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Abstract: Studies on animal virome have mainly concentrated on chordates and medically significant
invertebrates, often overlooking sylvatic mosquitoes, constituting a major part of mosquito species
diversity. Despite their potential role in arbovirus transmission, the viromes of sylvatic mosquitoes
remain largely unexplored. These mosquitoes may also harbor insect-specific viruses (ISVs), affecting
arboviral transmission dynamics. The Cerrado biome, known for rapid deforestation and its status as
a biodiversity hotspot, offers an ideal setting for investigating mosquito viromes due to potential
zoonotic spillover risks from land use changes. This study aimed to characterize the viromes of
sylvatic mosquitoes collected from various locations within Minas Gerais state, Brazil. The total
RNA was extracted from mosquito pools of Psorophora albipes, Sabethes albiprivus, Sa. chloropterus,
Psorophora ferox, and Coquillettidia venezuelensis species, followed by high-throughput sequencing
(HTS). Bioinformatic analysis included quality control, contig assembly, and viral detection. Se-
quencing data analysis revealed 11 near-complete viral genomes (new viruses are indicated with
asterisks) across seven viral families and one unassigned genus. These included: Xinmoviridae (Ferox
mosquito mononega-like virus* and Albipes mosquito Gordis-like virus*), Phasmaviridae (Sabethes
albiprivus phasmavirus*), Lispiviridae (Pedras lispivirus variant MG), Iflaviridae (Sabethes albiprivus
iflavivirus*), Virgaviridae (Buriti virga-like virus variant MG and Sabethes albiprivus virgavirus 1*),
Flaviviridae (Psorophora ferox flavivirus*), Mesoniviridae (Alphamesonivirus cavallyense variant MG),
and the genus Negevirus (Biggie virus variant MG virus and Coquillettidia venezuelensis negevirus*).
Moreover, the presence of ISVs and potential novel arboviruses underscores the need for ongoing
surveillance and control strategies to mitigate the risk of emerging infectious diseases.

Keywords: sylvatic mosquitoes; RNA virome; Brazilian Cerrado; novel viral species; arbovirus
transmission; biodiversity hotspot

1. Introduction

Studies on animal virome have predominantly focused on chordates and medically
significant invertebrates such as ticks and mosquitoes [1]. Within mosquitoes, urban or peri-
urban species like Aedes aegypti, Culex quinquefasciatus, and Ae. albopictus, known for their
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role in arbovirus transmission, have been the main subjects of virome investigations [2,3].
However, despite an estimated global mosquito species count exceeding 3700 [4], sylvatic
mosquitoes remain underexplored regarding their viromes. This gap is significant given
the critical role of certain species, such as Sabethes spp. in Yellow Fever Virus transmis-
sion [5] and Coquillettidia spp. in Eastern Equine Encephalitis virus [6] and Oropouche
virus transmission [7,8].

In addition to arboviruses, mosquitoes may harbor insect-specific viruses (ISVs) which,
although incapable of infecting vertebrates, offer valuable perspectives into viral evolution
due to their close phylogenetic relationship with arboviruses. Some ISVs have shown the
ability to modulate arboviral transmission from vectors to mammalian hosts, suggesting their
potential role in developing innovative strategies for controlling arboviral outbreaks [9,10].

In parallel, high-throughput sequencing (HTS) has emerged as a critical tool for
discovering new viruses, including ISVs, and determining virome in mosquitoes [11–13].
HTS enables the comprehensive and unbiased analysis of viral genetic material present in
mosquito samples, facilitating the identification of both known and novel viruses [14]. This
technology is particularly valuable for exploring the viromes of sylvatic mosquito species,
which are often understudied compared to their urban counterparts [15]. By offering
perspectives into the diversity and composition of mosquito viromes unavailable by other
methods, HTS enhances our understanding of viral ecology and evolution, supports the
development of more effective vector control and surveillance strategies, and can be utilized
to discover new viruses in the largely unexplored Brazilian biomes.

The Cerrado, a biodiversity hotspot in Brazil [16], faces alarming rates of deforesta-
tion, driven in part by expanding monoculture activities [17]. Given that anthropogenic
alterations in land use are major contributors to zoonotic spillover events [18], understand-
ing the viromes associated with arthropod vectors in this biome is crucial for enhancing
genomic surveillance of emerging arboviruses. Genomic surveillance methods can be
used at the forefront of epidemic preparedness, as they can drive targeted surveillance
of potential pathogens and studies on their biology, such as through cell cultures and
animal models [18]. Therefore, the present study aims to deepen our understanding of
RNA viromes within sylvatic mosquitoes inhabiting the Cerrado biome.

