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ABSTRACT

The rapid advancement of Very-large-scale integration (VLSI) silicon integration has rev-

olutionized the electronics industry, enabling the integration of billions of transistors into

a single integrated circuit. This complexity necessitates the use of Electronic Design

Automation (EDA) tools for VLSI design. These tools automate various tasks, with the

design process typically divided into logic synthesis and physical design stages. Logic

synthesis involves capturing the initial logic description and generating a netlist of in-

terconnected cell instances, while physical design focuses on placing and routing these

instances to create a circuit layout ready for fabrication. Over the past two decades, logic

synthesis has heavily relied on the And-Inverter-Graph (AIG) data structure for its scal-

ability and result quality. This thesis introduces a contribution to logic synthesis based

on AIGs, specifically focusing on computing AIG covers with KL-cuts, where both the

number of inputs (K) and outputs (L) are controlled. While previous work has proposed

the use of KL-cuts in synthesis flow, efficient algorithms for covering AIGs with KL-cuts

have been lacking. This thesis addresses this issue by presenting an algorithm to opti-

mize this task. Additionally, a detailed review of AIG cut types is provided. Existing

synthesis methodologies often lack efficient algorithms for AIG covering with KL-cuts,

necessitating the development of optimized solutions. In this thesis are proposed two

novel contributions to logic synthesis using AIGs, focusing on KL-cut computation to en-

hance synthesis efficiency. The first contribution introduces a novel method for expanding

single-output cuts into KL-cuts. The second contribution presents a satisfiability-based

approach for generating AIG covers using KL-cuts. Experimental results validate the ef-

fectiveness of these contributions. The proposed cut expansion method achieved a 1.25x

speedup compared to the MFFW method. Furthermore, the proposed approach success-

fully generated KL-cut covers with a reduction: 49.01% compared to K-cuts from ABC

and 7.51% compared to multi-output covers derived from post-processing of ABC results.

Keywords: And-inverter graph. electronic design automation. cuts in AIGs. KL-cuts.

logic synthesis. very-large-scale integration. satisfiability.



Cobertura de AIGs Baseada em Satisfatibilidade Usando KL-cuts

RESUMO

O rápido avanço da integração de silício em Integração em Larga Escala (VLSI) revolu-

cionou a indústria de eletrônicos, permitindo a integração de bilhões de transistores em

um único circuito integrado. Essa complexidade exige o uso de ferramentas de Automa-

ção de Projeto Eletrônico (EDA) para o design de VLSI. Essas ferramentas automatizam

várias tarefas, com o processo de design tipicamente dividido em etapas de síntese lógica

e design físico. A síntese lógica envolve capturar a descrição lógica inicial e gerar uma

lista de interconexões entre instâncias de células, enquanto o design físico se concentra

na colocação e roteamento dessas instâncias para criar um layout de circuito pronto para

a fabricação. Nas últimas duas décadas, a síntese lógica tem dependido fortemente da

estrutura de dados And-Inverter-Graph (AIG) devido à sua escalabilidade e qualidade dos

resultados. Esta tese apresenta uma contribuição para a síntese lógica baseada em AIGs,

especificamente focando no cálculo de coberturas de AIG com KL-cuts, onde tanto o nú-

mero de entradas (K) quanto de saídas (L) são controlados. Embora trabalhos anteriores

tenham proposto o uso de KL-cuts em fluxos de síntese, algoritmos eficientes para co-

brir AIGs com KL-cuts têm sido escassos. Esta tese aborda essa questão apresentando

um algoritmo para otimizar essa tarefa. Além disso, é forne uma revisão detalhada dos

tipos de cortes em AIGs. Metodologias de síntese existentes frequentemente carecem de

algoritmos eficientes para cobertura de AIG com KL-cuts, exigindo o desenvolvimento

de soluções otimizadas. Nesta tese, são propostas duas contribuições inovadoras para a

síntese lógica usando AIGs, com foco no cálculo de KL-cuts para melhorar a eficiência

da síntese. A primeira contribuição introduz um método inovador para expandir cortes de

saída única em KL-cuts. A segunda contribuição apresenta uma abordagem baseada em

satisfatibilidade para gerar coberturas de AIG usando KL-cuts. Resultados experimen-

tais validam a eficácia dessas contribuições. O método de expansão de cortes proposto

alcançou uma aceleração de 1,25 vezes em comparação com o método MFFW. Além

disso, a abordagem proposta gerou com sucesso coberturas KL-cut com uma redução de

49,01% em comparação com K-cuts do ABC e 7,51% em comparação com coberturas

multi-saídas derivadas do pós-processamento dos resultados do ABC.

Palavras-chave: Grafo and-inverter, automação de projeto eletrônico, cortes em AIGs,

KL-cuts, síntese lógica, integração em larga escala, satisfatibilidade.
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1 INTRODUCTION

The evolution of VLSI silicon integration has led the electronics industry to a

present situation where the number of devices in a single integrated circuit can be of the

order of billions of transistors. The complexity of large VLSI design must rely then on

computer-aided design tools commonly known as Electronic Design Automation (EDA)

tools.

Due to the complexity of design flows, the research on EDA focuses generally on

small specialized topics. Design flows are generally very complex encompassing a vari-

ety of tasks performed by a variety of tools. In a very naive way, the design of integrated

circuits can be divided into logic synthesis and physical design. The logic synthesis hap-

pens in the front end of the design flow and the goal of logic synthesis can be stated as to

capture the initial logic description and generate a netlist of interconnected cell instances

that implement the desired logic. The physical design happens in the back end of the

design flow and the goal of physical design can be stated as using the netlist generated

by the logic synthesis to place and route the cell instances to produce a circuit layout that

is ready for fabrication. It must be said that current commercial design flows can esti-

mate placement and floorplanning in the early steps of the design flow, still during logic

synthesis, and consider the effect introduced by placement and routing parasitics.

The field of logic synthesis has in the last two decades relied on the AIG data struc-

ture. This is done mostly due to scalability reasons while preserving result quality. The

logic synthesis using AIGs is based on the concept of AIG cuts. There are several types

of cuts in AIGs, so this will be discussed in more detail later in this thesis. The most used

type of cut in AIG is the K-cut, which can be roughly defined as a sub-graph with K inputs

rooted in an output node. K-cuts were initially introduced to map Field-Programmable

Gate Array (FPGA) circuits composed of K-input look-up tables. However, K-cuts later

become an important part of AIG-based logic synthesis not necessarily tied to FPGAs.

This thesis presents a contribution to logic synthesis based on AIGs. The contri-

bution is focused on computing AIG covers with KL-cuts, where not only the number of

inputs K but also the number of outputs L is controlled in the KL-cut subgraph. KL-cuts

were introduced by Martinello (MARTINELLO et al., 2010) and later Prof. André Reis

(REIS; MATOS, 2018) proposed an approach to use KL-cuts in a synthesis flow based on

logic computation and signal distribution. However, the proposal of the logic computation

and signal distribution design flow did not provide an efficient algorithm to cover an AIG
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with KL cuts. In this thesis, we provide an efficient algorithm for this task, as described

in chapter 6. We propose: (1) an efficient method to enumerate KL-cuts, (2) a method

to generate CNF formulas to obtain the cover of an AIG with KL-cuts using satisfiability

(SAT), and (3) a BDD-based algorithm to generate maximum cost clauses for problems

that will be solved with SAT.

Chapter 3 introduces the basic concepts used in this thesis. For people with famil-

iarity with logic synthesis, this chapter can be partially or completely skipped, with the

reader searching only for the necessary concepts from the chapter.

Chapter 4 presents a complete overview of different types of AIG cuts in the lit-

erature. This chapter is a contribution in itself, as a comparative review with the level of

completeness and detail presented here is not available in previous works.

Chapter 5 discusses prior works in a chronological way. It is a bibliographical

review that presents the historical evolution of AIG-based logic synthesis. The focus is to

present the evolution of AIG based logic synthesis.

Chapter 6 introduces the contributions of this thesis, where the proposed methods

and the steps taken to obtain a cover using KL-cuts are presented.

Chapter 7 presents the obtained results and discusses their significance. One point

that is important to highlight is that the algorithm for enumerating KL-cuts is significantly

more efficient in terms of execution time when compared to the method of (MACHADO

et al., 2012), and slightly more efficient on average than the method of (TANG et al.,

2023). Another point is the reduction in the number of cuts needed to cover circuits when

using multi-output cuts, such as KL-cuts.

Finally, Chapter 8 concludes this work, discussing the contributions and limita-

tions. Future works are also outlined, in the context of a design flow based on logic

computation and signal distribution.
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2 MOTIVATION FOR KL CUTS

2.1 About This Chapter

This chapter presents the motivation for KL-cuts. KL-cuts can be useful on at

least three different contexts. Notice that the use in different contexts also happens for the

more common K-cuts that can be used in independent logic optimization, FPGA mapping,

as well as cell-based mapping for ASICs. The different contexts for using KL-cuts are

discussed in the next subsections.

2.2 KL-cuts and multi-output LUTs

The first and more obvious application of KL-cuts is for FPGAs with multiple

output LUTs. In a very similar way that K-cuts can be used to map a circuit for FPGAs

based on single output LUTs, the mapping for FPGAs with LUTs with L outputs can be

done through a cover based on KL cuts. One interesting research question would be to

map a circuit for an FPGA with single output 4-LUTs and compare it with a mapping

to an FPGA with 4-2-cuts. In the best case, the number of LUts would be divided by 2.

However, not all the pairs of 4-cuts can be packed into 4-2-cuts as the inputs may differ.

Additionally, it is possible to compare the dedicated KL-cut covering method proposed

in this thesis against a method that covers a circuit with K-cuts and then packs the com-

patible cuts into the same KL-Lut when this is possible. This is one type of experiment

investigated in this thesis.

2.3 KL-cuts and multi-output cells in a library

A second application of KL-cuts is for ASIC mapping targeting a library with

(some) multiple-output cells. A recent publication on technology mapping using multi-

output library cells (CALVINO; MICHELI, 2023) discusses KL-cuts as an alternative to

the method they introduced. However, they use cut signatures as they target only full-

adder cells where the outputs depend exactly on the same set of inputs, which results in

equal cut signatures. The use of KL-cuts could help to match cells with outputs depending

on a slightly different set of inputs. However, we will not investigate this type of approach
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in detail, as for ASIC synthesis of ASICs the different outputs will probably require dif-

ferent sizes and the logical match of a cell would not be sufficient to produce a match that

is adequate to the timing requirements.

2.4 KL-cuts as a partitioning method

A third application of KL-cuts is in a method to bring physical awareness starting

at technology-independent logic synthesis (REIS; MATOS, 2018). The authors propose

a design flow based on (local) logic computation and signal distribution. The local logic

computation is done inside KL-cuts, meaning that the KL-cuts will be used to pack inde-

pendent portions of the circuit that will be placed locally. In this way, the routing among

cells inside a same KL-cut is local, using short wires and low metal levels. This means that

the KL-cuts in (REIS; MATOS, 2018) can be seen as partitions composed of several cells

inside the KL-cuts as opposed against a KL-cut that is a match to a single library cell as

in (CALVINO; MICHELI, 2023). The KL-cuts can be viewed as physical partitions. As

a consequence, the routing among different KL-cuts tends to be global, using long wires

and high metal levels. The authors (REIS; MATOS, 2018) proposed the design flow with

these characteristics, but a scalable algorithm to compute KL-cuts and cover a circuit was

not provided. The original algorithm for KL-cuts (MARTINELLO et al., 2010) also lacks

scalability. This way, a scalable KL-cut covering algorithm is missing.

2.5 Contributions of this chapter

This chapter presented the motivation for developing a KL-cut computation and

covering algorithm. The use of KL-cuts can be applied in three distinct contexts proposed

by different authors. At the same time an efficient scalable algorithm for KL-cuts has not

yet been proposed.

Finally, we reckon that this chapter presents the motivation in a way that is suitable

for those already knowledgeable in logic synthesis. We hope that it motivates those that

are not yet fully knowledgeable in logic synthesis to keep reading the thesis so that the

motivation is further clarified when the underlying concepts are presented further in the

text. For those initiating in logic synthesis, perhaps re-reading this chapter after finishing

the thesis will bring a renewed appreciation of the contributions.
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3 BASIC CONCEPTS

3.1 About this chapter

This chapter will present the basic concepts essential for understanding this work.

This section provides the necessary basis for subsequent discussions and analyses. This

chapter can be potentially skipped by those knowledgeable about the field of logic syn-

thesis.

3.2 Boolean functions and their representation

The Boolean domain is defined by the set B = {0, 1}. In other words, this set

contains only the elements 1 or 0; and a variable defined in the Boolean domain can

only assume the values 0 or 1. For instance, if a variable x is a Boolean variable, it can

only assume the values 0 or 1. The value 1 is sometimes interpreted (named, referred or

labeled) as the true value. Similarly, the value 0 is called the false value.

A (single input) Boolean function is a mapping from a Boolean set of size N,

called a domain, to another set of the size of 1, also a Boolean domain called an image,

this is defined as F : Bn −→ B. Therefore, a Boolean function associates a combination

of input values, of size N, with an output of 0 or 1. Normally the term Boolean function

refers to a single output Boolean function. However, most functions of practical interest

are multiple output functions. A multiple output Boolean function is a mapping from a

Boolean set of size N, called a domain, to another set of size M, also a Boolean domain

called an image, this is defined as F : Bn −→ Bm.

There are different ways to represent Boolean functions, each with its character-

istics and limitations. Next, some of the main representations of Boolean functions that

were widely used during the evolution of the circuit design area will be presented.

3.2.1 Historical evolution of Boolean functions representations

As predicted by Gordon Moore in 1965 (MOORE, 1965), the density of transistors

in integrated circuits, and consequently, the processing capacity of computers, is expected

to double approximately every two years.
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As the size of circuits grew over time, it was increasingly necessary to use more

optimized ways to represent Boolean functions. This motivated the creation of new data

structures to represent Boolean functions in order to keep up with the growth of Boolean

functions.

EDA started with the design of the first computers and modern data structures were

not yet known, as the first computers did not have the necessary resources to support them.

So the evolution of EDA data structures goes in hand with the evolution of computers,

as larger computers need and at the same time support smarter and more efficient data

structures to design the next generation of computers. In the following sections, we will

present some of the most popular ways to represent Boolean functions.

3.2.2 Truth tables

The truth table (TT) was the first way to represent Boolean functions in the very

early days of EDA, from the late 50´s to 70´s. In this representation, each combination of

input values is associated with a corresponding output value (MICHELI, 1994). Conse-

quently, it is considered canonical, possessing a unique representation under a fixed order

of the input variables. Table 3.1 shows a truth table for a full adder, which is a 3-input,

2-output Boolean function denoted as B3 −→ B2 function.

Table 3.1 – Truth table of a full adder.

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Each row of the truth table represents a combination of input values to the func-

tion, which has one or more associated outputs. For example, row 2 of the truth table
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3.1 has the input combination (A=0, B=0, Cin=1), which produces the outputs Sum =

1, Cout = 0.

It is important to notice that, as the number of inputs grows, the size of the truth

table increases exponentially with the number n of inputs. The number of different input

combinations is 2n, where n is the number of inputs to the function (CRAMA; HAMMER,

2011). For instance, the full adder has a truth table with eight combinations for the three

inputs A, B, and Cin, as shown in Table 3.1.

3.2.3 Sum of Products

A Sum of Products (SOP) was one of the most popular Boolean representations

from the early 70´s to 90´s, is an equation described by the sum of all input combinations

(Products) that produce the value 1 as the output of the function. SOP can be considered

one of the simplest ways to describe a Boolean function using equations because an SOP

is composed only of the sum of the function’s minterms, which is a two-level format

(WAGNER; REIS; RIBAS, 2006). For example, the function represented by the truth

table 3.1 has the following SOPs:

• Sum = (A ·B · Cin) + (A ·B · Cin) + (A ·B · Cin) + (A ·B · Cin);

• Cout = (A ·B · Cin) + (A ·B · Cin) + (A ·B · Cin) + (A ·B · Cin);

This form of Boolean function representation has been and continues to be used

by tools such as Espresso (BRAYTON et al., 1982), a heuristic two-level logic mini-

mizer. The SOP representation has also been and is still used by tools like MIS (BRAY-

TON et al., 1987), a multilevel logic synthesis and minimization system responsible for

popularizing multilevel synthesis based on the manipulation of factored forms, and SIS

(SENTOVICH et al., 1992), a tool for synthesis and optimization of sequential circuits,

responsible for adding sequential circuit handling to the MIS algorithms.

Similarly to the TT, the SOP is also considered canonical, thus providing a unique

representation of the Boolean function (WAGNER; REIS; RIBAS, 2006). However, as

with the TT, the size of the SOP can increase significantly with the number of inputs

grows. Due to these limitations, new approaches have been proposed, where methods

based on data structures have become prominent, as will be discussed in the following

sections.
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3.2.4 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) were an important tool in the field of formal

verification and optimization of logic circuits, from the late 80´s to the mid 2000´s. The

BDD structure is based on the Shannon Expansion (SHANNON, 1949), each node in the

BDD has a generic decision variable dv that is used to decide between two other nodes

that represent sub-functions where the decision variable dv has a fixed value dv = 0

(negative cofactor sub-function) or dv = 1 (positive cofactor sub-function). Technically,

the two sub-functions that are pointed by a BDD node with decision variable dv do not

depend on the variable dv, as the variable dv has already been decided to dv = 0 (for the

negative cofactor sub-function) or dv = 1 (for the positive cofactor sub-function).

BDDs can be traced to the work by (LEE, 1959) and (AKERS, 1978), but they be-

come widely used after the seminal work of (BRYANT, 1986), which introduced Reduced

Ordered BDDs (ROBDDs), their canonical properties and algorithms to manipulate func-

tions. ROBDDs constitute an optimized variant of BDDs, proposed to enhance efficiency

in the representation and manipulation of Boolean functions. By eliminating duplicate

nodes (i.e. nodes representing the same logic function) and imposing restrictions on the

ordering of BDD variables, ROBDDs provide a compact and effective representation.

The defining characteristics of ROBDDs are i) variable ordering and ii) node irre-

dundancy. Variable ordering means that a fixed order is imposed on the function’s input

variables, where all paths from the root node to a terminal node follow the same sequence

of variables, even when some variables are not present in a specific path. Node irre-

dundancy means that ROBDDs do not have i) nodes that do not make decisions and ii)

redundant sub-graphs representing the same Boolean function. Also, (BRYANT, 1986)

has shown that due to these characteristics, ROBDDs are canonical and unique structures

for equivalent functions.

