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“The measure of greatness in a scientific idea,
is the extent to which it stimulates thought

and opens up new lines of research."
(Paul Dirac, 1968)
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Resumo

O futebol é um esporte altamente lucrativo, que movimenta cada vez mais capital
ao redor do mundo. Assim, nos tempos recentes, há um grande interesse em prever os
resultados das partidas deste esporte. A adaptação de um Modelo de Poisson para
os gols marcados por uma equipe em uma competição tornou-se uma ferramenta
básica para essas análises. Nesse contexto, o Modelo de Poisson Autoregressivo
com Covariáveis Exógenas é uma opção atraente, uma vez que tanto o número de
gols quanto outras covariáveis relevantes podem ser incluídas no modelo a fim de
fornecer informações preditivas adicionais. Além disso, por meio do uso de cópulas,
uma possível dependência não linear entre ambos os gols marcados em uma partida
podem aprimorar as previsões. Portanto, neste trabalho, integramos o processo
Poisson Autoregressivo com Covariáveis Exógenas e Copula (PARX-Copula) para a
previsão dos resultados das partidas de futebol da temporada 2022/23 da Premier
League da Inglaterra. Avaliamos e comparamos as previsões obtidas com diferentes
configurações de dependência para os gols marcados pelas equipes mandantes e
visitantes, além de diferentes funções de ligação em nossos modelos. Ainda, testamos
o uso de covariáveis para explicar as fraquezas dos oponentes para os nossos modelos.
Finalmente, avaliamos como o uso de cópulas afeta as previsões dos resultados das
partidas, uma vez que a suposição de independência entre o número de gols marcados
em casa e fora é comum nesse contexto. Em nossos resultados, por meio do uso
de métricas de performance, observamos o desempenho preditivo dos modelos no
conjunto de testes. Em seguida, identificamos o melhor modelo preditivo da análise,
PARXMCopula, que considera o melhor ajuste para cada modelo marginal. No
final, este modelo é aplicado a uma estratégia de apostas.

Palavras-Chave: Resultados de Futebol, Poisson, Copulas, PARX, Previsão, Pre-
mier League.



Abstract

Football, year after year, becomes a sport that increasingly moves billions of dol-
lars around the globe. Thus, in recent times, there has been a great interest in pre-
dicting the matches results. Fitting a Poisson Model to the goals scored by a team in
a competition has become a basic tool for these analyses and other approaches have
also been used. In this context, Poisson Autoregressive with Exogenous Covariates
is an attractive option, since both past number of goals and other relevant covariates
can be included in the model to bring additional predictive information. Further-
more, taking into account, via copulas, a possible nonlinear dependence between
the number of goals pro and against can improve the predictions. In this study we
integrate Poisson Autoregressive with Exogenous Covariates and Copula (PARX-
Copula) models for predicting the results of the 2022/23 football Premier League
season matches in England. We evaluate and compare the forecasts obtained with
distinct dependence settings for scored goals by home and away teams and different
link function in our models. In addition, we test the use of covariates to explain
the opponents weaknesses to our models. Finally, we assess how the use of copulas
affects the predictions of the matches results, since the assumption of independence
between home and away number of scored goals is common in this context. In
our results, we see the predictive performance of all models in our analysis sample
through performance metrics. Then the best predictive model PARXMCopula is
presented, which considers the best fit for each marginal model. In the end, the best
model is applied to a betting strategy.

Keywords: Football Results, Poisson, Copulas, PARX, Forecast, Premier League.
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1 Introdução

O futebol, ano após ano, se torna um esporte que cada vez mais movimenta
milhões de pessoas e bilhões de dólares (Mathur, 2023) ao redor do globo. Assim,
influenciado pelo advento das chamadas casas de apostas, tanto no Brasil (MKTEs-
portivo, 2023), quanto no mundo, o interesse pela previsão das partidas deste jogo se
tornou não somente algo para lazer mas como o trabalho de muitos pesquisadores.

Os resultados de uma partida de futebol são o resumo dos processos que ocorrem
durante os tempos regulamentares das partidas. Os times são definidos pelo que eles
produzem em campo em um único número, por isso o gol é a principal finalidade. O
futebol por essa razão se torna um desafio para a previsão, pois inúmeras variáveis
influenciam no placar de uma única partida. No contexto de uma liga de futebol
temos uma proposta mais atrativa para os pesquisadores, pois, geralmente, esta
contempla um número limitado de partidas entre seus clubes por temporada anual.
Por isso, diversos trabalhos tentam agregar informações teóricas a esse tipo de análise
em busca de melhores previsões das próximas partidas.

Dessa forma, nos últimos tempos, tem havido um grande interesse em prever os
resultados de partidas de futebol. Contribuindo com essa questão, o entendimento
do comportamento das distribuições dos placares ao longo de um campeonato se
tornou um atrativo para este fim. O ajuste de um Modelo de Poisson para os gols
marcados por um time em uma competição se tornou uma ferramenta base dessas
análises, onde Maher (1982) assume que o número de gols marcados por cada equipe
em uma partida de futebol seguem processos de Poisson independentes. Dixon e
Coles (1997) continuam os resultados de Maher e propõem um modelo bivariado
capaz de perimitir depedência entre os gols marcados. Assim, outras abordagens
também começaram a ser utilizadas, como métodos de machine learning (Santana
et al., 2020), particularmente redes neurais (Bunker e Thabtah, 2019; Guan e Wang,
2022), métodos bayesianos (Baio e Blangiardo, 2010) e outros modelos multivariados
(Koopman e Lit, 2015).

