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Abstract: The Chikungunya virus (CHIKV) presents global health challenges, with Brazil experienc-
ing outbreaks since its introduction in 2014. In 2023, following a CHIKV outbreak in Minas Gerais
(MG), social media was used to optimize an entomological survey aimed at identifying vectors and vi-
ral lineages and assessing insecticide resistance. Following Instagram posts, residents with suspected
CHIKV infection were able to schedule mosquito aspirations. In total, 421 mosquitoes (165 Aedes
aegypti and 256 Culex quinquefasciatus) were captured from 40 households in Salinas city (MG) and
tested for the Dengue, Zika, and Chikungunya viruses through RT-qPCR. Twelve of 57 pools (10 Ae.
aegypti and two Cx. quinquefasciatus) tested positive for CHIKV RNA. Viral RNA was also detected in
the heads of nine Ae. aegypti, indicating viral dissemination but not in Cx. quinquefasciatus. Genome
sequencing yielded the first near-complete genome from the 2023 outbreak, unveiling that the CHIKV
strain belonged to the East/Central/South African (ECSA) genotype. Additionally, genetic analy-
ses revealed high frequencies of kdr alleles, including in CHIKV-infected mosquitoes, suggesting
resistance to pyrethroid insecticides in this Ae. aegypti population. Social media was important for
guiding mosquito-capture efforts in CHIKV transmission hotspots, thus optimizing the opportunity
for viral detection. These findings emphasize the urgent need for innovative vector studies and
control strategies, as well as interdisciplinary approaches in public health interventions.
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1. Introduction

The Chikungunya virus (CHIKV), a member of the Togaviridae Family and Alphavirus
Genus, is an arbovirus responsible for chikungunya fever, a debilitating human disease
marked by a high fever and severe joint pain, often leading to long-lasting sequelae [1,2].
First identified during an epidemic in Tanzania, Africa in 1952–1953, CHIKV has since
caused outbreaks across Africa, Asia, Europe, and Oceania [3]. Its introduction to the
Americas occurred in 2013, reaching Brazil in 2014 and causing explosive outbreaks [4].

In Brazil, the main vector for CHIKV is the Aedes aegypti mosquito [5,6]. However, a
single genetic mutation (CHIKV E1-226V) has enabled CHIKV adaptation in Aedes albopictus,
expanding the potential for epidemics in areas with low Ae. aegypti infestation [7]. Brazilian
populations of Ae. albopictus are highly competent at transmitting CHIKV [8,9] and have
spread widely since their introduction in 1986 [10–12]. Additionally, urban areas in Brazil
are infested with Culex quinquefasciatus, which has been found to be naturally infected by
CHIKV [6,13,14], although its vector competence is controversial [15,16].

The coexistence of these mosquito species in Brazilian cities raises concerns for public
health authorities. Despite recommendations for integrated vector-control measures, in-
cluding chemical control [17], the strategy predominantly relies on insecticides. However,
overuse of these chemicals has led to the selection of resistant Ae. aegypti populations [18,19].
Although national governmental campaigns have detected resistance to pyrethroids in
all Brazilian regions and stopped employing this class of insecticides in 1989 [20], these
chemicals are still widely used by households against unwanted indoor insects, including
mosquitoes, as they are less irritating to people and produce a rapid knockdown effect.
This is likely the main reason for the selection and spread of mutations in the voltage-gated
sodium channel gene (NaV), the target site of pyrethroids, known as kdr (knockdown-
resistant) mutations [21]. There are at least two kdr alleles that are widespread in Brazilian
Ae. aegypti populations, namely NaVR1 and NaVR2, with one (F1534C) and three (V410L,
V1016I, and F1534C) mutations [22,23], respectively, with NaVR2 conferring higher levels
of resistance [24].

In early 2023, Minas Gerais (MG) experienced its largest Chikungunya (CHIK) out-
break on record, with 69,331 confirmed cases by October, surpassing the totals for 2021
(5,557) and 2022 (13,148) [25]. The northern region of Minas Gerais, characterized by small
municipalities with extensive rural areas, was severely affected, reporting 31,410 cases [26].
This region, primarily composed of small municipalities (up to 60,000 inhabitants) [27],
faces economic challenges. Despite the magnitude of the outbreak, no entomological stud-
ies have been conducted in the region to identify the vectors responsible for transmission.
This gap is partly due to a lack of entomologists, logistical challenges, and difficulties in
locating mosquitoes, as well as preserving and detecting arboviruses [28].