Figure 3.1 illustrates a ROBDD example of the Boolean function depicted in Table

3.1. The decision variables for each level are represented on the left, as the ROBDD is

ordered and all the nodes in a given level share the same decision variable. The values

inside the nodes are keys used in a hash table to guarantee that nodes are not duplicated,

as it is usual in the strong canonical form of ROBDDs (BRACE; RUDELL; BRYANT,

1990). The solid lines represent the positive cofactors dv = 1, while the dotted lines

represent the negative cofactors dv = 0 for each node. As shown, every path in the BDD

leads to one of the terminal nodes, determining the output value generated by the Boolean



21

function.

Figure 3.1 – ROBDD representing a Full Adder with inputs a, b, and cin.

Cin Cin

b b bb

a a

0 1

Sum Cout

The tools SIS (SENTOVICH et al., 1992), VIS (BRAYTON et al., 1996), and MV-

SIS (CHAI et al., 2003) use BDDs in their respective methodologies. SIS employs BDDs

to represent and manipulate sequential circuits, facilitating optimization and formal prop-

erty verification. Although VIS does not use BDDs as its primary form of representation,

BDDs are employed in processes such as Equivalence checking and Simulation for ad-

vanced formal verification. On the other hand, MVSIS deals with multivalued logic and

uses methods based on BDDs.

3.2.5 And-Inverter Graphs

In the beginning of the 2000´s, it became clear that ROBDDs would not scale

to support EDA aiming large circuits, and AIGs began to gain traction as the main data

structure in logic synthesis through the use of AIGs in ABC. This way, AIGs became

an essential structural representation in the domain of computer engineering and com-

puter science. Their efficiency and scalability make them a valuable tool for representing

complex Boolean functions.

An AIG is a directed acyclic graph composed of primary inputs (PIs), primary

outputs (POs), and internal nodes that represent the AND2 function. Variable inversions
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are represented in the arcs, that may be labeled as inverters. Figure 3.2 shows the AIG

of a full adder. In this AIG example, the PIs are a, b, and Cin, the outputs are Sum and

Cout, and the nodes numbered six to twelve are AND2 nodes.

Figure 3.2 – Example of an AIG representing a two-input full adder.

8 10

12

16

2018

14

Source: Adapted from (CIESIELSKI et al., 2019).

The dotted and solid lines represent the complemented (inverted) and uncomple-

mented (non-inverted) edges, respectively, used to describe whether the function accessed

by the edge is inverted or not. Internal nodes are 2-input ANDs that have exactly two in-

puts, called fanins of the node. The output of a node ndi that is input to another node ndj

is called fanout of ndi (MISHCHENKO; BRAYTON, 2005).

An AIG node ndi is commonly associated with an integer identificator i. Given

two nodes ndi and ndj , where i < j, there is a topological partial order between node ndi

and node ndj , such that node ndi has precedence over (i.e. appears before) node ndj . As a

consequence of the partial order, when there is a path between the nodes ndi and ndj , the

node ndi is in fanin transitive (TFI) of node ndj . Conversely, node ndj is in the transitive

fanout (TFO) of node ndi (MISHCHENKO; CHATTERJEE; BRAYTON, 2006a). These

elements are illustrated in Figure 3.3. For instance, nodes nd14, nd16, nd18 and nd20 are

in the transitive fanout of node nd12. Additionally, nd8 and nd10 are in the transitive fanin

of node nd12. Finally, notice that nodes nd8 and nd10 are not in the transitive fanout or

transitive fanin of each other because there is no directed path from one to the other, as

they are parallel nodes in the graph.
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Figure 3.3 – Transitive fanin and transitive fanout of node 12.
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Even though the AIG is a graph representation, this data structure can be ma-

nipulated as an array. Figure 3.4 illustrates the AIG from Figure 3.2 represented by an

array. In this representation approach, each node is indexed by an even integer number,

and stored at the position (Aig_index)/2. When a node is accessed through an odd Aig

index, this means that the inverted function from the node is required instead, and the

correspondent node is also accessible through ((Aig_index)/2). For example, node 12

is stored at position 6, and its fanins are nodes 8 and 10 (in Figure 3.2), however, both

fanins are complemented, thus in the integer array AIG representation these nodes are

indexed by the values 9 (inverted 8) and 11 (inverted 10). Finally, position 0 is reserved

for the constant zero (and its complement 1), to distinguish it from other PIs, its fanins

are marked with "-".

Figure 3.4 – AIG elements.

Array index 0 1 2 3 4 5 6 7 8 9 10

Aig index 0 2 4 6 8 10 12 14 16 18 20

Fanin_1 - 2 4 6 5 4 11 13 12 17 17

Fanin_2 - 2 4 6 3 2 9 7 6 15 11

8
10

12

14 16

18 20

In the remainder of this work, some examples of AIGs can have nodes with odd

indexes. This is justified because the ABC tool (BRAYTON; MISHCHENKO, 2010)
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used to create the examples uses odd indexes for the nodes to generate the figures, even if

internally the nodes have even integer identifiers.

Currently, AIGs are one of the main data structures used by the ABC tool (BRAY-

TON; MISHCHENKO, 2010), one of the most important open-source logic synthesis

tools. The ABC tool provides state-of-the-art combinational and sequential circuit syn-

thesis algorithms.

3.3 Physical Implementation Technologies

The ultimate goal of EDA tools is to produce a real-world circuit design. To pro-

duce such a real-life design, a target implementation technology should be adopted. The

main technologies are ASICs and FPGAs, which are discussed in the following subsec-

tions.

3.3.1 ASICs

Application-Specific Integrated Circuit (ASIC) is a type of integrated circuit (IC)

that is designed for a specific purpose or application, as opposed to general-purpose ICs

like microprocessors or memory chips. ASICs are custom-built to perform a particular

function or set of functions, making them highly efficient and specialized for the intended

task.

The key advantages of ASICs include high performance, low power consump-

tion, and optimized functionality for the targeted application. However, the development

of ASICs can be costly and time-consuming, and once manufactured, they are typically

not reprogrammable for different tasks. This contrasts with general-purpose processors,

which can be reprogrammed to perform a wide range of tasks.

3.3.1.1 Cell Library

A cell library, in the context of integrated circuit (IC) design, is a collection of

predefined and characterized building blocks or cells that can be used to create custom

integrated circuits. Each cell within the library represents a fundamental functional unit,

such as logic gates, flip-flops, multiplexers, and other digital or analog components. These

cells are designed, characterized, and tested to meet specific performance and electrical
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criteria.

The purpose of a cell library is to provide designers with a set of standardized

building blocks that they can use to assemble custom ICs quickly and efficiently. Instead

of designing every component from scratch, designers can select cells from the library

that match their requirements and integrate them into their overall chip design. This

modular approach helps streamline the design process, reduce development time, and

ensure consistency in the manufactured ICs.

3.3.1.2 Library-based Design specificities

Each cell from a library implements a function with a given cost. That means that

specific sub-functions, implemented by different cells, will have different costs.

3.3.2 FPGAs

A FPGA is a configurable hardware integrated circuit that can be programmed

or configured by the user or designer after manufacturing. Unlike the ASICs, which are

custom-designed for a specific application and have a fixed functionality, FPGAs offer

flexibility and reconfigurability to implement different designs. This makes FPGAs well-

suited for prototyping, development, and applications where adaptability to changing re-

quirements is crucial.

FPGAs have gained significant attention in modern computing, owing to their ver-

satility, rapid deployment capabilities, and cost-effectiveness. With short time-to-market

and field programmability, FPGAs have become pivotal in diverse computing environ-

ments, from data centers to edge computing applications (FAN; WU, 2023; CONG;

DING, 1993).

The FPGA architecture comprises programmable logic blocks, interconnections,

and I/O pads. The Look-Up Table (LUT)-based architecture dominates the existing pro-

grammable chip industry. LUTs are discussed in the next subsection.

3.3.2.1 Look-up Tables - LUTs

The fundamental programmable logic element is the K-input LUT (K-LUT), a ver-

satile element that can implement any combinational logic function up to K inputs. The

specific implementation of the LUT architecture is determined by the target size (maxi-



26

mum number of inputs) to be supported (CHEN; CONG, 2004; CHEN; CONG, 2001).

Notice that the LUT architecture does not necessarily need to be based on a table struc-

ture, and the specific implementations are generally proprietary. For instance, Vranesic

(ZILIC; VRANESIC, 1996) proposes LUT architectures derived from BDDs.

3.3.2.2 LUT-based Design specificities

Each LUT in a given FPGA architecture implements several different functions

with the same given cost (the cost of the LUT, not the configured function). That means

that different sub-functions, implemented by identical LUTs, will have equal costs.

3.4 AIGs-based synthesis

Modern logic synthesis is strongly based on AIG rewriting. The concept of AIG

rewriting can be explained with the help of Figure 3.5. The figure presents two examples

of AIG rewriting, one in the upper part and one in the bottom part. The AIG rewriting

depends on the context of the complete AIG.

In the upper part of the figure, it is illustrated that a subgraph 1 (with equation

(ab) ∗ (ac)) can be substituted by a subgraph 2 (with equation (a) ∗ (bc)) in an AIG such

that the number of nodes in the subgraph is reduced from 3 nodes to 2 nodes. This way,

there is a reduction of one node in the circuit implementation.

In the bottom part of the figure, the dependence of the complete AIG context

is illustrated. In this example, subgraph 2 (with equation (a) ∗ (bc)) is substituted by

subgraph 1 (with equation (ab) ∗ (ac)) in an AIG such that the total number of nodes in

the AIG is reduced from 4 nodes to 3 nodes. This way, there is a reduction of one node

in the circuit implementation. Notice that this optimization is viable due to the context of

the complete AIG, where the nodes with equations ab and ac previously exist in the AIG

and do not need to be created.

Several different approaches in the literature are based in AIG rewriting. Examples

of AIG based synthesis include (PAN; LIN, 1998), (CONG; DING, 1999), and (NETO et

al., 2022).
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Figure 3.5 – Rewriting method in AIG.

Source: (MISHCHENKO; CHATTERJEE; BRAYTON, 2006a).

3.4.1 Cuts in AIGs

A cut in a Boolean network, denoted as C, is an important concept utilized in

logic synthesis and optimization. It consists of a pair {r, {l0, . . . , li}}, comprising a root

node and a set of nodes called leaves. For each path from a PI to the root of C, it must

traverse at least one of its leaves (MISHCHENKO; CHATTERJEE; BRAYTON, 2006a;

MISHCHENKO; BRAYTON; CHATTERJEE, 2008).

The size of a cut C consists of the number of leaf nodes that compose it and

is denoted as |C|, and a trivial node cut consists only of the node itself, called self-cut

(MISHCHENKO; CHATTERJEE; BRAYTON, 2006a; MISHCHENKO; BRAYTON; CHAT-

TERJEE, 2008). The procedure to enumerate the cuts with K or less inputs will be shown

in section 5.2.

Figure 3.6 provides an example of a 4-cut in an AIG. Notice that only one 4-cut is

shown for simplicity, but several different cuts may be possible for each node of this AIG.

The section 5.2.1.1 will provide a complete explanation of how to generate all K-cuts for

a given AIG. Figure 3.6, shows a 4-cut with leaves the nodes {e, d, c, 15} and root the

node 18. The meaning of this 4-cut is that the Boolean function rooted in node 18 can be

expressed as a function of the variables representing the Boolean function rooted in nodes

{e, d, c, 15}. Indeed, n18 = e · d · c · n15.

It is possible to say that the 4-cut {e, d, c, 15} rooted on node 18 covers nodes 16,

17 and 18. This has to be understood as the fact that the inputs {e, d, c, 15} are sufficient
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to compute the function of node 18 and nodes 16 and 17 are not necessary to this end.

However, nodes 16 and 17 are still necessary to compute the function in node 20 as node

17 is an input for node 20.

Figure 3.6 – Example of a K-cut

3.4.2 Covers of an AIG

A cover of an AIG is a set of cuts such that the set of Boolean functions corre-

sponding to each cut jointly implements the Boolean function of the complete AIG. In the

following, we will see some examples of valid and invalid covers of an AIG.

Figure 3.7 – Example of a valid cover with non-superposed cuts.

Figure 3.7 presents a valid cover of an AIG with non-superposed cuts. The cover

is composed of five distinct cuts and there is no superposition of cuts. That means that

each AIG node is covered by only one cut. There is no AIG node belonging to more
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than one cut. Notice that the Boolean functions for nodes 15, 16, 21, 22, and 23 were

not explicitly implemented as the nodes are internal to cuts. This is not a problem as the

nodes are not used as inputs to any other cuts.

Figure 3.8 – Example of an invalid cover with non-superposed cuts.

Figure 3.8 illustrates an invalid cover of an AIG with non-superposed cuts. The

cover is composed of four distinct cuts and there is no superposition of cuts. That means

that each AIG node is covered at most by only one cut. There is no AIG node belonging

to more than one cut. However, node 19 is not covered by any cut and it is an input for

nodes 20 and 24. This way, this is not a valid cover as the Boolean function corresponding

to node 19 is necessary and it was not implemented.

Figure 3.9 – Example of a valid cover with superposed cuts.

Figure 3.9 shows a valid cover of an AIG with superposed cuts. The cover is com-

posed of five distinct cuts and there is a superposition of cuts between the cuts rooted in

nodes 20 and 24. This happens because node 19 is covered by the two cuts. Consequently,
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there is an AIG node belonging to more than one cut, resulting in the superposition of cuts.

Notice that the Boolean functions for nodes 15, 16, 19, 21 and 22 were not explicitly im-

plemented as the nodes are internal to cuts. This is not a problem as the nodes are not

used as inputs to any other cuts.

Figure 3.10 – Example of an invalid cover with superposed cuts.

Figure 3.10 presents an invalid cover of an AIG with superposed cuts. The cover

is composed of five distinct cuts and there is a superposition of cuts between the cuts

rooted in nodes 17 and 20. This happens because node 17 is covered by the two cuts.

Consequently, there is an AIG node belonging to more than one cut, resulting in the

superposition of cuts. However, the cut rooted in node 20 has the nodes 15 and 16 as

inputs and those do not have any cut rooted on them. This way, this is not a valid cover as

the Boolean function corresponding to nodes 15 and 16 are necessary and they were not

implemented.

3.5 Technology Mapping

Technology mapping is an important step in the digital circuit integrated design

flow. This step is responsible for transforming the description of a technology-independent

circuit to a set of primitives defined in a given technology. For cell-based designs, the

primitives are cells from the target library. In the case of field programmable gate arrays

(FPGAs), the primitives are normally K-input LUTs. Before mapping, the Boolean net-

work is represented as a specific type of graph, normally called a subject graph. AIGs are

commonly used as subject graphs.

Similarly to a cover of an AIG, a mapping can also be defined as a set of cuts,
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but with more restrictive properties. A mapping of an AIG is a set of cuts such that i)

the set of Boolean functions corresponding to each cut jointly implements the Boolean

function of the complete AIG; ii) the Boolean function of each cut can be implemented

by a physical element of the target technology; and, iii) an overall technology-dependent

cost is optimized. In the next sub-sections we will discuss mapping to cell-based designs

and FPGAs.

3.5.1 Mapping to cell-based ASICs

Mapping to cell-based ASICs is the process of transforming a high-level electronic

design description into a configuration that can be implemented on a specific type of ASIC

known as a cell-based ASIC. This process involves selecting appropriate standard cells

from the library to implement different parts of the design.

Figure 3.11 illustrates an ASIC mapping considering a cell library with AND cells

up to 4 inputs (i.e. a five input AND is not present in the library). Cell-based mapping

tends to avoid superposition as the duplication of nodes due to superposition leads to

duplication of logic, with an adverse impact on area costs.

Figure 3.11 – Example of a cell-based mapping.

3.5.2 Mapping to FPGAs

In the case of FPGA as target technologies, the physical elements used to imple-

ment the circuit are LUTs. Figure 3.12 shows an FPGA mapping considering LUTs up to

6 inputs (i.e. every Boolean function is feasible with a single 6-input LUT). FPGA-based
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mapping tends to extensively use superposition as the duplication of nodes due to super-

position does not imply in duplication of logic. Indeed, the more logic is packed in a sigle

LUT, the better the usage of the LUT.

In the example of Figure 3.12, four nodes are duplicated to allow the implemen-

tation of the circuit with only 3 LUTs, one for each output. Three 6-input LUTs are used

even if output S0 has only five inputs. The outputs S1 and S2 make full use of a 6-input

LUT each.

Figure 3.12 – Example of FPGA-based mapping.

3.5.3 Cost Functions

During technology mapping an overall technology-dependent cost is optimized.

In the following, we discuss first-order estimators for cost functions.

3.5.3.1 Area

Area in technology-independent optimization is estimated by counting the number

of AIG nodes. The number of AIG nodes, when used for relative comparisons, has good

correspondence with the final area of cell-based and FPGA implementations. Area in

cell-based implementations is obtained by adding the areas of individual cell instances.

Area in FPGA-based implementations is obtained by adding the number of used LUTs.
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3.5.3.2 Delay

The first-order estimator for delay in a circuit is the number of elements in the

longest path. In the case of FPGA designs, unit delay can be used as all elements are

LUTs of the same type. In the case of cell-based designs, the individual delay of cells

from the library must be considered, as different types of cells have different associated

delays.

3.5.3.3 Power

Power is highly correlated to area, so that area is sometimes used as a first-order

estimator. When different Vt options are available for cells, Vt assignment can be made

after place and route.

3.5.3.4 Design Constraints

Real-life design optimizations perform a trade-off among different cost functions.

To express design intent and direct these trade-offs in the right direction, design con-

straints are used. Design constraints are commonly expressed in SDC format.

3.6 The EPFL Benchmarks

The EPFL Combinational Benchmark Suite (AMARÚ; GAILLARDON; MICHELI,

2015) is a set of benchmarks proposed to evaluate the performance of academic and com-

mercial logic optimization and synthesis tools. It is composed of 23 combinational cir-

cuits divided into three main categories: Arithmetic, Random/Control, and More than ten

Million gates (MtM). Each circuit is distributed in different formats, including Verilog,

VHDL, BLIF, and AIGER.

This set of benchmarks has been widely used to validate several works, due to

providing a nice variety of circuits. Furthermore, are provided a set of circuits with more

than one million AND2 nodes when represented in AIG form. It is a relatively expres-

sive size, making these benchmarks a good choice to test the scalability of the proposed

methods.
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3.7 Contributions of this chapter

In this chapter, we have presented the main definitions necessary for an under-

standing of this work. The main concepts concerning AIG based logic synthesis were

presented.
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4 A TAXONOMY OF AIG CUTS

4.1 About this Chapter

This chapter presents a taxonomy for AIG cuts. We discuss the differences among

various types of cuts in AIGs, in order to establish a language that allows the reader to

understand different types of cuts, their inner workings and the motivation for their use.

