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Instituto de Matemática e Estat́ıstica

Programa de Pós-Graduação em Estat́ıstica

DFA and DCCA estimation in the presence
of missing data

Alisson Silva Neimaier

Porto Alegre, Fevereiro de 2024.





CIP - Catalogação na Publicação

Silva Neimaier, Alisson
   DFA and DCCA estimation in the presence of missing
data / Alisson Silva Neimaier. -- 2024.
   98 f. 
   Orientadora: Taiane Schaedler Prass.

   Coorientador: Guilherme Pumi.

   Dissertação (Mestrado) -- Universidade Federal do
Rio Grande do Sul, Instituto de Matemática e
Estatística, Programa de Pós-Graduação em Estatística,
Porto Alegre, BR-RS, 2024.

   1. time series. 2. missing data. 3. DFA. 4. DCCA.
5. decision trees. I. Schaedler Prass, Taiane, orient.
 II. Pumi, Guilherme, coorient. III. Título.

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os
dados fornecidos pelo(a) autor(a).



Dissertação submetida por Alisson Silva Neimaier como requisito parcial para a

obtenção do t́ıtulo de Mestre em Estat́ıstica pelo Programa de Pós-Graduação

em Estat́ıstica da Universidade Federal do Rio Grande do Sul.

Orientador(a):

Profa. Dra. Taiane Schaedler Prass

Co-orientador(a):

Prof. Dr. Guilherme Pumi

Comissão Examinadora:

Prof. Dr. Cleiton Guollo Taufemback (PPGEst - UFRGS)

Prof. Dr. Flávio Augusto Ziegelmann (PPGEst - UFRGS)

Prof. Dr. Gilney Figueira Zebende (PPGM - UEFS)

Data de Apresentação: 22 de Fevereiro de 2024





“The sun...

I had forgotten how it feels...”

(The Fountain, ROGUE LEGACY - 2013)
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Pelas férias intermináveis em Mariluz, pelas músicas nas festas de final de ano, pelos docinhos

carinhosamente enrolados antes das festas de aniversário e por todos os atos de carinho, obrigado.

Meus tios, pela presença em todos os momentos da minha vida, me apoiando e torcendo por

mim. Quando tomaram conta de mim quando meus pais estavam cansados demais, quando me

ensinaram a mexer no computador, quando me acompanharam em campeonatos de futebol e até
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Resumo

Técnicas tradicionais de análise de associação não se aplicam ou produzem resultados pouco

confiáveis quando aplicadas a séries temporais não estacionárias. Portanto, técnicas alternativas

que possam abordar efetivamente as limitações dos métodos convencionais e fornecer resultados mais

precisos e robustos nesse tipo de dado são de extrema importância. Duas dessas técnicas são a Análise

de Flutuação Destendenciada (DFA) e a Análise de Correlação-Cruzada Destendenciada (DCCA), que

são meios indiretos de quantificar variância e correlação-cruzada em séries temporais estacionárias com

tendência e são comumente empregadas para estudar propriedades de séries temporais no contexto de

longa dependência. Os resultados obtidos para as funções DFA e DCCA são válidos apenas quando

as séries temporais estão completas. No entanto, comumente séries temporais observadas podem

conter dados faltantes. Este trabalho concentra-se no estudo do comportamento da DFA e DCCA

em cenários com um volume considerável de valores ausentes, utilizando uma variedade de métodos

clássicos de imputação. Contribúımos ainda com uma adaptação inovadora das Árvores de Regressão

Probabiĺısticas para o preenchimento de séries temporais com dados faltantes. Adicionalmente, um

resultado assintótico para a matriz de covariância correspondente às séries temporais preenchidas com

imputação de média é derivado, e seu impacto nos valores esperados das funções DFA e DCCA é

analisado empiricamente.





Abstract

Traditional association analysis techniques do not apply or yield unreliable results when applied to

non-stationary time series, therefore alternative techniques that can effectively address the limitations

of conventional methods and provide more accurate and robust results under non-stationarity are of

utmost importance. Two widely applied techniques in this context are the Detrended Fluctuation

Analysis (DFA) and Detrended Cross-Correlation Analysis (DCCA), which are indirect means to quan-

tify variance and cross-correlation in trend-stationary time series, commonly employed in studying

properties of time series in the context of long-range dependence. The results derived for the DFA

and DCCA functions are only valid when the time series are complete. However, in practice, often

observed time series can contain missing data. This work is focused on studying the behavior of

DFA and DCCA in time series with short-range dependence with a considerable volume of missing

values using a diverse array of classical imputation methods, regression trees, and a novel adaptation

of the Probabilistic Regression Trees. Additionally, an asymptotic result for the covariance matrix

corresponding to the time series imputed using the observed mean is derived, and its impact on the

expected values of the DFA and DCCA functions is empirically analyzed.
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Chapter 1

Introduction

Classical methods used for association analysis are not suitable for or may generate unreliable outcomes

when employed with non-stationary time series data. For instance, it is easy to show that, if Xt =

(X1,t, X2,t)
′, t ≥ 1, is a bivariate random walk, then Corr(X1,t, X2,t) = ρX , for all t ≥ 1, but

ρ̂X =

∑n
t=1X1,tX2,t√∑n

t=1X
2
1,t

√∑n
t=1X

2
2,t

d−→
∫ 1
0 M1,sM2,sds√∫ 1

0 M
2
1,sds

√∫ 1
0 M

2
2,sds

, as n→ ∞,

where ρ̂X is the sample cross-correlation coefficient, M s = (M1,s,M2,s)
′ := Σ−1/2W s, with W s =

(W1,s,W2,s)
′ a bivariate Brownian motion and Σ is a covariance matrix. Hence, in this context, the

sample correlation coefficient ρ̂X is not a consistent estimator for ρX . This issue is further compounded

in the presence of missing data, which is a common occurrence in real-life data. Hence, techniques

capable of addressing the limitations of conventional methods in the context of non-stationary data

are of utmost importance.

The Detrended Fluctuation Analysis (DFA) was initially proposed by Peng et al. (1994) as a method

for identifying long-term correlations within DNA sequences. It is sometimes informally described as an

indirect way to quantify variation in a trend-stationary time series. An extension of the DFA, suitable

when the interest is on the joint behavior of two time series, is the Detrended Cross-Correlation Analysis

(DCCA). This method was introduced by Podobnik and Stanley (2008) as a way to investigate cross-

correlation between two non-stationary time series. Later on, Zebende (2011) proposed the detrended

cross-correlation coefficient ρDCCA as an alternative to indirectly quantify the cross-correlation between

two time series. In a certain way, ρDCCA is similar to Pearson’s correlation coefficient, being a ratio

between the detrended cross-covariance function and the detrended fluctuation function. The reasons

why the interpretation of this coefficient differs from Pearson’s will become clear in the course of this

dissertation.

The DFA and DCCA have been successfully applied in many fields, such as medicine, physiology,

meteorology, geophysics, economics, and physics - see Kantelhardt et al. (2001), Marinho et al. (2013)

and references therein. Typically the goal of using DFA and DCCA is to identify long-range dependence

in non-stationary time series, even though the theoretical properties of these methodologies in this

context are generally unknown. Some theoretical results for the DFA and DCCA were derived under

restrictions on the underlying process. For instance, Bardet and Kammoun (2008) presents large

sample results for the DFA and DCCA in the context of fractional Gaussian noise and fractional

Brownian Motion whereas Blythe (2013) and Blythe et al. (2016) derive some asymptotic results for

the DCCA in the context of long-range dependent trend-stationary time series that can be decomposed

3
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as a sum of a polynomial trend plus a fractional Gaussian noise (FGN). Prass and Pumi (2021) improves

numerous findings presented in the literature, developing the asymptotic theory of the DFA and DCCA

for general trend stationary processes and a collection of law of large numbers related results. It is

important to note that the results derived in these works are only valid when the time series are

complete.

Missing values occur when there is a lack of associated values for one or more observations

of a variable, posing a common problem with substantial implications for statistical analysis. For

Molenberghs et al. (2020), the presence of missing data leads to information loss and a decrease

in estimation precision that is directly related to the amount of missing data and is influenced (to

some extent) by the method of analysis. Missing data can also introduce bias and lead to misleading

inferences about the parameters of interest. According to Pratama et al. (2016), methods for handling

missing values can be categorized into three main groups: ignoring or discarding data, estimation and

imputation. Nakagawa and Freckleton (2008) argues that, in the context of time series, ignoring

missing values can lead to bias in parameter estimation and loss of relevant information about the

dependence structure. Moreover, complete time series are necessary for calculating DFA and DCCA

functions, leaving us with only estimation and imputation as options. This work will focus on the

latter.

Several solutions have been suggested to handle missing data in DFA and DCCA applications. For

instance, Wilson et al. (2003) considered ordinary imputation methods (mean, linear interpolation,

and random) and studied their effects in parameter estimation in the context of FGN. The simulations

conducted indicated that applying gap-filling techniques introduces significant deviations from the

expected scaling behavior. The authors also report that, for persistent time series, interpolation

methods provide a reliable estimation of long memory for scales longer than the largest likely gap.

Zebende et al. (2020) analyzed behavior of the DFA and ρDCCA calculated after removing parts of

simulated ARFIMA time series. Imputation methods were not considered, instead the time series

pieces were merged and the analyses were carried out as usual. It was reported that for up to 50%

of removed parts, compared to the original time series, there is no change in the final results for

detrended auto and cross-correlation. Furthermore, Løvsletten (2017) proposed a modification of the

DFA fluctuation function which can handle missing data. If there are no missing values, the proposed

function coincides with the traditional DFA and, under some regularity conditions, it has the same

expected values with or without gaps.

In this study, we investigate the behavior of the DFA, DCCA, and ρDCCA under the presence of

missing data, in the context of short-range dependent stationary time series. Following the approach

in Wilson et al. (2003), the detrended analyses are performed after reconstructing the time series.

An imputation method based on probabilistic decision trees is proposed and then compared, through

a Monte Carlo simulation study, to traditional imputation methods. The approach considered here

draws inspiration from Neimaier and Prass (2023), where traditional decision trees were employed for

imputation purposes.

Decision trees are chosen for their non-parametric and flexible nature. In the literature, various

algorithms are employed to construct decision trees, differing in their methodologies and the types of

variables they support. The Iterative Dichotomiser 3 (ID3) (Quinlan, 1986), for instance, was one of

the pioneering decision tree algorithms. In each interaction, the algorithm chooses the covariate that

provides the most information about the response variable, measuring it using entropy and information
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theory concepts. It supports binary response and categorical explanatory variables. This method is

prone to overfitting, however, meaning it might create a very complex tree that fits the training data

almost perfectly but does not generalize well to a new dataset. The chi-squared automatic interaction

detection (CHAID) was proposed by Kass (1980) as an alternative decision tree algorithm. It supports

categorical response and explanatory variables. The tree is built using a chi-square test to identify

statistically significant differences between categories and selecting the most significant split among

the covariates. This allows CHAID to capture interactions between variables and create a tree structure

that reflects these interactions.

While both ID3 and CHAID have their merits, the most widely recognized and extensively studied

decision tree algorithm is the so-called Classification and Regression Trees (CART), proposed by

Leo Breiman and Olshen (1984). CART is a supervised, non-parametric statistical learning method

that recursively partitions the input space using a greedy algorithm, determining the best split at

each step until a stopping criterion is met. As highlighted by İrsoy et al. (2012) and Linero and

Yang (2018), the previously discussed decision tree algorithms share a common limitation in that their

piecewise responses may not adapt well to the smoothness of the relationship between covariates and

the response variable. To address this issue, some adaptations of the traditional decision trees were

proposed in the literature incorporating in different forms this complexity into the analysis.

Soft Trees (İrsoy et al., 2012) modify the traditional structure of decision trees by introducing

“soft” decisions at internal nodes. Instead of binary splits, where a child node is chosen or not, in soft

trees, each child node is selected with a probability determined by a sigmoid function. This means

that all leaf nodes in the tree contribute to the final decision with different probabilities. The main

advantages of soft trees include providing a continuous response at split points, resulting in smoother

predictions and smaller bias. Furthermore, the sigmoid function enables soft trees to make oblique

splits (splits based on linear combinations of the covariates), in contrast to the axis-orthogonal splits

made by traditional decision trees. However, one important disadvantage to consider is that this

method is likely to get stuck at local minima during the optimization process. To overcome this

problem İrsoy et al. (2012) initializes the method using the same splitting points as the traditional

decision trees.

Smooth Transition Regression Trees (STR-Tree) proposed by Correa da Rosa et al. (2008) is a

tree-based model that combines aspects of CART and Smooth transition regression (STR), to capture

non-linear relationships by estimating a parametric non-linear model through a tree structure. The

key concept behind the STR-Tree model is to use the structure of CART while introducing elements

that allow for standard inferential methods to be used, maintaining the interpretability of the model

whenever possible. In the same way that soft trees use a sigmoid function instead of binary splits,

STR-Trees employs a logistic function with a slope parameter that controls the smoothness of the

function to determine the probability of selecting each child node. Replacing sharp splits with smooth

ones enables the application of standard inferential theory to test hypotheses regarding the location

of the splits. An adaptation of the Lagrange Multiplier test presented in Luukkonen et al. (1988) is

used for determining whether a node should be split or not.

Probabilistic Regression Trees (PRTrees), proposed by Alkhoury et al. (2020), represent another

generalization of decision trees constructed from a probabilistic standpoint. This method proposes

modifying hard splits to achieve smooth decisions and a continuous response by incorporating proba-

bility functions that associate each data point with different regions of the tree. PRTrees maintain the
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interpretability of predictions and stand out as the only consistent method among the three probability-

based methods mentioned. In this work, we propose a modification of the algorithm so that it can

also be applied when one or more covariates are missing.

Objective

The objectives of this master’s thesis are as follows. To conduct a literature review on missing data

and gather existing methods for imputing missing values, evaluating their applicability in the context

of stationary time series. To propose an adaptation of the Probabilistic Regression Trees algorithm

capable of handling missing values, and to create an R package implementing it. To derive theoretical

results about the autocovariance and cross-covariance matrices corresponding to the reconstructed

processes when missing values are imputed with the mean. To perform an empirical analysis con-

sidering AR and MA processes to complement these findings. To conduct Monte Carlo simulations

to explore the behavior of Detrended Fluctuation Analysis (DFA) and Detrended Cross-Correlation

Analysis (DCCA) functions in the presence of missing data.

Novelties in this work

This study introduces a modification of the standard Probabilistic Regression Trees algorithm capable

of handling missing values. The implementation is carried out in R, utilizing FORTRAN and C functions

for computational efficiency. The original algorithm, developed by Alkhoury et al. (2020), does not

inherently address missing values and is exclusively available in Python.

Furthermore, this work derives an asymptotic result for the covariance and cross-covariance func-

tions corresponding to processes with missing values imputed using the mean. Such findings enable

the derivation of properties regarding the expected value of DFA and DCCA in this context. To the

best of our knowledge, no theoretical results for DFA and DCCA functions in the context of missing

values are available in the existing literature.

Finally, the study explores the behavior of the DFA, DCCA, and ρDCCA in the context of short-

range dependent processes with missing data, varying the proportion of missing data from 10% to

80%. Existing literature predominantly focuses on processes with long-range dependence and none

have considered such a high proportion of missing data in their studies.

Computational Support

All simulations, analyses, and graphics in this work were generated using R (version 4.3.0). The

PRTree package includes codes made in FORTRAN and C programming languages in addition to R,

which drastically speeds up its performance compared to the same algorithm written solely on R. Since

January 16, 2024, the package is available from CRAN (Comprehensive R Archive Network) as an

R package, or for download at https://cran.r-project.org/package=PRTree. As of the end of

the day on April 8, 2024, the package was installed 1426 times.

https://cran.r-project.org/package=PRTree
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Outline

Chapter 2 provides a literature review on missing data and describes some imputation methods com-

monly used in the literature. Chapter 3 presents the main concepts related to the CART and PRTree

algorithms, describes the procedure adopted in this work to fill missing values using decision trees,

and introduces the R package developed. Chapter 4 presents the definitions of the DFA and DCCA

functions, summarizes some theoretical results regarding these quantities, and describes the theoret-

ical result derived in this work for time series imputed with the mean. Chapter 5 showcases Monte

Carlo simulations considering different scenarios, imputation methods, and proportions of missing

data. Finally, Chapter 6 describes the conclusions and outlines future work.





Chapter 2

Missing Data

In what follows, we delve into the mechanisms of missing data and identify which one applies to

the study conducted in this work. The concepts presented in this subsection are discussed in greater

detail in Molenberghs et al. (2020). Additionally, we provide a comprehensive description of classical

methods employed in the processing of missing data.

2.1 Missing data mechanisms

To obtain valid statistical results from incomplete data, the nature of the missing data mechanisms

must be considered. As researchers often lack control over the occurrence of missing data, its nature

is not well understood. Therefore, it is necessary to formulate assumptions regarding the missing data

mechanism and the validity of the analysis depends on the reasonableness of these assumptions. To

further this work’s discussion, a formal definition of the missing data mechanisms is provided in the

sequel.

Let Y = (Y1, · · · , Yn)′ denote the vector containing n values of the response variable, while X

represents an n × p matrix of covariates associated with Y . Additionally, let R = (R1, · · · , Rn)
′,

where Ri = 1 if Yi is observed and 0 otherwise, for i ∈ {1, · · · , n}. Given R, the vector Y can be

partitioned into two subvectors: Y o and Y m, corresponding to the observed and missing observations

of Y , respectively. The subvector Y o is commonly referred to as the “observed data” while Y m

represents the “missing data”. The hypothetical vector in the absence of missing data is denoted as

the “complete data”, denoted by Y .

The missing data mechanism describes the probability that a response is observed or non-observed.

More precisely, it establishes a probabilistic model governing the distribution of the response indicators

R conditional on Y o, Y m, and X. As postulated by Rubin (1976), considering how the indicator R

is related to the response variable Y and the covariates X, it is possible to classify missing values

into three categories, namely, Missing Completely at Random (MCAR), Missing at Random (MAR)

and Missing not at Random (MNAR).

2.1.1 Missing Completely at Random - MCAR

We say that the data is MCAR, when the probability of an observation being missing is independent

of both the observed and missing values of interest, that is, R is independent of Y o and Y m. As

9



10 2.1 Missing data mechanisms

there is no consensus in the literature about the dependence of the missing values on the covariates

X, this work will adopt the same definition used on Little (1995). The term MCAR will be reserved

to the case where

P (R | Y , X) = P (R),

and when

P (R | Y , X) = P (R | X),

the missing data mechanism will be referred to as “covariate-dependent”. An example of MCAR (see

Figure 2.1) would be if the researcher left the responded surveys on the table unattended, and his/her

dog randomly chewed on some of them. While certainly an unfortunate incident, neither the dog, the

surveys, nor any other covariate, such as the weather (sunny weather on the left-hand side, and rain

on the right-hand side) or the survey’s content (positive feelings are indicated by the heart symbol,

while negative feelings are indicated by the thumbs-down symbol) would have any relationship with

the missing observations (represented by the crossed documents).

Figure 2.1: Example of Missing Completely at Random.

