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NEATRouter: Uma nova ferramenta para roteamento global 2D

RESUMO

Devido ao avanço tecnológico em diversas áreas da vida cotidiana, a demanda por circui-

tos integrados mais complexos e compactos está em constante crescimento. Para abordar

o projeto de tais circuitos, é essencial a inovação contínua em ferramentas de Automa-

ção de Projeto Eletrônico (EDA), que contribuem para reduzir os custos de fabricação e,

consequentemente, os custos dos chips. Neste trabalho, apresentamos um novo algoritmo

para a etapa de roteamento global de um circuito integrado. Nosso método usa o algoritmo

Neuroevolution of Augmenting Topologies (NEAT) para gerar redes neurais capazes de

encontrar o caminho mais curto e mais eficiente em termos de recursos para uma rede de

2 pinos. Os resultados de nossos experimentos sugerem que este método pode competir

com sucesso com abordagens tradicionais como MazeRouter, gerando roteamentos 2D

que se equalizam em termos de comprimento de fio e reduzem de 1% a 5% no uso dos

recursos disponíveis de nossos casos de teste.

Palavras-chave: VLSI, EDA, Roteamento Global, Projeto físico, algoritmo NEAT, algo-

ritmos genéticos, Microeletrônica.





ABSTRACT

Due to technological advancement in various fields of daily life, the demand for more

complex and compact integrated circuits is constantly growing. To address the design of

such circuits, continuous innovation in Electronic Design Automation (EDA) tools is es-

sential, which contribute to reducing manufacturing costs and, consequently, chip costs.

In this work, we present a novel algorithm for the global routing stage of an integrated cir-

cuit. Our method uses the Neuroevolution of Augmenting Topologies (NEAT) algorithm

to generate neural networks capable of finding the shortest and most resource-efficient

path for a 2-pin net. The results of our experiments suggest that this method can success-

fully compete with traditional approaches such as MazeRouter, generating 2D routings

which equalize in terms of wirelength and reduce from 1% to 5% in the use of available

resources of our testcases.

Keywords: VLSI. EDA. Global Routing. Physical Design. NEAT algorithm. Genetic

Algorithm. Microelectronics.
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1 INTRODUCTION

At this time, technology is having a significant impact on various aspects of daily

life. For example, in the field of health, the use of artificial respirators has been introduced,

while in transportation, we already have vehicles capable of driving without human inter-

vention. In research, the development of increasingly powerful computers allows complex

calculations to be carried out, and in the field of entertainment, smartphones have become

essential tools for staying informed. This technological integration into our daily lives

has generated the need to improve the manufacturing of integrated circuits. These com-

ponents, which contain millions of elements to perform complex operations, must also

occupy a small space to be used in compact devices, such as hand watches.

Electronic Design Automation (EDA) is the field charged with developing software to

support the automation of integrated circuit design. Since the manufacturing costs of

integrated circuits are increasing due to their high complexity, innovation in EDA tech-

nologies is required. In the design process of an integrated circuit, the routing task plays

a crucial role, since it is responsible for establishing the connections between the signals

of the pins of an integrated circuit using the metal layers. However, performing routing

is complex because integrated circuits are composed of millions of components in very

small areas. For this reason, the routing stage is divided into two sub-stages: global rout-

ing and detailed routing. The global routing stage is responsible for performing the initial

routing of all the nets of an integrated circuit, reducing both wirelength and congestion.

This first routing is known as guides, which then serve as input to the second stage. In

detailed routing, guides are used as a guide to perform the final routing, verifying the

design rules. In this way, the definitive routing is obtained for each net of the integrated

circuit.

Within the global routing stage, multi-pin nets are divided into 2-pin segments, which are

routed separately. This simplifies the routing task, since the congestion and wirelength of

each segment of the entire net can be controlled separately. Algorithms like MazeRouter

(LEE, 1961) and its variants, which find the shortest path between two points, are used to

perform routing of these segments. MazeRouter has several advantages, such as its ease

of implementation and its ability to give better results in terms of wirelength. Among its

disadvantages is that in large areas routing can be computationally expensive in terms of

time and memory. Furthermore, it does not always consider other important factors to

optimize results.
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Machine Learning (ML), a field of artificial intelligence, offers systems capable of learn-

ing concepts without the need for explicit programming. This process is carried out most

of the time through operations executed in a neural network, which analyze the infor-

mation provided to identify patterns, thus facilitating the generation or prediction of new

information. Thanks to its effectiveness and the continuous improvement of the results

obtained, ML techniques are applied in various fields, such as engineering, medicine,

video games, finance, marketing, entertainment, and many others.

In this work, we propose NEATRouter as a two-dimensional global routing algorithm for

2-pin nets, with the objective of generating high-quality routes in terms of wirelength and

congestion. Our algorithm focuses on complementing/replacing the MazeRouter algo-

rithm, which is used in several state-of-the-art global routing tools. This approach is based

on the Neuroevolution of Augmenting Topologies (NEAT) algorithm, a variant of genetic

algorithms designed to generate neural networks capable of optimizing specific problems.

We adapt NEAT algorithm to train neural networks that optimize two-dimensional routing

of simple 2-pin nets. These neural networks will determine the set of movements neces-

sary for routing a net, with the goal of reducing congestion and wirelength throughout

the routing area. To address congestion, we implemented the Rip-up and Re-route (R&R)

algorithm, which, in case of congestion, repeats the routing of all nets, increasing the cost

of using congested areas. This approach allows nets to explore alternative paths, releas-

ing resources for other nets. In each iteration of Rip-up and Re-route, we apply the fittest

neural networks trained by the NEAT algorithm for routing. In case the method cannot

route a net, we resort to the MazeRouter algorithm to ensure the connection of all nets. In

summary, our proposal combines the power of NEAT algorithm, genetic algorithms, and

classical routing techniques such as MazeRouter to effectively address global routing of

2-pin nets, prioritizing routing quality and runtime efficiency.

We perform a comparison between the results obtained using our algorithm and those ob-

tained by exclusively using the MazeRouter routing method. This evaluation was carried

out considering crucial aspects such as wirelength, resources used and runtime. Our re-

sults demonstrate that our algorithm has the potential to optimize the utilization of routing

resources. In some cases, we see improvements even in wirelength, although this benefit

may be accompanied by an increase in runtime. For our algorithm to deal with cases

with a larger number of nets (real designs), it must be complemented by an algorithm that

divides the total number of nets into sets, which will be routed by NEATRouter and then

perform global routing of all the sets.
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2 FUNDAMENTAL CONCEPTS AND BACKGROUND

In this chapter, we provide essential information on the key concepts and method-

ologies relevant to our research. We begin by defining Electronic Design Automation

(EDA) and explore Physical Design and its stages. We then highlight the importance of

global routing, addressing its challenges and the traditional algorithms used at this stage.

In addition, we present definitions of Machine Learning, Artificial Neural Networks and

Genetic Algorithms, necessary to understand the NEAT algorithm. Similarly, we analyze

in detail the NEAT algorithm, its operations and applications. With this information, we

seek to establish a solid foundation for understanding our work.

2.1 Electronic Design Automation (EDA)

Electronic Design Automation (EDA) is one of the most important areas in elec-

tronic engineering. In the past few decades, it has been witnessed that the flow of chip

design became more and more standardized and complicated (HUANG et al., 2021). The

EDA is composed of a set of software and hardware tools that play a fundamental role

in automating the various stages within the electronic circuit design industry. The mod-

ern circuit design flow is shown in Figure 2.1, this flow includes requirements definition,

logical design, physical design, simulation, verification, and finally manufacturing. EDA

tools help simulate and analyze the behavior of a circuit before it is physically manufac-

tured. This allows potential problems to be identified and corrected at an early stage of

design, saving costs and time in final production. Due to the complexity of each circuit,

the existence of loops in the flow is increasingly common, which serve to recalculate a

given solution with new information. For example, within the physical design, in the

global routing stage a result without congestion may not be found when all the nets are

routed, so it will be necessary to re-execute the positioning with this new information and

thus modify the positions of some components to be able to solve the problem.

