals and axis of the octahedra are given by amin, amax, 

and aaxis, respectively. Finally, displacements of the central atom to the mass center of 

the octahedra are given by 𝜹𝑿/𝒀/𝒁 for coordinate axis aligned to the octahedra and 

𝜹𝑋/𝒀/𝒁
𝒂𝒃𝒔  for the absolute coordinate axis for the structure. 

 

 

 

Figure C8 – Geometrical parameters considered for the corresponding MX6 octahedra 

in the Cs3Sb2I9 perovskite polymorphs in each of the studied structures both pristine 

and Sb or I substituted. 
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Table C7 - Deviation of geometrical parameters for the corresponding MX6 octahedra 

in the doped trigonal Cs3Sb2I9 in relation to pristine. 

Cs3Sb2I9 

(P𝟑m1) 

aaxis amin amax 𝜹𝑿 𝜹𝒀 𝜹𝒁 𝜹𝑿
𝒂𝒃𝒔 𝜹𝒀

𝒂𝒃𝒔 𝜹𝒁
𝒂𝒃𝒔 

Pristine 6.10 4.31 4.34 0.0 0.16 0.12 0.0 0.0 0.20 

Cs3Sb2I9 

(P𝟑m1) 

doped with 

𝚫aaxis 𝚫amin 𝚫amax 𝚫𝜹𝑿 𝚫𝜹𝒀 𝚫𝜹𝒁 𝚫𝜹𝑿
𝒂𝒃𝒔 𝚫𝜹𝒀

𝒂𝒃𝒔 𝚫𝜹𝒁
𝒂𝒃𝒔 

Ag -0.16 -0.17 -0.13 0.0 0.0 0.0 0.0 0.0 0.0 

In -0.15 -0.15 -0.14 0.0 +0.06 +0.04 0.0 0.0 +0.07 

Mo -0.43 -0.30 -0.30 0.0 -0.1 -0.08 0.0 0.0 -0.13 

Nb -0.34 -0.25 -0.27 0.0 -0.05 -0.04 0.0 0.0 -0.07 

Sc -0.27 -0.21 -0.22 0.0 0.0 -0.01 0.0 0.0 0.0 

Bi +0.10 +0.04 +0.07 0.0 +0.01 0.0 0.0 0.0 +0.01 

Br (22.2%) -0.01 -0.18 -0.11 +0.06 +0.05 -0.01 0.0 +0.07 +0.04 

Cl (22.2%) -0.03 -0.17 -0.08 +0.11 +0.08 -0.02 -0.01 +0.11 +0.06 

          

Cs3Sb2I9 

(P𝟑m1) 

𝝋 𝜽 𝝍 𝜶𝒔𝒖𝒑 𝜶𝒊𝒏𝒇 𝜷𝒔𝒖𝒑 𝜷𝒊𝒏𝒇   

Pristine 23.93 39.78 71.61 71.22 70.53 70.52 69.83   

Cs3Sb2I9 

(P𝟑m1) 

doped with 

𝚫𝝋 𝚫𝜽 𝚫𝝍 𝚫𝜶𝒔𝒖𝒑 𝚫𝜶𝒊𝒏𝒇 𝚫𝜷𝒔𝒖𝒑 𝚫𝜷𝒊𝒏𝒇 

  

Ag +0.05 -0.18 +0.26 +0.03 -0.25 +0.26 -0.02   

In +0.21 -0.71 -0.76 -1.47 +0.57 -0.56 +1.48   

Mo +0.15 -0.5 +0.43 -0.18 -0.45 +0.46 +0.19   

Nb +0.15 -0.49 -0.24 -0.8 +0.18 -0.18 +0.81   

Sc +0.17 -0.57 +0.18 -1.01 +0.29 -0.28 +1.01   

Bi +0.01 -0.04 -0.46 -0.48 +0.44 -0.44 +0.48   

Br (22.2%) -0.08 +0.05 +1.63 -0.62 -0.9 -0.77 -1.05   

Cl (22.2%) -0.18 +0.07 +3.14 -1.23 -1.32 -1.61 -1.7   
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Table C8 - Deviation of geometrical parameters for the corresponding MX6 octahedra 

in the doped hexagonal Cs3Sb2I9 in relation to pristine. 

Cs3Sb2I9 

(P63/mmc) 

aaxis amin amax 𝜹𝑿 𝜹𝒀 𝜹𝒁 𝜹𝑿
𝒂𝒃𝒔 𝜹𝒀

𝒂𝒃𝒔 𝜹𝒁
𝒂𝒃𝒔 

Pristine 6.13 4.32 4.39 0.0 -0.17 -0.13 0.0 0.0 -0.21 

Cs3Sb2I9 

(P63/mmc) 

doped with 

𝚫aaxis 𝚫amin 𝚫amax 𝚫𝜹𝑿 𝚫𝜹𝒀 𝚫𝜹𝒁 𝚫𝜹𝑿
𝒂𝒃𝒔 𝚫𝜹𝒀

𝒂𝒃𝒔 𝚫𝜹𝒁
𝒂𝒃𝒔 

Ag -0.15 -0.16 -0.10 0.0 0.0 +0.01 0.0 0.0 +0.01 

In -0.13 -0.12 -0.11 0.0 -0.06 -0.04 0.0 0.0 -0.07 

Mo -0.44 -0.38 -0.32 0.0 +0.07 +0.05 0.0 0.0 +0.08 

Nb -0.35 -0.28 -0.26 0.0 +0.03 +0.03 0.0 0.0 +0.04 

Sc -0.24 -0.23 -0.18 0.0 -0.05 -0.03 0.0 0.0 -0.06 

Bi +0.09 +0.04 +0.07 0.0 0.0 +0.25 +0.21 0.0 +0.21 

Br (22.2%) +0.01 -0.10 -0.03 +0.02 +0.02 +0.01 0.0 +0.03 +0.02 

Cl (22.2%) +0.02 -0.26 -0.14 +0.01 +0.06 +0.01 -0.02 +0.04 +0.05 

          

Cs3Sb2I9 

(P63/mmc) 

𝝋 𝜽 𝝍 𝜶𝒔𝒖𝒑 𝜶𝒊𝒏𝒇 𝜷𝒔𝒖𝒑 𝜷𝒊𝒏𝒇   

Pristine 23.79 40.23 70.56 70.71 71.61 69.43 70.33   

Cs3Sb2I9 

(P63/mmc) 

doped with 

𝚫𝝋 𝚫𝜽 𝚫𝝍 𝚫𝜶𝒔𝒖𝒑 𝚫𝜶𝒊𝒏𝒇 𝚫𝜷𝒔𝒖𝒑 𝚫𝜷𝒊𝒏𝒇 
  

Ag -0.02 +0.07 +0.33 +0.26 -0.18 +0.18 -0.27   

In 0.09 -0.29 +0.57 +0.17 -0.54 +0.54 -0.16   

Mo 0.07 -0.25 -0.01 -0.37 +0.07 -0.06 +0.38   

Nb 0.08 -0.26 +0.88 +0.09 -0.41 +0.42 -0.09   

Sc 0.07 -0.22 +1.04 -0.08 -0.19 +0.20 +0.09   

Bi -0.04 +9.42 +0.38 +0.35 -0.21 +0.20 -0.36   

Br (22.2%) 1.39 -0.89 +3.32 -1.77 -0.75 -1.07 -0.08   

Cl (22.2%) 0.51 -0.01 +5.00 -2.05 -1.36 -2.46 -1.83   

 

 

 

 



 
 

270 
 

 

Figure C9– Illustration of the metal-halogen-metal angle in the octahedra of hexagonal 

(left) and trigonal (right) structures. 

 

Table C9 – Deviation of metal-halogen-metal angle (M-X-M) for MX6 octahedra in the 

doped hexagonal and trigonal Cs3Sb2I9 in relation to pristine. 

