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A B S T R A C T   

Background: High levels of inflammation and oxidative stress are observed in bipolar disorder (BD) being further 
associated with mood symptoms and cognitive dysfunction. Due to the crosstalk between the periphery and 
central nervous system, the blood-brain barrier (BBB) disruption has been considered a key mechanism of the BD 
pathophysiology. This study aimed to evaluate claudin-5 expression in the brain of a model of mania induced by 
D-amphetamine (AMPH). 
Methods: Wistar rats were injected with AMPH (2 mg/kg i.p.) and treated with lithium (47.5 mg/kg i.p.). Lo
comotor behavior was assessed, followed by euthanasia, blood collection, and brain removal. Tumor necrosis 
factor (TNF) α and thiobarbituric acid reactive substances (TBARS) were quantified in the serum and brain tissue, 
and claudin-5 was quantified in the brain. 
Results: AMPH-injected animals exhibited increased locomotor activity. In the serum, TBARS levels were 
augmented in lithium-treated groups, while TNFα was not detected. In the brain, TBARS and TNFα did not differ 
between groups but were positively andstrongly correlated in the striatum of AMPH-injected rats. Contrary to our 
hypothesis, AMPH and lithium injections did not affect claudin-5 levels in the brain. 
Limitations: The main limitations include the lack of a dynamic marker of BBB integrity and limited number of 
biomarkers analyzed. 
Conclusions: This is one of the first attempts to investigate the effects of AMPH on BBB integrity, and no 
disruption was observed. Still, we provide rationale for future research to elucidate the importance of BBB 
disruption in BD, recently proposed as a marker of illness progression.   

1. Introduction 

Bipolar disorder (BD) is a recurrent chronic and disabling disorder 
characterized by fluctuations in mood, energy, and functioning (Amer
ican Psychiatric Association, 2013). Specifically, mood episodes include 
mania, hypomania, and alternating episodes of depression (Grande 
et al., 2016). Although no specific biomarker has been identified, in
dividuals with BD present with increased peripheral levels of inflam
matory and oxidative stress markers accompanied by altered levels of 

neurotrophic factors (Fernandes et al., 2011; Ghafouri-Fard et al., 2019; 
Kim et al., 2007; Petersen et al., 2021; van den Ameele et al., 2020, 
2017). Hence, BD is associated with a chronic low-grade inflammatory 
state, which seems to be coordinated with mood symptoms and cogni
tive deficits during the course of the disorder (Kapczinski et al., 2010; 
Rosenblat and McIntyre, 2016). 

The crosstalk between the periphery and the central nervous system 
(CNS) has implicated the blood-brain barrier (BBB) dysfunction in the 
pathophysiology of BD (Patel and Frey, 2015). The BBB consists of 
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endothelial cells of the brain capillaries, astrocyte end-feet, and peri
cytes (Ballabh et al., 2004). The presence of tight and adherens junctions 
between the endothelial cells contributes to the tightness of the BBB and 
its selective function (Banks, 2015). As most blood-borne substances are 
not allowed to enter the brain under physiological conditions, BBB 
integrity is essential for CNS homeostasis (Segarra et al., 2021). Evi
dence indicates that inflammatory cytokines such as tumor necrosis 
factor (TNF) α and interferon (IFN) γ (Capaldo and Nusrat, 2009), and 
oxidative stress (Sajja et al., 2016) are detrimental and contribute to BBB 
disruption. Recently, extensive BBB leakage has been associated with a 
more severe and chronic course of BD (Kamintsky et al., 2019). Still, 
research on the potential involvement of the BBB in the pathophysiology 
of BD is very scant. 

In this study, TNFα and TBARS were selected as relevant markers due 
to their role in BD and potential implication in BBB disruption. High 
peripheral levels of TNFα and TBARS have been described in BD and 
linked to acute episodes (i.e., mania) and/or early stages of the disorder 
(Ascoli et al., 2019; Brietzke and Kapczinski, 2008; Modabbernia et al., 
2013; Siwek et al., 2016). Moreover, in vitro studies have shown that 
TNFα downregulates the expression of tight junctions (Stone et al., 
2011) and induce the production of neurotoxic compounds (i.e., qui
nolinic acid; Guillemin et al., 2001), while, in vivo, this proin
flammatory cytokine upregulates matrix metalloproteinases (MMP) – 
endopeptidases associated with the degradation of BBB tight junctions. 
Regarding TBARS, a byproduct of lipid peroxidation, increased levels 
have been found to precede BBB breakdown in a preclinical model 
(Barichello et al., 2011) and to be associated with traumatic brain injury, 
which is frequently followed by BBB disruption (Lin et al., 2014). Lastly, 
claudin-5 is the most enriched tight junction protein in the BBB, deter
mining its permeability properties (Hashimoto et al., 2021). 