2. Materials and Methods
2.1. Sample Collection

Sylvatic mosquitoes were collected across five municipalities within the Minas Gerais
state (Figure 1). Additionally, a mixed pool comprising diverse mosquito species was
included in the study, including Sabethes spp. and Psorophora ferox (Table 1). We also
analyzed Sabethes chloropterus and Aedes scapularis samples, but we did not find any viruses,
so these samples were excluded from downstream analysis. The associated metadata for
collection periods and land use is provided in (Table S1).

Table 1. Description of Species, Number of Mosquitoes, and Municipality in Minas Gerais state
where mosquito samples were collected.

Municipality Total Mosquitoes per Pool Species per Pool

Brasília de Minas 21 Psorophora (Janthinosoma) albipes (Theobald, 1907)
Icaraí de Minas and Ubaí 197 Sabethes (Sabethes) albiprivus (Theobald, 1903)

Icaraí de Minas, Arinos, Brasília
de Minas 56 Mixed pool (Sa. albiprivus, Sa. (Sabethoides) chloropterus (von

Humboldt, 1819), and Ps. ferox)
Rio Pardo de Minas 22 Psorophora (Janthinosoma) ferox (von Humboldt, 1819)

Arinos 92 Coquillettidia (Rhynchotaenia) venezuelensis (Theobald, 1912)
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Figure 1. Map of Brazil and Minas Gerais state depicting the municipalities from which mosquito
samples were collected and associated Brazilian biomes (Caatinga, Cerrado and Mata Atlântica).

Adult mosquitoes were captured employing the protected human attraction method
(A.H.P) [19] and the Shannon trap, with assistance from entomological nets and oral aspira-
tors [20,21]. Following capture, the mosquitoes were sorted by genera and cryopreserved
in liquid nitrogen (−196 ◦C) before being transported to the laboratory. Taxonomic classifi-
cation was conducted on a chilled table at −20 ◦C utilizing a stereoscopic microscope and
dichotomous keys [22,23]. Mosquitoes were initially pooled per species in groups of two to
20 individuals and then grouped for HTS (Table S1 and Table 1).

2.2. RNA Extraction and High-Throughput Sequencing

Total RNA was extracted from mosquito pools of varying sizes (20 to 200 individuals—
Table 1) using the QIAmp Viral RNA (Qiagen, Germantown, MA, USA) kit. The extracted
RNA was quantified using a Quantifluor® RNA system (Promega, Madison, WI, USA) kit,
following the manufacturer’s instructions. For samples containing at least 1 µg of RNA,
0.1 v/v of 3M sodium acetate and 2 v/v of absolute ethanol were added. These samples were
then dispatched to Macrogen (Seoul, Republic of Korea), where Illumina TruSeq stranded
Total RNA library + Ribo-zero Gold libraries were generated for NovaSeq 6000, 100 bp
paired-end sequencing, resulting in 20 M to 30 M reads per library.

2.3. Bioinformatic Quality Control, Assembly of Contigs, and Viral Detection

We conducted quality control analysis of the raw reads using fastQC v0.12.1 [24],
Trim-galore for adapter removal v0.6.10 [25], and Trimmomatic v 0.39 [26] to trim 10 bp
from each end of the reads. The assembly of trimmed reads into contigs was performed
using Spades v3.15.5, with the -RNAviral flag [27], and only contigs with mean cover
equal to or higher than 20 were further analyzed. Viral contigs were identified through
local diamond blastx searches [28] of RNA-dependent RNA-polymerases compiled in
RdRP-scan [29]. To identify M and S segments of Phasmaviridae, local diamond blastx
searches were conducted using Refseq sequences deposited in Genbank [30] (https://
www.ncbi.nlm.nih.gov/genbank/ assessed on 8 July 2023). Viral hits were confirmed
with BLASTx searches against the non-redundant protein sequences in NCBI, and viral
completeness was assessed using CheckV [31]. Viral genomes were annotated utilizing

https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
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Geneious v. 11.1.5 (Biomatters) and ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/
accessed on 3 February 2024), genome figures were generated with DNA features viewer
(https://edinburgh-genome-foundry.github.io/DnaFeaturesViewer/ accessed on 15 April
2024). The obtained viral sequences were deposited in Genbank with accession numbers
PP946236-PP946246.

2.4. Phylogenetic Analyses

Global multiple alignments were created for each viral family and protein marker
(protein sequences for RdRP for Xinmoviridae, Phasmaviridae, and Lispiviridae; full polypro-
tein for Iflaviridae, Virgaviridae, and Flaviviridae; non-structural polyprotein for Negevirus
and ORF1a for Mesoniviridae) using Mafft v7.520 [32]. The resulting alignments were
subsequently trimmed by employing TrimAI v1.4.15 [33] with the -automated1 flag. The
amino acid substitution models for each alignment (LG + I + G4) were determined using
modeltest-NG v0.1.7 [34]. Maximum Likelihood trees were then constructed utilizing
RAxML-NG v1.2.0 [35] with 1000 bootstraps. All trees, otherwise stated, were rooted with
an outgroup.

