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ABSTRACT

Deep learning architectures have demonstrated impressive results in image classification

in the last few years. However, applying sophisticated neural network architectures in

small datasets remains challenging. In this context, transfer learning is a promising ap-

proach for dealing with this scenario. Generally, the available pre-trained architectures

adopt a standard fixed input, which usually implies resizing and cropping the input im-

ages in the preprocessing phase, causing information loss. Besides, images present visual

features in different scales in real-world scenarios, and most common approaches do not

consider this fact. In this work, we propose an approach that applies transfer learning for

dealing with small datasets and leverages visual features extracted by pre-trained models

from different scales. We based our approach on graph convolutional networks (GCN)

that take graphs representing the images in different scales as input and whose nodes

are characterized by features extracted by pre-trained models from regular image patches

of different scales. Since GCN can deal with graphs with different numbers of nodes,

our approach can deal naturally with images of heterogeneous sizes without discarding

relevant information. We evaluated our approach in two datasets: a set of geological im-

ages and a publicly available dataset, presenting characteristics that challenge traditional

approaches. We tested our approach by adopting three different pre-trained models as

feature extractors: two efficient pre-trained CNN models (DenseNet and ResNeXt) and

one Vision Transformer (CLIP). We compared our approach with two conventional ap-

proaches for dealing with image classification. The experiments show that our approach

achieves better results than the conventional approaches for this task.

Keywords: Image Classification. Graph Convolutional Network. Transfer Learning.

Feature Extraction. Multiscale.



Uma abordagem para classificação de imagens baseada em redes convolucionais de

grafos e grafos de características multiescala baseados em patches

RESUMO

As arquiteturas de aprendizado profundo demonstraram excelentes resultados na classi-

ficação de imagens nos últimos anos. No entanto, a aplicação de arquiteturas de redes

neurais sofisticadas em pequenos conjuntos de dados continua sendo um desafio. Nesse

contexto, a aprendizagem por transferência é uma abordagem promissora para lidar com

esse cenário. Geralmente, as arquiteturas pré-treinadas disponíveis adotam uma entrada

fixa padrão, o que geralmente implica em redimensionar e recortar as imagens de entrada

na fase de pré-processamento, causando perda de informações. Além disso, no mundo

real, as imagens apresentam características visuais em diferentes escalas, e as aborda-

gens mais comuns não consideram esse fato. Neste trabalho, propomos uma abordagem

que aplica transferência de conhecimento para lidar com pequenos conjuntos de dados e

aproveita características visuais extraídas por modelos pré-treinados de diferentes esca-

las. Baseamos nossa abordagem em redes convolucionais de grafos (GCN) que recebem

como entrada grafos que representam as imagens em diferentes escalas e cujos nós são

caracterizados por características extraídas por modelos pré-treinados de partes regulares

de imagens em diferentes escalas. Como o GCN pode lidar com grafos com diferentes

números de nós, nossa abordagem pode lidar naturalmente com imagens de tamanhos he-

terogêneos sem descartar informações relevantes. Avaliamos nossa abordagem em dois

conjuntos de dados: um conjunto de imagens geológicas e um conjunto de dados dis-

poníveis publicamente, ambos apresentando características que desafiam as abordagens

tradicionais. Testamos nossa abordagem adotando três modelos pré-treinados diferentes

como extratores de características: dois modelos eficientes de CNN pré-treinados (Den-

seNet e ResNeXt) e um Vision Transformer (CLIP). Comparamos nossa abordagem com

duas abordagens convencionais para lidar com a classificação de imagens. Os experi-

mentos mostram que nossa abordagem alcança melhores resultados do que as abordagens

convencionais para esta tarefa.

Palavras-chave: Classificação de Imagens. Rede de Convolução de Grafos. Transferên-

cia de Aprendizado. Extração de Características. Multiescala.
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1 INTRODUCTION

Nowadays, social networks, corporate systems, and several applications on the

web generate large amounts of data every second. Due to the availability of this big data,

managing and retrieving the relevant data for supporting the tasks of interest becomes

a challenge. This scenario is also present within companies, which spend considerable

resources trying to solve this problem. In this context, dealing with images is an even

more challenging task. The main reason is the absence of explicit meaning associated

with images, hindering the retrieval of this kind of data through search queries. A com-

mon approach for dealing with this scenario involves annotating images with semantic

tags to allow searching and retrieving them (HOLLINK et al., 2003). However, manual

annotation is laborious and not feasible in contexts in which big data is prevalent, since

this process requires significant human resources. Thus, automatic approaches for image

classification could be of great value for automatically labeling images in this scenario

(WONG; LEUNG, 2008; ZHANG; ISLAM; LU, 2012), allowing the retrieval of this data

through conventional queries in a subsequent step. Deep learning techniques are natural

candidates for automatically labeling large databases of images in this scenario.

In the last decade, Convolutional Neural Networks (CNN) (SZEGEDY et al.,

2015; TAN; LE, 2019; KRIZHEVSKY; SUTSKEVER; HINTON, 2012) and, most re-

cently, Vision Transformers (ViTs) (DOSOVITSKIY et al., 2020) significantly improved

the performance on image classification tasks. Researchers have applied these techniques

in several distinct domains (SLADOJEVIC et al., 2016; DUNG et al., 2019; ABBAS;

ABDELSAMEA; GABER, 2021; HONG et al., 2020). Despite the excellent results, so-

phisticated neural network architectures generally demand considerable training data to

achieve good performances (ZHU et al., 2021). Transfer learning (TORREY; SHAVLIK,

2010) has emerged as a promising approach to deal with this problem (LIANG; ZHENG,

2020; HORRY et al., 2020), since this strategy allows taking advantage of the knowledge

learned from significant amounts of data for dealing with tasks in which only small data

is available.

In general, when transfer learning is applied in the context of neural network ar-

chitectures, images used for feeding the pre-trained neural networks are standardized to

match the input requirements of these architectures (LECUN et al., 1998; KRIZHEVSKY;

HINTON et al., 2009). In general, this standardization process discards critical parts of

the image or changes its aspect ratio, causing information loss or introducing noise. How-
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ever, datasets of images with different sizes and aspect ratios are common in real-world

settings. Some studies (ANTHIMOPOULOS et al., 2016; ARAÚJO et al., 2017) address

these issues by adopting, for instance, patch-based approaches that deal with images by

considering different patches extracted from them and using different strategies for clas-

sifying the images according to the information of their patches. Other approaches also

adopt Fully Convolutional Network (FCN) (WANG et al., 2021; ZHUANG et al., 2021),

which can take images of different sizes as input, to avoid discarding relevant image in-

formation.

Recently, some works (ZHANG; ZOU; ZHANG, 2022; BAE et al., 2022) have

been exploring graph neural networks (GNN) for image classification. These approaches

involve representing images as graphs, where nodes represent pixels or sets of adjacent

pixels (called superpixels), and edges represent spatial relations between those pixels or

superpixels. Each node is characterized by features of each pixel or statistical proper-

ties of the set of pixels that constitute each superpixel (ZHANG; ZOU; ZHANG, 2022).