Hence, this study aimed to conduct an entomological, virological, and genetic in-
vestigation to determine the vectors responsible for transmission, infection rates, viral
lineage, and presence of insecticide-resistant mutations, taking advantage of social media
to optimize the sampling efforts.

2. Materials and Methods
2.1. Study Area

This study was conducted in the city of Salinas (16◦09′45.8′′ S; 042◦17′54.2′′ W), located
in the northern region of Minas Gerais (Figure 1). Salinas comprises a population of
40,178 inhabitants and a low municipal human development index (MHDI = 0.679) [29]
and is positioned within an ecotone between the Cerrado and Atlantic Forest biomes [30].
The area features a semi-arid climate (Aw climate type according to Köppen, 1936) [31],
characterized by two well-defined seasons, namely an extended dry season from March to
October and a brief rainy season from November to February, aligning with the periods of
sample collection.
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Figure 1. Map showing the northern region of Minas Gerais state, highlighting the city of Salinas and
the specific neighborhoods where sampling was conducted.

2.2. Mosquito Collection and Rearing following Instagram Posts

At the onset of 2023, reports of individuals experiencing high fever and arthralgia
began circulating in Salinas. By 6 February, eight confirmed cases of CHIK had already been
reported in the city [32]. On 8 February, our laboratory’s Instagram profile (@lacoi_ifnmg)
issued an announcement regarding our entomological investigation, inviting residents
to schedule mosquito aspiration visits (https://www.instagram.com/p/CoarMhNvn_d/
?img_index=1; accessed on 20 May 2024). Visits were arranged at the request of residents,
based on their availability. Each household was visited by one municipal endemic control
agent (a city-hall employee who works on mosquito control) and an entomologist equipped
with battery-powered Nasci aspirators [33], oral aspirators, and field entomological cages.
Sampling efforts encompassed thorough searches of all rooms within the residences, with
particular attention paid to hidden niches, such as under beds and tables and behind
sofas and cabinets. Afterward, the number of captured insects was communicated to
the residents.

Captured mosquitoes were separated by genera and sex and transferred via oral
aspirators to field cages, which were subsequently sealed, labeled, and transported to the
Insect Behavior Laboratory at the Federal Institute of Northern Minas Gerais. Within these
cages, a 10% sucrose solution soaked in cotton was provided, and the field cages were
housed inside larger Bugdorm-type cages (avoiding escape risks) at room temperature
(27 ± 4 ◦C). The mosquitoes were maintained alive for three days to allow blood digestion
in potentially engorged females—a period deemed sufficient for the virus to disseminate
throughout the mosquito’s body and reach the salivary glands [34]. After three days, the
mosquitoes were killed by freezing at −20 ◦C, transferred to cryovials, and stored in liquid
nitrogen (−196 ◦C) until further processing.

Throughout the study, additional Instagram posts were generated to update the public
on the findings and raise awareness about the importance of eliminating mosquito breeding
sites (e.g., https://www.instagram.com/p/CpGXmXJvQLg/; https://www.instagram.
com/p/CpdonXJv-7u/; and https://www.instagram.com/reel/C22Pl5mu-t-/; accessed
on 20 May 2024).
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2.3. Taxonomic Identification and CHIKV Molecular Diagnosis in the Captured Mosquitoes

The mosquitoes were transferred from liquid nitrogen and subjected to identification
and taxonomic confirmation on a cold table (−20 ◦C) under a stereoscopic microscope,
following dichotomous keys [35,36]. Each mosquito was assigned a unique code and
dissected (using individual scalpels to avoid cross-contamination) into three parts: legs,
head, and body (Figure 2). The legs were preserved in 150 µL of TE Buffer 0.1×, while the
heads were individually stored in tubes containing 150 µL of enriched L-15 medium (20%
fetal bovine serum, 0.5% non-essential amino acids, 1% penicillin, 0.1% gentamicin, and
0.1% fungizone) and frozen immediately (Figure 2). Non-engorged mosquito bodies were
pooled (up to 10 individuals) by species and sex (Figure 2). These pools were then crushed
using a beadbeater (L-Beader 24, Loccus, Cotia, Brazil) in tubes containing beads and
500 µL of enriched L-15 medium (as described above) for 30 s at 7500 rpm [37]. Afterward,
these tubes were immediately centrifuged (12,000 rpm, 8 min, 4 ◦C), and 140 µL of the
supernatant was used for RNA extraction using a Qiamp Viral RNA Minikit (Qiagen,
Germantown, MA, USA), following the manufacturer’s instructions.