2.1.2 Missing at Random - MAR

We say that the missing data is MAR when the probability of an observation to be missing depends

on the set of observed values and its covariates but is uncorrelated to the missing values, that is,

P (R | Y , X) = P (R | Y o, X).

An example of MAR (see Figure 2.2) would be if the researcher left the responded surveys on the table

unattended, and his/her dog had a preference for eating surveys on rainy days to avoid boredom. In

this case, the missing observations would be related to the rainy weather but not to the content of

the survey itself.
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Figure 2.2: Example of Missing at Random.

2.1.3 Not Missing at Random - NMAR

The stronger of the missing mechanism, we say that the data is NMAR when the probability of an

observation to be missing depends on the set of observed values and its covariates and also depends

on the missing responses, that is,

P (R | Y , X) = P (R | Y o,Y m, X).

Non-random missing values are also referred as “non-ignorable” because the information about the

missing values must be modeled so that the inferences about the distribution of the complete data

are valid. An example of NMAR (see Figure 2.3) would be if the researcher left the responded surveys

on the table unattended, and his/her dog had a preference for eating surveys with positive responses

about cats. In this case, the missing observations would depend on the unobserved responses as well.

Figure 2.3: Example of Not Missing at Random.
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In this work, it is assumed that the missing data is generated by the MCAR mechanism. According

to Greiner et al. (1997), this is not very feasible in real-life scenarios, however, as seen in Hastie et al.

(2009), most imputation methods need this assumption to be valid. With the mechanisms of missing

values defined, it is possible to delve further into the consequences of missing data in statistical

analysis. The next step is to address the question: how to handle missing data?

2.2 Classical methods for handling missing data

Dealing with missing data is a crucial step in statistical analyses to ensure the accuracy and validity

of the results. There are various methods to handle missing data, and the choice of the approach

depends on the nature of the data, the amount of missingness, and a trade-off between the simplicity

of the method and its ability to introduce as little bias as possible on the data (Salgado et al., 2016).

Based on Pratama et al. (2016), methods for handling missing values can be divided into three main

categories, namely, ignore or discard data, estimation, and imputation.

2.2.1 Ignore or discard data

This procedure refers to the practice of simply removing observations or variables that have missing

values. It can be further divided into two main methods. The first is known as complete case analysis,

which involves removing any observations with missing data, and the second is case deletion, which

excludes variables depending on the number of missing observations. For more information about this

method, see Batista and Monard (2003). While this approach has its merits, it can introduce several

problems in the context of time series analysis, for example, the characteristics of the time series such

as trend, seasonality, and autocovariance function can be disrupted by the breaks in the temporal

structure.

2.2.2 Estimation

Assuming that the complete data follows a particular distribution, procedures are used (usually maxi-

mum likelihood) to parametrically estimate a distribution for the complete data. Once the parameters

of the distribution are estimated, they can be used to generate imputed values. According to Dempster

et al. (1977), some variations of the Expectation-Maximization (EM) algorithm can handle parameter

estimation with incomplete data. There are certain advantages in parametric estimation over ignoring

data, but its validity heavily depends on the correct specification of the data distribution and may not

adapt well to time series data with complex distributional characteristics.

2.2.3 Imputation

Imputation methods are techniques that involve the process of filling missing values based on available

information in the data. By not removing the observations with missing data, like ignoring or discarding

data, and not relying on assumptions about the distribution of the complete data, like the estimation

methods, the imputation methods achieve results that are both more reliable and flexible than the
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other two solutions. There are several methods for imputing missing values described in the literature,

and many of these methods are implemented in the R package imputeTS (Moritz and Bartz-Beielstein,

2017).

Neimaier and Prass (2023) consider the use of decision trees to predict missing values. To assess

the performance of the proposed algorithm, a simulation study was performed and the results obtained

using decision trees were compared to the ones generated by the imputation methods available in the

imputeTS package. The authors conclude that some of those methods produce nearly identical results.

Hence, in this work, we restrict our attention to a subset of methods, which are described in the sequel.

Given a sample of a stochastic process {Yt}nt=1, let T be the set of indexes corresponding to

missing observations in the sample and let {Ŷt}t∈T be the imputed values. In the mean imputation

method, the missing observations are replaced with the arithmetic mean of the observed data, that is,

Ŷt =
1

#(TC)

∑
k∈TC

Yk, ∀ t ∈ T,

where TC is the set of non-missing elements and #(TC) is the number of elements on TC . The

moving averages with exponential weights method is also an average-based approach that imputes

the missing data using a moving average procedure with weights that diminish exponentially through

the observations used to compute the moving average. More explicitly,

Ŷt = 2(1− 2−h)
h∑

k=1

2−k(Ylk + Ynk
), ∀ t ∈ T,

where lk is the index of k-th last non-missing observation and nk is the index of k-th next non-missing

observation.

The last observation carried forward (LOCF) method, imputes missing values with the last

observed data, that is,

Ŷt = Yl1 , ∀ t ∈ T,

where l1 is the index of the last non-missing observation. This can be viewed as a simple interpolation

method. A more general approach is the linear interpolation method, which fills the missing data

by fitting a straight line between the two adjacent observed data, that is,

Ŷt = Yl1

(
Yn1 − Yl1
n1 − l1

)
(t− l1), ∀ t ∈ T,

where l1 is the index of the last non-missing observation and n1 is the index of the next non-missing

observation. Finally, the kalman suavization method, uses a basic structural model and estimates

the missing observation via maximum likelihood. More details about this method can be found in

Grewal (2011).

In addition to these methods, the Classification and Regression Trees (CART) and Probabilistic

Regression Trees (PRTrees) will also be employed for the imputation of time series. As the reconstruc-

tion of missing data with tree-based methods is a novel aspect of this work, their detailed discussion

is postponed until Chapter 3.
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Decision Trees

A decision tree is a machine learning method that emulates the logical decision-making process of

a human being and can be applied in both classification and regression problems. It generates a

flowchart of questions and answers, in which the final answer represents the decision to be made. The

decision tree algorithm partitions the data into several subspaces, so that the results in each final

subspace are as homogeneous as possible. This chapter introduces the fundamental concepts related

to decision trees theory. A brief review of the CART algorithm, implemented in the R package rpart

(Therneau and Atkinson, 2019), is provided. The main results regarding the Probabilistic Regression

Trees (PRTree) algorithm (Alkhoury et al., 2020) are presented alongside the adaptations proposed in

this work, so that the method can be applied in the presence of missing data. Computational issues

regarding the implementation of the algorithm in R are also discussed. However, before we delve

deeper into the forest of algorithms, let us first lay down some roots by answering a fundamental

question: What is a tree?

3.1 What is a tree?

A tree is a hierarchical structure consisting of internal and external nodes connected by branches. A

node can be classified as a parent or child node depending on its origin: a node that is split into

subnodes is called a parent node, and the subnodes are called child nodes. The internal nodes include

the root node (or initial node), which receives the entire dataset, and intermediate nodes created from

logical tests. On the other hand, the external nodes are the terminal nodes (or leaves) from which no

further partitioning is made. Such nodes indicate the final decision (prediction) to be made when the

algorithm reaches that point. At each internal node, a logical test is applied to partition the node into

two or more subnodes. The branches connecting the nodes to the subnodes represent the possible

decisions to be made at each test. Figure 3.1 depicts a simplified decision tree with root and leaf

nodes, internal nodes, and branches.

3.2 CART

Supervised learning methods aim to predict the values of a response (or dependent) variable Y ∈ Y,

or a function of the response variable g(Y ), based on a set of explanatory (or independent) variables

X ∈ X = X1 × · · · × Xp := ⊗p
j=1Xj . In the context of decision trees, the pair (X, Y ) represents

15
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a random vector with a joint distribution P and the observed data {Xi, Yi}ni=1 represents a random

sample from P.

Root

BranchBranch

Node
Node

Node

BranchBranch
Branch

Branch Branch

Leaf

Branch

Leaf

Leaf
Leaf Leaf

Figure 3.1: A simplified structure of a binary decision tree, i.e., a decision tree in which each node has at most

two children.

3.2.1 Growing a tree

The CART algorithm recursively creates a partition of the input space X and generates predictions in

the output space Y. In this work, these spaces are X = Rp and Y = R. A summary of the method

is described in the sequel. A detailed description of this algorithm implemented in the rpart package

can be found in Therneau and Atkinson (2019).

In an informal and resumed manner, the CART algorithm automatically determines which variables

and positions will be used to create the partitions in the regions and what is the shape of the tree.

Formally, for each existing node A := ⊗p
j=1[ℓj , rj ] ⊂ Rp, CART determines the best partition (j∗, z∗)

from the set of all possible partitions S = {(j, z) : j ∈ [1, p] ∩N, z ∈ [ℓj , rj ]}, where j is the index

of the variable in which the partition is made, and z is the position at which the partition occurs.

More specifically, given a node A, (j∗, z∗) is one of the possible solutions to the following optimization

problem (see Josse et al., 2019, for more details)

(j∗, z∗) = argmin
(j,z)∈S

{
E

[(
Y − E

[
Y |Xj ≤ z,X ∈ A

])2
I(Xj ≤ z,X ∈ A)

+
(
Y − E

[
Y |Xj > z,X ∈ A

])2
I(Xj > z,X ∈ A)

]}
.

(3.1)

For any node A, the optimization in (3.1) is equivalent to solving the following problem

f∗ = argmin
f∈Pc

{
E
[(
Y − f(X)

)2
I(X ∈ A)

]}
, (3.2)

in which Pc is the set of piecewise-constante functions on A ∩ [Xj ≤ z] and A ∩ [Xj > z], for

(j, z) ∈ S.

The splitting process just described is repeated until a stopping criterion is met, yielding a decision

tree T , which consists of M terminal nodes and a partition R1, · · · , RM of Rp. Figure 3.2 illustrates

an example of a decision tree with 5 terminal nodes which originate the regions {R1, · · · , R5}. In this

figure, for the root node, the pair that minimizes (3.1) is (1, t1), i.e., the point t1 from the variable
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X1. Solving the optimization problem in (3.2) involves addressing a least squares problem within the

subset of functions Pc. Thus, by minimizing the mean squared error, the CART procedure targets the

quantity E[Y |X]. The rpart package provides built-in mechanisms to handle missing data during

the tree-building process. By default, the function rpart removes only those rows in the data set for

which either the response or all of the predictors are missing and applies surrogate splits to handle

missing values by using the information from other correlated variables to make reasonable decisions.

Alternatively, one can consider preprocessing the data to address missing values before fitting the tree.

This can involve imputing missing values or removing observations with missing data, depending on

the nature of the problem and the amount of missingness.

Figure 3.2: Result of a recursive binary partition in a bivariate example (right) and the decision tree that is

equivalent to this partition (left).

The prediction function associated with the tree T is given by

f(X) =
M∑

m=1

cmI(X ∈ Rm), cm = E[Y |Rm

where I(·) denotes the indicator function. The optimal decision tree is obtained by minimizing the

expected prediction error of f(X). However, an excessively complex tree may lead to overfitting, while

a tree with insufficient nodes may fail to capture important information. Therefore, determining the

appropriate size of the tree is crucial for achieving good predictive performance. So, how big should

the final tree be?

3.2.2 Pruning a tree

A common approach to determining the size of a decision tree involves first growing an overfitted tree

T0 and then pruning it to obtain the optimal tree size based on its performance on a validation set.

Pruning is removing some of the branches from the tree and replacing them with leaf nodes, reducing
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the model’s complexity. Typically, the optimal tree size is chosen using a criterion such as minimum

cross-validated error. Since computing cross-validation for every possible sub-tree is computationally

intensive, a method called cost complexity pruning (or weakest link pruning) is used to select a subset

of sub-trees. The algorithm’s general idea is described in the sequel.

Consider a sequence of trees indexed by a non-negative adjust parameter α. For each α, there

exists a sub-tree Tα ⊂ T0 that minimizes

Cα(T ) =

#(T )∑
m=1

∑
i:Xi∈Xm

(Yi − Ŷm)2 + α#(T ), Ŷm =
1

#(Xm)

∑
i:Xi∈Xm

Yi,

in which #(T ) is the number of terminal nodes T , Xm = {X1, · · · ,Xn} ∩ Rm, Rm is the subset

of the input space correspondent of the m-th leaf and #(Xm) is the number of observations in the

m-th leaf. The adjust parameter α controls the trade-off between the complexity of the sub-tree T
and the quality of fit to the training set. When α = 0, the sub-tree Tα will be T0. The higher the

value of α, the higher the price to pay for having a tree with many terminal nodes, therefore, Cα(T )

will be minimized by smaller trees.

As α increases, the tree branches are pruned in a nested and predictable manner (James et al.,

2013; Hastie et al., 2009): internal nodes are aggregated pairwise until a single node remains. This

produces a sequence of sub-trees indexed by α that includes Tα. The choice of α is then made using

a validation set or cross-validation. Once α is determined, the complete dataset is used to obtain the

corresponding subtree for α. The process for constructing and pruning trees can be summarized by

the following algorithm (James et al., 2013).

Algorithm 1: Constructing and pruning a tree

1. Construct a large tree T0 using the training set and recursive binary splitting method, stopping

only when each terminal node has a certain amount of observations less than or equal to a

predetermined minimum.

2. Apply cost complexity pruning to obtain the sequence of best sub-trees as a function of α.

3. Use K-fold cross-validation to select α. That is, divide the observations in the testing set into

K subsets. For each k = 1, · · · ,K:

• Repeat steps 1 and 2 on all but the k-th fold.

• Evaluate the mean squared prediction error using the k-th fold as a function of α.

For each α, compute the average results and select the α that minimizes the mean error.

4. Return the subtree from step 2 that corresponds to the chosen value of α.

The CART algorithm is known for its simplicity, interpretability, and versatility, making it a widely

used tool in statistical modeling. However, due to its piecewise response, it may not adapt well to the

smoothness of the relation between the covariates and the response variable. In the next section, we

will explore a method that addresses these limitations.
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3.3 Probabilistic Regression Trees

Probabilistic Regression Trees are a generalization of decision trees proposed by Alkhoury et al. (2020).

Similarly to the Soft trees and STR-Trees methods, PRTrees suggests altering the tree splits to yield

smooth decisions and a continuous response based on probability functions that relate each data point

to each region of the tree. This method maintains the interpretability of predictions and can be shown

to be consistent.

3.3.1 The model

Let X = (X1, · · · , Xp) be a p-dimensional random vector in a subspace X of Rp, and let

Y := f(X; Θ) + ε, ε ∼ N (0, σ2),

where Θ are the parameters associated with f . While Soft trees and STR-Trees replace hard splits

with different sigmoid functions, PRTrees replace the indicator function with a smooth function Ψ,

leading to the prediction function given by

fPR(X; Θ) =

M∑
m=1

γmΨ(X;Rm,σ), (3.3)

where the set of parameters Θ = ({Rm}Mm=1,γ,σ) correspond, respectively, to the set of regions, the

weights γ ∈ Rp associated with these regions, and a vector of parameters σ ∈ Rp
+ which captures the

potential noise in the input variables. For example when X are measurements done while calibrating

machines, the noise corresponds to the measurement errors.

Alkhoury et al. (2020) propose to define the function Ψ in (3.3) through the relation

Ψ(X;Rm,σ) :=

[
p∏

i=1

σi

]−1 ∫
Rm

ϕ

(
u1 −X1

σ1
, · · · , up −Xp

σp

)
du, X ∈ X , (3.4)

where ϕ : Rp → R is a sufficiently regular probability density function, that is, ϕ is in L2, its first

derivative is continuous and the support of its Fourier transform is Rp. In practice, choosing which

ϕ to use is a problem itself. A priori knowledge about the distribution of the errors can be useful for

delimiting potential candidate probability densities to be used in (3.4). The optimal choice for ϕ can

then be determined through cross-validation.

Assumption (3.4) implies that Ψ relates the data points to different regions of the decision trees

through a probability density function and smooths the predictions made. Note that when

Ψ(X;Rm,σ) = I(X ∈ Rm), ∀m ∈ {1, · · · ,M},

the standard regression tree model is obtained. Figure 3.3 presents a comparison between the output

of the standard regression tree and a PRTree, black dots corresponding to a sample {(Xi, Yi)}ni=1, of

size n = 200, from

Y = cos(X) + ε, where X ∼ U(0, 10), ε ∼ N (0, 0.052),
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with X and ε independent from each other. The red and blue lines represent the predicted curves

generated by the CART and PRTree algorithms, respectively. For the PRTree method ϕ was taken

to be the standard Gaussian probability density function and σ was set to be the sample standard

deviation of {Xi}ni=1. For the sake of comparison, in both cases, exactly 9 regions were constructed.

In this example, it is evident that the curve estimated by PRTree (MSE = 0.0024) captures the smooth

behavior of the cosine function more effectively than CART (MSE = 0.027). Considering a grid of

200 equally spaced values X ∈ {i/20}200i=1 and f(X) = cos(X) = E[Y |X], it is possible to assess how

close the curves estimated by these two methods are to the cosine function (the conditional mean

of the underlying process). In this case, the PRTree demonstrated even better performance (MSE =

0.00016), while the CART exhibited a similar MSE to that of the training set (MSE = 0.028).
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Y = cos(X) + ε CART PRTree

Figure 3.3: Comparison between the estimations of the cosine function using a standard regression tree and a

PRTree, both with 9 regions.

3.3.2 Parameter estimation

Let {(Xi, Yi)}ni=1, where Xi ∈ Rp and Yi ∈ R, be a training data set. Upon considering the quadratic

loss function, the algorithm for probabilistic regression tree estimation aims to find the parameters Θ

which minimizes

L(Θ) :=
n∑

i=1

(
Yi −

M∑
m=1

γkPim

)2

, Pim := Ψ(Xi;Rm,σ). (3.5)

The entries Pim of the matrix Pn×M establish the relationship between each observation Xi and each

region Rm, adhering to the conditions

0 ≤ Pim ≤ 1, i ∈ {1, · · · , n}, m ∈ {1, · · · ,M},

and also satisfying
M∑

m=1

Pim = 1, for all i ∈ {1, · · · , n}.

Due to their nature, throughout the study the values of Pim will be referred to as the probability of

observation Xi belonging to region Rm.

The estimation of Θ alternates between region and weight estimates, as in standard regression

trees, till a stopping criterion is met. The most commonly used stopping criteria are the number
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of observations in each region, the maximum number of regions, a minimum decrease in the mean

squared error of estimates, and so forth. Firstly, the optimal splitting point is determined within the

existing regions, the region is divided, the matrix P is recalculated, and the weights γ are updated.

3.3.2.1 Estimating the weights γ

Given the regions {Rm}M1
m=1 and σ, if P ′P is nonsingular, minimizing equation (3.5) with respect to

γ consists in finding the least squares estimator

γ̂ = (P ′P )−1P ′Y , Y = (Y1, · · · , Yn)′. (3.6)

However, numerical instability may arise when the dimensionality of P is high or when the entries in

a column of matrix P have low values.