 

 

 

 

 

 

 

 

 

 

 

Cs3Sb2I9 (P𝟑m1) 

Dopant Pristine Ag In Mo Nb Sc Bi 

𝜽M-X-M 180.0 177.59 177.39 178.78 179.67 178.76 179.85 

𝚫𝜽M-X-M 0.0 -2.41 -2.61 -1.22 -0.33 -1.24 -0.15 

 

Cs3Sb2I9 (P63/mmc) 

Dopant Pristine Ag In Mo Nb Sc Bi 

𝜽M-X-M 78.17 79.10 80.33 80.34 80.94 81.14 78.52 

𝚫𝜽M-X-M 0.0 +0.93 +2.16 2.17 +2.77 +2.97 +0.35 
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C.2.3 Band structures and effective mass analysis 

 

Figure C10– Cs3Sb1.5M0.5I9 (P63/mmc) band structure for M = (a) Ag, (b) In, (c) Mo, (d) 

Nb, (e) Sc, and (f) Bi, respectively. Fermi level at 0 eV. 

 

 

Figure C11 – Cs3Sb1.5M0.5I9 (P3m1) band structure for M = (a) Ag, (b) In, (c) Mo, (d) 

Nb, (e) Sc, and (f) Bi, respectively. Fermi level at 0 eV. 

 

The data on effective mass calculated for each doped structure is presented on 

Table 9 of the manuscript. The values for the k[001] direction are not presented since 

they were not representative, with nearly flat bands in the Γ–A direction for all doped 

structures (see Figure C10 and C11). For both P63/mmc and P3m1 structures, the 
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effective masses for electrons increased in the k[100] direction for all doping cases, 

except for Bi-doped structures, with a slight decrease.  

The doped Cs3Sb2I9 (P63/mmc) structures maintained the hole effective mass in 

the k[100] direction approximately constant (around 1.1 me), except for the Ag and Mo-

doped structures in which representative effective masses could not be obtained due 

to very flat band structures. This can be attributed, in both cases, to the introduction of 

localized d states in the valence band that overlap the pristine Sb 5s orbitals reducing 

dispersion in the valence band. Furthermore, the anisotropic structure combined with 

the introduction of s2 electron lone pair from In electronic structure can lead to a higher 

hole effective masses (Brandt et al. 2015). The doped Cs3Sb2I9 (P3m1) structures 

present similar trend for their hole effective masses with significant increase in the 

cases of Ag, Mo and Nb doped, again due to the localized d orbitals introduced in the 

VBM. In this case, the flat band structure resulting from doping with Bi hindered 

obtaining a representative hole effective mass. 

In the case of electron effective masses, the increase is more prominent in the In- 

and Mo-doped P63/mmc and In- and Nb-doped P3m1 structures, which double or triple 

effective mass value decreasing carrier mobility substantially. Nb and Mo contribute 

substantially in the CBM of their corresponding doped structures and since d states 

are fairly localized and are not present in the pristine structure this increase is 

expected. In the case of indium doped structures, however, this effect is due to In 5s 

states in the conduction band disrupting the p-p character of interactions from the 

pristine structure. The composition of Cs3Sb1.5In0.5I9 CBM is illustrated in Figure C7. 

Sc and Bi-doped structures present similar effective masses to the pristine 

structure in the case of the hexagonal polymorph, however for the trigonal polymorph 

the hole masses increase significantly creating a flat band in the case of Cs3Sb1.5Bi0.5I9 

P3m1, this is due to a spurious contribution of Bi 6s states in the VBM that can be 

seen in Figure 32 on the main text. This contribution is absent in the case of the 

hexagonal structure and the geometric analysis in the BiI6 octahedra of both structures 

suggests that Bi stabilization in the hexagonal structure happens through octahedra 

tilting and central ion displacement (in Table C7 and C8, check  

Δ𝛿𝑍 and Δ휃 ). It is important to point out that since Bi is a heavy element, spin-orbit 

coupling which was not considered in our calculations would certainly influence the 
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obtained values. However, the point of introducing Bi is to evaluate the difference of 

this dopant in the distinct polymorphs which is likely to hold in a demanding HSE+SOC 

calculation necessary to obtain more accurate values. 

C.2.4 Formation energy data analysis 

 A multilinear regression model in R with the "caret" library and 10-fold cross-

validation was used to analyze the impact of certain predictors on the formation energy 

of substitutions with metal-doped structures. The predictors included atomic properties 

and Bader charge values for Sb and dopant metals, as well as bond distances. The 

results showed that Bader charge values for dopant metals and iodine had a strong 

influence on formation energies, with electronegativity and bond distance playing a 

role. Figure C12 presents a correlation matrix to assess covariances and their impact 

on model accuracy. It is clear that efficiently distributed charge and higher ionic 

character of the bond lead to lower formation energy. 

 

Figure C12 – Correlogram of the numeric variables on the created dataset for 

evaluating influences in the defect formation energy for the M-doped structures. 

Shown values have significance level of 95%. 
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C.2.5 ACBN0 calculations of the metal-doped Cs3Sb2I9 

The ACBN0 method (Agapito, Curtarolo, and Nardelli 2015) operates on the 

premise of self-consistently determining the local Coulomb repulsion parameter, U, 

within the DFT+U framework (Anisimov, Aryasetiawan, and Lichtenstein 1997). This 

compensates for the overdelocalization inherent in LDA and GGA exchange-

correlation functionals. In this approach, U values for distinct atomic sites are derived 

from the bare Coulomb and exchange interactions, computed via a renormalized 

occupation matrix resulting from the projection of DFT Kohn-Sham wave functions 

onto the minimal PAO-3G basis set (Agapito et al. 2013). These U values are 

iteratively converged through successive DFT+U calculations and projections. In our 

computations, convergence was achieved when changes in U values for each 

Hubbard site fell below 0.1 eV, adhering to the default implementation of ACBN0 in the 

AFLOW𝜋 package (Supka et al. 2017). This method offers notable advantages, 

including its adaptability to unique Hubbard sites and its significantly reduced 

computational expense compared to hybrid functionals. Hence, it emerges as one of 

the few viable methods for accurately predicting band gaps in data-driven research 

and investigations involving supercells, such as the present study. Notably, the 

ACBN0 method approaches the band gap accuracy attained by GW and HSE levels of 

theory, similar to the alternative low-cost mBJLDA (Tran and Blaha 2009) but with a 

better description of materials in which orbital-dependent potentials are important (S. 

H. Lee and Son 2020; Koller, Tran, and Blaha 2011). 

The calculation of Hubbard values with ACBN0 as implemented in AFLOW𝜋 

required norm-conserving pseudopotentials, we verified if the U values determined for 

the pristine structures would result in similar band structure when applied to the GBRV 

ultrasoft pseudopotentials. The results are presented in Figure C13 for both 

polymorphs and we cannot observe significant deviation on the band structure, this is 

in accordance to previous observations regarding transferability of ACBN0 Hubbard 

values (S. H. Lee and Son 2020). 
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Figure C13 - Band structure and projected density of states of pristine Cs3Sb2I9 

utilizing the ACBN0 method. Norm-conserving and ultrasoft pseudopotentials are 

displayed on the right and left, respectively, for the P3m1 polymorph (a-b) and 

P63/mmc polymorph(c-d). The Fermi level is marked at 0 eV.  

We present in Table C10 the ACBN0 converged Hubbard U values for pristine 

and doped structures, we can see that the pristine P3m1 structure presented UI5p 

value is in close agreement with our recent work (Gouvêa et al. 2024) applying DFT+U 

on Cs3Sb2X9 (X = Cl, Br, I) which presented UI5p = 4 eV.  
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Table C10 – ACBN0 converged Hubbard U values for pristine and doped Cs3Sb2I9 

polymorphs. 