Figure 2. Scheme showing the storage and testing carried out on each anatomical part (head, body,
and legs) of the mosquitoes. FBS = fetal bovine serum.

RT-qPCR assays were conducted to detect the presence of Dengue (DENV), Zika
(ZIKV), and CHIKV RNA using a ZDC Multiplex PCR Kit (Bioclin Qibasa, Belo Horizonte,
Brazil) according to the manufacturer’s instructions. Heads corresponding to insects from
positive pools were individually tested to identify the number of infected individuals per
pool and assess viral dissemination following the same RNA extraction protocol. Since only
CHIKV-positive body pools were obtained, the RNA of the corresponding head samples
was subjected to RT-qPCR analysis, as previously described [38]. Briefly, the GoTaq® 1-Step
RT-qPCR System (Promega, Madison, WI, USA) was used, along with a specific set of
primers and probes targeting the E1 gene, with the following sequences: CHIK F—5′-
AAGCTYCGCGTCCTTTACCAAG-3′, CHIK R—5′-CCAAATTGTCCYGGTCTTCCT-3′,
and CHIK P—5′-FAM CCAATGTCYTCMGCCTGGACACCTTT-BHQ1-3′ [38]. The RT-
qPCR protocol involved reverse transcription at 50 ◦C for 20 min and initial denaturation
at 95 ◦C for 2 min, followed by 45 cycles of 95 ◦C for 5 s and 60 ◦C for 1 min.

2.4. CHIKV Genome Sequencing and Phylogenomic Analyses

A representative pool (X-595) was selected, due to its lowest cycle threshold (CT)
value, to proceed with whole-genome sequencing. The extracted RNA underwent cDNA
synthesis and PCR amplification using a sequencing protocol based on the multiplex PCR-
tiling amplicon approach [39]. Subsequently, the resulting amplicons were purified using
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1× AMPure XP Beads (Beckman Coulter, Brea, CA, USA) and quantified using a Qubit
3.0 fluorimeter (Thermo Fisher Scientific, Waltham, MA, USA) with a Qubit™ dsDNA
HS Assay Kit (Thermo Fisher Scientific). Genomic libraries were then prepared using the
Illumina DNA Prep (Illumina, San Diego, CA, USA) and sequenced on the MiSeq platform
(Illumina) with v3 (600 cycles) cartridges, following the manufacturer’s instructions.

The sequencing files were processed following an assembly pipeline previously de-
scribed [40] and publicly available on GitHub (https://github.com/filiperomero2/ViralUnity;
accessed on 20 May 2024). Sample genotyping was performed using the Genome Detec-
tive Virus Tool, version 2.72 [41]. The newly generated CHIKV genome sequence has been
deposited in GISAID under accession number EPI_ISL_19096373.

The new genome was then added to the existing dataset of complete genomes (>11,000 bp)
that are publicly available in GenBank for subsequent analysis, resulting in a total of
877 genomes. Sequence alignment was conducted using MAFFT, version 7.490 [42], and
visually inspected using AliView, version 1.28 [43]. Maximum-likelihood (ML) trees were
generated using IQ-TREE 2.2.5 [44]. The statistical robustness of the tree topology was
assessed using 1000 bootstrap replicates.