Some GNNs, such as graph convolutional networks (GCN), can deal with graphs with

heterogeneous numbers of nodes and edges, allowing them to handle images of different

sizes.

Another essential characteristic of real-world image datasets is the presence of

visual features in different scales of analysis and visual features that are apparent only

in some scales of analysis. Recently, some works have dealt with these scenarios by

proposing deep learning approaches that leverage different visual features in multiple

scales in different ways (CHEN; FAN; PANDA, 2021; MOHAN; VENKATESAN, 2020).

This work focuses on image classification approaches that can deal with real-world

image datasets that generally have small amounts of samples, where images can have

different sizes and whose visual features can be apparent in different scales.

In this work, we hypothesize that minimizing information loss and considering

the visual features of images at multiple scales can improve classification. Based on this

hypothesis, we propose an approach based on multiscale GCNs for image classification.

In this approach, we build different graphs to represent each image in different scales. For

building the graph of each scale of the original image, we first split the images into a set

of regular patches. We represent each patch as a node in a graph whose edges represent

the spatial neighborhood of the patches in the image. Finally, each node is characterized

by features extracted by pre-trained neural network models (used as feature extractors)

from the respective patch represented by the node. Once the set of graphs representing
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the image at multiple scales is built, we use this set of graphs as input for training a

multi-input graph convolutional network.

Thus, our approach originally combines the following features:

• The approach adopts a graph representation of images, where nodes represent reg-

ular patches extracted from images and edges represent the spatial neighborhood of

each patch.

• The features of each node are extracted by pre-trained neural network models from

the regular patches, allowing our approach to leverage the knowledge represented

in those pre-trained models for dealing with smaller datasets.

• The approach considers visual features that are apparent in different scales of anal-

ysis since we build different graphs from each image, where each one represents

the features of the image that are apparent in some specific scale.

• The approach can be applied in datasets with images of different sizes and is de-

signed to preserve as much information as possible from each image.

We evaluated our method in a dataset of geological images and a publicly available

dataset. These datasets challenge traditional approaches since their images have hetero-

geneous sizes and present some features in different scales. We measure our approach’s

performance using three different pre-trained models as feature extractors: DenseNet

(HUANG et al., 2017), ResNeXt (XIE et al., 2017)) and CLIP (RADFORD et al., 2021).

We compare our method with some well-established approaches for dealing with images

of different sizes. Our experiments suggest that the proposed approach outperforms the

considered alternatives. Furthermore, our work demonstrates that our approach achieves

better performance by using the CLIP pre-trained model as a feature extractor than by

using DenseNet or Resnext pre-trained models.

This dissertation was developed in the context of the project "Parameterization

of the geometry and architecture of reservoirs", which is a cooperation between UFRGS

and Petrobras. The project studies the types of geometry of sedimentary deposits to as-

sist geologists in proposing a uniform conceptual data model and an information system,

supporting the development of a description system and parametric queries. Within this

context, the geologist needs to access previously produced maps, photographs, and many

other different types of images to support and explain the process of interpretation (ABEL

et al., 2019). Thus, one of the project’s goals is to develop an image retrieval system for

the petroleum industry. Although the approach proposed in this work is designed to deal
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with images from different domains, it was primarily developed to classify geological

images, in order to support the subsequent image retrieval.

This work is structured as follows. In Chapter 2, we describe the theoretical back-

ground of our work. Chapter 3 presents a literature review, where we discuss the related

works. Chapter 4 presents a detailed discussion of the proposed approach for image clas-

sification. Chapter 5 presents our experiments, detailing the datasets, the methodology,

and the results. Finally, Chapter 6 presents our conclusions.
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2 THEORETICAL BACKGROUND

This work proposes a machine learning approach for image classification. Thus, in

this Section, we present the theoretical background related to image classification (Section

2.1) and machine learning (Section 2.2).

2.1 Image Classification

Image classification is a task that involves assigning a label, or more than one, to

an input image based on its contents, in a way that the assigned label classifies the image

as a whole. The goal is to correctly identify the image’s class or category, such as "cat"

or "dog," based on its visual features (SZELISKI, 2022).

In the past, several image classification techniques have been proposed such as

subpixel, per-field, and knowledge-based classification. Traditional per-pixel classifiers

typically develop a signature by combining the spectra of all training-set pixels for a given

feature, working well for remote sensing images (LU; WENG, 2007). In a more general

context, the simplest method for classification was the bag of words (also known as bag of

features), where the distribution (histogram) of "visual words" (i.e., features extracted by

methods such as LaPLace) of the analyzed image was computed and compared with the

distribution of the training images (SZELISKI, 2022). From this, different methods have

emerged for comparing two feature vectors, such as the use of distance calculations be-

tween vectors (GRAUMAN; DARRELL, 2007). Other feature extraction methods were

developed and combined with machine learning methods to perform the classification,

such as using hierarchies of dense feature transforms inspired by biological (visual cor-

tical) processing combined with support vector machines (SVMs) for final classification

(MUTCH; LOWE, 2008).

In recent years, due to the increase in computational power, improvement of tech-

niques algorithms, and the development of large databases of annotated images, we can

notice an increasing adoption of machine learning methods for image classification.
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2.2 Machine Learning

Machine Learning (ML) is an area of Artificial Intelligence that aims to develop

systems that improve their performance through experience (RUSSELL, 2010). For this,

machine learning algorithms extract patterns from raw data to build models that can be

used in later steps to solve tasks.

The algorithm’s performance in this process depends heavily on the quality of

the data and its representation (ALPAYDIN, 2020). In ML, we represent data as sets of

features representing different aspects of each sample. Choosing the right set of features

that suitably represent the data significantly affects the performance of the algorithms

(GOODFELLOW; BENGIO; COURVILLE, 2016).

In addition to features, an important characteristic of data used in ML is whether

it contains labels or not. From this information, we know the type of feedback the model

will access, determining which type of learning algorithm will be used. These are the

main types of learning (GOODFELLOW; BENGIO; COURVILLE, 2016; RUSSELL,

2010):

• Unsupervised learning: there is no explicit feedback provided from the data (no

labels).

• Semi-supervised learning: there are both labeled and unlabeled data, and it is nec-

essary to use the feedback from the labeled data to deal with the others.

• Reinforcement learning: there is a feedback loop between the learning system and

its experience, where the algorithm interacts with the environment.

• Supervised learning: all data are labeled, and the model learns by observing the

input and output pairs (training data), being able to compare the actual output and

the one predicted by the model. This learning process allows us to infer data labels

never seen in the training process (test data).

Supervised learning is adopted in two different kinds of tasks: classification and

regression. In the classification task, the algorithm needs to infer which category (cho-

sen from a set of discrete labels) classifies a given input (GOODFELLOW; BENGIO;

COURVILLE, 2016). For example, learning how to classify images of dogs and cats can

be viewed as a classification task.