2.2 Physical Design

In the physical design stage all macros, cells, gates, transistors, etc., with fixed

shapes and sizes per fabrication layer are assigned spatial locations (placement) and have
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Figure 2.1: Modern chip design flow (HUANG et al., 2021). This flow describes the steps
from the definition of the requirements to the final manufacturing of the chip.

appropriate routing connections (routing) completed in metal layers. The result of phys-

ical design is a set of manufacturing specifications that must subsequently be verified

(KAHNG et al., 2011).

In this phase of the process, we meticulously carry out tasks while strictly following es-

tablished design rules. These rules encapsulate the inherent physical constraints within

the manufacturing environment. They are crucial for ensuring an accurate and efficient

representation of the circuit, taking into account the limitations imposed by the produc-

tion medium. Within this context, every decision regarding the arrangement of functional

blocks, the interconnection of elements, and the distribution of electrical power is criti-

cal. These decisions collectively contribute to achieving a final design that not only meets

stringent performance requirements but also optimizes the manufacturability of the inte-

grated circuit.

The physical design phase directly and significantly impacts various key aspects of the

circuit, such as its performance, area, power consumption, reliability, and manufacturing

yield. An illustrative example of this influence is the presence of extensive routing in the
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circuit, as this inevitably results in prolonged signal delays.

Due to its high complexity, physical design is divided into several stages:

• Partitioning: Divides the circuit into small modules, which can be analyzed sepa-

rately.

• Floorplanning: Involves determining both the shape and arrangement of the mod-

ules, and also addresses the allocation of locations for external ports and macro

blocks.

• Power and ground routing: Distributes the power and ground nets across the chip.

• Global Placement: Find the approximate positions of each component, without

considering details such as overlaps.

• Detailed Placement: Find the exact positions of each component, which seeks to

meet specific constraints.

• Clock network synthesis: Determines the buffering, gating and routing of the clock

signal to meet prescribed skew and delay requirements.

• Global Routing: The purpose of this process is to perform a pre-routing of the nets

with the aim of minimizing overflow and wire length. Subsequently, this solution

(guides) will be utilized by the detailed routing for the final connection of each net.

• Detailed Routing: Assigns routes to specific metal layers and routing tracks within

the global routing resources.

• Timing closure: Optimizes circuit performance by specialized placement and rout-

ing techniques.

2.3 Global Routing

In the global routing phase, the primary objective is to perform a pre-routing of all

nets, aiming to minimize issues such as overflow, excessive wirelength, and signal delay

in the design. As the current IC industry continues to advance, the task of global routing

becomes increasingly challenging. This difficulty is due to the fact that circuits are com-

posed of an increasing number of nets which must be routed in increasingly smaller areas,

needing proper management of available resources. In this context, it becomes crucial to

address routing strategically, aiming to minimize the wirelength of each net and avoiding

potential congestions or overflows in the process.

The quality of global routing solution directly affects chip area, speed, manufacturability,
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power consumption and the number of iterations required to complete the design cycle.

Hence this step plays an important role in determining circuit performance (TANG et al.,

2020).

Figure 2.2 shows a net composed of three pins (A, B and C). The final routing of the net

must connect these pins. To achieve this, the routing area is divided into cells, where each

cell is known as a gcell. After identifying which cells pins A, B and C are in, we seek

to find a set of gcells that connect those cells that contain the pins. These final routes,

also referred to as guides, play a crucial role as they are utilized by detailed routing to

complete the precise definition of paths intended to connect various nets within the inte-

grated circuit design. This comprehensive process aims to ensure efficient connectivity,

minimizing potential interferences, and optimizing the overall performance of the circuit.

Some of the algorithms currently used to address the global routing problem include Fas-

Figure 2.2: Representation of a grid and the gcells in global routing (HE et al., 2019).
The routing area is divided into a cells where each cell is commonly called a gcell, then
the global routing is constructed by a sequence of gcells which connect the pins of a net.

tRoute(PAN et al., 2012), which initially divides the problem by routing in a 2D space and

then transforms it into three-dimensional routing. Another algorithm is CUGR(LIU et al.,

2020), which performs routing directly in 3D space using a 3D maze router. Finally, a

parallelization approach is employed in SPRoute2.0 (HE et al., 2022) and FastGR (LIU et

al., 2023) to effectively solve the global routing problem, resulting in improved execution

time compared to other algorithms.

2.4 Machine Learning

Machine Learning (ML) is an area of artificial intelligence which aims to de-

velop algorithms and models that can learn patterns and make decisions based on infor-

mation without human intervention. Within artificial intelligence (AI), machine learning

has emerged as the method of choice for developing practical software for computer vi-



25

sion, speech recognition, natural language processing, robot control, and other applica-

tions.(JORDAN1; MITCHELL, 2015)

Machine Learning algorithms use information and experience to improve your perfor-

mance on a specific task. The learning process can be defined as a training process whose

objective is to improve performance when performing a given task. For example, to learn

to recognize images of dogs and cats, the task will be to label an image as "dog" or "cat."

The accuracy of the classifier in assigning the labels appropriately will define the perfor-

mance of the algorithm. Training involves using a collection of images labeled "dog" if

it is a dog and "cat" if it is a cat. During this process, the algorithm gains experience and

learns patterns that it then uses to make decisions with new information.

Conceptually, machine-learning algorithms can be viewed as searching through a large

space of candidate programs, guided by training experience, to find a program that opti-

mizes the performance metric. (JORDAN1; MITCHELL, 2015)

2.5 Artificial Neural Network

Artificial neural networks (ANN) have been developed as generalizations of math-

ematical models of biological nervous systems (ABRAHAM, 2005). It is designed to

perform specific tasks by simulating the interconnections of artificial neurons. These ar-

tificial neurons work together to learn patterns of information, continually modifying the

weights of their connections through an iterative process. This iterative adjustment of

connections is known as training, which aims to improve the performance of the ANN in

various applications, such as pattern recognition, classification of information, prediction

of new information from known data, among others.

The Figure 2.3 shows the architecture of an artificial neuron and also the architecture of

an ANN. An artificial neuron is composed of input values, to which a weight is multiplied

and then added in a function called activation function. The output of the artificial neu-

ron is calculated in the simplest case by comparing the result of the activation function

with a threshold (θ). An ANN is composed of multiple layers, which include the input

layer, output layer, and hidden layers. Each of these layers is composed of interconnected

artificial neurons, and it is through these connections that the ANN learns and processes

information. The input layer receives the initial information, the hidden layers process

the information through operations, and the output layer produces the final result of the

ANN.
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Figure 2.3: Architecture of an artificial neuron and a multilayered artificial neural network
(ABRAHAM, 2005). A multilayered artificial neural network (b) is composed of an input
layer that receives the information, hidden layers that will perform the operations and an
output layer that will produce the final result. Each hidden layer is composed of a set
of artificial neurons (a) which will receive the values and calculate an output using an
activation function.

2.6 Genetic Algorithms

Genetic algorithms (GA) are search algorithms based on the principles of nat-

ural selection and genetics, introduced by J Holland in the 1970’s and inspired by the

biological evolution of living beings (HALDURAI; MADHUBALA; RAJALAKSHMI,

2016). The GA are commonly applied to optimization and search problems due to their

ability to consistently generate improved solutions in each iteration. These algorithms

draw inspiration from biological genetic processes, utilizing operators such as selection,

recombination, and mutation to evolve and progressively refine a population of potential

solutions over multiple generations. This iterative and evolutionary approach provides a

distinctive advantage by ensuring that over time, the GA converges towards more optimal

solutions, making it a valuable tool in the effective resolution of complex optimization

and search problems.

The flow of a genetic algorithm is defined by the following steps:

• Initialization (first generation): Creation of an initial population of potential prob-

lem solutions (individuals). This process is mostly done randomly.

• Fitness Evaluation: Each individual is assessed based on its fitness to solve the

problem. Fitness evaluation involves using a function that quantifies how good a

solution is in terms of desirable result.