Na literatura também encontramos modelos construídos para variáveis de conta-
gem que parecem ser interessantes no contexto futebolístico. Fokianos et al. (2009)
apresenta modelos autorregressivos para séries temporais de contagem e discute a es-
timativa tanto para o modelo de Poisson quanto considerando a Binomial Negativa.
Agosto et al. (2016) considera variáveis exógenas nesses modelos autorregressivos e
Angelini e De Angelis (2017) o utiliza para a previsão de partidas de futebol con-
siderando independência entre as séries de mandantes e visitantes. McShane et al.
(2008) desenvolve um modelo de contagem baseado na distribuição Weibull que pode
lidar com dados subdispersos e superdispersos. Com base nessa ideia, Kharrat et al.
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(2019) estende essa abordagem para criar uma família diversificada e flexível de dis-
tribuições de contagem de renovação, que amplia muito a caixa de ferramentas de
distribuições disponíveis para a modelagem de dados de contagem.

Estendendo esses modelos, a utilização de cópulas se torna um artíficio recente
para capturar a dependência entre os gols marcados em uma partida e permitir a
modelagem bivariada não independente. Ou seja, Mchale e Scarf (2011), optam por
permitir qualquer dependência potencial entre os gols marcados pelas duas equipes
através da utilização de uma cópula para combinar as duas distribuições margi-
nais de gols marcados. Nessa lógica, Halliday e Boshnakov (2018) apresentam uma
abordagem da utilização dos modelos autorregressivos de Poisson integregados pela
cópula de Frank, enquanto Boshnakov et al. (2017) utiliza os processos de Weibull
renováveis com a mesma cópula. Por fim, vemos que copulas são utilizadas em di-
versas áreas Tootoonchi et al. (2022), Sabino da Silva et al. (2023) e Silva Filho
et al. (2012).

Além disso, percebemos que estas modelagens e diferentes métodos de predi-
ção dos resultados, estão sendo aplicados contra as casas de apostas no intuito de
um ganho financeiro em cima das “odds” (razão de chances) estimadas por essas
plataformas para cada desfecho. Angelini e De Angelis (2017) utilizam estratégias
para apostas de vitória do mandante, empate e vitória do visitante. Da Costa et al.
(2022) focam no caso “ambos os times marcam"(BTTS). Shah et al. (2021) fazem
uso do critério de Kelly para maximizar os ganhos e, utilizando o mesmo critério
Boshnakov et al. (2017), considera ainda os casos de mais ou menos 2.5 gols por
partida.

Sendo assim, os modelos discutidos e apresentados neste estudo concentram-se
na dependência autorregressiva e na dependência cruzada entre os gols marcados por
equipes de futebol em um campeonato. Consideraremos a natureza das equipes como
mandantes e visitantes dentro de um campeonato nacional por meio de modelos
bivariados utilizando cópulas com a possibilidade de inclusão de variáveis exógenas.
Também serão utilizados modelos mais simples que consideram independência entre
os gols marcados pelos adversários.

Portanto, este trabalho tem como objetivo avaliar e comparar as previsões obti-
das para o número de gols de ambos os times em cada partida analisada. O foco da
previsão será nos jogos da temporada 2022/23 da Premier League, a liga profissional
de futebol da Inglaterra. A expectativa é que o uso de cópulas apresente um impacto
positivo nos resultados devido a dependência entre os gols dos oponentes. Por fim,
o segundo objetivo é obter retornos financeiros por meio de estratégias elaboradas
contra uma casa de apostas a partir de um modelo de melhor perfomance.

Este trabalho será apresentado no formato de artigo que se encontra estruturado
da seguinte forma: Seção 2 apresentará os métodos usados nas análises; Seção 3
demonstrará a fonte de dados e sua exploração; Seção 4 conterá os resultados das
estimativas realizadas juntamente com os desempenhos dos modelos e a estratégia de
apostas adotada; Seção 5 concluirá o artigo, apresentando as principais descobertas.
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Abstract

Football, year after year, becomes a sport that increasingly moves billions of dollars around the
globe. Thus, in recent times, there has been a great interest in predicting the matches results.
Fitting a Poisson Model to the goals scored by a team in a competition has become a basic tool for
these analyses and other approaches have also been used. In this context, Poisson Autoregressive
with Exogenous Covariates is an attractive option, since both past number of goals and other
relevant covariates can be included in the model to bring additional predictive information. Fur-
thermore, taking into account, via copulas, a possible nonlinear dependence between the number
of goals pro and against can improve the predictions. In this study we integrate Poisson Autore-
gressive with Exogenous Covariates and Copula (PARX-Copula) models for predicting the results
of the 2022/23 football Premier League season matches in England. We evaluate and compare
the forecasts obtained with distinct dependence settings for scored goals by home and away teams
and different link function in our models. In addition, we test the use of covariates to explain
the opponents weaknesses to our models. Finally, we assess how the use of copulas affects the
predictions of the matches results, since the assumption of independence between home and away
number of scored goals is common in this context. In our results, we see the predictive performance
of all models in our analysis sample through performance metrics. Then the best predictive model
PARXMCopula is presented, which considers the best fit for each marginal model. In the end,
the best model is applied to a betting strategy.

Keywords: Football Results, Poisson, Copulas, PARX, Forecast, Premier League

1. Introduction

Football continues to evolve into a sport that mobilizes billions of dollars (Mathur, 2023) world-
wide each year. Thus, influenced by the advent of so-called betting houses, both in Brazil and glob-
ally (MKTEsportivo, 2023), the interest in predicting the outcomes of these matches has evolved
from mere leisure to the occupation of numerous researchers.