In contrast, regression tasks involve predicting a continuous numerical value based

on a given input. For instance, predicting future prices in the stock market is a common
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example of a regression task (GOODFELLOW; BENGIO; COURVILLE, 2016). In both

types of tasks, the goal is to learn a function that maps a given input to the appropriate

output. However, the main difference between classification and regression tasks is the

nature of the output: classification tasks have a discrete output, representing a category,

while regression tasks have a continuous output, representing a numerical value.

Since our work deals with image classification tasks, we characterize this prob-

lem as a classification task with supervised learning. Over the past few decades, various

approaches have been developed in the field of machine learning to tackle classification

tasks using supervised learning. Neural networks have emerged as a powerful tool and

have demonstrated remarkable performance gains in different tasks over the years. In fact,

in several benchmarks, they have even surpassed human accuracy (WANG et al., 2019).

Due to this, in this work, we developed an approach based on neural networks. In Section

2.2.1, the main aspects associated with neural networks will be discussed.

2.2.1 Neural Networks

The neural activity of a human being consists of electrochemical activity in the

network of brain cells called neurons. Artificial Neural Networks (known simply as Neu-

ral Networks) are machine learning approaches initially inspired by this neural process

(RUSSELL, 2010). Computationally, a Neural Network (NN) consists of a collection of

connected processing units organized in layers and its properties are determined by its

topology and the properties of its basic units, the "neurons" (RUSSELL, 2010). Modern

Deep Learning involves combining these neurons into layers and combining tens or hun-

dreds of successive layers of these basic processing units. Each layer of a NN transforms

the data based on its weights, whose values are adjusted during the training process, based

on the network performance feedback. In this context, learning means finding weight val-

ues that will make the network correctly map example inputs to their associated targets.

Thus, after a suitable training process, a neural network represents a function that approx-

imates the function that maps inputs to the correct outputs in a given task.

Formally, we can define the propagation of the data representation across the net-

work as follows (GOODFELLOW; BENGIO; COURVILLE, 2016):

H i+1 = σ(W iH i +Bi) (2.1)
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The Equation 2.1 represents the forward pass of a neural network, where H is the

feature representation at layer i + 1, σ is the activation function, W are the weights at

layer i, H is the feature representation at layer i and B is the bias at layer i.

Figure 2.1 – Structure of a neural network. A neural network is parameterized by its weights and
its output quality is measured by a loss function. Then, the loss score is used to adjust the

weights.

Source: adapted from (CHOLLET, 2021).

Figure 2.1 shows the workflow of a neural network. In each layer, the data is

transformed based on the weights assigned to the activation functions. The loss function

computes a distance score from the true target to the prediction provided by the network

for a given input. The function calculates the loss score, which is used by the backpropa-

gation algorithm to propagate updates on the link’s weights between adjacent layers, from

the output layer to the input layer.

Initially, all weights in the network are randomly assigned, but during the train-

ing process, the weights are updated and adjusted in the right direction as the network

processes data. The gradient descent algorithm performs this process of minimizing the

errors, by updating the weights in the opposite direction of the function’s gradient at the

current point since this is the direction of the steepest descent. In this process, the learn-

ing rate defines the step size at each training loop, used by the algorithm to traverse the
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gradient towards the local minimum point.

Another essential concept in this context is the notion of an epoch, which repre-

sents a certain number of iterations, summing up the loss from those iterations and then

updating the weights. Due to this strategy, one may process the loss without applying the

model to all training samples.

In the past, in the context of image classification to use neural networks, a previ-

ous step of feature engineering was required, to perform feature extraction and selection.

This is due to the fact that extracting high-level features from images is not trivial since

the information, in this case, is pixels. So in this step, the original images went through

processing steps in which they were converted into sets of features that represent signifi-

cant aspects of each image and are more suitable to use as inputs to a neural network and

then carry out the learning process in the network.

In the last decade, with the advancement of deep learning (DL) techniques, ap-

proaches that can automatically learn appropriate representations from raw data have been

developed, eliminating the need for feature engineering. These models have a data rep-

resentation strategy emphasizing learning on successive layers, increasingly meaningful

representations (GOODFELLOW; BENGIO; COURVILLE, 2016). Convolutional neural

networks (CNNs) and more recently, transformer architectures, have emerged as promi-

nent techniques in the field of deep learning. Besides that, in recent years, several works

have also applied graph convolutional networks in computer vision tasks. We discuss the

main concepts related to convolutional neural networks, transformers, and graph convo-

lutional networks in the following subsections.

2.2.1.1 Convolutional Neural Networks

CNNs are NNs whose main characteristic is the adoption of convolution layers,

which define trainable convolutional filters and can process data with grid-like topology

(e.g., images). Convolution is a specialized kind of operation and the CNNs are simply

neural networks that use convolution in place of general matrix multiplication in at least

one of their layers (GOODFELLOW; BENGIO; COURVILLE, 2016). These networks

have been widely used for visual tasks involving images due to the spatial nature of the

convolution operation. The concepts underlying this kind of network were proposed for

the first time in the 60’s (HUBEL; WIESEL, 1962). In 1998, in (LECUN et al., 1998) the

authors proposed "LeNet-5", the network that introduced the essential components of the

modern deep CNN. Figure 2.2 shows this architecture, which is essentially composed of
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convolution, subsampling (pooling), and fully connected layers.

Figure 2.2 – LeNet-5 model diagram. This architecture introduced the essential components of
modern CNN, composed of convolution, subsampling (pooling), and fully connected layers.

Source: (LECUN et al., 1998).

The output of a convolution layer consists of multiple feature maps generated by

convolution (i.e., dot product) of the convolution kernel with the input signal. The con-

volution kernel is an N × N weight matrix that slides over the data (e.g., image pixels)

performing convolution. Figure 2.3 illustrates an example of the 2-D convolution consid-

ering an input of size 3× 4, a kernel of size 2× 2 and stride 1.

Figure 2.3 – Example of a 2-D convolution. The multiplication between the input matrix and the
kernel matrix generates a new representation of the data.
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Source: adapted from (GOODFELLOW; BENGIO; COURVILLE, 2016).

Linear transformations limit the output’s hypothesis space, and adding more layers

that use linear activation functions would not extend this space. So it is necessary to apply

non-linear activation functions to access a much richer hypothesis space that would benefit

deep representations (CHOLLET, 2021). An example is the rectified linear activation

(ReLU) function, the most popular non-linear activation on DL that will output the input

directly if it is positive. Otherwise, it will output zero (NAIR; HINTON, 2010).

The pooling layer applies a function that replaces the NN output at a particular
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location with a summary statistic of the nearby outputs. Pooling helps to make the repre-

sentation become approximately invariant to small translations of the input. This means

that if we translate the input by a small amount, the values of most of the pooled outputs

do not change (GOODFELLOW; BENGIO; COURVILLE, 2016). Pooling also can de-

crease the spatial size of the data and reduce the number of parameters in the network.