Structure 
Hubbard values (eV) in given orbital 

Cs 5s Sb 5p I 5p In 5s Sc 3d 

Cs3Sb2I9 
(P63/mmc) 

 
 

   

Pristine (Sb) 0.00 0.06 4.21 - - 

In-doped 0.00 0.05 4.30 15.56 - 

Sc-doped 0.00 0.05 4.25 - 0.00 

Cs3Sb2I9 (P3m1)      

Pristine (Sb) 0.00 0.06 4.27 - - 

In-doped 0.00 0.04 4.32 15.56 - 

Sc-doped 0.00 0.05 4.27 - 0.00 
 

Table C11 presents the indirect and direct gap values for both pristine and the 

selected doped structures. Notably, all structures exhibit an increase in the band gap 

compared to PBE calculations, with values closely approaching experimental data for 

the pristine structures. Furthermore, the observed trend of the band gap shifting 

towards indirect for In-doped structures and slightly more direct for Sc-doped 

structures remains consistent. This indicates agreement between the plain PBE and 

ACBN0 methods regarding the overall spatial distribution of the orbitals. However, 

differences from the PBE results are more pronounced in the hexagonal structure, 

suggesting a stronger localization that is better captured with Hubbard corrections. 
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Table C11 – Direct and indirect band gap for ACBN0 calculated Cs3Sb2I9 pristine and 

doped structures for both polymorphs. 

Structure Indirect gap (eV) Direct gap (eV) Δ(direct-indirect) gap 

Cs3Sb2I9 (P63/mmc)    

Pristine (Sb) 2.45 (K*–Γ) 2.61 (M–M) 0.16 

In-doped 1.47 (K–Γ) 2.08 (Γ–Γ) 0.61 

Sc-doped 2.46 (K–Γ) 2.60 (M–M) 0.14 

Cs3Sb2I9 (P3m1)    

Pristine (Sb) 2.14 (K*–Γ) 2.16 (M–M) 0.02 

In-doped 1.76 (K*–Γ) 1.88 (A–A) 0.12 

Sc-doped 2.43 (K–Γ) 2.53 (M–M) 0.10 

K* is a point in the K - Γ high-symmetry line. 

 

C.3 Halogen doping 

Table C12 – Halogen substitution formation energy for Cs3Sb2I9 (P63/mmc) and 

Cs3Sb2I9 (P3m1) doped with Cl or Br in each of the inequivalent iodine sites of the 

corresponding perovskite. 

Structure Dopant 
Wyckoff 

position 
Ef[D] (eV) ∆Ef[D] (eV) 

Cs3Sb2I9 (P63/mmc)     

 Cl k -0.534 0.081 

  h -0.452  

 Br k -0.469 0.013 

  h -0.457  

Cs3Sb2I9 (P3m1)     

 Cl i -0.571 0.139 

  e -0.432  

 Br i -0.467 0.009 

  e -0.458  
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Table C13 – Formation energies for halogen doping, average Bader charge of Iodine 

in the Sb–I bond, and average Bader charge for the dopant halogen (X) in the Sb–X 

bond. 

Lattice and doped 

compound 
Ef[D] (eV)* 

Avg. Bader 

charge (I–Sb) 

Avg. Bader 

charge (X–Sb) 

Avg. Bader 

charge (Sb) 

Cs3Sb2I9 (P63/mmc)     

Cs3Sb2Br2I7 -0.469 -0.493 -0.592 1.041 

Cs3Sb2Cl2I7 -0.534 -0.494 -0.649 1.115 

Cs3Sb2I9 (P3m1)     

Cs3Sb2Br2I7 -0.458 -0.506 -0.562 1.039 

Cs3Sb2Cl2I7 -0.571 -0.509 -0.624 1.109 

*The formation energy was calculated with the substitution of one halogen atom. 

 

 

 

Figure C14 - Structures of the polymorphs (a) Cs3Sb2I9 (P63/mmc), and (b) Cs3Sb2I9 

(P3m1) doped with halogen (X = Br or Cl). Wyckoff positions for each bridging and 

terminal halogen is indicated.  
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Figure C15 - Projected density of states for Cs3Sb2I9 (P63/mmc) doped with (a) Br, and 

(b) Cl, respectively.  

 

 

Figure C16 - Projected density of states for Cs3Sb2I9 (P𝟑m1) doped with (a) Br, and (b) 

Cl, respectively.  
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Figure C17 - Charge density of Cs3Sb2I9 (P63/mmc) (a) pristine and doped with (b) Br, 

and (c) Cl, respectively. 

 

Figure C18 - Charge density of Cs3Sb2I9 (P𝟑m1) (a) pristine and doped with (b) Br, 

and (c) Cl, respectively. 

 

Figure C19 - Absorption coefficient for pristine and halogen-doped (a) Cs3Sb2I9 

(P3m1), and (b) Cs3Sb2I9 (P63/mmc). 
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APPENDIX D: Supporting Information for “Boosting feature-based 

machine learning models for materials science: encoding 

descriptors and graph-based features for enhanced accuracy and 

faster featurization in MODNet” 

D.1 Orbital field matrix featurizer  

This study follows the original Orbital Field Matrix (OFM) implementation from 

Lam Pham et al. (2017), as also found in the MatMiner featurizer. The neutral valence 

shell electronic configurations of elements can be represented as one-hot encoded 

vectors using an ordered dictionary, D = {s1, s2, p1, p2, ..., p6, d1, d2, ..., d10, f1, f2, ..., 

f14}. For example, Na and Cl have electronic configurations [Ne]3s1 and [Ne]3s23p5. 

Sodium can then be represented by a one-hot encoded vector with position s1 set to 1, 

while chlorine's vector has positions s2 and p5 set to 1 (remaining entries are zeros). If 

we consider these elements within a crystal structure, as illustrated in Figure D1, the 

OFM descriptor aims to capture the valence shell interactions in each site. 

 

Figure D1 - OFM representation for an Na atom in a regular octahedral site 

surrounded by six Cl atoms. Source: (Lam Pham et al. 2017) 

It is important that the descriptor captures site coordination and element distance 

from neighboring atoms. Therefore, the OFM for a central atom in a site (Xp) is defined 

as the weighted outer vector product of one-hot encoded atomic vectors, such as: 
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𝑋𝑖𝑗
𝑝
=∑𝑜𝑖

𝑝
𝑜𝑗
𝑘

𝑛𝑝

𝑘=1

휃𝑘
𝑝

휃𝑚𝑎𝑥
𝑝  

1

𝑟𝑝𝑘
 . (D1) 

Here, i, j ∈ D, k is the index of nearest-neighbor atoms, 𝑛𝑝 is the number of such 

atoms around site p, 휃𝑘
𝑝
/휃𝑚𝑎𝑥
𝑝

 represents the weight of atom 𝑘 in the coordination of the 

central atom at site 𝑝, 휃𝑘
𝑝
 is the solid angle determined by the Voronoi polyhedron face 

separating k and p, and 휃𝑚𝑎𝑥
𝑝

 is the maximum among 𝑛𝑝 of them. 𝑟𝑝𝑘 captures the 

distance separating atoms p and k, also distinguishing elements with the same 

valence configuration. To construct the OFM for a crystal structure local OFMs are 

summed, and the values are averaged by the number of sites: 

 

𝐹𝑖𝑗
 =

1

𝑁𝑝
∑𝑋𝑖𝑗

𝑝

𝑁𝑝

𝑝

  (D2) 

 

D.2 MEGNet framework and pre-trained models 

Figure D2 illustrates the architecture of the MEGNet framework based on a 

graph convolutional network. As depicted in the figure, the final MLP of the model 

preceding the output contains two sequential dense layers of 32 and 16. These values 

can be tuned for hyperparameter optimization as elaborated on the next section, 

particularly the default architecture corresponds to ℎ1 = 64, ℎ2  =  32, and ℎ3 = 16. In 

which ℎ1 influences the MLPs inside the MEGNet blocks. 
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Figure D2 - Architecture for the MEGNet model. In the pre-trained models used in this 

work the same architecture was present with three MEGNet blocks. The numbers in 

brackets are the number of neurons for each layer. Source: (C. Chen et al. 2019) 

 

D.3 Hyperparameter tuning 

D.3.1 Autoencoders’ hyperparameters 

The autoencoder architecture employed in this study consisted of a feedforward neural 

network constructed with the Keras framework (Chollet 2015) consisting of a single 

hidden layer for both the encoder and decoder. The number of neurons in the hidden 

layer was initialized at 2 times the number of features in the featurizer (𝑛), whether 

OFM or general MatMiner features. Architectures with two hidden layers were 

excluded in the preliminary tests, as were hidden layers with a number of neurons 

smaller than 𝑛, which yielded poorer results. Hyperparameter tuning was conducted in 

two steps. Initially, the features' compression was fixed at 50% (approximately 𝑛/2 

resulting features), and the optimal configuration was sought, considering the following 

possibilities, shown in Table D1. Adam optimizer was utilized for weight optimization 

during backpropagation (see Appendix A.13) For these combinations, the 

configurations with the smallest average reconstruction errors over three runs, 

employing a train-test split of 9:1, are presented in Table D2. 
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Table D1 – Hyperparameters and corresponding values considered for the 

autoencoder optimization. 