3. Results

Each sequencing library comprised approximately 20.5 to 30.4 million reads. Post-
assembly, each library produced around 2014 to 37,238 contigs (Table 2). The higher contig
count in the mixed mosquito pool is attributed to its diverse species composition, compared
to the single-species composition of the other insect pools.

Table 2. Viral diversity in insect pools included read numbers, contigs, viral families, genome type,
and viruses found in this study including new viruses.

Viruses Found in This Study (* New
Viruses)

Genome
Type

Viral
Families

Viral
Contigs

Contig
Amount

Read Number
(Millions) Insect Pool

Albipes mosquito Gordis-like virus * ssRNA− Xinmoviridae 1 3882 20.5 Ps. albipes
Sabethes albiprivus phasmavirus * ssRNA− 1 Phasmaviridae 4 13,548 25.1 Sa. albiprivus
Pedras lispivirus variantisolate MG ssRNA− Lispividae

Sabethes albiprivus iflavivirus * ssRNA+ Iflaviridae
Sabethes albiprivus virgavirus 1 * ssRNA+ Virgaviridae

Buriti virga-like virus variantisolate
MG ssRNA+ Virgaviridae 1 37,238 26.2 Mixed (Sa. albiprivus, Sa.

chloropterus, and Ps. ferox)
Ferox mosquito mononega-like virus * ssRNA− Xinmoviridae 2 2859 30.4 Ps. ferox

Psorophora ferox flavivirus * ssRNA+ Flaviviridae
Alphamesonivirus cavallyense

variantisolate MG ssRNA+ Mesoniviridae 3 2014 25.6 Cq. venezuelensis

Biggie virus variantisolate MG ssRNA+ Negevirus
Coquillettidia velezuensis negevirus *

* Asterisks indicate new viruses. 1. Segmented.

The HTS data analysis uncovered 11 near-complete viral genomes spanning seven
distinct viral families and one genus of an unassigned family. Among these were the
ssRNA- families Xinmoviridae, Phasmaviridae, and Lispiviridae, and the ssRNA+ families
Iflaviridae, Virgaviridae, Flaviviridae, Mesoniviridae along with the genus Negevirus (Table 2).
Of the 11 viral genomes described below, 7 are new, while the 4 previously known genomes
were identified in new host species. The 11 contigs presented genome sizes and high
completeness scores when compared to genomes of each respective taxa, as per CheckV
analysis (Table S2).

3.1. Xinmoviridae

We identified two consensus putative viral sequences, measuring 13 kb and 12 kb, in Ps.
ferox and Ps. albipes, respectively. Their encoded RdRps exhibited 59.02% and 51.10% simi-
larity with their closest matches in Genbank (Guadeloupe mosquito mononega-like virus,
MN053735, and Gordis virus, MW435014) within the Xinmoviridae family (Figure 2A,B).
According to ICTV criteria [36], RdRp sequences showing less than 60% similarity within
this family may indicate the presence of novel genera. Both of these present genes for a

https://www.ncbi.nlm.nih.gov/orffinder/
https://edinburgh-genome-foundry.github.io/DnaFeaturesViewer/


Viruses 2024, 16, 1276 5 of 21

putative nucleoprotein, an envelope glycoprotein, and an RdRp. Despite these viruses
being discovered [37,38] in similar hosts (same Culicidae family, but different genera),
their positions within the RdRp tree are notably distinct (Figure 2C). Hence, we tenta-
tively named these viruses Ferox mosquito mononega-like virus and Albipes mosquito
Gordis-like virus, respectively.
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Figure 2. Ferox mosquito mononega-like virus and Albipes mosquito Gordis-like virus genomes
discovered in Ps. ferox (A) and Ps. albipes (B), respectively, compared to their closest relatives
(Guadeloupe mosquito mononega-like virus and Gordis virus, respectively). (C). Phylogenetic analysis
of the Ferox mosquito mononega-like virus and Albipes mosquito Gordis-like virus discovered in Ps. ferox
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and Ps. albipes hosts, respectively in bold. ML tree was constructed using the RdRp amin acid
sequences from the best hits obtained via BLASTx for each xinmovirus identified in this study against
the NCBI nr-database the LG+I+G4 substitution model, scale of one aminoacid substitution per site
and 1000 bootstraps. The tree includes currently recognized species in the family by ICTV, with
Guadeloupe mosquito mononega-like virus Guadeloupe mosquito mononega-like virus.

