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Appendix 1 1 

Methods Appendix for “Global, regional, and national incidence and 2 

mortality burden of non-COVID lower respiratory infections and 3 

aetiologies, 1990–2021: a systematic analysis from the Global Burden of 4 

Disease Study 2021” 5 

 6 

This appendix provides further methodological detail and results for “Global Burden of Lower 7 

Respiratory Infections, 1990-2021” 8 

 9 

All the material in the paper itself is novel although it builds off previous GBD works. However, 10 

parts of the supplemental methods appendix include sections adapted from the GBD Capstones 11 

previously published in The Lancet and previous IHME work on antimicrobial resistance.1 12 

 13 

  14 
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Methods 76 

Region Classification 77 

Regions and super-regions are classified as described in the GBD 2010 capstone paper, appendix, page 78 

6.2 A copy of Web Figure 2 from that study’s appendix is provided below. 79 

Appendix Figure 1: GBD regions and super-regions  80 

 81 

  82 
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Socio-Demographic Index  83 

SDI is a composite indicator of a country's lag-distributed income per capita, average years of schooling, 84 

and the total fertility rate (TFR) in females under the age of 25 years. SDI ranges from 0 to 1, with 0 85 

representing the lowest income per capita, lowest educational attainment and highest fertility under 86 

age 25 years observed across all GBD geographies while 1 represents the highest income per capita, 87 

highest educational attainment and lowest fertility under 25 years observed across all GBD geographies. 88 

More information can be found within the appendix of the GBD 2021 fertility and mortality paper.3 89 

 90 

The GBD 2021 SDI quintile cutoffs are:       91 

Quintile Lower cutoff Upper cutoff 

Low SDI 0 46.58 

Low-middle SDI 46.59 61.88 

Middle SDI 61.89 71.19 

High-middle SDI 71.20 81.02 

High SDI 81.03 100 

 92 

Case Definition 93 

Lower respiratory infections (LRI) are defined by the GBD study as pneumonia or bronchiolitis. 94 

Symptoms include cough, fever, and shortness of breath. Included in the GBD modelling were cases 95 

meeting ICD-9 diagnostics criteria for LRI (079.82, 466-469, 470.0, 480-481.9, 482.0-482.89, 483.0-483.9, 96 

484.1-484.2, 484.6-484.7, 487-490.9, 510-511.9, 513.0-513.9) and ICD-10 diagnostic criteria for LRI 97 

(A48.1, A70, B96.0-96.1, B97.21, B97.4-B97.6, J09-J11.89, J12-J13.9, J14-J14.0, J15-J15.8, J20-J21.9, 98 

J85.1, J91.0, P23.0-P23.4, U04-U04.9).4 In addition, the following garbage codes were redistributed 99 

entirely to LRI in ICD-9 (482, 482.9-483, 484, 484.3-484.5, 484.8-486.9, 770.0, V12.61) and ICD-10 (J15.9, 100 

J16-J19.6, J22-J22.9, P23, P23.5-P23.9).4 The GBD case definition of LRI does not include tuberculosis or 101 

COVID-19; although these pathogens can infect the lower respiratory tract, they are modeled separately 102 

due to their individual public health significance.  103 

Cause of Death Input data  104 

Input data for the overall LRI model came from the cause of death (CoD) database. The CoD database 105 

contains several types of data sources, five of which are used in estimation of LRI: vital registration (VR), 106 

verbal autopsy (VA), sample vital registration (VR-S), surveillance, and minimally invasive tissue sample 107 

(MITS) diagnoses. In locations with robust VR systems, VR is the primary source of data for causes of 108 

death. In countries with incomplete or nonexistent VR systems, vital statistics for causes of death are 109 

supplemented with these other data types.5 We outliered data that violated well-established time or 110 

age trends. 111 
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Cause of Death Modelling Strategy  112 

Appendix Figure 2: Flowchart of LRI mortality estimation  113 

 114 
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Modelling fatal LRI  115 

We modelled deaths due to all LRI with two CODEm models, separately for each sex and two age 116 

categories (under 5 and 5 years and above), as the mortality trends differ substantially between these 117 

age groups. The final sex-specific models for deaths due to all LRI were a hybridised model of separate 118 

global and data-rich models for males and females.  119 

In the CODEm framework, four families of statistical models are used: linear mixed effects regression 120 

(LMER) models of the natural log of the cause-specific death rate, LMER models of the logit of the cause 121 

fraction, spatiotemporal Gaussian process regression (ST-GPR) models of the natural logarithm of the 122 

cause-specific death rate, and ST-GPR models of the logit of the cause fraction (see the 2x2 table in 123 

Foreman et al).6 For each family of models, all plausible relationships between covariates and the 124 

response variable are identified. Based on the evidence of a causal relationship with LRI mortality, 125 

covariates are ranked from 1 (proximally related) to 3 (distally related). The direction of the association 126 

between each covariate and LRI mortality is assigned as a prior based on the literature (Appendix Tables 127 

1 and 2). Because all possible combinations of selected covariates are considered for each family of 128 

models, multi-collinearity between covariates may produce implausible signs on coefficients or unstable 129 

coefficients. Each combination is therefore tested for statistical significance (covariate coefficients must 130 

have a coefficient with p-value < 0·05) and plausibility (the coefficients must have the directions 131 

expected on the basis of the literature). Only covariate combinations meeting these criteria are 132 

retained. This selection process is run for both cause fractions and death rates, then ST-GPR and LMER-133 

only models are created for each set of covariates.  134 

The families of models that go through ST-GPR incorporate information about data variance. The main 135 

inputs for a Gaussian process regression (GPR) are a mean function, a covariance function, and data 136 

variance for each data point. These inputs are described in detail in Foreman et al. Three components of 137 

data variance are now used in CODEm: sampling variance, non-sampling variance, and garbage code 138 

redistribution variance. The computation of sampling variance and non-sampling variance has not 139 

changed since previous iterations of the GBD and is also described in Foreman et al.6 Garbage code 140 

redistribution variance is computed in the CoD database process. Since variance is additive, we calculate 141 

total data variance as the sum of sampling variance, non-sampling variance, and redistribution variance. 142 

Increased data variance in GPR may result in the GPR draws not following the data point as closely. 143 

The performance of all models (individual and ensemble) is evaluated by means of out-of-sample 144 

predictive validity tests. Thirty percent of the data are randomly excluded from the initial model fits. 145 

These individual model fits are evaluated and ranked by using half of the excluded data (15% of the 146 

total), then used to construct the ensembles on the basis of their performance. Data are held out from 147 

the analysis on the basis of the cause-specific missingness patterns for ages and years across locations. 148 

Out-of-sample predictive validity testing is repeated 20 times for each model, which has been shown to 149 

produce stable results. These performance tests include the root mean square error (RMSE) for the log 150 

of LRI death rate, the direction of the predicted versus actual trend in the data, and the coverage of the 151 

predicted 95% UI. 152 

The component models are weighted on the basis of their predictive validity rank to determine their 153 

contribution to the ensemble estimate. The relative weights are determined both by the model ranks 154 

and by a parameter ψ, whose value determines how quickly the weights taper off as rank decreases. The 155 
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distribution of ψ is described in more detail in Foreman et al. A set of ensemble models is then created 156 

by using the weights constructed from the combinations of ranks and ψ values. These ensembles are 157 

tested by using the predictive validity metrics described in the previous section on the remaining 15% of 158 

the data, and the ensemble with the best performance in out-of-sample trend and RMSE is chosen as 159 

the final model. Lastly, 1000 draws are created for the final ensemble, and the number of draws 160 

contributed by each model is proportional to its weight. The mean of the draws is used as the final 161 

estimate for the CODEm process, and a 95% UI is created from the 0·025 and 0·975 quantiles of the 162 

draws.  163 

Similar to other models of mortality in GBD, LRI mortality models are single-cause, requiring that the 164 

sum of all mortality models must be equal to the all-cause mortality envelope. We correct LRI mortality 165 

estimates, and other causes of mortality, by rescaling them according to the uncertainty around the 166 

cause-specific mortality rate. This process is called CoDCorrect and is essential to ensure internal 167 

consistency among causes of death. 168 

In past GBD cycles, estimates of PCV3, Hib3, and DTP3 vaccine coverage among infants in the modelled 169 