2.5. Analysis of kdr as a Molecular Marker for Pyrethroid Resistance

We utilized the legs of each captured Ae. aegypti to individually genotype kdr for the
three single nucleotide polymorphisms (SNPs) V410L, V1016I, and F1534C. The legs were
crushed in a 10% TE solution using two glass beads in Tissue Lyser II (Qiagen) equipment
for 2 min at a stirring speed of 30. Subsequently, the samples were homogenized with the
addition of 200 µL of TNES and 2 µL of proteinase K (20 mg/mL) and left overnight at
56 ◦C in a water bath. Following this, 100 µL of 5 M NaCl were added, and the mixture was
centrifuged at 15,000× g for 6 min. The supernatant was transferred to a new microtube for
washing with pure isopropanol, followed by washing with 70% ethanol. Once the pellet
was dry, the DNA was resuspended in 50 µL of ultrapure water and stored at −20 ◦C.
We performed independent qPCR reactions for each of the kdr SNPs (V410L, V1016I, and
F1534C), as described elsewhere [22]. The reactions were carried out in a Thermo Fisher
Real-Time Thermocycler, QuantStudio 6 Flex. The obtention of kdr genotypic and allelic
frequencies considered the variation in the three SNPs of each mosquito (see Souza et al.,
2023) [23].

2.6. Ethical Statement

The mosquito collection and methods were approved by local authorities (SISBIO-
MMA license No. 75826-3; SISGEN No. AF40BCA). This study did not involve endangered
or protected species.

3. Results
3.1. Species Collected, Infection Rates, and Viral Dissemination

Between 8 February and 30 March 2023, we conducted visits to 40 houses across
13 neighborhoods in the city of Salinas, Minas Gerais (Figure 1) that were scheduled
through social media. In total, 421 mosquitoes were captured, comprising 256 Cx. quin-
quefasciatus (mean 6.4 ± 6.2 per house) and 165 Ae. aegypti (mean 4.1 ± 4.6 per house)
(Table 1). Notably, no Ae. albopictus specimens were captured during the sampling period
(Table 1). The mosquito bodies were grouped into 57 pools, all of which were tested for
the presence of DENV, ZIKV, and CHIKV RNA. All pools were negative for DENV and
ZIKV. Notably, 12 pools (10 Ae. aegypti, including seven female and three male pools;
two Cx. quinquefasciatus, including one female and one male pool) tested positive for
CHIKV (Table 2).
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Table 1. Captured mosquitoes and presence of CHIKV RNA in Salinas, MG, Brazil.

Species Male Female Sum (Relative Abundance %) # Pools Tested
(CHIKV-Positive) MIR *

Ae. aegypti (Linnaeus, 1762) 70 95 165 (39.2) 31 (10) 60.6
Cx. quinquefasciatus Say, 1823 143 113 256 (60.8) 26 (2) 7.8

Total 213 208 421 (100) 57 (12) 28.5

* Minimum infection rate (MIR) = No. of positive pools/No. of same species adults analyzed × 1000; # relative
abundance = No. of insects of each species/total No. of insects.

Table 2. Description of CHIKV-positive pools and corresponding individual heads tested.

Cod. Pool Species No. of
Individuals Sex CT * Individual Heads Positive Heads (CT **)

X-595 Ae. aegypti 5 F 20.1 c144, c145, c146, c147, c148 c144 (21.5); c146 (22.0); c148
(30.1)

X-556 Ae. aegypti 5 F 21.0 c33, c34, c35, c36, c37 c34 (21.2)
X-585 Ae. aegypti 5 F 22.9 c82, c83, c84, c88, 89 c83 (23.6); c84 (35.8)
X-584 Ae. aegypti 2 F 23.1 c81, c108 c81 (21.6)
X-579 Ae. aegypti 5 F 24.1 c51, c52, c54, c56, c58 c58 (26.9)
X-594 Ae. aegypti 5 F 24.2 c139, c140, c141, c142, c143 c141 (23.0)
X-606 Ae. aegypti 5 F 28.0 c149, c150, c151, c152, c164 _
X-555 Ae. aegypti 6 M 38.0 c30, c32, c39, c40, c43, c44 _

X-593 Ae. aegypti 7 M 38.3 c126, c128, c134, c135, c136,
c137, c138 _

X-586 Ae. aegypti 8 M 40.0 c85, c86, c87, c90, c91, c92,
c93, c94 _

X-623 Cx.
quinquefasciatus 9 M 38.1 c296, c297, c298, c299, c300,

c301, c302, c303, c304 _

X-619 Cx.
quinquefasciatus 9 F 38.2 c254, c255, c256, c257, c258,

c259, c260, c261, c262 _

* CT of reactions with the abdomen pools; ** CT of reactions with each individualized head from their respective
positive pools. The symbol “–” means that no CHIKV RNA was detected in the heads, suggesting a lack of
viral dissemination.