This discussion is made from two distinct points of view.

Section 4.2 discusses cuts from a structural standpoint. For instance, questions

addressed in section 4.2 include the structural differences between K-cuts and KL-cuts.

Are they always structurally different? Can a given cut be classified as a K-cut and as a

KL-cut at the same time? The structural discussion does not consider the algorithms used

to generate the cuts.

4.2 Structural Differences Among Different Types of Cuts

Beginning with the structural properties of cuts, with a focus on understanding

their definitions and characteristics, this approach enables us to differentiate the various

types of cuts and alternative techniques employed for identifying subregions within the

graph.

4.2.1 K-cut

Let K ∈ N∗, a cut is considered k-feasible if its size is less than K (|C| ≤

K), defining what is known as a k-cut. Thererfore, a cut is said to be K-feasible if its

number of inputs is up to K inputs (MISHCHENKO; CHATTERJEE; BRAYTON, 2006b;

MISHCHENKO; BRAYTON; CHATTERJEE, 2008).

Structurally, a k-cut is the same as the conventional cut, comprising a list of leaf

nodes and a single root node, with the only distinction being the imposed limitation on its

size. In this category of cuts, only those with a size not exceeding K are retained, while

those surpassing K are discarded (CONG; DING, 1996). This approach aims to reduce

the number of cuts, thereby enhancing efficiency.

In other words, a K-cut defines a region in the graph that represents the logic
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function of n, using at most K variables. It is a useful tool in technology mapping, espe-

cially when targeting FPGAs, which are composed of LUTs that can implement any logic

function up to a fixed number of inputs.

K-cuts are widely used in logic synthesis, serving to optimize circuits through

logic optimization, and also used in technology mapping for both FPGA and ASIC con-

texts, where the K-cuts are replaced by LUTs, for FPGA, or by a standard cell, for ASICs

context. The K-cuts define regions within the circuit where optimization and mapping

techniques are applied.

This type of cut plays an important role in logic synthesis by optimizing cir-

cuits through logic optimization such as (MISHCHENKO; CHATTERJEE; BRAYTON,

2006a) where some K-cuts are selected and replaced by others with smaller precomputed

subgraphs. Moreover, the K-cuts are used in technology mapping for both FPGA and

ASIC contexts, where the K-cuts delineate specific regions within the circuit, which are

subsequently replaced by LUTs in FPGA implementations or standard cells in ASICs

implementations.

To illustrate the K-cut, Figure 4.1 provides an example of an AIG with three

cuts, c1 = {a, b, c, d, e}, c2 = {a, b, c, d, f, g}, and c3 = {f, g, h, i, j, k}, considering

K = 5, we have that the cut c3 is not a K-cut because this cut has as the leaves the set

{f, g, h, i, j, k} that is composed of six leaves (|c3| = 6), thus this cut is not a k-feasible

cut. In summary, a K-cut is structurally the same as the conventional cut and only has a

restriction on the number of leaves.

Figure 4.1 – K-cut example.

Covers versão 2

cut2={a,b,c,d,f,g}

cut3={f,g,h,i,j,k,h}

cut1={a,b,c,d,e}

resyn,resyn no ABC

The cuts shown in Figure 4.1 generate the best cover for this AIG, considering a

mapping to LUTs using K-cuts with K = 6, this result was obeyed using the "if -K 6"
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command in ABC (BRAYTON; MISHCHENKO, 2010). In this example, some nodes

belong to more than one K-cut, this occurs because the K-cut can have only one output,

and in this case to obtain the smaller number of LUTs, it is necessary to duplicate some

nodes.

A K-cut is a type of cut where its structure has only one output. In this type of cut,

there may be side-outputs, which are not considered in the cut. Therefore, the subgraph

represented by the K-cut can have additional interconnection points with the remaining

graph (REIS, 2018).

For example, in Figure 4.2, two K-cuts, cut1 and cut2, are illustrated, which have

as outputs the nodes 18 and 24 (blue arrows), respectively. However, as highlighted with

the red arrows, cut1 has the side-output from node 17 to node 20, and cut3 has the side-

output from node 19 to node 20, which are not considered outputs of these K-cuts. Con-

sequently, K-cuts cannot fully isolate such logic from the rest of the circuit.

Figure 4.2 – Side-outputs of the cut1 and cut3. The blue arrow illustrates the K-cut’s output and
the red arrow illustrates the side edges.

Covers versão 2

cut3={f,g,h,i,j,k,h}

resyn,resyn no ABC

cut1={a,b,c,d,e}

The following equations correspond to the K-cuts illustrated in Figure 4.2: 18 =

a · b · c · d · e for cut1 and 24 = f · g · h · i · j · k for cut2. In these examples, the remaining

nodes, including nodes 17 and 19, do not have equations because they are not the outputs

of any cut.

4.2.2 KL-cut

Since K-cut is limited in terms of the number of outputs, which can not have more

than one output, the KL-cut arises as an alternative to the K-cut limitation. Proposed by
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(MARTINELLO et al., 2010), the KL-cut is a variation of traditional K-cuts which allows

the identification of subgraphs with more than only one output.

As the K-cuts, the KL-cut follows the same definition of a K-feasible cut, having

up to K leaves nodes. However, KL-cuts provide more flexibility in terms of the number

of outputs, in this structure the number of outputs is not fixed to only one output, the

KL-cut can have up to L outputs. Thus, the KL-cut is also a L-feasible cut if the cut has

up to L outputs.

Structurally, a KL-cut is very similar to a K-cut, these two types of cuts are exactly

equal in terms of the leaf nodes. The main distinction between K- and KL-cuts is the

number of outputs that each type can represent.

To demonstrate a KL-cut, first it is necessary to present the L-cut. A L-cut is a

backcut, present in (MARTINELLO et al., 2010), which is quite similar to a cut, that is

cut at some edges in the subject graph, however, instead of being a cut at the fanins of

a node, which are the inputs of the cut, a L-cut is a cut at the fanouts. Figure 4.3 shows

an AIG where one can identify two K-cuts, described by the blue dashed lines, and two

L-cuts, described by the red dashed line.

Figure 4.3 – KL-cut in AIG.

Covers versão 2

k-cut2={f,g,h,i,j,k,h}

resyn,resyn no ABC
K-cut1={a,b,c,d,e,19}

l-cut2={19,24}l-cut1={18,20}

An L-cut can be associated with more than one K-cut. As an example, Figure 4.4

illustrates two distinct K-cuts, K-cut1 and K-cut2, associated with the same the L-cut1.

The backcut L-cut1 is associated with both K-cut1 and K-cut2 because the L-cut1 in-

tercepts all TFOs (the solid green arrows) from the leaves of K-cut1 and K-cut1, Figure

4.4(a) and Figure 4.4(b) respectively.
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Figure 4.4 – Example of L-cut crossing the TFO of K-cuts

K-cut1={a,b,c,d,e,19}

l-cut1={18,20}

(a) TFO of k-cut1

K-cuti={e,16,15,19}

l-cut1={18,20}

(b) TFO of k-cuti

Like a K-cut, a KL-cut covers a set of nodes in the AIG, the distinction between

these two types of cuts is that KL-cut covers a subcircuit with up to L outputs. Figure 4.5

illustrates the same AIG example from section 4.2.1 covered with KL-cuts. In this ex-

ample are shown two KL-cuts which are {{a, b, c, d, e, 19}, {18, 20}} resultant of K-cut1

and L-cut1, and KL-cut {{f, g, i, j, k, h}, {19, 24}} resultant of K-cut2 and L-cut2,
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Figure 4.5 – KL-cut cover in AIG. The blue arrows represent the KL-cuts outputs.

Covers versão 2

resyn,resyn no ABCk-cut2={f,g,h,i,j,k,h}K-cut1={a,b,c,d,e,19}

l-cut2={19,24}l-cut1={18,20}

A KL-feasible cut is defined as:

{{l}, {o}} | l ∈ Leaves, o ∈ Outputs, |l| ≤ K, |o| ≤ L (4.1)

Therefore, the KL-cuts showed in Figure 4.5 are KL-feasible for K = 6 and L = 2,

where both cuts have no more than six inputs and two outputs. Any cut that exceeds these

two values, is not a KL-feasible cut and, thus, is not a KL-cut.

However, not every sub-circuit with more than one output is necessarily a KL-cut.

For instance, Figure 4.6 depicts a cut that is not a KL-cut for L = 2, where the blue

arrows represent the outputs. This cut might be mistaken for a KL-cut with two inputs.

However, despite having the correct number of outputs (two in this case), there is a side-

output from node 17 to node 18, violating the fundamental property of a KL-cut, which

dictates that every fanout from the sub-circuit must be an output of the KL-cut to qualify

as such. Therefore, for a cut to be classified as a KL-cut, it must not only be K-feasible

and L-feasible but also can not have side-outputs.
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Figure 4.6 – Example of a not valid KL-cut for L = 2.

cut={a,b,c,d,f,g}

Continuing the discussion on the distinctions between K-cuts and KL-cuts, another

question arises: Is a K-cut considered a KL-cut when L = 1? To address this query, Figure

4.7 illustrates two K-cuts, K-cut1 and K-cut2, with outputs 20 and 23 respectively. With

K = 6, both cuts qualify as K-cuts since they possess only one output, indicated by the

blue arrows, and respect the number of inputs limit.

Figure 4.7 – Example of when a K-cut is a KL-cut with L = 1.

k-cut1={a,b,c,d,f,g}
k-cut2={h,i,j,k}

However, as depicted in Figure 4.7, only K-cut2 satisfies the criteria for a KL-cut

with L = 1 since it lacks side-outputs. In contrast, K-cut1 fails to meet the requirements

of a KL-cut due to its two side-outputs from nodes 17 and 19. This example highlights

that the presence of only one output is insufficient to classify a K-cut as a KL-cut with

L = 1; rather, the absence of side-outputs is necessary for a K-cut to be also considered a

KL-cut.
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When a circuit is positioned into KL-cuts, blocks, as shown in Figure 4.8, the

outputs from each block, and the PIs, are connected to other input blocks. This illustrated

example is a bad-quality circuit because the blocks’ positions imply long wires to connect

the blocks and POs (REIS; MATOS, 2018).

Figure 4.8 – Circuit partitioned into KL-cuts.

Source: (REIS; MATOS, 2018).

While the KL-cuts act as node containers in the AIG, there is another type of cut

used to signal distribution called 1L-cuts, that is a KL-cut with the fixed number of inputs

K = 1. The 1L-cut is useful to make the placement of the KL-cuts in the circuit aiming

to improve its quality (REIS; MATOS, 2018).

4.2.2.1 1L-cut

A 1L-cut is a specialized type of cut that has up to L outputs while being restricted

to only one input. Unlike the previously discussed cuts, which are employed in identifying

and representing circuit components known as logical blocks, the 1L-cut serves a purpose

in routing, where routing involves the distribution of signals between these logical blocks

(REIS, 2018). The 1L-cut structure is shown in Figure 4.9.
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Figure 4.9 – Points of view of a 1L-cut.

(a) Logic point of view. (b) Physical point of view.

Source: (REIS; MATOS, 2018).

4.2.3 Windowing

The concept of windowing was introduced in (MISHCHENKO; WANG; KAM,

2003). The technique of defining windows consists of identifying regions around some

nodes in the AIG. Delimiting such regions on the circuit, it is possible to apply local

optimizations inside each window separately.

A window is constructed around a node N of the graph. To achieve this, a maxi-

mum distance limit is defined from the node both in the direction of its fanout and in the

direction of its fanin. These values are defined by m and n, respectively.

Figure 4.10 illustrates, at a high level, the identification of nodes in the neighbor-

hood of N . First, are identified the nodes that are at a distance n from the node N (Figure

4.10(a)). Next, are identified the nodes that are at a distance m from the node N (Figure

4.10(b)).

Subsequently, the nodes in reconvergent paths are identified (Figure 4.10(c)). Fi-

nally, the set of nodes obtained in the previous steps defines the window around the node

N , where the nodes O are the outputs of the window and the nodes L are the inputs of the

window (Figure 4.10(d)).
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Figure 4.10 – 1x1 (m x n) Window for node N.

NN

(a) Nodes on the fanin which are distance-m.

NN

(b) Nodes on the fanout which are distance-n..

N N

O O

L L L L L

(c) Nodes on reconvergent paths.

N N

O O

L L L L L

(d) Resulting Window of N .

Source: Adapted from (MISHCHENKO; BRAYTON, 2005).

4.2.3.1 Fanin Cone

A node’s fanin cone, also known as the TFI cone, refers to the set of nodes acces-

sible through its incoming edges. In this way, the fanin cone of a node n includes the node

n itself and all nodes in the TFI of n, including the PIs (MISHCHENKO; CHATTERJEE;

BRAYTON, 2006a). In other words, the fanin cone is the set of nodes that produce the

logic for the node n.

Figure 4.11 illustrates the fanin cone of the node 10. As depicted, this fanin cone
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is composed of nodes 1, 2, 6, and 7, which collectively provide the logic utilized by node

10.

Figure 4.11 – Fanin cone of the node 10.
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4.2.3.2 Fanout Cone

Similarly to the Fanin Cone, the fanout cone encompasses the nodes accessible

through its outgoing edges (MISHCHENKO; CHATTERJEE; BRAYTON, 2006b). The

TFO cone of node ndj includes the node ndj itself and all nodes that are in the TFO of

ndj , including the POs (MISHCHENKO; CHATTERJEE; BRAYTON, 2006a).

Figure 4.12 illustrates the fanout cone of node 1, comprised of nodes 5, 6, 9, 10,

11, and 12. These nodes, accessible from the fanouts of node 1, collectively represent the

portion of the circuit influenced by node 1.
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Figure 4.12 – Fanout cone of the node 8.
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4.2.3.3 Fanout-Free Cone

A Fanout-Free Cone (FFC) centered at node n constitutes a subgraph structure

where node n is the root. In the FFC, each node, excluding the root, has outgoing edges

directed solely towards the root node, creating a cone-like topology within the graph. In

a straight way, each path from an input of the FFC converges to the root node of the FFC

(CONG; DING, 1996).

An AIG node can comprise various FFCs, as depicted in Figure 4.13. In this

illustration, the FFCs of node 5 are highlighted in green shading. Figures 4.13(a) through

4.13(e) depict five examples of FCCs for node 5, wherein only node 5, the root, has an

output outside the FFC, thus illustrating FFCs of node 5.

However, in Figure 4.13(f), node 1 has an outgoing edge outside the shaded area.

Since the root node in this example is node 5, this set of nodes does not constitute an FFC

for node 5. Similar instances are illustrated in Figures 4.13(g) and 4.13(h), where node

2 has an outgoing edge outside the shaded area. Therefore, these three figures provide

examples of node sets that do not form FFCs for node 5.
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Figure 4.13 – All Fanout-Free Cones of node 5.
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(f) Invalid FFC.
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(g) Invalid FFC.
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(h) Invalid FFC.

Given that all logic generated within the FFC is solely utilized within the cone

itself, the FFC offers the ability to completely isolate the logic contained within the cone

from the remainder of the graph. The FFC contains the logic used only by its root node.
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4.2.3.4 Maximum Fanout-Free Cone

The Maximum Fanout-Free Cone (MFFC) of a node in a circuit refers to a subset

of its fanin cone that contains only nodes such that every path from these nodes to the

POs passes through the node itself. In simpler terms, the MFFC of a node encompasses

all the logic exclusively utilized by that node. When a node is either removed or substi-

tuted within the circuit, the logic contained within its MFFC can also be safely removed,

as it is no longer necessary for the circuit’s functionality (MISHCHENKO et al., 2007;

CALVINO et al., 2022).

The MFFC encompasses every FFC rooted at node n. Additionally, an MFFC can

be further characterized as follows: for a given node w, if the output of node w is within

the MFFC(v), then node w itself is also within the MFFC(v). In other words, output(w)

⊆ MFFC(v)⇒ w ∈ MFFC(v). This characterization is based on the work by Cong and

Ding (CONG; DING, 1996).

The MFFC is defined as the largest FFC (Fanout-Free Cone) associated with a

particular node, it encompasses all logic paths exclusively serving that node’s operations

(RIENER et al., 2019). Referring back to the example of Figure 4.13, from the section

Section 4.2.3.3, the MFFC of node 5 corresponds to the FCC depicted in Figure 4.13(e).

This is because the FCC of Figure 4.13(e) encapsulates all logic generated exclusively to

node 5.

In an AIG, each node has its unique MFFC, denoted as MFFC(n), where n rep-

resents the specific node. Figure 4.14 illustrates the MFFC of each node in a given AIG,

with each MFFC’s node highlighted in a shaded color.
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Figure 4.14 – MFFC.

11

9

5

31

7 8

10

12

a b c d

11

9 10

12

a b c d

5

31

4 6 7 8

2

4 6

2

Notably, an interesting characteristic of MFFCs, as observed in the example of

Figure 4.14, is that one MFFC is either completely separate from another (disjoint) or

completely encompasses it (contained), as outlined in (CONG; DING, 1993). Hence,

there are no instances of partial intersection between two MFFCs. For example, the MFFC

of node 10 is fully contained in the MFFC of node 11, while the MFFC of node 9 is

completely disjoint, the same can be observed for the other MFFCs in the example.

In summary, the MFFC represents the essential logic utilized by a node within

a circuit, offering insights into circuit behavior and facilitating optimization efforts by

identifying redundant or unnecessary logic paths, ensuring that some logic optimization

can be applied within the MMFC without changing the circuit behavior.
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4.2.3.5 Maximum Fanout-Free Window

A recent data structure is the maximum fanout-free window (MFFW), proposed by

(TANG et al., 2023). The MFFW is an extension of fanout-free window (FFW) (ZHU et

al., 2023). An MFFW consists of a fully expanded FFW that includes all nodes that can

be expressed by the Boolean FFW function.

Let G be an AIG defined by (PI , PO, V , E), where these elements are the primary

inputs and outputs, vertices and edges, in that order. An FFW is a subgraph of G defined

by (I , V ′, E ′) which are the inputs, vertices, and edges, in this order, (ZHU et al., 2023).

This is also a technique used to limit a region of the AIG used to allow local optimizations

to be applied.

The idea of the MFFW is to group, in the same window, all the Boolean logic

of the window’s inputs. Figure 4.15 provides an example of an MFFW which has as

input the nodes I1, I2, I3, I4, I5, and as output the nodes O1, O2, O3. The window

retains all nodes that constitute the Boolean logic generated by the window’s inputs. This

way, optimizations can be applied within the window without affecting other parts of

the circuit. This approach allows enhancements made to the logic within the window to

remain isolated, preserving the integrity and functionality of the circuit.

Figure 4.15 – MFFW.