year were used as the primary covariate for this linear regression. In GBD 2021, we now use a lagged 170 

mean of PCV3, Hib3, and DTP3 vaccine coverage calculated over a rolling, five-year interval to capture 171 

population-level vaccine-derived immunity among under-5-year-olds, including coverage both in the 172 

current year and in recent years.  173 

Appendix Table 1: Covariates used for LRI cause-of-death ensemble modelling for children under 5 years 174 
Level Covariate Direction 

of the 
association 

1 Childhood stunting summary exposure value 
(SEV) 

+ 

Childhood underweight SEV  + 

Childhood wasting SEV + 

Indoor air pollution + 

LRI SEV + 

Antibiotics for LRI - 

Hib3 vaccine coverage proportion, lagged - 

PCV3 vaccine coverage proportion, lagged - 

2 Secondhand smoking prevalence + 

Zinc deficiency + 

DTP3 vaccine coverage proportion, lagged - 

Healthcare Access and Quality Index - 

Ambient particulate matter SEV + 

Household air pollution SEV + 

Outdoor air pollution (PM2.5) + 

Handwashing SEV + 

3 Sanitation SEV + 

Population density >1000/km2 + 

Maternal education  - 

Socio-demographic Index - 

 175 
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Appendix Table 2: Covariates used for LRI cause-of-death ensemble modelling for 5–95+ years 176 

Level Covariate Direction 
of the 
association 

1 Indoor air pollution + 

LRI SEV + 

Outdoor air pollution (PM2.5)  + 

Secondhand smoking prevalence + 

Smoking prevalence + 

2 DTP3 vaccine coverage proportion, lagged - 

Adult underweight + 

Healthcare Access and Quality Index - 

PCV3 vaccine coverage proportion, lagged - 

Handwashing access + 

3 Education years per capita - 

Lag distributed income per capita - 

Socio-demographic Index - 

Sanitation SEV + 

We adjusted overall LRI mortality estimates for 2020 and 2021 to account for the reductions in influenza 177 

and RSV mortality associated with the COVID-19 pandemic, as described on page 17 in this appendix. 178 

Non-Fatal Input data 179 

Model inputs 180 

Input data included all data used in GBD 2019 and new data identified in our updated systematic review, 181 
newly acquired surveys, and new claims and inpatient data. These data measure lower respiratory 182 
infection incidence and prevalence. They come from a systematic literature review, hospital inpatient 183 
and outpatient data, claims data from the USA, and surveys. In our study, we have only included 184 
population-representative surveys. We assessed representativeness by categorizing the population 185 
studied by the survey. A population-representative survey studies the general population of a nation, 186 
province, or other geographic area. As a note, we still consider a survey representative if it only focuses 187 
on certain ages or sexes, because in those cases, we only use it as an input to the model for those ages 188 
and sexes. DHS and MICS are the gold-standard examples of representative surveys. In contrast, a non-189 
representative survey studies only a specific subgroup of the population living in a certain area, almost 190 
always a marginalized subgroup within the greater society. Examples of non-representative surveys, 191 
which we would exclude, are those that focus only on refugees, prisoners, or people who inject drugs.   192 
 193 
Data were outliered or excluded if we found them unreasonable when compared to regional, super-194 
regional, and global rates.  195 
Our search string for systematic review was constructed as follows: (("lower respiratory"[MeSH] OR 196 

pneumonia[MeSH]) AND (2019/02/07[PDat] : 2020/12/31[PDat]) AND ((incidence OR prevalence OR 197 

epidemiology) OR (etiolog*[title/abstract] OR influenza[title/abstract] OR "respiratory syncytial 198 

virus"[title/abstract])) NOT(autoimmune[title/abstract] OR COPD [title/abstract] OR "cystic 199 

fibrosis"[title/abstract] OR Review[ptyp]) NOT (animals[MeSH] NOT humans[MeSH]). This string 200 

identified 284 records as detailed in Appendix Figure 2 below. 201 
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Appendix Figure 3: Prisma Diagram of systematic review for LRI incidence and prevalence data  202 

 203 

 204 

Bias corrections 205 

To estimate the non-fatal burden of LRI, we also used self-reported prevalence of LRI symptoms from 206 

population-representative surveys, such as the Demographic and Health Survey and the Multiple 207 

Indicator Cluster Survey. We applied sampling weights to adjust for unequal probabilities of selection 208 

and non-responses to ensure representative estimates of the population. When possible, we extracted 209 

survey data by one-year age group and by sex. We converted these data from two-week period 210 

prevalence to point prevalence. The equation for this adjustment is:  211 

𝑃𝑜𝑖𝑛𝑡 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 =
𝑃𝑒𝑟𝑖𝑜𝑑 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∗  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

(𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑒𝑟𝑖𝑜𝑑 + 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 1)
 212 

 213 

We accepted four survey definitions for the prevalence of symptoms of LRI: 1) Cough with difficulty 214 

breathing with symptoms in the chest with a fever was our gold standard, but we also accepted 2) 215 

Cough with difficulty breathing with symptoms in the chest without fever, 3) Cough with difficulty 216 

breathing with fever, and 4) Cough with difficulty breathing without fever. To make these definitions 217 

comparable, we identified the surveys that met the best case definition (definition 1). Within these 218 

surveys, we calculated the ratio of the prevalence of the best case definition to the prevalence of the 219 
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alternate definitions. This ratio was used as the dependent variable in a meta-regression. The results 220 

from that meta-regression were used to adjust the prevalence and uncertainty for all the surveys that 221 

reported alternate case definitions (Appendix Table 3a). 222 

Appendix Table 3A: MR-BRT crosswalk adjustment factors for lower respiratory infections, surveys 223 

Data Input 

Reference or 

alternative 

case definition 

Gamma† 
Crosswalk 

covariate 

Beta coefficient, 

log(95% UI)* 

Adjustment 

Factor (95% 

UI)** 

Cough, with 

difficulty 

breathing and 

fever 

ref -- -- -- -- 

Survey, chest 

without fever 
alt 0.17 intercept 

–0.48 (–1.28 to 

0.32) 

0.62 (0.28 to 

1.38) 

Survey, difficulty 

breath without 

fever 

alt 0.51 intercept 
–0.82 (–2.22 to 

0.58) 

0.44 (0.11 to 

1.79) 
  

Survey, difficulty 

breathing with 

fever 

alt 0.22 intercept 
–0.58 (–1.5 to 

0.34) 

0.56 (0.22 to 

1.40) 
  

 *MR-BRT crosswalk adjustments can be interpreted as the factor the alternative case definition is adjusted by to 224 
reflect what it would have been had it been measured using the reference case definition. If the log/logit beta 225 
coefficient is negative, then the alternative is adjusted up to the reference. If the log/logit beta coefficient is 226 
positive, then the alternative is adjusted down to the reference. 227 
**The adjustment factor column is the exponentiated beta coefficient. For log beta coefficients, this is the relative 228 
rate between the two case definitions. For logit beta coefficients, this is the relative odds between the two case 229 
definitions.  230 
†Gamma is a measure of between-study heterogeneity and is incorporated in the calculation of variance around 231 
the beta coefficient 232 

Survey data were adjusted for seasonality. An inclusion criterion for scientific literature is a study 233 

duration longer than one year to avoid bias in the seasonal timing of LRI. Surveys are frequently 234 

conducted over several months. To account for seasonal variation in LRI symptom prevalence, we fit a 235 

generalised additive model with an identity link function, incorporating forced periodicity for each GBD 236 

region, and assumed a normally distributed random error term with a mean of zero and a variance of σ².. The 237 

model is mixed-effects with random effects on each country. The model accounts for the year of the 238 

survey and the case definition used. The percent difference between the monthly model fit LRI 239 

prevalence and the corresponding regional-mean LRI prevalence is a scalar to adjust survey data by 240 

month and geography. We adjusted the self-reported survey data to the level of our reference case 241 

definition, clinician-diagnosed pneumonia or bronchiolitis, using the adjustment factor from Appendix 242 