In preclinical research, amphetamine (AMPH) has been used to 
resemble some aspects of the manic episode of BD in rodents (Sharma 
et al., 2016). Besides hyperlocomotion, AMPH-injected animals present 
with increased levels of inflammation (e.g., interleukin (IL)− 6, TNFα) 
and oxidative stress (e.g., lipid peroxidation and protein carbonylation) 
in the periphery and CNS (Frey et al., 2006a; Gubert et al., 2016). 
Moreover, it is suggested that lithium can prevent and reverse most of 
these alterations induced by AMPH and its analogs (Frey et al., 2006b; 
Macêdo et al., 2013; Valvassori et al., 2015). Considering that both 
inflammation and oxidative stress increase BBB permeability, we aimed 
to investigate if BBB disruption is observed in an AMPH-induced animal 
model of mania. Also, we sought to evaluate whether treatment with 
lithium reverses any BBB damage induced by AMPH. To date, only a few 
studies have evaluated, to some extent, BBB disruption in an animal 
model of mania (Valvassori et al., 2015) or other 
psychostimulants-induced models (Northrop and Yamamoto, 2012), 
while none has investigated a specific marker, such as claudin-5. 

2. Methods 

2.1. Animals 

Male Wistar rats (n = 24, 2-month-old, 220–310 g) were purchased 
from Charles Rivers Laboratories (Massachusetts, USA). Animals were 
housed (n = 2 per cage) at standard room temperature and 12-h inverse 
light/dark cycle, with free access to food and water. This study was 
approved by the institutional ethics committee from McMaster Univer
sity (Animal Research Ethics Board, project #140828), and all experi
mental procedures were performed following national (Canadian 
Council on Animal Care, 2020) and international (National Research 
Council (US), 2011) ethical standards. 

2.2. Treatment groups 

The study was performed in a 2 (AMPH model) x 2 (treatment) 
design, including 4 groups. Animals were allocated into groups by 

stratified randomization based on body weight prior to the experiments. 
From day 1 to 14, rats were injected with AMPH (dextroamphetamine, 2 
mg/kg i.p. diluted in saline solution 0.9%, at 1 mL/kg; SmithKline 
Beecham, Brentford, UK) or saline (SAL, 1 mL/kg i.p.) once a day. Then, 
from day 8 to 14, animals were treated lithium chloride (LI, 47.5 mg/kg 
i.p. diluted in saline solution 0.9%, at 1 mL/kg; Sigma-Aldrich Corp., St 
Louis, USA) or saline (1 mL/kg i.p.) twice a day. This protocol has been 
previously described as a reversal model of mania (Frey et al., 2006a, 
2006b; Valvassori et al., 2015). Treatment order was also randomly 
determined within-animal. Overall, the animals were divided in four 
treatment groups including (1) SAL+SAL (n = 6), (2) AMPH+SAL (n =
6), (3) SAL+LI (n = 6) and (4) AMPH+LI (n = 6). 

2.3. Open field 

On day 14, locomotor behavior was evaluated 2 h after the last in
jection of AMPH using the open field. The apparatus consisted of a 
60×40 cm open field with 50-cm-high walls divided into 12 equal 
rectangles (Frey et al., 2006a, 2006b). Each animal was placed in the 
center of the open field and allowed to explore the apparatus for 5 min. 
All sessions were recorded using a webcam (C270 HD, Logitech), and a 
video tracking system (ANY-maze 5.2; Stoelting Co.) was used to analyze 
behavior. Briefly, the analysis setup included drawing the apparatus (i. 
e., outline and rectangles) in the software. Then, for each video, the 
software automatically detected the presence of the animal in the 
recording and tracked the number of crossings, distance traveled (m), 
average speed (m/s), and time spent in the periphery (s). 