Hyperparameter Possible Values 

Batch Size 16, 32, 64, 128 

Number of Epochs 50, 100, 200, 300 

Learning Rate 0.0005, 0.001, 0.002 

 

Table D2 – Best hyperparameters for autoencoders in this work considering a 50% 

compression. 

Encoded featurizer 
Batch 

size 

Number of 

epochs 

Learning 

rate 

OFM 64 300 0.001 

MatMiner MODNet 

v.0.1.13  
64 200 0.0005 

Based on these parameters, we proceeded with a similar approach to vary the number 

of neurons in the dense layer, ranging from 1.5𝑛 to 2.5𝑛 in increments of 0.1𝑛. This 

time, we tested compressions of 20%, 50% and 80%. The combined loss for these 

compressions was assessed to identify the optimal architecture. As a result, the 

hidden layer sizes were determined to be 2.5𝑛 for the OFM featurizer and 2.2𝑛 for the 

MatMiner featurizer. The final architecture for each autoencoder is depicted in Figure 

D3.  

 

Figure D3 – Best autoencoder architectures found for MatMiner and OFM featurizers 

trained on matbench_v.0.1_mp_gap dataset. 
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Subsequently, the reconstruction loss was assessed for various levels of compression 

in each autoencoder, employing the same 9:1 train-test split. The results are outlined 

in Table D3 and Table D4. The encoder for MatMiner features consistently maintained 

the reconstruction error below 1%, even up to a compression to a latent-space size of 

10% of the initial features. In the case of OFM, the compression was highly efficient, 

remaining below 0.1% mean absolute error (MAE) for most tested latent space sizes. 

Consequently, the reconstruction error is not anticipated to significantly impact 

predictions. Nonetheless, the most suitable latent space size must be determined by 

evaluating their performances in prediction tasks. 

 

Table D3 – Reconstruction errors with different compression ratios for the autoencoder 

for MODNet’s v.0.1.13 MatMiner featurizer. Errors in data normalized to the interval 0 

to 1, metric for losses is MSE.  

Compression 
ratio 

Latent 𝒏 Train Loss 
Validation 

Loss 
Test MAE 

1.0* 1264 7.91e-05 7.69e-05 0.004789 

0.9 1137 8.66e-05 8.52e-05 0.005098 

0.8 1011 8.59e-05 8.04e-05 0.005010 

0.7 884 8.60e-05 9.20e-05 0.005309 

0.6 758 9.27e-05 9.45e-05 0.005411 

0.5 631 9.79e-05 1.06e-04 0.005733 

0.45 568 1.02e-04 1.13e-04 0.005880 

0.4 505 1.09e-04 1.14e-04 0.005929 

0.35 442 1.14e-04 1.28e-04 0.006269 

0.3 379 1.29e-04 1.44e-04 0.006624 

0.25 316 1.53e-04 1.64e-04 0.006962 

0.2 252 1.82e-04 1.85e-04 0.007387 

0.15 189 2.38e-04 2.32e-04 0.008094 

0.1 126 3.26e-04 3.24e-04 0.009452 

0.05 63 5.92e-04 5.87e-04 0.012396 

* A compression ratio of 1.0 indicates a remapping to a latent space with the same dimensions.  
Note the number of dimensions may not precisely match the original featurizer’s number of 
descriptors as some descriptors remain constant (0) throughout the dataset. 
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Table D4 – Reconstruction errors with different compression ratios for the autoencoder 

for OFM featurizer. Errors in data normalized to the interval 0 to 1, metric for losses is 

MSE.  

Compression 
ratio 

Latent 𝒏 Train Loss 
Validation 

Loss 
Test MAE 

1.0* 943 2.50e-05 3.26e-05 0.000898 

0.9 848 1.45e-05 1.55e-05 0.000718 

0.8 754 5.09e-06 6.69e-06 0.000534 

0.7 660 3.80e-06 5.10e-06 0.000518 

0.6 565 8.59e-06 1.04e-05 0.000915 

0.5 471 3.51e-06 4.80e-06 0.000474 

0.45 424 5.34e-06 6.53e-06 0.000507 

0.4 377 7.25e-06 1.02e-05 0.000608 

0.35 330 3.26e-06 5.01e-06 0.000442 

0.3 282 4.82e-05 5.38e-05 0.001278 

0.25 235 1.56e-05 1.61e-05 0.000750 

0.2 188 4.70e-06 8.52e-06 0.000742 

0.15 141 2.06e-05 2.66e-05 0.000790 

0.1 94 1.45e-05 2.10e-05 0.000821 

0.05 47 1.00e-05 1.13e-05 0.000837 

* A compression ratio of 1.0 indicates a remapping to a latent space with the same dimensions. 
Note the number of dimensions may not precisely match the original featurizer’s number of 
descriptors as some descriptors remain constant (0) throughout the dataset. 

 

D.3.2 MEGNet models’ hyperparameters 

 MEGNet models were trained to generate latent-space representations of 

encoded features (OFM and MatMiner features) and, in the case of the adjacent 

model, to produce general features based on the target property. No hyperparameter 

tuning was performed for the adjacent model, and the selected parameters are 

detailed in Table D5, relying on suggested values from MEGNet v1.3.2. All other 

parameters adhered to the default values in the MEGNet model function, including the 

utilization of 3 MEGNet blocks. 
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Table D5 – Hyperparameters applied for the adjacent MEGNet model training. 

Parameters not referred in the table follow the default values as of MEGNet’s version 

1.3.2.  

Hyperparameter Values 

nfeat_bond 100 

r_cutoff 5 

gaussian_width 0.5 

Number of epochs 100 

MLP architecture 

(ℎ1𝑥 ℎ2𝑥 ℎ3) 
64𝑥64𝑥128 

Batch size 128 

Learning Rate  0.001 

 

For the MEGNet models used to generate latent space features, 

hyperparameter tuning played a crucial role and was executed in three steps. Initially, 

the number of epochs was varied across three different MLP architectures. 

Subsequently, the batch size (initially set at 32) and learning rate (default value of 

0.001) were adjusted, with a new screening for the optimal number of epochs. Finally, 

a verification step was undertaken to assess whether increasing ℎ1 in the MLP 

architecture from 64 to 128 would yield improvement. This process resulted in a total 

of 37 trained models, all evaluated on the same train-test split, with 20% of the dataset 

reserved for testing. All hyperparameter values considered for the respective 

optimization cases are presented in Table D6. 

Table D6 – Considered hyperparameter values for MEGNet models to generate 

encoded features for OFM and MatMiner featurizers.  

Hyperparameter Possible Values 

Number of epochs 10, 15, 20, 25, 30, 50, 70, 100 

MLP architecture 

(ℎ1𝑥 ℎ2𝑥 ℎ3) 

ℎ1 64, 128 

ℎ2 𝑥 ℎ3 (16𝑥32), (32𝑥64), (64𝑥128) 

Batch size 16, 32, 64, 128 

Learning Rate 0.0005, 0.001, 0.002 
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A MEGNet model was trained to generate the latent OFM representation (20% 

compression), producing 188 features, and another MEGNet model to generate the 

latent representation of Matminer features (60% compression), producing 758 

features. A few selected results for both MEGNet models considered are shown in 

Table D7. We can observe the relevance of hyperparameter tuning on the final loss of 

these models. Despite the substantial number of features, the MEGNet framework was 

very successful in reproducing the latent space features directly from the structure. 

Even for the more heterogeneous and large set of MatMiner features, the error was 

about 0.03, which corresponds to 3% of the total variation within each normalized 

feature. 

Table D7 – MEGNet models’ hyperparameters and reconstruction loss for generation 

of latent space features. Evaluation conducted on normalized features (range 0 to 1), 

highlighted in grey was the best obtained model on the hyperparameter screening.  