One of the most common pooling methods is known as max pooling. In this method, we

generate a downsampled feature map calculating the maximum value for the region of the

original feature map. Figure 2.4 shows an example of how max pooling works, where

2 × 2 filters are applied with a stride 2, downsampling a 4 × 4 feature map to a 2 × 2

feature map, keeping the maximum value of each region.

Figure 2.4 – Example of max pooling layer operation.

Source: adapted from (WANG et al., 2019).

The stack of convolution blocks provides a way to extract different kinds of fea-

tures from images in a hierarchical way. The first layers extract lower-level features, such

as edges, endpoints, and corners. Then the higher layers extract higher-level features from

processing these lower-level features (GOODFELLOW; BENGIO; COURVILLE, 2016).

These high-level features, in general, can represent semantically meaningful features for

a given task, such as human faces, for example.

Traditional CNNs have as their last layer a fully connected layer, which takes as

input the features extracted by the previous convolutional blocks and provides an output

that represents the classification of the input image.

New CNN architectures emerge quickly in the last few years. The modern models

have brought advances in the performance of image classification, achieving results supe-
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rior to human beings’ accuracy in several benchmarks (WANG et al., 2019). In addition

to CNNs, more recently, after great results in textual tasks, the transformers architecture

was adapted and achieved great results in computer vision tasks.

2.2.1.2 Transformers

Since their original appearance, Transformers have been widely used for natural

language processing (NLP) and achieved great success in many fields of artificial in-

telligence. Transformer was initially proposed as a sequence-to-sequence model, using

an encoder and decoder, for machine translation (SUTSKEVER; VINYALS; LE, 2014).

This new type of architecture was highlighted in NLP tasks based solely on self-attention

mechanism, replacing the recurrence and convolution mechanisms, weighting the signifi-

cance of each part of the input (VASWANI et al., 2017).

Transformers began to stand out in computer vision using the standard architecture

directly to images (DOSOVITSKIY et al., 2020), which are split into patches and provide

the sequence of linear embeddings of these patches as input. Then, image patches are

treated in the same way as tokens (words) in NLP applications. This architecture called

Vision Transformer (ViT), is represented in Figure2.5.

Figure 2.5 – Vision Transformer overview. The process consists of splitting the image into
fixed-size patches, linearly embedding each of them, adding position embeddings, and feeding

the resulting sequence of vectors to a standard Transformer encoder. In order to perform
classification, an extra learnable “classification token” is added to the sequence.

Source: (DOSOVITSKIY et al., 2020).

Several other ViT were developed based on this basic architecture, taking advan-
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tage of the computational efficiency and scalability of this architecture. These approaches

reached a new level in large-scale image recognition (LIN et al., 2022).

2.2.1.3 Graph Convolutional Networks

In image analysis applications, one can consider images as functions on the Eu-

clidean space (plane), sampled on a grid. However, several applications in different do-

mains involve dealing with non-euclidean data, that is, data whose underlying structure

is a non-Euclidean space (BRONSTEIN et al., 2017). Some examples include social net-

works, sensor networks, molecules, regulatory networks in genetics, etc. Graphs consti-

tute a common way of representing this kind of data, including complex relationships and

interdependency between objects. In this context, graph neural networks(SCARSELLI et

al., 2008; WU et al., 2022) constitute a family of neural network architectures that are

designed for taking graphs as inputs, allowing to deal with non-euclidean data. Graph

convolutional networks (KIPF; WELLING, 2016) are GNNs that apply convolution op-

erations in graphs, in order to extract high-level node representations. Thus, GCN gen-

eralizes the operation of convolution from grid data to graph data. The main idea is to

generate a node representation by aggregating its features and the neighbors’ features. As

in CNN, higher-level representations of node features are obtained by stacking multiple

graph convolutional layers (WU et al., 2020).

The distinctive characteristic of GCN’s is the graph convolution layer. Consid-

ering the i-th convolutional layer, intuitively, the feature matrix taken as input H(i) is

multiplied by adjacency matrix A and by a trainable weights matrix W . This matrix

product allows aggregating the features with their neighbors’ node features. The output

matrix H(i+1) resulting from this operation is a new node feature matrix. Thus, H(i+1) is

calculated from H(i) as follows (KIPF; WELLING, 2016):

H(i+1) = σ(D̂−
1
2 ÂD̂−

1
2H(i)W ) (2.2)

, where σ is a given activation function (such as ReLU, hyperbolic tangent, etc.), I is

the identity matrix, so that Â = A + I represents the adjacency matrix with inserted

self-loops. Besides that, D̂ is the degree matrix (diagonal matrix which represents the

number of edges attached to each vertex), so that D̂ii =
∑

j=0 Âij . Finally, W is the

trainable weight matrix, where W ∈ Rdi×di+1 , where di is the number of node features

considered in the i-th convolutional layer and di+1 is the number of features resulting
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from this convolution operation. This equation enables the model to learn the feature

representations based on neighborhood nodes and their spatial relations.

It is important to notice that the dimensions of the weight matrix do not depend on

the size of the graph. Thus, the weights are adjusted regardless of the graph size, allowing

the GCN to deal with graphs of different sizes.

Figure 2.6 shows two different GCN architectures. The first (a) uses stacks of con-

volutions followed by the non-linear activation function, ultimately generating features

representing each graph node. The second (b) applies convolution followed by pooling to

coarsen a graph into subgraphs, generating higher graph-level representations. After, the

readout layer uses the updated node feature vectors to generate a single vectorial represen-

tation of the entire graph, which can then be used as input for a set of densely connected

layers with a softmax function being applied to the output layer for classifying the input

graph. These two architectures show elements that appear in most current GCN, usually

containing blocks with a combination of them. An example is convolution, followed by a

non-linear activation function and a readout layer for graph classification.

Figure 2.6 – Two traditional GCN architectures. Gconv denotes a convolutional graph layer,
MLP is a multilayer perceptron, and readout is the layer that performs an operation that

summarizes the output (e.g., global pooling).

Source: adapted from (WU et al., 2020).

A widely used readout layer is the global max pooling layer. Given the input graph

with feature matrix H (with N rows and F columns), the global max pooling layer pools

it into a single node computing the feature-wise maximum across the node dimension of

the graph. This pooling takes the max value of each feature in X (feature matrix) and puts
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it into the new single-node vector (Figure 2.7). That is, in this context, the global max

pooling layer produces a feature vector r ∈ RF , such that:

r = maxN
n=1Hn (2.3)

Figure 2.7 – Schema illustrating how global max pooling works.
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Source: The author.

These NN models presented so far (CNN, Transformers, GCN) have achieved, in

recent years, impressive results. This is mainly due to the appearance of huge databases

making it possible to introduce the transfer learning strategy to reuse training in several

tasks (SZELISKI, 2022).

2.2.2 Transfer Learning

Transfer learning (TL) refers to a family of strategies that allows exploiting the

knowledge learned in a given task to improve performance in a different task (PAN;

YANG, 2010). In recent years, TL has been gaining attention due to the development

and availability of large datasets and due to the positive results of these techniques for

improving the performance of machine learning models on small datasets.