The results of a football match summarize in a specific and very relevant way the processes
occurring during the standard playing time. Teams are defined by what they produce on the field,
represented by a single number, hence making scoring goals the primary objective. This complexity
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1Student at UFRGS.
2Professor at UFRGS.
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renders football a challenge for prediction, given the countless variables influencing the score in
a single match. In the context of a football league, typically encompassing a limited number of
matches among clubs per season, annually, it poses an enticing challenge for researchers within this
field, due to the limited sample size. Consequently, various studies attempt to integrate theoretical
insights into this analysis for improved predictions of upcoming matches.

Hence, there has been much interest in predicting football match outcomes lately. Contribut-
ing to this quest, understanding the distribution patterns of scores throughout a championship
has become a focal point. Employing a Poisson Model to analyze goals scored by a team in a
competition has become a foundational tool in these analyses. For instance, Maher (1982) assumes
that the number of goals scored by each team in a football match follows independent Poisson
processes. Dixon and Coles (1997) extend Maher’s findings and propose a bivariate model capable
of allowing dependence between scored goals. Other approaches have emerged, such as machine
learning methods (Santana et al., 2020), particularly neural networks (Bunker and Thabtah, 2019;
Guan and Wang, 2022), Bayesian methods (Baio and Blangiardo, 2010) and other multivariate
models (Koopman and Lit, 2015).

Literature also showcases models developed for count variables that seem useful in the football
context. Fokianos et al. (2009) presents autoregressive models for count time series and discusses es-
timation for both Poisson and Negative Binomial models. Fokianos and Tjøstheim (2011) increases
the process with log as a link function and Agosto et al. (2016) incorporates exogenous variables
into these autoregressive models, while Angelini and De Angelis (2017) employ them for predicting
football matches, considering independence between home and away series. McShane et al. (2008)
develops a count model based on the Weibull distribution capable of handling underdispersed and
overdispersed data. Building upon this idea, Kharrat et al. (2019) extends this approach to create
a diverse and flexible family of renewal count distributions, significantly broadening the toolbox
available for count data modeling.

Expanding on these models, copula modeling has emerged as a recent technique to capture de-
pendence between the number of goals of each team scored in a match and enable non-independent
bivariate modeling. For instance, Mchale and Scarf (2011) opt to allow potential dependence be-
tween goals scored by both teams by employing a copula to combine the two marginal distributions
of scored goals. In line with this logic, Halliday and Boshnakov (2018) introduce an approach using
autoregressive Poisson models integrated by the Frank copula, while Boshnakov et al. (2017) uses
renewable Weibull processes with the same copula. Ultimately, copulas are applied across multiple
domains, as seen in Tootoonchi et al. (2022), Sabino da Silva et al. (2023) and Silva Filho et al.
(2012).

Furthermore, these models and various prediction methods are being applied against betting
houses with the aim of financial gain based on the odds estimated by these platforms for each
outcome. Angelini and De Angelis (2017) employ strategies for betting on home win, draw, and
away win. Da Costa et al. (2022) focus on betting cases where both teams score goals, the famous
“both teams to score” (BTTS). Shah et al. (2021) utilizes the Kelly criterion to maximize gains
and Boshnakov et al. (2017), with the same criterion, considers another famous bet: over or under
2.5 goals per match.

Thus, the models discussed and presented in this study focus on autoregressive dependence and
cross-dependence between goals scored by football teams in a championship. We will consider the
nature of teams as home and away within a national championship through bivariate models using
copulas, along with the possibility of adding exogenous variables. Simpler models that consider
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independence between goals scored by opponents will also be used.
Therefore, the objective of this work is to evaluate and compare predictions obtained for the

number of goals scored by both teams in each analyzed match. The forecast will focus on the
matches of the 2022/23 season of the Premier League, the top professional football league in
England. The expectation is that the use of copulas will have a positive impact on the results
due to the dependence between the goals of the opponents. Finally, the second aim is to achieve
financial returns through devised strategies against a betting house based on a model of better
performance.

This article is structured as follows: Section 2 will present the methods used in the analyses;
Section 3 will demonstrate the data source and its exploration; Section 4 will contain the results
of the estimations performed along with model performances and the betting strategy; Section 5
will conclude the article, presenting the main findings.

2. Methodology

2.1. Poisson Autoregressive with Exogenus Covariates (PARX)

Following Agosto et al. (2016); Angelini and De Angelis (2017), the PARX model is now de-
scribed.

Let Yt ∈ {0, 1, 2, . . . }, t = 1, . . . , T , Yt be an observed count time series. Let Ft be the
information set available at time t, i.e., Ft =

{
yt−m, xt−m : m ≥ 0

}
. It is stated that Yt is a PARX

process, with intensity parameter λt, denoted by Yt ∼ PARX(p, q), if it can be written as follows:

Yt|Ft−1 ∼ Poisson(λt), (1)

λt = ω +

p∑

l=1

βlYt−l +

q∑

l=1

αlλt−l + ηxt−1, (2)

where ω > 0, β1, . . . , βq and α1, . . . , αp are non-negative coefficients, η > 0 is a vector of coefficients
for exogenous covariates and xt−1 ∈ Rr is a vector of covariates considered in the model. Therefore,
the conditional intensity, λt, depends on p past values of Yt, q of its past values and covariates
given by the vector xt.