3.2. Phasmaviridae

Our investigation revealed three distinct putative viral segments—small (S), medium
(M), and large (L) segments—in the Sa. albiprivus pool, with lengths of 6.5 kb, 2.1 kb,
and 1.7 kb, coding for its RdRp, envelope glycoprotein and capsid protein, respectively
(Figure 3A). Comparison with Genbank sequences identified an RdRp sequence showing
45.50% similarity to Miglotas virus (QRW41774.1) [38] within the Phasmaviridae family. As this
RdRp shares less than 95% identity, as per ICTV criteria, we suggest the classification of a
novel virus species, tentatively named Sabethes albiprivus phasmavirus. Phylogenetic analysis
supports the distinction of this new virus, forming a separate monophyletic branch (Figure 3B).
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analysis of the Sabethes albiprivus phasmavirus discovered in Sa. albiprivus host in bold. ML tree
was constructed using the RdRp aminoacid sequences of the best hits from BLASTx against the
NCBI nr-database for the virus in the current study and the LG+I+G4 substitution model scale of one
aminoacid substitution per site and 1000 bootstraps. Sin nombre virus was used as an outgroup.

3.3. Lispiviridae

We identified a consensus putative viral genome of 12 kb for the Sa. albiprivus pool,
containing five open reading frames (ORF) (Figure 4A). Its genes include a nucleoprotein,
a phosphoprotein, an envelope glycoprotein, and an RdRp. Notably, its RdRp sequence
shares more than 85% similarity with that of Pedras lispivirus [39], indicating classification
within the same species within the Lispiviridae family, according to ICTV criteria [40]. Hence,
we designate this virus as Pedras lispivirus variant MG. In their study [39], previously
identified this virus in Sa. quasicyaneus, inhabiting a transitional zone between the Cerrado
and Amazon biomes. Despite geographical separation, the hosts of this virus share a close
evolutionarily relationship (same subgenus—Sabethes Sabethes) (Figure 4B), suggesting
potential occurrence in other species within this mosquito genus, a hypothesis warranting
further investigation.
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in the Sa. albiprivus host in bold. ML tree was constructed with the RdRp aminoacid sequences of
the best hits found in the present study against the NCBI nr-database, currently recognized species
in the family by ICTV the LG+I+G4 substitution model, 1000 bootstraps, scale of one aminoacid
substituition per site and Gambievirus as an outgroup.

3.4. Iflaviridae

We identified a consensus putative viral genome of approximately 9 kb for the Sa.
albiprivus pool (Figure 5A). This genome encodes a single polyprotein comprising both
structural and non-structural components, showing homology to viruses from the Iflaviridae
family. The structural component, responsible for coding the capsid proteins, has its closely
related sequence in Genbank with 62% coverage and 71.65% similarity to Aedes Iflavi-like
virus 1 (QQD36915.1), a virus found in Ae. aegypti in the Brazilian Amazon [41]. According
to the criteria set by the ICTV [42], the structural component’s similarity is lower than 90%,
and its occurrence in Sa. albiprivus, suggests that this is a novel species. We tentatively
name this species Sabethes albiprivus iflavivirus (Figure 5B).
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described Yongsan iflavirus (Genbank accession number NC_040587.1) genome for reference. (B) Phy-
logenetic analysis of the Sabethes albiprivus iflavivirus discovered in the Sa. albiprivus host in bold.
The ML tree was constructed using the polyprotein sequences of the best BLASTx hits found in the
present study against the NCBI nr-database currently recognized species in the family by ICTV the
LG+I+G4 substitution model 1000 bootstraps, the scale of 0.1 amino acid substitution per site and
Cripavirus as an outgroup.
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3.5. Virgaviridae

We identified two putative viral consensus genomes of approximately 8.8 kb and
9.1 kb in the mixed pool (Sa. albiprivus, Sa. chloropterus, and Ps. ferox) and Sa. albiprivus
pool, respectively (Figure 6A), showing homology to viruses from the Virgaviridae family,
each with a polyprotein coding gene and a putative capsid coding gene, albeit in differing
synthesis. We tentatively name these viruses, respectively, Buriti virga-like virus variant
MG and Sabethes albiprivus virga virus 1. In the phylogenetic analysis, Buriti virga-
like virus variant MG clusters with Buriti virga-like virus found in Sa. chloropterus [39]
(Figure 6B). Considering the ICTV criteria for taxa classification within this family (https:
//ictv.global/report_9th/RNApos/Virgaviridae accessed on 5 April 2024), metadata such
as the mode of transmission is required. Therefore, we are currently unable to propose a
taxon for Sabethes albiprivus virgavirus 1.
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Figure 6. (A) Buriti virga-like virus variant MG (A) and Sabethes albiprivus virgavirus 1 (B) genomes
identified within Sa. albiprivus. (B) Phylogenetic analysis of the Buriti virga-like virus variant MG
and Sabethes albiprivus virgavirus 1 discovered in Sa. albiprivus host in bold. The ML tree was
constructed using the polyprotein amino acid sequences of the best hits in BLASTx against the NCBI
nr-database for the viruses in the current study, the LG+I+G4 substitution model, 1000 bootstraps,
scale of 0.1 amino acid substitutions per site and Citrus leprosis virus as an outgroup.