Source: (ZHU et al., 2023)
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4.2.4 Structural differences between MFFW and KL-cuts

MFFW and KL-cut are very similar structures; both are K-feasible, meaning they

have at most K inputs and both can encompass the entire logic (subgraph) defined by their

set of inputs, particularly when L is unbounded in the context of KL-cuts.

The main difference between these two structures is that when KL-cuts are used

with a defined value for L, KL-cuts with at most L outputs are enumerated. This allows

for more precise control over the number of outputs. In contrast, MFFW does not provide

control over the number of outputs, this data structure always includes the entire subgraph

defined by the inputs and, consequently, all the outputs of that subgraph.

4.3 Non-structural types of cuts

In this section, we discuss some types of cuts that are not structurally different.

The definition of factor cuts and priority cuts is related to the way they are computed.

The goal of the algorithms to compute factor cuts and priority cuts is simply to compute

structural K-cuts more efficiently.

4.3.1 Factor Cuts

Proposed by (CHATTERJEE; MISHCHENKO; BRAYTON, 2006), factor cuts is

an efficient technique for enumerating k-feasible cuts. Rather than enumerating all k-

feasible cuts, this technique involves the enumeration of a collection of cuts, classified as

local and global cuts, which collectively form the factor cuts.

The concept behind factor cuts is to construct both local and global sets of cuts,

which are smaller than the entire set of k-feasible cuts. As needed, these sets can then

be expanded to generate the complete (or nearly complete) set of all k-feasible cuts. The

definition of the local and global groups may vary based on the factorization scheme

employed.

The primary goal of factor cuts is to enumerate k-feasible cuts without exhaus-

tively enumerating all of them, thereby accelerating the process by reducing the number

of cuts. K-feasible cuts for a node can be generated on the fly as needed. A complete

explanation of the enumeration process will be presented in Section 5.2.1.2.
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4.3.2 Priority Cuts

The Priority Cut technique aims to optimize the efficiency of the cut enumeration

algorithm by selectively maintaining a limited set of cuts for each node. Instead of enu-

merating all possible cuts, this approach focuses on retaining only the best cuts based on

specific criteria, such as area and delay (MISHCHENKO et al., 2007). Selecting only

the Priority Cuts minimizes the impact on the performance to generate the cuts for huge

circuits, which could be impractical.

4.4 Windowing vs. Covering

In the context of Circuit Design, with the use of AIGs, the terms "coverage" and

"windowing" refer to two different processes. Both processes involve identifying regions

within the circuit, however, each has a specific purpose, in the sequence, the characteris-

tics of each process will be presented and their distinctions will be shown.

Covering an AIG involves identifying specific regions or subgraphs within the

AIG that can be used for replacement with a component of the technology aimed at,

such as standard cells or LUTs. Also, these regions defined can be used to apply some

local logic synthesis within the subregion. This process is often part of local synthesis

or technology mapping to improve the design’s overall performance, area, or power con-

sumption. The goal is to identify specific subgraphs or regions within the AIG that exhibit

opportunities for optimization or replacement.

Windowing, in the context of AIGs, refers to focusing on a specific portion or

"window" of the circuit rather than the entire design. It involves selecting a subset of the

circuit to optimize or analyze, rather than considering the entire AIG.

In essence, coverage ensures a full representation of the entire AIG, while win-

dowing involves a more targeted and localized approach to synthesis or optimization

within specific regions of the AIG.

4.4.1 Windowing with MFFW

MFFWs can be used in the context of windowing, allowing regions of the AIG to

be identified and completely isolated. This enables synthesis methods to be performed
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within the MFFWs, as presented in (ZHU et al., 2023).

4.4.2 Covering with KL-cuts

KL-cuts can be used in the context of AIG covering, as presented in the work

of (MARTINELLO et al., 2010). Although their work does not present a method to

derive the AIG covering using KL-cuts, they generate coverings to validate their proposed

method.

4.4.3 Windowing with KL-cuts

KL-cuts can also be used in the context of windowing, as in the work proposed by

(MACHADO et al., 2012). Their approach utilizes KL-cuts in mapped circuits to perform

remapping to reduce the area and delay of the circuits.

4.4.4 Covering with KL-cuts and 1L-cuts

As discussed in Section 4.2.2, KL-cuts are viewed as blocks of local logic, while

1L-cuts are a special type of cut used for signal distribution. The work by (REIS; MATOS,

2018) combines these two types of cuts to derive a cover where the AIG is partitioned into

KL-cuts, and the signal distribution between the cuts is considered.

4.5 Contributions of this chapter

This chapter presents a review of the different types of cuts, describing the char-

acteristics that differentiate them. In addition to a structural differentiation, some of the

main algorithms used in the context of cuts in AIGs are described. Therefore, this chapter

provides the reader with a characterization of the fundamental concepts in the context of

cuts in AIGs.
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5 LITERATURE REVIEW

5.1 About this chapter

Throughout this chapter, we will explore the evolution of cuts in AIGs over time.

By examining the existing literature, we will seek to understand how these cuts have

evolved, what innovations have been introduced, and how these changes have impacted

the field.

This review will allow us to understand the trajectory of cutting variants over time,

starting from K-cuts to windowing, MFFW, and KL-cuts techniques. This will allow the

identification of possible characteristics that require improvements, such as optimizing

the execution time of the cut enumeration algorithms, a task that consumes significant

execution time and is crucial for the project.

5.2 Cuts in AIGs - a historical overview

5.2.1 K-cuts

Cuts in AIGs can have different applications, such as cuts for mapping and cuts

used to perform optimizations, in terms of reduction and balancing, of AIG nodes. The

following works are example of employing K-cuts (RIENER; MISHCHENKO; SOEKEN,

2020), (RIENER et al., 2019), (YANG; WANG; MISHCHENKO, 2012), (LI; DUBROVA,

2011) and (MISHCHENKO; CHATTERJEE; BRAYTON, 2006a).

5.2.1.1 Enumerating all K cuts

The K-cuts enumeration process begins from the PIs to the POs in topological

order, and the goal is to compute K-cut enumerations for each node, considering that the

cuts of a node’s fanin nodes must be enumerated before computing the cuts for the current

node.

The enumeration process can be expressed by the following equations: first, the

combine procedure, described in Equation 5.1, creates a new set of K-cuts by taking

unions of subsets from sets A and B. The condition |u ∪ v| ≤ k ensures that the resulting

K-cuts have a limited number of inputs, guaranteeing that the newly generated cuts have
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no more than K inputs (MISHCHENKO et al., 2007).

A ▷◁ B = u ∪ v | u ∈ A, v ∈ B, |u ∪ v| ≤ k (5.1)

The second equation describes the enumeration process. If the node is a PI, it will

exclusively have the self-cut, depicted by the node identifier. On another hand, if the node

is not a PI, its cuts are computed by combining the cuts of its fanins. The resulting set of

cuts is then united with the node’s self-cut, as described by Equation 5.2. In this equation,

n represents the processed node, while n1 and n2 denote its fanins.

Φ(n) =

{{n}} : n ∈ PI

{{n}} ∪ {Φ(n1) ▷◁ Φ(n2)} : otherwise
(5.2)

In Table 5.1, all the k-feasible cuts of the AIG are depicted in Figure 3.2 are

enumerated. The first column shows the node’s identification, while the second column

presents the K-cuts generated for each corresponding node. It is notable that, as the

number of nodes increases, the number of cuts per node also increases.

Table 5.1 – All k-cuts for the AIG of Figure 3.2.

node K-Cuts (k=3)

a {a}

b {b}

Cin {Cin}

6 {a,b}, {6}

7 {a,b}, {7}

8 {a,b}, {6,7}, {8}

9 {a, b, Cin}, {Cin, 8}, {Cin, 6, 7}, {9}

10 {a, b, Cin}, {Cin, 8}, {Cin, 6, 7}, {10}

11 {a, b, Cin}, {Cin, 8}, {Cin, 6, 7}, {9, 10}, {11}

12 {a, b, Cin}, {a,b,10}, {Cin, 7, 8}, {7, 10}, {Cin, 6, 7}, {12}

Enumerating all k-feasible cuts can become impractical for very large circuits.

According to (CHATTERJEE; MISHCHENKO; BRAYTON, 2006), the number of cuts

(K) in a network of size (n) is O(nk). To address this challenge, various strategies have
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been proposed to optimize the enumeration procedure, and some of them will be discussed

subsequently.

5.2.1.2 Enumerating factor cuts

As presented in Section 4.3.1, factor cuts (CHATTERJEE; MISHCHENKO; BRAY-

TON, 2006) is a technique to speed up the cut enumeration process. This method cate-

gorizes cuts into two distinct groups: global and local. Furthermore, within this pro-

cess, there exist different schemes, such as the complete, and partial, factorization. Each

scheme is characterized by its unique features, as will be explained below.

Before getting into the procedures for generating global and local cuts, it is impor-

tant to understand how cuts are generated from the global and local cut sets. The process

is called expansion, Equation 5.3, and works as follows: Let c be a global cut of node

n ∈ G (where G is the subject graph), and let ci be a local cut of a node i belonging to c.

Define l as l =
⋃

i ci. l is considered a cut of node n and is a k-feasible cut if |l| < K. If l

is K-feasible, it represents a 1-step expansion of n. The set of cuts obtained by expanding

c is denoted as 1-step(c).

1-step(c) = {l | l is a 1-step expansion of c} (5.3)

5.2.1.2.1 Complete Cut Factorization

In AIGs, there are two types of nodes: dag nodes, which have more than two

outgoing edges, and tree nodes, which have only one outgoing edge. The set of dag nodes

is denoted by F , and the set of tree nodes is denoted by T .

In the complete factorization scheme also referred to as complete factor cuts, the

local cuts are the tree cuts, and the global cuts are the reduced cuts. The complete factor-

ization scheme provides the capability to generate any k-feasible cut through the 1-step

expansion.

5.2.1.2.1.1 Tree Cuts - (Local Cuts)

The set of tree cuts for a node n is denoted by ΦT (n). This set comprises a subset

of the k-feasible cuts for node n, which consists only of cuts composed by nodes from the

factor tree of n.

The definition of ΦT (n) is provided in Equation 5.4. When a node n is not a PI,
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its tree cuts include both its self-cut and the k-feasible cuts generated by combining the

tree cuts of its fanins.

ΦT (n) =

{{n}} : n is a PI

{{n}} ∪ (Φ†
T (n1) ▷◁ Φ†

T (n2)) : otherwise
(5.4)

Only cuts from fanins that are tree nodes are used in this process, as provided by

Φ†
T (ni), which is described in Equation 5.5.

Φ†
T (ni) =

∅ : ni ∈ F

ΦT (ni) : otherwise
(5.5)

5.2.1.2.1.2 Reduced Cuts - (Global Cuts)

The enumeration of reduced cuts for a node n, denoted as ΦR(n), is similar to the

enumeration of k-feasible cuts (Φ(n)). However, ΦR(n) does not include the tree cuts of

n (ΦT (n)); they are removed from this set. This removal results in a significantly smaller

size for ΦR(n) compared to Φ(n).

ΦR(n) =

{{n}} : n is a PI

{{n}} ∪ ((ΦR(n1) ▷◁ ΦR(n2)) \ ΦT (n)) : otherwise
(5.6)

5.2.1.2.2 Partial Cut Factorization

In the partial factorization scheme, the generation of the complete set of K-

feasible cuts through a 1-step expansion is not guaranteed, unlike in the complete fac-

torization scheme. However, the partial factorization scheme is significantly faster and

produces good cuts. In this scheme, local cuts are the leaf-dag cuts, and global cuts are

the dag cuts.

5.2.1.2.2.1 Leaf-dag Cuts - (Local Cuts)

The factor leaf-DAG of n is a factor tree that also includes the dag nodes feeding

into it. The set of k-feasible leaf-dag cuts for node n, denoted by ΦL(n) and defined in

Equation 5.7, is composed only of cuts derived from its factor leaf-DAG.
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ΦL(n) =

{{n}} : n is a PI

{{n}} ∪ (Φ†
L(n1) ▷◁ Φ†

L(n2)) : otherwise
(5.7)

To compute the leaf-dag cuts of n, it is necessary to combine the leaf-dag cuts

from its fanins, for the non-trivial case. The leaf-dag cuts of the fanins used in this process

are determined by the function Φ†
L(ni), as described in Equation 5.8. Unlike Φ†

T (ni), this

function also takes into account the self-cut of the dag nodes that feed into the factor

leaf-DAG of n.

Φ†
L(ni) =

{{ni}} : n ∈ F

ΦL(ni) : otherwise
(5.8)

5.2.1.2.2.2 Dag Cuts - (Global Cuts)

The set of k-feasible dag cuts for node n is denoted by ΦD(n) and defined as

described in Equation 5.9. This set exclusively contains dag nodes, tree nodes are not

considered in its composition. The idea of using only dag nodes in this set is to capture

much of the re-convergent paths in the graph, potentially reducing the number of global

cuts.

ΦD(n) =


{{n}} : n is a PI

ΦD(n1) ▷◁ ΦD(n2) : n ∈ T

{{n}} ∪ (ΦD(n1) ▷◁ ΦD(n2)) : otherwise

(5.9)

5.2.1.3 Enumerating priority cuts

To avoid enumerating all cuts, it can use the approach described in (MISHCHENKO

et al., 2007), in which the number of cuts in each node is limited. To not lose the quality

of the final circuit, each cut has an associated score that can be in terms of area and/or

time so that each node only keeps its best cuts.
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5.2.1.4 Cut signature

During the enumeration of K-cuts or other processes involving cuts, the neces-

sity to compare cuts for distinction and check dominance can lead to a time-consuming

task. An efficient alternative proposed by (MISHCHENKO; CHATTERJEE; BRAYTON,

2006b) to speed up this process involves the use of signatures for the cuts.

The signature of a cut c, denoted as sign(c), is represented as an M -bit integer,

where M corresponds to the number of bits composing a word in the computer’s proces-

sor, as suggested by the authors (MISHCHENKO; CHATTERJEE; BRAYTON, 2006b).

The signature of each node is computed using its leaves, l in c, performing a bitwise OR

operation on each leaf, as illustrated in Equation 5.10. The resulting signature will contain

1s at the corresponding leaf positions.

sign(c) =
∑
l∈c

2(l mod M) (5.10)

Utilizing a cut signature enables efficient processing during cut enumeration or

other operations involving cuts. Considering the cuts c1 and c2, the following checks can

be performed:

1. Compare cuts: If c1 and c2 are distinct cuts, then their signatures also are distinct

(sign(c1) ̸= sign(c2)). If c1 = c2, it implies that both cuts have the same signature

(sign(c1) = sign(c2)). However, when both cuts have the same signature, there is

no guarantee that c1 = c2. In this case, it is necessary to compare their leaves.

2. Dominance: Determine whether one cut does not dominate the other by perform-

ing a bitwise AND operation on their signatures. If (sign(c1)AND sign(c2)) ̸=

sign(c1), then c1 does not dominate c2, indicating that some 1s of c1 are not in-

cluded in c2.

3. K-feasible property of a cut: Before creating a new cut derived from the combi-

nation of c1 and c2, the size of the potential cut can be checked. If |sign(c1) +

sign(c2)| > K (where |sign(cn)| denotes the number of 1s in sign(cn)), then the

resulting cut is not k-feasible, and its creation can be avoided.

To exemplify these statements, consider the following example with M = 8 and

the cuts c1 = {12, 19, 33}, which has sign(c1) = 00011010, and c2 = {12, 19, 25},

which has sign(c2) = 00011010. Although c1 ̸= c2, these cuts have the same signature
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00011010, then their leaves must be tested.

Considering a third cut c3 = {12, 19, 24}, which has sign(c3) = 00011001, it

is seen that neither c1 dominates c3 nor c3 dominates c1, this is done without having to

compare their leaves. Lastly, using K = 3, the c1 ▷◁ c3, Equation 5.1, does not generate a

k-feasible cut because (sign(c1) + sign(c3)) = 00011011, and |00011011| > K.

5.2.2 KL-cuts

The work of (MARTINELLO et al., 2010) introduces the KL-feasible cuts concept

applied in AIGs. KL-cut is an extension of traditional K-cut, where it does not impose

a limit of a single output for cutting. KL cuts can define regions within a subject graph,

each with multiple outputs.

This feature makes possible a reduction in the total number of cuts required to

cover the graph, as traditional cuts with a single output may necessitate the use of multiple

cuts to encompass the same area. KL cuts, by allowing multiple outputs in the cut, offer

the advantage of isolating subregions in the graph more efficiently, minimizing the overall

number of cuts needed to cover the portions of the graph.

In their work, (MACHADO et al., 2013) introduces an extension of KL-cuts aimed

at mapped circuits. Compared to KL-cuts in AIGs, enumerating KL-cuts in mapped cir-

cuits requires the consideration of two additional cases: i) gates with more than two in-

puts, and ii) gates with only one input (inverter). Furthermore, the enumeration procedure

proposed by (MACHADO et al., 2013) represents an improved version, enhancing the

efficiency of the process.

In the subsequent sections, we will provide a more detailed discussion of the enu-

meration procedure employed in these two works.

5.2.2.1 Martinello’s Enumeration Method

To enumerate the KL-cuts, (MARTINELLO et al., 2010) defines the l-feasible

backcuts term, which is similar to K-cuts. In this context, a backcut of a node n is a set

of nodes c such that every path between n and a PO contains a node in c. A backcut

represents nodes that are influenced by the node n.

While the enumeration of K cuts follows the AIG topological order which allows

obtaining the set of nodes that can generate n, the enumeration of L cuts follows the topo-
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logical reverse order. In the following, the equations that define the backcut enumeration

process will be presented.

The first equation, 5.11, describes the combine process for backcuts, which makes

the union of the cuts from two nodes. This process is closely similar to the combine pro-

cedure of traditional cuts, as detailed in Equation 5.1. However, in this case, it combines

the backcuts from its fanouts, and the resulting cut can not have more than L leaves.

A ▷◁ B = u ∪ v | u ∈ A, v ∈ B, |u ∪ v| ≤ L (5.11)

The second equation, Equation 5.12, elucidates that the combine process is applied

to all fanouts of the node. The distinction from traditional cuts, employing an AIG as the

subject graph, lies in the fact that the combine procedure executes for pairs of nodes (the

fanins of the node). In contrast, for backcuts, the procedure is executed for 1 until n,

where n is the number of fanouts of the node.

n
▷◁
i=m

xi = xm ▷◁ . . . ▷◁ xn (5.12)

Lastly, the third equation, Equation 5.13, outlines the backcut formulation: If a

node is a PO, it possesses only its self-cut. Otherwise, the enumeration process explained

in Equation 5.12 is applied to this node.