The parameters ω, β1, . . . , βq, α1, . . . , αp, and η are time-invariant and ensure that the distribu-
tion of Yt|Ft−1 is a non-degenerate Poisson (λt ̸= 0) with a positive intensity (λt > 0). Specifically,
when η = 0, the PARX model reduces to the one in Fokianos et al. (2009) which proposed an
autoregressive model similar to GARCH models (Engle, 1982; Bollerslev, 1986).

Futhermore, the necessary e sufficient condition for (1) and (2) defining a unique strictly sta-

tiotionary process Yt is
∑max(p,q)

j=1 βj + αj < 1 with xt also strictly stationary.
A distinctive feature of the model is that, for a single covariate xt−1, the expected value of the

series Yt is given by

E(Yt) = E(λt) =
ω + E(xt−1)

1−∑max(p,q)
j=1 (βj + αj)

. (3)
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Moreover, by incorporating past values of the response and covariates in the conditional in-
tensity evolution, PARX models can capture overdispersion in the marginal distribution, i.e.,
V ar(Yt|Ft−1) = E(Yt|Ft−1).

Further details on these and other properties can be found in Section 3 of Agosto et al. (2016).

2.2. Log Linear Model

Considering as shown in Fokianos and Tjøstheim (2011) and Liboschik et al. (2017), we can
obtain the log-linear model with νt = log(λt) and t = 1, . . . , T , as follows:

Yt|Ft−1 ∼ Poisson(λt), (4)

νt = ω +

p∑

l=1

βl log(Yt−l + 1) +

q∑

l=1

αlνt−l + ηxt−1, (5)

where Ft−1 is the information set available, ω is the intercept, β1, . . . , βq and α1, . . . , αp are the
autoregressive coefficients, η is a vector of coefficients for exogenous covariates and xt−1 ∈ Rr as a
vector of additional covariates considered in the model.

The log-linear model allows the estimated parameters to be negative. However, note that the
effect of the summations in the linear predictor on the conditional mean is multiplicative, and
therefore, the parameters play a different role compared to the previous model.

The R package called tscount, proposed in Liboschik et al. (2017), is used for modeling these
models. The package proposes likelihood-based estimation methods for analysis and modeling of
count time series based on generalized linear models.

2.3. Copulas

The theory of Copulas was developed based on Sklar’s theorem (Sklar, 1959), which states that
any multivariate distribution can be represented as a function of its marginals.

Theorem. (Sklar, 1959) Let F be a joint distribution with marginals F1, . . . , Fd. Then there
exists a copula C : [0, 1]d −→ [0, 1] such that, for all (y1, . . . , yd)

′ ∈ Rd,

F (y1, . . . , yd) = C

(
F1(y1), . . . , Fd(yd)

)
. (6)

Moreover, the procedures for estimating the marginals and the dependence structure can be
performed separately, as discussed in Joe and Xu (1996). The suggested approach is a two-stage
procedure where the marginals are first estimated independently before the copula is adjusted.
This is known as the “inference from the margins” (IFM) method. The resulting IFM estimator is
asymptotically normal and consistent, supporting our choice of this method.

In this work we will use IFM method with empirical distributions of the residuals from the
marginals, i.e., a more direct approach. Firstly, the empirical distributions are computed. The
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residuals represent the differences between observed values and the values predicted by the es-
timated marginal distributions. Next, the residuals are utilized to construct a joint dependence
structure. The rationale is that if there are correlations or patterns in the residuals of the marginal
distributions, it could indicate some form of dependence between the variables.

Hence, a well-implemented open-source package for copulas is proposed in the copula package
in Yan (2007). This package simplifies usage, enabling more individuals to benefit from copula
properties, becoming an essential tool in recent years.

2.4. PARX-Copula Model

Let D(λ1, λ2; ρ) be a bivariate distribution based on a copula with dependency parameter ρ,
and marginals Poisson(λ1) and Poisson(λ2), based on Halliday and Boshnakov (2018). Also, let
Yt = (Y1,t, Y2,t)

′ be a bivariate time series of counts where Y1,t and Y2,t are univariate PARX
processes with intensities λj,t and associated exogenous covariates xj,t−1 for j = 1, 2. Denoting
λt = (λ1,t, λ2,t)

′ where t = 1, . . . , T , we denote by Ft−1, formed by past observations and exogenous
covariates, the information set at time t− 1:

Ft−1 =

{
Y1−p, . . . ,Yt−1,λ1−q, . . . ,λt−1,x1, . . . ,xt−1

}
(7)

The process Yt is a PARX-Copula(ρ, λ1, λ2) if the bivariate distribution is

Yt|Ft−1 ∼ D(λ1,t, λ2,t; ρ) = Cρ

(
F1(y1;λ1), F2(y2;λ2)

)
(8)

is such that the conditionals of Y1,t, Y2,t

Yj,t|Ft−1 ∼ Poisson(λj,t), j = 1, 2; (9)

λj,t = ψj +

p∑

l=1

αj,lYj,t−l +

q∑

l=1

βj,lλj,t−l + ηjxj,t−1, j = 1, 2; (10)

where Cp is the chosen copula function, F1, F2 are the poisson distribution functions, αj,l, βj,l,
denote coefficients for past observations and intensities, ψj as an intercept term and ηj represents
the non-negative vector of coefficients for exogenous covariates.

For the previously defined log-linear model, the development is analogous.

2.4.1. Akaike Information Criterion (AIC)

For the analysis of the marginal distribution models, we will consider the well-recognized Akaike
criterion (Akaike, 1974) as the metric for selecting the best fit. The AIC is described as

AIC = 2K − 2 ln(L) (11)

AIC determines the relative information value of the model using the L log-likelihood estimate
and the number K of parameters (independent variables) in the model.
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2.5. Performance

To assess the performance of our models, we will employ the following methods.