Figure 2.8 illustrates the contrast between traditional learning and transfer learn-

ing. Consider that we are dealing with two scenarios. In the first one, we need to deal

with a large dataset of images of birds and humans, while in the second, we need to deal

with a small dataset of images of dogs and cats. In traditional learning, we train a model

for each scenario, considering only the information from each of its datasets. Applying

transfer learning, we can train a model to classify images of humans and birds in the first

scenario, and then, we can use the learned weights of the model learned in this scenario

to train a model to recognize images of dogs and cats. Even in cases like this, where the

visual categories are different in both scenarios, if there is a suitable amount of significant
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data in the first learning process, the model can learn representations that can be useful

for the second scenario (GOODFELLOW; BENGIO; COURVILLE, 2016; PAN; YANG,

2010).

Figure 2.8 – Traditional Learning vs. Transfer Learning.
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Source: adapted from (PAN; YANG, 2010).

There are two main approaches for applying transfer learning (LI; HOIEM, 2017):

feature extraction and fine-tuning. Feature extraction, in the context of transfer learning,

is the process of using a pre-trained model (playing the role of a feature extractor) for

transforming the raw data into informative numerical features that facilitate information

processing in downstream tasks. Notice that in this process, we take advantage of patterns

learned by the pre-trained model for producing informative features in other datasets. In

order to perform the feature extraction, we freeze the weights of parts of a given pre-

trained model and use these parts of the model for just transforming the raw data in in-

formative features, in a way that all the newly processed data will not change the model

weights. In general, a common practice in feature extraction involves removing the last

layers (responsible for performing classification) of a given pre-trained model and using

only its first layers for extracting features. For image classification, it is a common prac-

tice to perform feature extraction on images from neural networks pre-trained on large

datasets (e.g., Imagenet (DENG et al., 2009)). In the fine-tuning process, on the other

hand, the weights learned by a pre-trained model are used as a starting point for a new

training process of the model in a novel dataset. Notice that the weights of the pre-trained

model are adjusted to the new task in this process. Thus, while feature extraction freezes

the model weights, in the fine-tuning process they are updated to handle the new task.

Both feature extraction and fine-tuning have advantages and disadvantages, and

the choice between them is related to the purpose of each application and available com-

putational resources. If the dataset has fewer training samples or the goal is ensuring
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a shorter training time, feature extraction is justified (BARBURICEANU; TEREBEs, ,

2022). If the task requires a more specific classification or the data is significantly dif-

ferent from the original data used to pre-train the model, then fine-tuning can provide

better results (BOYD; CZAJKA; BOWYER, 2019). In (KIEFFER et al., 2017; MOR-

MONT; GEURTS; MARÉE, 2018), the authors compare the performance achieved with

feature extraction and fine-tuning for classifying histopathology images. The experiments

demonstrate that fine-tuning achieves higher performance, but the results suggest that fea-

ture extraction achieves a reasonable performance while requiring fewer computational

resources for training. Due to this, in our work, we used feature extraction from pre-

trained models.

2.2.3 Pre-trained models

Nowadays, there are several models of neural networks pre-trained on large datasets

that are available for performing transfer learning in visual tasks. In this work, we

adopted three different models, based on well-established architectures in the image clas-

sification state-of-the-art1: (i) ResNeXt-101 (XIE et al., 2017), pre-trained on ImageNet;

(ii) DenseNet-121 (HUANG et al., 2017), pre-trained on ImageNet; and (iii) CLIP Vit-

B/32 (RADFORD et al., 2021), pre-trained in a dataset with 400 million images called

WebImageText (WIT). The first two models present good performance with fine-tuning

(BAKER; ZENGELER; HANDMANN, 2022) and as a feature extractor (VARSHNI et

al., 2019), respectively, while the last one is a transformer-based model that presented im-

pressive results in recent studies (ZHAI et al., 2022). In Table 2.1 we present the follow-

ing properties of the selected models: number of output features, number of parameters,

training dataset, and architecture.

Models Output features Parameters Training dataset Architecture
DenseNet-121 1024 8.0M ImageNet-1K CNN
ResNeXt-101 1000 83.5M ImageNet-1K CNN
CLIP Vit-B/32 512 63.0M WebImageText (WIT) Transformer

Table 2.1 – Pre-trained models information

Both, ResNeXt and DenseNet, are CNN architectures that have as their main char-

acteristics carrying residual information over the network, improving performance, and
1The resNext-101 and DenseNet-121 pre-trained models were obtained from <https://pytorch.org/

vision/stable/models.html>, and the CLIP Vit-B/32 pre-trained model was obtained from <https://github.
com/openai/CLIP>

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://github.com/openai/CLIP
https://github.com/openai/CLIP
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reducing network degradation. DenseNet adopts dense blocks, where each layer within

that block contains a connection with the layers ahead. Features extracted in initial layers

are preserved and can be used directly by deeper layers. ResNeXt, on the other hand, has

an architecture based on ResNet (HE et al., 2016), which is based on residual blocks that

change the learning function by adding an identity mapping connection. The ResNeXt

improves the ResNet architecture by considering information related to the size of the set

of transformations (the "cardinality"). In this case, cardinality is an essential factor, in

addition to depth and width dimensions, being more effective than going deeper or wider

when we increase the capacity. Figure 2.9 and Figure 2.10 show how these architectures

work.

Figure 2.9 – DenseNet architecture. The architecture comprises a stack of dense blocks that use
multiple connections called "short paths" to carry residual information between layers.

DenseNet:

Dense block:

Source: (HUANG et al., 2017)

On the other hand, CLIP (Contrastive Language-Image Pre-Training), is a neural

network architecture based on vision transformers that is trained on a wide variety of

images and textual labels that is abundantly available on the internet (more than 400

million pairs of images and text). As shown in Figure 2.11, to combine text and images,

CLIP trains an image encoder and a text encoder to predict the correct pairings of a batch

of image/text training examples. Thus, this model has great potential to perform zero-

shot predictions, where no previous training data exists for the new images presented.

Due to its characteristics, CLIP also has great potential in feature extraction in images

from different contexts.

In our work, in addition to using pre-trained models, we also performed training
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Figure 2.10 – ResNet traditional learning block vs. ResNeXt learning block with cardinality =
32. Keeping the connection of residual information and with a larger set of transformations per

block made it possible to increase the performance without going deeper.

Source: (XIE et al., 2017)

Figure 2.11 – CLIP approach to learning transferable visual models from natural language
supervision. First, it presents a contrastive pre-training with image/text pairs feeding a text

encoder and an image encoder. Then, using a dataset from label text makes it possible to match
the image with the text and use it for zero-shot prediction or feature extraction.

Source: (RADFORD et al., 2021)

on a classification module. We used the early-stopping training strategy, which will be

presented in the next subsection.