ΦL(n) =

{{n}} : n is a PO

{{n}} ∪ (▷◁i ΦL(ni)) : otherwise
(5.13)

To illustrate the backcut enumeration process, Figure 5.1 serves as an example.

The backcuts are generated following the rules described in Equation 5.13, and the re-

sulting backcuts for each node are presented in Table 5.2. The highlighted values will be

used in the algorithm explanation.
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Figure 5.1 – Backcut example.

Source: Adapted from (MARTINELLO et al., 2010).
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Table 5.2 – K-cuts and Backcuts of Figure 5.1.

Node Kcut Backcut

a {a} {a}, {r}

b {b} {b}, {r}

c {c} {c}, {o}, {s}, {u,v}

d {d} {d}, {o}, {s}, {u,v}

e {e}
{e}, {p}, {q,s}, {s,t}, {s,v},

{q,u,v}, {t,u,v}

f {f}
{f}, {p}, {q,s}, {s,t}, {s,v},

{q,u,v}, {t,u,v}

g {g} {g}, {q}, {t}, {v}

h {h} {h}, {t}, {v}

o {o}, {c,d} {o}, {s}, {u,v}

p {p}, {e,f}
{p}, {q,s} , {s,t}, {s,v},

{q,u,v}, {t,u,v}

q {q}, {p,g}, {e,f,g} {q},{t}, {v}

r {r}, {a,b} {r}

s {s}, {o,p}, {e,f,o},{c,d,p}, {c,d,e,f} {s}, {u,v}

t {t}, {h,q}, {g,h,p}, {e,f,g,h} {t}, {v}

u

{u}, {r,s}, {o,p,r}, {e,f,o,r},{c,d,p,r},

{c,d,e,f,r}, {a,b,s} , {a,b,o,p}, {a,b,e,f,o},

{a,b,c,d,p}

{u}

v

{v}, {s,t}, {h,q,s} , {o,p,t}, {g,h,p,s},

{h,o,p,q}, {g,h,o,p}, {e,f, o,t}, {c,d,p,t},

{e,f,g,h,s}, {e,f,h,o,q}, {e,f,g,h,o},

{c,d,h,p,q}, {c,d,g,h,p}, {c,d,e,f,t}

{v}

The method proposed by (MARTINELLO et al., 2010), depicted in Figure 5.2, is

based on these formulations. To enumerate the KL-cuts, it must first enumerate the K-

feasible cuts and the L-feasible cuts (backcuts), these cuts are shown in Table 5.2. In this

example, are enumerated KL-cuts with up to five inputs, and no more than three outputs

(k = 5 and l = 3).
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Figure 5.2 – Martinello’s algorithm.

Source: (MARTINELLO et al., 2010).

The function combine_kcuts(), line 5, is executed for each backcut lcuts. Let d be

the current processed backcut, and di its leaves, the combine_kcuts() function computes

p = ▷◁i ΦK(di). That is, the K-cuts from the nodes that compose its leaves are combined.

The objective is to produce new K-cuts (p) that will be used to compose the KL-cuts.

In the next step, for each generated K-cut pi from p, the create_klcut() function

is executed, composing the KL-cuts based on each K-cut pi and the lcut that generated p.

Here, pi and lcut are the inputs and outputs of the kl-cut, respectively.

To be a valid KL-cut, the generated KL-cut is checked, line 8, as follows: Let

Gkl be a subgraph defined by KL-cut, a node belonging to Gkl is added to Gl if it has an

output node that does not belong to Gkl, a node outside of Gkl and if Gkl has no more than

l nodes. Otherwise, the KL-cut is discarded.

In Table 5.2, two backcuts, {q, s} and {u, v}, are highlighted. From the backcut

{q, s}, we observe that the K-cut {e, f, g} from node q can be combined with the K-cut

c, d, e, f from node s, generating the K-cut {c, d, e, f, g}. The KL-cut GKL, described

as {GK , GL}, generated by the function is {{c, d, e, f, g}, {q, s}}. Applying the same

procedure to the backcut {u, v}, it generates the K-cut {a, b, h, q, s} from nodes u and

v, resulting in the KL-cut {{a, b, h, q, s}, {u, v}}. In this way, the KL-cuts illustrated in

Figure 5.3 are obtained.
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Figure 5.3 – Martinello’s method result.

Source: Adapted from (MARTINELLO et al., 2010).

The approach used by (MARTINELLO et al., 2010) is costly concerning execution

time due to having to: 1) enumerate the K-cuts in topological order, 2) enumerate the L-

cuts (backcuts), and 3) combine the K-cuts from each l-cut leave.

5.2.2.2 Machado’s Enumeration Method

Similar to the approach presented by (MARTINELLO et al., 2010), the method

proposed by (MACHADO et al., 2012) relies on K-cuts for enumerating KL-cuts. How-

ever, since (MACHADO et al., 2012) is adapted for enumerating KL-cuts in mapping cir-

cuits, the method considers additional cases involving nodes with only one or more than

two inputs. This is in contrast to K-cuts in AIGs, where each node always has exactly two

inputs. The K-cut enumeration employed in this approach is defined by Equation 5.14,

which addresses three different types of nodes:

1. When a node is a PI, it has only its self-cut, similar to AIGs;

2. If a node has only one input, its cut set is determined by the cuts of its input, to

consider inverters in the circuit;

3. Otherwise, the cuts of a node are the union of its self-cut with the combination of

cuts from all its inputs.
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ΦK(n) =


{{n}} : n is a PI

ΦK(n1) : g = 1

{n} ∪ {ΦK(n1) ▷◁ . . . ▷◁ ΦK(ng)} : otherwise

(5.14)

This equation can also be applied to AIGs. In the case of a PI in an AIG, the cut

computation remains unchanged. For other nodes in the AIG, which always have two

inputs, the cuts are computed according to the ’otherwise’ case in the equation.

Before going into the explanation of the (MACHADO et al., 2012) method, Figure

5.5, it is important to understand its auxiliary functions. Firstly, the KCutsOK(node)

function is responsible for checking whether the node node has at least one K-cut formed

only by kcut inputs. If the condition is met, this function returns true; otherwise, it will

return false.

The second auxiliary function is addInsts(node, insts, outputs). Here, node

represents the node being verified, insts is used to store the internal nodes, and outputs

is used to store the outputs of the KL-cut, respectively. This function traverses the cir-

cuit, starting from each kcut leave, and stops if a PO is reached or the KCutsOK(node)

function returns false. This function determines whether a node should be classified as

an internal or an output node for the KL-cut being created.

Figure 5.4 illustrates how the addInsts() function works. The AIG used in this

example is only for didactic purposes. Let c1 be a K-cut to be processed, defined as

{{I0, I1, In}, y}, with inputs {I0, I1, In} and output y. The addInsts() function starts

from the inputs of c1 and traverses the nodes w, y, and x. These three nodes satisfy

the KCutsOK() condition with the K-cut {{I0, I1}, {c1}, {I1, In}}, in this order. As a

result, these three nodes are stored as instance nodes. Additionally, node y is stored as an

output for the KL-cut, as its fanout is a PO.

Furthermore, since node x satisfies the KCutsOK() condition, node z must also

be verified. Node z has the K-cut {I1, In}, and since {I1, In} ⊆ c1, z can be added as an

instance node. As it is also a PO, it is included as an output node.
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Figure 5.4 – addInsts() function illustration.

w x

I0

y z

InI1

{z}, {x, In}, {I1, In}{w,x}, ... , {I0, I1, In}

w x

I0

y z

InI1

{I1, In} ⊆ {I0, I1, In} ⇒

{x}, {I1, In}{w}, {I0, I1}

Source: Adapted from (MACHADO et al., 2012).

Thus, for each K-cut, the method proposed by (MACHADO et al., 2012) uses the

auxiliary function addInsts() to traverse the circuit from its leaves. The idea is to ensure

that each cut k is fully expanded in the circuit. Applying the function to the AIG in Figure

5.1, a solution that can be generated is presented in Figure 5.6.
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Figure 5.5 – Machado’s algorithm.

Source: (MACHADO et al., 2012).

In this example, the K-cuts {a, b, c, d, p} and {e, f, g, h, s} have not been expanded

in terms of instance nodes, they already contain all instances, but their outputs are ex-

panded. Specifically, the K-cut {{a, b, c, d, p}, u} generates the KL-cut {{a, b, c, d, p}, {u, r, s}},

and the K-cut {{e, f, g, h, s}, v} generates the KL-cut {{e, f, g, h, s}, {v, p}} .

Figure 5.6 – Machado’s algorithm result.

Source: Adapted from (MACHADO et al., 2012).
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Similar to the method of (MARTINELLO et al., 2010), the method of (MACHADO

et al., 2012) may also be inefficient in terms of runtime, as the approach involves a massive

number of checks for each node processed during the expansion of each cut. Recently,

a new work that enumerates mult-output cuts was proposed, which uses a different ap-

proach from the previously presented methods and can enumerate the cuts more quickly.

In the following, we will present this method in detail.

5.2.2.2.1 IWLS23 Best Paper Method

The method proposed by (TANG et al., 2023) expands a K-cut to its MFFW. This

means that all the nodes of the circuit that are expressed by a given K-cut, a set of inputs,

comprise the MFFW of the cut. The approach proposed by (TANG et al., 2023) begins

the expansion from the leafs of the K-cut, expanding the MFFW in topological order by

advancing the fanouts of the nodes that compose the MFFW. This process is illustrated in

Figure 5.7.

Figure 5.7(a) illustrates the K-cut {L1, L2, L3} to be expanded, where Li refers

to the leafs of the cut. The area highlighted in green is the region of the circuit where

the nodes to be analyzed must have their fanin within to be part of the MFFW, as will be

discussed later.

Next, Figure 5.7(b) illustrates the expansion of the MFFW to the fanouts of node

L1, where these fanout edges are highlighted in blue. The nodes analyzed in this process

are nodes 8 and 14, and as can be seen, both have their other fanin within the expanded

region, thus they are added to the MFFW. The same process is applied to nodes L2 and

L3 in Figures 5.7(c) and 5.7(d), respectively. In Figure 5.7(c), node 8 already belongs to

the MFFW, and node 10 is added to the MFFW since its other fanin is the node L3, which

belongs to the MFFW. In Figure 5.7(d), all nodes in the fanout of L3 already belong to

the MFFW.

Similarly, Figure 5.7(e) illustrates the expansion of the fanout of node 8, which

is node 16. Its other fanin is node 10, which belongs to the MFFW, so node 16 is also

included in the MFFW.
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Figure 5.7 – MFFW expansion.
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(d) Expands from L3.
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(f) Expands from 10.
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(g) Resulting MFFW.

Continuing with the example, Figure 5.7(f) shows the expansion process for node

10, which has fanouts to nodes 16 and 18. Node 16 has already been processed and is part

of the MFFW. On the other hand, node 18 has only one of its fanins within the MFFW; its

other fanin, node 12, is not part of the MFFW, so node 18 is not included in the MFFW.

Finally, Figure 5.7(g) illustrates the resulting MFFW after the expansion. As dis-

cussed in Section 5.2, the leaves do not form part of the cut, and the same applies to the

MFFW. Therefore, the resulting MFFW does not include nodes L1, L2, and L3; only

nodes 8, 10, 14, and 16 belong to the MFFW in this example. The resulting MFFW is
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highlighted in yellow and consists only of its internal nodes.

In their work, (TANG et al., 2023) use an auxiliary method to identify nodes that

have both their fanins within the expanding MFFW. This auxiliary method is based on

hash tables to optimize the verification process.

5.2.2.3 Optimization Without Coverage

Some approaches work with local optimization without the goal of producing a

complete cover of the circuit. In these approaches, a region is isolated and resynthesized,

if gains are produced the region is substituted to consolidate the local gains. Examples of

this type of approach include (MACHADO et al., 2012) (MACHADO et al., 2013)

5.3 Flow Based on Logic Calculation and Signal Distribution

Recently, an approach for a design flow based on (local) logic computation and

signal distribution was proposed (REIS; MATOS, 2018). The goal is to bring physical

awareness to the early steps of the design flow, starting with technology-independent logic

synthesis. This is done using KL-cuts and 1L-cuts for different purposes, as described

below.

5.3.1 KL-cuts For Logic Calculation

The local logic computation is done inside KL-cuts, meaning that the KL-cuts will

be used to pack independent portions of the circuit that will be placed locally. In this way,

the routing among cells inside a same KL-cut is local, using short wires and low metal

levels. The KL-cuts can be viewed as physical partitions.

5.3.2 1L-cuts For Signal Distribution

The routing among different KL-cuts is done using 1L-cuts to distribute signal.

The structure of 1L-cuts tends to be sparse and global, using long wires and high metal

levels to connect inverters and buffers to distribute signals from one source to several

consumers or sinks.
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5.4 Comparative Summary Between Covering With K-cuts and KL-cuts

Using KL-cuts to cover a circuit has some advantages, the first that can be men-

tioned is the smaller number of cuts needed to cover a circuit when compared to K-cuts.

To demonstrate this, we will use four different coverage examples for the same AIG ex-

ample. In the four examples were used cuts with up to three inputs.

Figure 5.8 presents a cover for that AIG, using only K-cuts with a single output.

To distinguish each cut, we will use the nodes within each cut to describe them. Therefore,

in this example, we have the two 2-1 cuts {{b, c}, 3}, and {{9, 11}, 12}, and three 3-1 cuts

{{a, b, c}, 9}, {{a, b, d}, 10}, and {{d, 8, 10}, 11}.

Figure 5.8 – Example of an AIG covered using only K-cut, with K equals 3.

cut 3-1

cut 3-1

cut 3-1

cut 2-1

cut 2-1

As can be seen in Figure 5.8, the fact that the K-cuts have the limitation of a single

output for each cut, makes it necessary to create a cut that contains only the node 3, which

results in a total of five cuts needed to cover the AIG. This cover uses five cuts and has

fifteen AND nodes since nodes 1, 2, and 3 will be duplicated due to being covered by

more than one cut.

Figure 5.9 shows another possible cover also using K-cuts. This coverage uses

fewer cuts than the previous cover, only four cuts were used. However, the number of

AND nodes was not reduced, because node 3 belongs to two different K-cuts.
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Figure 5.9 – Another cover using K-cuts with k equals 3.

cut 3-1

cut 3-1

cut 3-1

cut 3-1

b)
To supply the limitation of only using K-cuts to cover the AIG, which are cuts

with a single output, using the KL-cuts, Section 4.2.2, it can obtain the following cover

presented in Figure 5.10, where are used KL-cuts with K and L up to 3 and 2, respectively.

Figure 5.10 – Cover example using KL-cuts with K equals 3 e L equals 2.

cut 3-2

cut 3-1

cut 3-1

cut 2-1

c)

In this cover, Figure 5.10, only four KL-cuts were used to cover the circuit. It is

possible because the KL-cut {{b, c}, {3}} is not needed to be created, as the cut {{a, b, c}, {9, 3}}
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have the node 3 as an output. Therefore, compared to the covers in Figures 5.8 and 5.9,

the cover obtained, Figure 5.10, uses four KL-cuts and a total of fourteen AND nodes,

which can be beneficial for ASICs, for example, as it may reduce the number of cells.

In summary, using KL-cuts to cover an AIG allows some improvements. Com-

pared to the solution presented in Figure 5.8, the cover obtained with KL-cuts of Figure

5.10 uses fewer cuts, as it is not necessary to create the cut {{b, c}, {3}}, just the output

of the cut {{a, b, c}, {9, 3}} is used.

And compared to the solution illustrated in Figure 5.9, there are no gains in terms

of the number of cuts. However, the cover obtained with KL-cuts results in a smaller

number of AIG nodes, since node nd3 is covered by two different K-cuts, as illustrated in

Figure 5.9. This does not occur in Figure 5.10, due to the KL-cuts allowing the creation

of multi-output cuts in the circuit.

A summary of the elements of each solution in Figures 5.8, 5.9, and 5.10 is pre-

sented in Table 5.3. This table shows a brief comparison of the total elements used in each

cover. As you can see, the approach using KL-cuts shows to be more efficient in terms of

the number of cuts and AND nodes, due to avoid creating a {{b, c}, {3}}.

Table 5.3 – Summary of the coverage results using k-cuts and kl-cuts.

Soltion
Lut Type Elements

2-1 3-1 2-2 3-2 Cuts In Out Ands

S1 2 3 0 0 5 13 5 15

S2 0 4 0 0 4 12 4 15

S3 1 2 0 1 4 11 5 14

5.5 Contributions of this chapter

This chapter provides an overview of the different approaches in the literature

for enumerating multi-output cuts. The methods of (MARTINELLO et al., 2010) that

propose KL-cuts are presented, as well as the method of (MACHADO et al., 2012), which

is a variation of (MARTINELLO et al., 2010). Additionally, the MFFW method proposed

by (TANG et al., 2023), which also deals with multi-output cuts, is also discussed.
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6 PROPOSED METHOD

6.1 About This Chapter

This chapter presents the contributions of this work. Essentially, this section is

divided into two main parts: the first part focuses on contributions related to cut enumer-

ation, while the second part concentrates on coverage generation for AIG.

In the first part of the chapter, an approach is introduced that not only enumerates

K-cuts but also identifies trees in the AIG for which special cuts are generated. Following

this, the next contribution presented is a novel method to expand K-cuts into KL-cuts

without the need for input-based comparisons.

In the second part of the chapter, a method is proposed to achieve coverage of the

AIG using KL-cuts. This method involves generating a CNF formula that describes the

coverage problem constraints and employs SAT solving to obtain the solution.

6.1.1 K-cut Enumeration

The K-cut enumeration follows the formulation presented in Section 5.2.1.1. The

generation of new cuts occurs at the internal nodes of the AIG in topological order; no cuts

are generated at the PIs of the AIG. However, to generate the initial cuts and subsequently

other cuts, the AIG nodes, including the PIs, must contain their self-cuts. A self-cut is not

a cut per se, but it is used to generate other cuts. This process is illustrated in Figure 6.1.

The process is illustrated for only a portion of the AIG. The PIs k, j, i, and h have

their self-cuts. Following the topological order, the next nodes to be processed are nodes

21 with fanins h and i, which, by combining the self-cuts of these fanins, obtain the cut

{i, h}, and node 22 with fanins k and j, which, by combining the self-cuts of these fanins,

obtain the cut {k, j}. The self-cuts of these nodes are also listed to generate new cuts with

these nodes as inputs.
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Figure 6.1 – K-cut enumeration example.

Como se Enumeram Cortes K em AIGs?

{i,h}, {21}

{k} {j} {i} {h} 

{k,j}, {22} 

{21,22}, {21,k,j}, 
{22,i,h}, {h,I,j,k}, {23}

O nodos 23 tem 
cinco cortes.