Assume that M1− 1 regions have been identified, i.e., the tree already has M1− 1 leaves. Hence,

for each m ∈ {1, · · · ,M1−1}, the region Rm can be partitioned into two subregions upon considering

the jth variable, for any j ∈ {1, · · · , p}, and a split point sjm. Any tested split point results in M1

new regions and updates P and γ which became, respectively, a n×M1 matrix and a vector of size

M1. Upon replacing γ in (3.5) by the updated value, the best split for the current region Rm is given

by

argmin
1≤j≤p, s∈Sj

m


n∑

i=1

(
Yi −

M1∑
l=1

γ̂lPil

)2
 , γ̂ = (P ′P )−1P ′Y ,

where Sj
m denotes the set of split points for region Rm in covariate Xj .
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Figure 3.4: Estimates of the cosine function using the PRTree method with increasing number of regions

(2− 5).

The same PRTree configurations as in Figure 3.3 are presented in Figure 3.4, with the only

difference being the number of regions, now increasing from 2 to 5. The red dashed lines represent
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the split points chosen by the method and the blue lines represent the predicted curves generated by

the CART algorithm. In this figure, it becomes evident that the behavior of the cosine function is

well reconstructed through the division into 5 regions, although the fit may not be as precise as that

in Figure 3.3, it is more parsimonious. It is worth noting that the estimated curve’s behavior for m

regions resembles a polynomial of degree m− 1.

3.3.2.2 Estimating the deviation parameter σ

The best way to determine the vector σ is through a priori knowledge. However, as it is not always

possible to have prior knowledge of a subject, another viable solution is to apply a grid search.

3.4 PRTree R package

Alkhoury et al. (2020) implemented the PRTrees algorithm, building upon the Scikit-Learn imple-

mentation of standard regression trees (Varoquaux et al., 2015). The python code for this implemen-

tation is available at https://gitlab.com/sami.courie/pr-tree. An adaptation of the existing

code was necessary to incorporate the changes proposed in this work for handling missing data. Given

that R is an open-source language widely employed by statisticians, the code was written using this

programming language.

Initial tests revealed that implementing the PRTree algorithm solely in R would result in a relatively

high computational cost, potentially limiting its practical use. Motivated by the need for faster

processing speed and considering that a significant portion of the algorithm relies on basic operations

and loops, an R package was developed, incorporating FORTRAN and C functions. Despite encountering

challenges during implementation, such as coordinating communication between multiple programming

languages and the author’s limited experience with extensive FORTRAN coding, the results are promising:

the current version of the code runs approximately 30 times faster than the initial R version. The code

was transformed in the R package PRTree (Neimaier and Prass, 2024), which was made available on

CRAN. This effort provides an important venue for the dissemination of the proposed methodology to

the statistical community.

3.4.1 An adaptation to handle missing data

Originally the PRTree algorithm is not able to handle missing data. In what follows we propose an

adaptation to the method that can be applied if one or more covariate values are missing. Given M

regions {Rm}Mm=1, define Ψ∗ through the relation

Ψ∗(X;Rm,σ) =

{
Ψ(X;Rm,σ), if there are no missing values in X,

M−1, otherwise.
(3.7)

where Ψ is defined in (3.4). This definition implies that, if for some 1 ≤ i ≤ n, one or more coordinates

of Xi are missing, (3.7) attributes a uniform probability to all regions so that the ith row of P is

constant and equal to M−1. If there are no missing values in the covariates {Xi}ni=1 the standard

PRTree model is obtained.

https://gitlab.com/sami.courie/pr-tree
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3.4.2 Computational issues

Testing all possible split points for all variables in all regions is computationally infeasible. Therefore,

it is essential to cleverly limit the set of split points to be tested in each iteration of the algorithm.

Following the suggestion of Alkhoury et al. (2020), the PRTree package considers only the midpoint

of the intervals for each variable in each region as potential split points. In cases where the lower

limit is −∞ or the upper limit is ∞, the respective observed minimum and maximum values for that

variable in that region are considered. Using this criterion, the minimization problem for each region

can be formulated as

argmin
1≤j≤p

{
n∑

i=1

(
Yi −

M1∑
l=1

γ̂lPil

)2
}
, γ̂ = (P ′P )−1P ′Y ,

given that the split points are deterministic.

Another challenge is the potential singularity of the matrix P ′P . In the PRTree package, the

inverse matrix in (3.6) is replaced with the generalized inverse, obtained through the LU factorization

of the matrix P ′P . The computation of the generalized inverse involves the utilization of the LAPACK

subroutines DGETRF and DGETRI, which respectively perform LU factorization and compute the inverse

matrix based on the results of the factorization.

In principle, a wide range of distribution functions can be used to define Ψ. However, the only

one currently implemented in the algorithm is the Gaussian distribution, utilizing the C routines pulled

from R. Moreover, it is assumed that σj = σ for all 1 ≤ j ≤ p. In other words, the implemented

function in the algorithm is

Ψ(X;Rm;σ) =
1

(2πσ2)p/2

∫
Rm

exp

{
− 1

2σ2

p∑
j=1

(uj −Xj)
2

}
du.

It is worth noting that despite this implementation, the assumption of independence among covariates

is not valid when the covariates are assumed to be lagged versions of the original time series.

3.4.3 Stopping criteria

Stopping criteria are essential to determine when the tree-building process should stop. Without them,

the algorithm could in principle run indefinitely, causing excessive computational cost and potential

overfitting. The proposed algorithm employs several usual stopping criteria for decision trees and

some novel ones, proposed in this work (perc x and p min), for the context of PRTrees that utilize

properties specific to the probability matrix P , as defined in (3.5). These criteria are

• cp: the complexity parameter. Any split that does not decrease the mean squared error (MSE)

by a factor of cp will not be attempted. This prevents overfitting in the case of a simple problem

where the MSE gain in an iteration is not worth the complexity added to the model.

• max depth: the maximum depth of the decision tree. The depth is defined as the length of the

longest path from the root to a leaf. Controls the number of splits made in a specific region,

preventing overfitting in a particular region.
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• max terminal nodes: the maximum number of regions in the output tree. Controls the number

of columns in the matrix P , preventing problems with overfitting and non-invertibility.

• n min: the minimum number of observations in a final node. Prevents the algorithm from

splitting a region with too few observations;

• perc x and p min: given a column of P , the value perc x is the percentage of rows in this

column that must have a probability higher than the threshold p min for a splitting attempt to

be made in the corresponding region. This ensures that fewer cuts are tested in regions with

lower weight in the PRTree algorithm prediction.

3.4.4 PRTree functions

The functions implemented in the PRTree package are pr tree and pr tree.predict. The function

pr tree function is responsible for processing the input data and the output from FORTRAN. It has

the following arguments

• y - a numeric vector corresponding to the dependent variable;

• X - a numeric vector, matrix, or dataframe corresponding to the independent variables, with the

same number of observations as y;

• sigma grid - (optional) a numeric vector with candidate values for the parameter sigma, to be

used in the grid search algorithm.

Additionally, the stopping criteria described previously can be chosen by the user, otherwise, the

default values (max terminal nodes = 15, cp = 0.01, max depth = 5, n min = 5, perc x = 0.10,

p min = 0.05) are used.

This function is also responsible for the initial processing of inputs necessary to the call of the

FORTRAN subroutine. Tasks include creating variables used by the subroutine, ensuring all variables

are in the correct format for interpretation by FORTRAN, and, if sigma grid is not provided by the

user, assigning to this variable a vector with the standard deviations of the columns of X. The function

also processes the output of the FORTRAN subroutine to make it more user-friendly in R. This involves

removing entries in vectors not used by FORTRAN and organizing the R output into matrices with

explanatory column names, returning to the user a list with the following arguments:

• yhat - the estimated values for y;

• P - the matrix of probabilities calculated for the returned tree;

• gamma - the values of the gamma weights for the returned tree;

• MSE - the mean squared error calculated for the returned tree;

• sigma - the parameter for the standard deviation for the returned tree;

• nodes matrix info - information related to each node of the returned tree

– node: node identification number;

– isTerminal: boolean if the node is a leaf;
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– fatherNode: identification number of the father node of this node;

– varCut: if this node is not terminal, in which covariate it was split;

– cutpoints: if this node is not terminal, where in the varCut it was split.

• region - information related to each region of the returned tree

– node: node identification number;

– var: covariates identification number;

– inf: lower limit of the interval for each covariate in each node;

– sup upper limit of the interval for each covariate in each node;

– isTerminal boolean if the node is a leaf.

Due to its complexity and significance, the main subroutine implemented in FORTRAN is presented

in pseudocode format (see Algorithm 2). We shall not discuss the other subroutines implemented

in FORTRAN and available in the package since they are auxiliary functions used to process the input

(output) from (to) R.

Algorithm 2: PRTree main calc

do while (number of terminal nodes < max terminal node)

if (number of nodes to split = 0) go to 999

do i = 1, n

do j = 1, number of terminal nodes

P[i,j] = Ψ∗(Xi, Rj , σ)

end do

end do

if ((depths of all candidate nodes = max depth) or

(perc max < p min for all columns)) go to 999

do i = 1, number of candidate nodes

do j = 1, p

s = midpoint of variable j in node i

if (number of points in any splited region < min split) go to 999

if (new MSE < old MSE ) update the auxiliary tree

end do

end do

if ((no split was made) or (reduction in MSE < cp)) go to 999

end do

999 if (any split was made) update the main tree

return

The function predict.pr tree works as a standard prediction function in R taking the

inputs object (object of class inheriting from "prtree") and newdata (a matrix with new values for

the covariates). It uses the estimated values for γ and σ to compute the probability matrix P for the

observations considering X = newdata and returns the predicted values yhat for this new dataset.



26 3.5 How to fill missing data with tree-based methods?

3.5 How to fill missing data with tree-based methods?

The first challenge in handling missing values with tree-based methods is to determine which covariates

to utilize when imputing time series, as it is essential to consider the characteristics of the underlying

process. Hence, in this work, we aim to present a reasonable approach that takes into account the

dependence structure of the time series. Time series exhibit correlation between different time points,

with these dependencies typically weakening as the distance between two observations increases. For

example, AR(p) and MA(q) processes, which are particular cases of ARMA(p, q) processes (respec-

tively when q = 0 and p = 0), have a very interesting characteristic regarding the behavior of their

autocorrelation (ACF) and partial autocorrelation (PACF) functions. As shown in Table 3.1, the ACF

on an AR model behaves as the PACF of an MA model with the same order and vice-versa. In practice,

when the time series is complete or enough data is available, this characteristic helps in the model

identification step. Taking this into account, in the context of missing data, observations surrounding

the point of interest are used as covariates to fill in the missing values.

Table 3.1: Behavior of the ACF and PACF functions for ARMA(p, q) processes, for p ≥ 0 and q ≥ 0.

Process ACF PACF

AR(p) Not null for all h. Decays rapidly towards 0 Not null only for |h| ≤ p

MA(q) Not null only for |h| ≤ q Not null for all h. Decays rapidly towards 0

ARMA(p, q) Not null for all h. Decays rapidly towards 0 Not null for all h. Decays rapidly towards 0

The procedure to fill in missing values in a time series using tree-based methods can be described

as follows. Let {Xt}nt=1 be a time series, and T ⊂ {1, · · · , n} denote the set of indexes corresponding

to missing values. Define Xmiss
t = NA × I(t ∈ T ) +Xt × I(t ∈ TC). The reconstruction procedure

for {Xmiss
t }nt=1 is described in Algorithm 3.

Algorithm 3: Missing data imputation using decision trees

1. Set h1 and h2 and define Xmiss
t as the response variable, for h1 < t ≤ n− h2.

2. Construct the matrix containing the covariates, using the previous h1 observations and the

subsequent h2 observations associated to Xmiss
t .

3. Train the decision tree model using only the responses and corresponding covariates for which

the indexes satisfy t /∈ T .

4. For the CART algorithm, prune the tree using the prune function, with the cp parameter set

to the smallest error value calculated from cross-validation via rpart. PRTree algorithm skips

this step.

5. Utilizing the decision tree obtained in the previous step, predict the values of Xmiss
t for t ∈ T ,

resulting in a sequence of predicted values {X̂t}t∈T .
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Detrended Variance and

Covariance Analysis

In the existing literature, the definitions of DFA and DCCA are commonly presented in a heuristic

manner. This section closely follows the definitions and notations outlined in Prass and Pumi (2021),

which provides a more rigorous framework. Additionally, the paper presents unique results that are

crucial for evaluating the simulation results in the subsequent chapter.

In the sequel, given any sequence {Yt}nt=1, let Y
⟨i⟩
j be defined by

Y
⟨i⟩
j = (Yi, · · · , Yj)′ i, j ∈ {1, · · · , n}, i ≤ j.

For any ℓ × ℓ matrix Aℓ, let A
⟨i⟩
ℓ be the matrix containing the elements of Aℓ from row i up to row

l. Given a block matrix A, let [A]p,q denote its (p, q)-th block. Also, let 0n and 1n denote vectors of

zeros and ones in Rn, respectively. Similarly, let 0m,n and 1m,n denote the m × n matrices of zeros

and ones, respectively, and In denote the n× n identity matrix.

4.1 Integrated process and detrended residual

Let {X1,t}t∈Z and {X2,t}t∈Z be two stochastic processes and let {X1,t}nt=1 and {X2,t}nt=1 be two

samples of size n obtained from these processes, respectively. Define the integrated signals {Rk,t}nt=1

by

Rk,t :=

t∑
i=1

Xk,j , k ∈ {1, 2}, t ∈ {1, . . . , n}.

Let Jℓ be the ℓ× ℓ matrix whose (r, s)-th element is given by [Jℓ]r,s = I(1 ≤ r ≤ s ≤ ℓ), that is, Jℓ
is a lower triangular matrix with all entries equal to 1. It follows that, for 0 < m < n,

R
⟨1⟩
k,n = JnX

⟨1⟩
k,n, R

⟨i⟩
k,m+i = J

⟨i⟩
m+iX

⟨1⟩
k,m+i, i ∈ {1, . . . , n−m}. (4.1)

The set {R⟨i⟩
k,m+i}

n−m
i=1 , defined through (4.1), is a sequence of n −m overlapping boxes containing

m + 1 values from the integrated signals, starting at i and ending at m + i. Upon considering

non-overlapping boxes, all definitions, theorems, corollaries, and lemmas that follow can be stated

analogously with slight modifications.

Now, for each k ∈ {1, 2}, and i ∈ 1, · · · , n−m, let R̃k,i be the vector with the ordinates R̃k,t(i),

i ≤ t ≤ m+ i of a polynomial least-squares fit associated with the i-th box R
⟨i⟩
k,m+1, and Ek,i be the

27
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vector with the residual terms Ek,t(i), i ≤ t ≤ m+ i. That is,

R̃k,i = Pm+1R
⟨i⟩
k,m+i =

(
R̃k,i(i), . . . , R̃k,m+i(i)

)′
,

Ek,i = R
⟨i⟩
k,m+i − R̃k,i = Qm+1R

⟨i⟩
k,m+i = (Ek,i, (i), . . . ,Ek,m+i(i))

′ , (4.2)

with

D′
m+1 :=


1 1 · · · 1

1 2 · · · m+ 1
...

...
. . .

...

1 2ν+1 · · · (m+ 1)ν+1

 ,

Pm+1 := Dm+1(D
′
m+1Dm+1)

−1D′
m+1 and Qm+1 := Im+1 − Pm+1

being, respectively, the design, the projection, and the annihilator matrices of a polynomial regression

of degree ν+1, for ν ∈ N. Prass and Pumi (2021) point out that, if {Xk,t}t∈Z is a stationary process

with finite mean, then E[Ek,t] = 0m+1. In lemma 3.1 the authors also prove that, if {X1,t}t∈Z and

{X2,t}t∈Z are two jointly strictly stationary processes, then so are {E1,i}n−m
i=1 and {E2,i}n−m

i=1 . Figure

4.1 presents the plot of a stationary time series {Xt}11t=1, the corresponding integrated signal {Rt}11t=1

and illustrates the step-by-step process of the polynomial fit with overlapping windows and m = 9.
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Figure 4.1: A simulated sample {Xt}11t=1 (top left) from a stationary time series, the corresponding integrated

signal {Rt}11t=1 (top right), the window polynomial fit for the integrated signal (bottom left) and the corre-

sponding residuals (bottom right).
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4.2 Detrended variance, covariance and correlation coefficient

For 0 < m < n and i ∈ {1, · · · , n − m}, let f2k,DFA(m, i) be the sample variance of the residu-

als {Ek,t(i)}m+i
t=i , for k ∈ {1, 2} and fDCCA(m, i) be the sample covariance between the residuals

{E1,t(i)}m+i
t=i and {E2,t(i)}m+i

t=i , corresponding to the i-th box, that is,

f2k,DFA(m, i) :=
1

m
E ′
k,iEk,i and fDCCA(m, i) :=

1

m
E ′
1,iE2,i.

The detrended variance F 2
k,DFA, k ∈ {1, 2}, the detrended covariance FDCCA and the detrended

correlation coefficient ρDCCA, are defined respectively by

F 2
k,DFA(m) =

1

m− n

n−m∑
i=1

f2k,DFA(m), FDCCA(m) =
1

m− n

n−m∑
i=1

fDCCA(m, i), (4.3)

and

ρDCCA(m) =
FDCCA(m)√

F 2
1,DFA(m)

√
F 2
2,DFA(m)

. (4.4)

In the literature, the DFA and DCCA are usually defined constructively based on a sample of a

given stochastic processes, as in (4.3) and (4.4), and therefore can be seen as an estimator of some

quantity. From (4.3) it is easy to see that, F 2
k,DFA(m) and fDCCA(m, i) are simply the sample means

of {f2k,DFA(m, i)}
n−m
i=1 and {fDCCA(m, i)}n−m

i=1 , respectively. Now, if {X1,t}t∈Z and {X2,t}t∈Z are two

jointly strictly stationary processes, then both processes {f2k,DFA(m, i)}
n−m
i=1 and {fDCCA(m, i)}n−m

i=1

are strictly stationary (Prass and Pumi, 2021, corollary 3.1) and hence

E[F 2
k,DFA(m)] =

1

n−m

n−m∑
i=1

E[f2k,DFA(m, i)] = E[f
2
k,DFA(m, 1)] =

1

m
E[E ′

k,1Ek,1]

and

E[FDCCA(m)] =
1

n−m

n−m∑
i=1

E[fDCCA(m, i)] = E[fDCCA(m, 1)] =
1

m
E[E ′

k,1Ek,2].

Under this context, the theoretical counterpart of ρDCCA is given by

ρE(m) =
E[FDCCA(m)]√

E[F 2
1,DFA(m)]

√
E[F 2

2,DFA(m)]
=

∑m+i
t=i Cov[E1,t(i), E2,t(i)]√∑m+i

t=i Var[E1,t(i)]
√∑m+i

t=i Var[E2,t(i)]
, (4.5)

0 < m < n, 1 ≤ m ≤ n −m, where Ek,i(i) = (Ek,i(i), · · · Ek,i+m(i))′ is defined by equation (4.2),

k ∈ {1, 2}.