2.2.4 Early stopping

In Machine Learning, the main goal is to achieve models that generalize and per-

form well on data that has yet to be seen. The main obstacle to this is overfitting, which

occurs when the model loses generalization power and performs well only on already-

seen data.
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A common practice in machine learning is to divide the available data into three

sets: a training set, a validation set, and a test set. The training set is used to train the

model, while the validation set is used to evaluate its performance on unseen data and

tune its hyperparameters. Finally, the test set is used to test the model’s performance on

completely unseen data.

To generate a suitable model, it is essential to find the point during the training

phase when the model has the best performance on the validation set. Several methods

can be used to identify this stopping point. One of them is the early stopping strategy

(CHOLLET, 2021). The main idea behind early stopping is to monitor the model’s per-

formance for every epoch in the validation set. As the training progresses, the model’s

performance on the validation set improves, but there comes a point where the model

starts to overfit and its performance on the validation set starts to decrease. At this point,

the training is stopped, and the model with the best performance on the validation set is

selected as the final model.

Figure 2.12 represents a training process applying early stopping, illustrating the

point where the best model is found and the training process is stopped (GÉRON, 2022).

Two important parameters of this strategy are minimal improvement and patience. The

minimal improvement is how much the model has to improve the performance of the

previous epoch for a stop trigger not to occur. Patience is the number of times a trigger

must occur to stop the training process.

2.2.5 K-fold Cross-validation

Splitting the dataset into fixed sets can be problematic if the data is small, resulting

in a small test set that implies statistical uncertainty around the estimated average error,

making it difficult to compare the performance of two different models (GOODFELLOW;

BENGIO; COURVILLE, 2016). The k-fold cross-validation is an evaluation procedure

proposed for mitigating these effects.

The K-fold Cross-validation technique randomly divides a dataset into K equal-

sized non-overlapping sets (folds) of samples. In each iteration in a ML model, one of the

K sets of samples is considered as the test set, and the union of the remaining K − 1 sets

is considered as the training (or training and validation) set.

Being X the dataset split into a set of k folds {X1 , ..., Xk}. The definition of the

test and train test in each of the k iterations is represented as follows:
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Figure 2.12 – Early stopping applied in a learning process.

Source: (GENÇAY; QI, 2001)

X =



Test1 = X1 , T rain1 = X2 ∪X3 ∪ . . . ∪XK

Test2 = X2 , T rain2 = X1 ∪X3 ∪ . . . ∪XK

...

TestK = XK , T rainK = X1 ∪X2 ∪ . . . ∪XK−1

(2.4)

For each fold, we compute the scores (e.g, evaluation measures) and merge them

using an average (ALPAYDIN, 2020). Figure 2.13 shows an example of using K-fold

cross-validation with K = 5.

At each iteration of the k-fold cross-validation process, a given model is trained

with the training data, and its performance scores are calculated on the test set. In the end,

the scores obtained in each iteration are averaged for obtaining the overall performance

scores of the model (ALPAYDIN, 2020). Figure 2.13 shows an example of using k-fold

cross-validation with K = 5.

Several different performance metrics can be obtained when k-fold cross-validation

is adopted. In the following Section, we discuss the performance metrics adopted in this

work.
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Figure 2.13 – Schema illustrating a 5-fold cross-validation.
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2.2.6 Performance metrics

In ML, the metrics for evaluating a model must be chosen according to the type of

task. For classification algorithms, the most popular metrics are precision, recall, and F1-

score, which are based on True and False Positives and Negatives, which can be identified

in a confusion matrix, as shown in Figure 2.14. True positives (TP) are those samples

that belong to the positive class and are correctly identified, while true negatives (TN) are

samples of the negative class that are correctly identified. False positives (FP) are samples

of the negative class incorrectly identified as belonging to the positive class, while false

negatives (FN) are samples of the positive class incorrectly identified as belonging to the

negative class.

By considering these basic concepts, we can define precision, recall and f1-score.

In this context, precision can be viewed as a way to measure what ratio of the samples a

classifier predicted as belonging to a particular class was actually correct. It is calculated

as follows:



34

Figure 2.14 – Confusion matrix for a binary classification problem. Each row of the matrix
represents the instances in a predicted class while each column represents the instances in an

actual class.
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Precision =

(
TP

TP + FP

)
(2.5)

Recall, on the other hand, measures what ratio of samples from a particular class

in a set was correctly predicted. It is calculated as follows:

Recall =

(
TP

TP + FN

)
(2.6)

The F1-score summarizes both precision and recall with a single value by tak-

ing the harmonic mean of them. It is calculated using both metrics, with the following

formula:

F1 =

(
2× Precision ∗Recall

Precision+Recall

)
(2.7)

These metrics can be generated for each class present in the classification dataset,

by considering each target class as the positive class and the remaining classes as the

negative. In a multiclass classification problem, a typical way to obtain a single measure

value for evaluating the overall performance of the model is by calculating an average of

these metrics considering the metric’s value for each individual class. In this case, there

are three different averages: macro average, weighted average, and micro average.

Thus, let M be a given metric (precision, recall or f1-score), the macro average

of M is computed as the arithmetic mean of the values of M for each individual class.
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Thus, the macro average for M is given by
∑n

i=1 Mi

n
, where n is the number of classes

in the dataset and Mi is the metric value of the i-th class. It is important to notice that

the macro average considers all classes with a uniform weight regardless of how many

instances they have in the dataset. The weighted average of a metric M , on the other

hand, considers each class’s support (number of instances). Thus, the weighted average

of M is given by
∑n

i=1 Mi×Si

T
, where Si is the support of the i-th class and T is the total

number of instances. Thus, in the weighted average, the number of instances of each class

matters.

The micro average counts the sums of the TP, FN, and FP. Micro-averaging essen-

tially computes the proportion of correctly classified observations out of all observations.

Due to this, in multi-class classification tasks where each observation has a single la-

bel, the micro average of precision, recall, and f1-measure have the same value, which is

equivalent to another metric, called accuracy:

Accuracy =

(
TP

TP +
(
1
2

)
(FP + FN)

)
(2.8)

Conventional accuracy is also known as top-1 accuracy where the model answer

(the one with the highest probability) must be exactly the expected answer. There are

variations of this, such as the top-5 accuracy, where the prediction will be a true positive

if any of the model’s five highest probability answers match the expected answer.

The choice for each of the macro and weighted averages must be aligned with the

dataset type. If the dataset is unbalanced and all classes are equally important, the Macro

will be the best. If the frequency of each class in the dataset is important, then we should

use the Weighted. Accuracy (Micro average) is more suitable if the dataset is balanced.
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3 RELATED WORKS

In our literature research, we focused on works that deal with the challenges

present in our context: small data, images of varying sizes, and visual features repre-

sented at different scales. This section presents a discussion of some related works that

deal with these challenges.