Continuing the process, node 23 obtains four cuts, derived from the combination

of cuts from fanins 21 and 22, in addition to the self-cut of node 23. The process is

executed for all nodes in the AIG. In this illustration, we are generating cuts for a portion

of the AIG consisting only of nodes with |fanout| = 1. This region of the circuit is a

tree, meaning other regions of the AIG will not use all logic produced within this region.

Therefore, we can use an approach to enumerate AIG cuts capable of identifying trees

within the AIG.

The idea behind tree cuts is that self-cuts are not generated within trees, signifi-

cantly reducing the total number of cuts, as illustrated in Figure 6.2. Here, nodes 21 and

22 are classified as internal to a tree and therefore do not have self-cuts, reducing the total

cuts generated at node 23 from four (self-cuts not counted) to just one cut. Consequently,

node 23 is also internal to a tree and has no self-cut listed. Figure 6.2 also illustrates

the cuts generated for the 19 which has fanout greater than 1, therefore node 19 has its

self-cut {19}.
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Figure 6.2 – K-cut enumeration example.

Como se Enumeram Cortes K em AIGs?

{i,h}

{k} {j} {i} {h} 

{k,j} 

{h,I,j,k}

O nodos 23 tem 
cinco cortes.

{g,f}
{19}

{g} {f} 

{g,f,h,I,j,k}
{19,h,I,j,k}

Continuing with the example illustrated in Figure 6.2, considering K-cuts with

K = 3, node 23 has the cut {h, i, j, k}, which is not discarded because it is a tree-type cut

that can exceed K to obtain the cut of the complete tree region. In turn, at node 24, two

cuts are generated: {g, f, h, i, j, k} and {19, h, i, j, k}. However, the cut {g, f, h, i, j, k}

is discarded because it does not correspond to a tree in the AIG and its size exceeds K.

On the other hand, the cut {19, h, i, j, k} is maintained as it represents a tree region in the

AIG.

With this approach, it is possible to reduce the number of enumerated cuts by

avoiding the generation of cuts within the tree regions of the AIG. However, since the

trees have more inputs than the value K, this approach cannot be used for mapping cuts

to cells with up to K inputs. Nevertheless, for other applications such as synthesis within

the cuts, this approach can be beneficial, as trees can be completely isolated.

6.1.2 Cut Signature

The first proposal of this work is the implementation of a method for generating

cut signatures for AIG. Each AIG node is identified using a 32-bit unsigned integer value

(C++ type uint32_t), so the used AIG is able to index up to a maximum of 232 AIG nodes,

which gives a total of 4.294.967.296 nodes.

In the case of cutting signatures, each signature is expected to be unique. That is,

for each cut in the AIG it is expected that a different signature will be obtained from the



78

other cuts, this is the same problem as unique keys in Hash tables, where the cut is the

value that will be stored in the hash table and the cut signature is key. However, defining

a method capable of generating non-duplicate keys, without compromising performance,

is almost impossible.

In this work, it is considered that each cut in the AIG has 6 inputs. An approach

capable of generating unique signatures could be to convert each input cut to a string

value and concatenate them into single values, as shown in the equation 6.1 where the cut

inputs are from in_0 to in_5 which are originally integer values that are converted to a

string value to compose the signature.

signature = (in_0) || (in_1) || (in_2) || (in_3) || (in_4) || (in_5) (6.1)

This approach ensures that each signature is unique. However, considering that an

unsigned integer value (uint32_t) has a maximum value of 4.294.967.296, when converted

to a string it requires ten characters to be represented, and that each character uses 8 bits,

in the worst case each value of input will be an 80-bit value. Furthermore, each signature

has 6 entries, which generates a total of 480 bits to store each signature.

Therefore, in this work, a method is proposed to generate the signatures of the

cuts using the input values of each cut as integer values. The idea is to apply rotations

based on prime numbers to each of the inputs in order to try to get a better dispersion and

perform the bitwise XOR operation to compose the final key, as described by the equation

6.2.

signature = (in_0≪ 0)⊕ (in_1≪ 7)⊕ (in_2≪ 13)⊕

(in_3≪ 19)⊕ (in_4≪ 23)⊕ (in_5≪ 29)
(6.2)

However, as expected, this method does not guarantee collision-free signatures.

Therefore, collisions are managed by the C++ hash library.

6.2 Expanding K-cuts to KL-cuts

The existent methods to enumerate KL-cuts rely on exhaustively comparing the

leafs of the cuts. The method of (MARTINELLO et al., 2010) uses the backcuts, discussed

in Section 5.2.2.1, to combine K-cuts to create new cuts with more than one output. The

method of (MACHADO et al., 2012) enumerates the KL-cuts by expanding each K-cut,
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in the subject graph, until it reaches a POs or a node that has no cut dominated by the

K-cut is being expanded. To do this, it is necessary to check the leafs of every cut in each

node processed.

Given that comparing each leaf in every cut is an expensive task, the approach

proposed in this work consists of reducing comparing cut’s leafs to enumerate the KL-

cuts. Instead of comparing the leafs of the cuts to identify the relations between the cuts,

we use the Cut signature, which provides a unique identifier for each cut. With this, it is

possible to easily determine whether a cut is associated with a node in the subject graph.

In our work, the AIG is used as the subject graph.

To illustrate the procedure executed by our method, the AIG presented in Figure

6.3 will be used. In this AIG are shown five K-cuts, C1, C2, C3,C4, and C5. In this

example, we are using the cut signatures C1, C2, C3, C4, and C5 only to provide an

easy association of the signature with the cut, however, in the real implementation integer

identifiers are used for it.

Figure 6.3 – Example of cuts K generated with K=3 for a given AIG.
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2
C3 = {b,c}

C4 = {d,3,10}

C5 = {9,11}

C2 = {a,b,d}C1 = {a,b,c}

The proposed method to enumerate the KL-cuts is shown in Algorithm 6.1. This

algorithm provides an overview of our method, which is composed of three steps, which

are 1) to prepare the KL-cuts (line 2), 2) to execute the forward of the cuts (line 3), and
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last the outputs are added to each cut (line 4), composing the KL-cuts.

Algorithm 6.1: KL-Cuts enumeration Algorithm.

1 kl-cuts_list klEnumeration(aig, k, l, n_priority)
2 all_kl_cuts← prepare_kls(aig, k, n_priority)
3 forward(aig)
4 define_output(aig, l, all_kl_cuts)
5 return all_kl_cuts

In the first step of our method, the K-cuts are enumerated selecting only the

n_priority cuts at each node, as described in Algorithm 6.2.

Algorithm 6.2: Prepare KL-Cuts Algorithm.

1 kl-cuts_list prepare_kls(aig, k, n_priority)

2 all_kl_cuts← ∅;

3 k_cuts← enumerate_k_cuts(k, n_priority);

4 for ( each k_cut in k_cuts ) do

5 if ( k_cut ̸= self -cut ) then

6 kl_cut← createKL(k_cut.leaves);

7 all_kl_cuts[k_cut.sign]← kl_cut; // map structure

8 mark_support(aig, k_cut);

9 return all_kl_cuts

The cuts of Figure 6.3 were enumerated with enumerate_k_cuts() method using

the area as a criterion in the Priority cuts. The priority cuts of each node are shown in

Table 6.1, where the best two cuts are stored at each node. The first column represents

the identifier of each node, the second column provides a list of the K-cuts stored at that

node, and the last column shows the cost of each cut, in the same order that the K-cut

appears in the list.

Once the K-cuts are already enumerated and each one has its signature, the next

step consists of creating the basis KL-cuts, which is exactly a copy in terms of the leaf

nodes (cut inputs) and the signature of each K-cut, this procedure is described in line 6

and 7 in Algorithm 6.2. As our method uses cut signature, each cut can be identified with

a simple value, and any verification can be easily performed with sets of integer values.
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Table 6.1 – Cortes K de três entradas, e seus custos, do AIG da Figura 6.3.

Node K-cut Cost

a {a} 0
b {b} 0
c {c} 0
d {d} 0
1 {a, b}, {1} 0 e 0,5
2 {a, b}, {2} 0 e 1
3 {b, c}, {3} 0 e 0,5
4 {a, b, c}, {a, 3} 0 e 0,5
5 {a, b, c}, {c, 1} 0 e 0,5
6 {a, b, d}, {d, 1} 0 e 0,5
7 {a,b,d}, {7} 0 e 1
8 {b, c, d}, {d, 3} 0 e 0,5
9 {a, b, c}, {9} 0 e 1
10 {a, b, d}, {10} 0 e 1
11 {d, 3, 10}, {11} 1,5 e 2,5
12 {9, 11}, {12} 3,5 e 4,5

In the following algorithms, it is important to highlight two points: firstly, only

the cut signatures are utilized in the procedures, not the cut itself; and secondly, the ma-

nipulations executed in the auxiliary methods on the AIG are reflected in the original

AIG.

The next step consists of the registry of the cut’s support. This procedure is exe-

cuted with the mark_support() method in line 8 in Algorithm 6.2, and its implementation

is shown in Algorithm 6.3.

Algorithm 6.3: Mark Support Algorithm.

1 void mark_support(aig, k_cut)

2 for ( each leave of k_cut ) do

3 node← aig.node[leave]

4 if ( k_cut.sign /∈ node.support ) then

5 node.sup.add(k_cut.sign)

The mark_support() method, Algorithm 6.3, is responsible for traversing the

leafs {l1, l2, ..., lk} of the cut C1 and adding C1 to the "support" list of the nodes l1, l2, ..., lk

(node[ln].support.add(cut)). Self-cuts are not considered to be expanded to a KL-cut

because they are an artifice used to generate cuts in the AIG context because there is no
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cut with only one input in the AIG. Thus, the self-cuts are discarded.

For example, in Figure 6.3 there are the cuts C1, C2, C3, C4, and C5, and when

executing the mark_support() method for each of them, we have for C1 = {a, b, c}

that the nodes a, b, and c are leaf of this cut, therefore, C1 is added to their support list

indicating that the nodes a, b, and c are inputs of the cut C1. The same process is made

for the other cuts C2 = {a, b, d}, C3 = {b, c}, C4 = {d, 3, 10}, and C5 = {9, 11}.

The result of this procedure is shown in Figure 6.4, where the set s represents the

support list. Looking at the support list of each node, one can identify which node is an

input of each cut. For example, looking only at AND nodes, the nodes 3 and 10 are inputs

of the cut C4, while the nodes 9 and 11 are inputs of the cut C5.

Figure 6.4 – Result of the markSupport() method at a piece of the circuit.
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After composing the support of each cut, the propagation of the registered cuts at

the support list of the nodes is performed. The cut propagation, Algorithm 6.4, is the core

of this work, this consists of, for each AIG node, the intersection of its fanins support list

is calculated. The intersection of the fanins support list provides a set of cuts in which
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the current node is contained. Thus, the intersection goal is to propagate the cuts for all

nodes involved with those cuts.

Algorithm 6.4: Forward KL-Cuts Algorithm.

1 void forward(aig)

2 // propagates the kl-cut
3 for ( each aig node ̸= PI ) do
4 node.sup← node.sup ∪ (node.f1.sup ∩ node.f2.sup);

This intersection generates the sets illustrated in Figure 6.5. Also, the lists of cuts

generated by this process are shown in Table 6.2, which demonstrates the cuts associated

with each node in the AIG.

Figure 6.5 – Intersection of the fanins support list.
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In the last step of the method, the outputs of KL-cuts are identified and inserted

into them. The procedure for determining the output of the cuts is described in Algorithm

6.5. A nd node is just an output of a KL-cut Ckl in two cases: 1) if a nd ∈ POs, or 2)
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Table 6.2 – Result of the Methods mark_support() and forward() in the AIG 6.3.

Node markSupport() Fanin1 ∩ Fanin2 ∪

a C1, C2 - -
b C1, C2, C3 - -
c C1, C3 - -
d C2, C4 - -
1 - C1, C2 C1, C2
2 - C1, C2 C1, C2
3 C4 C1, C3 C1, C3, C4
4 - C1 C1
5 - C1 C1
6 - C2 C2
7 - C2 C2
8 - C4 C4
9 C5 C1 C1, C5
10 C4 C2 C2, C4
11 C5 C4 C4, C5
12 - C5 C5

whether at least a fanout node of nd does not have Ckl in its "support" list (both in line 4).

This procedure is executed for each KL-cut in nd, and only those KL-cuts that meet this

requirement have the node nd added as output.

Algorithm 6.5: Define KL-Cuts outputs Algorithm.

1 void define_output(aig, l, all_kl_cuts)
2 for ( each aig node ̸= PI ) do
3 for ( each kl_cut_sign of node.sup ) do
4 if ( (node ∈ POs) or (kl_cut_sign /∈ node.fanouts.sup) ) then
5 kl_cut← all_kl_cuts[kl_cut_sign]
6 if ( kl_cut.outputs.size() < l ) then
7 all_kl_cuts[kl_cut_sign].outputs.add(node);

8 else
9 // exceeds l outputs

10 all_kl_cuts.remove(kl_cut_sign);

In this process, only the KL-cuts resulting from the intersection, as listed in the

second column of Table 6.2, are considered, because the intersection of cuts from the

fanins provides the list of those cuts that the node is an internal node. Therefore, given

two nodes ndi and ndj , where ndj is fanout of ndi if a cut Cn is found in both support
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lists of ndi and ndj , then both nodes are internal to Cn and ndi is not an output of Cn.

However, for a third node ndy, if Cn is not found in the support list of ndy, then the node

ndy is not internal to Cn, in this case, ndi is an output of Cn.

Figure 6.6 illustrates the output identification for the cut C1. In this example, the

white nodes have the cut C1 in their support list, while the gray nodes do not have C1.

Considering in this example ndi, ndj , and ndy as the nodes 3, 4, and 8 respectively, and

Cn = C1, we have that the cut C1 is found in both support lists of nodes 3 and 4, as

highlighted in yellow. However, C1 is not found in the support list of node 8, therefore

node 3 is an output of the cut C1. The same can seen for the nodes 2 with 7, 1 with 6, and

9 with 12.

Figure 6.6 – Identifying the outputs of the cut C1.
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Se tivesse um corte C = {1,2}, esses nodos poderiam ser saídas de C1.
Se tivesse um corte C = {a,c, 1, 3}, o nodo 1 poderia ser saída de C2.

12 s:  {c5}

11

10

s:  {c4}

s:  {c2}

d

The Algorithm 6.1 presented in this section is a simplified version of our method,

Appendix A shows the complete method considering some optimization during the enu-

meration of the KL-cuts.
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6.3 Covering an AIG with KL-cuts

The process to generate a valid cover for the AIG must adhere to the requisites

described in Section 3.4.2. Essentially, for the cover to be valid, each node in the AIG

must be covered by at least one cut, and every cut in the final cover must have its leaf

nodes connected to a PI or an output from another cut.

The procedure for obtaining a cover of an AIG, as discussed in (POSSANI, 2019)

and (MANOHARARAJAH; BROWN; VRANESIC, 2006), involves selecting cuts from

the POs of the AIG and expanding this procedure to the nodes that are input to the selected

cuts. This process selects a set of cuts that produce the primary outputs of the AIG, as well

as cuts that generate the signals consumed by the selected cuts. While this is an overview,

the procedure is more sophisticated and may include refinements to achieve better covers.

Obtaining the cover of an AIG using KL-cuts can be more complex than using

K-cuts. This complexity arises because, when selecting a cut to produce a particular

signal (an output of the cut), other cut outputs may or may not be used. Therefore, it

is necessary to decide which cut outputs will be used to solve the problem. The cover

of a circuit using KL-cuts can be obtained with the help of a SAT solver. This requires

formulating the problem for which a solution is sought and using the SAT solver to obtain

a solution if one exists.

6.3.1 Satisfiability formulation for a valid cover

To obtain cover for an AIG using a SAT solver, it is necessary first to formulate

the problem, create a CNF encoding that describes the restrictions to select a set of KL-

cuts, and then use the SAT solver to determine if there exists a combination of values

that satisfies the formula, i.e., if there is a combination of values that makes the problem

formulation satisfiable.

To generate a cover for an AIG, it is necessary to meet the requirements described

in Section 3.4.2. It is essential to ensure that: 1) all PO nodes are covered by at least one

cut, and 2) the inputs to the selected cuts are produced by PIs or by outputs of other cuts.

Additionally, other requirements may be considered for obtaining the cover, which will

be discussed later in this section.

Following this, Figure 6.7 will be used as an example of an AIG for which we

want to obtain a cover using KL-cuts, from which the SAT formulation will be derived.
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Figure 6.7 – AIG example for SAT formulation.

C1 - {c,d,e,15} – {17,18}
C2 – {e,17} – {18}
C3 – {a,b,c,d} – {17}
C4 – {17,19} – {20}
C5 – {f,g} – {19}
C6 – {h,i,j,k,19} – {24}
C7 – {f,g,17} – {19,20}
C8 – {f,g,23} – {19,24}
C9 – {h,i,j,k} – {23}
C10 – {15,16,19} – {17,20}
C11 – {19,23} – {24}
C12 – {a,b,c,d,e} – {17,18}
C13 – {a,b,c,d,f,g} – {17,19,20}
C14 – {f,g,h,i,j,k} – {19,24}

The KL-cuts used to describe the SAT formulation are listed in Table 6.3, notice

that not all KL-cuts are listed in this table, only a subset of all KL-cuts is used here to

illustrate the SAT formulation of the problem. As shown, the AIG in Figure 6.7 and the

cuts are the same as those used in Section 3.4.2.

Table 6.3 – KL-cuts used for SAT formulation

Cut Inputs Outputs

C1 {c, d, e, 15} {17, 18}

C2 {e, 17} {18}

C3 {a, b, c, d} {17}

C4 {17, 19} {20}

C5 {f, g} {19}

C6 {h, i, j, k, 19} {24}

C7 {f, g, 17} {19, 20}

C8 {f, g, 23} {19, 24}

C9 {h, i, j, k} {23}

C10 {15, 16, 19} {17, 20}

C11 {19, 23} {24}

C12 {a, b, c, d, e} {17, 18}

C13 {a, b, c, d, f, g} {17, 19, 20}

C14 {f, g, h, i, j, k} {19, 24}

In the sequence, we present each rule used to generate the CNF encoding to obey

an AIG cover using the KL-cuts listed in Table 6.3.



88

6.3.1.1 Rule 1

The first rule of the CNF encoding ensures that each output of the AIG has at least

one KL-cut that generates this output. To meet this requirement, it is necessary to generate

a clause composed of the set of cuts that have these PO nodes as outputs. The resulting

clause is an OR of the cuts that have the PO as an output. This ensures that for the clause

to be satisfied, at least one cut of the node must be selected to compose the circuit cover.