3.6. Flaviviridae

In the Ps. ferox pool, we identified a consensus putative viral genome of approximately
11 kb (Figure 7A) showing homology to viruses from the Flaviviridae family. The genome

https://ictv.global/report_9th/RNApos/Virgaviridae
https://ictv.global/report_9th/RNApos/Virgaviridae
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includes the ORFs characteristic of flaviviruses, encoding the polyprotein that is cleaved
into structural (C, prM, E) and non-structural (NS1, NS2A, NS2B, NS3, NS4A, NS4B,
NS5) proteins. NS5 encoded RdRp that presented 55.73% identity with its most closely
related sequence in GenBank, Mansonia flavivirus (LC567153) [43]. We have tentatively
named this virus Psorophora freaks flavivirus. Considering the ICTV criteria for the
family (https://ictv.global/report_9th/RNApos/Flaviviridae accessed on 5 April 2024),
classification requires metadata beyond sequence information, including antigenicity and
ecological characteristics, which are beyond the scope of this study. Therefore, we lack
sufficient data to propose a new taxon for Psorophora ferox flavivirus. Given its placement
within the phylogenetic tree, it is most likely an ISV (Figure 7B).
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Figure 7. (A) Flavivirus genome identified within Ps. ferox. (B) Phylogenetic analysis of the
Psorophora ferox flavivirus discovered in the Ps. ferox host in bold. The ML tree was constructed
using the polyprotein sequences of the best hits from BLASTx found in the present study against
the NCBI nr-database, the LG+I+G4 substitution model, 1000 bootstraps, and scale of one amino
acid substitution per site. The Pestivirus, Pegivirus, and Hepacivirus genera were collapsed for
better visualization.
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3.7. Mesoniviridae

We identified a consensus putative viral genome consisting of 20,198 bases in Cq.
venezuelensis (Figure 8A), showing homology to viruses within the Mesoniviridae family.
Its gene synteny is the same as observed in the species, including genes encoding for two
polyproteins for its non-structural proteins and smaller structural coding genes near its 3′

end. The encoded putative RdRp has over 99% similarity to that of Alphamesonivirus cav-
allyense (AXL48235.1) found in Culex pipiens [44]. Notably, Cq. venezuelensis and Cx. pipiens
differ significantly in terms of phylogeny, behavior, and geographic distribution. These
species belong to different tribes, Mansonini and Culicini, respectively. Cq. venezuelensis
exhibits wild habits and is restricted to the Americas [45], whereas Cx. pipiens is urban and
invasive across multiple continents [46]. In the phylogenetic analysis, this virus was found
in Cq. venezuelensis formed a monophyletic branch (Figure 8B). We tentatively name this
Alphamesonivirus cavallyense variant MG.
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Figure 8. (A) Alphamesonivirus cavallyense variant MG genome identifies within Cq. venezuelensis.
(B) Phylogenetic analysis of the Alphamesonivirus cavallyense variant MG discovered in Cq. venezue-
lensis host in bold. ML tree was constructed using the aminoacid sequences of the ORF1a replicase
from representatives of the four currently recognized genera within the family, along with the two
best BLASTx hits from the nr-database, the LG+I+G4 substitution model, 1000 bootstraps, scale of
one aminoacid substitution per site and Bolenivirus as an outgroup.
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3.8. Negevirus

We identified two putative consensus viral genomes of 9.2 Kb in Cq. velezuelensis
(Figure 9A,B), showing homology to viruses within the Negevirus genus. Both of these
present a gene synteny typical of the genus, including a non-structural polyprotein, an
envelope glycoprotein, and a capsid protein. One of these genomes encodes a replicase
with 74% coverage and over 99% similarity to its closest sequence in Genbank, Biggie
virus Mos11 (KX924639.1) found in Culex pipiens collected in the USA [47]. We have
tentatively named this Biggie virus variant MG. As previously mentioned, these hosts differ
significantly, which may suggest considerable plasticity of this virus. The second genome
encodes a replicase with 73% coverage and 66% similarity to its closely related sequence,
Aqua Salud Negevirus (MT197494.1) detected in Culex declarator in Panama [48], also a
quite different host. We tentatively named this virus Coquillettidia velezuelensis negevirus
(Figure 9C).
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4. Discussion