In general, sophisticated deep learning models demand large amounts of training

data to achieve a good performance (ZHU et al., 2021). Due to this, in the last few years,

we have witnessed an increasing adoption of transfer learning for dealing with classifi-

cation tasks in contexts where data are scarce (TORREY; SHAVLIK, 2010; ZHUANG

et al., 2020), since transfer learning allows the reuse of knowledge learned in other tasks

for which abundant data are available. The adoption of transfer learning techniques has

also become common in image classification tasks. CNN’s such as ResNeXt (XIE et

al., 2017) and DenseNet (HUANG et al., 2017) have been achieving great performances

when used for transfer learning, both as being used as pre-trained models for feature ex-

traction, as well as for end-to-end classification with fine-tuning (BAKER; ZENGELER;

HANDMANN, 2022; VARSHNI et al., 2019).

Due to the scarcity of data in the area, the medical field stands out in adopting

transfer learning (KIM et al., 2022). For example, in (LIANG; ZHENG, 2020), the au-

thors use model parameters learned on large-scale datasets in the same field to improve

the training phase (fine-tuning) to diagnose and detect childhood pneumonia. In (CELIK

et al., 2020), the authors applied transfer learning for feature extraction to analyze digital

histopathology images to detect breast cancer.

It is important to note that, in general, real-world image datasets include images

with different sizes. However, commonly, neural network architectures demand inputs to

have a standard size. Due to this, in image classification tasks, usually, the images are

normalized to a homogeneous fixed size (LECUN et al., 1998; KRIZHEVSKY; HINTON

et al., 2009) to match the input requirements of the adopted neural network architecture.

This normalization process is also a common approach for applying transfer learning

(AHUJA et al., 2021), since the images should meet the input requirements of the pre-

trained models.

In order to deal with datasets with images of heterogeneous sizes, some approaches

initially perform pre-processing adjusting the input images to the requirements of neural

network architectures. In some of these approaches, distorting or even discarding parts of
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images is common. For instance, a standard approach applied in different studies (TAYAL

et al., 2021; HAN et al., 2020; LI et al., 2021) involves resizing the smallest dimension

of each image to match the model’s input dimensions and performing a center crop of the

image, discarding the remaining image information. This process can result in the loss

of relevant information from the images or the insertion of noise in the dataset. These

effects are pronounced when the image has one of its dimensions much bigger than the

other (very long and narrow images, for example). On the other hand, in order to deal

with images with heterogeneous sizes, some works (WANG et al., 2021; ZHUANG et al.,

2021) adopt fully convolutional networks (FCN), which do not require the input images

to have a homogeneous size.

Since objects in images are often of varied sizes and real-world images have vary-

ing sizes, leveraging information carried by different scales is critical in computer vision

applications. Aggregating multiscale contexts and handling different image sizes are fac-

tors that can improve vision systems. The multiscale features are convenient because the

CNN is constructed by stacking blocks with similar functionality, which naturally en-

ables a progressive resolution decay (CHEN et al., 2020). Some studies take advantage

of this characteristic and apply different spatial scales in order to classify images. In

(MOHAN; VENKATESAN, 2020), for example, the authors propose using a multiscale

spatio-spectral feature-based hybrid CNN model for hyperspectral image classification,

which adopts different window sizes in 3D convolution filters. In general, in these works

(SAFARI; PRASAD; LABATE, 2020), different scales are related to different indepen-

dent convolution layers with different kernels that are later combined. Usually, these ap-

proaches do not adopt transfer learning to take advantage of knowledge already acquired

in other tasks. Due to this, contexts with small training datasets can be challenging for

this kind of strategy.

In the medical field, where images tend to be large and with scattered details (X-

ray, CT images), several works use patch-based approaches (ANTHIMOPOULOS et al.,

2016; ARAÚJO et al., 2017) for classifying images. These approaches split the image

into several parts, making it possible to analyze different parts of the original image in

a more focused way. To deal with CT images for classifying cases of COVID-19 and

pneumonia, for example, in (XU et al., 2020) the authors adopt attention techniques to

select areas and use them as patches to perform classification only in essential parts of the

image. In (BARSTUGAN; OZKAYA; OZTURK, 2020), the authors present an approach

that preprocesses the image (discarding information) and splits it into patches of different
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sizes, training just one classifier with these different scales. An example presented in

(CHEN; FAN; PANDA, 2021) showed remarkable results using multiscale patch sizes to

train a vision transformer, performing a fusion of features extracted at different scales.

Recently, there is an increasing adoption of GNN for image classification. In these

approaches, the images are converted into graphs, which are considered the inputs of the

GNN. In (SHI et al., 2020), the authors use graphs to represent the skeleton during the

movement, while in (PAN et al., 2020), graphs are used to identify objects in a scene to

describe what is happening in a video. One of the main advantages of GNN is the possi-

bility of dealing with data with non-Euclidean structures, allowing it to deal with graphs

of heterogeneous sizes. Most of the works found in the literature first segment the image

into superpixels, considering each superpixel as a graph node and generating edges from

the neighborhood regions (ZHANG; ZOU; ZHANG, 2022). In this type of approach, the

nodes’ features are elaborated from each region’s statistical properties (for example, the

mean and standard deviation of the information of each pixel). In this line, (BAE et al.,

2022) uses this technique to describe and classify HSI images. In (JING et al., 2022), the

authors also use superpixels for Hyperspectral Image classification but adopt a multiscale

graph sample and aggregate network to capture spatial and spectral features at different

scales flexibly. A similar strategy is used by (DING et al., 2021), where multiscale graphs

are constructed from split regions of HSI images. These different scales, however, refer

to graphs scales, and images are kept in their original size. In (AVELAR et al., 2020),

the authors transform the input images into region adjacency graphs (RAGs), in which

regions are superpixels and edges connect neighboring superpixels and adopt this image

representation for training a graph attention network (GATs). In this work, the authors

show that this strategy can be applied to non-euclidean images (e.g., omnidirectional im-

ages). However, the information loss in the pixel aggregation for more complex images

can result in significant performance degradation, when compared to strategies that can

take advantage of fine-grained details in the full image. In general, these techniques also

do not consider using transfer learning to take advantage of prior knowledge to deal with

small datasets.

Other approaches adopt regular image patches/tiles as nodes. In (KONDA; WU;

WANG, 2020), the authors apply transfer learning to generate the features of each patch/tile

and characterize each node. However, their approach does not consider the multiple spa-

tial scales of analysis. Another example is in (HAN et al., 2022), where the authors split

the image into a number of patches and view them as nodes. The authors realize that
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directly using graph convolution on the image graph structure implies an over-smoothing

of the features, resulting in poor performance. Due to this, they apply feature transforma-

tions for each node. The GCN architecture used presents promising results, but they also

do not deal with multiple scales and do not apply transfer learning.