Encoded 

featurizer 

Hyperparameters 
Reconstruction Loss 

(MAE) 

Number of 

epochs 

Batch 

size 

Learning 

rate 

MLP architecture 

(ℎ1𝑥 ℎ2𝑥 ℎ3) 
Training Test 

Latent OFM,  

20% compression 

(188 features) 

15 32 0.0005 64 𝑥 64 𝑥 32 0.0180 0.0182 

25 64 0.001 64 𝑥 64 𝑥 32 0.0164 0.0166 

15 128 0.001 64 𝑥 64 𝑥 32 0.0137 0.0138 

25 32 0.0005 64 𝑥 128 𝑥 64 0.0131 0.0132 

25 32 0.001 64 𝑥 128 𝑥 64 0.0126 0.0127 

Latent MatMiner 

MODNet v.0.1.13, 

60% compression 

(758 features) 

50 16 0.001 64 𝑥 32 𝑥 16 0.0671 0.0671 

20 64 0.0005 64 𝑥 128 𝑥 64 0.0484 0.0486 

30 16 0.001 64 𝑥 32 𝑥 16 0.0393 0.0393 

20 128 0.001 128 𝑥 128 𝑥 64 0.0324 0.0326 

50 128 0.0005 64 𝑥 128 𝑥 64 0.0306 0.0308 

 

D.4 SHAP values analysis 

In understanding complex machine learning models, SHAP (SHapley Additive 

exPlanations) emerges as a robust tool for revealing feature contributions (Lundberg 

and Lee 2017). SHAP values (ϕ) provide a clear view of how each feature influences 

predictions, employing Shapley values from cooperative game theory obtained through 

the formula, 
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𝜙𝑖(𝑓)  =  
1

𝑁
  ∑

|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!
 

𝑆 ⊆ 𝑁 ∖ {𝑖}

[𝑓(𝑆  ∪  {𝑖})  −  𝑓(𝑆)], (D3) 

ensures a fair distribution of contributions, capturing the unique impact of each feature 

on model predictions. In the equation, the factorial terms in the denominator are crucial 

for normalization. The factorial function, denoted by the exclamation mark, represents 

the product of all positive integers up to a given integer 𝑛. Specifically, the terms 

|𝑆|! (|𝑁| − |𝑆| − 1)! and |𝑁|! ensure that contributions from each feature are 

appropriately scaled relative to the size of subsets (𝑆) and the total number of features 

(𝑁). Normalization plays a pivotal role in ensuring a fair and unbiased distribution of 

feature contributions. By accounting for the varying sizes of feature subsets and the 

entire set of features, the formula effectively weights each feature's contribution. This 

weighting ensures that the impact of individual features on model predictions is 

accurately reflected, without being overshadowed by the influence of larger feature 

sets. 

Across a wide range of machine learning models, SHAP analysis serves as a 

valuable tool for assessing feature contributions. Implementation of SHAP analysis in 

MODNet neural networks was seamlessly achieved in this work using the shap python 

library (Lundberg and Lee 2017). However, it is important to note that the 

computational cost is considerably higher compared to simpler tree-based models. For 

instance, computing our SHAP summary plots containing 300 samples with 500 

perturbations each took approximately 1 hour on 24 CPU cores. Nonetheless, we 

believe this computational expense is reasonable and worthwhile for recovering model 

interpretability.  

When applied to tree-based models like XGBoost (T. Chen and Guestrin 2016) 

the inherent additivity and independence within tree ensembles streamline the SHAP 

calculation process, enabling fast parallel computation of contributions from individual 

trees. Consequently, XGBoost was selected as the model for generating surrogate 

models to decompose the contributions of chemical descriptors on the encoded 

GNN/latent-space features. Remarkably, these computations only required a few 

minutes in the same setup applied to the neural networks. 
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In all GNN and encoded features, such as those from Adjacent GNN, 

MEGNetPreL32 GNN and ℓ-OFM the encoded features can be correlated with other 

interpretable features derived from the same structures. For the latent-space OFM this 

can be done by direct comparison with the original OFM features. For the 

MEGNetPreL32 and Adjacent model features, we can still extract chemical information 

since the model also contains other interpretable features. To achieve this, we trained 

an XGBoost model for latent OFM features, predicting each feature from the original 

OFM features using the initial dataset employed for autoencoder training. Similarly, for 

MEGNetPreL32/Adjacent features, we trained an XGBoost model to predict the 

respective feature using both the original MatMiner features and the latent-space OFM 

features incorporated into the model. The XGBoost models were base to calculate the 

SHAP values offering clarity on the relationship of the selected features with 

interpretable properties.  

D.4.1 SHAP analysis of MODNet model with “MM + ℓ-OFM + MEGNetPreL32” for 

matbench_perovskites 

MODNet's feature selection algorithm, applied to MatMiner features, 

demonstrates a strong correspondence with the most important features for model 

prediction, aligning well with chemical intuition. However, when both ℓ-OFM and 

MEGNetPreL32 are included, although the algorithm correctly incorporates ℓ-OFM 

features, resulting in an increase in final accuracy, their attributed importance is 

relatively low, with these features appearing only in the second half of the selected 

features list to train the neural network. The significant accuracy boost observed when 

ℓ-OFM features are included highlights a limitation of the algorithm, likely related to a 

high degree of redundancy between ℓ-OFM and MEGNetPre32 features. This 

limitation is circumvented for our models by employing the more precise SHAP value 

analysis on the MODNet model. As illustrated in Figure D4, both ℓ-OFM and 

MEGNetPreL32 emerge now among the top 20 features in the model, as expected. 
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Figure D4 – SHAP analysis plot of the MODNet model with the features MM + ℓ-OFM 

+ MEGNetPreL32. 

The ℓ-OFM features are decomposed in chemical descriptors in Figure D5 

through the XGBoost surrogate models. Similarly, the three most relevant pre-trained 

MEGNet model features are decomposed in MM and ℓ-OFM descriptors in Figure D6. 
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Figure D5 – SHAP analysis plot presenting original OFM contributions to the most 

relevant ℓ-OFM features in the MODNet model with “MM + ℓ-OFM + MEGNetPreL32” 

features. On the left (a), for the 50th ℓ-OFM component and, on the right (b), for the 19th 

ℓ-OFM component. 

 

Figure D6 – SHAP analysis plot presenting the decomposition in MatMiner chemical 

descriptors and ℓ-OFM of the most relevant MEGNetPreL32 features in the MODNet 

model with “MM + ℓ-OFM + MEGNetPreL32” features. From left to right, the 

components for neurons #3 (a), #16 (b) and #22 (c). 
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D.4.2 SHAP analysis of MODNet model with OMEGA features for 

matbench_perovskites  

The most important features of the MODNet model with OMEGA features are 

presented in Figure D7 on the SHAP analysis plot. The adjacent features take 

precedence in the prediction, followed by the features of the pre-trained MEGNet 

formation energy model and MEGNet ℓ-OFM encoded features corresponding well to 

the results previously seen on the 'MM + ℓ-OFM + MEGNetPreL32' model. 

 

Figure D7 – SHAP analysis plot of the MODNet model for the matbench_perovskites 

task with the OMEGA features. 

 



 
 

294 
 

 

The decomposition of the adjacent model into MatMiner features is shown in the 

SHAP analysis plot in Figure D8. We can observe that, compared to the pre-trained 

MEGNet models, the adjacent model captures more subtle patterns such as 

geometrical fingerprints and sine Coulomb matrix eigenvalues. These nuances may be 

associated with its improved performance. 

 

Figure D8 – SHAP analysis plot presenting the decomposition in MatMiner chemical 

descriptors and ℓ-OFM of the most relevant adjacent model features in the MODNet 

model with OMEGA features. From left to right, the components for neurons #8 (a), 

#24 (b) and #12 (c). 
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D.4.3 SHAP analysis of MODNet model with OMEGA features for OQMD halogen 

stability task 

 The most important features of the MODNet model with OMEGA features for 

the OQMD halogen task on stability are presented in Figure D9 on the SHAP analysis 

plot. A notably uniform distribution of SHAP values across the features for this task is 

evident. The adjacent features ranking higher in the SHAP plot were correlated to 

chemical descriptors in Figure D10. Similarly, the encoded ℓ-OFM entries within the 

top features in the SHAP plot were analyzed for the associated original OFM 

components in Figure D11.  