Table 3b to enhance data comparability.In addition to survey data, hospital inpatient and US inpatient 243 

claims data were included in the LRI modelling. These data are adjusted prior to modelling for 244 

readmissions and multiple diagnoses. To make the data more consistent in the modelling process, we 245 
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converted all incidence data to prevalence. We found the ratio of the prevalence of LRI in hospitalisation 246 

records to the prevalence of LRI in our case definition (clinician-diagnosed pneumonia or bronchiolitis) 247 

for locations that contained data on both these prevalence values. We then regressed this ratio in a 248 

meta-regression to predict the adjustment factor for hospitalisation data to make them compatible with 249 

the reference case definition for our modelling. This meta-regression considered the Socio-demographic 250 

Index (SDI) as a predictor of this ratio for inpatient data, assuming that location-years with higher values 251 

of SDI are more likely to have access to health care, making this ratio smaller in those location-years 252 

(Appendix Figure 3, Table 3b). Similarly, age was considered a predictor for hospital-based studies, and 253 

data were adjusted accordingly using age midpoint (Appendix Figure 3, Table 3b). 254 

Appendix Figure 4: Meta-regression of the log ratio of community-level clinician-diagnosed LRI to clinical 255 

inpatient LRI prevalence 256 

 257 

Claims data for GBD 2019 include MarketScan (USA), and data from Taiwan (province of China), Poland, 258 

and Russia. MarketScan data are retrieved by IHME’s Clinical Informatics Team. As with inpatient clinical 259 

data, these data are converted first to prevalence, then compared to the reference definition for LRI 260 

using a meta-regression model (Appendix Table 3b). Taiwan claims data were dropped as there were no 261 

reference data to match with and because the values there were systematically different from those in 262 

the USA. 263 

Appendix Table 3B: MR-BRT crosswalk adjustment factors for lower respiratory infections: clinical 264 

inpatient, claims, hospital-based studies, and self-reported data to the level of the reference case 265 

definition 266 

Data input Reference or 
alternative case 
definition 

Gamma† Crosswalk 
covariate 

Beta coefficient, 
log 
(95% UI)* 

Adjustment 
factor (95% 
UI)** 

Clinician-
diagnosed 

ref   -- -- -- 
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pneumonia or 
bronchiolitis 

Clinical, 
inpatient  

alt 

1.43 

sdi_0 
2.79 (0.2 to 
5.38) 

16.23 (1.22 
to (217.02) 

Clinical, 
inpatient  

alt sdi_1 
4.87 (2.31 to 
7.43) 

129.85 
(10.07 to 
1685.81) 

Clinical, 
inpatient  

alt sdi_2 
1.08 (–1.49 to 
3.65) 

2.94 (0.23 to 
38.47) 

Clinical, 
inpatient  

alt sdi_3 
0.02 (–2.43 to 
2.47) 

1.02 (0.09 to 
11.82) 

Literature, 
hospital-based 

alt 

0.30 

age_mid_0 
1.06 (–0.31 to 
2.42) 

2.87 (0.73 to 
11.25) 

Literature, 
hospital-based 

alt age_mid_1 
1.98 (–0.42 to 
4.38) 

7.23 (0.66 to 
79.84) 

Literature, 
hospital-based 

alt age_mid_2 
1.31 (–0.11 to 
2.74) 

3.72 (0.90 to 
15.49) 

Literature, 
hospital-based 

alt age_mid_3 
0.95 (–0.2 to 
2.1) 

2.59 (0.82 to 
8.17) 

Self-report alt 0.81 Intercept 
–1.19 (–2.98 to 
0.6) 

0.30 (0.05 to 
1.82) 

Claims, 
MarketScan 

alt 0.87 intercept 
1.14 (–0.69 to 
2.97) 

3.13 (0.5 to 
19.49) 

*MR-BRT crosswalk adjustments can be interpreted as the factor the alternative case definition is adjusted by to 267 
reflect what it would have been had it been measured using the reference case definition. If the log/logit beta 268 
coefficient is negative, then the alternative is adjusted up to the reference. If the log/logit beta coefficient is 269 
positive, then the alternative is adjusted down to the reference. 270 
**The adjustment factor column is the exponentiated beta coefficient. For log beta coefficients, this is the relative 271 
rate between the two case definitions. For logit beta coefficients, this is the relative odds between the two case 272 
definitions.  273 
†Gamma is a measure of between-study heterogeneity and is incorporated in the calculation of variance around 274 
the beta coefficient 275 

We performed a systematic review of the duration of symptoms of LRI. We sought consistency with our 276 

case definition of LRI and defined our duration as the time between the onset of symptoms to the 277 

resolution of increased work of breathing. Although crucial, there were very limited data on spatial, 278 

temporal, or age-specific duration, which may vary based on severity, aetiology, and treatment. We 279 

identified 485 titles from PubMed and extracted six studies which were used in a meta-analysis (mean 280 

duration 7.79 days [6.2–9.64]). We used this as the duration of LRI in our conversions from period to 281 

point prevalence and for the conversion between incidence and prevalence. 282 

Severity splits 283 

The distribution of moderate (85%) and severe (15%) lower respiratory infections is determined by a 284 

meta-analysis of the ratio of severe to all LRI from studies that report the incidence of moderate and 285 

severe lower respiratory infections.  286 
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We used the health states of acute infectious disease episode, moderate and severe, with the lay 287 

descriptions and disability weight values shown in Appendix Table 4 below: 288 

Appendix Table 4: Data inputs for lower respiratory infections morbidity modeling by parameter 289 

Severity level Lay description DW (95% CI) 

Moderate Has a fever and aches and feels 
weak which causes some 
difficulty with daily activities. 

0.051 (0.032 to 0.074) 

Severe Has a high fever and pain and 
feels very weak, which causes 
great difficulty with daily 
activities. 

0.133 (0.088 to 0.19) 

 290 

Appendix Table 5: Data inputs for lower respiratory infections morbidity modeling by parameter 291 

 Countries with data Total source counts 

Incidence 162 2058  

Prevalence  156 969 

 292 

  293 
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Non-Fatal Modelling strategy  294 

Appendix Figure 5: Flowchart of LRI non-fatal burden estimation 295 

296 
The non-fatal lower respiratory infection burden is modelled in DisMod-MR 2.1, a Bayesian meta-297 

regression modelling framework. DisMod-MR produces estimates of the incidence, prevalence, and 298 

remission of LRI for each age, sex, geographical location, and year. We defined the time to recovery as 299 

an average of 10 days (5–15 days), which corresponds with a remission 36.5. The models are informed 300 

by country-level covariates (Appendix Table 6).  301 

DisMod-MR 2.1 description 302 

The sequence of estimation in DisMod MR 2.11 occurs at five levels: global, super-region, region, country 303 

and, where applicable, subnational location. The super-region priors are generated at the global level 304 

with mixed-effects, nonlinear regression using all available data; the super-region fit, in turn, informs the 305 

region fit, and so on down the cascade. Subnational estimation was informed by the country fit and 306 

country covariates, plus an adjustment based on the average of the residuals between the subnational 307 

location’s available data and it’s prior. This mimicked the impact of a random effect on estimates 308 

between subnationals. At each level of the cascade, the DisMod-MR 2.1 enforces consistency between 309 

all parameters. Analysts have the choice to branch the cascade in terms of time and sex at different 310 

levels depending on data density.5 We used the default option to model LRI, which is to branch by sex 311 

after the global fit but to retain all years of data until the lowest level in the cascade. 312 

The coefficients for country covariates were re-estimated at each level of the cascade. For a given 313 

location, country coefficients were calculated using both data and prior information available for that 314 

location. In GBD 2021, we generated model fits for the years 1990, 1995, 2000, 2005, 2010, 2015, 2019, 315 

2020 and 2021, and log-linearly interpolated estimates for the intervening years. Convergence was 316 
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assessed qualitatively by visually inspecting diagnostic plots of the posterior distributions. The 95% 317 

uncertainty intervals were computed based on 1000 draws from the posterior distribution of the 318 

converged model using the 2.5th and 97.5th percentiles of the ordered 1000 values. 319 

Analysts have the choice of using a Gaussian, log-Gaussian, Laplace or Log-Laplace likelihood function in 320 

DisMod-MR 2.1. We used the default log-Gaussian equation for the data likelihood, which is:  321 