2.4. Euthanasia and sample collection 

After the behavioral task, rats were deeply anesthetized with iso
flurane (4–5% with oxygen at 1–2 L/min) and immediately decapitated, 
and the brain was removed as quickly as possible. The right and left 
prefrontal cortex (PFC), hippocampus (HIP), and striatum (ST) were 
dissected and snap frozen in dry ice. The troncular blood was also 
collected and centrifuged (2057 g, 10 min, at room temperature). 
Finally, brain structures and serum were stored at − 80 ◦C until sample 
preparation. 

2.5. Sample preparation 

Right- and left-brain structures were prepared differently for 
biochemical analyses and western blot. Brain tissue was homogenized 
using phosphate-buffered saline (PBS) for biochemical assays or RIPA 
buffer 1x (20–188, Merck Millipore) for western blot at 1:4 (w/v). Both 
lysis buffers were prepared with EDTA-free protease inhibitor cocktail 
(11836170001, Roche) according to the manufacturer’s instructions. 
Then, samples were centrifuged (10,000 g, 5 min, 5 ◦C), and superna
tants were collected and kept at − 80 ◦C until further analysis. 

2.6. Biochemical assays 

2.6.1. Total protein 
The total protein was determined in the brain structures using DC 

Protein Assay Reagent (5000116, BioRad) according to the manufac
turer’s instructions. Briefly, samples were diluted 1:21 (v/v) in PBS and, 
after the addition of proper reagents, the total protein content in each 
sample was quantified in a spectrophotometer at 750 nm. 

2.6.2. TNFα 
TNFα levels were quantified using a sandwich ELISA kit (KRC3011, 

Invitrogen™) following the manufacturer’s instructions. Serum samples 
were not diluted, while all brain structures homogenates were diluted at 
a 1:10 (v/v) ratio. 
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2.6.3. Thiobarbituric acid reactive substances (TBARS) 
TBARS levels were detected and quantified using a colorimetric 

assay kit (KGE013, R&D Systems) according to the manufacturer’s in
structions. Serum samples were diluted at 1:2 (v/v) ratio, PFC and ST 
homogenates were diluted at 1:20 (v/v) and HIP at 1:20 (v/v) ratios. 

2.7. Western blot 

Briefly, homogenates samples of PFC, HIP, and ST were further 
diluted 1:1 (v/v) in 2x Laemmli sample buffer (1610737, BioRad Lab
oratories, Inc). After that, 20 µg of each sample was loaded in 4–20% 
pre-cast and stain-free mini gels (4568094, BioRad Laboratories, Inc). A 
protein marker (1610373, BioRad Laboratories, Inc) was also loaded in 
the gels. Electrophoresis was performed at 100 V for 1 h 15 min. The 
protein transfer was performed using the Trans-Blot® Turbo™ Transfer 
System (BioRad Laboratories, Inc) to an LF-PVDF membrane (0.45 µm 
pore size, BioRad Laboratories, Inc) at 25 V for 7 min. The total protein 
and transfer were verified using the ChemiDoc™ Imaging Systems 
(BioRad Laboratories, Inc); no specific staining was used. Blocking was 
performed using skim milk powder 5% (diluted in TBS-T) for 1 h at room 
temperature. Primary (Claudin 5 Monoclonal Antibody, 35–2500, 
Thermo Fisher) and secondary (Peroxidase-AffiniPure Goat Anti-Mouse 

IgG (H + L), 115–035–003, Jackson Immuno Research) antibodies were 
diluted in TBS-T at 1:500 and 1:10,000, respectively. β-actin was the 
loading control (β-Actin Loading Control Monoclonal Antibody, 
MA5–15739, Thermo Fisher; same secondary antibody as previous), and 
antibodies were diluted in TBS-T at 1:10,000. Clarity Western ECL 
Substrate (1705060, BioRad Laboratories, Inc) was used for detection. 
Total protein was used for loading control as described previously 
(Taylor et al., 2013), and claudin-5 levels were normalized by the con
trol group levels (i.e., SAL+SAL). 

2.8. Statistical analysis 

Shapiro-Wilk and Levene’s tests were used to evaluate the normality 
of distribution and homogeneity of variance, respectively. Secondly, 
two-way ANOVA was performed, considering model (saline and AMPH) 
and treatment (saline and lithium) as independent factors, followed by 
Tukey posthoc analysis, if ANOVA is significant. Outliers were identified 
using the Grubbs’ test (α=0.05) and excluded from the analysis (n = 5). 
All p<0.05 were considered statistically significant. 