As pointed out in Prass and Pumi (2021), the coefficient ρε(m) given in (4.5) can be written

as the average covariance divided by the square root of the average variances corresponding to the

processes {E1,t(i)}m+i
t=i and {E2,t(i)}m+i

t=i , which are the residuals of a local polynomial fit applied to the

i-th window associated to the integrated processes {R1,t}nt=1 and {R2,t}nt=1. Hence, (4.5) is clearly

not a direct measure of the cross-correlation between the original processes and there is no obvious

interpretation for it. Another important point to note is that, since

E[ρDCCA(m)] = E

 FDCCA(m)√
F 2
1,DFA(m)

√
F 2
2,DFA(m)

 ̸= E[FDCCA(m)]√
E[F 2

1,DFA(m)]
√
E[F 2

2,DFA(m)]
= ρE(m),
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the coefficient ρDCCA(m) is a biased estimator for ρE(m), for any fixed n. However, under some

reasonable conditions, ρE(m) is consistent. Before stating this result formally, we shall introduce some

notation. For any 0 < m < n and k1, k2 ∈ {1, 2}, let

Γh1,h2

k1,k2
:= Cov

(
X

⟨1⟩
k1,m+1+h1,

,X
⟨1⟩
k2,m+1+h2

)
, 0 ≤ h1, h2 < n−m.

Also, denote by κk1,k2(p, r, q, s) the joint cumulant of (Xk1,p, Xk1,r, Xk2,q, Xk2,s) and, for any h ≥ 0,

let Kk1,k2(h) be the [(m + 1)(m + 1 + h)] × [(m + 1)(m + 1 + h)] block matrix where the (r, s)-th

element in the (p, q)-th block is given by[
[Kk1,k2(h)]

p,q
]
r,s

:= κk1,k2(p, r, q, s), 1 ≤ p, q ≤ m+ 1, 1 ≤ r, s ≤ m+ 1 + h.

For sake of simplicity, for any h, h1, h2 ≥ 0 and k, k1, k2 ∈ {1, 2}, define

Γh1,h2

k := Γh1,h2

k,k , Γk := Γ0,0
k,k, Γ1,2 := Γ0,0

1,2,

Kk(h) := Kk,k(h), Kk := Kk(0) and Kk1,k2 := Kk1,k2(0).

Finally, let

Km+1 = Km+1(0) := J ′
m+1Qm+1Jm+1, K⊗

m+1 = K⊗
m+1(0) := Km+1 ⊗Km+1

Km+1(h) := [J
⟨h+1⟩
m+1+h]

′Qm+1J
⟨h+1⟩
m+1+h and K⊗

m+1(h) := Km+1 ⊗Km+1(h), h > 0,

where ⊗ denotes the Kronecker product. Under the assumptions of joint stationarity and finite fourth

moment for {X1,t}t∈Z and {X1,t}t∈Z, Theorem 4.1 presents closed-form expressions for the expected

values, the variances

γk,DFA(0) := Var[f2k,DFA(m, i)], k ∈ {1, 2} and γDCCA(0) := Var[fDCCA(m, i)],

and the covariance functions

γk,DFA(h) := Cov[f2k,DFA(m, i), f
2
k,DFA(m, i+ h)] and

γDCCA(h) := Cov[fDCCA(m, i), fDCCA(m, i+ h)], h ̸= 0

related to the stochastic processes {f2k,DFA(m, i}
n−m
i=1 and {fDCCA(m, i}n−m

i=1 . Theorem 4.8 provides

sufficient conditions for consistency and almost sure convergence of ρDCCA(m). Since ρDCCA(m) is

bounded, the asymptotic unbiasedness follows immediately.

Teorema 4.1 (Prass and Pumi (2021), theorem 3.1). Let {X1,t}t∈Z and {X2,t}t∈Z be two jointly

strictly stationary stochastic processes with E[|Xk,t|4] < ∞, k ∈ {1, 2}. Then, for all 0 < m < n,

1 ≤ i ≤ n−m, 0 ≤ h < n−m and k ∈ {1, 2},

E[f2k,DFA(m, i)] =
1

m
tr(Km+1Γk),

γk,DFA(0) =
1

m2

[
tr(K⊗

m+1Kk + 2Km+1ΓkKm+1Γk)
]
,

γk,DFA(h) =
1

m2

[
tr(K⊗

m+1(h)Kk(h) + 2Km+1Γ
0,h
k Km+1(h)Γ

h,0
k )
]
,

and

E[fDCCA(m, i)] =
1

m
tr(Km+1Γ1,2),

γDCCA(0) =
1

m2
[tr(K⊗

m+1K1,2 +Km+1Γ1Km+1Γ2 +Km+1Γ1,2Km+1Γ1,2)],

γDCCA(h) =
1

m2

[
tr(K⊗

m+1(h)K1,2(h) +Km+1Γ
0,h
1 Km+1(h)Γ

h,0
2 +Km+1Γ

0,h
1,2Km+1(h)Γ

h,0
1,2)
]
.



Chapter 4. Detrended Variance and Covariance Analysis 31

Teorema 4.2 (Prass and Pumi (2021), theorem 3.2). Let {X1,t}t∈Z and {X2,t}t∈Z be two jointly

stationary processes. If γk,DFA(h) → 0 and γDCCA(h) → 0, as h→ ∞, then

F 2
k,DFA(m)

P−→ E[f2k,DFA(m, 1)] =
1

m
tr(Km+1Γk), as n→ ∞, (4.6)

and

FDCCA(m)
P−→ E[fDCCA(m, 1)] =

1

m
tr(Km+1Γ1,2), as n→ ∞. (4.7)

Moreover,

ρDCCA(m)
P−→ tr(Km+1Γ1,2)√

tr(Km+1Γ1) tr(Km+1,Γ2)
= ρE(m), as n→ ∞, (4.8)

Furthermore, if
∞∑
h=1

γk,DFA(h)

hqk
<∞, and

∞∑
h=1

γDCCA(h)

hq12
<∞,

for some 0 ≤ qk, q12 < 1, then the convergence holds almost surely.

Calculating the limit in probability of F 2
k,DFA, FDCCA, and ρDCCA, as n→ ∞, Theorem 4.2 requires

that γk,DFA(h) → 0 and γDCCA(h) → 0 as h→ ∞. Despite being simple assumptions, verifying them

can be challenging, therefore, Prass and Pumi (2021) proposes a method to check these conditions

using information about the original time series, which are often easier to verify. For Theorem 4.2 to

hold, it is sufficient that, Cov[Xk1,t, Xk2,t+h] → 0 and κk1,k2(p, h+ τ, p, h+ q) → 0, as |h| → ∞, for

k1, k2 ∈ {1, 2} and any fixed p, q, τ > 0.

Figure 4.2 displays a heatmap with the values of the matrix Km+1 for m ∈ {3, 27, 81, 101}. It is
noticeable that all matrices exhibit a similar pattern, with a band of positive values around the main

diagonal and negative values arranged in entries further away from the main diagonals. Additionally,

it is worth noticing that the values in the first row and first column of the matrix are equal to 0, which

means that the first row of the matrices Km+1Γk and Km+1Γ1,2 always equal to 0. The asymptotic

behavior of the quantities tr(Km+1Γk) and tr(Km+1Γ12) was derived in Prass and Pumi (2021) for

the specific case where ν = 0 (linear polynomial fit for each window), and the autocovariance functions

γk(.) and the cross-autocovariance γ1,2(.) are absolutely summable. The authors show that, in this

context,

E[f2k,DFA(m, 1)] ∼
m

15

∑
h∈Z

γk(h), E[fDCCA(m, 1)] ∼
m

15

∑
h∈Z

γ1,2(h), as m→ ∞, (4.9)

and, as a consequence,

ρDCCA(m)
P−→

∑
h∈Z

γ1,2(h)√∑
h∈Z

γ1(h)
√∑

h∈Z
γ2(h)

, as m,n→ ∞.

Therefore, F 2
k,DFA(m) for k ∈ {1, 2} and FDCCA(m), asymptotically exhibit linear behaviors, while

ρDCCA(m) converges to a constant.
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Figure 4.2: Heatmap of the Km+1 matrix for m ∈ {3, 27, 81, 101}.

4.3 Novel theoretical results for imputed time series

Theoretical results concerning DFA and DCCA in the context of missing data are currently absent

from the literature, even in simple cases such as when missing values are filled using the mean. In

what follows, asymptotic results for the autocovariance and cross-covariance functions corresponding

to a time series filled with the mean are derived, and a case study to investigate its impact on the

expected values of the function is conducted.

Let {X1,t}t∈Z and {X2,t}t∈Z be two jointly weak stationary processes with autocovariance func-

tions γk,k(·) := γk(·), k ∈ {1, 2}, and cross-covariance function γ1,2(·) satisfying∑
h∈Z

|γk1,k2(h)| <∞, for any k1, k2 ∈ {1, 2}.
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Define the set T = {1 · · · , n} and let ρ be the proportion of missing values. Also, let Tk :=

{tk,1, · · · , tk,⌊nρ⌋} ⊂ T be the set of indexes of missing data and T c
k = T − Tk the set of indexes of

observed values, for k ∈ {1, 2}. The time series with missing data can be written as

Xmiss
k,t = NA× I(t ∈ Tk) +Xk,t × I(t ∈ TC

k ), t ∈ T, k ∈ {1, 2}.

Denote by γmiss
k,k (·, ·), k ∈ {1, 2}, and γmiss

1,2 (·, ·), respectively, the autocovariance functions and the

cross-covariance function corresponding to the time series obtained after applying some imputation

method to reconstruct {Xmiss
1,t }nt=1 and {Xmiss

2,t }nt=1. Then, for any k1, k2 ∈ {1, 2},

γmiss
k1,k2(t1, t2) =


Cov[Xk1,t1 , Xk2,t2 ], if t1 ∈ TC

k1
and t2 ∈ TC

k2
,

Cov[Xk1,t1 , X̂k2,t2 ], if t1 ∈ TC
k1

and t2 ∈ Tk2 ,

Cov[X̂k1,t1 , Xk2,t2 ], if t1 ∈ Tk1 and t2 ∈ TC
k2
,

Cov[X̂k1,t1 , X̂k2,t2 ], if t1 ∈ Tk1 and t2 ∈ Tk2 ,

(4.10)

where X̂k1,t1 and X̂k2,t2 are the imputed values. In this work, we consider a simple case where missing

values are imputed with the mean computed from the non-missing values, that is,

X̂k,t = X̂k =
1

#(T c
k)

∑
i∈T c

k

Xk,i, t ∈ Tk, (4.11)

where #(T c
k) = n − ⌊nρ⌋, for k ∈ {1, 2}. Hence, the estimator X̂k is the arithmetic mean of the

observed values. Considering the mean imputation, expression (4.10) can be simplified for large n. As

the estimated values in (4.11) depend on n, it is possible to show that asymptotically, the terms of

(4.10) that depend on the imputed values tend to 0.

To see why this is the case, if {Xk,t}t∈Z is a weakly stationary process satisfying γk,k(h) → 0,

as h → ∞, then for any sample {Xk,t}nt=1 of this process, Var[X̄] → 0, as n → ∞. Therefore, it is

trivial to note that under the same assumptions, Var[X̂k] → 0, as n → ∞, given that the observed

values {Xk,t}t∈T c
k
of the process form a sample (with size n − ⌊nρ⌋ ∼ n(ρ − 1)) of the complete

process, for k ∈ {1, 2}. Consequently, for any k1, k2 ∈ {1, 2},

|Cov[X̂k1 , X̂k2 ]| ≤
√

Var[X̂k1 ]

√
Var[X̂k2 ] −→ 0, as n→ ∞,

and

|Cov[Xk1,t, X̂k2 ]| ≤
√

Var[Xk1 ]

√
Var[X̂k2 ] −→ 0, as n→ ∞.

Therefore, the covariance functions and cross-correlation function corresponding to the imputed

series satisfy, respectively

γmiss
k,k (t1, t2) −→

{
Cov[Xk,t1 , Xk,t2 ], if t1, t2 ∈ TC

k ,

0, otherwise,
k ∈ {1, 2}, n→ ∞, (4.12)

and

γmiss
1,2 (t1, t2) −→

{
Cov[X1,t1 , X2,t2 ], if t1 ∈ TC

1 and t2 ∈ TC
2 ,

0, otherwise,
n→ ∞. (4.13)
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By letting Γmiss
k and Γmiss

1,2 be the matrices whose (i, j)-th entries are, respectively, γmiss
k,k (i, j) and

γmiss
1,2 (i, j), it can be observed that asymptotically, the values of the nρ columns and nρ rows corre-

sponding to the missing observations in the autocovariance matrix Γmiss
k will approach 0. Therefore,

n2(1 − ρ)2 elements of the covariance matrix of the time series imputed with the mean are poten-

tially different from zero. It is worth noting that considering that the indexes of missing values in

the series may be different, the cross-covariance matrix Γmiss
1,2 can have up to twice the proportion

of missing values of the covariance matrices Γmiss
1 and Γmiss

2 . Figure 4.3 illustrates the sparsity of

the autocovariance and cross-covariance matrices for various proportions of missing data ρ. The blue

points represent cases with ρ ∈ {0.1, 0.2, 0.5, 0.8} and the red dashed line represents the maximum

proportion of missing data for the cross-covariance matrix.
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Figure 4.3: Line plot illustrating the sparsity of the autocovariance (solid line) and cross-covariance (dashed line)

matrices at varying proportions of missing values ρ. Blue points indicate specific values of ρ ∈ {0.1, 0.2, 0.5, 0.8}
and the red dashed line represents the maximum proportion of missing data for the cross-covariance matrix.

With the asymptotic expressions derived in (4.12) and (4.13), respectively, for the autocovariance

and cross-covariance matrices in the case of missing data, it becomes possible to study the behavior

of the limiting matrices

Km+1

(
lim
n→∞

Γmiss
k

)
and Km+1

(
lim
n→∞

Γmiss
1,2

)
,

which correspond to the theoretical matrices that should be used in the calculation of the asymptotic

expected value of F 2
k,DFA(m) and FDCCA(m) as per (4.6) and (4.7) under the presence of missing

values. In what follows, a study showcasing the expected behavior of Km+1(limn→∞ Γmiss
k ) for an

AR(1) and an MA(1) process is presented.

4.3.1 Case study

The objective of this case study is to investigate the behavior of the limiting matrixKm+1(limn→∞ Γmiss
k )

which replaces Km+1Γk in the presence of missing data. Since only marginal behaviors are studied,
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for sake of simplicity, in this section the following notation shall be adopted

Γ = Γk, Γmiss := Γmiss
k and Γmiss

∞ = lim
n→∞

Γmiss.

For each case, the matrix Km+1Γ, associated to the time series without missing values will be

presented, along with simulated cases for the matrix Γmiss considering m = 27 and proportions of

missing values ρ ∈ {0.1, 0.2, 0.5, 0.8}. The calculated values for the main diagonal of the matrices for

m = 101 and proportions of missing values ρ ∈ {0.1, 0.2, 0.5, 0.8} will be displayed. Finally, the trace

values of the matrices for m ∈ {27, 81, 101} and ρ ∈ {0.1, 0.2, 0.5, 0.8} will be depicted.

4.3.1.1 Autocovariance of AR(1)

In this analysis the time series {Xt}nt=1 is a sample from an AR(1) process whose definition and

corresponding (i, j)-th term of autocovariance matrix are given by

Xt = 0.6Xt−1 + εt, t ∈ Z, and [Γ]i,j =
0.6|i−j|

0.64
, (4.14)

where {εt}t∈Z, is a sequence of i.i.d. N (0, 1) random variables.

The heatmap in Figure 4.4 illustrates that the structure of the theoretical K28Γ matrix in this

example behaves similarly to the K28 matrix shown in Figure 4.2, with a band of positive values around

the main diagonal with the values in the center of the matrix are not as high as those at the beginning

and end of the diagonal. It is interesting to notice that the range of values in K28Γ is greater than

that of the K28 matrix in this example.
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Figure 4.4: Heatmap of the K28Γ matrix considering an AR(1) process.

Figure 4.5 displays examples of the calculated values for the K28Γ
miss
∞ matrix with varying pro-

portions of missing data ρ ∈ {0.1, 0.2, 0.5, 0.8} from top to bottom and evenly distributed across all,

start, middle, and end columns of the matrix, respectively, from left to right. The non-zero entries

are similar to those in the matrix without missing values, both in structure and value range.
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Figure 4.5: Examples of heatmaps of theK28Γ
miss
∞ matrix considering an AR(1) process with varying proportions

of missing data ρ ∈ {0.1, 0.2, 0.5, 0.8} from top to bottom. Missing data are evenly distributed across all, start,

middle, and end columns of the matrix, respectively, from left to right.

Figure 4.6 presents box-plots with the calculated diagonal values of the K102Γ
miss
∞ matrix corre-

sponding to an AR(1) process defined by (4.14). The graphs are based on 1000 replications, with

varying proportions of missing data ρ ∈ {0.1, 0.2, 0.5, 0.8}, from left to right and top to bottom.

The red line represents the calculated values for the diagonal of K102Γ. It is noticeable that the

calculated values for the diagonal of the K102Γ
miss
∞ matrix are generally lower than those calculated

for the complete case. The higher the proportion of missing values ρ, the lower the median values,
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but the variability of the calculated values is independent of ρ. The values maintain a “wing” shape,

consistent with the behavior shown in Figure 4.4. Cases where the matrix entry was 0 were omitted

for better visibility and a more realistic depiction of variability in cases where the entry came from an

observed value.

Figure 4.6: Boxplots illustrating the calculated values for 1000 replications of the K102Γ
miss
∞ matrix correspond-

ing to an AR(1) process, with varying proportions of missing data ρ ∈ {0.1, 0.2, 0.5, 0.8} from left to right and

top to bottom. The red line represents the calculated values for the diagonal of K102Γ without missing values.

E[FDFA
2 (m)]E[FDFA
2 (m)]E[FDFA
2 (m)]E[FDFA
2 (m)] = 201.62= 201.62= 201.62= 201.62 E[FDFA
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Figure 4.7: Boxplots illustrating the calculated values for 1000 replications of the trace of K102Γ
miss
∞ corre-

sponding to an AR(1) process, with varying proportions of missing data ρ ∈ {0.1, 0.2, 0.5, 0.8} and different

window sizes m ∈ {27, 81, 101} from left to right. The red line represents the calculated values for the trace of

Km+1Γ.
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Figure 4.7 shows the calculated values of the trace of the K102Γ
miss
∞ matrix corresponding to an

AR(1) process, with varying proportions of missing data ρ ∈ {0.1, 0.2, 0.5, 0.8} (top to bottom) and

different window sizes m ∈ {27, 81, 101} (left to right), for 1000 replications. It can be observed that

the trace of the K102Γ
miss
∞ was always lower than the value of K102Γ, with the median decreasing as

the proportion of missing values increases, the decay’s behavior is similar for different values of m.

4.3.1.2 Autocovariance of an MA(1)

In this analysis the time series {Xt}nt=1 is a sample from an MA(1) process whose definition and

corresponding (i, j)-th term of autocovariance matrix are given by

Xt = εt + 0.6εt−1, t ∈ Z, and [Γ2]i,j = 1.36I(i = j) + 0.6I(|i− j| = 1), (4.15)

where {εt}t∈Z, is a sequence of i.i.d. N (0, 1) random variables.

The heatmap in Figure 4.8 illustrates that the structure of the theoretical K28Γ
miss
∞ matrix in

this example behaves similarly to the K28 matrix shown in Figure 4.2, with a band of positive values

around the main diagonal with the values in the center of the matrix are not as high as those at the

beginning and end of the diagonal. It is interesting to notice that, in this example, the range of values

in K28Γ is greater than those of the K28 matrix, but lower than those in Figure 4.4.
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Figure 4.8: Heatmap of the K28Γ matrix considering an MA(1) process.

