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Abstract 

Background  Dysregulation of cellular processes related to protein folding and trafficking leads to the accumulation 
of misfolded proteins in the endoplasmic reticulum (ER), triggering ER stress. Cells cope with ER stress by activating 
the unfolded protein response (UPR), a signaling pathway that has been implicated in a variety of diseases, includ-
ing cancer. However, the role of the UPR in cancer initiation and progression is still unclear.

Methods  Here we used bulk and single cell RNA sequencing data to investigate ER stress-related gene expression 
in glioblastoma, as well as the impact key UPR genes have on patient survival.

Results  ER stress-related genes are highly expressed in both cancer cells and tumor-associated macrophages, 
with evidence of high intra- and inter-tumor heterogeneity. High expression of the UPR-related genes HSPA5, P4HB, 
and PDIA4 was identified as risk factors while high MAPK8 (JNK1) expression was identified as a protective factor 
in glioblastoma patients, indicating UPR genes have prognostic potential in this cancer type. Finally, expression 
of XBP1 and MAPK8, two key downstream targets of the ER sentinel IRE1α, correlates with the presence of immune 
cell types associated with immunosuppression and a worse patient outcome. This suggests that the expression 
of these genes is associated with an immunosuppressive tumor microenvironment and uncover a potential link 
between stress response pathways, tumor microenvironment and glioblastoma patient survival.

Conclusions  We performed a comprehensive transcriptional characterization of the unfolded protein response 
in glioblastoma patients and identified UPR-related genes associated with glioblastoma patient survival, providing 
potential prognostic and predictive biomarkers as well as promising targets for developing new therapeutic interven-
tions in glioblastoma treatment.
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Background
The endoplasmic reticulum (ER) is the major site for 
protein folding and quality control for approximately 
one-third of all cellular proteins [1]. An imbalance 
between the protein load entering the ER and the ER’s 
protein folding capacity results in ER stress and sub-
sequent activation of the unfolded protein response 
(UPR). The UPR is initiated through the activation of 
three ER transmembrane sensors within the ER: PERK 
(protein kinase RNA-like ER kinase), IRE1α (Inositol-
requiring protein 1 alpha), and ATF6 (activating tran-
scription factor 6). The UPR’s primary objective is to 
restore protein homeostasis by increasing ER folding 
capacity, attenuating general translation, and facilitat-
ing the removal of misfolded proteins through the ER-
associated degradation (ERAD) system [2, 3]. However, 
chronic or irreversible ER stress leads to cell death by 
apoptosis [4].

Glioblastoma is an aggressive and often fatal brain 
tumor with a median survival of 15 to 18  months [5]. 
The standard treatment is surgical resection, followed by 
radiotherapy and temozolomide chemotherapy [6]. Sev-
eral studies have proposed a role for the UPR in medi-
ating chemoresistance across different cancer types, 
including glioma [7–12]. Pharmacological modulation of 
the UPR has shown potential in cell culture models [10–
14]. Consequently, targeting specific UPR components or 
inducing acute ER stress may hold therapeutic potential 
for managing glioblastoma. Additionally, the available 
molecular biomarkers in glioblastoma remain limited, 
primarily comprising MGMT promoter methylation, 
TERT promoter mutations, and EGFR overexpression 
[15]. Therefore, the identification of novel biomarkers 
can significantly improve patient management.

Glioblastoma cells, xenograft tumors, and patient sam-
ples show elevated transcript and protein levels of chap-
erones [7, 9, 16, 17], especially HSPA5, a gene whose 
elevated expression has been correlated with poor prog-
nosis in glioblastoma patients [9]. In addition, previous 
studies have identified a role for the IRE1α branch in 
angiogenesis [18], tumor cell invasion [19], and immune 
infiltration [20] in glioblastoma, as well as associated 
the IRE1α-XBP1 pathway with reduced patient survival 
[20, 21]. In a recent report, the spliced form of XBP1 
was overexpressed in glioblastoma samples, and the 
inhibition of its splicing potentiated the effect of temo-
zolomide in vitro [22]. Yet, a comprehensive characteri-
zation of UPR-related gene expression in glioblastoma 
patient samples is still lacking [13]. Moreover, it is crucial 
to recognize that the UPR exerts a substantial influence 
on non-malignant cell types and interactions within the 
tumor microenvironment [23, 24]. Therefore, to gain a 
comprehensive understanding of how the UPR influences 

glioblastoma, we must consider the entire tumor 
ecosystem.