2.5.1. Log Loss

Logarithmic Loss, commonly known as log loss or cross-entropy loss, is a performance metric
used in the evaluation of classification models. It measures the performance of a classification
model by quantifying the difference between the predicted probabilities and the actual class labels.
The Log Loss for predictions of multiple classes (Bishop, 2006) is defined as:

Log Loss = − 1

n

n∑

i=1

k∑

j=1

oij log(pij) (12)

where n is the number of instances, k is number of class, oij = 1 if the current class yi = j, or
oij = 0 if the class yi ̸= j, log is the natural logarithm and pij is the predicted probability that
belongs to class.

2.5.2. Brier Score

Introduced by Brier (1950), the Brier Score is used to measure the accuracy of probabilistic
forecasts. When applied to predictions of multiple classes, the Brier Score is defined as:

BS =
1

n

n∑

i=1

k∑

j=1

(pij − oij)
2 (13)

where n is the number of instances, k is the number of classes, pij is the predicted probability, and
oij = 1 if the current class yi = j, or oij = 0 if the class yi ̸= j. This measure ranges from 0 to 2.

In the case with k = 3, we can consider a baseline value for the score. If each class receives an
equal probability of 1/3 for an event to occur or not, the calculation will always result in

BS =

(
1

3
− 1

)2

+

(
1

3
− 0

)2

+

(
1

3
− 0

)2

=
2

3
.

Therefore, the model is expected to have a Brier Score lower than the threshold = 2/3 to be
considered better than the simple assignment of equiprobable probabilities.

2.5.3. Match Results Score

Finally, we will use a metric to assess the accuracy of predicting the actual match outcomes.
We will consider the outcome with the highest estimated probability as the predicted outcome.
The score will be based on the number of correct predictions, as outlined below.

MRS =
1

n

n∑

i=1

di (14)

where n is the number of instances and d = 1 if the highest probability class for the instance
matches the actual class; otherwise, d = 0.

6



3. Data Set and Analysis

The analyses were conducted using the R Statistical Software (R Core Team, 2023, v4.2.3).

3.1. Data Source

The data set utilized in this study are sourced from the Football Reference website (FBref).
The focus lies on matches from the last thirteen seasons of the Premier League from 2010 to 2023,
where the relevant matches are extracted via the worldfootballR R package (Zivkovic, 2022).

3.2. Data Set

Our dataset consists of 4940 match results from the Premier League, England’s top professional
football division, containing information about the round and date of these matches spanning the
seasons from 2010/11 to 2022/23. Figure 1 display the distribution of number of matches at home
for the 39 teams that participated in the league during this period.
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Figure 1: Matches from the seasons 2010/11 to 2022/23.

Note that the distribution will be the same for the number of away matches and the teams with
the highest number of matches are those that played every league match throughout these years.
On the other hand, this means that the other teams played in the lower divisions of the country at
some point. This becomes a limitation of our study, because these teams that do not play in the
league “escape” from our modeling sample and have fewer matches to be modeled.
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Additionally, in our dataset, we will use one variable for both home and away models: weighted
average of goals conceded by the opponent as a covariate. We are basing this metric on the
measure used in Angelini and De Angelis (2017) and Santana et al. (2020). The metric serves as
exogenous information to the model regarding the opponents’ defensive capability. It is calculated
from 2009/10 season matches, which are not included in our dataset, and aims to assign a linear
weight to prioritize the most recently conceded goals.

3.3. Exploratory Analysis

Our emphasis will be on predicting matches from the last weeks of the 2022/23 season. The
models rely on the assumption that the goals scored by the teams follows Poisson distributions.
Therefore, Figure 2 illustrate the goals scored distributions that will be modeled for the 34th round
of the top English football clubs according to UEFA. The distributions are similar to Poisson
distributions and the others teams in the league have distributions with the same format.
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Figure 2: Goals as the home team during the period: 2010/11 to the 34th round of the 2022/23 season.

Thus, goals scored can be viewed as time series for modeling these processes, i.e., times series
to model the rate parameter λ from the Poisson distribution. Consequently, each team will have
its time series of goals scored modeled, wherein we differentiate between the team playing at home
or away. In other words, each team will have one series for home matches and another one for
away matches, as showed in Figure 3.

Then, in a match, we have the Poisson parameters λ1 and λ2 for home and away which leads
us to an interpretation of the average rate of goals expected by the clubs. The distributions
concentrate the observations in the lower values and then the averages are expected to be around
this range. In Table 1 we present the goals scored average from the distrbutions in Figure 2.

Table 1: Average Goals Scored

Arsenal Chelsea Liverpool Man Utd Man City Tottenham

Average 2.06 1.92 2.16 1.96 2.67 1.87

The analysis for the away goals is analagous because the distributions are similar.
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Therefore in Figure 3 we have the ilustration for the times series that will be modeled for
the 34th round. Note that we present the times series only for two teams: Liverpool’s series
and Brighton’s series. In this case, Liverpool played all the league matches during the period, but
Brighton only started playing in the league in 2017 (due to the “escape” of teams from the sample).
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Figure 3: Time series of goals during the period: 2010/11 to the 34th round of the 2022/23 season.

Using the time series approach for modeling the rates, we will be interested in observing how
past values and past rates influence these parameters. This influence will be obtained through the
PARX models. Figure 4 illustrate the autocorrelation of the series presented in Figure 3.
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Figure 4: Autocorrelations of goals from the last 19 matches until the 34th round of the 2022/23 season.