The CT values of the positive pools ranged from 20.1 to 40.0 (Table 2). These 12 CHIKV-
positive pools comprised 71 individuals (53 Ae. aegypti and 18 Cx. quinquefasciatus), whose
heads were individually examined for the presence of CHIKV to verify viral dissemination.
Among these, viral RNA was detected in nine heads, all in Ae. aegypti females, from six
distinct pools, with CT values below 24.2 (Table 2). Conversely, the heads from the CHIKV-
positive pools whose CT values exceeded 28.0, including the Cx. quinquefasciatus pools (one
male and one female), as well as four Ae. aegypti pools (three male and one female), tested
negative for CHIKV (Table 2).

3.2. CHIKV Genome Sequencing and Phylogenomic Analyses

We obtained 247,073 mapped reads for sample x-595, covering 94.8% of the CHIKV
genome, with a minimum depth of 20× and an average depth of 2383.88. This represents
the first CHIKV genome from MG during the 2023 outbreak, deposited on the gisaid.org
platform. The maximum-likelihood (ML) tree grouped these sequences with the CHIKV
East/Central/South African (ECSA) genotype, clustering within the same clade as samples
detected in humans from São Paulo state, neighboring MG, in 2021 (Figure 3). As expected,
the CHIKV E1-226V mutation was not detected.
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Figure 3. Maximum-likelihood tree of Chikungunya virus genomes inferred using the genome
generated in this study and 876 sequences publicly available from GenBank. The scale bar represents
the nucleotide substitutions per site (s/s), and the tree is mid-point rooted. The purple circle at
the tip represents the genome sequence generated in this study (X-595, GISAIS accession number:
EPI_ISL_19096373). Bootstrap values for the major nodes are displayed.

3.3. Analysis of kdr in the Aedes aegypti Population

In total, 164 Ae. aegypti mosquitoes were genotyped to verify kdr mutations. The
most frequent genotype was homozygous for the kdr R2 allele, containing the three kdr
SNPs (LIC), at 40.9%, followed by the heterozygous kdr R1/R2 (VVC/LIC) at 32.3% and
homozygous for the kdr R1 (VVC/VVC) at 11.0% (Table 3). This means that at least
84.2% presented a genotype compatible with pyrethroid resistance, almost half of which
would likely display higher levels of resistance (the homozygous kdr R2/R2). Out of
the 164 mosquitoes genotyped for the three SNPs, only three (1.8%) were homozygous
for the wild-type NaVS allele (VVF). Taken together, this reflects an ongoing selection
pressure for pyrethroid resistance in Ae. aegypti from Salinas. We also observed some
uncommonly observed kdr genotypes in 2% of the samples, of which the allelic composition
and relationship with resistance phenotypes deserve future investigation (Table 3).

Table 3. NaV genotypes in Ae. aegypti from Salinas, MG, Brazil.

Genotypes VV+VV+
FF

VV+VV+
FC

VV+VV+
CC

VL+VI+
FC

VL+VI+
CC

LL+II+
CC

VV+Vl+
CC *

VV+VI+
FC

VL+II+
CC

No. of individuals
(Frequency)

3 2 18 17 53 67 2 1 1
(1.8) (1.2) (11.0) (10.4) (32.3) (40.9) (1.2) (0.6) (0.6)

Composite genotype for the three SNPs: 410 + 1016 + 1534, composed of the allele NaVS (VVF) and the kdr R1
(VVC) and R2 (LIC). * Uncommon genotypes.
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Among the nine individuals with detectable CHIKV RNA in their heads, five (55.5%)
were R1R2, three (33.3%) R2R2, and one SR2. Although we did not have enough samples
to compare the genotypic frequencies between positive and negative CHIKV samples, it
was evidenced, for the first time, that there was no constraint for this virus to infect and
disseminate in kdr mosquitoes.

4. Discussion

CHIKV is an arbovirus capable of triggering explosive outbreaks, leading to significant
social and economic impacts due to its prolonged clinical manifestations. Due to the absence
of a widely available vaccine, vector control remains the primary preventive measure
against CHIKV. Therefore, identifying the vectors responsible for virus transmission and
assessing insecticide resistance levels are crucial for understanding CHIK epidemiology
and implementing effective control measures. In this study, Instagram (a social media
platform) proved to be a valuable tool that contributed to the investigation of a CHIK
outbreak, highlighting Ae. aegypti as the main vector in Minas Gerais, Brazil.