Here, we harnessed both bulk and single cell RNA 
sequencing (scRNA-seq) data to delve into the expres-
sion patterns of ER stress-related genes in glioblastoma, 
as well as the impact key UPR genes have on patient sur-
vival. Our investigation unveiled a substantial upregu-
lation of the UPR in glioblastoma patient samples and 
pinpointed factors that could either increase or decrease 
the risk associated with the disease. Importantly, our 
analysis of both single-cell and bulk data highlighted that 
the gene expression of IRE1α downstream targets, spe-
cifically XBP1 and JNK1, yields contrasting effects on the 
composition of the immunosuppressive tumor micro-
environment (TME). This finding suggests a potential 
mechanism by which these UPR pathways influence the 
survival of glioblastoma patients.

Methods
Data origin
scRNA-seq data processed with 10X Genomics were 
obtained from Neftel et  al. 2019 [25]. We excluded the 
539 cells from pediatric patients and therefore analyzed 
30,401 genes across 15,662 glioblastoma cells from 9 
tumor samples (Table S1). Among these, two samples 
(105 and 105A) originated from distinct locations of the 
same tumor. In addition, bulk microarray and RNA-seq 
expression data of glioblastoma patients with clinical 
information were obtained from The Cancer Genome 
Atlas (TCGA) Firehose Legacy dataset and TCGA Pan-
Cancer Atlas dataset (Table S2), respectively, through 
the cBioPortal for Cancer Genomics [26, 27]. Expres-
sion data from low-grade glioma patients was also from 
PanCancer Atlas dataset. Microarray expression data of 
normal brain tissue and glioma patients with different 
tumor grades were obtained from the Gene Expression 
Omnibus (GEO) Platform GPL570 (Affymetrix Human 
Genome U133 Plus 2.0 Array) through the Gene Expres-
sion database of Normal and Tumor tissues 2 (Gent2) 
[28]. The expression data of normal brain samples was 
obtained from 33 different GEO series, and the expres-
sion data of the glioblastoma tissues was from 11 GEO 
series (Table S3).

scRNA‑seq processing and analysis
Single cell data analysis was performed in R software 
using the Seurat package (version 4.0) [29]. Normali-
zation and variance stabilization of molecular count 
data was carried out by SCTransform. Following a Seu-
rat workflow, we assigned each cell a cell-cycle score, 
based on its expression of G2/M and S phase markers 
[30], and regressed out the difference between these two 
scores. Subsequently, data dimensionality reduction was 
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performed using a principal component analysis (PCA), 
and the first 25 principal components were used for clus-
tering through a graph-based approach, by which we 
constructed a k-nearest neighbor graph based on dis-
tances in PCA space and then applied the Louvain algo-
rithm. The resolution parameter was set to 1. Clustering 
results were visualized using two-dimensional Uniform 
Manifold Approximation and Projection (UMAP). Clus-
ters were identified based on the expression of reported 
markers [25].

ER stress gene signature
Transcriptome profiles of glioma cells treated for 2 and 
6 h with the classical ER stress inducers, thapsigargin and 
tunicamycin, were obtained from Reich et  al. 2020 [31] 
via GEO (GSE129757). The most significantly upregu-
lated genes (all p < 0.005 and log2FC > 1.60) across these 
conditions were selected and only those upregulated in 
at least two experimental conditions were chosen for the 
signature. To validate the meta-signature, we examined 
the differential expression of the signature genes in three 
GEO series (GSE24497, GSE21979, and GSE107859). 
These series involved the treatment of various brain 
tumor cell lines with either tunicamycin or thapsigargin. 
Additionally, we analyzed one GEO dataset (GSE7806) 
where glioblastoma cells were treated with a non-clas-
sical inducer, a small methylpyrazole-based molecule 
named erstressin [32] (Fig. S1, Table S4). This 37-gene 
signature was used for further analyses of the single cell 
expression data (Table S5).