The Figure 4 shows us a small autocorrelation in the series, but with some correlations over-
tanking the confidence limit in the Liverpool’s series. This behavior is repeated in the other teams.
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3.4. Models

The analysis will consider four different approaches to modeling the goals series. Hence, each
team will have eight models, with four for the home series and four for the away series.

The models are detailed in Table 2.

Table 2: Marginals Models

PARX∗
I(p, q) PARXI(p, q) PARX∗

L(p, q) PARXL(p, q)

Covariate × ✓ × ✓
Link Function Identity Identity Log Log

Each of these models will be selected from a range of models with varying number of parameters
p and q using the Akaike criterion. For the construction of the bivariate distribution, we will
consider two scenarios: assuming independence between the marginal distributions and employing
the copula framework.

First, we are only considering bivariate models composed of the same marginal models. This
approach aims to identify the impact of marginals and copulas on predicting the bivariate distri-
bution. Thus, the possibilities explored are outlined in Figure 5 for a single match.

Figure 5: Modeling diagram for two teams

Therefore, a strategy that considers for each team only the best model among the four pos-
sible options is implemented. This strategy is denoted as PARXM , with the bivariate models
PARXMInd and PARXMCopula.
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4. Results

For our forecasting window, we are considering 145 matches. We have divided these matches
based on the rounds they occurred, from round 24 to round 38. Each round has the estimated
models and the one-step-ahead forecast, where, in the end, we compute the metrics of interest to
evaluate our strategies.

Hence, in our study, as 39 teams participated in the league during the study period, we esti-
mated around 78 models for each marginal model. In other words, since we used four different
model strategies for the marginals, we have a total of 312 models per round. Note that, clearly, in a
single round, we will have only 20 teams competing, but for copula estimation, we are considering
the entire history of Premier League matchups.

In Appendix C we acess the evaluation from our models with the Probability Integral Transform
(PIT) histogram and a marginal calibration plot for assessing the fit.

4.1. Parameters

We considered the following number of parameter variations: 0 ≤ p ≤ 3 and 0 ≤ q ≤ 3.
Through the Akaike criterion, the best models were selected for each of the individual fitting of
home and away series. Figure 6 shows the identified models orders.
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Figure 6: The distributions of the number of parameters for each marginal model.
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We note that models estimated with the identity link function presented a small number of
lags, with the main concentration on a single autoregressive parameter, either in past observations
or past rates. This corroborates the result in Figure 3, i.e., we have a large number of series that
show a small dependence on past observations and others that show a greater dependence.

On the other hand, the log-linear models presented a more distributed number of parameters,
with the appearance of models with up to 2 or 3 lags for both past terms.

Furthermore, all models considered the intercept effect, and as described earlier, some models
consider the effect of the variable used to explain the opponent’s defensive strength.

4.2. Joint Distribution

These estimated models form the pair for multivariate modeling. Considering the assumption of
independence, our estimated probability is constructed by taking into account the adjusted models
with the estimated parameters λ̂ = (λ̂1, λ̂2)

′ and Ft the information set at time t.

F (y; λ̂) = P̂

(
Y1,t+1 = y1, Y2,t+1 = y2|Ft

)
= P̂

(
Y1,t+1 = y1|Ft

)
× P̂

(
Y2,t+1 = y2|Ft

)
(15)

In the copula approach, Gaussian copula, Frank’s copula and Clayton’s copula (Appendix B)
were tested, with the latter showing the best fits for each round, according to Akaike.

Thus, considering λ̂ = (λ̂1, λ̂2)
′, C the Clayton copula and ρ the copula parameter,

F (y; λ̂, ρ) = C

(
F1(y1; λ̂1), F2(y2; λ̂2)

)
. (16)

Thus, the probabilities of the home team’s victory, draw, and away team’s victory results are
computed considering the possible outcomes of the joint distribution. Table 3 is an example to
understand these probabilities with one match from the 2022/23 season.

Table 3: Arsenal x Chelsea Probabilities from the 34th round

0 1 2 3 4 5 6

0 0.02754 0.04388 0.03496 0.01857 0.00740 0.00236 0.00063
1 0.05504 0.08770 0.06988 0.03712 0.01479 0.00471 0.00125
2 0.05500 0.08765 0.06983 0.03709 0.01478 0.00471 0.00125
3 0.03664 0.05839 0.04653 0.02471 0.00985 0.00314 0.00083
4 0.01831 0.02918 0.02325 0.01235 0.00492 0.00157 0.00042
5 0.00732 0.01166 0.00929 0.00494 0.00197 0.00063 0.00017
6 0.00244 0.00389 0.00310 0.00164 0.00066 0.00021 0.00006

We observe that, from the Table 3, we obtain the probability of Arsenal’s victory by summing
the red cells, the draw probability with the gray cells, and Chelsea’s victory considering the blue
cells. P (Arsenal) ≈ 0, 47, P (Draw) ≈ 0, 22 e P (Chelsea) ≈ 0, 31.
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4.3. Performances

We replicated the analysis for each model in each round, where we computed the estimated
probabilities of the home team’s victory, draw, and the away team’s victory. With these estimates,
we can analyze the performances of our strategies with different model configurations. Table 4
contains the considered strategies along with the Log Loss, BS, and MRS metrics.