Fig. 1. Effects of AMPH and lithium in locomotor behavior. A-C. AMPH increased the frequency of crossing, average speed, and distance traveled in the open field 
(*main effect of AMPH model, p<0.005). D. Time spent in the periphery was similar among groups. Two-way ANOVA, data expressed by mean±SEM. 
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3. Results 

3.1. AMPH induced hyperactivity 

AMPH-injected rats presented overall hyperactivity in the open field, 
which was indicated by an increased number of crossings, average 
speed, and distance traveled (Fig. 1, A-C). Two-way ANOVA indicated a 
main effect of the AMPH model for all variables, with no main effects for 
treatment and interaction of factors (Table 1). Also, no differences were 
observed for time spent in the periphery (Fig. 1D, Table 1). 

3.2. Effect of amph on serum and brain levels of TNFα and TBARS 

In the serum, TNFα levels were below the limit of detection across all 
groups. In the brain regions analyzed, AMPH did not induce inflam
mation as evaluated through TNFα levels. Consequently, no effect of 
lithium was observed. Two-way ANOVA did not indicate main effects of 
AMPH model, treatment, and interaction for these variables (Fig. 2A-D, 
Table 2). 

TBARS levels in the serum and brain structures remained unchanged 
following AMPH injection (Fig. 2E-H). However, lithium treatment 
increased lipid peroxidation in the serum, which was indicated by 
treatment effect, but no main effects for AMPH model and interaction of 
factors were observed following two-way ANOVA (Fig. 2E, Table 2). In 
the brain, there were no main effects of AMPH model, treatment, and 
interaction (Table 2). 

Interestingly, a significant strong positive correlation was observed 
between TNFα and TBARS levels in the ST of the AMPH+SAL (r = 0.87, 
p<0.001) and AMPH+LI (r = 0.96, p = 0.002) groups. This correlation 
was weaker in the SAL+SAL group (r = 0.80, p = 0.056) and was 
negative in SAL+LI rats (r=− 0.89, p = 0.017). 

3.3. Claudin-5 protein levels in the PFC, HIP, and ST of AMPH-injected 
rats 

Overall, the levels of claudin-5 in the brain remained unchanged 
following AMPH and lithium injection. Two-way ANOVA did not indi
cate main effects for the AMPH model, treatment, or interaction (Fig. 2I- 
L, Table 2). 

4. Discussion 

To our knowledge, this is the first study that investigated BBB 
disruption in an animal model of mania induced by AMPH. Corrobo
rating with previous studies, AMPH-injected rats exhibited hyperactiv
ity, which was determined by an increased frequency of crossings and 
distance traveled. Although our model showed face validity, no changes 
in peripheral and CNS levels of TNFα and TBARS were observed 
following AMPH and lithium injection. Consequently, protein levels of 
claudin-5, the most enriched tight junction protein in the BBB, also 

remained unchanged in the brain regions analyzed. 
Psychostimulant-induced animal model of mania, such as the AMPH 

model, is frequently used to investigate biological mechanisms and al
terations that have already been described in BD (Kara and Einat, 2013; 
Sharma et al., 2016). Clinical studies often report an increase in in
flammatory and oxidative stress parameters in the disorder (Rowland 
et al., 2018), and some preclinical evidence is consistent with such 
findings. For instance, Valvassori et al. (2015) have shown that AMPH 
injections resulted in a pro-inflammatory effect. Injected rats presented 
with an augment of IL-4, IL-6, IL-10, and TNFα in the PFC, ST, and 
serum, which were restored to control levels following treatment with 
lithium. However, the authors did not find significant alterations in the 
HIP and cerebrospinal fluid (CSF). Other psychostimulant drugs, such as 
methylphenidate and methamphetamine, also seem to increase inflam
matory markers in the HIP of rats (Beirami et al., 2017; Motaghinejad 
et al., 2017). However, no changes in TNFα levels were found in the 
serum and brain regions analyzed in our model. Still, no differences in 
inflammatory cytokines levels – such as TNFα, IL-1β, and IL-10 – have 
been previously described in rodents injected with AMPH or its derivates 
(Bristot et al., 2019; Gubert et al., 2016). Moreover, varying results 
might be related to differences in the protocol, such as type and regimen 
of psychostimulant and sensitivity of detection kits used for the markers 
of interest (e.g., inflammatory cytokines). 