Therefore, for the example in Figure 6.7, which has three POs: S0, S1, and S2,

which are outputs from nodes 18, 20, and 24, respectively. The POs are generated by the

following cuts: S0 by C1, C2, and C12; S1 by C4, C7, C10, and C13; and S2 by C6, C8,

C11, and C14. This gives us the following clauses:

• PO S0: (C1 + C2 + C12);

• PO S1: (C4 + C7 + C10 + C13);

• PO S2: (C6 + C8 + C11 + C14).

In this example, for an assignment to satisfy these clauses, at least one of the cuts

in each clause must be true, evaluating that clause as true. If none of the cuts in a clause

is selected, assigned a value of 1, the SAT solver will return UNSAT, indicating that there

is no assignment capable of satisfying all the clauses.

6.3.1.2 Rule 2

The second rule ensures that at most one KL-cut can be selected for each node

that is an output of a KL-cut. The CNF encoding creates clauses composed of pairs of

complemented KL-cuts of the node. These are clauses where each KL-cut appears in its

complemented form with every other KL-cut also complemented from the node. Since

each cut appears in the complemented form, if the cut is selected and assigned a value of

1, its complement will be 0, forcing the other cut in the clause to be 0 (not selected) for

the clause to be satisfied.

For example, for PO S0, which has KL-cuts C1, C2, and C12, this results in the

clauses (C1 + C2) * (C1 + C12) * (C2 + C12). From the truth table (Figure 6.8), it can

be observed that this set of clauses is true only when one cut is set to 1, as highlighted in

yellow, or no cut is selected. Therefore, this set of clauses ensures that at most one KL-cut

is selected for the given node.
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Figure 6.8 – CNF encoding for only one cut for node 18.

102/64Renato Peralta (renato.peralta@inf.ufrgs.br)

• Output S0: c1, c2, c12, c15 
– (c1+c2+c12+c15)*(!c1+!c2)*(!c1+!c12)

*(!c1+!c15)*(!c2+!c12)*(!c2+!c15)*(!c12+!c15)

Contributions: KL-cut Covering

1. For each output one and only one cut 
must be selected

However, only one cut can be selected.

c1 c2 c12 out
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

For the other POs, we have: S1 with cuts C4, C7, C10, and C13 resulting in the

clauses (C4 +C7) * (C4 +C10) * (C4 +C13) * (C7 +C10) * (C7 +C13) * (C10 +C13),

and S2 with KL-cuts C6, C8, C11, and C14 resulting in the clauses (C6+C8) * (C6+C11)

* (C6 + C14) * (C8 + C11) * (C8 + C14) * (C11 + C14).

This rule is applied to each internal node to ensure that no more than one cut

is selected for that node. Additionally, this rule can be applied to PO nodes, which in

conjunction with the clauses from rule 1 ensure that at least one cut is selected. When

used with rule 2, it ensures that exactly one cut is selected for the node in question.

6.3.1.3 Rule 3

The third rule of the CNF encoding ensures that all inputs of each selected KL-cut

are available. To achieve this, for each cut, it is only selected if all its inputs are being

generated. The inputs of the cuts can be PIs, which are always available and therefore

do not require clauses when the inputs are PIs. However, when an input originates from

a node that is not a PI, it is necessary to ensure that there is at least one cut generating

that signal. Thus, for each non-PI input of each cut, a clause is derived, composed of the

negation of the KL-cut in question along with the KL-cuts that generate that input.

To exemplify rule 3 of the CNF encoding, using the cuts from Table 6.3, we have

that cut C1 has inputs {c, d, e, 15}. The inputs c, d, and e are PIs, with only 15 not being

a PI and thus needing to be generated by another cut. However, since there are no KL-

cuts with node 15 as an output, we obtain the clause (C1), which restricts C1 from being

selected.

Continuing with another example, we have cut C2 with inputs {e, 17}. The input
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e is a PI, and 17 is not a PI. According to Table 6.3, the signal 17 can be generated by the

KL-cuts C1, C3, C10, C12, and C13, resulting in the clause (C2+C1+C3+C10+C12+C13).

In other words, if C2 is 1, at least one of the cuts in this clause, which have 17 as an output,

must be 1 to satisfy the clause.

6.3.1.4 Rule 4

The final rule consists of selecting only the KL-cuts whose outputs are used, con-

sumed by other cuts or POs. Therefore, to ensure that all selected KL-cuts have their

outputs being consumed, a clause is derived for each output of each cut. This clause

comprises the complement of the KL-cut in question and the KL-cuts that consume that

output.

For example, we have cut C1 which has outputs {17, 18}. Among the KL-cuts in

Table 6.3, we have KL-cuts C2, C4, and C7 that have 17 as an input. Therefore, the clause

derived for the output 17 of C1 is (C1 + C2 + C4 + C7), which imposes the following

constraint: for C1 to be selected (assigned 1), at least one of the cuts C2, C4, or C7 must

be selected to consume the output 17 of C1. No clause needs to be derived for output 18

of C1 as it is a PO.

The formulations presented in this section allow a cover to be obtained for the

AIG; however, there is no guarantee that the result will be the optimal cover. The rules

ensure that the cover is valid, but do not optimize the result. When obtaining covers

for AIGs, we aim to optimize the result according to some cost function, with the most

common objective being to minimize the number of cuts. In the next section, we will

discuss a method for adding constraints to our CNF encoding to incorporate costs into the

desired solution.

6.3.2 Satisfiability formulation for a minimum cover

As mentioned, the SAT solver aims to find an assignment that makes the CNF

evaluate to 1 when a possible assignment exists, this is a decision problem. However,

in logic synthesis, the goal is to obtain an optimized result. Therefore, it is necessary to

adapt the process to use a SAT solver for optimization. There are some naive ways to do

this, but they can result in high computational costs, which we will discuss next.

One of the simplest ways to obtain a minimal solution with a SAT solver could
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be to iteratively find solutions with the solver and add new clauses at each iteration that

prevent the same result from being obtained again. This process can be repeated until all

solutions are found, and the minimal solution is identified. However, this procedure can

be extremely slow due to the need to test numerous possible solutions until finding the

best one.

Another simplistic approach could be to create additional clauses that impose a

maximum number of cuts allowed in the solution. These additional clauses can be derived

from the combination of all cuts being evaluated in the process. For example, if there are

four cuts C1, C2, C3, and C4, the following clauses ensure that the selection of three cuts

makes the CNF evaluate to 0:

• (C1 + C2 + C3) · (C1 + C2 + C4) · (C1 + C3 + C4) · (C2 + C3 + C4)

This can test the maximum number of cuts allowed by varying the number until

the minimum possible is found. However, generating a clause for each combination of

cuts with at most N cuts is necessary, which results in a massive number of additional

clauses.

Instead of exhaustively creating all combinations with the cuts to determine the

maximum cost of the solution, we propose a BDD-based approach to determine the costs

generated by the combinations of cuts.

6.3.3 Approach Using BDDs for Cost Constraint Solutions

In this section, we present an alternative approach using BDDs to derive clauses

that restrict solutions to meet a specified maximum cost. BDDs allow us to represent the

costs associated with various sets of solutions to the problem. For instance, Figure 6.9

illustrates a BDD that functions as a cost counter for a problem involving 4 cuts C1, C2,

C3, and C4, where each BDD input variable corresponds to a cut with a unit cost of 1.

The number next to each positive cofactor indicates the cost of the cut when that path is

taken, on the other hand, negative cofactors have no cost because they are taken when the

cut does not compose the solution.

Although the example illustrated in Figure 6.9 resembles an ADD (BAHAR et

al., 1997), in the context of this example, the BDD is used only to illustrate all variable

combinations and describe the cost (at the terminal node) associated with each combina-

tion. This example will be used to illustrate the derivation of the actual BDD utilized to
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generate cost clauses.

Each path starting from the node marked with the variable a leads to a terminal

node (rectangle) that displays the total cost of that path. For example, following the path

C1 = 1, C2 = 0, C3 = 1, and C4 = 1 leads to a terminal node marked with the value 3,

representing the total cost of the solution comprising cuts C1, C3, and C4.

Figure 6.9 – BDD for Cuts With Unit Costs.
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The BDD illustrated in Figure 6.9 shows all combinations of cuts and their associ-

ated costs, calculated as the sum of each cut’s cost within the combination. However, the

objective is to identify feasible solutions that do not exceed a predefined maximum cost.

Therefore, we construct a BDD where the paths lead to terminal zero when the cost of

the path exceeds the maximum cost, indicating that such combinations of cuts cannot be

solutions as their total cost exceeds the desired limit, and the path leads to terminal one

when the cost of the path does not exceed the maximum cost.

Figure 6.10 illustrates a BDD created for a problem involving four cuts, aiming

to restrict solutions to those containing at most two cuts. Paths resulting in a cost greater

than two lead to a terminal zero (the path’s cost is highlighted below its terminal node),

indicating they do not obey the maximum cost pre-defined. Conversely, paths leading

to terminals marked one represent combinations of cuts totaling two or fewer, indicating

they are solutions meeting the defined maximum cost.
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Figure 6.10 – BDD for solutions with up to 2 Cuts.
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The example is illustrated using a BDD, as shown in Figure 6.10, but the procedure

is performed using ROBDDs. In Figure 6.11, the ROBDD of the example problem that

involves restricting solutions to at most 2 cuts out of 4 cuts is illustrated.

Figure 6.11 – ROBDD for solutions with up to 2 Cuts.
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Until now, we have discussed cuts with a cost of 1, considering the number of

cuts as a unit. However, cuts can have different cost metrics, such as the number of

inputs, and the number of outputs, among others. With this BDD-based approach, we

can consider different values of costs for the cuts, for example, Figure 6.12 illustrates a

BDD constructed for four cuts, C1, C2, C3, and C4. In this example, each cut can have

a different cost. For instance, cut C2 has a cost of 2, while the other cuts have a cost of

1. This figure shows the costs of each combination of cuts, similar to the illustration in

Figure 6.9. Therefore, each terminal node displays the total cost of each combination of

cuts.

Figure 6.12 – BDD for a problem involving four cuts with different costs. Each terminal node
shows the total cost of each combination of cuts.
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Source: The Authors.

By restricting solutions to those with a maximum cost of 2, we obtain the BDD

illustrated in Figure 6.13. This BDD shows the combinations of cuts that meet the pre-

defined maximum cost (leading to terminal 1) and those that do not meet the maximum

cost (leading to terminal 0), with the cost of each combination highlighted in red below

the terminal node zero.
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Figure 6.13 – BDD for a problem involving four cuts, showing combinations of cuts that meet the
maximum predefined cost of 2.
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Figure 6.14 illustrates the ROBDD obtained for this problem.

Figure 6.14 – ROBDD for the problem with different costs for the cuts.
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The BDD in figure 6.14 is now representing a logic function. In this function,
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when the value is equal to one, the cost is acceptable, when the function is equal to zero the

cost exceeds the maximum allowed. A common way to generate a satisfiability expression

for a circuit is to independently generate the satisfiability expression for each of the logic

gates that compose the circuit. This can be done independently for each logic gate in the

circuit using the so-called Tseitin transformation (TSEITIN, 1983) for each logic gate.

BDDs are not circuits and do not have logic gates. However, each node in a BDD is a

Shannon decomposition (SHANNON, 1949), which is equivalent to a multiplexor logic

gate. This way, the Tsetsin decomposition for a multiplexor can be used for each node in

order to obtain the satisfiability clauses for the complete Boolean function. The value of

the output must be set to one with a unit clause (clause with a single literal), so that only

functions with an acceptable cost are selected.

6.4 Our Method Overview

Each stage of the flow was presented separately. Figure 6.15 illustrates a flowchart

that describes the organization of stages to generate an optimized cover of an AIG using

KL-cuts. The first step involves obtaining the set of K-cuts, which can be generated

traditionally, as described in Section 5.2.1.1, or using the method described in this work

(Section 6.1.1).

The obtained K-cuts are then expanded into KL-cuts (Section 6.2), and subse-

quently, CNF clauses are derived (Section 6.3.2).In this work, we utilized only rules 1

and 3, as presented in Section 6.3.2. Since the goal is to achieve the best coverage in

terms of the number of cuts, in some cases, the overlap between cuts can yield the opti-

mal result.

The following steps are performed iteratively until an optimal solution is obtained.

That is, the following steps are repeated until an optimal solution is achieved:

• Define a cost;

• Derive clauses using BDD to constrain the cost (Section 6.3.3), and

• Analyze the clauses using SAT to verify if there exists a solution for the circuit

complying with the defined maximum cost.
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Figure 6.15 – Flowchart of approach to generating minimum cover using SAT.
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6.5 Contributions of This Chapter

This chapter provided a complete explanation of the method proposed in this the-

sis, offering detailed insights into the algorithms and practical examples of their applica-

tion.
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7 RESULTS AND DISCUSSIONS

7.1 About this chapter

In this chapter, we present and analyze the results obtained from our proposal for

KL-cuts enumeration and cover generation for circuits using KL-cuts. In the first part,

we focus on comparing the execution time of our KL-cuts enumeration methodology with

reference methods, such as the Machado algorithm (MACHADO et al., 2012) and MFFW

(ZHU et al., 2023). Time efficiency is a crucial factor to validate the feasibility of our

proposal in practical scenarios.

In the second part, we evaluate the cover quality obtained by our method. To do

this, we post-process the cover generated by the ABC tool (BRAYTON; MISHCHENKO,

2010). The ABC tool initially generates covers only with single-output cuts. To enable

a comparison in the context of multiple-output cuts, we perform post-processing on the

cuts obtained from the ABC tool to transform single-output cuts into multiple-output cuts.

This post-processing involves grouping cuts whose inputs are dominated.

The cover achieved with our proposed method in this study is validated through

combinational equivalence checking using the ABC tool (BRAYTON; MISHCHENKO,

2010), specifically employing its "cec" command (MISHCHENKO et al., 2006). This

validation ensures that the circuits generated by our method maintain logical equivalence

with the reference circuits, thereby confirming that the obtained cover is valid and that the

generated circuits meet the specifications of the original circuits. The SAT solver used to

conduct these experiments was the MiniSat (SÖRENSSON, 2010).

7.2 KL-cut enumeration performance

To conduct the performance experiment of our proposed method, we used the

EPFL benchmark (AMARÚ; GAILLARDON; MICHELI, 2015). This set of benchmarks

is widely recognized in the community and provides a solid basis for comparing KL-cuts

enumeration methods.

All the methods compared, including ours, are based on obtaining the multi-output

cuts by expanding K-cuts. Therefore, the time required to enumerate the K-cuts will not

be considered in the performance analysis. Our analysis will focus exclusively on the

runtime required for the enumeration of KL-cuts, as the number of cuts produced will be
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the same for all methods.

To evaluate the performance of our method, we compared it with the KL-cuts

enumeration method of Machado. Although Machado’s work originally focuses on cuts

in mapped circuits, it can also be applied to AIGs, allowing for a direct comparison.

Additionally, we included the dynamic version of the MFFW method (TANG et al., 2023)

in the comparison, a new method that has been gaining attention in the field. To ensure a

fair comparison with the MFFW method, we used KL-cuts with L unbounded.

Our experiment considers runtime as the main comparison metric. This is because,

as all methods are based on the expansion of K-cuts, the final amount of KL-cuts will be

the same for all. Therefore, we focus on the runtime of each method, providing a clear

and objective measure of performance.

The runtimes of the methods are presented in Table 7.1. The first column of the ta-

ble contains the names of the benchmarks, while the second column shows the number of

ANDs in each circuit. The third column shows the number of K-cuts used for expansion.

Finally, the fourth, fifth, and sixth columns respectively present the times, in seconds, that

the Machado method, our method, and the MFFW method took to expand the K-cuts into

KL-cuts, which is the KL-cuts enumeration process.
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Table 7.1 – Runtime comparison in milliseconds.

Benchmark Ands K-cuts Machado (ms) Our Method (ms) MFFW (ms)
adder 1020 5298 86.27 6.20 10.61
bar 3336 25007 3772.25 53.25 74.35
div 44762 724848 83083.27 1358.61 1614.35
hyp 214335 1611185 250120.19 3642.02 3911.15
log2 32060 437138 128035.67 1776.23 1414.56
max 2865 33880 3164.00 70.26 76.14
multiplier 27062 293431 60774.41 801.54 764.27
sin 5416 72026 8261.03 148.29 201.27
sqrt 24618 361355 57880.77 1000.81 922.66
square 18484 154957 8597.41 269.56 326.24
ctrl 11839 972 35.37 2.33 2.58
cavlc 693 5655 282.48 13.05 10.70
dec 174 1718 47.57 2.19 3.63
i2c 304 11403 269.38 13.39 32.31
int2float 1342 1741 36.26 2.71 4.05
mem_ctrl 260 574773 100001.35 1167.75 1481.68
priority 46836 12518 166.35 12.98 22.99
arbiter 978 218166 19921.06 279.89 595.54
router 257 1877 40.27 2.54 4.69
voter 13758 111600 7453.07 214.98 330.87

To conduct this experiment, we used a high value of priority cuts per node, where

each node maintained a maximum of 20 K-cuts during the enumeration of K-cuts. This is

not a practical value, as according to (MISHCHENKO et al., 2007), only a small number

of priority cuts, around 5 to 10, is considered a good number of cuts per node. This value

was used solely to allow the generation of a larger number of K-cuts for each circuit,

which are later expanded into KL-cuts.

For a clearer analysis of the results, the data from Table 7.1 is organized and

presented graphically in Figure 7.1. This graph highlights the magnitude of performance

differences among the methods under study. Using a logarithmic scale for execution

times, the graph facilitates visual comparison between the methods, enabling a precise

analysis of variations in execution times. This approach reveals significant differences

that can span multiple orders of magnitude among the evaluated methods.
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Figure 7.1 – Comparison of Runtimes for Machado, Our Method, and MFFW (Log Scale).
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For instance, as can seen in Figure 7.1, for the "div" benchmark the Machado

method has an execution time of approximately 83 seconds, while Our Method takes

about 1.36 seconds and the MFFW method takes about 1.61 seconds. This represents a

nearly two orders of magnitude difference between Machado and the other two methods.

The Machado method is significantly slower than the other two methods for most

benchmarks. For example, in Figure 7.1 for the "hyp" benchmark, the Machado method

takes about 250 seconds, while Our Method takes about 3.64 seconds and MFFW takes

about 3.91 seconds. This shows that the Machado method can be up to 70 times slower

than the other methods. Regarding relative performance, Our Method generally outper-

forms both the Machado and MFFW methods. On average, our multi-output cut enumer-

ation method is 1.25 times faster than MFFW for this specific benchmark. The difference

in the "mem_ctrl" benchmark is even more pronounced: the Machado method takes ap-

proximately 100 seconds, while Our Method and MFFW take about 1.17 seconds and

1.48 seconds, respectively. In this case, the Machado method is about 85 times slower

than Our Method.