 

Figure D9 – SHAP analysis plot of the MODNet model with the OMEGA features for 

the stability task on the OQMD halogen dataset. 
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Figure D10 – SHAP analysis plot presenting the decomposition in MatMiner chemical 

descriptors and ℓ-OFM of the most relevant adjacent model features in the MODNet 

model with OMEGA features. From left to right, the components for neurons #32 (a), 

#8 (b) and #10 (c). 

 

Figure D11 – SHAP analysis plot presenting original OFM contributions to the most 

relevant ℓ-OFM features, produced with the MEGNet model, in the MODNet model 

with OMEGA features. On the left (a), for the 128th ℓ-OFM component and, on the right 

(b), for the 75th ℓ-OFM component. 
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D.4.4 SHAP analysis of MODNet model with OMEGA features for OQMD halogen 

band gap task 

The most important features of the MODNet model with OMEGA features for 

the OQMD halogen task on band gap are presented in Figure D12 on the SHAP 

analysis plot. It is clear that the pretrained MEGNet model features on band gap 

regression (Bandgap_MP_2018) as well as the adjacent model features dominate the 

prediction. The pretrained MEGNet band gap features ranking higher in the SHAP plot 

were correlated to chemical descriptors in Figure D13. This procedure was repeated 

for the adjacent model features within the top features in the SHAP in Figure D14. 

 

Figure D12 – SHAP analysis plot of the MODNet model with the OMEGA features for 

the band gap task on the OQMD halogen dataset. 
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Figure D13 – SHAP analysis plot presenting the decomposition in MatMiner chemical 

descriptors and ℓ-OFM of the most relevant MEGNetPreL32 features in the MODNet 

model with OMEGA features for band gap prediction. From left to right, the 

components for neurons #28 (a), #9 (b) and #5 (c). 
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Figure D14 – SHAP analysis plot presenting the decomposition in MatMiner chemical 

descriptors and ℓ-OFM of the most relevant adjacent model features in the MODNet 

model with OMEGA features for band gap prediction. The adjacent features include 

the neurons #6 (a), #7 (b), #3 (c) and #29 (d). 
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APPENDIX E: Supporting Information for “Machine Learning-

Assisted Exploration of 111-Type 2D Perovskite Structures for 

Photovoltaic and Optoelectronic Applications: A High-Throughput 

Screening Approach” 

E.1 (111)-type perovskites structure generation 

To obtain our properly scaled, decorated (111)-type perovskites, we start with the 

prototype 1 × 1 × 2 supercell structure of A3B2X9 (𝑃3̅𝑚1). We chose to use 6 

permutations for the atoms in each elemental site to guarantee all possible B-site 

arrangements are included, notably for the case of 2 different species occupying each 

of the 4 B-sites in the supercell, we have 6 distinct arrangements. This supercell 

possesses minimal dimensions of 𝑎 = 𝑏 = 4 Å and 𝑐 = 10 Å, ensuring that all nearest 

neighbor atoms are close together. Following the substitution of elements from Table 

E1 onto this prototype supercell, we use the pymatgen functions to obtain average 

cationic and anionic radius of each corresponding ion in the structure, by comparing 

the distances between ions and the sum of their ionic radius, the unit cell is gradually 

scaled until all distances are greater than the sum of ionic radius of the involved 

elements. Finally, the axes are optimized individually, to determine the smallest unit 

cell which attends the previous condition. This optimization aims to assist CHGNet to 

provide better estimates for the energies, by avoiding presenting the model geometries 

too dissimilar from the configurations presented during training.  
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Table E1 – Digital object identifiers for the works used for the selection of the elements 

in the initial set.   

Chosen 

elements 
Reference DOI 

Chosen 

element

s 

Reference DOI 

A-site  B-site  

 
K 10.1021/acs.chemmater.7b02013 

 

Y 

chemically similar to stabilizer 

Sc3+, 

10.1016/j.jsamd.2024.100700 

Rb 10.1021/acs.chemmater.7b02013  Zr 10.1002/er.7929 

 Cs 10.1021/acs.chemmater.7b02013 
 

Nb 
similar ionic radius to Sb3+, 

10.1016/j.jsamd.2024.100700 

B-site   Mo 
similar ionic radius to Sb3+, 

10.1016/j.jsamd.2024.100700 

 

Si 10.1021/acs.chemmater.7b02013 
 Ag 10.1002/solr.202000616, 

10.1016/j.jsamd.2024.100700 

Ca 10.1002/solr.202000616 

 In 10.1021/acs.jpcc.7b02221, 

10.1103/PhysRevApplied.13.0240

31 

 Sc 
similar ionic radius to Sb3+, 

10.1016/j.jsamd.2024.100700 

 Sn 10.1021/acs.chemmater.7b02013 

 Ti 10.1039/D2NR02761E  Sb Well known A3Sb2X9 (X=Cl,Br,I) 

 V 10.1039/D2NR02761E  Te 10.1021/acs.chemmater.7b02013 

 Cr 
similar to Mn and Fe, 

10.1039/D0RA09270C 

 Ba 10.1002/solr.202000616 

 Mn 10.1039/D0RA09270C  Pb 10.1021/acs.chemmater.7b02013 

 Fe ICSD #22074: Cs3Fe2Cl9  Bi Well known A3Bi2X9 (X=Cl,Br,I) 

 Co 
Similar to Mn and Fe, 

10.1002/smtd.202300095 

   

 Ni 10.1021/acs.chemmater.7b02013 X-site  

 Cu 10.1002/solr.202000616  F 10.1007/s12034-023-02890-x 

 Zn 10.1002/solr.202000616  Cl - 

 Ga 
10.1021/acs.jpcc.7b02221, 

10.1002/er.7929 

 Br - 

 Ge 10.1021/acs.chemmater.7b02013  I - 

 Se 10.1021/acs.chemmater.7b02013  O 10.1016/j.cogsc.2022.100669 

 Sr 10.1002/solr.202000616 
 S 10.1021/acs.jpcc.6b00920, 

10.3390/nano10112284 

https://doi.org/10.1016/j.jsamd.2024.100700
https://doi.org/10.1016/j.jsamd.2024.100700
https://doi.org/10.1016/j.jsamd.2024.100700
https://doi.org/10.1016/j.jsamd.2024.100700
https://doi.org/10.1016/j.jsamd.2024.100700
https://doi.org/10.1016/j.cogsc.2022.100669
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E.2 Ensemble MODNet model training and evaluation 

The base dataset for all our evaluations was based on the Open Quantum 

Materials Database (OQMD), version v1.5, this dataset was however filtered removing 

structures whose stability was above the threshold of 2.9 eV/atom, corresponding to 

0.1% of the structures. This filtering was shown to improve model generalization in 

preliminary tests. For every model trained the dataset was divided in training and test 

set with a 95:5 split, the test set presented similar statistics to the training set (mean, 

maximum and minimum values) regarding the values of the target property and the 

training set provided good generalization for prediction on test data. This test set is 

isolated while the training dataset undergoes k-fold splitting and ensemble MODNet 

models are trained on each k-fold. We used a k of 5 for all models except for the band 

gap regressor, which due to the smaller number of samples generalized better with 

k=10. Finally, these MODNet models are combined forming a deep ensemble model. 

Evaluation metrics reported throughout the paper are mean absolute error (MAE), 

coefficient of determination (R²) for regression tasks of stability and band gap. For the 

classification model on band gap the evaluation metric was the area under the 

receiving operator curve (AUCROC).  We report validation metrics, evaluated as the 

mean of the ensemble in each k-fold, and test metrics, evaluated on the isolated test 

set. In Table E2, specific descriptions for each of the considered dataset and models 

are reported.  
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Table E2 – Description of Ensemble MODNet models which were trained in this work 

presenting number of samples in training and test set, as well as k-value for k-fold 

splitting to train the ensemble MODNet models.  