Table 4: Models with Log Loss, BS, and MRS

Models LogLoss BS MRS

PARX∗
I Ind 1.0115 0.6071 50.34%

PARX∗
I Copula 1.0113 0.6070 50.34%

PARXI Ind 1.0019 0.6002 50.34%
PARXI Copula 1.0020 0.6002 50.34%
PARX∗

L Ind 0.9982 0.5934 55.17%
PARX∗

L Copula 0.9980 0.5932 55.17%
PARXL Ind 1.0279 0.6136 50.34%
PARXL Copula 1.0287 0.6139 50.34%

According to the metrics, all models performed better than the threshold calculated by the
BS. Thus, we can observe that the model that stands out in performance according to the Log
Loss and Brier Score was the PARX∗

LCopula model, i.e., using copula modelling with marginals
without considering covariate and with a logarithmic link function. This model also achieved an
accuracy rate of 55.17% among the studied matches.

Finally, we implement the strategy PARXMInd and PARXMCopula. First, we would like to
use the best model among the four models, but we should not consider the PARXL in this strategy.
We notice that the marginal model PARXL presented, in general, the best Akaike criterion for
each team but a loss of predictive power.

Then, this strategy is composed of the PARX∗
I , PARXI and PARX∗

L models to select the
best marginal model. In this selection, the marginal models chosen using the Akaike criterion come
from the models PARXI and PARX∗

L. The performance results are presented in Table 5.

Table 5: Best Marginal Model Strategy

Models LogLoss BS MRS

PARXMInd 0.9762 0.5784 55.86%
PARXMCopula 0.9758 0.5780 55.86%

Therefore, among the fit strategies used, the PARXMCopula showed the best performance
across the three metrics. We emphasize that the use of copulas slightly improves the results, but
we stress that future investigation is needed to determine whether this difference is not significant.
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4.4. Betting Aplication

Having identified the model with the best performance among the others, we can now use it
as a reference for the implementation of a betting strategy aplication. We will adopt a strategy
used in Angelini and De Angelis (2017). They relied on the strategies adopted by Dixon and Coles
(1997) and Koopman and Lit (2015), who explored predictions obtained by their models.

Firstly, this strategy is based on analyzing profitable bets by relating the market odds and the
probabilities estimated by the model. Each bet has odds, which represent the payout for the bet.
For example, if a bet has odds of £4.50 and a stake of £1 is placed, the bettor will receive £4.50,
making a profit of £3.50 (4.50 - 1 = £3.50).

Then, we will use bets with a value of £2 each and the odds considered will be an average of
the odds proposed by the differents bookmakers considered in our study.

4.4.1. Betting Strategy

To illustrate the strategy used, let us consider an example from our sample: the match in the
last round of the 2022/23 season between Manchester United and Fulham. The authors developed
a betting strategy for the most popular bets offered in the market, for the results 1, X, and 2,
corresponding to the home team’s victory, a draw, and the away team’s victory.

Let P1, PX , P2 be the probabilities of interest and O1, OX , O2 be the odds associated with the
results 1, X, and 2, respectively. Then, the betting strategy proposed by the authors is based on:

1. The first step is to select the outcome with the highest probability.
In the case of Manchester United vs. Fulham is the home team’s victory (P1 = 0.7081).

2. The second step is to decide if betting on this outcome is profitable.
Let P o

a be the implied probability defined by the inverse of the odds associated with result
a, for a = 1, X, 2. In the example above, P o

1 = 1.50−1 = 0.6667. Therefore, according to the
bookmakers, the probability of Manchester United winning is approximately 67%, against
the predicted 70.8%. The proposed payout by the bookmaker is higher than expected.

Therefore, the expected value of the bet for outcome 1 is then given by

E[A1] =
P1

P o
1

− 1 (17)

The authors would only bet on the home team’s victory if E[A1] > 0, i.e., only if the estimated
probability is higher than the implied probability proposed by the market (P1 > P o

1 ).

4.4.2. Threshold

The authors also consider an alternative strategy. In particular, they consider selecting only
matches where E[Aa] > τ , i.e., only if Pa > P o

a (1 + τ), where τ > 0, and a = 1, X, 2. For this
reason, the authors only bet on matches with outcomes where the probabilities are higher than a
specific threshold τ .

In the example considered, if τ = 0, the case becomes the result mentioned above E[A1] > 0.
Adopting the alternative strategy, bets would only be placed if 0 < τ < E[A1] =

P1
P o
1
− 1 = 0.0621.

Hence, it is still convenient to bet on Manchester United’s victory in this match as long as a
threshold τ < 0.0621 is selected.
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Considering the PARXMCopulamodels that showed the best metrics for prediction, we present
the results of comparisons with the odds in Table 6, considering different threshold values.

Table 6: Models Perfomances vs Odds

Threshold Nº Matches Recommended for betting Profit (£) Return

Threshold = 0 145 77 54.37 35.30%
Threshold = 0.25 145 45 39.71 44.12%
Threshold = 0.5 145 29 46.41 80.01%
Threshold = 1 145 13 27.352 105.20%

The Table 6 shows that it was possible to achieve the desired profit through the adopted
strategy. Even with different values for the threshold parameter, the strategy functions as intended.

The chosen threshold plays an important role in profit and return obtained; higher values of this
parameter select bets where the probabilities from our models are more distant from the implied
probabilities, which explains the small number of indicated matches to bet on.

Another impactful factor in our result is the associated odds themselves since different book-
makers use different odds. That is, if this simulation were applied to a bookmaker considered
inaccurate, the performance could be considered superior, just as a bookmaker with implied prob-
abilities very close to those estimated by the models would indicate a lower number of matches for
betting.