• Selection: Individuals with higher fitness are more likely to be selected as parents

to create the next generation.

• Crossover: Selected individuals are combined with each other to create the next
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generation. This operation is performed using techniques of genetic crossover or

recombination. The new generation inherits characteristics from the parents.

• Mutation: In certain iterations, a mutation is introduced to the offspring to add

variability to the population.

• Replacement: The new generation replaces the less fit individuals, ensuring an im-

provement in the overall quality of the population.

Figure 2.4: Flow of GA algorithm (HALDURAI; MADHUBALA; RAJALAKSHMI,
2016)

These steps will be repeated over several generations, allowing the population to evolve

and progressively improve over time, as illustrated in the Figure 2.4. At the end of the pro-

cess, the algorithm is expected to converge toward a solution that approaches the optimum

for the given problem.
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2.7 Neuroevolution of augmenting topologies algorithm (NEAT)

NEAT (STANLEY; MIIKKULAINEN, 2002) is a genetic algorithm which en-

codes a neural network as an individual (genome). This allows neural networks to learn

from a reward function, instead of back propagation, avoiding the need for large data sets

for training. In each new generation the algorithm selects the neural networks with the

highest fitness, which will be used to generate the new population, the less fit neural net-

works will be eliminated from the population. There is a probability that a neural network

will suffer a mutation, which consists of modifying its structure by adding or eliminating

nodes and connections.

Figure 2.5 shows the structure of a genome, it includes a list of nodes which stores the

total number of nodes that the neural network has and a list of all connections of the

neural network. Each connection will store the index of the two nodes it connects, the

weight of the connection, a flag to indicate whether the connection is enabled or not and

an innovation number which will be useful during the crossover operation.

Figure 2.5: Structure of a genome (STANLEY; MIIKKULAINEN, 2002). The genome is
composed of a list of the nodes and connections of the neural network.

The operations of the NEAT algorithm are explained below:

• Crossover: In order to carry out the crossover operation, each connection of the

neural network stores an innovation number which indicates at what time this con-

nection was created. Then, the crossover between two neural networks will be

carried out by joining the connections with the same innovation number. If a con-
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nection does not exist in the other neural network, it will be inherited, if it belongs

to the parent with more fitness. (Fig.2.6)

Figure 2.6: Crossover operation between two NEAT genomes (STANLEY; MIIKKU-
LAINEN, 2002)

• Mutation: It can change both connections weight and neural network structure.

Connection weight mutation in which there is a probability of changing the value

of an existing connection between two nodes. Structural mutation, which can be

done in two ways, the first is to create a new connection between two disconnected

nodes and the second is to create a new node which is done by disabling an existing

connection between two connected nodes to connect them to the new node creating

two new connections. Both types of mutation are shown in the Figure 2.7.

• Speciation method: That helps protect the topology of the new generations by di-

viding them into groups with similar topologies and making them compete with
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Figure 2.7: Mutation operation on NEAT algorithm (STANLEY; MIIKKULAINEN,
2002)

each other, in this way the generated topologies have the opportunity to innovate

before competing with individuals from other groups.

The NEAT algorithm has proven to be a useful one for the optimization of neural net-

works; its applications are found in fields such as robotics, video games and the opti-

mization of control systems. In (WILLIGEN; HAASDIJK; KESTER, 2013), NEAT has

been applied to optimize the control of autonomous vehicles, improving adaptive de-

cision making according to the specific conditions of each scenario. In (PATRASCU;

IANCU, 2023)(PEREZ-LIEBANA; ALAM; GAINA, 2020)(WITTKAMP; BARONE;

HINGSTON, 2008), NEAT is applied to decision making in well-known video games,

demonstrating its ability to dynamically adapt to different strategies according to environ-

mental conditions. Finally, in (WEN et al., 2017) the NEAT algorithm is applied to train

neurocontrollers capable of moving a robotic arm towards a nearby target position.
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3 RELATED WORK

In this chapter, we provide a review of related work in VLSI focused on the global

routing stage. First, we present a brief summary of some work developed by colleagues

in the research laboratory. Then, we review existing works in the state of the art that aim

to solve the global routing problem. Finally, we will provide an analysis of works that

employ methods, such as NEAT or Reinforcement Learning, with the goal of addressing

the global routing problem.

3.1 EDA algorithms developed in the research laboratory

In (REIMANN, 2013), the author presents a global routing implementation for

integrated circuits capable of addressing the problems proposed in the ISPD 2007 and

2008 competitions. His algorithm uses the rip-up and re-route technique together with

monotone and maze routing approaches. He have also implemented a new method that

orders the nets during the rip-up and re-route phase. To compare the results, he used a

version of his algorithm that prioritizes routing quality, combined with Minimum Steiner

Trees (MST) for the construction of the routing trees. The results obtained show that the

algorithm experiences a slight increase in the total wirelength and in the runtime in more

complex designs that require solutions without violations. Furthermore, he explain that

a large part of their results is due to the importance of having an identifier of congestion

regions, which helps avoid unnecessary cable detours and accelerates the convergence of

the algorithm.

In (NUNES, 2013), the author presents techniques applied in the GR-WL algorithm

(REIMANN, 2013) for the delimitation and treatment of areas with high demand for

resources in global routing. These techniques are based on first identifying areas with

high demand for connections and then protecting them during the routing phase to avoid

congestion. He also describes parameters for applying cost pre-increase in areas with

high demand for connections. In the results, it is shown that these techniques reduce the

total congestion compared to the original implementation of the algorithm. Furthermore,

it is observed that congested area delimitation techniques decrease the execution time of

global routing. However, a disadvantage of these techniques is the increase in the total

cable length in some experiments due to the dispersion of connections, which allows con-

gestion reduction.
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In (MONTEIRO, 2023), the author carries out a literature review on global routing, ex-

plores its application in different stages of the physical project flow of a circuit and fi-

nally presents an adaptation of the implementation of the FastRoute algorithm (PAN et

al., 2012) to carry out experiments in a real flow. These adaptations include support for

modern input and output file, as well as a new representation of routing resources. Addi-

tionally, a method to correct antenna violations is presented. The results demonstrate the

importance of these adaptations in the FastRouter algorithm to generate routes that com-

ply with the project rules, are congestion-free, have a minimum cable length and require

a minimum number of vias.

In (TUMELERO, 2015), the author first studies how sequential global routing works,

what steps it is composed of, and what its limitations are with the provided benchmarks.

Then, he implements a version of the parallelized routing algorithm, which is based on

dividing the total number of networks according to their wirelength into small groups that

will be routed independently and simultaneously. To achieve this, he proposes a data de-

pendency detector that will allow him to identify the routing areas that are being modified

by two tasks in parallel. He demonstrates that his method, together with specialized par-

allelization hardware, has the potential to reduce the execution time of global routing.

In (OLIVEIRA, 2021), the author presents a comprehensive study on the detailed rout-

ing problem in VLSI, analyzing in detail the state of the art of algorithms that address

the problem both sequentially and parallel. Subsequently, he proposes a parallel detailed

routing flow for VLSI that could serve as a valuable reference for future implementations

of more algorithms in this field.

In (PLACIDO, 2016), the author investigates the global placement of cells in integrated

circuits, followed by the implementation of a global placement tool based on a quadratic

analytical algorithm. Although the execution time of the proposed algorithm was not sig-

nificantly high and managed to distribute the cells in all the circuits of the test set, the

wirelength (calculated by HPWL) obtained was higher than that of other algorithms such

as FastPlace and SimPL. The conclusions indicated that these algorithms, in addition to

performing the task of global positioning of cells, are specialized in directly optimizing

the HPWL.

Other works related to global positioning, such as (HENTSCHKE, 2002), (FOGACA,

2016) and (FOGACA, 2020), focus on analyzing existing algorithms and, in some cases,

implementing improvements to increase the quality of the obtained results.