−𝑙𝑜𝑔[𝑝(𝑦𝑗|𝛷)] = log(√2𝜋) + log(𝛿𝑗 + 𝑠𝑗) +
1

2
(

log(𝑎𝑗 + 𝜂𝑗) − log(𝑚𝑗 + 𝜂𝑗)

𝛿𝑗 + 𝑠𝑗
)

2

 322 

where, 𝑦𝑗  is a ‘measurement value’ (i.e., data point); 𝛷 denotes all model random variables; 𝜂𝑗j is 323 

the offset value, eta, for a particular ‘integrand’ (prevalence, incidence, remission, excess mortality 324 

rate, cause- specific mortality rate) and 𝑎𝑗  is the adjusted measurement for data point j, defined 325 

by: 326 

  327 

𝑎𝑗 = 𝑒(−𝑢𝑗−𝑐𝑗)𝑦𝑗 328 

where 𝑢𝑗 is the total ‘area effect’ (i.e., the sum of the random effects at three levels of the cascade: 329 

super- region, region and country) and 𝑐𝑗 is the total covariate effect (i.e., the mean combined fixed 330 

effects for sex, study level and country level covariates), defined by: 331 

  332 

𝑐𝑗 = ∑ β𝐼(𝑗),𝑘𝑋̂𝑘,𝑗

𝐾[𝐼(𝑗)]−1

𝑘=0

 333 

with standard deviation  334 

 335 

𝑠𝑗 = ∑ ζ𝐼(𝑗),𝑙𝑍̂𝑘,𝑗

𝐿[𝐼(𝑗)]−1

𝑙=0

 336 

where k denotes the mean value of each data point in relation to a covariate (also called x-covariate); 337 

𝐼(𝑗) denotes a data point for a particular integrand, j; β𝐼(𝑗),𝑘  is the multiplier of the kth x-covariate for 338 

the ith integrand; 𝑋̂𝑘,𝑗  is the covariate value corresponding to the data point j for covariate k; l denotes 339 

the standard deviation of each data point in relation to a covariate (also called z-covariate); ζI(j),k is the 340 

multiplier of the lth z-covariate for the ith integrand; and 𝛿𝑗 is the standard deviation for adjusted 341 

measurement j, defined by: 342 

  343 

𝛿𝑗 = 𝑙𝑜𝑔[𝑦𝑗 + 𝑒(−𝑢𝑗−𝑐𝑗)𝜂𝑗 + 𝑐𝑗] − 𝑙𝑜𝑔[𝑦𝑗 + 𝑒(−𝑢𝑗−𝑐𝑗)𝜂𝑗] 344 
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Where 𝑚𝑗  denotes the model for the jth measurement, not counting effects or measurement noise and 345 

defined by: 346 

 𝑚𝑗 =
1

𝐵(𝑗)−𝐴(𝑗)
∫ 𝐼𝑗

𝐵(𝑗)

𝐴(𝑗)
(a) da 347 

where 𝐴(𝑗) is the lower bound of the age range for a data point; 𝐵(𝑗) is the upper bound of the age 348 

range for a data point; and 𝐼𝑗  denotes the function of age corresponding to the integrand for data point 349 

j.  350 

The source code for DisMod-MR 2.1 as well as the wrapper code is available at the following link: 351 

https://github.com/ihmeuw/ihmemodelling/tree/master/gbd_2017/shared_code/central_comp/nonfat352 

al/dismod. 353 

 354 

Appendix Table 6: Summary of covariates used in the LRI DisMod-MR meta-regression model 355 

Covariate Type Parameter Exponentiated beta 
(95% Uncertainty 

Interval) 

Socio-demographic 
Index 

Country-level Prevalence 0.14 (0.14 to 0.14) 

Healthcare Access and 
Quality index 

Country-level Excess mortality 0.37 (0.14 to 0.95) 

We adjusted overall LRI incidence and prevalence estimates for 2020 and 2021 to account for the 356 

reductions in influenza and RSV mortality associated with the COVID-19 pandemic, as described on page 357 

17 in this appendix. 358 

Aetiology Estimation   359 

Aetiologies Input Data 360 

Input data for aetiology estimation consisted of multiple cause of death, vital registration, hospital 361 

discharge, and microbial data, as well as the PCV and Hib3 efficacy literature review shown in Appendix 362 

Figure 4, and a separate, targeted review pulling data from citations found in meta-analyses. For data 363 

sources that provided ICD codes (multiple cause of death, vital registration, hospital discharge, and 364 

some microbial data), these codes were used to identify patients with lower respiratory tract infections 365 

and the culprit pathogen, when detailed. For the microbial data that did not provide ICD codes, we 366 

identified pathogens associated with LRI based on the type of sample that was collected from the 367 

patient. Samples we deemed related to LRI included sputum, aspirates from the lower respiratory tract, 368 

and pleural fluid. We excluded samples from the eyes, ears, nose, or throat. 369 

Appendix Table 7: ICD Codes Used in Aetiology Estimation 370 

Type of LRI ICD 10 code(s) ICD9 code(s) 

LRI due to Bordetella pertussis A37-A37.9 033-033.9, 484.3 

LRI due to Legionella spp. A48.1-A48.2  -- 
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LRI due to Actinomyces  -- 039.1 

LRI due to Chlamydia spp. A70, J16.0, P23.1 073-073.9, 483.1, 484.2 

LRI due to Streptococcus pneumoniae J13-J13.9, J15.4, J20.2 481-481.9, 482.3 

LRI due to Haemophilus influenzae J14-J14.0, J20.1 482.2 

LRI due to Klebsiella pneumoniae J15.0 482.0 

LRI due to Pseudomonas spp.  -- 482.1 

LRI due to Pseudomonas aeruginosa J15.1, P23.5  -- 

LRI due to Staphylococcus aureus J15.2, P23.2 482.4 

LRI due to Group B Streptococcus J15.3, P23.3  -- 

LRI due to Escherichia coli J15.5, P23.4  -- 

LRI due to Mycoplasma pneumoniae J15.7, J20.0 483.0 

LRI due to Francisella tularensis  -- 484.4 

LRI due to Bacillus anthracis  -- 484.5 

LRI due to virus 
 -- 

079.6-079.7, 480-480.9, 

484.0-484.1, 487-489 

LRI due to Coronaviruses B34.2, B97.2, J12.8  -- 

LRI due to Respiratory Syncytial Virus B97.4, J12.1, J20.5, J21.0  -- 

LRI due to Influenza viruses J09-J11.8  --  

LRI due to Parainfluenza viruses J12.2, J20.4  -- 

LRI due to Adenoviruses J12.0  -- 

LRI due to Rhinoviruses J20.6  -- 

LRI due to other virus J12, J12.3, J12.9, J17.0, 

J17.2-J17.8, J20.3, J20.7-

J20.8, J21.1 

 -- 

  371 

Data on pathogens cultured from human infections were solicited from a wide array of international 372 

stakeholders (representing every inhabited continent). These included research hospitals, surveillance 373 

networks, and infection databases maintained by private laboratories and medical technology 374 

companies. For a full list and details on the sources used for our estimates, please refer to the following 375 

article appendix (section 2 and section 6).1 376 
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Due to the documented challenge7,8 in the microbiological identification of some LRI culprit pathogens, 377 

we supplemented these data with estimates of the PAF of pneumonia due to Streptococcus pneumoniae 378 

(pneumococcus), which was calculated based on vaccine efficacy data reported in 18 high-quality 379 

vaccine probe studies.  380 

We conducted a systematic literature review of PCV efficacy studies until January 2020. For PCV studies, 381 

we extracted, if available, the distribution of  S. pneumoniae serotypes and the serotypes included in the 382 

PCV used in the study. Four new studies were identified for GBD 2021, which were all extracted only from 383 

PCV efficacy studies. PCV trial data are also frequently limited to younger age populations. To 384 

understand the contribution of  S. pneumoniae in older populations, we also included PCV efficacy 385 

studies that used before-after approaches. 386 

Appendix Figure 6: Prisma Diagram of systematic review for PCV vaccine efficacy data 387 

 388 

 389 

 390 

 391 

 392 

 393 
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Appendix Figure 7: Non-fatal LRI aetiology site-years  394 

 395 

Appendix Figure 8: Fatal LRI aetiology site-years  396 

 397 

 398 

Nonfatal Aetiology Modelling Strategy 399 

We estimated mutually-exclusive proportions of LRI cases attributable to the following set of pathogens: 400 