Differential expression analysis
For both differential expression and survival analyses, 
we examined the behavior of an additional set of 25 UPR 
genes curated from the literature and that are well-known 
components of the different UPR branches [1, 4] (Table 
S6). We compared expression levels in normal brain tis-
sue samples and glioblastoma tumor samples from GEO, 
as well as between low-grade glioma and glioblastoma 
samples from TCGA. Normality was rejected using the 
Shapiro–Wilk normality test and therefore the nonpara-
metric Mann–Whitney U test was chosen. To access dif-
ferential expression across glioma grades, Kruskal Wallis 
test was carried out comparing data among grade II, III 
and IV glioma samples, and Dunn’s test was performed 
for multiple comparisons.

Kaplan–Meier analysis
Kaplan–Meier analyses were performed individu-
ally for each of the 25 UPR genes, using the median to 
separate patients with low and high expression. In addi-
tion, Kaplan–Meier analysis using two genes (XBP1 and 

MAPK8) was performed dividing patients into 4 groups 
according to Pereira et al. 2018 [33].

Cox regression analysis
Cox regression models were performed to calculate the 
hazard ratio using mRNA expression z-scores and over-
all survival data. The models were adjusted for the impact 
of the clinical variable Sex or adjusted for the impact of 
both Sex and all other 24 genes. Other pertinent clini-
cal variables either lacked sufficient data or did not meet 
the proportional hazard assumption, as verified through 
diagnostic analysis utilizing weighted Schoenfeld residu-
als. Cox models were carried out using the R survival 
package (version 3.2–13).

Immune cell meta‑signatures
Meta-signatures representing different cells of the 
immune system were previously described [33]. The 
meta-signatures were obtained by the average expression 
z-scores of the genes corresponding to each cell type.

Statistical analyses
Statistical analyses were carried out using GraphPad 
Prism 8.0.2 Software. Two-sided p-values < 0.05 were sta-
tistically significant.

Results
Characterization of UPR gene expression in the TME
Single cell transcriptomic profiles for 30,401 genes across 
15,662 cells from 9 tumor samples produced clear clus-
ters of tumor cells, macrophages, oligodendrocytes, and 
T cells based on the expression of reported cell-type 
specific markers [25] (Fig. 1A and B). Within each clus-
ter, gene expression pattern varied noticeably in cells 
from different patients, especially tumor cells and mac-
rophages, as already reported [25] (Fig.  1C). Interest-
ingly, the two samples derived from distinct locations of 
the same tumor, 105 and 105A, were clustered separately, 
indicating significant variations in gene expression pat-
terns based on the cells’ location within the tumor. To 
examine the variability in ER stress levels, we created a 
gene signature associated with ER stress. This signature 
was established by identifying genes that are upregu-
lated in brain tumor cells treated with classical ER stress-
inducing agents, namely thapsigargin (a specific sarco/
endoplasmic reticulum Ca2+-ATPase inhibitor) and 
tunicamycin (a N-glycosylation inhibitor). These agents 
promptly activate key factors of the UPR and their down-
stream targets [31] (Table S5). The ER stress gene signa-
ture was expressed in all four clusters,

showing high expression in both tumor cells and mac-
rophages (Fig.  1D and E, Table S7). When looking at 
four representative individual genes involved in UPR 
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pathways and upregulated by ER stress, we observed a 
similar pattern: expression is present in all clusters but 
mainly in macrophages and tumor cells (Fig. 1F and G). 

Additionally, expression of both signature and individual 
genes varied considerably among patients—while some 
tumors showed very low ER stress marker expression, 

Fig. 1  Characterization of UPR gene expression in the TME. A Identification via scRNAseq of cell populations from 9 glioblastoma samples. 
UMAP plot of all single cells. Cells are colored based on high expression of sets of marker genes for tumor cells (red), macrophages (green), 
oligodendrocytes (blue), and T cells (purple). B Expression of marker genes used for the identification of cluster cell types, according to Neftel 
et al. 2019 [25]. C UMAP plot of all single cells, colored by sample. D Feature plot depicting expression of an ER stress gene signature. E Ridge plot 
of signature expression. Average signature expression is shown for each cell type. Feature F and Ridge G plots depicting genes involved in UPR
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others highly expressed the signature (Fig.  1C and D, 
Fig. S2). Lastly, there was also heterogeneity within each 
patient—sub-groups of cells within the same tumor 
showed specific expression patterns (Fig.  1C and D). 
Interestingly, patients with high expression of the sig-
nature in tumor cells also showed high expression in 
macrophages cells (Fig. S2A and B). Recognizing the sig-
nificance of assessing gene expression separately in M1 
and M2 macrophage subpopulations, we made a con-
certed effort to cluster the macrophage subset in the scR-
NAseq dataset. In our endeavor to classify macrophages 
into M1 and M2 subtypes for the purpose of evaluating 
ER stress expression in these distinct populations, vari-
ations observed across samples obscured the differences 
among subtypes. This challenge impeded the accurate 
segregation between M1 and M2 macrophages.