33

3.2 Existing methods to solve the Global routing problem

The BoxRouter2.0 (CHO et al., 2007) proposes optimizing net routing in inte-

grated circuit designs, with the aim of minimizing both the wirelength and the number of

necessary paths. Initially, routing is addressed in a two-dimensional (2D), using a spe-

cialized A* algorithm that finds efficient routes and minimizes wirelength. Subsequently,

the conversion to three-dimensional (3D) routing is performed using a layer assignment

method based on Integer Linear Programming (ILP).To validate the effectiveness of the

method, exhaustive experiments are performed using the ISPD 1998 (ALPERT, 1998)

standard benchmarks. The results show that the proposed method achieves congestion-

free routing with a minimum wirelength.

An improved version of the original NTHU-Route (GAO; WU; WANG, 2008) algorithm

is presented in (CHANG; LEE; WANG, 2008). The difference between this improved

version and the original algorithm is clearly reflected in terms of routing solution quality

and execution time. The authors have achieved this advancement by introducing inno-

vative features, such as a new history-based cost function. This feature effectively helps

identify highly congested edges during the routing process, allowing them to be rerouted

more efficiently during the ripup and reroute phases. In addition, a net ordering method

has been implemented that contributes significantly to the identification and resolution of

congested areas, thus improving the overall effectiveness of the algorithm. To validate

the effectiveness of these improvements, the authors carried out experiments using the

ISPD98 (ALPERT, 1998) and ISPD07 (NAM et al., 2007) benchmarks. The results ob-

tained clearly show that the proposed method outperforms the original algorithm in terms

of overflow, wirelength and execution time, thus demonstrating its effectiveness and rele-

vance in the context of global routing optimization in VLSI.

In FastRouter (PAN et al., 2012), the authors proposed an algorithm that addresses global

routing by initially performing 2D routing and then extending it to 3D routing through

the layer assignment algorithm. FastRouter is a Global Routing algorithm that decom-

poses the problem into several stages, Figure 3.1 shows the complete flow of the algo-

rithm. First, a construction of congestion-driven and via-sensitive Steiner topologies is

performed for each net in the design, followed by segment shifting techniques. Then, the

tree structures are decomposed into 2-pin nets and pattern routing is executed using L and

Z shapes to perform the first routing. Subsequently, the virtual capacity of the design is

initiated based on the first routing. This will be useful to guide the iterative stage of rip-up
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and reroute and address the congestion problem. During the rip-up and reroute stage, they

used two techniques: 3-bend routing and multi-source multi-sink maze routing, with the

aim of avoiding the generation of congestion and minimizing the use of vias. Finally, after

obtaining a 2D routing, they converted it to a 3D routing using the spiral layer assignment

algorithm.

Figure 3.1: FastRouter algorithm flow (PAN et al., 2012)

To carry out their experiments, they used the benchmarks from the ISPD08 con-

test (NAM; SZE; YILDIZ, 2008). The implementation of the algorithm was carried out

in the C programming language, using the FLUTE library (CHU; WONG, 2007) to gen-

erate the Rectilinear Steiner Minimum Tree (RSMT). FastRouter managed to reduce the

wirelength and runtime compared to the algorithms classified in the top positions of the

ISPD08 contest. They considered the possibility of improving the maze routing stage to

achieve a balance between reducing congestion and maintaining a small wirelength.

In CUGR (LIU et al., 2020) is an algorithm that solves the global routing problem di-

rectly in a 3D area. To achieve this, the authors proposed an algorithm that decomposes

the routing problem into three phases: initial routing, 3D maze routing, and generation

of route guides. Figure 3.2 shows the algorithm flow in the first stage, the algorithm uses
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3D pattern routing to make an initial connection. Decompose each multi-pin net into a

set of 2-pin nets using FLUTE (CHU; WONG, 2007) to generate the Rectilinear Steiner

Minimum Tree (RSMT), and then employ a dynamic programming algorithm to perform

pattern routing and layer assignment simultaneously. Nets with violations then go through

multiple iterations of rip-up and reroute using a 3D maze router. The last step involves the

generation of guides and insertion of patches. Patches are additional guide regions that

help resolve some specific conditions.

Figure 3.2: CUGR algorithm flow (LIU et al., 2020)

They performed their experiments using the ICCAD19 contest (SCHLICHTMANN

et al., 2019) benchmarks, using Dr. CU2.0 (LI et al., 2019) to generate the detailed routing

solution. The implementation was carried out in the C++ programming language, using

the Geometry Boost and Rsyn (FLACHA et al., 2017) libraries to carry out the parsing

of the LEF/DEF files. They compared the results obtained with the two algorithms that

occupied the first places in the ICCAD19 contest. They managed to match the wirelength

results and the via score of these algorithms, considerably improving the final runtime.

CUGR uses sophisticated techniques that contribute to the optimization of wirelength,

number of vias and congestion. With its 3D pattern routing technique, the algorithm is
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capable of routing most nets quickly and efficiently. They demonstrated that their global

router competes with the top participants of the ICCAD19 contest in terms of performance

and runtime.

In NCTU-GR 2.0 (LIU et al., 2013), a heuristic maze-type routing algorithm is proposed

that aims to improve the wirelength estimation, reduce the execution time and minimize

the final wirelength. NCTU-GR 2.0 uses Rectilinear Steiner Minimum Tree (RSMT) to

generate routing trees containing paths with short wirelengths. Additionally, a multi-

threaded version of the same collision-aware global routing algorithm is presented. In the

obtained results, it is observed that the algorithm manages to reduce both the wirelength

and the execution time compared to other algorithms.

3.3 Methods that apply Maching Learning algorithms to the Global Routing prob-

lem

In (RINNARV; BRINK, 2017), the author applied the NEAT algorithm to address

the problem of nets routing in integrated circuits. In his research he adapted the NEAT

algorithm to route 2-pin nets and compared his obtained results with industry standard

algorithms. To carry out his experiments, he generated two-dimensional circuits repre-

sented by two-dimensional grids, where each position has a value of 0 if it is not routable

and 1 if it is routable. The input values for the NEAT neural networks include all the

values of the two-dimensional grid (N ×N ), in addition to the position of each agent and

the position of its destination point. The output nodes are defined in an array that rep-

resents the preferred movements that a net can make during its routing. In its evaluation

method, he defined the fitness function to reduce the wirelength and the number of vias.

He used the same function to compare his results with the results of the standard A* and

BFS algorithms.

The conclusion reached by the author is that the routings generated by the NEAT algo-

rithm do not compete with the industry standard algorithms A* and BFS since in some

test cases the final routing ends with disconnected nets or with detours that impact the the

wirelength of the design. He also highlights that a better definition of the fitness function

could equal or even improve net routings, since neural networks are able to take into ac-

count more parameters compared to standard algorithms.

In (LIAO et al., 2019), the authors applied Deep Reinforcement Learning (DRL) to ad-
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dress the global nets routing problem in integrated circuits. They used a Deep Q-network

(DQN) as their main Reinforcement Learning (RL) algorithm to route the nets simultane-

ously. They defined 12 variables as input to the Deep Q-network, the first 3 representing

the current position of the agent in x, y and z coordinates. The next 3 variables reflect the

distance from the current position to the target in the x, y and z directions. The latter vari-

ables encode the capability information of all edges that the agent can traverse in its next

step. The output of the network is encoded into 6 values, which represent the preferred

direction for next movement during routing of a net. The algorithm and evaluation flow

are shown in Figure 3.3.

For the experiments, they generated test cases with various characteristics, which were

routed with both their proposed RL algorithm and the standard A* algorithm. The results

of both algorithms were evaluated based on the total congestion and the total wirelength

of the routing. They concluded that the results produced by the DQN algorithm are su-

perior to those obtained by the A* router, highlighting the importance of fine tuning the

variables of the DQN algorithm.