Figure 4.9 displays examples of the calculated values for the K28Γ
miss
∞ matrix with varying pro-

portions of missing data ρ ∈ {0.1, 0.2, 0.5, 0.8} from top to bottom and evenly distributed across all,

start, middle, and end columns of the matrix, respectively, from left to right. The non-zero entries

are similar to those in the matrix without missing values, both in structure and value range.

Figure 4.10 presents box-plots with the calculated diagonal values of the K102Γ
miss
∞ matrix corre-

sponding to an MA(1) process defined by (4.15). The graphs are based on 1000 replications, with

varying proportions of missing data ρ ∈ {0.1, 0.2, 0.5, 0.8}, from left to right and top to bottom.
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The red line represents the calculated values for the diagonal of K102Γ
miss
∞ . Since the only non-zero

entries in the matrix Γ are those within 1 entry of distance from the main diagonal, there are fewer

possible values for the main diagonal of K102Γ. It can be observed that for ρ = 0.1, the values of the

matrix diagonal are concentrated at the same point as the values calculated with the complete matrix,

and the median value decreases as the proportion of missing values increases. The values maintain a

“wing” shape, consistent with the behavior shown in Figure 4.4. Cases where the matrix entry was 0

were omitted for better visibility and a more realistic depiction of variability in cases where the entry

came from an observed value.
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Figure 4.9: Examples of heatmaps of the K28Γ
miss
∞ matrix considering an MA(1) process with varying propor-

tions of missing data ρ ∈ {0.1, 0.2, 0.5, 0.8} from top to bottom. Missing data are evenly distributed across all,

start, middle, and end columns of the matrix, respectively, from left to right.
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Figure 4.10: Boxplots illustrating the calculated values for 1000 replications of the K102Γ
miss
∞ matrix corre-

sponding to an MA(1) process, with varying proportions of missing data ρ ∈ {0.1, 0.2, 0.5, 0.8} from left to right

and top to bottom. The red line represents the calculated values for the diagonal of K102Γ without missing

values.

Figure 4.11 shows the calculated values of the trace of the K102Γ
miss
∞ matrix corresponding to an

MA(1) process, with varying proportions of missing data ρ ∈ {0.1, 0.2, 0.5, 0.8} (top to bottom) and

different window sizes m ∈ {27, 81, 101} (left to right), for 1000 replications. It can be observed that

the trace of the K102Γ
miss
∞ was always lower than the value of K102Γ, with the median decreasing as

the proportion of missing values increases, the decay’s behavior is similar for different values of m.
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Figure 4.11: Boxplots illustrating the calculated values for 1000 replications of the trace of K102Γ
miss
∞ consid-

ering an MA(1) process, with varying proportions of missing data ρ ∈ {0.1, 0.2, 0.5, 0.8} and different window

sizes m ∈ {27, 81, 101} from left to right. The red line represents the calculated values for the trace of Km+1Γ

without missing values.



Chapter 5

Monte Carlo Simulations

Theoretical results concerning DFA and DCCA in the context of missing data are currently absent

from the literature, even in the simplest case where missing observations are imputed with the mean.

Deriving the theoretical asymptotic behavior of these measures is a challenging task. For this reason,

in this work, we focus on Monte Carlo simulation studies. The goal is to investigate the behavior of

the DFA, DCCA, and the coefficient ρDCCA when missing values are imputed considering traditional

methods and decision tree algorithms. The questions we aim to answer with the current simulation

study are the following.

Q1: Which imputation method presents the best performance in terms of mean square error?

Q2: Are the DFA, DCCA and/or ρDCCA values calculated using recomposed time series different

from those based on the complete time series? If yes, which imputation method leads to

estimated values of DFA, DCCA, and ρDCCA closer to their expected values?

Q3: Do the best-performing imputation methods in Q1 and Q2 coincide?

Q4: Does the dependence structure of the data affect the results?

Q5: Does the proportion of missing values have any influence on the conclusions?

In what follows, the simulation study conducted to address these questions is described in detail.

5.1 Data generating process

In this study, we consider the same scenarios as those simulated in Prass and Pumi (2021), namely,

1. Uncorrelated processes. In this context, {X1,t}t∈Z and {X2,t}t∈Z are two stationary uncorre-

lated processes,

Γk = Cov
[
X

⟨1⟩
k,m+1,X

⟨1⟩
k,m+1

]
, k ∈ {1, 2}, and Γ1,2 = 0m+1,m+1, ∀m > 0.

In this case, E[FDCCA(m)] = 0 and ρDCCA(m)
P−→ 0, as n −→ ∞, for all m > 0. The expression

for E[F 2
k,DFA(m)] depends on the scenario considered. For this structure of cross-correlation, two

scenarios are presented. Scenario 1 considers two i.i.d. standard Gaussian sequences independent

41



42 5.1 Data generating process

from each other. Scenario 2 considers an AR(1) and an MA(1) process generated from two

i.i.d. standard Gaussian sequences, that is, two processes with autocorrelation but mutually

independent.

2. Bivariate white noise process. In this context, {(X1,t, X2,t)}t∈Z is a bivariate white noise, with

E[Xk,t] = µk, Var[Xk,t] = σ2k, k ∈ {1, 2} and Cov[X1,t, X2,t] = σ12, so that

Γk = σ2kIm+1, k ∈ {1, 2}, and Γ1,2 = σ12Im+1, ∀m > 0.

Hence, independent of the scenario considered,

E[F 2
k,DFA(m)] =

[
1

15
m+

2

15
− 1

5m

]
σ2k ∼

σ2k
15
m, as m→ ∞,

E[FDCCA(m)] =

[
1

15
m+

2

15
− 1

5m

]
σ12 ∼

σ12
15

m, as m→ ∞,

and

ρDCCA(m)
P−→ σ12

σ1σ2
= Corr[X1,t, X2,t], as n −→ ∞, ∀ m > 0.

For this structure, four scenarios are considered. Scenarios 3.1 and 3.2 consider bivariate Gaussian

processes with intermediate and high correlation, respectively. Scenarios 4.1 and 4.2 consider

signal plus noise processes with low and high variance, respectively. Under these four scenarios,

the two processes are i.i.d. sequences with cross-correlation only at lag h = 0.

3. Short-memory cross-correlated processes. In this context {X1,t}t∈Z and {X2,t}t∈Z are two

jointly stationary processes that can be written as

Xk,t =
∑
j∈Z

ψk,jηk,t−j , t ∈ Z, with
∑
j∈Z

|ψk,j | <∞, k ∈ {1, 2},

where {ηk,t}t∈Z, is a white noise process with zero mean, Var[ηk,t] = τ2k , and Cov[η1,r, η2,s] =

τ1,2I(r = s). In this case, closed expressions for E[F 2
k,DFA(m)] and E[FDCCA(m)] might be hard

to derive, but it is known that

ρDCCA(m)
P−→ sign(Ψ1,2)

τ1,2
τ1τ2

= sign(Ψ1,2) Corr[η1,t, η2,t], as n,m→ ∞,

where Ψ1,2 =
∑

j∈Z ψ1,j
∑

ℓ∈Z ψ2,ℓ. For this structure, four scenarios are considered. Scenarios

5.1 and 5.2 consider couples of processes where the cross-correlation structure is driven by a

moving average and an autoregressive structure, respectively. Scenarios 6.1 and 6.2 consider

couples of processes sharing the same white noise sequence. Under these four scenarios, the cross-

covariance structure is determined by the covariance structure of the underlying noise processes.

In any given scenario, to generate a time series with missing values we proceed as described in the

sequel.

In all cases, the complete time series are generated with sample size n = 2000. Given a complete

time series {Xt}nt=1 and a target proportion of missing data ρ, we select a set T1 with ⌊nρ⌋ ele-

ments using a simple random sample without replacement from T . Subsequently, the corresponding

observations of the original time series are transformed into missing values through the relation

Xmiss
t = NA× I(t ∈ T1) +Xt × I(t ∈ TC

1 ), t ∈ {1, · · · , n}.

The proportions of missing values considered in the study are ρ ∈ {0.1, 0.2, 0.5, 0.8}. For each scenario

and proportion of missing data, 1000 replications of the procedure are performed.
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5.2 Imputation and estimation

The imputation methods and corresponding abbreviations used in figures and tables are Last Observa-

tion Carried Forward (LOCF), Linear Interpolation (LI), Kalman Smoothing (KS), Exponential Moving

Average (EMA), Mean (M), Classification and Regression Trees (rpart), and Probabilistic Regression

Trees (prtree). The description of these methods is presented in Chapters 2 and 3. The methods

available in the imputeTS package are employed with default arguments, as described in Moritz and

Bartz-Beielstein (2017). The set up used for the decision tree methods are as follows.

• For the CART method, the rpart function is employed with the following arguments: minsplit

= 6 (minimum observations on a leaf), cp = 0.01 (complexity parameter), usesurrogate =

0 (how surrogates are used), maxdepth = 30 (maximum depth). It is worth mentioning that

with usesurrogate = 0 then if an observation has a missing value for the primary splitting

rule, it is not considered in subsequent splits. The remaining parameters are set to their default

values in rpart.

• For pruning the tree obtained from the CART method, the prune function is used with the cp

parameter set to the smallest error value calculated from the cross-validation method conducted

by rpart.

• In the case of probabilistic decision trees, the prtree function is employed with the default

parameters, as described in Section 3.4.4.

• The covariates considered are Xmiss
t−1 and Xmiss

t+1 . This selection is based on the preliminary

simulation presented in Section 5.2.1.

Calculating the sample and expected detrended variances, cross-covariance and cross-correlation

is a computationally intensive task. Therefore, for this purpose, the R package DCCA (Prass and Pumi,

2020) will be utilized. This package implements the results presented in Prass and Pumi (2021)

and the main functions are written in FORTRAN for efficiency. For all scenarios, the DFA, DCCA and

ρDCCA are calculated considering overlapping windows with size m ∈ {3, 5, · · · , 99, 101} and ν = 0,

corresponding to a linear fit in each window.

5.2.1 Preliminary study on the decision trees algorithms covariates

In Neimaier and Prass (2023) a method considering standard decision trees was proposed to fill in

missing data in ARMA time series and a Monte Carlo simulation study was performed to analyze

the performance of the method. In that study, the lagged values Xmiss
t−h1

, · · · , Xmiss
t−1 , X

miss
t+1 , · · ·Xmiss

t+h2

were used as covariates, with h = (h1, h2) = {(1, 0), (1, 1), (2, 0), (2, 2), (5, 0), (5, 5)}. The results

indicated that incorporating information both before and after the observation of interest yields more

accurate results and that there is no significant difference between cases where h = (1, 1) and

h = (5, 5). However, the study did not investigate if all lags are indeed important when h = (5, 5).

Also, Neimaier and Prass (2023) did not consider the fact that using h = (5, 5) potentially decreases

the size of the training sample since the study was carried out without the use of surrogate variables,

which implies that any row with missing data in the covariates was ignored by the rpart algorithm.
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The upcoming simulation study aims to assess the variable’s importance in one of the scenarios

considered in Neimaier and Prass (2023). We shall assume that the same pattern follows for the

remaining scenarios so that the results of this simulation will be used as a reference for the remaining

cases. The scenario selected is the ARMA model, which was the one that presented the worst results

(globally) for all imputation methods considered.

For this simulation study, 1000 replications of time series {Xt}nt=1, with size n = 2000, are

generated from an ARMA(1, 1) process with parameters ϕ = 0.7 and θ = 0.4. For each replication,

time series {Xmiss
t }nt=1 with missing data are created, varying the proportion of missing values ρ ∈

{0.1, 0.2, 0.5, 0.8}. The lagged values Xmiss
t−5 , · · · , Xmiss

t−1 , X
miss
t+1 , · · ·Xmiss

t+5 are used as covariates, and

the reconstruction is carried out using only the CART method and the procedure described in Section

3.5. The relative importance of each lag as a predictor variable is examined using the “variable

importance” metric provided by the rpart implementation of CART in R.
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Figure 5.1: Boxplots of the relative importance of the covariates Xmiss
t−5 , · · · , Xmiss

t−1 , X
miss
t+1 , · · ·Xmiss

t+5 , based on

1000 Monte Carlo replicas, where time series with a proportion ρ of missing values, for ρ ∈ {0.1, 0.2, 0.5, 0.8},
were reconstructed using the CART decision tree algorithm.

Figure 5.1 presents boxplots illustrating the relative importance of the covariates Xmiss
t−5 , · · · , Xmiss

t−1 ,

Xmiss
t+1 , · · ·Xmiss

t+5 , based on 1000 replications, for each ρ ∈ {0.1, 0.2, 0.5, 0.8}. The values r above the

boxplots indicate the number of replications in which the corresponding variable was used in the main

or surrogate tree. The covariates Xmiss
t−1 and Xmiss

t+1 are highlighted in blue. The first lag consistently

stands out as the most important, and the relative importance decreases as the temporal distance

between the covariate and the variable of interest increases. Based on these findings, we have decided

to consider only one lag from the past and one from the future as predictors for subsequent analysis.
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5.3 Results presentation

For each scenario under consideration, a Monte Carlo simulation study is conducted to assess the

quality of missing data reconstruction and the finite sample performance of the F 2
k,DFA(m), k ∈ {1, 2},

FDCCA(m) and ρDCCA(m) in the presence of missing data. Different proportions of missing values

and imputation methods are considered and, for all scenarios, the results are summarized following

the same order of presentation, as described in the sequel.

1. First, the simulation results considering the complete time series are reported. The results are

presented in a figure showing the boxplots of the estimated values of F 2
k,DFA(m), k ∈ {1, 2},

FDCCA(m), and ρDCCA(m), for m ∈ {3, 5, · · · , 99, 101}, and a horizontal line corresponding

to the theoretical expected values E(F 2
k,DFA(m)) and E(FDCCA(m)), and the limit ρE(m) for

which the coefficient ρDCCA(m) converges to, as n −→ ∞. In these graphs, the color blue is

used to emphasize the values of m that will be considered in the graphs corresponding to the

imputed time series. These graphs are equivalent to those in Prass and Pumi (2021). They are

useful for analyzing the bias, variability, and the decay of F 2
k,DFA(m), FDCCA(m), and ρDCCA(m),

as functions of m.

2. Second, for each time series {X1,t}nt=1 and {X2,t}nt=1 the simulation results regarding the impu-

tation of missing values are reported. The figure that summarizes the simulation results consists

of boxplots of the mean square prediction error (MSE), defined by

MSE =
1

#(TC
1 )

∑
t∈T c

1

(Xk,t − X̂k,t)
2,

for each one of the seven imputation methods applied, and each proportion of missing values

ρ ∈ {0.1, 0.2, 0.5, 0.8}. This part of the simulation aims to answer question Q1 and partially

answer question Q5, for each scenario considered. Moreover, the comparison among different

scenarios might provide a partial answer to question Q5.

3. Third, the simulation results regarding the DFA under the presence of missing data are reported.

The figure presented shows boxplots of the F 2
k,DFA(m) values obtained from the imputed time

series and a horizontal line corresponding to the theoretical expected values E(F 2
k,DFA(m)),

under no missing data. For simplicity, the figure only shows the quantities corresponding to

m ∈ {3, 27, 81, 101}, for each proportion of missing values ρ ∈ {0.1, 0.2, 0.5, 0.8} and each one

of the seven imputation methods. This part of the simulation aims to partially answer question

Q5 and the comparison with the first reported results might give a partial answer to questions

Q2 and Q3, for each scenario considered. Moreover, the comparison among different scenarios

partially answers question Q4.

4. Fourth, the simulation results regarding the DCCA under the presence of missing data are

reported. Analogously to the DFA, the results are summarized in a figure showing boxplots of

the FDCCA(m) values obtained from the imputed time series and a horizontal line corresponding

to the theoretical expected values E(FDCCA(m)), under no missing data. For simplicity, the

figure only shows the quantities corresponding to m ∈ {3, 27, 81, 101}, for each proportion of

missing values ρ ∈ {0.1, 0.2, 0.5, 0.8} and each one of the seven imputation methods. These

results complement the previous analysis.
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5. Finally, the simulation results regarding the coefficient ρDCCA under the presence of missing

data are reported. The figure presented shows the boxplots of the ρDCCA(m) values obtained

from the imputed time series and a horizontal line corresponding to the theoretical limit ρE(m)

for which the coefficient ρDCCA(m) converges to, under no missing data, as n −→ ∞. For

simplicity, the figure only shows the quantities corresponding to m ∈ {3, 27, 81, 101}, for each
proportion of missing values ρ ∈ {0.1, 0.2, 0.5, 0.8} and each one of the seven imputation

methods. Combining the analysis of these results with the previous ones should answer the five

questions raised.

As the scenarios are sequentially represented, any of the marginal analyses that have already

been presented in a previous scenario will be omitted, and the location with its interpretations will

be referenced. Following the guideline just provided, in the sequel we outline the findings for each

distinct scenario. A final discussion gathering the results, and aiming to clarify questions Q4 and Q5,

is presented at the end of this chapter.

5.3.1 Scenario 1: uncorrelated i.i.d. processes

In this scenario, {X1,t}nt=1 and {X2,t}nt=1 are i.i.d. N (0, 1) sequences, independent from each other.

The corresponding autocovariance and cross-covariance matrices are given by

Γ1 = Γ2 = Im+1, and Γ1,2 = 0m+1,m+1.

and

E[F 2
k,DFA(m)] =

1

m
tr(Km+1) =

m2 + 2m− 3

15m
∼ m

15
, as m→ ∞, k ∈ {1, 2}.

Since the two processes are identically distributed, in what follows, the marginal results shall be

presented only for {X1,t}nt=1.

Figure 5.2 shows that the estimates of F 2
1,DFA(m) and F 2

2,DFA(m) are close to their expected values,

especially when m is small. The values of FDCCA(m) and ρDCCA(m) are all close to zero which, in

this scenario, is the value of the theoretical counterpart ρE(m), for all m. In all cases, the variability

increases with m. Given how these quantities are defined, this behavior is to be expected. From this

figure one also observes that F 2
1,DFA(m) and F 2

2,DFA(m) increase linearly with m, which reflects the

theoretical result stated in (4.9).

From Figure 5.3 it can be observed that the average-based methods (M, rpart, and prtree) per-

formed better than the other methods in filling the missing values of {X1,t}nt=1. This outcome is

reasonable from a theoretical perspective, given that this process is a sequence of i.i.d. random vari-

ables with a standard Gaussian distribution and, in terms of mean squared error, the sample mean is

the best linear predictor. It is also noticeable that for these methods, the larger the ρ, the lower the

variability of the MSE. Although it may seem counter-intuitive, this occurs because the predictions of

missing values are calculated using ⌊n(1 − ρ)⌋ observations, while the MSE is calculated using ⌊nρ⌋
observations. As the proportion of missing values ρ rises, the size of the sample available to predict

the missing values decreases without compromising the imputation quality due to the simplicity of the

underlying process. Simultaneously, for each replication, the size of the sample used to calculate the

MSE values increases, resulting in MSE estimates with less variability.
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Figure 5.2: Scenario 1: Boxplots considering 1000 replications of the complete time series and m ∈
{3, 5, · · · , 99, 101}. From left to right F 2

1,DFA(m), F 2
2,DFA(m), FDCCA(m), and ρDCCA(m). In all cases, the

red line represents the theoretical limit obtained by letting n→ ∞.
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Figure 5.3: Scenario 1: Boxplots of the imputation MSE values for {X1,t}2000t=1 , based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}.