The low diversity of intradomiciliary mosquitoes (Cx. quinquefasciatus and Ae.
aegypti only) is consistent with the essentially urban and anthropophilic habitat of these
vectors [5,35]. Ae. aegypti is the main vector of urban arboviruses, including Dengue,
Zika, and Chikungunya, in Brazil. This species was first documented with natural
CHIKV infection in Brazil and the Americas in 2017, attributed to the ECSA genotype [5],
which is the same genotype found in the present study. This finding aligns with the
widespread prevalence of the ECSA genotype since its introduction in 2014 [45], which
is frequently detected in human CHIK cases in Brazil [46,47], including those in the
state of Minas Gerais [48]. Despite its importance, there are few reports on genomic
CHIKV surveillance in mosquitoes from Brazil [6,12–14,49–52]. This is the first detection
of CHIKV in vectors from the southeast of the region, the most urbanized and densely
populated area of Brazil.

The elevated MIR observed in Aedes aegypti (60.6), coupled with the low CT values
obtained, are indicative of high viral RNA loads, underscoring the significant role of this
species in the maintenance and transmission of CHIKV within Brazilian urban environ-
ments [5,6,49]. Notably, viral RNA was detected in the heads of nine female mosquitoes,
indicating viral dissemination and highlighting their potential as vectors. Furthermore,
CHIKV RNA was also found in four Ae. aegypti male pools, despite the higher CT values,
suggesting potential transovarian or sexual transmission mechanisms, which is consistent
with findings from previous studies [6,50]. Interestingly, CHIKV RNA was not detected
in male heads from positive body pools, nor in female heads from one pool, suggesting
limited viral dissemination in these specimens. Previous assessments of CHIKV vector
competency have revealed that, despite their high vector competence and viral dissemi-
nation in secondary tissues, such as wings and legs, certain individuals’ tissues or saliva
may remain uninfected, potentially due to barriers in the midgut or salivary glands, which
could impair viral spread [8,9,53].

Despite the greater abundance of Cx. quinquefasciatus within households, as pre-
viously demonstrated [5,6,49,54], its infection rate (MIR = 7.8) was substantially lower
compared to Ae. aegypti. Additionally, the CT values were notably high, approaching the
assay limit of detection. While Ribeiro Cruz et al. [6] successfully isolated CHIKV from
two pools of naturally infected female Cx. quinquefasciatus populations, they could not
determine vector competence, as the RNA was extracted from whole-body macerates,
thus preventing the assessment of possible viral migration to the salivary glands. Conse-
quently, to date, no compelling evidence implicates this species in the transmission of
CHIKV in Brazil. Similar to Ae. aegypti, the detection of a male Cx. quinquefasciatus pool
positive for CHIKV RNA suggests the potential for transovarian or sexual transmission,
as previously suggested [13,14]. In Kenya, Lutomiah et al. [15] proposed the involve-
ment of Cx. quinquefasciatus in CHIKV transmission based on the discovery of naturally
infected mosquitoes and the evidence of high vector competency in laboratory assays.
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The well-established vector competence of Brazilian Ae. albopictus populations for
various CHIKV lineages [8,9], along with documented cases of natural infection [14,55]
and its widespread distribution across the country [10,56], raises concerns regarding the
potential for this species to serve as a vector in Brazil, as observed in other countries [7,57,58].
In Salinas, this species has previously been identified in ovitraps placed in the peridomicile,
particularly in residences near the riparian forests of the Salinas River [59]. However, our
study did not find Ae. albopictus specimens indoors among the 40 sampled residences,
suggesting its limited adaptation to indoor environments in this locality. In Brazil, these
mosquitoes typically inhabit forest edges in transition areas (ecotones) between forests
and urban landscapes, which makes this species a potential bridge vector for arboviruses
between these environments [60].