Figure 3.3: Pipeline for solving global routing with DQN (LIAO et al., 2019)

In this chapter, the works presented provide an understanding of the state of the
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art in the task of global routing of integrated circuits. The review of these works not

only shows the opportunity to improve current methods, but also highlights the need to

continue innovating with new techniques to optimize the task of global routing in complex

circuits. In the next chapter we will present our proposed method, which seeks to improve

MazeRouter, an algorithm widely used in current literature for global routing of integrated

circuits.
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4 NEAT TO GLOBAL ROUTING

In this chapter, we introduce an innovative algorithm specifically designed for

2D routing 2-pin nets NEATRouter. This algorithm incorporates the Ripup and Reroute

method, in conjunction with the gcell history calculation method, to effectively address

congestion issues. NEATRouter will run a specified number of iterations (below a pre-

defined maximum) until successfully routing all nets without congesting any gcell within

the design (grid). At the end of its execution, the algorithm will provide the complete

routing of each of the nets in detail. This complete set of routing data is critical for fur-

ther analysis and detailed evaluations of the quality and efficiency of the algorithm in

different contexts and test scenarios. The Figure 4.1 shows the complete flow used by the

NEATRouter algorithm.

Figure 4.1: General Flow of NEATRouter

In the "Ripup and Reroute" phase, we will proceed to route each net individually.

Initially, we will calculate the history of each gcell, introducing an additional cost to

gcells that experienced congestion in the last routing. This is intended to encourage the

exploration of alternative routes by nets, ensuring that only those nets that need it use
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those specific gcells. Next, we will disconnect each net to reroute, thus freeing the used

resources. The algorithm will route each net using first a NEAT neural network previously

trained to handle 2-pin nets, obtaining the routing environment information as input data.

In the case that the NEAT neural network is unable to route the net, the MazeRouter

algorithm will be used to ensure valid routing. After all nets are routed, the algorithm

will re-evaluate congestion across the entire grid. If any gcell shows congestion, the same

steps will be repeated. The maximum number of iterations is set to 50, in case of not

achieving congestion-free routing within this limit, the algorithm will provide congestion

routing. The Figure 4.2 shows the complete flow of the Ripup and Reroute phase detailing

each step performed.

Figure 4.2: Ripup and Reroute Flow

In the following sections we provide a more detailed explanation of each part of

the algorithm as well as how the NEAT neural networks were trained.
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4.1 Implementation of MazeRouter

We have implemented the MazeRouting algorithm (LEE, 1961), widely used for

routing problems. In the implementation of the algorithm, we employ the A* algorithm to

improve the execution time, adding a heuristic to the cost. To calculate the cost of using

a gcell, we apply the equation 4.1.

Costpos = WLpos + dist(pos, postarget) + historypos (4.1)

where pos is the 2D position of the gcell to use, possource is the 2D position of the source of

the net, postarget is the 2D position of the destination, WLpos is the current net wirelength,

historypos is the history value of a gcell which will be 0 in the case of the gcell has not

had congestion or otherwise historypos > 0.0 and the function dist(a, b) returns the

Manhattan distance between 2D points a and b.

4.2 History calculation for a gcell

The usefulness of the history value of a gcell lies in transmitting information from

iteration to iteration, adding a cost to gcells that experienced congestion in the last iter-

ation. In this way, the algorithm will determine which gcell to avoid using, helping to

eliminate congestion in the final routing. To calculate the history value of each gcell after

routing all the nets, we use the equation 4.2 defined in (KAHNG et al., 2011).

historypos =
numberOfNetspos

capacitypos
(4.2)

where pos is the current 2D position of the gcell, numberOfNetspos is the number of

nets which use the gcell in the pos for their routing and capacitypos is the total capacity

of that gcell in the pos.

4.3 NEAT neural network

In the next section, we will detail how we implement the training and the gener-

ation of the NEAT neural networks, which are subsequently used to route the nets. For

the implementation we use the NEAT-python library (MCINTYRE et al., ) which has the
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NEAT algorithm implemented in the Python 3 programming language.

4.3.1 Initial Configuration

For the configuration of the NEAT algorithm, we use the ReLU function as the

activation function for the nodes. We set a probability of 50% to add a new connection and

40% to add a new node. Additionally, nodes in the initial population will be disconnected,

allowing NEAT neural networks to form their own structures from scratch.

4.3.2 Input nodes

As for the values assigned to the input nodes, these are presented in a list that

covers the minimum amount of resources available on the four sides (north, south, east and

west) of the position. In addition, the measurement of the distance from the four neighbors

of the gcell in the current position to the desired goal is incorporated. This measurement

is complemented with the maximum history value between the aforementioned neighbors

of the gcell at the current position. This inclusion of detailed information provides the

algorithm with a comprehensive view of available resources and distance to the target,

thus allowing more informed decisions in the routing process. In the figure 4.3, the gray

colored gcell indicates the position of the source pin, while the green gcell represents the

position of the target pin. The blue squares represent the neighbors of the current position,

from which the minimum distance to the target will be calculated. Black gcells indicate

areas with no resources available for routing. The green arrows represent the number of

gcells in the 4 directions, from which the minimum resource value will be taken. On the

other hand, the red arrows represent gcells in the 4 positions, from which the maximum

history value will be taken. These values will serve as input data for the NEAT neural

network.

4.3.3 Output nodes

During the routing process, output nodes play a critical role in generating a com-

plete list of four values, each representing a possible movement, either north, south, east or

west. The final choice of the next move is determined by identifying the maximum value
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Figure 4.3: Representation of the input values for the NEAT neural network. The gray,
green, blue, and black gcells represent, respectively, the source pin position, the desti-
nation pin position, the neighbors of the current position, and the gcells that have no
available resources.The green arrows represent the number of gcells in the four direc-
tions, from which the minimum resource value will be taken, and the red arrows represent
gcells in the four positions, from which the maximum historical value will be taken.

in this list. This strategic approach not only facilitates efficient evaluation, but also equips

the algorithm with the ability to make informed decisions while navigating through the

routing procedure. By assigning numerical values to each possible move, the algorithm

can effectively weigh its options and select the most promising direction, contributing to

a more dynamic and adaptive routing mechanism.

4.3.4 Fitness Function

The fitness function plays a crucial role in the evaluation of each individual, with

the best of a generation being defined by the maximum fitness value achieved. To deter-

mine the fitness of a NEAT neural network, we carry out a comprehensive definition that

involves the evaluation of specific rewards.

• The connection reward is used to score how close a net is to being connected, the

Equation 4.3 will return the value of 1.0 when the net is routed and connected to its

target and otherwise it will return the Manhattan distance to the target point divided
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by the value of the maximum distance from the grid.

rewardcon = 1.0− dist(pos, postarget)

height+ width
(4.3)

where dist(a, b) returns the Manhattan distance between 2D points a and b, pos is

the current 2D position of net, postarget is the target 2D position of the net, height

is the height of the grid and width is the width of the grid.

• The wirelength reward is used to score the final routing wirelength of a net, this

value is calculated only if the net is connected to its target pin. The score is defined

by the Equation 4.4, this will return a direct proportion between the Half-Perimeter

Wirelength and the wirelength of a net. Routes with the lowest wirelength will be

evaluated with values close to 1.0, while those with the highest wirelength will be

close to 0.0.

rewardWL =
HPWLnet

WLnet

(4.4)

where HPWLnet is the Half-perimeter wirelength of the net and WLnet is the

wirelength of the net route.

• The history reward is used to score the total amount of history used to route a net,

this reward will only be calculated after the net is connected to its target pin. The

score is defined in the Equation 4.5, it will return a value between 0.0 and 1.0 which

is the direct proportion between the sum of the history used by the net routing and

the total sum of the history in the grid.

rewardh =
usedHistorynet
totalHistory

(4.5)

where usedHistorynet is the sum of the history used by the route of the net and

totalHistory is the total sum of the history in the grid.

Finally, when the routing fails to connect the net to its pin node, the total fitness of the

individual will be calculated using equation 4.6.

Fitnesstotal = HW × (θ × rewardcon) (4.6)
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If, on the other hand, the final routing manages to connect the net to its target pin, then

the fitness of the individual who created the routing will be calculated using equation 4.7.