Acinetobacter baumannii, Chlamydia spp., Enterobacter spp., Escherichia coli, fungi, group B 401 
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Streptococcus, Haemophilus influenzae, influenza, Klebsiella pneumoniae, Legionella spp., Mycoplasma 402 

spp., polymicrobial infections, Pseudomonas aeruginosa, respiratory syncytial virus (RSV), 403 

Staphylococcus aureus, Streptococcus pneumoniae, and other viruses, as well as a residual, ‘other 404 

pathogen’ category. These proportions were estimated for five aggregate age groups: neonatal, post-405 

neonatal to 5 years, 5 to 50 years, 50 to 70 years, and 70 years or older. 406 

We estimated LRI aetiologies separately from overall LRI mortality and morbidity using two distinct 407 

counterfactual modeling strategies to estimate population attributable fractions (PAFs), described in 408 

detail below. The PAF represents the relative reduction in LRI mortality if there was no exposure to a 409 

given aetiology. We calculated uncertainty of our PAF estimates from 1000 draws of each parameter 410 

using normal distributions in log space. 411 

Streptococcus pneumoniae 412 

For Streptococcus pneumoniae, we calculated the population attributable fraction using a vaccine probe 413 
design9 due to the documented challenge in the microbiological identification of this pathogen.7,8 We 414 
then used these results as an input into the MEPCO pathogen distribution model. In a vaccine probe 415 
design, the ratio of vaccine efficacy against all pneumonia (non-pathogen specific) to vaccine-type, 416 
pathogen-specific disease represents the fraction of pneumonia cases attributable to each pathogen.  417 

To estimate the PAF for S. pneumoniae pneumonia, we calculated study-level PAFs as the ratio of 418 
vaccine efficacy against all pneumonia to vaccine-type pathogen-specific pneumonia (Equation 1 & 2). 419 
For S. pneumoniae pneumonia, we used only the vaccine efficacy against vaccine-type S. pneumoniae 420 
pneumonia. This value was available in three studies and was calculated separately for children and 421 
adults, pooling the results of the Cutts10 and Madhi11 studies for children and using the Bonten12 study 422 
for adults. Vaccine efficacy for all pneumonia was available at the study level. To estimate the PAF for S. 423 
pneumoniae pneumonia, we included RCTs and before and after vaccine introduction longitudinal 424 
studies. 425 

For S. pneumoniae pneumonia, we adjusted the PAF by vaccine serotype coverage. Finally, we used an 426 

age distribution of PAF modelled in MR-BRT to determine the PAF by age. Because of an absence of data 427 

describing vaccine efficacy against Hib in children older than 2 years, we did not attribute Hib to 428 

episodes of LRI in ages 5 years and older. 429 

We used a vaccine probe design to estimate the PAF for S. pneumoniae pneumonia and (Hib) by first 430 

calculating the ratio of vaccine efficacy against all pneumonia to pathogen-specific pneumonia at the 431 

study level (Equation 1 ).1,13,14 We then adjusted this estimate by vaccine coverage and expected vaccine 432 

performance to estimate country- and year-specific PAF values (Equation 2). 433 

1) 𝑃𝑛𝑒𝑢𝑚𝑜𝑃𝐴𝐹𝐵𝑎𝑠𝑒 =  
𝑉𝐸𝑎𝑙𝑙_𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎

𝑉𝐸𝑣𝑡_𝑝𝑛𝑒𝑢𝑚𝑜𝑐𝑜𝑐𝑐𝑎𝑙_𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎∗𝐶𝑜𝑣𝑆𝑒𝑟𝑜𝑡𝑦𝑝𝑒
 434 

 435 

2) 𝑃𝐴𝐹𝑃𝑛𝑒𝑢𝑚𝑜 = 𝑃𝑛𝑒𝑢𝑚𝑜𝑃𝐴𝐹𝐵𝑎𝑠𝑒 ∗
(1−𝐶𝑜𝑣𝑃𝐶𝑉∗𝑉𝐸𝑎𝑙𝑙_𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎)

(1−𝑃𝑛𝑒𝑢𝑚𝑜𝑃𝐴𝐹𝐵𝑎𝑠𝑒∗𝐶𝑜𝑣𝑃𝐶𝑉∗𝑉𝐸𝑎𝑙𝑙_𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎)
 436 

 437 



22 
 
 

Where 𝑉𝐸𝑎𝑙𝑙_𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎 is the vaccine efficacy against non-specific pneumonia, 438 

𝑉𝐸𝑣𝑡_𝑝𝑛𝑒𝑢𝑚𝑜𝑐𝑜𝑐𝑐𝑎𝑙_𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎 is the vaccine efficacy against vaccine-type S. pneumoniae pneumonia, 439 

𝐶𝑜𝑣𝑠𝑒𝑟𝑜𝑡𝑦𝑝𝑒  is the serotype-specific vaccine coverage for PCV15, and 𝐶𝑜𝑣𝑃𝐶𝑉  is the PCV coverage. 440 

We used the 𝑃𝐴𝐹𝑃𝑛𝑒𝑢𝑚𝑜 as an input to our aetiology estimation model, described below, where it 441 

represented the proportion of LRI incidence attributable to Streptococcus pneumoniae. The remainder, 442 

1 −  𝑃𝐴𝐹𝑃𝑛𝑒𝑢𝑚𝑜, represented “non-pneumococcus” LRI, and was represented as a composite of all of 443 

the non- Streptococcus pneumoniae pathogens we estimated as well as the residual “other pathogens” 444 

category. 445 

Other aetiologies 446 

Aetiology proportions were calculated using an entirely new method from that applied in previous 447 
rounds of the GBD. Proportions were estimated as a function of age group, hospital/community-448 
acquired infection, Hib and pneumococcal vaccination, and the Healthcare Access and Quality index 449 
(HAQi). These covariates vary across geography and time, creating unique predictions for each age 450 
group, location, and year. Working from the assumption that aetiologies would follow a multinomial 451 
distribution, we estimated aetiology fractions using a method previously described as multinomial 452 
estimation of partial and composite observations (MEPCO).Error! Bookmark not defined. Briefly, we constructed a 453 
network model with the dependent variable as the log ratio of cases between different pathogens.  454 

Due to vastly different aetiology proportions among neonates relative to other ages, we estimated 455 

neonatal aetiologies separately. The model estimates both the proportions of hospital- and community-456 

acquired LRI cases attributable to each aetiology. For the current GBD study, we report the distribution 457 

only amongst community-acquired disease as the pathogen distribution of LRI. This is because hospital-458 

acquired infections occur with a non-LRI underlying cause, and they would therefore not be a part of the 459 

LRI envelope reported in the current study. 460 

 461 

Appendix Table 8: Covariates used in aetiology modeling 462 

Covariate Model 

Age group (neonatal, post-neonatal to 5, 5 to 50, 
50 to 70, 70 plus) 

Non-neonatal 

Healthcare Access and Quality Index Neonatal, Non-neonatal 

Community vs. Hospital-acquired infection Neonatal, Non-neonatal 

Proportion of people who as infants were 
vaccinated with PCV 

Non-neonatal 

Proportion of population age 15 or younger 
vaccinated against pneumococcus 

Neonatal, Non-neonatal 

Proportion of people who as infants were 
vaccinated against Haemophilus influenzae type B 

Non-neonatal 

Proportion of population age 15 or younger 
vaccinated against Haemophilus influenzae type B 

Neonatal, Non-neonatal 

 463 
Due to inconsistencies in which pathogens are tested for and reported by different data sources, each 464 

data source contained partial observations of the possible outcomes of the underlying multinomial 465 

distribution. Certain data sources like the vaccine probe estimates represent compositional 466 
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observations, where pathogens like “not S. pneumoniae” represent aggregates of more detailed 467 

pathogens.  468 

In order to use both partial and compositional data, we constructed a network model with the 469 

dependent variable as the log ratio of cases between different pathogens and estimated over a flexible 470 

parameterisation of multinomial parameters using a maximum likelihood approach. Consider a given 471 

infectious syndrome with a multinomial distribution of 𝑛 mutually exclusive, collectively exhaustive 472 

aetiologies with probabilities 𝑝 = (𝑝1, … , 𝑝𝑛), so that each 𝑝𝑗 ∈ (0,1) and ∑ 𝑝𝑗𝑗 = 1. The likelihood of 473 

an observation of 𝑐 = (𝑐1, … , 𝑐𝑛), where 𝑐𝑗  = number of cases of pathogen 𝑗 in a total sample of 𝑁 474 

infections (∑ 𝑐𝑗𝑗 = 𝑁), is: 475 

𝑃(𝑐|𝑝) = 𝑁! ∏
𝑝𝑗

𝑐𝑗

𝑐𝑗 !