UPR is highly upregulated in glioblastoma patient samples
To comprehensively study the UPR landscape in glioblas-
toma patients, we evaluated the differential expression 
of major UPR genes in glioblastoma patient samples. We 
analyzed a set of 25 genes [1, 4] (Table S6), comparing 
microarray expression data of 844 normal brain tissue 
samples and 408 glioblastoma tumor samples obtained 
from GEO Platform GPL570 (Table S3). Almost all genes 
analyzed showed elevated expression in tumor samples 
relative to normal brain tissue (Fig. 2A, Fig. S3A). These 
upregulated genes include the three UPR transducers 
EIF2AK3 (PERK), ATF6, and ERN1 (IRE1α); the tran-
scription factors XBP1, ATF4, and DDIT3 (CHOP); and 
their targets, such as the ER chaperones HSPA5 (GRP78) 
and HSP90B1 (GRP74), and other genes involved in the 
folding machinery and the ERAD pathway. The only two 
downregulated genes in tumor samples were MAPK8, 
which encodes the JNK1 protein, implicated in IRE1α-
mediated apoptosis [34, 35], and SEL1L, whose prod-
uct is a member of the ERAD system that associates 
with HRD1 (SYVN1) and OS9 to translocate misfolded 
proteins to the cytosol [36]. Likewise, most UPR genes 
within the subset studied were overexpressed in glioblas-
toma compared to low-grade glioma and their expres-
sion levels correlated with tumor grade (Fig. 2B, Fig. S3B 
and C). SEL1L and MAPK8 were also downregulated in 
glioblastoma when compared to low-grade glioma, and 
MAPK8 expression was negatively correlated with tumor 
grade.

Identification of novel risk and protective UPR factors 
in glioblastoma
Next, we evaluated the impact of individual UPR genes 
on patient survival. Kaplan–Meier analysis was carried 
out for each of the 25 UPR genes included in the UPR 
subset, of which nine exhibited prognostic significance 

in patients with glioblastoma using microarray data 
from the TCGA cohort (Fig.  2C, Fig. S4A). To further 
determine the prognostic implication of the UPR genes, 
multivariate Cox proportional hazard ratio analysis 
was performed for the same 25 genes adjusted only to 
the clinical variable Sex or adjusted to Sex and all other 
genes, using microarray and RNA-seq data from TCGA 
cohorts (Fig.  2D and E, Fig. S4B and C, Table S8). The 
Kaplan–Meier curves showed that high expression of six 
genes was associated significantly with shorter survival, 
while the high expression of three genes was associated 
with a better prognosis. Similarly, Cox survival analysis 
identified seven genes as risk factors and four as pro-
tective factors. Considering genes that were significant 
in Kaplan–Meier as well as in Cox analyses from both 
microarray and RNA seq datasets, we identified three 
risk factors (HSPA5, P4HB, and PDIA4) and one protec-
tive factor (MAPK8).