Model name Dataset description 
Number of samples in 

dataset 

k 

value 

General protostructure 

stability estimator 

OQMD dataset* filtered from stability 

outliers, featurized with 

InvariantMatMiner2023 

1,020,487 5 

Active learning 

M3GNet stability 

estimator for (111)-

type perovskites 

M3GNet relaxed (111)-type 

perovskites with estimated stability on 

OQMD dataset*, featurized with 

InvariantMatMiner2023 

Variable 

(15,000 -30,000) 
5 

Halogen containing 

stability estimator 

OQMD dataset* filtered from stability 

outliers keeping only halogen-

containing structures, featurized with 

OMEGA+ROSA 

30,645 5 

Halogen containing 

band gap estimator 

OQMD dataset* filtered from stability 

outliers keeping only halogen-

containing structures, featurized with 

OMEGA+ROSA 

8,347 10 

Halogen containing 

band gap classifier 

OQMD dataset* filtered from stability 

outliers keeping only halogen-

containing structures, featurized with 

OMEGA+ROSA 

30,645 5 

*OQMD dataset includes in-group data with additional 36 datapoints on (111)-type antimony perovskites. 
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E.3 OMEGA + ROSA MODNet featurizer 

Since the prediction of stability is a challenging task for ML models, we employed a 

more encompassing featurizer which could make use of GNN models flexibility, and 

descriptors derived from a one-shot ab-initio calculation. This featurizer utilizes three 

sets of features, namely: 

1. General geometric, electronic, and chemical descriptors: these features all 

derive from the default MODNet featurizer, MatMiner2023. 

2. GNN/latent-space electronic descriptors: we developed a set of descriptors all 

based on GNN models to harness their flexibility and fast calculation. These are 

included on top of MatMiner2023 features in what we called OMEGA featurizer 

standing for “encoded OFM + pre-trained MEGNet + Adjacent MEGNet 

models”. This featurizer can significantly improve MODNet predictions in most 

tasks and its detailed derivation is provided elsewhere (see Chapter 5). 

3. Ab-initio derived descriptors: inspired by the work of Tawfik and Russo (2022) 

we included in our featurizer their Robust One-Shot Ab-initio (ROSA) features 

which contain computations of eigenvalues and energies for the structure 

through DFT but from a simple initialization of linear combination of atomic 

orbitals (LCAO). These features can be easily computed with a script provided 

by the authors which uses the open-source DFT code GPAW to calculate the 

one-shot quantities (Enkovaara et al. 2011).   

We also included some geometrical functions from the work of Tawfik and Russo 

(2022), namely the G symmetry functions, including a total of about 600 features in 

the model. The final dataset after the application of the OMEGA + ROSA featurizer 

includes over 5000 features; to perform feature selection we employ XGBoost to 

reduce the set of features to 1500 with its fast assessment of feature importance 

and subsequently, we employ MODNet’s advanced feature selection algorithm to 

determine the final set of features to be utilized by the model. 
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E.4 Detailed workflow for our machine-learning screening method  

One-shot M3GNet screening:  

The first step in the workflow was to run each of the decorated prototype (111)-

type perovskite structures through CHGNet (v. 0.3.3) and evaluate their total energy; 

this is a very fast computation because force computation is not required. We reduce 

to a single optimal structure for each composition based on the assumption that, 

although they are not in their equilibrium positions, CHGNet should be able to 

distinguish the most advantageous atomic arrangements for each structure. The 

100,627,800 structures are then reduced to 470,610 structures with unique 

compositions, this forms the global pool of candidate structures for subsequent 

screening in the active learning cycle. 

 

Protostructure ML screening:  

The subsequent step involves creating descriptors for the entire global pool of 

structures which is done with a modification of the default pre-defined MatMiner2023 

featurizer MODNet v0.4.1. Particularly, the composition-only features are used in their 

original form while the structure-based featurizer is reduced to only features invariant 

under relaxation by considering only bond fractions and essential statistics related to 

coordination number, geometrically determined through nearest neighbor analysis. 

This approach allows for comparison between our unrelaxed decorated structures and 

fully relaxed structures present in materials databases since the model effectively 

considers only structure prototypes. This featurizer is referred as 

InvariantMatMiner2023 throughout this work. With the structures properly described, 

we evaluate them with an ensemble MODNet model trained on the outlier filtered 

OQMD dataset for stability prediction. Detailed description of the datasets and training 

is provided on Appendix E.2.  

After evaluating the decorated (111)-type perovskites with the model, a threshold 

of 35 meV/atom in decomposition energy is established to filter unlikely compositions. 

This threshold takes into account the estimated decomposition of various structures 

reported experimentally and is presented in Table E3. Additionally, upon observing the 

table, it becomes evident that the inclusion of our in-group data (Gouvêa et al. 2024; 

Exner et al. 2024)  on alloyed (111)-perovskites (36 data points) significantly improves 
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predictions, especially for halogen-alloyed perovskites. Henceforth, when mentioning 

the OQMD dataset, it refers to the dataset filtered for stability outliers that includes our 

in-group data. 

Since the MODNet models employed are ensembles, they can easily provide 

uncertainty estimates for predictions. Utilizing the predicted stability and uncertainty, 

we establish the upper limit for the decomposition energy of each structure. 

Subsequently, we sort the structures by their lower decomposition energy upper limit. 

Finally, we extract 15,000 samples from this sorted dataset, with 70% (10,500) 

presenting the lowest Estab upper limits, and the remaining 30% (4,500) comprising 

structures that optimize the acquisition function. This set of structures forms the initial 

pool for the active learning cycle. Entropy is normalized and averaged across all 

features in a sample in the pool in relation to the samples with lowest Estab included. 

Entropy and uncertainty are then normalized according to the range of values in the 

pool, and their product results in the final acquisition value for each sample. Therefore, 

entropy and uncertainty were given the same weight in the acquisition function.  
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Table E3 – Estimated stability from considered protostructure-based MODNet model in 

experimentally reported (111)-type perovskites.  

ICSD reported 

structure 

Protostructure stability estimator, 

Trained on original OQMD + 

our group data* 

Protostructure stability estimator, 

trained on original OQMD 

 

prediction std 
upper limit 

(prediction+std) 
prediction std 

upper limit 

(prediction+std) 

Cs3Sb2I9 
(ICSD: #39822) 

-10.8 14.7 3.8 -8.5 11.4 2.9 

Cs3Sb2Br9 

(ICSD: #39824) 
-17.7 13.5 -4.2 -18.6 17.1 -1.5 

Cs3Sb2Cl9 

(ICSD: #22075) 
-22.5 19.5 -3.0 -21.8 22.4 0.6 

Cs3Sb2BrCl8 

(ref: §1) 
7.6 6.6 14.2 17.3 6.5 23.8 

Cs3Sb2Br2Cl7 

(ref: §1) 
5.7 4.3 10.0 7.3 4.6 11.9 

Cs3Sb2(BrCl2)3 

(ref: §1) 
4.4 3.9 8.3 4.6 7.1 11.7 

Cs3Fe2Cl9 
(ICSD: #22074) 

1.6 4.4 6.0 -17.5 3.1 -14.5 

Rb3Sb2Br9 
(ICSD: #39823) 

-17.7 13.5 -4.2 -6.1 6.7 0.5 

Cs3Bi2Br9 
(ICSD: #1142) 

-21.2 7.4 -13.9 -7.6 17.2 9.6 

(ref: §1) - (A. Pradhan, Jena, and Samal 2022) 

 

Active learning (AL) cycle:  

The initial pool of structures for AL undergo relaxation with CHGNet imposing the 

criteria for relaxation of maximum force of 0.00001 eV/Å and maximum number of 

steps 1000. This procedure determines the optimal volume and lattice parameters 

before ionic relaxation and is constrained to small steps to avoid instability. The 

decomposition energy or stability (Estab) can be determined from the total energy per 

atom of these relaxed structures along with their composition. By deducting the 

reference energy of the constituent atoms from the total energy (see Chapter 2, 

equation 11) the formation energy of the compound is obtained. The convex hull 

compounds corresponding to each structure composition is obtained from OQMD 

database and the grand canonical linear programming (GCLP) method (Saal et al. 
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2013; Kirklin et al. 2015). Finally, 𝐸𝑠𝑡𝑎𝑏
𝐶𝐻𝐺𝑁𝑒𝑡 an estimate of the stability using the 

CHGNet relaxed structure energy is obtained. Notice the different notation to 

underscore that the total energy of the candidate structure was obtained with the MLIP 

and may be subject to diverse biases on the training data and will be only an 

approximation to the total energy explicitly obtained with DFT (Estab).    