Figure 5.4 illustrates that when m = 3, E[F 2
1,DFA(m)] is always underestimated, with a significant

reduction in the performance of all methods as ρ increases. Also, there is almost no difference among

the methods but LOCF, followed by the average-based methods (except EMA) and by the KS method,

resulted in F 2
1,DFA(m) values slightly closer to E[F 2

1,DFA(m)]. For m ∈ {27, 81, 101}, the LOCF, LI,

and EMA methods always overestimate E[F 2
1,DFA(m)], while the other methods underestimate this

value. This becomes more evident as the proportion of missing values ρ increases. For ρ ∈ {0.1, 0.2},
the estimates seem reasonable, but for higher proportions of missing values either the estimated values

are much higher than the theoretical ones or they concentrate very close to zero. Despite this, the

KS and the average-based methods consistently produced values closer to the theoretical expected

value. Figures 5.5 and 5.6 show that all imputation methods had similar performance for all values of

m and ρ, except for ρ ∈ {0.5, 0.8}, in which cases the LOCF, LI and EMA methods produced values

of FDCCA(m) with higher variability. In all cases, FDCCA(m) and ρDCCA(m) are close to 0, which is

the theoretical target.
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Figure 5.4: Scenario 1: Boxplots of F 2
1,DFA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[F 2
1,DFA(m)].
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Figure 5.5: Scenario 1: Boxplots of FDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[FDCCA(m)].
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Figure 5.6: Scenario 1: Boxplots of ρDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications, consid-

ering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to ρE(m).

From Figures 5.4 - 5.6 it can also be observed that the same pattern shown in Figure 5.2 is

presented when estimates of F 2
k,DFA(m), FDCCA(m) and ρDCCA(m) are obtained after imputation,

that is, the variability increases with m. Moreover, as shown in more detail in Figure 5.7, for the

imputed time series, the values of F 2
k,DFA(m) also increase linearly with m, independently of ρ. The

results reported in Figure 5.7 correspond to the estimated values of F 2
k,DFA(m) obtained when the

missing values were imputed using the LOCF method. The behavior observed when other imputation

methods were used is analogous.
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Figure 5.7: Scenario 1: Boxplots of F 2
1,DFA(m), m ∈ {3, 5, · · · , 99, 101}, based on r = 1000 replications,

considering the LOCF imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[F 2
1,DFA(m)].
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For the current scenario, the estimations of the DFA and DCCA functions with complete time

series had results closer to the expected values in terms of median, with an increase in variability as

the window size m increased. Regarding missing data imputation, average-based methods (M, rpart

and prtree) outperformed other methods. Also, the estimates of F 2
1,DFA(m) and F 2

2,DFA(m) were closer

to the corresponding expected values when the time series were reconstructed using those methods.

The time series reconstructed using the average-based methods were the ones that led to the best

results for the estimates of FDCCA(m) across different values ofm and ρ. Regarding ρDCCA(m), almost

no differences were observed among the imputation methods. Therefore, these observations suggest

that for uncorrelated processes, the methods that excel in missing data imputation also provide more

accurate estimates for the DFA and DCCA functions.

5.3.2 Scenario 2: uncorrelated processes with autocorrelation

In this scenario the time series {X1,t}nt=1 and {X2,t}nt=1 are samples from the stochastic processes

defined, respectively, by

X1,t = 0.6Xt−1 + ε1,t, and X2,t = ε2,t + 0.6ε2,t−1, t ∈ Z, (5.1)

where {εk,t}t∈Z, k ∈ {1, 2}, are sequences of i.i.d. N (0, 1) random variables and ε1,r and ε2,s are

independent, for all r, s ∈ Z. All time series are generated considering the recurrence (5.1) with burn-

in size equal to 10. Hence {X1,t}nt=1 and {X2,t}nt=1 correspond to time series from an AR(1) and an

MA(1) process, respectively, which are independent from each other. It follows that the (i, j)-th term

in the corresponding autocovariance matrices and the cross-covariance matrix are given by

[Γ1]i,j =
0.6|i−j|

0.64
, [Γ2]i,j = 1.36I(i = j) + 0.6I(|i− j| = 1) and Γ1,2 = 0m+1,m+1.

Moreover, from Prass and Pumi (2021),

E[F 2
1,DFA(m)] =

m3 +O(m2)

2.4(m2 + 3m+ 2)
∼ 5m

12
and E[F 2

2,DFA(m)] =
2.56m2 +O(m)

15m
∼ 64m

375
.
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Figure 5.8: Scenario 2: Boxplots considering 1000 replications of the complete time series and m ∈
{3, 5, · · · , 99, 101}. From left to right F 2

1,DFA(m), F 2
2,DFA(m), FDCCA(m), and ρDCCA(m). In all cases, the

red line represents the theoretical limit obtained by letting n→ ∞.
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Figure 5.8 shows that the estimates of F 2
1,DFA(m) and F 2

2,DFA(m) are close to their expected

values, especially when m is small. The values of FDCCA(m) and ρDCCA(m) are all close to zero

which, in this scenario, is the value of the theoretical counterpart ρE(m), for all m. In all cases, the

variability increases with m and it is higher than in scenario 1. Given how these quantities are defined,

this behavior is to be expected. From this figure one also observes that F 2
1,DFA(m) and F 2

2,DFA(m)

increase linearly with m, which reflects the theoretical result stated in (4.9).

From Figure 5.9 (top row) it can be observed that, for ρ ∈ {0.1, 0.2, 0.5}, the methods that

best filled the missing values of {X1,t}nt=1 were LI, KS, and EMA. It is coherent that these methods

performed better under these circumstances, given that, in the current scenario, {X1,t}nt=1 is a sample

from a stationary Gaussian AR(1) process. As shown in Table 3.1, in this context, the surrounding

observations are the ones that contribute the most in predicting Xt, which explains the good perfor-

mance of LI and EMA. Also, since KS is a likelihood-based method and the underlying distribution is

correctly specified, it is expected that this method will be among the best ones. Notably, for ρ = 0.8,

the methods with the best performance were rpart (smallest median), KS, M, and prtree. Since, in

this case, the number of missing observations is very high, the non-missing observations are usually

far apart (in terms of time). This could explain why LI and EMA are no longer among the imputation

methods with the best performance. Since LOCF only uses the last known observation, its perfor-

mance is expected to decrease as the proportion of missing values increases. While other methods

had a decrease in performance, M maintains about the same median MSE value, regardless of ρ, with

a decrease in the variability as ρ increases. Given that rpart and prtree are conditional mean-based

methods, it makes sense that their performance with a high proportion of missing values is similar and

usually slightly better than the global mean.
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Figure 5.9: Scenario 2: Boxplots of the imputation MSE value for {X1,t}2000t=1 (top row) and {X2,t}2000t=1

(bottom row), based on r = 1000 replications, considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}.
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From Figure 5.9 (bottom row), it is observed that for the methods KS, M, rpart and prtree the

MSE values are always less than 1.5, except for a few outliers. Also, these are the methods with

smaller variability, for all values of ρ. For ρ ∈ {0.1, 0.2}, the methods that performed best in filling

the missing values of {X2,t}nt=1 were the LI and rpart. EMA and prtree performed similarly when

compared to each other, but their MSE values were generally higher than those corresponding to the

best-performing methods. For ρ ∈ {0.5, 0.8}, the best methods were rpart, prtree, M and KS. It

makes sense that the average-based methods excels in the imputation of an MA(1) process, given the

MA(1) dependence structure as shown in Table 3.1. Therefore, the relevance of the more temporally

distant observations decays rapidly, making the local mean a much more useful information for the

prediction of missing values. This is even more noticeable for large proportions of missing data.

For all values of ρ, LOCF was the method with the worst performance. Upon comparing the top

and bottom rows in Figure 5.9 one observes that, for small values of ρ, the best-performing methods

for the AR(1) and MA(1) processes are not the same. While for the AR(1) process the autocorrelation

function is non-zero for all h > 0, for the MA(1) process the only non-zero lags are 0 and 1. Hence, it

is expected that methods that consider a small neighborhood of Xt to predict the missing value will

perform better in the AR case given that, in the absence of Xt−1 and/or Xt+1 the other values in the

neighborhood still have relatively high impact in the prediction.
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Figure 5.10: Scenario 2: Boxplots of F 2
1,DFA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[F 2
1,DFA(m)].
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In Figure 5.10, it can be observed that, for ρ ∈ {0.1, 0.2} all imputation methods yielded satis-

factory results in the sense that the calculated values F 2
1,DFA(m) are always close to E[F 2

1,DFA(m)],

with very low variability. The average-based methods (excluding M) and LOCF exhibiting the best

performance, despite being the worst performing methods in terms of imputation for these values of

ρ. For m = 3 and ρ ∈ {0.5, 0.8}, all methods underestimated E[F 2
1,DFA(m)] and the closest values

were obtained when LOCF and M were used to imput the missing values. For m ∈ {27, 81, 101} and

ρ ∈ {0.5, 0.8}, the methods LOCF, LI, and EMA overestimated, while the methods KS, M, rpart, and

prtree underestimated E[F 2
1,DFA(m)].

m = 3

LOCF LI KS EMA M rpart prtree

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

m = 27

LOCF LI KS EMA M rpart prtree

0.0

2.5

5.0

7.5

10.0

12.5

0.0

2.5

5.0

7.5

10.0

12.5

0.0

2.5

5.0

7.5

10.0

12.5

0.0

2.5

5.0

7.5

10.0

12.5

m = 81

LOCF LI KS EMA M rpart prtree

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

m = 101

rho =
 0.1

rho =
 0.2

rho =
 0.5

rho =
 0.8

LOCF LI KS EMA M rpart prtree

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Figure 5.11: Scenario 2: Boxplots of F 2
2,DFA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[F 2
2,DFA(m)].

Figure 5.11 illustrates that, regarding F 2
2,DFA(m) for ρ ∈ {0.1, 0.2}, all methods had satisfactory

results. Form = 3 and ρ ∈ {0.5, 0.8}, all methods underestimated E[F 2
2,DFA(m)], although LOCF had

the best performances. For m ∈ {27, 81, 101} and ρ ∈ {0.5, 0.8}, the methods LOCF, LI, and EMA

overestimated and the methods KS, M, rpart, and prtree underestimated E[F 2
2,DFA(m)]. Figures 5.12

and 5.13 show that the methods have similar performance (in terms of median MSE) for all values of

m and ρ for the estimates of FDCCA(m) and ρDCCA(m). The estimates using the methods KS, M,

rpart, and prtree methods exhibited less variation.
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Figure 5.12: Scenario 2: Boxplots of FDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[FDCCA(m)].
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Figure 5.13: Scenario 2: Boxplots of ρDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to ρE(m).
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For this scenario, the estimates of the DFA and DCCA functions with complete time series had

results closer to the expected values in terms of median, with an increase in variability as the window

sizem increased. Regarding missing data imputation, for lower proportions of missing data, LI, KS and

EMA had superior performances for the AR(1) process, while for the MA(1) process, the best methods

were LI and rpart. For higher proportions of missing data, the methods with the best performances

were rpart, prtree, M and KS. Also, the estimates of F 2
1,DFA(m) and F 2

2,DFA(m) were closer to the

corresponding expected values when the time series were reconstructed using rpart, prtree, EMA and

LOCF for ρ ∈ {0.1, 0.2}. However, for ρ ∈ {0.5, 0.8}, no method stood out for the quality of

predictions. For m = 3, all methods underestimated E[F 2
k,DFA(m)] and for m ∈ {27, 81, 101}, the

methods LOCF, LI and EMA overestimated and KS, M, rpart e prtree underestimated E[F 2
1,DFA(m)].

For FDCCA(m) and ρDCCA(m), all methods exhibited good performances in terms of median and the

time series reconstructed using KS, rpart, prtree and M led to estimates with less variability. Therefore,

these observations suggest that for processes with autocorrelation but mutually uncorrelated, the

methods that excel in missing data imputation might not provide more accurate estimates for the

DFA and DCCA functions.

5.3.3 Scenario 3.1: bivariate Gaussian white noise process with 0.5 correlation

In this scenario the time series {X1,t}nt=1 and {X2,t}nt=1 are samples from a bivariate Gaussian process

{(X1,t, X2,t)}t∈Z where E[Xk,t] = 0, k ∈ {1, 2}, and

Cov[Xk1,t, Xk2,t] = I(k1 = k2) + 0.5I(k1 ̸= k2), k1, k2 ∈ {1, 2}.

The corresponding autocovariance matrices and cross-covariance matrix are given by

Γ1 = Γ2 = Im+1, and Γ1,2 = 0.5Im+1,

and ρDCCA(m)
P−→ 0.5, as n → ∞, for all m > 0. Since the marginal processes {X1,t}nt=1 and

{X2,t}nt=1 have a standard Gaussian distribution, the quality of their imputation and the estimates of

F 2
k,DFA, k ∈ {1, 2}, have already been discussed in Scenario 1 (average-based methods provided the

best results) and thus will be omitted. Therefore, only results related to FDCCA(m) and ρDCCA(m)

will be presented.

Figure 5.14 shows that the estimates of F 2
k,DFA(m) and FDCCA(m) are close to their expected

values, especially when m is small. The values of ρDCCA(m) are all close to 0.5 which, in this scenario,

is the value of its theoretical counterpart, for all m. In all cases, the variability increases with m. Given

how these quantities are defined, this behavior is to be expected. From this figure one also observes

that F 2
k,DFA(m) and FDCCA(m) increase linearly with m, which reflects the theoretical result stated

in (4.9). In Figure 5.15, it is possible to notice that E[FDCCA(m)] was consistently underestimated

across all scenarios. For m = 3, the methods M, KS, rpart, and prtree had superior performance,

while for m ∈ {27, 81, 101}, LOCF, LI, and EMA methods performed significantly better, especially

for ρ ∈ {0.5, 0.8}. In 5.16, it is possible to notice that regarding ρDCCA(m), the methods KS, M,

rpart had a very similar MSE distribution and consistently outperformed the others for the estimates

of ρE(m). As the proportion of missing values increased, all methods uniformly degraded.

The estimates of DFA and DCCA functions with complete time series had results close to the

expected values in terms of median, with an increase in variability as the window size m increased.
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Regarding missing data imputation, average-based methods (M, rpart and prtree) outperformed other

methods for filling missing values for {X1,t}nt=1 and {X2,t}nt=1 and estimating the functions F 2
1,DFA(m)

and F 2
2,DFA(m). The time series reconstructed using LOCF, LI, and EMA had the best results for the

estimates of FDCCA(m) and the average-based methods outperformed other methods for the estimates

of ρDCCA(m) across different values of m and ρ. Therefore, these observations suggest that for

bivariate Gaussian processes, the methods that excel in missing data imputation might not provide

more accurate estimates for the DFA and DCCA functions.

F1, DFA
2 F2, DFA

2 FDCCA ρDCCA

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.3

0.4

0.5

0.6

0

2

4

6

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

Figure 5.14: Scenario 3.1: Boxplots considering 1000 replications of the complete time series and m ∈
{3, 5, · · · , 99, 101}. From left to right F 2

1,DFA(m), F 2
2,DFA(m), FDCCA(m), and ρDCCA(m). In all cases, the red

line represents the theoretical limit obtained by letting n→ ∞.
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Figure 5.15: Scenario 3.1: Boxplots of FDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[FDCCA(m)].
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Figure 5.16: Scenario 3.1: Boxplots of ρDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to ρE(m).

5.3.4 Scenario 3.2: bivariate Gaussian white noise process with 0.8 correlation

In this scenario the time series {X1,t}nt=1 and {X2,t}nt=1 are samples from a bivariate Gaussian process

{(X1,t, X2,t)}t∈Z where E[Xk,t] = 0, k ∈ {1, 2}, and

Cov[Xk1,t, Xk2,t] = I(k1 = k2) + 0.8I(k1 ̸= k2), k1, k2 ∈ {1, 2}.

This scenario is analogous to Scenario 3.1, only with a higher correlation. The corresponding autoco-

variance matrices and cross-covariance matrix are given by

Γ1 = Γ2 = Im+1, and Γ1,2 = 0.8Im+1,

and ρDCCA(m)
P−→ 0.8, as n → ∞, for all m > 0. Since the marginal processes {X1,t}nt=1 and

{X2,t}nt=1 have a standard Gaussian distribution, the quality of their imputation and the estimates of

F 2
k,DFA k ∈ {1, 2} have already been discussed in Scenario 1 (average-based methods had the best

results) and thus will be omitted. Therefore, only results related to FDCCA(m) and ρDCCA(m) will be

presented.

Figure 5.17 shows that the estimates of F 2
k,DFA(m) and FDCCA(m) are close to their expected

values, especially when m is small. The values of ρDCCA(m) are all close to 0.8 which, in this

scenario, is the value of its theoretical counterpart, for all m. In all cases, the variability increases

with m. Given how these quantities are defined, this behavior is to be expected. From this figure one

also observes that F 2
k,DFA(m) and FDCCA(m) increase linearly with m, which reflects the theoretical

result stated in (4.9).
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Figure 5.17: Scenario 3.2: Boxplots considering 1000 replications of the complete time series and m ∈
{3, 5, · · · , 99, 101}. From left to right F 2

1,DFA(m), F 2
2,DFA(m), FDCCA(m), and ρDCCA(m). In all cases, the red

line represents the theoretical limit obtained by letting n→ ∞.
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Figure 5.18: Scenario 3.2: Boxplots of FDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[FDCCA(m)].

In Figure 5.18, it is possible to notice that E[FDCCA(m)] was consistently underestimated across

all scenarios. For m = 3, the methods M, KS, rpart, and prtree had superior performance, while

for m ∈ {27, 81, 101}, LOCF, LI, and EMA methods performed significantly better, especially for

ρ ∈ {0.5, 0.8}. From Figure 5.19, it is possible to notice that regarding the ρDCCA(m) function, the

methods KS, M, rpart had a very similar MSE distribution and consistently outperformed the others
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for the estimates of ρE(m). As the proportion of missing values increased, all methods uniformly

degraded.
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Figure 5.19: Scenario 3.2: Boxplots of ρDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to ρE(m).

The estimates of DFA and DCCA functions with complete time series had results close to the

expected values in terms of median, with an increase in variability as the window size m increased.

Regarding missing data imputation, average-based methods (M, rpart and prtree) outperformed other

methods for filling missing values for {X1,t}nt=1 and {X2,t}nt=1 and estimating the functions F 2
1,DFA(m)

and F 2
2,DFA(m). The time series reconstructed using LOCF, LI, and EMA had the best results in

estimating FDCCA(m) and ρDCCA(m) across different values ofm and ρ. Therefore, these observations

suggest that for this scenario, the methods that excel in missing data imputation might not provide

more accurate estimates for the DFA and DCCA functions.