5. Conclusion

All bivariate models had a satisfactory performance in our analysis, each presenting an accuracy
rate (MRS) exceeding 50%. Based on the performance metrics and Akaikes criterion, the marginal
models that stand out are the PARXI and PARX

∗
L, indicating significant results when considering

log-linear models without covariates. Another crucial aspect in our results is the use of copulas,
which generally improve prediction performances compared to models that assume independence.

Moreover, a bivariate model was constructed from the best marginal models for each team,
achieving the most accurate prediction results with an accuracy rate (MRS) of approximately
55.86%. Through this model, an application in football betting was demonstrated, resulting in a
positive financial return within the study’s forecast window.

Therefore, we emphasize that the models studied in this article can be applied to other sports,
as well as different contexts dealing with bivariate count data. For future studies, we recommend
exploring others covariates in marginal models, mainly in log-linear models, and extending ap-
plications to other professional football leagues beyond the English Premier League. Finally, we
conclude that the aims of this study were achieved.
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Appendix A. PARX Estimation

The estimation for the PARX models are presented following the process in Agosto et al. (2016)
and the summarized version in Angelini and De Angelis (2017). The conditional log-likelihood of
the PARX model for the parameter vector θ = (ω, β1, . . . , βp, α1, . . . , αq, η)

′ is given by

ℓT (θ) =
T∑

t=1

lt(θ), lt(θ) := yt log λt(θ)− λt(θ). (A.1)

The maximum likelihood estimator (MLE) is then computed as

θ̂ = arg maxθ ℓT (θ). (A.2)

The restrictions ω > 0, β1, . . . , βq, α1, . . . , αq, η ≥ 0 are required to guarantee that λt > 0 and∑max(p,q)
j=1 βj+αj < 1 to ensure the stability of the process. These conditions imply that the PARX

model admits a stationary and weakly dependent solution.
Then θ̂ is obtained as the solution of ST (θ) = 0, where the score ST (θ) is defined as

ST (θ) =

T∑

t=1

(
yt

λt(θ)
− 1

)
∂λt(λ)

∂λ
. (A.3)

Furthermore, Theorem 2 in Agosto et al. (2016) shows that

√
T
(
θ̂ − θ0

) d−→ N
(
0, H−1(θ0)

)
, H(θ) = −E

[
∂2lt(θ)

∂θ∂θ′

]
, (A.4)

where the Hessian matrix H(θ) can be consistently estimated by

HT (θ) = − 1

T

T∑

t=1

1

λt(θ)

(
∂λt(θ)

∂θ

)(
∂λt(θ)

∂θ

)′
. (A.5)

Therefore, the restrictions above mimic the ones used in GARCHX(p, q) models (Han and Kris-
tensen, 2014) and are discussed more in detail in Agosto et al. (2016) along with other important
properties of this estimation process.
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Appendix B. Copulas

Gaussian Copula

Following Duque et al. (2021), we use the very popular Gaussian copula.
For our bivariate case (Ali et al., 2020) the Gaussian copula can be constructed based on Sklar

(1959) using a standard normal distribution function Φ(·) for the normal marginals with ρ as the
dependece parameter (ρ ∈ [−1, 1]).

C (u, v) = P

(
Φ (u) ,Φ (v)

)
=

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√
1− ρ2

exp

{
2ρuv − u2 − v2

2(1− ρ)2

}
dudv. (B.1)

Archimedean Copulas

Archimedean Copulas represent an important class of copulas with a specific property. This
class uses Laplace transformations and mixtures of powers of univariate densities to create the
multivariate distribution. Thus, the copula can be easily constructed from a generator function
ϕ(·) and a pseudo-inverse ϕ[−1](·).

Definition. (Pseudo-Inversa). Let ϕ be a continuous strictly decreasing function from I = [0, 1]
to [0,∞] such that ϕ(1) = 0. The pseudo-inverse of ϕ is given below:

ϕ[−1](t) =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0)

0, ϕ(0) ≤ t ≤ ∞

The pseudo-inverse will be a continuous and non-increasing function on [0,∞] and a strictly
decreasing function on [0, ϕ(0)]. If the generator ϕ(0) = ∞, then ϕ[−1](t) = ϕ−1(t). Following Joe
(1997), the generator function can be used to construct an Archimedean copula as follows:

C(u1, . . . , uK) = ϕ[−1]

( K∑

i=1

ϕ(ui)

)
(B.2)

Necessary and sufficient conditions on the generator functions ϕ(·) and ϕ[−1](·) in order to
induce a valid Archimedean copula are discussed in Section 2 of McNeil and Nešlehová (2009).

In this work, using ρ as the dependence parameter, we consider Frank’s copula (p ∈ (−∞,∞))
and Clayton’s copula (p ∈ (−1,∞)\{0}) following Nelsen (2006),

CFrank(u, v) = −1

ρ
ln

(
1 +

(e−ρu − 1)(e−ρv − 1)

e−ρ − 1

)
, (B.3)

CClayton(u, v) =

[
max

(
u−ρ + v−ρ − 1, 0

)]−1/θ

. (B.4)
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Appendix C. PIT and Marginal Calibration

For model evaluation, the tscount package provides several tools. Thus, the package includes a
graphical tool for checking probabilistic calibration with the Probability Integral Transform (PIT)
histogram and a marginal calibration plot for assessing the fit.

As we have many estimated models, we will present an illustration of the evaluation process
for one team in one of the rounds in the Figure C.7, as the models showed acceptable behaviors
from the graphs.

Considering only the Everton team in round 34, we observe that the PIT histograms seem to
be close to uniformity, and the marginal calibration plots are satisfactory, as they do not show
outlier values.
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Figure C.7: Calibration of Everton models for round 34.
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