Insecticide resistance is a threat to the control of Ae. aegypti globally, making the mon-
itoring of susceptibility a primary necessity for chemical-control sustainability [61]. The
surveillance of kdr mutations can be used as an indirect indication of pyrethroid resistance,
as they partially respond to this phenotype [18]. Based on kdr genotyping, herein, we
evidenced that the Ae. aegypti population from Salinas is probably resistant to pyrethroids,
with a high incidence of resistant genotypes. A previous study monitoring kdr mutations
across Brazil revealed that the Ae. aegypti population from Montes Claros (located in the
Northern region of Minas Gerais, approximately 170 km away from our study area) already
exhibited a high proportion (82.3%) of mosquitoes with resistant genotypes (R1R1, R1R2,
and R2R2) [22], quite similar to the 84.2% we found in Ae. aegypti from Salinas. Impor-
tantly, our research demonstrated that the nine CHIKV-infected individuals presented a kdr
genotype, indicating that there are no constraints for the dissemination of this virus in kdr
mosquito organisms. Following the onset of the CHIK outbreak, health authorities imple-
mented an Ae. aegypti population-control program, focusing on eliminating breeding sites
and utilizing pyrethroid-based insecticides (such as Icon 2.5EW) through ultra-low volume
spraying. Additionally, during mosquito sampling, we observed the widespread use of
pyrethroid-based commercial insecticides in many of the visited households. The sustained
use of pyrethroids has likely exerted selective pressure on resistant alleles/genotypes,
thereby reducing the effect of chemical-control efforts and potentially leading to the en-
hancement of outbreaks. Collectively, our findings underscore the imperative to invest
in novel vector-control strategies (such as Wolbachia-infected and transgenic mosquitoes),
in increased efforts to stimulate entomological surveillance (including digital tools and
citizen science initiatives), and in vaccine research to mitigate the risk of arboviral disease
outbreaks. In this regard, it is noteworthy that a CHIKV vaccine was recently approved in
the United States [62], which could be a crucial tool for prevention.

The use of smartphone applications and social media platforms has recently emerged
as a pivotal tool for mosquito surveillance, vector-borne disease monitoring, and scien-
tific knowledge dissemination [63–71]. In this study, the utilization of a social media
platform improved collection efforts by guiding collections at potential CHIKV transmis-
sion hotspots, thereby optimizing resources and increasing the probability of detecting
arboviruses. The use of social media plays a vital role in scientific dissemination, facilitating
closer engagement between the research community and the general public. Given the
recognized limitations of conventional arbovirus surveillance and control methods, the
adoption of these innovative tools and technologies is becoming increasingly imperative.

While our study provided valuable new findings, it is crucial to acknowledge its
limitations. First, the focus on entomological investigations within households may not
have fully captured the diversity and dynamics of vector populations in peri-domestic and
sylvatic environments. Additionally, while the use of a social media platform facilitated
the identification and aspiration of houses with suspected arboviral cases, relying solely
on such platforms may introduce selection biases, as individuals with access to and are
familiar with these platforms may differ from those who do not participate. Lastly, the
geographical scope of this study was confined to one municipality in Minas Gerais, Brazil,
limiting broader generalizations about CHIKV vector ecology and insecticide resistance
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patterns across different regions. Despite these limitations, our findings underscore the
importance of innovative approaches, such as social media-driven citizen science, in bol-
stering entomological surveillance efforts and advancing our comprehension of arbovirus
epidemiology and control strategies.

5. Conclusions

In conclusion, our study underscores the crucial role of entomological surveillance in
comprehending the epidemiology and control of CHIKV infections. Through employing
innovative technologies, including social media, we identified Ae. aegypti as the primary
vector of CHIKV (ECSA genotype) during the 2023 outbreak in Minas Gerais, Brazil.
The high frequency of kdr mutations—indicative of pyrethroid resistance in the vector
population—was also revealed, even among CHIKV-infected individuals, suggesting that
there is no barrier for this virus to infect and disseminate within kdr mosquitoes. Despite
inherent limitations, such as the focus on domestic areas and potential selection bias, our
findings emphasize the urgent necessity for innovative vector-control strategies and the
development of novel vaccines to effectively mitigate arboviral disease outbreaks. Addi-
tionally, we highlight the growing importance of interdisciplinary approaches, including
collaboration among researchers, public health professionals, and community members, in
order to bolster entomological surveillance and address the ongoing challenges posed by
mosquito-borne diseases.
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