5.3.5 Scenario 4.1: bivariate white noise with a signal plus noise (low variance) structure

In this scenario the time series {X1,t}nt=1 and {X2,t}nt=1 are samples from the stochastic processes

defined, respectively, by

X1,t = ε1,t, and X2,t = 3 + 2X1,t + ε2,t, t ∈ Z, (5.2)

where {εk,t}t∈Z, k ∈ {1, 2}, are sequences of i.i.d. N (0, 1) and N (0, 4) random variables, respectively,
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and ε1,r and ε2,s are independent, for all r, s ∈ Z. All time series are generated considering the

recurrence (5.2). Hence {X1,t}nt=1 and {X2,t}nt=1 correspond to time series from a Gaussian white

noise with variance 1 and a Gaussian signal plus noise process (which can be proven to be a white

noise) with variance 8. It follows, that this scenario is similar to Scenarios 3.1 and 3.2 in the sense

that here {(X1,t, X2,t)}nt=1 is also a sample from a bivariate gaussian white noise. The corresponding

autocovariance matrices and the cross-covariance matrix are given by

Γ1 = Im+1, Γ2 = 8Im+1, and Γ1,2 = 2Im+1,

and ρDCCA(m)
P−→

√
2/2, as n → ∞, for all m > 0. In what follows, marginal results shall be

presented only for {X2,t}nt=1, as results for {X1,t}nt=1 were presented in Scenario 1 (see Figures 5.3

and 5.4).

Figure 5.20 shows that the estimates of F 2
k,DFA(m) and FDCCA(m) are close to their expected

values, especially when m is small. The values of ρDCCA(m) are all close to
√
2/2 ≃ 0.71 which, in

this scenario, is the value of its theoretical counterpart, for all m. In all cases, the variability increases

with m. Given how these quantities are defined, this behavior is to be expected. From Figure 5.20,

one also observes that F 2
k,DFA(m) and FDCCA(m) increase linearly with m, reflecting the theoretical

result stated in (4.9).
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Figure 5.20: Scenario 4.1: Boxplots considering 1000 replications of the complete time series and m ∈
{3, 5, · · · , 99, 101}. From left to right F 2

1,DFA(m), F 2
2,DFA(m), FDCCA(m), and ρDCCA(m). In all cases, the red

line represents the limit obtained by letting n→ ∞.
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Figure 5.21: Scenario 4.1: Boxplots of the imputation MSE values for {X2,t}2000t=1 , based on r = 1000

replications, considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}.
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As seen on Figures 5.21 and 5.22, the outcomes of {X2,t}nt=1 and F 2
2,DFA(m) closely resemble

those of {X1,t}nt=1 and F 2
1,DFA(m) (see Figures 5.3 and 5.4), respectively, with the average-based

methods (M, rpart and prtree) outperforming the other methods, only with a higher MSE. This result

is expected, given that this process is also an i.i.d. Gaussian process, but with higher variance.
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Figure 5.22: Scenario 4.1: Boxplots of F 2
2,DFA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[F 2
2,DFA(m)].

From Figure 5.23 one observes that E[FDCCA(m)] was consistently underestimated, across all

scenarios. Form = 3, the methods M, KS, rpart, and prtree demonstrated superior performance, while

for m ∈ {27, 81, 101}, the LOCF, LI, and EMA methods exhibited significantly better performance,

especially for ρ ∈ {0.5, 0.8}. In Figure 5.24, it is possible to notice that regarding ρDCCA(m), the

methods KS, M, rpart had very similar MSE values and consistently outperformed the other methods,

providing better results in terms of the estimation of ρE(m). As the proportion of missing values

increased, all methods uniformly degraded.

The estimations of the DFA and DCCA functions with complete time series had results close to

the expected values in terms of median, with an increase in variability as the window size m increased.

Regarding missing data imputation, average-based methods (M, rpart and prtree) outperformed other

methods for filling missing values and also in the context of the estimates F 2
1,DFA(m) and F 2

2,DFA(m).

The time series reconstructed using LOCF, LI, and EMA led to the best results when used to calcu-

late the estimates FDCCA(m) and ρDCCA(m), across different values of m and ρ. Therefore, these

observations suggest that for this scenario, the methods that excel in missing data imputation might

not provide more accurate estimates for the DFA and DCCA functions.
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Figure 5.23: Scenario 4.1: Boxplots of FDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[FDCCA(m)].
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Figure 5.24: Scenario 4.1: Boxplots of ρDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to ρE(m).
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5.3.6 Scenario 4.2: bivariate white noise with a signal plus noise (high variance) structure

In this scenario the time series {X1,t}nt=1 and {X2,t}nt=1 are samples from the stochastic processes

defined, respectively, by

X1,t = ε1,t, and X2,t = 3 + 2X1,t + ε2,t, t ∈ Z, (5.3)

where {εk,t}t∈Z, k ∈ {1, 2}, are sequences of i.i.d. N (0, 1) and N (0, 64) random variables, respec-

tively, and ε1,r and ε2,s are independent, for all r, s ∈ Z. Hence {X1,t}nt=1 and {X2,t}nt=1 correspond

to time series from a Gaussian white noise with variance 1 and Gaussian signal plus noise process

(which can be proven to be a white noise) with variance 68. The process {X2,t}t∈Z defined in (5.3)

shares the same structure as the process {X2,t}t∈Z in (5.2). Consequently, the outcomes of this

scenario are expected to resemble those of scenario 4.1. The corresponding autocovariance matrices

and the cross-covariance matrix are given by

Γ1 = Im+1, Γ2 = 68Im+1, and Γ1,2 = 8Im+1,

and ρDCCA(m)
P−→

√
17/17, as n→ ∞, for all m > 0. In what follows, the marginal results shall be

presented only for {X2,t}nt=1, as results related to the processes {X1,t}nt=1 were already presented in

Scenario 1 (see Figures 5.3 and 5.4).
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Figure 5.25: Scenario 4.2: Boxplots considering 1000 replications of the complete time series and m ∈
{3, 5, · · · , 99, 101}. From left to right F 2

1,DFA(m), F 2
2,DFA(m), FDCCA(m), and ρDCCA(m). In all cases, the red

line represents the theoretical limit obtained by letting n→ ∞.

Figure 5.25 shows that the estimates of F 2
k,DFA(m) and FDCCA(m) are close to their expected

values, especially when m is small. The values of ρDCCA(m) are all close to
√
17/17 ≃ 0.24, which in

this scenario, is the value of its theoretical counterpart for all m. In all cases, the variability increases

with m. Given how these quantities are defined, this behavior is to be expected. From Figure 5.25 one

also observes that F 2
k,DFA(m) and FDCCA(m) increase linearly with m, which reflects the theoretical

result stated in (4.9).

As seen on Figures 5.26 and 5.27, the outcomes of {X2,t}nt=1 and F 2
2,DFA(m) closely resemble

those of {X1,t}nt=1 and F 2
1,DFA(m) (see Figures 5.3 and 5.4), respectively, with the average-based

methods (M, rpart and prtree) outperforming the other methods, only with a higher MSE. This result

is expected, given that this process is also an i.i.d. Gaussian process, but with higher variance.
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Figure 5.26: Scenario 4.2: Boxplots of the imputation MSE values for {X2,t}2000t=1 , based on r = 1000

replications, considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}.
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Figure 5.27: Scenario 4.2: Boxplots of F 2
2,DFA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[F 2
2,DFA(m)].

From Figure 5.28 one observes that E[FDCCA(m)] was consistently underestimated, across all

scenarios. Form = 3, the methods M, KS, rpart, and prtree demonstrated superior performance, while

for m ∈ {27, 81, 101}, the LOCF, LI, and EMA methods exhibited significantly better performance,

especially for ρ ∈ {0.5, 0.8}. In Figure 5.29, it is possible to notice that regarding ρDCCA(m), the

methods KS, M, rpart had very similar MSE values and consistently outperformed the other methods,

providing better results in terms of the estimation of ρE(m). As the proportion of missing values

increased, all methods uniformly degraded.
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Figure 5.28: Scenario 4.2: Boxplots of FDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[FDCCA(m)].
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Figure 5.29: Scenario 4.2: Boxplots of ρDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to ρE(m).
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The estimations of the DFA and DCCA functions with complete time series had results close to

the expected values in terms of median, with an increase in variability as the window size m increased.

Regarding missing data imputation, average-based methods (M, rpart and prtree) outperformed other

methods for filling missing values and also in the context of the estimates F 2
1,DFA(m) and F 2

2,DFA(m).

The time series reconstructed using LOCF, LI, and EMA led to the best results when used to calcu-

late the estimates FDCCA(m) and ρDCCA(m), across different values of m and ρ. Therefore, these

observations suggest that for this scenario, the methods that excel in missing data imputation might

not provide more accurate estimates for the DFA and DCCA functions.

5.3.7 Scenario 5.1: correlated process with dependence driven by an MA structure

In this scenario the time series {X1,t}nt=1 and {X2,t}nt=1 are samples from the stochastic processes

defined, respectively, by

X1,t = εt and X2,t = εt +
20∑
k=1

21− k

10
εt−k, t ∈ Z, (5.4)

where {ε1}t∈Z, is sequences of i.i.d.N (0, 1) random variables. All time series are generated considering

the recurrence (5.4). with burn-in size equal to 20. Hence {X1,t}nt=1 and {X2,t}nt=1 correspond to time

series from a Gaussian white noise and an MA(20) process, respectively, which are cross-correlated. It

follows that the (i, j)-th term in the corresponding autocovariance and cross-covariance matrices are

given by

[Γ1]i,j = I(i = j), [Γ2]i,j =
297

10
I(i = j) +

(
|h|3

600
− 1321|h|

600
+

154

5

)
I(i ̸= j),

and

[Γ1,2]i,j = I(i = j) +
21 + j − i

10
I(0 ≤ i ≤ j ≤ 20).

The exact expressions for E[F 2
k,DFA(m)], E[FDCCA(m)] and, consequently, for ρE(m), can be found

in the supplementary material provided by Prass and Pumi (2021). In summary, the following holds

E[F 2
1,DFA(m)] =

m

15
+O(1) ∼ 1

15
m, E[F 2

2,DFA(m)] =
484

15
m+O(1) ∼ 222

15
m.

E[FDCCA(m)] =
22

15
m+O(1) ∼ 22

15
m and ρDCCA(m) ∼ 1, as m→ ∞.

In what follows, the marginal results shall be presented only for {X2,t}nt=1, as results related to the

processes {X1,t}nt=1 have already been presented in Scenario 1(see Figures 5.3 and 5.4).

Figure 5.30 shows that the estimates for the functions are close to their expected values, especially

when m is small. Also, E[ρDCCA(m)] in a logarithmic behavior. In all cases, the variability increases

with m. Given how these quantities are defined, this behavior is to be expected. From this figure one

also observes that F 2
k,DFA(m) and FDCCA(m) increase linearly with m, which reflects the theoretical

result stated in (4.9).
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Figure 5.30: Scenario 5.1: Boxplots considering 1000 replications of the complete time series and m ∈
{3, 5, · · · , 99, 101}. From left to right F 2

1,DFA(m), F 2
2,DFA(m), FDCCA(m), and ρDCCA(m). In all cases, the red

line represents the theoretical limit obtained by letting n→ ∞.

As seen in Figure 5.31, the methods that had better results filling the missing data for {X2,t}nt=1

were the LI, KS, and EMA for ρ ∈ {0.1, 0.2, 0.5}. For ρ = 0.8, the rpart, prtree, M and KS outper-

formed the other methods. In all cases, LOCF was among the worst performances. Considering that

the ACF of a MA(20) process is non-zero for all |h| ≤ 20, as illustrated in Table 3.1, it is consistent

that LI, KS, and EMA methods yielded the best results for ρ ∈ {0.1, 0.2, 0.5}, while average-based

methods performed better for ρ = 0.8. As the proportion of missing values increases, the observations

available for imputation using these methods become more temporally distant, and consequently, the

relevance of these observations diminishes, making the information from conditional means more sig-

nificant for the prediction of the missing values. A similar behavior was observed for the AR(1) and

MA(1) models in Scenario 2.
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LOCF LI KS EMA M rpart prtree LOCF LI KS EMA M rpart prtree LOCF LI KS EMA M rpart prtree LOCF LI KS EMA M rpart prtree

1

2

3

Figure 5.31: Scenario 5.1: Boxplots of the imputation MSE values for {X2,t}2000t=1 , based on r = 1000

replications, considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}.

From Figure 5.32, every method estimated E[F 2
2,DFA(m)] reasonably for ρ = {0.1, 0.2}, with

LOCF and M being the best methods for m = 3 and LI, KS and EMA yielding the best results for

m ∈ {27, 81, 101}. For ρ ∈ {0.5, 0.8}, all methods significantly underestimated E[F 2
2,DFA(m)] when

m = 3 and for m ∈ {27, 81, 101} the methods LOCF, LI, and EMA overestimated and the methods

KS, M, rpart, and prtree underestimated E[F 2
2,DFA(m)].
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Figure 5.32: Scenario 5.1: Boxplots of F 2
2,DFA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[F 2
2,DFA(m)].

From Figure 5.33, for m = 3, time series reconstructed with all methods had reasonable results for

the estimates of E[FDCCA(m)], with LI and EMA having the least variability and decrease in quality

as ρ increases. For m ∈ {27, 81, 101}, LOCF, LI, and EMA methods had the best results, regardless

of ρ, while the other methods significantly underestimated E[FDCCA(m)]. Figure 5.34 illustrates that,

for m = 3, the expected value of ρDCCA was reasonably well estimated regardless of method and ρ,

with LOCF and KS having the best results with the smaller variability. For m ∈ {27, 81, 101}, all
methods underestimated ρE(m), with EMA and KS having the overall best results. This becomes

more evident as the proportion of missing values increases.

The estimates of DFA and DCCA functions with complete time series had results close to the

expected values in terms of median, with an increase in variability as the window size m increased.

Regarding missing data imputation, average-based methods (M, rpart and prtree) outperformed other

methods for filling missing values for {X1,t}nt=1 and LI, KS and EMA had the best results for {X2,t}nt=1.

The time series reconstructed using KS and M had the best results for the estimates of F 2
1,DFA(m)

while LOCF, LI, KS and EMA yielded the best results for F 2
2,DFA(m), with LOCF standing out as

the superior method when m = 3. LOCF, LI and EMA estimated values closer to the expected for

FDCCA(m) while LOCF and KS had the best results for ρDCCA(m) for m = 3 and LOCF, LI, and EMA

for m ∈ {27, 81, 101}. Therefore, these observations suggest that for this scenario, the methods that

excel in missing data imputation also tend to provide more accurate estimates for the DFA functions,

but not necessarily for the DCCA functions.
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Figure 5.33: Scenario 5.1: Boxplots of FDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[FDCCA(m)].
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Figure 5.34: Scenario 5.1: Boxplots of ρDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to ρE(m).
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5.3.8 Scenario 5.2: correlated process with dependence driven by an AR structure

In this scenario the time series {X1,t}nt=1 and {X2,t}nt=1 are samples from the stochastic processes

defined, respectively, by

X1,t = εt and X2,t = 0.6X2,t−1 + εt, t ∈ Z, (5.5)

where {εt}t∈Z is sequences of i.i.d. N (0, 1) random variables. All time series are generated considering

the recurrence (5.5). with burn-in size equal to 10. Hence {X1,t}nt=1 and {X2,t}nt=1 correspond to time

series from an Gaussian white noise and an AR(1) process, respectively, which are cross-correlated.

It follows that the (i, j)-th term in the corresponding autocovariance matrices and cross-covariance

matrix are given by

[Γ1]i,j = I(i = j), [Γ2]i,j =
0.6|i−j|

0.64
and [Γ1,2]i,j = 0.6j−iI(i ≤ j)

From Prass and Pumi (2021),

E[F 2
1,DFA(m)] =

m

15
+O(1) ∼ m

15
, E[F 2

2,DFA(m)] =
m3 +O(m2)

2.4(m2 + 3m+ 2)
,∼ 5m

12

E[FDCCA(m)] =
m3 +O(m2)

6(m2 + 3m+ 2)
∼ m

6
and ρDCCA(m) ∼ 1, as m→ ∞.

Marginal results related to the processes {X1,t}nt=1 and {X2,t}nt=1 shall be omitted given that they

have already been presented in Scenario 1 (see Figures 5.3 and 5.4) and Scenario 2 (see Figures 5.9

and 5.10), respectively. Therefore, only results related to FDCCA(m) and ρDCCA(m) will be presented.

Figure 5.35 shows that the estimates for the functions are close to their expected values, especially

when m is small. Also, E[ρDCCA(m)] decreases from m = 3 to m = 7 and increases thereafter in

a logarithmic behavior. In all cases, the variability increases with m. Given how these quantities

are defined, this behavior is to be expected. From this figure one also observes that F 2
k,DFA(m) and

FDCCA(m) increase linearly with m, which reflects the theoretical result stated in (4.9).
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Figure 5.35: Scenario 5.2: Boxplots considering 1000 replications of the complete time series and m ∈
{3, 5, · · · , 99, 101}. From left to right F 2

1,DFA(m), F 2
2,DFA(m), FDCCA(m), and ρDCCA(m). In all cases, the red

line represents the theoretical limit obtained by letting n→ ∞.
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Figure 5.36: Scenario 5.2: Boxplots of FDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[FDCCA(m)].
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Figure 5.37: Scenario 5.2: Boxplots of ρDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to ρE(m).
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In Figure 5.36, for m = 3, all methods underestimated E[FDCCA(m)], with M, rpart, and prtree

being the closest to E[FDCCA(m)]. Form ∈ {27, 81, 101}, the LOCF, LI, and EMA methods estimated

values closer to E[FDCCA(m)] for all ρ values, albeit with higher variability than the other methods.

The KS, M, rpart, and prtree methods estimated values near zero for ρ = 0.8. Concerning ρDCCA(m),

on Figure 5.37 it is evident that for all values of ρ and m, the expected value is underestimated

for all methods. The estimates are reasonable for ρ = 0.1 but degrade rapidly as the proportion of

missing data is increased, with the time series reconstructed using KS, EMA, and rpart yielding the

best results. Figure 5.38 zooms in on the first row of Figure 5.37, providing a closer look to facilitate

the visualization of the methods that had superior performance for ρ = 0.1.
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Figure 5.38: Scenario 5.2: Boxplots of ρDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ = 0.1. The red line correspond to ρE(m).

The estimates of DFA and DCCA functions with complete time series had results close to the

expected values in terms of median, with an increase in variability as the window size m increased.

Regarding missing data imputation, average-based methods (M, part, and prtree) outperformed other

methods for {X1,t}nt=1. For {X2,t}nt=1 M and LOCF had the best results for m = 3, while LI, KS, and

EMA performed better form ∈ {27, 81, 101}. The time series reconstructed using M, rpart, prtree and

KS had the best results for the estimates of F 2
1,DFA(m), while for F 2

2,DFA(m), the methods depended

on the window size m. For m = 3, the best methods were LOCF and M, while for m ∈ {27, 81, 101}
the methods that yielded the best results were LOCF, LI and EMA. Series reconstructed by LOCF and

LI estimated values closer to the expected for FDCCA(m), while ρDCCA(m) was better estimated with

time series filled by the KS, EMA or rpart. Therefore, these observations suggest that for this scenario,

the methods that excel in missing data imputation also tend to provide more accurate estimates for

the DFA functions, but not necessarily for the DCCA function.