Machado’s approach leads to worse runtimes because this expands each cut ci

from each of its input nodes to all nodes containing the cut ci itself or any other cut whose

inputs are dominated by the inputs of ci. This approach requires numerous dominance

checks of cuts, performed by comparing the inputs of the cuts, which has a significant

impact on the performance of the Machado method. Overall, Our Method exhibits the

best execution times in most benchmarks, closely followed by the MFFW method.
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7.3 Covering with KL-cuts

The second experiment conducted in this study aims to evaluate the proposed

cover method. This experiment is divided into two main parts: 1) Comparing the cover

obtained with KL-cuts using our enumeration method, CNF encoding of the problem, and

SAT solving; and 2) Analyzing the workflow performance.

Since the goal of our work is to obtain solutions with the minimum number of KL-

cuts, we allow overlap between KL-cuts. Therefore, Rule 2 of the formulation, Section

6.3.1, is not used. Additionally, we do not restrict the use of all outputs from the KL-cuts;

hence, Rule 4 is also not applied. Outputs that are not used in the cover can be removed

later.

In this experiment, we compare the covers obtained by our method with those ob-

tained using the ABC tool. However, the ABC tool has no built-in method to generate cov-

ers using multi-output cuts. To address this limitation, we implement a post-processing

step for the covers generated by the ABC tool.

Initially, ABC generates covers with only single-output cuts. Then, we apply a

post-processing method to merge cuts where one cut dominates another. For instance, if

we have c1 = ({a, b, c, d}, o1) and c2 = ({b, c}, o2), c1 dominates c2 because c2’s inputs

is a subset of c1’s inputs. Thus, we update c1 to c1 = ({a, b, c, d}, {o1, o2}).

Additionally, we perform a combination of cuts where the union of inputs from

two cuts ci and cj has a size smaller than K, thereby forming a KL-cut. For example,

starting with k-cuts ci = ({a, b, c}, oi) and cj = ({d, e, f}, oj), we generate the KL-cut

c = ({a, b, c, d, e, f}, {oi, oj}).

This approach allows us to evaluate our method by comparing our results with

those obtained using the ABC tool. Although our results are derived from post-processing

the cover obtained with the ABC tool, this comparison provides a good reference for

evaluating our results, as the ABC tool is a well-established reference in the field of logical

synthesis.

Another point considered in the following experiments is that the number of KL-

cuts in each node of the AIG can significantly impact the method’s performance. There-

fore, we decided to limit the number of KL-cuts in each node to 10.
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7.3.1 Exact Cover Size

In this experiment, we compared the cover sizes of circuits using two different

approaches: K-cuts, obtained with the ABC tool, and KL-cuts, obtained with our method.

We used circuits from the MCNC benchmark due to the variety of circuit sizes, making

this experiment feasible.

Our method aims to find the minimum cover in terms of the number of cuts for

a circuit using KL-cuts. To achieve this, we require an intermediate step in the flow that

adds new clauses to the CNF to determine the maximum number of cuts in the solution.

This approach uses BDDs to create the new clauses, which is more efficient than brute

force (generating all possible combinations). However, performance is directly related to

the number of cuts in the problem. Therefore, we use only the 10 largest KL-cuts for each

node in terms of internal nodes.

Therefore, for circuits with a large number of cuts, the performance of our ap-

proach is significantly hindered. To conduct this experiment, which aims to evaluate the

effectiveness of our method in terms of solutions with the minimum number of cuts, we

used circuits with a maximum of 1000 AND gates and generated solutions with a maxi-

mum of 25 KL-cuts.

7.3.1.1 Cover Size

Figure 7.2 presents a graph illustrating the results obtained with the ABC tool

(blue circles), using the command "if -K 6", which generates a cover with K-cuts with

a maximum of 6 inputs. These values are compared with the results obtained by our

method, using KL-cuts expanded from DAG cuts only (red circles) and mixed DAG and

TREE cuts (orange circles). In our results, DAG cuts also have up to 6 inputs, while

TREE cuts can have more than K inputs. The results are ordered according to the values

obtained by the ABC tool, from smallest to largest, to provide better organization of the

results.
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Figure 7.2 – Comparison of Cover Size Using Single-Output Cuts (from ABC) vs. Multi-Output
Cuts (with KL-cuts)
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As can be observed, multi-output cuts can significantly reduce the number of cuts

required to cover the circuit. This is expected, as a KL-cut, with L unbounded, encom-

passes the entire subgraph defined by a K-cut. However, our method using only DAG cuts

could not obtain solutions for all the tested circuits due to the BDD limitation mentioned

earlier.

Despite this limitation, the benefit of using multi-output cuts is evident compared

to the approach that uses only single-output cuts. When we compared the results using

K-cuts from ABC with our method using KL-cuts expanded from DAG cuts only, our

method achieved cover with an average of 49.01% fewer cuts. Using KL-cuts expanded

from both DAG and TREE cuts, we achieved cover with an average of 74.85% fewer cuts

than when using K-cuts. These values were obtained with the successful cover results.

For a closer comparison, we performed post-processing on the cover obtained with

ABC, generating multi-output cuts from the K-cuts used in the ABC solution. The results

of this procedure are presented in Figure 7.3, where we compare these results with those

of our method also using post-processing, applied after obtaining the cover from the SAT

solver. The results are ordered according to the post-processed values obtained by the

ABC tool, from smallest to largest, to provide better organization of the results.
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Figure 7.3 – Cover Size Comparison of Results of Figure 7.2 after the Post-Process.
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As can be seen, performing post-processing on the results obtained with ABC

results in a considerable reduction in the number of cuts. Despite the results being close,

our method still shows good results when compared to ABC, where we obtained cover

with a reduction of 7.51% using only DAG cuts and 53.65% when using DAG and TREE

cuts compared to the ABC results.

It is important to note that ABC also presents the best results for some of the

circuits, this occurs because our method does not use all the generated KL-cuts to generate

the CNF, as explained at the beginning of this section. Consequently, this may exclude

KL-cuts that could produce the smallest coverage. Lastly, as shown in the graph in Figure

7.2, some circuits did not have a solution due to exceeding the maximum cut threshold

set for this experiment.

One point to highlight is that in this experiment, the optimization criterion used

was the number of cuts needed to cover the circuit. However, once we have a way to

assign costs to the cuts, we can use different cost functions, such as the number of input

and output signals of the cuts.
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7.3.1.2 Cover Runtime

The next aspect analyzed is the runtime our method takes to generate cover using

KL-cuts. Thus, in this experiment, we aim to evaluate the performance of our method.

Since ABC involves a comprehensive flow based on K-cuts to generate cover, and

includes sophisticated techniques, we cannot directly compare the runtime. Therefore,

this experiment focuses on expressing the runtime of each stage of our process to generate

an AIG cover using KL-cuts.

Subsequently, the runtimes of each stage of our procedure are presented, with

each stage’s runtime compared to the total runtime of the procedure to give a sense of the

proportion of each stage’s runtime.

Figure 7.4 presents the runtimes of the stages of our method in dedicated graphs.

The data are ordered by total runtime, which is the sum of the four stages. These graphs

show the runtimes of the following stages:

1. Expansion of KL-cuts;

2. Generation of CNF;

3. Enumeration of the maximum number of cuts in the solution;

4. SAT solver.

Two considerations should be made at this point: stages 1 and 2 are executed only

once for each circuit, while stages 3 and 4 are repeatedly executed until they converge

to a solution or fail to find a solution with at most 25 cuts, the same configuration as the

previous section.
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Figure 7.4 – Runtime using only DAG cuts.
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From Figure 7.4, the proportion of the runtime of KL-cuts expansion relative to the

total runtime of the method is illustrated. It can be observed that expansion is a stage that

does not have a significant impact on the total time of the method, given that the graphs

are on a logarithmic scale. This stage shows insignificant runtimes for most circuits.

Following in Figure 7.4, similar to KL-cuts expansion (stage 1), the generation of

CNF (stage 2) does not have a significant impact on the total runtime of the method, with

only a few circuits in the test set showing a runtime exceeding 0.01 seconds.

Still in Figure 7.4, the next stage analyzed is the enumeration of the maximum

number of solution cuts (stage 3). This stage aims to restrict the maximum threshold of

cuts that the solution can contain. As can be seen, it is one of the stages that have the most

significant impact on the total runtime of our method. This procedure involves generating

additional clauses imposing restrictions on combinations of up to N cuts. This procedure

is faster than generating all possible combinations of cuts that do not admit a particular

solution with N + 1 cuts, but it is still a procedure that becomes more time-consuming as

the number of cuts increases.

In this experiment, it was observed that solutions with up to 25 cuts could be found

in a timely manner; beyond this value, the performance is significantly degraded. As can

be observed, the runtime of stage 3 was practically the total runtime of the method for

some circuits.

Continuing the analysis, the last stage consists of running the SAT solver to find

a solution if one exists (stage 4). It can be observed that this stage also has a significant

impact on the total runtime of the method. However, it is noticeable that the runtime of

stage 4 is lower than that of stage 3 for the circuits with the highest total runtimes in the

graph. In these cases, stage 3 was the bottleneck of the method. For other circuits with

a total runtime of less than 1 second, the runtime of stage 4 is considered the bottleneck

among the four stages because running the SAT solver requires system calls; it is not

being used as a method in the project.

Similarly to the runtime analysis of our method using DAG cuts, Figure 7.5 presents

the runtimes of each stage using DAG and TREE cuts. As can be seen, these graphs show

behaviors similar to those illustrated in the graphs of Figure 7.4. The difference lies only

in the number of KL-cuts involved in the process, which, in the case of DAG and TREE

cuts, are fewer than with only DAG cuts.
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Figure 7.5 – Runtime using DAG and TREE cuts.
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7.3.2 Cover Without Optimization

So far, we have analyzed only the results of our method aiming to find the best

coverage in terms of the number of cuts for each tested circuit. However, as discussed,

there is a bottleneck that prevented larger circuits from being tested.

In this section, our goal is to test our method with larger circuits. To do this, stage

3, responsible for defining the maximum number of solution cuts, is not executed, as it

was previously identified as the major bottleneck of our method. Thus, the workflow used

in this test does not necessarily find an optimal solution; our goal is solely to analyze the

performance of the method on larger circuits.

Table 7.2 presents the results in terms of the number of cuts using the approach of

generating coverage with ABC and applying the post-processing described at the begin-

ning of this section. These ABC results are compared with the results obtained with our

method using DAG cuts. Since our method uses multiple output cuts, there is a higher

chance of obtaining better results using multi-output cuts.



111

Table 7.2 – Cover without optimization for EPFL circuits

From ABC Using KL-cuts (DAG cuts)

Circuit Original Cover with K-cuts Merged Cuts Cover size Cover size merged
adder 257 79 64 64
bar 512 448 448 448
div 22253 10719 - -
hyp 44440 20054 - -
log2 7931 5370 - -
max 839 509 601 579
multiplier 5890 3894 - -
sin 1472 871 1136 1101
sqrt 6409 2501 5434 5328
square 3978 1439 2075 1955
ctrl 29 5 7 6
cavlc 121 70 74 73
dec 287 130 19 11
i2c 363 274 260 241
int2float 49 36 38 37
mem_ctrl 12086 8869 8832 8572
priority 219 119 244 211
arbiter 2722 2466 2404 2404
router 94 40 34 33
voter 2830 873 1404 1190

As seen in Table 7.2, although our approach in this context does not aim to obtain

optimal solutions, we used the first solution provided by the SAT solver. In some cases,

our method obtained better solutions than the ABC results.

Another analysis that can be conducted is the runtime in this context. For this,

Table 7.3 presents data on the size of the CNFs generated and the runtime spent in each

stage of our method in the context of this experiment, without using stage 3.
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Table 7.3 – Clause size and runtime.

Circuit KL-cuts Cnf Clauses Cnf Vars Cnf time (ms) Sat time (ms)
adder 2093 4796 2093 2.61 4.19
bar 7169 19960 7169 22.52 213.81
div 245269 1139142 245269 - -
hyp 599811 2483613 599811 - -
log2 159195 713690 159195 - -
max 15242 44183 15242 53.05 926.71
multiplier 92063 282164 92063 - -
sin 26292 124257 26292 83.06 445.07
sqrt 116146 597331 116146 910.90 14008.50
square 61607 191054 61607 126.89 470.10
ctrl 281 512 281 0.81 2.87
cavlc 2496 4860 2496 8.47 25.70
dec 353 930 353 1.24 3.71
i2c 6303 11871 6303 10.24 31.04
int2float 1035 1711 1035 1.92 4.87
mem_ctrl 250817 697396 250817 1100.22 13926.00
priority 5050 12927 5050 7.07 11.13
arbiter 108364 364746 108364 248.41 2397.97
router 918 1838 918 1.20 3.48
voter 36570 139435 36570 82.55 100.71

As observed, the size of the CNF is directly related to the number of cuts in the

problem, where the number of variables in the CNF equals the number of cuts for which

a solution is sought. The number of clauses is also linked to the number of cuts, as the

approach used generates clauses based on the list of cuts in the AIG nodes.

The runtime data presented in Table 7.3 show that the method proposed in this

work can be feasible, being executable for a considerable set of circuits. Although there

is a significant bottleneck in stage 3, the method proves to be viable in the other stages.

However, it is important to note that the circuits "sqrt" and "mem_ctrl" exhibited

significantly higher runtimes compared to the other circuits. This is because these circuits

have larger CNFs owing to the number of cuts involved in the problem.
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7.4 Contributions of this chapter

This chapter presented the methods used to conduct the experiments and the re-

sults obtained from them. A detailed discussion of the results was provided to enable the

reader to understand the benefits, as well as the drawbacks, of the methods proposed in

this thesis.
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8 CONCLUSION

This thesis presents a method for deriving cover using KL-cuts for AIGs. A KL-

cut is a multi-output cut that extends K-cuts, which are limited to a single output. KL-cuts

enable regions of the circuit to be more effectively isolated compared to K-cuts, as a KL-

cut can encompass all the logic defined by a cut, something traditional K-cuts cannot do

due to their single-output limitation.

Three contributions are proposed in this work:

• Expansion of K-cuts to KL-cuts;

• CNF formulation of the problem to obtain a circuit cover with KL-cuts;

• Cost encoding using BDDs for a minimum cover.

The first contribution of this work is a novel approach to enumerating KL-cuts in

AIGs. Unlike previous methods (MARTINELLO et al., 2010; MACHADO et al., 2012),

which rely on comparing the leaf nodes of the cuts to generate KL-cuts, an expensive

task, our method adopts a different approach. In our method, each KL-cut is assigned its

own signature, and the KL-cuts are composed based on the intersection of the fanins of

each node in the AIG. Our approach demonstrates a significant performance gain com-

pared to the method proposed by (MACHADO et al., 2012), which is an enumeration

method for KL-cuts. Specifically, the method by (MACHADO et al., 2012) is approx-

imately 85 times slower than our method when using the (AMARÚ; GAILLARDON;

MICHELI, 2015) benchmark. When compared to the MFFW method of (TANG et al.,

2023), our method shows comparable results for most of the tested circuits, with (TANG

et al., 2023)’s method performing better on larger circuits. However, the method proposed

in this thesis still offers competitive performance for expanding KL-cuts.

The second contribution of this work consists of a method, described in Section

6.3.2, to obtain a CNF formulation for the covering problem using multi-output cuts. This

method generates a formulation that ensures the requirements presented in Section 3.4.2

are met, thereby producing a valid cover. However, the formulation presented in this

work is not yet an optimized version. Section 7.3.2 presents the sizes of the CNFs for the

(AMARÚ; GAILLARDON; MICHELI, 2015) benchmark.

Lastly, a BDD-based method was proposed to consider the cost of each KL-cut.

This method derives CNF clauses that are used to set the desired maximum cost for the

solution. These clauses, together with the ones described above, are used to find the
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optimal cover for the problem.

Overall, this work presents a flow based on the three steps described above to

obtain a minimal cover of an AIG. Since satisfiability problems are decision problems,

where the answer provided is either true (SAT) or false (UNSAT), the problem is modeled

to use a SAT solver to obtain the best cover. This is done using an iterative approach,

where each iteration defines a maximum cost, creates the constraints, and uses a SAT

solver to obtain the answer.

The process presents a bottleneck during the stage of creating the maximum cost

constraints for the solution, as described in Section 6.3.3. However, since this is an exact

synthesis problem, where the goal is to achieve the best result, it is expected that perfor-

mance might be compromised. Furthermore, results show that using multi-output cuts for

the AIG covering problem produces covers with a smaller number of cuts compared to

using single-output cuts.

As this is expected behavior, the comparison presented in Section 7 attempts to

approximate the comparison by grouping dominated cuts, thus transforming the cuts of

the solutions generated by the ABC tool into multi-output cuts. Even so, our approach

was able to generate good results compared to those of ABC for a large portion of the

tested circuits.

For each KL-cut composing the cover generated, a simple equation was generated

to validate the result of the method. The results were checked and validated with the ABC

tool (BRAYTON; MISHCHENKO, 2010) using the "cec" command (MISHCHENKO et

al., 2006) that performs the combination equivalence checking.
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APPENDIX A — ALGORITHM WITH OPTMIZATIONS

Algorithm A.1: KL-Cuts enumeration Algorithm (Complete).

1 kl_cuts klEnumeration(aig, k, n_best)
2 all_kl_cuts← ∅;
3 k_cuts← enumerate_k_cuts();
4 for ( each k_cut in k_cuts ) do
5 if ( k_cut ̸= self -cut ) then
6 kl_cut = createKL(k_cut.leaves);
7 all_kl_cuts[k_cut.sign]← kl_cut; // map structure
8 markSupport(aig, k_cut);

9 // propagates the kl-cut
10 for ( each aig node ̸= PI ) do
11 node.klcuts← node.f1.support ∩ node.f2.support;

12 node.support← node.support ∪ node.klcuts;

13 // register the outputs and internal node in each kl-cut
14 for ( each aig node ̸= PI ) do
15 if ( node ∈ POs ) then
16 // add this node as output for every KL-cut in node.klcuts

17 else
18 if ( node.support = ∅ ) then
19 // for each fanout node, remove the kl-cuts which
20 // have this node as a leave

21 else
22 if ( node.klcuts.size() ̸= node.support.size() ) then
23 for ( each kl_cut of node.klcuts ) do
24 if ( kl_cut /∈ (at least one of node.fannouts.klcuts) )

then
25 all_kl_cuts[kl_cut].outputs.add(node);

26 return all_kl_cuts
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