Once 𝐸𝑠𝑡𝑎𝑏
𝐶𝐻𝐺𝑁𝑒𝑡 is obtained for all structures in the initial pool, an ensemble 

MODNet model is trained with the InvariantMatMiner2023 featurizer to predict the 

MLIP stability. This model guides the selection of a new set of structures from the 

global pool of candidate structures, which had already been featurized with 

InvariantMatMiner2023. Based on the same criteria applied to obtain the initial pool for 

AL, structures are excluded if estimated decomposition energy is above 35 meV/atom 

and they are then selected based on the lowest upper limit of the decomposition 

energy (70% of the total) and those structures that maximize the acquisition function 

(30% of the total). We applied a step of 2,500 structures added for each AL cycle. The 

size of the initial dataset (15,000) and the increment (2,500) in each AL cycle were 

defined arbitrarily aiming for a compromise on improving model generalization and 

sensible number of structures for the cost of fully relaxing structures, evaluating 

𝐸𝑠𝑡𝑎𝑏
𝐶𝐻𝐺𝑁𝑒𝑡 and featurizing each structure for the ML models.  

We noticed later however that the initial dataset was quite extensive, and the 

model could generalize well with about 9,000 structures, this was verified comparing 

the evaluation metrics of the original model and a model starting with 3,000 structures 

model, these results are shown in Table E4. The AL cycle ends when the predicted 

most stable structures remaining in the pool present 𝐸𝑠𝑡𝑎𝑏
𝐶𝐻𝐺𝑁𝑒𝑡 > 45 meV/atom. In our 

case, this led to 6 active learning steps, resulting in a total set of 30,000 structures. All 

structures in the set with 𝐸𝑠𝑡𝑎𝑏
𝐶𝐻𝐺𝑁𝑒𝑡 < 45 meV/atom form the final AL pool of candidate 

materials.  
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Table E4 – Mean absolute error for the test set for protostructure MODNet models 

implemented during the active learning cycle for Estab. Models are identified as 

“production” for the models actually used for the active learning screening, and 

“testing” for the test on the effect of the number of samples.  

Identification of the 

model  
Number of 
samples 

MAE 
(meV/atom) 

Testing 3,000 25.0 

Testing 6,000 18.2 

Testing 9,000 16.5 

Testing 12,000 15.1 

Production 15,000 14.9 

Production 17,500 15.1 

Production 20,000 16.1 

Production 22,500 17.8 

Production 25,000 14.9 

Production 27,500 15.5 

Production 30,000 14.3 

 

Structure ML screening:  

The final AL pool of candidate materials are now described with a more complex 

and demanding descriptor, MODNet’s OMEGA+ROSA featurizer which is fully detailed 

on Appendix E.3. The halogen-containing structures from OQMD are also featurized 

with OMEGA+ROSA featurizer and the ensemble MODNet models are trained for 

stability and band gap classification, where a band gap < 0.5 eV is considered metallic 

and above 0.5 eV considered semiconductor. The use of 0.5 eV band gap instead of 0 

eV to classify the structures introduced a bias that improved the ability of the model to 

differentiate semiconductors in our tests. Utilizing again the structures with band gap > 

0.5 eV a new subset of structures is produced to train for band gap regression. 

Detailed information on the model training and datasets is provided on Appendix E.2. 

The use of the OMEGA+ROSA features is justified when the evaluation metrics are 

compared to employing the default MatMiner2023 featurizer or the OMEGA featurizer 

to generate descriptors for MODNet, as shown in Table E5. After applying the models 

on the final AL pool of candidate materials, we select those with predicted 

decomposition energy below 35 meV/atom, materials classified as semiconductors, 
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and a band gap less than 3.5 eV. In the end, our machine learning screening identifies 

4336 structures that meet these requirements. 

Table E5 – Evaluation metrics for structure-based MODNet models with different 

featurizers. N represents the number of samples provided for the task. 

Featurizer 

Stability 

(N=30,645) 

Band gap 

classifier 

(N=30,645) 

Band gap estimator 

(N=8,347) 

MAE (meV/atom) AUCROC MAE (eV) 

Validation Test Validation Test Validation Test 

Default 

MatMiner2023  
30.1 55.7 0.799 0.714 0.218 0.472 

OMEGA 28.8 52.5 0.904 0.764 0.198 0.404 

OMEGA+ROSA 28.1 49.6 0.866 0.768 0.177 0.376 

 

ML phonon screening: 

 The structures which passed our criteria of stability and band gap are checked 

now with a dynamical stability estimate by a phonon band structure calculation through 

CHGNet relaxation (3000 relaxation steps or maximum force below 0.0001 eV/Å) and 

frozen phonon method. We defined a threshold to filter structures which negative 

phonon frequency (𝜔𝑚𝑖𝑛) was below −0.35 THz since a more negative frequency is 

usually associated with more unstable structures. This is based on general 

observation of experimentally reported structures present in our dataset and groups of 

structures with multiple substitutions which show a consistent pattern as presented on 

Table E6. Applying these criteria, we could reduce the dataset from 4336 to 2991 

structures.  

Table E6 – Average minimum phonon frequency for ML screened structures 

considering different group of structures. 

Group of ML screened 

structures Average 𝜔𝑚𝑖𝑛  

Experimentally reported   −0.205 

3 distinct elements −0.255 

4 distinct elements −0.272 

5 distinct elements −0.290 

Oxygen-containing −0.506 
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Figure E1 – Phonon density of states calculated with CHGNet for the set of 

experimentally reported (111)-type perovskite structures considered in this work.  

 

Figure E2 – Phonon density of states calculated with CHGNet for O-containing (111)-

type perovskite structures screened by the ML models within thresholds considered in 

this work.  



 
 

312 
 

E.5 SHAP analysis of structure-based MODNet models 

 

 

Figure E3 – SHAP analysis plot of the structure-based MODNet model for the stability 

task trained on the OQMD halogen-containing dataset. 
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Figure E4 – SHAP analysis plot presenting the decomposition in interpretable 

chemical and geometrical descriptors of the most relevant GNN adjacent model 

features in the structure-based MODNet model for stability prediction. The adjacent 

features include the neurons #24 (a), #11 (b), #26 (c) and #13 (d). 

 

 

 



 
 

314 
 

 

Figure E5 – SHAP analysis plot presenting the decomposition in interpretable 

chemical and geometrical descriptors of the most relevant adjacent GNN model 

features in the structure-based MODNet. The features include the adjacent GNN 

model neurons #8 (a), #1 (b) and #23 (c). 
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Figure E6 – SHAP analysis plot of the structure-based MODNet model for the band 

gap task trained on the OQMD halogen-containing dataset. 
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Figure E7 – SHAP analysis plot presenting the decomposition in interpretable 

chemical and geometrical descriptors of the most important ROSA features in the 

structure-based MODNet model with OMEGA+ROSA features for band gap 

estimation. The features decomposed are ROSA’s (a) PBE band gap, (b) Eigenvalue -

1 and (c) Eigenvalue +1. 
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Figure E8 – SHAP analysis plot presenting the decomposition of interpretable 

chemical and geometrical descriptors for the most important GNN features in the 

structure-based MODNet model with OMEGA+ROSA features for band gap 

estimation. The decomposed features correspond to neurons #29 (a) and #9 (b) from 

the pre-trained band gap model, and neurons #9 (c) and #11 (d) from the adjacent 

GNN model. 
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E.6 Complementary data for ab-initio evaluation of screened (111)-type 

perovskites  

 

Figure E9 – Band structures for selected ternary (111)-type perovskites passing the 

ML screening phase. 
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Figure E10 – Band structures for selected (111)-type perovskites passing the ML 

screening phase. 

 