𝑛

𝑗=1

(1) 476 

We modelled the probabilities using a composition of a link function with a linear predictor: 477 

𝑝𝑖,𝑗 = exp(𝑥𝑖,𝑗
𝑇 𝛽𝑗) (2) 478 

for observations 𝑖, a vector of covariates 𝑥𝑖,𝑗, and a vector of coefficients𝛽𝑗 for each pathogen 𝑗. 479 

However, we did not observe these probabilities directly. Rather, we observed ratios between sums of 480 

these probabilities, which reduce to ratios between sums of cases within each study. These observations 481 

therefore take the form: 482 

𝑦𝑖 =
𝑐𝑎𝑠𝑒𝑠 𝑜𝑓 𝑝𝑎𝑡ℎ𝑜𝑔𝑒𝑛 𝐴

𝑐𝑎𝑠𝑒𝑠 𝑜𝑓 𝑝𝑎𝑡ℎ𝑜𝑔𝑒𝑛 𝐵
=

∑ 𝑤𝑖,𝑗
𝑎 exp(𝑥𝑖,𝑗

𝑇 𝛽𝑗)𝑛
𝑗=1

∑ 𝑤𝑖,𝑗
𝑏 exp(𝑥𝑖,𝑗

𝑇 𝛽𝑗)𝑛
𝑗=1

(3) 483 

where 𝑤𝑖,𝑗
𝑎  is a weight of 0 or 1 that selects the mutually exclusive, collectively exhaustive most-detailed 484 

pathogens that make up observed pathogen A, which may be a composite observation. For example, for 485 

the “non Streptococcus pneumoniae” pathogen, 𝑤𝑖,𝑗 would be 1 for Acinetobacter baumannii, 486 

Chlamydia spp., Enterobacter spp., Escherichia coli, fungi, group B Streptococcus, Haemophilus 487 

influenzae, influenza, Klebsiella pneumoniae, Legionella spp., Mycoplasma spp., polymicrobial infections, 488 

Pseudomonas aeruginosa, respiratory syncytial virus (RSV), Staphylococcus aureus, other viruses, and 489 

the residual, ‘other pathogen’ category and 0 for Streptococcus pneumoniae. We dropped all 490 

observations where either the numerator or denominator had 0 observed cases to make this calculation 491 

and a forthcoming log transform possible.  This may bias the model towards overestimating less 492 

common pathogens. 493 

It is not possible to infer all coefficients 𝛽𝑗 from the observations, since they are all relative. However, if 494 

we fix all of the coefficients for one pathogen to 0 as a reference group, then we obtain a well-posed 495 

inverse problem, as long as there is enough data to estimate the remaining coefficients. Without loss of 496 

generality, we assumed 𝛽1 = 0 for all elements and obtain estimates of the remaining 𝛽2, … , 𝛽𝑛 by 497 

minimising the sum of the residuals between log-transformed observations 𝑦 and corresponding log-498 

transformed predictions from equation 3: 499 
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min
𝛽2,…,𝛽𝑛

𝑓(𝛽) ≔ ∑
1

𝜎𝑖
2

𝑖

[ln(𝑦𝑖) − ln (∑ 𝑤𝑖,𝑗
𝑎 𝑒𝑥𝑝(𝑥𝑖,𝑗

𝑇 𝛽𝑗)

𝑛

𝑗=1

) + ln (∑ 𝑤𝑖,𝑗
𝑏 𝑒𝑥𝑝(𝑥𝑖,𝑗

𝑇 𝛽𝑗)

𝑛

𝑗=1

)]

2

(4) 500 

where 𝜎𝑖
2 are variances corresponding to the data points. Equation 4 is a nonlinear likelihood 501 

minimisation problem that that we optimised using a standard implementation of the Gauss-Newton 502 

method.16 We then re-normalised the optimal coefficients to obtain final predictions of the probabilities 503 

of each pathogen: 504 

𝑝𝑖,𝑗 =
exp(𝑥𝑖,𝑗

𝑇 𝛽𝑗)

∑ exp(𝑥𝑖,𝑗̂
𝑇 𝛽𝑗̂)𝑗̂

(5) 505 

To quantify the uncertainty of this estimate, we used asymptotic statistics to obtain the posterior 506 

distribution of (𝛽2, … , 𝛽𝑛). Specifically, using the Gauss-Newton Hessian approximation gave us the 507 

asymptotic information matrix for all 𝛽𝑗 except for the reference pathogen, allowing us to sample draws 508 

of 𝛽 = (𝛽1 = 0, 𝛽2, … , 𝛽𝑛). For each 𝛽 draw and given feature 𝑥, we obtained a corresponding draw of 509 

𝑝 using equation 6.3.1.5. 510 

This network regression with covariates framework allowed us to use partial and composite 511 
data that reported on one or only a few pathogens, or that reported multiple pathogens aggregated 512 
together. Networks, however, can be unstable with sparse data and stable estimates have in some cases 513 
required the use of Bayesian priors in these models. In particular, we imposed Gaussian priors with 514 
mean 0 and non-zero variance on all coefficients except intercepts, to bias the model away from 515 
spurious effects driven by data sparsity. For the neonatal model, a prior standard deviation of 0.2 was 516 
used. For the non-neonatal model, we used a standard deviation of 0.1. The standard deviation values of 517 
the priors were determined based on expert review and out-of-sample cross-validation. 518 
 519 

Fatal Aetiology Modelling Strategy 520 

To generate aetiology fraction estimates for fatal lower respiratory infections, we took our aetiology 521 

fractions estimated for nonfatal LRI and multiplied them by a set of pathogen-specific case fatality rates 522 

(CFRs). CFRs were estimated using ICD-coded hospital data and microbial data with patient discharge 523 

status using a cases-offset Poisson regression model.17 We predicted CFRs as a function of pathogen, 524 

crude age (neonatal, post neonatal-5 years, 5-50 years, 50-70 years, and 70 years and older), an 525 

interaction term between pathogen and the proportions of the population age 15 or younger that had 526 

received PCV and Haemophilus influenzae type B vaccinations18, Healthcare Access and Quality Index 527 

(HAQ Index), and bias covariates for data source (for the largest data sources). Separate models were 528 

run for CFRs associated with hospital-acquired and community-acquired LRI, and for the aetiology 529 

results reported here, only community-acquired CFRs were used. We additionally controlled for data 530 

provided from ICU-only sources (which would be biased towards higher CFRs) and data with “unknown” 531 

setting of infection origin (which was included in the community-acquired models to supplement input 532 

data). Of note, in using CFR data from a hospital setting, we assume that the ratio between the 533 

hospitalized CFRs for pathogen X and pathogen Y is the same as the ratio between the non-hospitalized 534 

CFRs for pathogens X and Y. CFRs in relation to one another drive estimation, rather than absolute CFR 535 
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values. This is the best available assumption given the sparsity of data concerning non-hospitalized 536 

patients.  537 

The CFR model was run using the RegMod python package. The RegMod package implements and 538 

extends the Generalized Linear Modeling (GLM) framework. In particular, it allows: 539 

User-specified likelihoods, capturing standard model family examples such as linear, Poisson, and 540 

binomial, as well as quasi-likelihoods, and other user-defined extensions. 541 

• User-specified models for predicting parameters, based on link functions, covariates, and 542 

splines. 543 

• Priors, constraints, and trimming. 544 

We utilized a Poisson family model, encoding the number of deaths as our Y variable. The Poisson 545 

probability distribution takes the form 546 

𝑃(𝑦𝑖|𝜆𝑖) =
1

𝑦𝑖!
exp(−𝜆𝑖) 𝜆𝑖

𝑦𝑖 =
1

𝑦𝑖 !
exp (−𝜆𝑖 + 𝑦𝑖 log(𝜆𝑖)) 547 

which suggest a parameterization 548 

log(𝜆𝑖) = 𝑐𝑖 + 〈𝑥𝑖 , 𝛽〉. 549 

Here, the link function is the exponential map, and 〈𝑥𝑖 , 𝛽〉 is a linear predictor that uses direct 550 
covariates. The quantity 𝑐𝑖 is an offset, log(# of cases), which we use for observation-specific 551 
normalization of the number of cases, thereby allowing our model to estimate rates. 552 