Opposing roles of IRE1α downstream pathways in patient 
prognosis and presence of immune cells in TME
Given the opposing roles of the IRE1α branch, which 
on one side leads to the induction of apoptosis via 
JNK1 and on the other triggers adaptive responses 
through XBP1 [34, 35, 37], we next focused on the 
role of XBP1 and MAPK8 in glioblastoma. We per-
formed a Kaplan–Meier analysis to investigate the 
impact of XBP1 and MAPK8 gene interaction on sur-
vival. Patients were divided into 4 equal groups, as 
shown in Fig. S5A [33]. Patients with high MAPK8 and 
low XBP1 expression had significantly better prog-
noses than patients with low MAPK8 and high XBP1 
expression (Fig.  3A). IRE1α downstream pathways are 
associated with immune infiltration and tumor-stroma 
interaction mainly through the regulation of cytokines 
in tumor and immune cells [23, 38]. JNK1 can regulate 
the inflammatory responses in cancer cells through 
NF-κB pathway, and IRE1α-XBP1 signaling in glioblas-
toma cells can enhance expression of cytokines that 
participate in the chemoattraction of macrophages 
to the TME [20, 23]. We measured the expression 
of immune cell markers and meta-signatures in the 
Low–High and High-Low patient groups, as well as in 
the XBP1 and MAPK8 individual low and high expres-
sion groups. High XBP1 and low MAPK8 was associ-
ated with an elevated expression of immune markers 
and immune cell meta-signatures (Fig.  3B and C, Fig. 
S5B and C). The highly overexpressed immune meta-
signatures (p < 0.05 and FoldChange > 1.5) in patients 
with high XBP1 and low MAPK8 expression were all of 
cell types that were previously associated with immu-
nosuppression and a worst prognosis in glioblastoma 
patients (Treg, Th1, MDSC, macrophages, NK, and 
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Fig. 2  UPR genes differential expression and impact on patient survival. A Radar charts showing the change in expression (%) of each gene 
between normal brain tissue (n = 844) and glioblastoma samples (n = 408). Mann–Whitney U test was carried out comparing the microarray 
expression data from GEO. B Radar charts showing the change in expression (%) between low-grade glioma (n = 514) and glioblastoma samples 
(n = 155). Mann–Whitney U test was carried out comparing the RNA-seq expression data from TCGA cohort. The points in the chart vertices indicate 
a significant change in expression and the red line indicates zero change in expression. C Kaplan–Meier plots of the genes that showed a significant 
impact on survival using microarray data (n = 401) from the TCGA cohort. Log-rank p values are indicated. Cox proportional hazard ratio of genes 
with significant impact adjusted only to the clinical variable Sex (in red) and adjusted to Sex and all other genes (in blue) using D Microarray data 
(n = 401) and E RNA-seq data (n = 155) from TCGA​
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NK T) [33]. Overall, individual marker expressions 
were consistent with the results obtained from meta-
signature analysis, except for T cells. Specifically, while 
CD4 expression was upregulated and the global T cell 
marker CD3G was downregulated, the T CD4 signature 
remained unchanged, and there was a modest increase 
in T CD8 expression. Furthermore, both M1 and M2 
macrophage markers exhibited heightened expression 
levels, with the M2 marker CD163 notably demonstrat-
ing the highest fold change. Additionally, the specific 
microglial markers displayed patterns similar to those 
of macrophages. We then performed further analyses 
with scRNA-seq data to investigate if these findings 
were not due to the intrinsic expression of these genes 
in immune cells. XBP1 and MAPK8 were expressed 
across all clusters, mainly in the macrophage popula-
tion (Fig. 3D, Fig. S5D). In fact, the ratio of XBP1 and 
MAPK8 average expression only in tumor cells posi-
tively correlated with the percentage of immune cells 
in the tumor for each sample (Fig. 3E, Table S7). XBP1 
and MAPK8 expression in tumor cells alone correlated 
with the percent of immune cells in the tumor (XBP1: 
r = 0.59; MAPK8: r = -0.26), but their ratio showed a 
much stronger correlation (r = 0.79) (Fig. S5E). Thus, 

XBP1 and MAPK8 expression ratio may suggest an 
immunosuppressive TME.

Discussion
In this investigation, we have substantiated the upregula-
tion of UPR (unfolded protein response) stress pathways 
within glioblastoma tumors. We have also pinpointed 
UPR-related genes whose expression levels exhibit signif-
icant associations with patient prognosis. Furthermore, 
we have unraveled a compelling correlation between 
the expression levels of two pivotal UPR genes and the 
enrichment of immune cells within the TME (Fig. 4).

Our analysis has unveiled an increase in the expres-
sion of ER stress-related genes in glioblastoma when 
compared to normal tissue and low-grade gliomas. This 
upregulation stems not only from tumor cells but also 
from non-tumor cells within the TME, primarily mac-
rophages. Importantly, we observed pronounced intra- 
and inter-tumor heterogeneity in the expression of ER 
stress signatures and markers. This heightened expres-
sion of ER stress-related genes encompassed nearly all 
the UPR-related genes we examined, with one notewor-
thy exception being MAPK8.