Classically, AMPH is responsible for enhancing dopamine (DA) 
release by inhibiting its reuptake, promoting reverse transport of DA 
into the synaptic cleft independent of stimulus and releasing DA from 
synaptic vesicles in the cytoplasm (Calipari and Ferris, 2013). These are 
the primary mechanisms involved in AMPH-induced hyperactivity and 
its neurotoxic effects (Valvassori et al., 2021). If not stored in synaptic 
vesicles, cytoplasmatic DA has a highly autoxidative capacity that can 
impair mitochondrial function and increase oxidative stress resulting in 
cell death (Brown and Yamamoto, 2003; Yamamoto and Bankson, 
2005). However, in the present study, lipid peroxidation was not 
augmented following AMPH injection, given by TBARS levels. TBARS 
levels were higher in the ST, a brain region with many dopaminergic 
projections, but no statistical difference between groups was found. Still, 
a strong positive correlation between TBARS and TNFα levels was 
observed in this same brain region in AMPH-injected groups, regardless 
of treatment with lithium. Overall, findings regarding oxidative stress in 
AMPH models vary in the literature. More acute protocols or higher 
doses seem to be more likely to promote such alteration in the CNS (Frey 
et al., 2006a; Gomes et al., 2017; Gubert et al., 2016). Also, higher levels 
of TBARS were observed in the serum of lithium-treated animals, in
dependent of AMPH injection. Lithium per se is known to be nephrotoxic 
(Carter et al., 2013), and increased levels of TBARS in the kidney have 
already been described in rats (Davis et al., 2018; Ossani et al., 2019). 

Oxidative stress is an important promoter and product of the in
flammatory response (Biswas, 2016), and it is supposed to underly 
AMPH-induced inflammation. As oxidative stress and inflammation are 
predictive of promoting BBB disruption and increasing its permeability 
(Patel and Frey, 2015), we hypothesized that AMPH would exert a 
deleterious effect in the BBB by downregulating claudin-5 expression. 
However, no significant changes were observed on claudin-5 levels in 
the PFC, ST, and HIP of rats after AMPH and lithium injections. A pre
vious study showing increased levels of inflammatory cytokines in the 
brain parenchyma but no alteration in the CSF suggested that 
AMPH-injected rats might not present with disrupted BBB (Valvassori 
et al., 2015). However, in vivo and in vitro studies have already reported 
that methamphetamine and other psychostimulant drugs can disturb 
BBB integrity (Kousik et al., 2012; Northrop and Yamamoto, 2012). 

Besides inflammation and oxidative stress, associated mechanisms 
have been proposed to underlie BBB disruption. For instance, the acti
vation of inflammatory pathways, such as nuclear factor kappa B 
(NFκB), can result in the amplification of a large array of genes involved 
in inflammation, including MMPs (Hurtado-Alvarado et al., 2016). 
MMPs are enzymes that degrade tight junctions, such as claudin-5, 

Table 1 
Results of two-way ANOVA for behavioural assessment.  

Dependent variable Effects F-value df p-value 

Number of Crossing AMPH model 7.30 1,20 0.014  
Treatment 0.10 1,20 0.761  
Interaction 0.48 1,20 0.495 

Speed (m/s) AMPH model 7.23 1,20 0.014  
Treatment 0.59 1,20 0.451  
Interaction 0.04 1,20 0.850 

Distance (m) AMPH model 8.35 1,20 0.009  
Treatment 0.84 1,20 0.371  
Interaction 0.02 1,20 0.885 

Time in the periphery (s) AMPH model 1.09 1,20 0.309  
Treatment 1.31 1,20 0.266  
Interaction 3.31 1,20 0.084 

Abbreviations: AMPH, amphetamine; df, degrees of freedom. 
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which are essential for maintaining BBB properties (Rempe et al., 2016). 
Methamphetamine has already been described to upregulate MMPs 
expression (Mizoguchi et al., 2007). Additionally, NFκB pathway acti
vation following TNFα and IL-15 signaling may also be responsible for 
the downregulating the expression of tight junction proteins (e.g., 
claudin-2) in vitro (Stone et al., 2011). Therefore, it is relevant to 
investigate other pathways in BBB disruption and their potential asso
ciation with BD and other psychiatric disorders. 