The negative log likelihood estimation problem for 𝛽 becomes 553 

 554 

min
𝛽

∑ exp (

𝑖

𝑐𝑖 + 〈𝑥𝑖 , 𝛽〉) − 𝑦𝑖(𝑐𝑖 + 〈𝑥𝑖 , 𝛽〉) 555 

Where we can place constraints and priors on the 𝛽 coefficients. The following priors were used: 556 

• Prior on 𝛽 for pathogen:vaccination interaction: We assumed vaccination would have no impact 557 
on CFRs of unrelated pathogens, and for all combinations of the pathogen:vaccination 558 
interaction that were not Streptococcus pneumoniae:PCV vaccination or Haemophilus 559 
influenzae:Hib vaccination we coerced the 𝛽s to 0 using model priors. For the Streptococcus 560 
pneumoniae:PCV vaccination and Haemophilus influenzae:Hib vaccination interaction terms, we 561 
employed a negativity prior to enforce case-fatality rates for these pathogens to decrease as 562 
vaccination was introduced. 563 

• Prior on 𝛽 for large data source dummy-variables: data source was included to account for 564 
source heterogeneity, however many input data sources covered only a single country, leading 565 
to low variability in HAQ Index within each data source. Such collinearity adversely influenced 566 
the accuracy of the estimated effect of HAQ Index, which was instrumental in extrapolating 567 
trends from the input data to global results. To emphasise the contribution of HAQ Index over 568 
data-source in the modelled estimates, we implemented a Gaussian prior (mean 0, standard 569 
error 0.1) on the 𝛽s for data source variables.1 570 
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Nonfatal pathogen proportions 𝑝𝑖,𝑗  for a given demographic group 𝑖 and pathogen 𝑗 were then 571 

converted to deaths using the CFRs estimates for demographic group 𝑖 as follows: 572 

𝑝𝑖,𝑗
𝑑𝑒𝑎𝑡ℎ𝑠 =

𝑝𝑖,𝑗 × 𝐶𝐹𝑅𝑖

∑ 𝑝𝑖,𝑗̂ × 𝐶𝐹𝑅𝑖𝑗̂
 573 

We assumed inverse linear associations between the HAQ index and pathogen-specific CFRs, between 574 

PCV vaccination and Streptococcus pneumoniae CFR, and between Hib vaccination and Haemophilus 575 

influenzae CFR. We did not investigate other types of relationships, such as quadratic associations.  576 

A separate, simplified model was used to estimate the case-fatality rate for “other bacteria.” For this 577 

model, we withheld all non-bacterial pathogens from the input data and pooled the remaining 578 

pathogens together to get an all-bacteria-aggregate estimate.  579 

We adjusted influenza and RSV mortality estimates for 2020 and 2021 to account for the reductions in 580 

influenza and RSV cases associated with the COVID-19 pandemic, as described below. A more thorough 581 

account of these methods, including model validation, has been described previously elsewhere.1 582 

 583 

COVID adjustment 584 

We reviewed national-level case notification data from ministry of health websites, media reports, and 585 

published literature for measles, pertussis, diphtheria, tetanus, varicella, diarrheal disease, influenza, 586 

respiratory syncytial virus, and infections due to S. pneumoniae, H. influenzae, and N. meningitidis to 587 

look for evidence of disruption. For measles and influenza, we relied on case notifications reported 588 

directly by countries to WHO regional offices; these causes had the most complete geographic and 589 

temporal coverage. Because of this completeness in reporting, we utilized them as indicator causes for 590 

further modelling, as described below. Only the influenza data were used for adjustments of LRI 591 

infections. 592 

Modelling 593 

We began by evaluating a select set of reportable infections for evidence of disruption. For each cause, 594 

to determine whether a disruption occurred in 2020, we conducted a random effect meta-analysis with 595 

restricted maximum likelihood estimation using the metafor package in R. Each point was the ratio of 596 

cases observed in 2020 to the cases observed over the average of 2017-2019. Given the relative 597 

completeness of influenza data, we developed a primary model for it and then, for infections other than 598 

influenza, evaluated whether the reduction modelled for influenza could be applied directly to the other 599 

infection. To do this, we examined the change in case notifications between 2020 and previous years for 600 

a cause relative to the change in case notifications between 2020 and previous years for influenza. 601 

When determining whether to adjust each cause, we considered the size and statistical significance of 602 

the observed effect, the consistency and quality of the available data, and epidemiological plausibility. 603 

At the time of estimation, these factors supported adjustment of only RSV, using estimates of disruption 604 

derived from the influenza disruption model results (see below). As we receive more data, we plan to 605 

reexamine additional causes and etiologies to apply disruption if warranted.  606 

 We developed a multi-step modelling process to estimate the effect of NPIs associated with the COVID-607 

19 pandemic on the incidence of influenza and RSV in 2020 and 2021. First, we interpolated the number 608 
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of reported cases of influenza in 2020 and 2021, by month.  We leveraged the RegMod framework, a 609 

Poisson model that estimates the underlying rate of infection in each month as a function of a seasonal 610 

pattern and an underlying temporal trend. The temporal trend was reflected as a piecewise linear spline 611 

with knots at the start of each year. We placed the last knot of the underlying time trend in January 612 

2021 for influenza. We used monthly data through March 2022 (the last month of available data at the 613 

time of modeling) to fit the model, starting in January 2010 for influenza. The RegMod model results are 614 

1000 sets of estimates of the number reported cases in each month and inputs to the next phase of 615 

modelling. We excluded from this modeling process any country missing at least 6 months of data in any 616 

year within 2017-2021 to reduce the risk of outbreaks occurring and subsiding during the periods of 617 

missing data. 618 

   619 

 620 

  621 

 Appendix Figure 9: RegMod example for influenza in Indonesia.  The top panel represents cases over time; 622 

points are the observed number of reported cases and line is the interpolated number of reported cases 623 

from the RegMod model.  The bottom panel represents the residual over time and the time trend.  624 

 625 

In the second step of the modelling process, we calculated the underreporting ratio (URR) in the pre-626 

pandemic reference period 2017-2019, for each location, by dividing the interpolated number of 627 

reported cases from RegMod by the GBD estimated number of cases of LRI due to influenza. We used a 628 

reference period of 2017-2019 when calculating the URR. Third, we estimated the pandemic free 629 
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counterfactual number of reported cases, meaning, the number of reported cases we would have 630 

expected during 2020 and 2021 in the hypothetical pandemic-free scenario. We did this by multiplying 631 

the URR by the estimated number of cases of LRI due to influenza, for 2020 and 2021, that GBD models 632 

would have estimated in a pandemic-free scenario. Fourth, we calculated a disruption influenza scalar 633 

for each location for 2020 and 2021. This scalar was computed by dividing the interpolated number of 634 

reported cases from RegMod (result of first step) by the counterfactual disruption-free number of 635 

reported cases (result of third step). For countries with no data, the median disruption scalar in the 636 

region was used. All operations were performed at the 1000 draw level. 637 

LRI Adjustment 638 

We conducted a meta-analysis to compare location-specific disruptions for RSV to influenza. To inform 639 

the meta-analysis, we first created matched pairs of the percentage change in RSV to the percentage 640 

change in influenza by country with available data and calculated the ratio of these two percentage 641 

changes. More specifically, the ratio was computed by dividing the RSV percentage change in 2020 642 

relative to the average from 2017–2019 by the corresponding influenza percentage change. We then 643 

conducted a meta-analysis to generate a pooled ratio of these percentage changes (1.41, 95% 644 

confidence interval 0.86 to 1.96), which was not statistically significant as the confidence interval 645 

includes 1. Consequently, we applied the influenza reduction percentages directly to RSV. For each 646 

location/age/sex for which LRI is estimated, influenza and RSV cases were scaled using the annualized 647 

ratios as calculated for influenza. Other aetiology-attributed cases of LRI were not scaled at this time. 648 