Fitnesstotal = HW × (θ × rewardcon + α× rewardWL + β × rewardh) (4.7)

where HW is defined as height × width and the values of θ, α, and β are coefficients

that help balance the training of the NEAT neural network.

This comprehensive approach not only allows for a more precise assessment of the quality

of the neural network, but also favors the identification of the individual best suited to

advance to the next generation in the evolutionary process.

4.3.5 Trainning method

We developed the training method for the NEAT neural networks using eight nets

as input data. These nets were placed on a grid of size 9 × 9, and the history values of

each gcell were filled with random decimal numbers in the range of 0.0 to 10.0. Although

they share the same starting position, the nets have varied objectives. The figure 4.4

shows the positions of the eight nets used in training, strategically selected to guarantee

the generation of a NEAT neural network prepared for a wide diversity of cases. The final

Figure 4.4: Nets used for training NEAT neural network. All nets have their source pin
located in the blue gcell, while their target pins are distributed in various directions to
train the NEAT neural network for a wide diversity of scenarios.

fitness of a NEAT neural network is calculated as the sum of the fitnesses when routing

the eight nets. The values of the variables for the fitness function were defined as follows:
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1.6 for θ, 0.7 for α and 0.7 for β. With this, the NEAT neural networks give priority

to connecting all the pins (θ) while reducing the wirelength (α) and congestion (β) in

a balanced manner. Finally, the individual with the best fitness after 1000 generations,

that is, the one who most efficiently routes the eight nets, will be selected to route other

designs.

4.4 Routing with NEAT neural network

At the end of the training phase, a NEAT neural network will be obtained, the

one that has achieved the best fitness. This NEAT neural network will be used in the

Algorithm 1 to route the nets in the test cases. At the beginning, an agent is created (line

3), which will be the intermediary between the environment (routing area) and the NEAT

neural network. During the routing process, the agent will collect the information from

the environment and add it to the NEAT neural network (line 5). With these data the next

movement will be calculated (line 6) and the agent will update the current position (line

7). This process will be repeated until the target position is reached or there are no longer

resources to perform the routing. If the target position is reached, then the agent will

calculate the path found for that net (line 9) which will be returned by the function (line

12).

Algorithm 1: Route with NEAT neural netowrk
Input: Pin position pos, resources rscs and history hist information
Output: Net route route

1 function routeNEAT(pos, rscs, hist)
2 neatNN ← createNEATNN()
3 agent← createAgent(pos, rscs, hist)
4 while agent.isActive() do
5 inputNEAT ← agent.getNEATInput()
6 nextMove← neatNN.getNextMove(inputNEAT )
7 agent.updatePosition(nextMove)

8 if agent.isRoute() then
9 route← agent.getRoute()

10 else
11 route← [∅]
12 return route;

13 end function
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5 EXPERIMENTS AND RESULTS

In this chapter, we will first explain the data set used to carry out the experiments,

as well as the metrics used to make the comparisons. Then, we will provide a compre-

hensive overview of the results obtained in our experiments, focusing on comparing them

with the Mazerouter algorithm, since this is used in most global routing algorithms.

5.1 Dataset

To test the algorithm, we generate test cases randomly. We try to ensure that rout-

ing each test with MazeRouter requires mandatory use of iterations to remove congestion.

Detailed information about these cases in the table 5.1. The Grid size refers to the height

and width of the routing area, the Net count is the number of 2-pin nets that the test case

has and Layer count and Layer capacity is the number of available layers and the capacity

of each layer respectively.

This decision to use random test cases serves a dual purpose in our evaluation. Firstly,

it allows us to observe how the algorithm performs across diverse scenarios and under

various testing conditions. By introducing randomness, we can assess the algorithm’s

adaptability and effectiveness in handling different inputs.

Secondly, random test cases enable a more comprehensive evaluation of the algorithm’s

generalizability. Exposing it to unpredictable scenarios provides a realistic representation

of its real-world applicability, ensuring competence in a broader spectrum of potential use

cases.

5.2 Experimental Results

To evaluate the efficiency of our method, we perform a comparison by routing the

test cases using exclusively the MazeRouter algorithm and then employing NEATRouter,

which leverages pre-trained NEAT neural networks to facilitate convergence toward more

effective routing in fewer iterations. In summary, we want to see if the NEAT neural net-

work helps make routing more efficient and faster compared to just using the MazeRouter.

During the training of the NEAT neural network, 1000 generations were carried out, and

the best individuals from the 100th, 250th, 500th and 1000th generations were selected.
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Table 5.1: Characteristics of the test cases generated for the experiments. Test case is the
name of the test, Grid size is the size N×N of the routing area, Net number is the number
of nets that the test has, Layer number and Layer capacity is the number of available layers
and the capacity of each layer respectively.

Test case Grid size Net count Layer count Layer capacity
Test 1 10 200 5 10
Test 2 10 200 5 10
Test 3 10 200 5 10
Test 4 10 200 5 10
Test 5 10 200 5 10
Test 6 10 500 5 20
Test 7 10 500 5 20
Test 8 10 500 5 20
Test 9 10 500 5 20
Test 10 10 500 5 20
Test 11 10 1000 5 40

5.3 Performance Evaluation

In the process of evaluating and comparing results, we have selected the final rout-

ing wirelength and total design congestion as our primary metrics. In addition to these,

we have also considered secondary metrics, such as the comparison of runtime between

the two approaches and the number of iterations needed to eliminate congestion. These

metrics offer us a comprehensive and detailed view of the efficiency and performance of

both approaches, allowing us to carry out a comprehensive evaluation of their strengths

and limitations in different aspects of the routing process.

5.4 Results

The table 5.2 addresses things like the wirelength (WL), number of iterations nec-

essary to remove the overflow (#iter), the average percentage of resources used to route

all nets (Avg. used) and how long each algorithm takes to run (runtime). These numbers

give us a good idea of how both approaches perform.

By taking a closer look at these numbers, we sought to draw crucial conclusions about the

performance of each approach. The results in bold indicate the best values of the metrics

for each testcase. This will allow us to better understand the positive aspects and areas

of our method that could be improved, being essential for our final conclusions in the

research.
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Table 5.2: Comparison of the results using MazeRouter algorithm and NEATRouter. The
WL is the wirelength used to route all nets, #iter is the number of iterations that the
algorithm performed to remove congestion, Avg. used is the average used resources of a
ggrid and runtime is the time that takes the algorithm to do the total routing.

MazeRouter NEATRouter
Tests # iter WL Avg. used Runtime(s) # iter WL Avg. used Runtime(s)
Test 1 19 1519 57.4 0.88 19 1519 57.4 9.595
Test 2 5 1581 58.9 0.428 3 1581 61.5 2.067
Test 3 5 1615 61.7 0.444 1 1617 59.7 0.995
Test 4 2 1551 56.5 0.312 1 1551 55.3 0.523
Test 5 34 1666 61.4 1.574 0 1588 56.2 0.559
Test 6 8 3771 61.9 1.035 11 3771 59.6 8.197
Test 7 8 3764 60.0 1.01 8 3766 59.8 14.343
Test 8 3 3886 61.7 0.56 2 3886 61.8 1.67
Test 9 12 3756 62.8 1.342 10 3756 62.4 17.568

Test 10 3 3879 60.3 0.538 0 3881 57.4 1.776
Test 11 3 7730 62.5 0.901 1 7730 59.9 2.241

5.5 Discussion

The results obtained indicate that our proposed algorithm can match or improve

the results of the MazeRouter algorithm. The NEATRouter algorithm tends to provide

results in a smaller number of iterations, achieving a decrease in both congested areas and

the total length of cables in routing.

In order to gain a deeper understanding, we selected three specific tests to closely examine

their results and deepen our understanding of the algorithm’s behavior. By focusing on

these particular cases, we seek to obtain a more complete view of how our algorithm per-

forms in various situations. This approach allows us to analyze the strengths, weaknesses

and patterns observed, thus contributing to a more detailed evaluation of the effectiveness

and efficiency of the algorithm in specific routing contexts.