In this study, we identified seven novel viruses and four previously known genomes
identified in new host species, all of which are underrepresented in virological research.
The discovery of new ISVs and potential arboviruses is particularly significant as it broad-
ens our understanding of viral diversity within mosquito populations and reveals the
potential ecological roles these viruses may play. Given the capacity of ISVs to interact with
or impede arbovirus transmission [49], our findings underscore the necessity of further
exploring these interactions. Moreover, HTS once again demonstrates its remarkable ability
to discover new viruses, even in pools of mosquitoes from different species, thereby en-
hancing our understanding of comprehensive virome surveillance in regions undergoing
rapid environmental changes, such as the Cerrado Brazilian biome. Compared to the
work of Silva et al. (2023) [13], the number of full RdRp sequences detected was similar
to our study. However, the viruses’ characterization by authors was partial. Interestingly,
only one mosquito species, Cq. venezuelensis, was the same host searched, but the viruses
identified were different. This highlights the diversity of sylvatic mosquitoes and under-
scores the need for further research. Below we discuss in detail the viruses detected and
characterized here.

4.1. Xinmoviridae

Infections with anpheviruses (family Xinmoviridae; order Mononegavirales) seem to be
relatively prevalent, evidenced by their presence in laboratory colonies and wild popula-
tions of Aedes albopictus from various geographic locations over several years [50,51]. No-
tably, Wolbachia bacteria enhance Aedes anphevirus replication, while this virus marginally
inhibits DENV replication in mosquito cell lines [50]. Anpheviruses have also been iden-
tified in populations of Culex spp. [52] and anophevirus-like species have been found in
Amazonian anophelines, including Anopheles marajoara and An. darlingi [53]. Here, we found
two putative new Xinmoviridae species in two Psorophora sp. mosquitoes. The widespread
distribution of most Psorophora species in the Americas [23] poses a potential threat to
public health due to their capacity to transmit several arboviruses such as Yellow Fever
Virus, Rocio, West Nile Virus, Eastern Equine Encephalitis and Ilheus Virus [54–59]. The
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capability of arboviruses to infect Psorophora species suggests a potential for disease trans-
mission. The discovery of Ferox mosquito mononega-like virus and Albipes mosquito
Gordis-like virus in Ps. ferox and Ps. albipes, respectively, presents new avenues for future
studies aiming to understand the interactions between ISVs and other arboviruses in the
context of pathogen transmission. The identification of these novel viruses characterized
by their distinct positions within the RdRp phylogenetic tree and less than 60% similarity
to known viruses, hints at the potential presence of new genera within the Xinmoviridae
family, emphasizing the necessity for further research into the diversity and ecological roles
of ISVs in mosquito populations.

4.2. Phasmaviridae

Phasmaviruses remain relatively enigmatic, with our understanding largely shaped
by HTS endeavors. In our investigation, we introduce novel viral entities identified within
Sa. albiprivus, tentatively classified as Sabethes albiprivus phasmavirus. These findings
contribute to the expanding spectrum of phasmaviral diversity. Across arthropod hosts
spanning Diptera, Hymenoptera, and Coleoptera orders, phasmaviruses have been sporadi-
cally detected [60]. Presently, the ICTV acknowledges seven genera within the Phasmaviridae
family [61]. Nevertheless, our grasp of the physicochemical attributes of these entities
remains rudimentary, such as virion size and molecular composition, with detailed char-
acterizations limited to merely two of these genera [61]. The dearth of comprehensive
in vitro analyses underscores the pressing need for elucidating the fundamental properties
of phasmaviruses, including their constituent subunits. Additionally, exploring the socio-
virological dynamics associated with these viruses represents a fertile ground for future
inquiry, promising perspectives into their ecological roles and potential impacts on host
populations. Thus, bridging these knowledge gaps stands as imperative for unraveling the
enigmatic realm of phasmaviral biology.

4.3. Lispiviridae

Members of the Lispiviridae family have been detected in various hosts across different
regions worldwide, including arthropods such as hemipterans, odonatans, hymenopterans,
and orthopterans [60,62–66]. In this study, we identified a lispivirus (Pedras lispivirus
variant MG) in the host species Sa. albiprivus, previously identified in Sa. quasicyaneus [39],
suggesting a co-occurence between virus species and their hosts within the genus Sabethes,
subgenus Sabethes. Members of the genus Sabethes are significant vectors of the wild
yellow fever virus in the Americas [67]. Notably, Sa. albiprivus has already been found
naturally infected by the amaryllic virus [5,68]. Future studies are warranted to investigate
the occurrence of this virus in other species within this mosquito genus to enhance our
understanding of its epidemiology and potential impact on public health.