Next, we calculated how the disruption scalars for influenza and RSV would apply to the overall LRI 649 

estimates. Because the etiological fraction of LRI due to RSV and influenza varies by age and sex, this 650 

calculation was performed by sex at the most granular age group level, for each country and year. It was 651 

also performed separately for deaths and cases since the etiological fraction of LRI due to RSV and 652 

influenza is different for deaths and cases. For a given country-year, the influenza disruption scalar was 653 

multiplied by the number of LRI influenza and RSV case/death counts, as pulled from GBD disruption-654 

free counterfactual estimates, to get adjusted flu and RSV counts. GBD disruption-free counterfactual 655 

estimates are defined as the number of cases and deaths of LRI due to influenza and RSV that would be 656 

estimated by GBD models using standard methods1 (as described under the Nonfatal Aetiology 657 

Modelling Strategy section in the methods appendix), run for 2020 and 2021, in the absence of any 658 

pandemic disruption adjustment or pandemic year data input. Then, we calculated the number of LRI 659 

cases/deaths to “remove” from the counterfactual number of LRI cases/deaths in the adjusted scenario 660 

as: the sum of counterfactual flu count and RSV count, minus the sum of COVID-adjusted flu count and 661 

RSV count. Finally, we calculate the LRI scalar for each country-age-sex-year as the LRI cases/deaths 662 

count from GBD counterfactual estimates, minus the number of LRI cases/deaths to “remove”, all 663 

divided by the counterfactual LRI cases/deaths count. 664 

To adjust incidence and prevalence estimates for a given cause, we simply multiplied these estimates by 665 

the annual disruption ratio for that cause, calculated as described above. To adjust mortality estimates 666 

for a given cause, scalars are applied to an intermediate set of mortality results (counterfactual LRI 667 

death count) to create a count of LRI deaths to subtract using the formula below: 668 

LRI deaths to subtract = (Counterfactual LRI death count * (LRI scalar – 1)) 669 
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These values are subtracted from counterfactual LRI deaths to get adjusted LRI deaths. This operation is 670 

performed at the 1000 draw level for each location, age, sex, and year. This process is applied to final 671 

estimates the same way as other causes known in the GBD framework as fatal discontinuities. 672 

 673 

 674 

 675 

676 



30 
 
 

Statement of GATHER Compliance 677 

Appendix Table 9. Checklist of information that should be included in reports of global health estimates, 678 

with description of compliance and location of information the current study 679 

 680 

#  GATHER checklist item  Description of compliance  Reference  

Objectives and funding   

1  
Define the indicator(s), populations (including 

age, sex, and geographic entities), and time 

period(s) for which estimates were made.  

Narrative provided in paper and appendix 

describing indicators, definitions, populations, 

and time periods  

Main text (Methods) and  
Appendix (Methods)  

2  List the funding sources for the work.  Funding sources listed in paper  Summary (Funding)  

Data Inputs   

   For all data inputs from multiple sources that are synthesized as part of the study:   

3  Describe how the data were identified and how 

the data were accessed.   
Narrative description of data seeking methods 

provided  
Main text (Methods) and  
Appendix (Methods)  

4  
Specify the inclusion and exclusion criteria. 

Identify all ad-hoc exclusions.  
Narrative about inclusion and exclusion criteria 

provided; ad hoc exclusions in appendix 

supplementary methods  

Main text (Methods) and  
Appendix (Methods)  

5  

Provide information on all included data sources 

and their main characteristics. For each data 

source used, report reference information or 

contact name/institution, population 

represented, data collection method, year(s) of 

data collection, sex and age range, diagnostic 

criteria or measurement method, and sample 

size, as relevant.   

An interactive, online data source tool that 

provides metadata for data sources by 

component, geography, cause, risk, or 

impairment has been developed, and data 

source citations provided  

Appendix (Methods) with additional 

information about these sources available 

at 

https://ghdx.healthdata.org/record/ihme-

data/global-burden-disease-study-2021-

lower-respiratory-incidence-mortality-

estimates-1990-2021 

6  
Identify and describe any categories of input 

data that have potentially important biases (e.g., 

based on characteristics listed in item 5).  

Summary of known biases included in 

appendix supplementary methods  
Appendix (Methods)  

   For data inputs that contribute to the analysis but were not synthesized as part of the study:   

7  

Describe and give sources for any other data 

inputs.   
Included in online data source tool  Global Health Data  

Exchange  
https://ghdx.healthdata.org/record/ihme-

data/global-burden-disease-study-2021-

lower-respiratory-incidence-mortality-

estimates-1990-2021 
   For all data inputs:   

8  

Provide all data inputs in a file format from 

which data can be efficiently extracted (e.g., a 

spreadsheet rather than a PDF), including all 

relevant meta-data listed in item 5. For any data 

inputs that cannot be shared because of ethical 

or legal reasons, such as third-party ownership, 

provide a contact name or the name of the 

institution that retains the right to the data.  

Downloads of input data available through 

online data tools; input data not available in 

tools will be made available upon request  

Global Health Data  
Exchange  
https://ghdx.healthdata.org/record/ihme-

data/global-burden-disease-study-2021-

lower-respiratory-incidence-mortality-

estimates-1990-2021 
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Data analysis   

9  
Provide a conceptual overview of the data 

analysis method. A diagram may be helpful.   
Flow diagram of methodological process 

provided, as well as narrative descriptions of 

modelling process  

Main text (Methods) and  
Appendix (Methods)  

10  

Provide a detailed description of all steps of the 

analysis, including mathematical formulae. This 

description should cover, as relevant, data 

cleaning, data pre-processing, data adjustments 

and weighting of data sources, and 

mathematical or statistical model(s).   

Flow diagram and detailed methods write-up 

covering all data extraction, processing, and 

modelling processes provided  

 Main text (Methods) and  
Appendix (Methods)  

11  Describe how candidate models were evaluated 

and how the final model(s) were selected.  
Provided in methodological write-up   Appendix (Methods)  

12  
Provide the results of an evaluation of model 

performance, if done, as well as the results of 

any relevant sensitivity analysis.  

Provided in methodological write-up  Appendix (Methods)  

13  

Describe methods for calculating uncertainty of 

the estimates. State which sources of 

uncertainty were, and were not, accounted for 

in the uncertainty analysis.  

Provided in main text methods narrative 

description and appendix methodological 

writeup  

Main text (Methods) and  
Appendix (Methods)  

14  

State how analytic or statistical source code 

used to generate estimates can be accessed.  
Remote code repository for access to analytic 

code provided  

Remote code repository  

https://ghdx.healthdata.org/record/ihme-

data/global-burden-disease-study-2021-

lower-respiratory-incidence-mortality-

estimates-1990-2021 

Results and Discussion   

15  

Provide published estimates in a file format from 

which data can be efficiently extracted.  
Tables in appendices and online results tool   Appendix Results and 

https://ghdx.healthdata.org/record/ihme-

data/global-burden-disease-study-2021-

lower-respiratory-incidence-mortality-

estimates-1990-2021 

16  
Report a quantitative measure of the 

uncertainty of the estimates (e.g. uncertainty 

intervals).  

Uncertainty provided with all results  Main text (Results),   
Appendix Results  

17  
Interpret results in light of existing evidence. If 

updating a previous set of estimates, describe 

the reasons for changes in estimates.  

Discussion of results and methodological 

changes between GBD rounds provided in 

manuscript narrative and appendix  

Main text (Methods, Results and 

Discussion) and Appendix (Methods)  

18  

Discuss limitations of the estimates. Include a 

discussion of any modelling assumptions or data 

limitations that affect interpretation of the 

estimates.  

Discussion of limitations, including modelling 

assumptions and data limitations, included in 

manuscript narrative and appendix  

Main text (Methods and  
Discussion) and Appendix  
(Methods)  

 681 

Note: A full set of granular estimates can be found in the GBD Results Tool here, 682 

https://ghdx.healthdata.org/record/ihme-data/global-burden-disease-study-2021-lower-respiratory-683 

incidence-mortality-estimates-1990-2021 684 

 685 

  686 
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