5.3.9 Scenario 6.1: couple of AR(2) processes with the same error

In this scenario the time series {X1,t}nt=1 and {X2,t}nt=1 are samples from the stochastic processes

defined, respectively, by

X1,t = 0.2X1,t−1 + εt and X2,t = 0.6X2,t−1 + εt with εt = 0.7εt−1 + ηt, t ∈ Z, (5.6)

where {ηt}t∈Z, is a sequence of i.i.d. N (0, 1) random variables. Upon rewriting (5.6) as

(1− 0.2L)(1− 0.7L)X1,t = ηt and (1− 0.6L)(1− 0.7L)X2,t = ηt, t ∈ Z, (5.7)
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where L is the back-shift operator, one observes that {X1,t}t∈Z and {X2,t}t∈Z are two AR(2) processes

with the same residuals. All time series are generated considering the recurrence equations that follow

from (5.7), that is,

X1,t = 0.9X1,t−1 − 0.14X1,t−2 + ηt and X2,t = 1.3X1,t−1 − 0.42X1,t−2 + ηt, t ∈ Z,

with burn-in size equal to 60.

From (5.7), one concludes that the causal representation {Xk,t}t∈Z is given by

Xk,t =

∞∑
j=0

ψk,jηt−j , ψk,j =
0.7j+1 − αj+1

k

0.7− αk
, αk =

{
0.2, k = 1,

0.6, k = 2,
k ∈ {1, 2}.

It follows that the (i, j)-th term in the corresponding autocovariance and cross-covariance matrices

are given by

[Γk]i,j =
1

(0.7− αk)2

(
0.72+|i−j|

1− 0.49
− 0.71+|i−j|αk

1− 0.7αk
−

0.7α
1+|i−j|
k

1− 0.7αk
+
α
2+|i−j|
k

1− α2
k

)
, k ∈ {1, 2},

and, by letting aij = α1I(i ≤ j) + α2I(i > j) and bij = α2I(i ≤ j) + α1I(i > j),

[Γ1,2]i,j =
1

(0.7− α1)(0.7− α2)

(
0.72+|i−j|

1− 0.49
− 0.71+|i−j|aij

1− 0.7aij
−

0.7b
1+|i−j|
ij

1− 0.7bij
+
aijb

1+|i−j|
ij

1− α1α2

)
.

Moreover, from Prass and Pumi (2021),

E[F 2
k,DFA(m)] =

m3(m2 + 3m+ 2)−1

1.35(1− αk)2
+O(1) ∼ m

1.35(1− αk)2
, k ∈ {1, 2},

E[FDCCA(m)] =
m3(m2 + 3m+ 2)−1

1.35× 0.32
+O(1) ∼ m

1.35× 0.32
,

and ρDCCA(m) ∼ 1, as m→ ∞

Figure 5.39 shows that the estimated functions using the complete series closely approximate

the expected values for all values of m. The expected value of the function ρDCCA(m) increases

logarithmically. The values of F 2
1,DFA(m), F 2

2,DFA(m) and FDCCA(m) increases linearly as the window

sizem increases, and the variability of the estimates also increases withm, which reflects the theoretical

result stated in (4.9)

As seen on Figures 5.40, the methods that performed the best in filling missing values were LI,

KS, and EMA. Notably, all methods, except for M, exhibit a worsening in terms of MSE as the

values of ρ increase. Since both these processes are samples from AR(2) processes, the surrounding

observations are the ones that contribute the most to predicting Xt (see Table 3.1), which explains

the good performance of LI and EMA. Also, since KS is a likelihood-based method and the underlying

distribution is correctly specified, it is expected that this method will be among the best ones.
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Figure 5.39: Scenario 6.1: Boxplots considering 1000 replications of the complete time series and m ∈
{3, 5, · · · , 99, 101}. From left to right F 2

1,DFA(m), F 2
2,DFA(m), FDCCA(m), and ρDCCA(m). In all cases, the red

line represents the theoretical limit obtained by letting n→ ∞.
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Figure 5.40: Scenario 6.1: Boxplots of the imputation MSE value for {X1,t}2000t=1 (top row) and {X2,t}2000t=1

(bottom row), based on r = 1000 replications, considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}.

As seen in Figures 5.41 and 5.42, for m = 3, the best estimates overall for F 2
k,DFA(m) were

achieved in time series filled by LOCF and by the average-based methods. For m ∈ {27, 81, 101},
LOCF, LI, KS, and EMA methods all showed similar and reasonable results, regardless of the value of

ρ. Also for this values of m, for ρ ∈ {0.5, 0.8}, the average based methods significantly underestimated

E[F 2
k,DFA(m)]. It is coherent that the methods that provided the best estimates for E[F 2

1,DFA(m)] are

the same as for E[F 2
2,DFA(m)], as despite having different specifications, both processes share a similar

autocovariance structure.
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Figure 5.41: Scenario 6.1: Boxplots of F 2
1,DFA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[F 2
1,DFA(m)].

m = 3

LOCF LI KS EMA M rpart prtree

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

m = 27

LOCF LI KS EMA M rpart prtree

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

m = 81

LOCF LI KS EMA M rpart prtree

0

200

400

0

200

400

0

200

400

0

200

400

m = 101

rho =
 0.1

rho =
 0.2

rho =
 0.5

rho =
 0.8

LOCF LI KS EMA M rpart prtree

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

Figure 5.42: Scenario 6.1: Boxplots of F 2
2,DFA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[F 2
2,DFA(m)].
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Figure 5.43: Scenario 6.1: Boxplots of FDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[FDCCA(m)].
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Figure 5.44: Scenario 6.1: Boxplots of ρDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to ρE(m).
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In Figure 5.43, it is evident that for m = 3, all methods underestimated E[FDCCA(m)], indepen-

dently of ρ. LOCF and LI had the best results. For m ∈ {27, 81, 101}, LOCF, LI, and EMA all

showed similar and reasonable results, falling only well below E[FDCCA(m)] for ρ = 0.8. Concerning

ρDCCA(m), it is evident on Figure 5.44 that for ρ ∈ {0.1, 0.2}, all methods performed well, provid-

ing estimates close to the expected, especially for the time series reconstructed by KS and LI. For

ρ ∈ {0.5, 0.8}, all methods substantially underestimated the expected values of the function, with

LOCF, LI, KS and EMA performing better than the average-based methods.

The estimates of DFA and DCCA functions with complete time series had results close to the

expected values in terms of median, with an increase in variability as the window size m increased.

Regarding missing data imputation, LOCF and the average-based methods outperformed other meth-

ods for m = 3 and for m ∈ {27, 81101} the best methods were LOCF, LI, KS and EMA. The time

series reconstructed using LOCF, LI, and EMA had the best estimates for F 2
k,DFA, FDCCA(m) and

ρDCCA(m) across different values of m and ρ. Therefore, these observations suggest that for this

scenario, the methods that excel in missing data imputation provide more accurate estimates for the

DFA and DCCA functions.

5.3.10 Scenario 6.2: couple of ARMA(1,1) with the same error

In this scenario the time series {X1,t}nt=1 and {X2,t}nt=1 are samples from the stochastic processes

defined, respectively, by

X1,t = 0.2εt−1 + εt, X2,t = 0.6εt−1 + εt and εt = 0.7εt−1 + ηt, t ∈ Z, (5.8)

where {ηt}t∈Z, is a sequence of i.i.d. N (0, 1) random variables. Upon rewriting (5.8) as

(1− 0.7L)X1,t = (1 + 0.2L)ηt and (1− 0.7L)X2,t = (1 + 0.6L)ηt, t ∈ Z, (5.9)

where L is the back-shift operator, one observes that {X1,t}t∈Z and {X2,t}t∈Z are two ARMA(1,1)

processes with the same residuals. All time series are generated considering the recurrence equations

that follow from (5.9), that is,

X1,t = 0.7X1,t−1 + 0.2ηt−1 + ηt and X2,t = 0.7X1,t−1 + 0.6ηt−1 + ηt, t ∈ Z,

with burn-in size equal to 60.

From (5.9), one concludes that the causal representation {Xk,t}t∈Z, k ∈ {1, 2}, is given by

Xk,t =
∞∑
j=0

ψk,jηt−j , ψk,j = I(j = 0) + 0.7j−1(0.7 + αk)I(j > 0), αk =

{
0.2, k = 1,

0.6, k = 2.

It follows that the (i, j)-th term in the corresponding autocovariance and cross-covariance matrices

are given by

[Γk]i,j = ψk,|i−j| +
0.7|i−j|

1− 0.49
(0.7 + αk)

2, k ∈ {1, 2},

and

[Γ1,2]i,j = ψ2,j−iI(i ≤ j) + ψ1,i−jI(i > j) +
0.7|j−i|

1− 0.49
(0.7 + α1)(0.7 + α2).
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Moreover, from Prass and Pumi (2021),

E[F 2
k,DFA(m)] =

(0.7 + αk)
2m3

15(0.21)2(m2 + 3m+ 2)
+O(1) ∼ (0.7 + αk)

2m

15(0.21)2
, k ∈ {1, 2},

E[FDCCA(m)] =
1.17m3

15(0.21)2(m2 + 3m+ 2)
+O(1) ∼ 1.17m

15(0.21)2
,

and ρDCCA(m) ∼ 1, as m→ ∞.
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Figure 5.45: Scenario 6.2: Boxplots of the imputation MSE values, based on r = 1000 replications, considering

7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}.

Figure 5.45 shows that the estimated functions using the complete series closely approximate the

expected values for all values of m. The values of F 2
1,DFA(m), F 2

2,DFA(m) and FDCCA(m) increases

linearly as the window size m increases, and the variability of the estimates also increases with m,

which reflects the theoretical result stated in (4.9). The expected value of the function ρDCCA(m)

increases logarithmically.

As seen on Figures 5.46, the methods that performed the best in filling missing values were LI,

KS and EMA. Notably, all methods, except for M, exhibit a worsening in terms of MSE as the values

of ρ increase. As both these time series are samples from ARMA(1,1) processes, the surrounding

observations are the ones that contribute the most to predicting Xt (see Table 3.1), which explains

the good performance of LI and EMA. Also, since KS is a likelihood-based method and the underlying

distribution is correctly specified, it is expected that this method will be among the best ones.

As observed in Figures 5.47 and 5.48, for m = 3, the best estimates for F 2
2,DFA(m) were achieved

in time series filled by the LOCF and rpart methods, while the worst-performing methods were KS, LI,

and EMA. Form ∈ {27, 81, 101} and ρ ∈ {0.1, 0.2, 0.5}, LOCF, LI, KS, and EMA had the best results,

However, for ρ = 0.8, the methods closest to E[F 2
1,DFA(m)] and E[F 2

2,DFA(m)] were LI and EMA. It

is coherent that the methods which provided the best estimates for E[F 2
1,DFA(m)] are the same as for

E[F 2
2,DFA(m)], as despite having different specifications, both processes share a similar autocovariance

structure. In Figure 5.49, for m = 3, all methods underestimated E[FDCCA(m)], which especially

noticeable for ρ ∈ {0.5, 0.8}. For m ∈ {27, 81, 101}, LOCF, LI, and EMA methods showed reasonable

results, falling well below the expected value of the function only for ρ = 0.8. Concerning ρDCCA(m),

it is evident on 5.50 that for ρ ∈ {0.1, 0.2}, all methods performed well, providing estimates close to

the expected. However, for ρ ∈ {0.5, 0.8}, all methods substantially underestimated ρE(m).
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Figure 5.46: Scenario 6.2: Boxplots of the imputation MSE value for {X1,t}2000t=1 (top row) and {X2,t}2000t=1

(bottom row), based on r = 1000 replications, considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}.
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Figure 5.47: Scenario 6.2: Boxplots of F 2
1,DFA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[F 2
1,DFA(m)].
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Figure 5.48: Scenario 6.2: Boxplots of F 2
2,DFA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[F 2
2,DFA(m)].
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Figure 5.49: Scenario 6.2: Boxplots of FDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to E[FDCCA(m)].
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Figure 5.50: Scenario 6.2: Boxplots of ρDCCA(m), m ∈ {3, 27, 81, 101}, based on r = 1000 replications,

considering 7 imputation methods, for ρ ∈ {0.1, 0.2, 0.5, 0.8}. The red line correspond to ρE(m).

The estimates of DFA and DCCA functions with complete time series had results close to the

expected values in terms of median, with an increase in variability as the window size m increased.

Regarding missing data imputation, LI and KS outperformed other methods.The time series recon-

structed using LOCF, LI, and EMA had the best estimates for F 2
k,DFA, FDCCA(m) and ρDCCA(m)

across different values of m and ρ. Therefore, these observations suggest that for this scenario, the

methods that excel in missing data imputation might not provide more accurate estimates for the

DFA and DCCA functions.

5.4 Discussion of the simulation results

Regarding the simulation results with complete time series, the sample estimators of F 2
k,DFA(m),

FDCCA(m) are both very close to their expected values, especially when m is small. Consequently,

ρDCCA estimator behaves closely to its theoretical counterpart. These analyses have been previously

presented in Prass and Pumi (2021), and it is coherent that the simulations in this study have yielded

similar results, that is, for all values of m ∈ {3, 5, · · · , 101}, the median estimate of ρDCCA is always

very close to the expected values. As m increases, the variances of F 2
k,DFA(m), FDCCA(m), and ρDCCA

increase. This is expected since F 2
k,DFA(m) and FDCCA(m) are averages calculated from certain

quantities obtained by considering boxes of size m+1. Since m determines the size of the boxes, the

higher the m, the smaller the number of boxes available, hence, the smaller the number of terms used

in calculating F 2
k,DFA(m) and FDCCA(m) leading to an increase in variance.
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Addressing Q1 and Q4, the optimal imputation depended both on the underlying process and

the proportion of missing data. The average-based methods excel when the underlying processes are

sequences of uncorrelated variables or when the autocovariance is non-zero only for lag h = 1. For

scenarios where the surrounding observations are the ones that contribute the most to predicting Xt,

the methods LI, KS and EMA had superior results. Interestingly, in response to Q5, non-average-

based methods exhibit a significant decline in performance with higher proportions of missing values,

for ρ = 0.8, average-based methods yield comparable outcomes in scenarios dominated by LI, KS, and

EMA.

When examining the results related to the reconstructed time series, a noticeable difference emerges

in comparison to the values obtained from the complete time series. This difference becomes more

pronounced with increasing proportions of missing values (Q2, Q5). However, even in the scenarios

where the estimates are not close to the expected values, the linear decay os F 2
k,DFA(m) and FDCCA(m),

asm→ ∞, still holds. Concerning the F 2
k,DFA functions, the imputation methods that achieved results

closest to those calculated with complete time series follow a logic close to that observed in the missing

imputation. Average-based methods perform better when the autocovariance is zero for all lags h > 1

and methods such as LI, KS, and EMA excel in scenarios with non-zero autocovariance. Notably, LOCF

stands out among the top-performing methods for most scenarios when m ∈ {27, 81, 101}. There

is no evident pattern for the FDCCA(m) and ρDCCA(m) results given the time series reconstruction

method used. LOCF, LI, and EMA consistently deliver good results across all scenarios, yet the

optimal methods vary depending on the specific values of ρ and m in each scenario. Average-based

methods are most effective when the expected value is close to or equals zero. Consequently, the best

imputation method does not necessarily yield results closer to the expected values for the DFA and

DCCA functions. While this statement holds true for most scenarios regarding F 2
k,DFA, it does not

extend well to FDCCA and ρDCCA.

Finally, which method should be used for time series imputation to calculate the DFA and DCCA

functions? It depends. In a quick response, LI emerges as a favorable choice due to its simplicity, con-

sistent performance even in scenarios where it may not be the top-performing method, and reliability

in both imputation and the estimates of the DFA and DCCA functions. However, in certain scenarios,

average-based methods may prove to be superior choices in terms of both median performance and

variability of estimators. Therefore, the selection of an imputation method should be guided by a

priori knowledge of the correlation structure, the proportion of missing values, and the window size of

interest.



Chapter 6

Conclusions and Future Work

This work discussed the generating mechanisms of missing values, including a didactic and humorous

example illustrating the difference among these probabilistic models and described various methods for

handling missing values. During this master’s thesis, the missing data were considered to be MCAR

and the methods used to adress this problem were imputation methods.

This work described fundamental concepts about the decision tree structure and provided a review

on usual several decision trees algorithms and some algorithms that alter the traditional structure of

decision trees by introducing “soft” decisions at internal nodes. CART and an implementation of

a modified version of the Probabilistic Regression Tree algorithm modified to handle missing data

were used as imputation methods. The PRTree algorithm worked efficiently and had very promising

results for the fitting of smooth functions. It is currently avaiable for download at https://cran.

r-project.org/package=PRTree

The evolution of the DFA and DCCA functions is traced, supplemented with various application

examples and theoretical results, including works that proposed methods to handle missing data in

the context of time series with long-range dependence. This work closely followed the definitions

and notations outlined in Prass and Pumi (2021), which provided a more theoretical perspective and

unique results that were crucial for evaluating the results found. It has contributed with an asymptotic

result for the covariance and cross-covariance functions corresponding to processes with missing values

imputed using the mean, along with a comprehensive study of Monte Carlo simulations exploring the

behavior of F 2
k,DFA, FDCCA, and ρDCCA in the context of processes with short-term dependence and

a varying the proportion of missing data from 10% to 80% with different imputation methods. The

initial case study indicated that the matrix Km+1Γk exhibited the same structure in both complete

and missing data cases. However, the values on the main diagonal of the matrix were generally smaller

in cases with missing data, resulting in a reduced trace of the matrix (utilized to compute the expected

values of DFA and DCCA functions) in the context of processes with missing values. Monte Carlo

simulations provided evidence that the optimal methods for reconstructing time series, with respect to

the estimates of DFA and DCCA, depend on the correlation structure of the underlying processes, the

proportion of missing values, and the window size used to calculate these quantities. Average-based

methods performed well when covariances were non-zero only in lags ≤ 1, while LI, KS, and EMA

methods excelled when covariances extended beyond lag 1. LI demonstrated the most consistent

overall performance, proving to be a simple and effective method for both imputation and estimating

F 2
k,DFA, FDCCA, and ρDCCA

In Alkhoury et al. (2020), the authors consider that the function ψ depends on a parameter
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vector σ associated with the input residuals, without taking into account the potential correlation

between the independent variables. Future plans involve generalizing the existing model by replacing

the vector σ with a covariance matrix Σ and considering joint distribution functions, such as the

multivariate Gaussian. Another potential improvements to the algorithm include adopting different

strategies to select split points, incorporating additional native methods for handling missing data, and

developing a way to include categorical variables in the algorithm using an appropriate distribution.

Furthermore, the asymptotic result on the autocovariance and cross-covariance matrices in the case

of mean imputation is a novelty in the literature but can be extended, both to other missing data

imputation methods and to asymptotic results of DFA and DCCA. Finally, Monte Carlo simulations

can be conducted considering different sample sizes and other scenarios of missingness, such as only

one of the time series having missing values and both time series having the same indexes of missing

data, which would lead to the same number of observations used for the calculation of the DFA and

DCCA functions.
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