Although BBB disruption has been implicated in the pathophysiology 
of psychiatric disorders (including BD; Greene et al., 2020), clinical and 
preclinical evidence is still scarce. A recent imaging study has shown 
that, among individuals with BD, only a sub-group exhibited an exten
sive BBB leakage that significantly differed from controls (Kamintsky 
et al., 2019). Interestingly, this sub-group of patients have a more 
chronic course of BD, with more severe symptoms of depression and 
anxiety. Other studies have evaluated biomarkers in the CSF and 
described higher levels of catecholamine and serotonin metabolites and 
inflammatory markers, such as IL-8, in individuals with BD (Isgren et al., 
2015; Knorr et al., 2018). Furthermore, increased IL-8 levels in the CSF 
were associated with lithium treatment. Since its discovery, lithium has 
remained the first-line therapeutic choice for BD treatment (Yatham 
et al., 2018), but its effects on inflammation have yet to be fully eluci
dated. During euthymia, individuals with BD treated with lithium 
exhibited increased levels of TNFα and IL-4 compared to unmedicated 
patients (Guloksuz et al., 2010), which has also been described in vitro 

(Liu et al., 2011); but there is also evidence to show otherwise (Fer
nandes et al., 2011; Knijff et al., 2007). It is worth mentioning that 
augmented peripheral TNFα levels were further associated with poor 
response to lithium treatment in BD (Guloksuz et al., 2012). 

Despite its novelty, some limitations should be addressed in our 
study. First, we did not explore more dynamic markers of the interface 
integrity between the blood, brain, and CSF, such as Evans Blue, which 
could be helpful as a first screening. Second, plasmatic levels of lithium 
were not assessed, but it has been described that therapeutic levels are 
reached following this protocol (Frey et al., 2006b). Third, lithium 
treatment did not decrease hyperlocomotion in AMPH-injected rats. 
While the attenuating effects of lithium on stimulant-induced hyper
locomotion are mostly consistent in the literature, some studies have 
reported a lack of effect (O’Donnell and Gould, 2007). Here, unaffected 
phenotypic response following lithium treatment may be attributed to 
inter-individual variability, but molecular changes (i.e., TBARS serum 
levels) were still observed in treated groups. Fourth, the use of volatile 
anesthetics, such as isoflurane, has been associated with 
anti-inflammatory and antioxidant effects in rodent models; thus, it 
might also be a potential experimental bias. Still, current evidence for 
animal models of AMPH is limited, and studies showing these protective 
effects primarily aimed to evaluate the use of volatile anesthetics as a 
pre-treatment or shortly after the model induction and for longer periods 
(Lee et al., 2015). Here, animals were briefly exposed to isoflurane (±5 
min) at the end of the experiment until anesthetized. Lastly, while only a 

Fig. 2. TNFα, TBARS, and claudin-5 levels in the serum and brain. A. TNFα was not detected in the serum of the animals. B-D. AMPH and lithium injections did not 
change TNFα levels in the PFC, HIP, and ST. E. AMPH did not change lipid peroxidation levels, and an increase of serum TBARS was observed in lithium-treated rats 
(*main effect of treatment, p = 0.009). F-H. TBARS levels in the PFC, HIP, and ST were similar across groups. I-L. Claudin-5 protein levels in the PFC, HIP, and ST did 
not differ following AMPH and lithium injections. A band corresponding to claudin-5 was observed at 15–20 kDa, and β-actin was found at 37–50 kDa. Two-way 
ANOVA, data expressed by mean±SEM. 
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few parameters were analyzed, their relevance to BD and the rationale 
for their role in the BBB disruption have been discussed. 

Although an ideal animal model for BD has not been developed, 
AMPH injection in rodents remains an established animal model of 
mania with good construct, face, and predictive validity (Sharma et al., 
2016). It should be noted that the latter has been questioned (Lan and 
Einat, 2019). Although this model may not mimic the vast complexity of 
BD pathophysiology, it would be advantageous to identify novel animal 
models that allow the evaluation of BBB disruption. 

5. Conclusion 

It is only recently that clinical research has provided BBB disruption 
as a marker of progression in BD (Kamintsky et al., 2019). Here, in one of 
the first attempts to investigate the effects of AMPH on BBB integrity, we 
did not find evidence that AMPH or lithium impact brain levels of 
claudin-5. Still, our results provide evidence and rationale for future 
research to establish the best approach to model and better understand 
this relatively novel pathophysiological mechanism implicated in BD. 
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