4.4. Iflaviridae

Iflaviruses have been described in insects across several orders, including Lepidoptera,
Hymenoptera, and Hemiptera, as well as in bee parasitic mites [69]. In bees, iflaviruses
are major pathogens and are primarily associated with wing deformation [70,71]. Despite
the phylogenetic distinction and geographical/behavioral separation between the host
mosquitoes Ae. aegypti and Sa. albiprivus, they harbor similar Iflaviruses. This discovery
suggests a potential broader host range and adaptability of iflaviruses across different
mosquito species and regions. Further investigations are necessary to comprehend the
ecological and epidemiological implications of these viruses, particularly regarding their
impact on mosquito populations and their potential role in disease transmission.

4.5. Virgaviridae

The Virgaviridae family has emerged prominently across diverse mosquito virome studies,
underscoring its prevalence and potential significance in mosquito ecology, [72,73]. In our
investigation, we introduce two novel viral entities, tentatively designated as Buriti virga-
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like virus variant MG and Sabethes albiprivus virgavirus 1, expanding the repertoire of
known Virgaviridae members. Traditionally associated with plant hosts, the detection of
virgavirus in mosquito viromes raises intriguing questions regarding their ecological roles
and transmission dynamics within insect populations. While it is conceivable that certain
virgavirus species have adapted to exploit mosquito hosts for replication, an alternative
explanation implicates dietary factors in their presence within mosquito viromes. The mul-
tifaceted nature of mosquito viromes encompasses a broad spectrum of viruses, including
ISVs, arboviruses, and even plant viruses [74]. Therefore, we cannot affirm whether these
viruses are merely associated with mosquitos, as they could have ingested them in their
plant diets or if they are indeed replicative within these animals. Further inquiries in this
sense remain with other methodologies available for this analysis, such as cell cultures and
small RNA sequencing.

4.6. Flaviviridae

The Flaviviridae family harbors a notable array of ISVs with intriguing implications for
arboviral dynamics. Key among these are ISVs like Nhumirim virus [75], Cell fusing agent
virus [76], and Culex flavivirus [77], which have been documented to exhibit inhibitory
effects on their arboviral counterparts, albeit with variable outcomes across studies. While
the majority of these findings stem from cell-line investigations, insights gleaned from
mosquito-based studies are also noteworthy. In our study, we introduce Psorophora
ferox flavivirus as a novel member of the Flaviviridae family. This discovery adds to the
growing catalog of ISVs within the flavivirus lineage and underscores the diverse virome
composition within mosquito populations. The inhibitory mechanisms attributed to ISV
flaviviruses are postulated to stem from their close genetic relatedness to arboviruses
within the family (reviewed in Carvalho and Long, 2021) [78]. However, the nuanced
nature of these interactions is underscored by the variability in outcomes observed across
different experimental settings. Despite the discordance among studies, the intricate
interplay between flaviviruses holds promise for arboviral control strategies and enhances
our comprehension of vector competence across mosquito species. Continued exploration
of these viral dynamics, both in laboratory settings and within natural vector populations,
is crucial for elucidating the full spectrum of ISV effects on arboviral transmission and for
informing targeted interventions aimed at mitigating vector-borne disease burdens.

4.7. Mesoniviridae

Alphamesonivirus stands out as a ubiquitous presence across diverse mosquito species
(over 34) and geographic regions, encompassing Aedes spp., Culex spp., Anopheles spp.,
Armigeres subalbatus, and Cq. xanthogaster [3]. Our study adds a significant dimension
to this narrative by documenting the presence of Alphamesonivirus cavallyense variant
MG for the first time in Cq. venezuelensis, a notable inclusion given the species’ unique
ecological and geographical context. The robust adaptability of Alphamesonivirus across
different host species and environments underscores its remarkable success in host coloniza-
tion, warranting comprehensive investigation into the factors driving its epidemiological
dynamics. Notably, the Yichang virus, a close relative within the Mesoniviridae family,
has demonstrated both horizontal and vertical transmission among Ae. albopictus and
Cx. quinquefasciatus, alongside the intriguing ability to hinder DENV-2 and ZIKV fla-
viviruses replication in mosquito cell lines [79]. However, elucidating similar relationships
between other mesonivirids and arboviruses remains an open avenue for research. The
discovery of Alphamesonivirus cavallyense variant MG in Cq. venezuelensis, a species
with distinct phylogenetic, behavioral, and ecological attributes compared to its typical
hosts like Cx. pipiens, offers a unique lens into the dynamics of mesonivirus-host interac-
tions. By forming a distinct monophyletic branch within the phylogenetic tree, this novel
variant underscores the genetic diversity and evolutionary adaptability of mesoniviruses
across divergent mosquito taxa. Further exploration into the ecological drivers shaping
the distribution and dynamics of mesoniviruses, alongside their potential implications for
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arboviral transmission dynamics, remains imperative. Unraveling the intricate interplay
between mesonivirids and arboviruses holds promise for advancing our understanding
of vector-borne disease ecology and informing targeted interventions aimed at mitigating
mosquito-borne disease burdens.