We begin our analysis with Test 5. The choice of this test is based on NEATRouter’s

ability to more efficiently find an optimal route, without congestion, which significantly

reduces the need to perform additional iterations. This specific case will give us a more

detailed view of how the implementation of NEATRouter can positively impact routing

effectiveness, allowing us to explore in depth the advantages it offers in terms of speed

and efficiency.

The Figure 5.1 shows the comparison of the final congestion of Test 5 after executing

both methods, as can be seen when applying NEATRouter to route some nets, it is pos-

sible to reduce the use of resources in some congestion areas, thus helping the routing of
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other nets is more efficient. The figure 5.2 illustrates the routing process for Test 5. It

Figure 5.1: Comparison of congested gcells using MazeRouter and NEATRouter for Test
5

(a) MazeRouter congestion (b) NEATRouter congestion

is observed that the best individual of 100th generation is able to route around 3 nets in

each iteration, matching the results of MazeRouter. The best 250th generation individual

can route between 8-10 nets in each iteration, contributing to a more effective reduction

of wirelength and congestion compared to MazeRouter. In 500th generation, the best

individual manages to route 24 nets on the first attempt, addressing congested areas and

eliminating the need for additional iterations. However, in 1000th generation, although

this individual can route a greater number of nets, he worsens the routing of other nets,

resulting in the need for additional iterations to address congestion.

The second test that we will analyze is Test 7. By applying the NEATRouter algorithm,

we observe that, although the final routing may increase the wirelength, a reduction in

resource use is achieved in each ggrid. This approach avoids overcongestion in specific

areas of the grid, thus offering a balance between increased wirelength and efficiency in

resource distribution.

The Figure 5.3 compares the final congestion after routing Test 7 with both methods.

When we used NEATRouter to route some nets, we observed a reduction in resource us-

age on certain ggrids. However, we noticed that some nets experience a deterioration in

their routing, resulting in increased resource usage in other areas of the grid. The Fig-

ure 5.4 presents the routing process for Test 7. The best individual of generation 100

manages to route 19 nets, obtaining similar results to MazeRouter in the same number of

iterations. The best individual of generation 250 routes 28 nets, but this approach deterio-

rates the routing, making it difficult to improve and resulting in the maximum number of

iterations (50) with congestion. The best individual of generation 500 reduces the number
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Figure 5.2: Comparison of the values of congestion, wirelength and nets routed by
NEATRouter in the ripup and reroute process using Mazeroute and the best NEAT neural
networks to route the test 5.

Figure 5.3: Comparison of congested gcells using MazeRouter and NEATRouter for Test
7

(a) MazeRouter congestion (b) NEATRouter congestion
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of routed nets to 22, managing to eliminate congestion in the same number of iterations

as MazeRouter, although with a slight increase in the final execution time. Finally, the

best individual of the 1000 generation is able to route between 57 and 23 nets, which is

enough to match the results of MazeRouter.

In the last test case the Test 11, we put our algorithm to a test by doubling the number of

Figure 5.4: Comparison of the values of congestion, wirelength and nets routed by
NEATRouter in the ripup and reroute process using Mazeroute and the best NEAT neural
networks to route the test 7.

nets. Figure 5.5 shows the graph of the final congestion when using both methods. Once

again, we observe that the congestion in the ggrids with our method behaves in a balanced

way, avoiding overutilization of the resources of one of the ggrids. Figure 5.6 shows the

behavior of the different individuals during Test 11. In the case of the individual from the
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Figure 5.5: Comparison of congested gcells using MazeRouter and NEATRouter for Test
11

(a) MazeRouter congestion (b) NEATRouter congestion

250th generation, it is observed that he cannot find a solution without congestion. This

is because the routing of certain nets is not being carried out optimally, causing incor-

rect management of resources. For the other individuals, a similar behavior to that of the

MazeRouter is noted in terms of wirelength, but the reduction in congestion seems to be

more pronounced in the 500th and 1000th generation individuals. In this case, the individ-

ual with the best result will be the one from the 1000th generation, managing to route 161

nets. By analyzing the test cases, we observe that the algorithm improves the results in

terms of resources used and wirelength, in addition to reducing the number of iterations.

However, during overtraining, individuals tend to deteriorate results on some tests. This

is because they modify the routing of nets that are not initially in congestion zones, thus

worsening the situation for the rest of the nets. Good control over which nets should or

should not be routed by a NEAT neural network is crucial to obtain positive or negative

results. We highlight that the most effective strategy to route with NEAT neural networks

is to apply them in nets that present congestion in their routing. We also observed that

different configurations can generate better or worse quality individuals, which underlines

the importance of an optimal initial configuration for the NEAT algorithm and obtaining

better routing results. Congestion and individual comparison graphs for the other test

cases can be found in the appendix A.
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Figure 5.6: Comparison of the values of congestion, wirelength and nets routed by
NEATRouter in the ripup and reroute process using Mazeroute and the best NEAT neural
networks to route the test 11.



55

6 CONCLUSION AND FUTURE WORKS

In this work, we present NEATRouter as an innovative method to perform two-

dimensional global routing of 2-pin nets. NEATRouter is implemented using the NEAT

algorithm, which is a genetic algorithm used to optimize neural networks to perform a

specific task. The results show that the proposed method tends to be efficient, facilitating

the search for the shortest paths for a net, which impacts the final wirelength and reduces

the use of resources in the routing area.

We performed a series of experiments to evaluate our method in different scenarios and

compare it with another method called MazeRouter. This comparison was made because

MazeRouter is an algorithm that is commonly used as part of several global routing algo-

rithms, and can be complemented/replaced by our method. Based on the results, we can

conclude that our method manages to find more optimal paths, reducing the number of

iterations necessary to eliminate congestion. Furthermore, we observe that the resource

distribution across the entire circuit tends to be more balanced compared to the MazeR-

outer.

As the execution time of the algorithm can become high with a large number of nets, our

proposed algorithm previously requires the use of an algorithm that divides the total nets

into sets. These sets will be routed by NEATRouter and then subjected to global routing

using another algorithm. A contribution of our work is to reduce congestion, which is

fundamental to improve routing.

As future work, our study suggests that the use of neural networks can improve the quality

of routing, so the application of machine learning (ML) techniques has significant poten-

tial to achieve better results. For example, the Reinforcement Learning (RL) technique,

which learns by reward stimulation to perform various tasks, could be useful for deciding

movements during global routing. Another interesting point to investigate is the appropri-

ate choice of input information for neural networks, as this can lead to better movement

decisions.
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APPENDIX A — CONGESTION AND INDIVIDUAL COMPARISON GRAPHS

FOR THE TEST CASES

A.0.1 Test 1

Figure A.1: Comparison of congested gcells using MazeRouter and NEATRouter for Test
1

(a) MazeRouter congestion (b) NEATRouter congestion

Figure A.2: Comparison of the values of congestion, wirelength and nets routed by
NEATRouter in the ripup and reroute process using Mazeroute and the best NEAT neural
networks to route the test 1
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A.0.2 Test 2

Figure A.3: Comparison of congested gcells using MazeRouter and NEATRouter for Test
2

(a) MazeRouter congestion (b) NEATRouter congestion

Figure A.4: Comparison of the values of congestion, wirelength and nets routed by
NEATRouter in the ripup and reroute process using Mazeroute and the best NEAT neural
networks to route the test 2
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A.0.3 Test 3

Figure A.5: Comparison of congested gcells using MazeRouter and NEATRouter for Test
3

(a) MazeRouter congestion (b) NEATRouter congestion

Figure A.6: Comparison of the values of congestion, wirelength and nets routed by
NEATRouter in the ripup and reroute process using Mazeroute and the best NEAT neural
networks to route the test 3
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A.0.4 Test 4

Figure A.7: Comparison of congested gcells using MazeRouter and NEATRouter for Test
4

(a) MazeRouter congestion (b) NEATRouter congestion

Figure A.8: Comparison of the values of congestion, wirelength and nets routed by
NEATRouter in the ripup and reroute process using Mazeroute and the best NEAT neural
networks to route the test 4
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A.0.5 Test 6