Fig. 3  IRE1 downstream pathways have opposing roles in prognosis and presence of immune cells in TME. A Kaplan Meier survival analysis based 
on the expression of XBP1 and MAPK8 was performed dividing patients into 4 groups. Only High-Low compared to Low–High was significantly 
different (p = 0.03; High-High vs. Low–High: p = 0.17; Low-Low vs. Low–High: p = 0.25; High-High vs. High-Low: p = 0.30; Low-Low vs. High-Low: 
p = 0.46; High-High vs. Low-Low: p = 0.92). Expression of immune cell markers (B) and immune cell meta-signatures (C) in Low–High and High-Low 
groups. Mann–Whitney U test was carried out comparing microarray expression data from the TCGA cohort. D Feature plot depicting XBP1/MAPK8 
expression ratio in single cells of the 9 glioblastoma samples from scRNA-seq data. E Comparison between the ratio of XBP1 and MAPK8 average 
expression only in tumor cells with the percent of immune cells in each sample. Each dot represents one tumor sample from scRNA-seq data. 
Samples’ IDs are indicated. Pearson’s correlation coefficient (r) and p-value (p) are shown
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Crucially, we have identified certain UPR-related genes, 
including HSPA5, P4HB, and PDIA4, as robust risk fac-
tors, demonstrating their significant prognostic relevance 
across all three survival analyses conducted. Additionally, 
OS9 and HSP90B1 emerged as prognostically relevant in 
two out of the three analyses. These findings align with 
previous research, which has highlighted the overexpres-
sion of HSPA5 and the PDI (protein disulfide isomerase) 
family in glioblastoma models [9, 10]. This consistency 
reinforces the notion that UPR’s cytoprotective branches 
play a pivotal role in facilitating the rapid growth of 
tumors and their ability to adapt to the challenging con-
ditions of the microenvironment.

While several ERAD genes exhibited upregulation in 
glioblastoma tumors and were designated as risk factors, 
a notable exception was SEL1L. In contrast to previous 
findings that indicated an escalation in SEL1L protein 
expression with increasing malignancy in glioma cells 

and tissues [39, 40], we observed a downregulation of 
SEL1L in glioblastoma tissue when compared to normal 
brain and low-grade glioma samples. Notably, SEL1L pre-
sents multiple alternative transcripts encoding putative 
protein isoforms, suggesting that its role may oscillate 
between oncogenic and tumor-suppressive, contingent 
upon the cellular context and the prevailing isoform pre-
dominance [40].

Another gene exhibiting downregulation in glioblas-
toma, MAPK8, emerged as a protective factor in all 
three survival analyses conducted. Previous studies have 
alluded to the prognostic significance of the MAPK8 gene, 
postulating that this relevance is rooted in its involvement 
in programmed cell death [41, 42]. ERN1 (IRE1α), which 
serves as the activator of MAPK8 within the context of 
UPR signaling, was also identified as a protective factor 
in two of the analyses. This finding diverges from a prior 
report that associated high ERN1 expression with poor 

Fig. 4  Schematic representation of the main results in this work. The arrows indicate genes identified as upregulated (red) or downregulated 
(blue) in glioblastoma compared to normal brain samples. The shapes colored in red indicate genes identified as risk factors in the survival 
analyses, while protective factors are indicated in blue. The size of the arrows represents the change in expression, and the size of the shapes 
indicates how many survival analyses identified that gene as significant. On the left, a representative tumor with the four cell types identified 
from the scRNA-seq data and the potential association between XBP1 and MAPK8 expression with the presence of immune cells is shown. ATF6c: 
cleaved ATF6; XBP1s: spliced XBP1. Adapted from “UPR Signaling (ATF6, PERK, IRE1)”, by BioRender.com (2022). Retrieved from https://​app.​biore​nder0​
02Ecom/​biore​nder-​templ​ates
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prognosis in glioblastoma patients [20]. Notably, in our 
Cox regression analysis, ERN1 did not emerge as a prog-
nostic factor when adjusted for MAPK8 as a covariate 
(data not shown), implying that its prognostic relevance 
may be contingent upon the protective role of MAPK8.

Regarding the PERK/eIF2α/ATF4 branch, our analysis 
revealed that all the scrutinized genes exhibited upregu-
lation in glioblastoma compared to normal tissue. This 
finding agrees with previous reports that showed ele-
vated protein and transcript levels of both ATF4 and its 
target CHOP (DDIT3) of in xenograft tumors [9]. Addi-
tionally, these findings align with the observed positive 
correlation between PERK activation and tumor grade in 
glioma [9, 43].