4.8. Negevirus

Several viruses in this genus have been first isolated from mosquito cell lines exposed
to filtered mosquito and phlebotomine specimens, particularly using C6/36 cell lines [80].
However, recent reports of new negeviruses have expanded to agricultural pests, including
Hemiptera [81,82]. The detection of mosquito-associated negeviruses, using either cell
cultures or HTS, has occurred across the globe [3,80,83], indicating wide host ranges and
genetic variability. Their closest relatives include plant arboviruses, such as kitavirids [82,83].
Furthermore, diverse viruses in this genus also negatively modulate the multiplication
of flaviviruses and alphaviruses in co-cultures in mosquito cell lines, possibly through
superinfection exclusion [84,85]. This modulator capacity may be explored in the future
for arbovirus control, which could help explain the lack of vectorial capacity of diverse
mosquito genera in transmitting arboviruses. The negeviruses from the current study
(named Biggie virus variant MG and Coquillettidia velezuelensis negevirus) represent a
promising avenue for further exploration, particularly in isolating viruses from sylvatic
mosquitoes using mosquito cell lines for further characterization.

Our study shares several limitations common to RNA virome studies. First, host
attribution of the identified viruses is because these viruses might replicate in other or-
ganisms, such as plants consumed by mosquitos. This limitation is exacerbated by using
whole-body mosquitoes for pools, rather than dissected parts such as salivary glands. To
better determine the hosts of the viruses identified in our study, complementary approaches
are necessary, such as virus culturing in mosquito cell lines and small RNA sequencing.
The latter can provide sequences derived from the RNAi machinery of the cell, indicating
active replication. Second, although none of the virus genomes we identified possess
genes similar to host genes, we cannot exclude the possibility that these viruses might be
endogenous viral elements (EVEs) [9]. Third, associating different segments into a single
genome for multipartite viral genomes is very challenging without isolated viruses. We
were able to associate the phasmavirus segments into a single genome because they were
the only segments found for these viral taxa in their pool. However, this is only sometimes
the case for different samples. Lastly, we used sequence-similarity approaches to identify
RdRps in contigs. While RdRps are hallmarks enzymes of RNA viruses, this strategy
cannot identify highly divergent RdRp sequences, leaving them in the realm of viral dark
matter. Small RNA sequencing may aid in properly characterizing viral dark matter by
associating sequence cleavage patterns with otherwise unrelated contigs to form complete
viral genomes.

5. Conclusions

This study expands our understanding of the RNA virome of sylvatic mosquitoes
from the Brazilian Cerrado biome, uncovering eleven near-complete viral genomes in
seven distinct viral families and one genus of an unassigned family, including Ferox
mosquito mononega-like virus* and Albipes mosquito Gordis-like virus* (Xinmoviridae),
Sabethes albiprivus phasmavirus* (Phasmaviridae), Pedras lispivirus variant MG (Lispiviri-
dae), Sabethes albiprivus iflavivirus* (Iflaviridae), Buriti virga-like virus variant MG and
Sabethes albiprivus virga virus 1* (Virgaviridae), Psorophora ferox flavivirus* (Flaviviri-
dae), Alphamesonivirus cavallyense variant MG (Mesoniviridae), and Biggie virus variant
MG and Coquillettidia velezuelensis negevirus* (Negevirus), with seven being new and
four previously known genomes identified in new host species. The discovery of two
xinmovirids in Ps. ferox and Ps. albipes presents new avenues for future studies aimed
at understanding the interactions between ISVs and other arboviruses in the context of
pathogen transmission. Additionally, HTS once again demonstrates its remarkable capacity
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to discover new viruses, even in pools of mosquitoes from different species, thereby en-
hancing our understanding of comprehensive virome surveillance in regions undergoing
rapid environmental changes, as such the Brazilian Cerrado biome. Moreover, the presence
of ISVs and potential novel arboviruses underscores the need for ongoing surveillance and
control strategies to mitigate the risk of emerging infectious diseases. Further research is
needed to elucidate the ecological roles of these viruses, their potential impacts on vector
competence, and their implications for human and animal health in the context of emerging
infectious diseases. Continuing to explore the viromic landscape of sylvatic mosquitoes
can better prepare us for and mitigate the threats posed by future viral outbreaks.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v16081276/s1, Table S1—Summary of metadata for mosquito
collections, including land use types, collection methods, and collection dates. Table S2—CheckV
results for the genome completeness of viral contigs, including contig length, viral gene content, and
contamination indexes.
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