Figure A.9: Comparison of congested gcells using MazeRouter and NEATRouter for Test
6

(a) MazeRouter congestion (b) NEATRouter congestion

Figure A.10: Comparison of the values of congestion, wirelength and nets routed by
NEATRouter in the ripup and reroute process using Mazeroute and the best NEAT neural
networks to route the test 6
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A.0.6 Test 8

Figure A.11: Comparison of congested gcells using MazeRouter and NEATRouter for
Test 8

(a) MazeRouter congestion (b) NEATRouter congestion

Figure A.12: Comparison of the values of congestion, wirelength and nets routed by
NEATRouter in the ripup and reroute process using Mazeroute and the best NEAT neural
networks to route the test 8
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A.0.7 Test 9

Figure A.13: Comparison of congested gcells using MazeRouter and NEATRouter for
Test 9

(a) MazeRouter congestion (b) NEATRouter congestion

Figure A.14: Comparison of the values of congestion, wirelength and nets routed by
NEATRouter in the ripup and reroute process using Mazeroute and the best NEAT neural
networks to route the test 9
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A.0.8 Test 10

Figure A.15: Comparison of congested gcells using MazeRouter and NEATRouter for
Test 10

(a) MazeRouter congestion (b) NEATRouter congestion

Figure A.16: Comparison of the values of congestion, wirelength and nets routed by
NEATRouter in the ripup and reroute process using Mazeroute and the best NEAT neural
networks to route the test 10
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APPENDIX B — RESUMO EXPANDIDO EM PORTUGUÊS

Título da Dissertação de Mestrado: NEATRouter: Uma nova ferramenta para

roteamento global 2D.

Resumo: O desenvolvimento tecnológico tem um impacto significativo em nossas vidas,

ajudando-nos em muitos aspectos do nosso dia a dia. Este impacto gera a necessidade de

melhorar constantemente a fabricação de circuitos integrados, tornando-os cada vez mais

potentes para realizar operações complexas e com dimensões menores para que possam

ser integrados em diversos cenários. A inovação dos circuitos integrados é importante

para o avanço de áreas como a inteligência artificial, a Internet das Coisas e a computação

quântica.

A área de Automação de Projeto Eletrônico (EDA) é responsável pelo desenvolvimento de

ferramentas de software que facilitam o projeto de circuitos integrados. Essas ferramen-

tas são essenciais para lidar com a complexidade e o tamanho dos circuitos modernos.

Com o aumento da procura por circuitos cada vez mais complexos, o custo de fabrico

dos mesmos aumenta, levando à necessidade de criar ferramentas inovadoras que ajudem

a automatizar as tarefas de projeto de circuitos integrados. Em um fluxo de projeto, a

etapa de roteamento desempenha um papel importante, pois nesta etapa são estabelecidas

conexões entre os pinos das redes de conexões de um circuito integrado por meio de ca-

madas metálicas. À medida que os circuitos ficam cada vez mais complexos, contendo

milhões de componentes em pequenas áreas, surge a necessidade de dividir a tarefa de

roteamento em duas subetapas: roteamento global e roteamento detalhado.

O roteamento global tem como foco realizar o roteamento inicial das nets, buscando re-

duzir o comprimento do fio (wirelength) e congestionamento. Isto envolve realizar o

roteamento para garantir que as rotas principais não gerem congestionamentos, o que

poderia afetar o desempenho do circuito. Esse roteamento inicial é então usado como

guia para o roteamento detalhado, responsável por encontrar as conexões finais de cada

net. Nesta fase, as rotas são atribuídas a camadas metálicas específicas, a fim de atender

a restrições específicas.

Aprendizagem de Máquina (ML) é uma área dentro da Inteligência Artificial que tem

como objetivo desenvolver algoritmos e modelos que aprendam padrões a partir de um

conjunto de dados e possam classificar sob um critério ou gerar novas informações (ex.

predição), tudo sem intervenção humana. Algoritmos de aprendizado de máquina são

amplamente utilizados em diversas áreas como robótica, processamento de linguagem
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natural, reconhecimento de fala, visão computacional, entre outras.

Neste trabalho, propomos o NEATRouter como um roteador global bidimensional para

nets de 2 pinos, cujo objetivo é gerar rotas de alta qualidade em termos de comprimento

de fio e congestionamento. NEATRouter busca complementar ou substituir o algoritmo

MazeRouter, que é usado em vários algoritmos de roteamento global de última geração.

Utilizamos o algoritmo Neuroevolution of Augmenting Topologies (NEAT), que é uma

variação de algoritmos genéticos capaz de otimizar redes neurais artificiais para proble-

mas específicos.

Método de treinamento: Adaptamos o algoritmo NEAT para gerar redes neurais que

otimizam o problema de roteamento de net de 2 pinos. Definimos como valores de entrada

uma lista que inclui a quantidade de recursos de roteamento disponíveis, as distâncias dos

vizinhos até a posição final e a quantidade máxima de valor histórico, o que ajuda a iden-

tificar quais posições estão congestionadas. Essas redes neurais determinam o conjunto

de movimentos necessários para rotear uma net, buscando reduzir o comprimento dos fios

e o congestionamento. A função de fitness do algoritmo NEAT se concentrará na conexão

dos pinos de uma net, minimizando o uso de recursos de roteamento e comprimento

de fio. Esta abordagem permite-nos melhorar a eficiência e a qualidade do roteamento,

garantindo soluções ideais para nets complexas.

Roteamento global: Nosso método usará as redes neurais geradas para rotear cada net

de 2 pinos de caso de teste. Primeiro, um roteamento inicial será realizado. Caso existam

posições com congestionamento, nosso algoritmo utilizará o método Rip-Up and Reroute

para redirecionar as nets, aumentando a cada iteração o custo de utilização das posições

onde foi detectado congestionamento. Este método visa que as nets procurem camin-

hos alternativos e liberem áreas congestionadas. Em cada iteração Rip-Up e Reroute,

nosso algoritmo roteará cada rede usando as redes neurais geradas. Nos casos em que o

NEATRouter não consegue completar o roteamento de uma net, usamos o método Maze-

Router para garantir as conexões de todas as nets. Esta estratégia combinada procura

garantir um roteamento eficiente e eficaz, minimizando o comprimento do fio e o conges-

tionamento.

Geramos o conjunto de testes para realizar nossos experimentos e comparamos nossos

resultados com os do algoritmo MazeRouter. As métricas que usamos para comparação

foram comprimento do fio, quantidade de recursos usados e tempo de execução. Estas

métricas permitiram avaliar a eficiência e eficácia do NEATRouter em comparação com o

método tradicional, fornecendo informações sobre o seu desempenho em termos de qual-
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idade de roteamento e consumo de recursos.

Nossos resultados mostram que nosso algoritmo tem potencial para reduzir a quantidade

de recursos de roteamento usados em 1% a 5% em comparação ao MazeRouter. Também

encontramos melhorias no comprimento do fio em alguns testes, embora isso leve a um

aumento no tempo de execução. A principal contribuição do nosso trabalho é reduzir o

congestionamento, o que é fundamental para melhorar a qualidade do roteamento. Para

que nosso algoritmo consiga lidar com um maior número de nets e tenha melhor desem-

penho em termos de tempo de execução, ele deve ser complementado com um algoritmo

superior que divida o número de nets em conjuntos menores. Então nosso algoritmo pode

rotear cada conjunto e no final realizar o roteamento global de todos os conjuntos das

nets.

Como trabalho futuro, nosso estudo sugere que o uso de redes neurais pode melhorar

a qualidade do roteamento na tarefa de roteamento global. Além disso, a aplicação de

outras técnicas de aprendizado de máquina tem potencial para obter melhores resultados.

Outro tema interessante para pesquisa é explorar diferentes formas de definir entradas

para redes neurais, pois isso pode levar a uma melhor tomada de decisão na escolha do

próximo movimento dependendo das restrições.
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