Although none of the analyzed genes of this branch had 
a significant impact on prognosis across all three survival 
analyses, EIF2A and TRIB3, the latter being an apoptosis-
related gene activated by CHOP [44], emerged as pro-
tective factors based on Kaplan–Meier curve and Cox 
analysis, respectively. In contrast, ATF3 and ATF5, which 
are induced by the eIF2α/ATF4 pathway, were identified 
as risk factors in one and two of the survival analyses, 
respectively. These findings are consistent with previ-
ous reports in other cancer types [45, 46]. These results 
underscore the complexity of this pathway, that leads to 
an intricate balance between cytoprotective and cyto-
toxic outcomes.

Intrigued by the contrasting functions of the IRE1α 
branch, which can either induce apoptosis via JNK1 or 
promote survival through the XBP1-dependent acti-
vation of adaptive responses, we conducted a survival 
analysis involving these two genes. In line with their 
antagonistic roles within the UPR signaling pathway, we 
observed that patients with elevated XBP1 expression 
and reduced MAPK8 expression experienced shorter sur-
vival compared to patients exhibiting low XBP1 and high 
MAPK8 expression. However, it is important to note that 
our standard transcriptomic methods did not provide 
access to crucial details such as XBP1 mRNA splicing 
or JNK1 (MAPK8) phosphorylation levels. Additionally, 
multiple pathways distinct from the UPR can converge on 
the phosphorylation of JNK1, making it an indirect indi-
cator of IRE1α activation. Therefore, a comprehensive 
understanding of how these pathways interplay and con-
tribute to either cell survival or cell death is still lacking.

While the precise mechanisms underpinning the con-
nection between IRE1α downstream pathways and 
immune infiltration remain elusive, prior studies have 
indicated that IRE1α can either promote immunosur-
veillance or facilitate immune system evasion through 
the regulation of damage-associated molecular patterns, 
cytokines, and the propagation of ER stress signals [23, 

38]. We observed that heightened XBP1 and diminished 
MAPK8 expression correlated with elevated expression 
of immune cell meta-signatures which have previously 
been associated with unfavorable prognosis in glioblas-
toma [33]. These meta-signatures encompassed cell types 
such as macrophages, MDSC, Th1, and Treg. This result 
aligns with recent studies proposing a link between ER 
stress and the expression of immune cell markers in gli-
oma patient samples [17, 47, 48]. Although the increase 
in expression is relatively modest, the CD8 T cell sig-
nature demonstrated a positive association with high 
XBP1 and low MAPK8. Notably, in prior studies, this 
meta-signature had only displayed a correlation with the 
survival of glioblastoma patients characterized by low 
immunosuppressive signatures [33]. Consequently, while 
the observed differential expression may suggest the 
presence of CD8 T cells, it does not necessarily provide 
insight into their activity and signaling context.

Furthermore, when analyzing single cell data, we 
noted that, although both XBP1 and MAPK8 were highly 
expressed in immune cells, the XBP1/MAPK8 expres-
sion ratio within tumor cells correlated strongly with 
the abundance of immune cells in each sample. This sug-
gests a potential role for the IRE1α pathways in shaping 
the TME and influencing the infiltration of immune cell 
types that may potentiate immunosuppression and are 
typically associated with worse patient outcomes. Under-
standing the regulatory role of these genes in immune 
cell function within the glioblastoma microenvironment 
holds the potential to reveal novel approaches target-
ing the UPR. Such insights could contribute to enhanc-
ing antitumor immunity and complementing standard 
therapies as well as emerging immunotherapies. How-
ever, it is important to emphasize that a more in-depth 
investigation is warranted to substantiate these findings 
and elucidate the intricate mechanisms governing this 
relationship. Evaluating UPR protein expression in glio-
blastoma patient samples alongside other indicators of 
malignancy, like immune infiltration, as well as conduct-
ing studies that target these genes in in vitro and in vivo 
models, will be pivotal in advancing our understanding of 
the roles played by the UPR in glioblastoma.

Conclusions
In summary, we performed a comprehensive transcrip-
tional characterization of the unfolded protein response 
in glioblastoma patients. Our study identified UPR-
related genes associated with glioblastoma patient sur-
vival, providing potential prognostic and predictive 
biomarkers as well as promising targets for developing 
new therapeutic interventions in glioblastoma treatment.
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