In order to deal with challenges similar to those found in our work, (WAN et al.,

2019) presents an approach using superpixels, multiple neighborhood scales, and GCN

for hyperspectral image classification. Their approach differs from other methods be-

cause it does not depend on a fixed input size for the graph and combines multiple scales

to improve the classification. However, the authors do not adopt transfer learning and

segment the image into superpixels that exclude areas of the image. Our approach, aim-

ing at classifying images in general, uses overlapping patches (to highlight focal features

throughout the image) and takes advantage of transfer learning to extract features with-

out retraining the complete model. Another difference is that the multiple scales of our

approach refer to the image’s size and not to the neighborhood between nodes.
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4 PROPOSED APPROACH

Our approach consists of two main aspects that we will present in the following

sections: (i) a strategy for representing images as sets of patch-based feature graphs that

can capture the visual features of each image at different scales (Section 4.1); and (ii)

a multi-input graph convolutional network architecture for multiscale image classifica-

tion that takes as input a set of patch-based feature graphs representing a given image at

different scales (Section 4.2).

4.1 Patch-based graph for image representation

In our work, we represent a given image by a graph constituted of nodes, denot-

ing features of the original image’s regular patches; and edges, representing spatial rela-

tionships between patches in the original image. An essential aspect of our approach is

characterizing each node of the generated graph with features extracted from each patch

of the original image by pre-trained models. By adopting feature extraction from pre-

trained models, our approach can leverage the knowledge captured in models that were

pre-trained in large datasets for generating informative representations of the original im-

age in small datasets.

Algorithm 1 represents the process for building a patch-based feature graph rep-

resentation of each image in a given scale of analysis. The algorithm takes as input a

pre-trained model FE, a target image I , a value N ∈ Z+ that controls the spatial scale

of analysis of I , and the stride S ∈ (0, 1] as input. We use the pre-trained model FE

as a feature extractor, while N defines a scale of analysis and S represents the stride of

the sliding window used for extracting patches from I . Notice that S is considered as a

percentage of FE’s input size.

In our approach, a patch-based feature graph g(I, FE,N, S) represents an image

I at the scale of analysis N , built from patches extracted from I with a stride S and with

visual features extracted by FE. Notice that g(I, FE,N, S) = (V,E), where V is the

set of vertices (or nodes) and E is a set of edges that constitutes the resulting graph. As

it is common in the context of graph convolutional networks (LEE; LEE; SOHN, 2021),

the set of edges E is represented by an adjacency matrix A, and the set of features of

nodes/vertices V is represented by a node feature matrix H , which will be detailed in the

following.
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In order to understand how the adjacency matrix A and the node feature matrix H

are built, let us consider P (I, S) as a set of regular patches extracted from I by considering

the stride S in both vertical and horizontal axis. Notice that the size of each patch Pj ∈

P (I, S) is compatible with the input dimensions of FE. Besides that, patches in P (I, S)

can overlap, depending on the stride value S.

Let us consider V as a set of vertices of g(I, FE,N, S), where each Vj ∈ V is

a Rd vector that represents the features extracted from the patch Pj by FE. Thus, the

node feature matrix H ∈ R|P (I,S)|×d is built in a way that Hi = FE(Pi). Notice that

|P (I, S)| is the cardinality of the set P (I, S) and d is the number of features generated by

the feature extractor FE.

As previously mentioned, E is a set of edges of g(I, FE,N, S), where each Ej ∈

E is a pair {Px , Py} that represents that Px ∈ P (I, S) and Py ∈ P (I, S) are adjacent to

each other in the original image. Thus, the edges in E represent the spatial neighborhood

of the original image patches. Each pair of patches that are spatially adjacent in P has

a corresponding edge in E. In this context, the information of E is represented by the

adjacency matrix A ∈ R|P (I,S)|×|P (I,S)|, such that:

Ai ,j =

1, adjacent(Px , Py)

0, otherwise
(4.1)

where adjacent(Px , Py) means that there is at most L pixels Px and Py centroids,

considering L = S × FE’s input size. Notice that each patch has a maximum of 8

neighbors.

Algorithm 1 starts by resizing the smallest dimension of I by N times the FE’s

input size, while maintaining its original aspect ratio. Next, we extract from I the set

P (I, S) of patches by sliding a window whose dimensions match the input dimensions

of FE. The sliding window moves through the image following the stride S in both

the horizontal and vertical axis. It is important to notice that the patches may overlap

depending on the sliding window stride. Then, the adjacency matrix A (representing the

information of the set of edges E) is created by considering the spatial adjacency of the

extracted patches in I , according to the equation 4.1. Finally, the algorithm creates the set

V of vertices. In this final step, for each patch, Pj in P (I, S), the algorithm produces a

row in the feature matrix H , where each Hi ∈ H is a vector of features extracted from the

patch Pj with the feature extractor FE. In the end, the algorithm outputs the pair (H,A)

that represents the patch-based feature graph built for representing I . Figure 4.1 presents



42

a simplified example of how the algorithm works.

Algorithm 1: Patch-based feature graph construction
Input: Image as I , pre-trained model as FE, the approach parameter as N and the stride of the sliding window as

S;
Output: A tuple (H ,A) representing a patch-based feature graph g(I, FE,N, S);
begin

W ←Width(I);
H ← Height(I);
HJ ← height input size of FE;
WJ ← width input size of FE;
if H ≤W then

aspect←W/H;
NewH ← HJ ∗N ;
NewW ← NewH ∗ aspect;

else
aspect← H/W ;
NewW ←WJ ∗N ;
NewH ← NewW ∗ aspect;

I ← I resized to NewHxNewW ;
P (I, S)← patches extracted from I using S;
A← adjacency matrix built according to equation 4.1;
for Pi in P (I, S) do

Hi ← FE(Pi );
return (H,A);

Figure 4.1 – A simplified example of how Algorithm 1 works applied to an image from the
Stanford Cars dataset (KRAUSE et al., 2013). The algorithm starts by considering the original

image at right. After, the algorithm resizes the image using the value of N = 4 (in this example).
After, the algorithm extracts patches from the image using the stride value S = 1 (without

overlapping). Finally, the algorithm builds the resulting graph using the features extracted from
each patch (FP) as nodes, and considering the spatial neighborhood of each patch for creating

edges.
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The proposed approach extracts patches from the image as an intermediate step for

obtaining the local features related to specific parts of the image. These local features are

spatially structured in a graph that captures the spatial information of the original image.

Notice that when the original image has the size of the extractor’s input, the resulting

patch-based feature graph built from this image degenerates into a single node, when

N = 1.

It is important to notice that by changing the value of N , the resulting patches

focus on areas with different sizes relative to the image size. The larger the N , the smaller
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the area of the image that a patch contains. Then, given an image I , different values

of N can highlight different image patterns or the same pattern at different scales in I .

Thus, this strategy can be a promising approach for dealing with sets of images of very

different sizes representing the same pattern at different scales. Besides that, by keeping

the original image’s aspect ratio, the algorithm avoids the distortion of essential domain

features. Also, our approach is agnostic to the feature extractor (FE) adopted in the

process. Thus, different pre-trained models can be used for different datasets, depending

on the task.

Another interesting feature of our approach is its flexibility regarding the neigh-

borhood adopted for building graphs from patches. This allows, for example, discarding

uninformative patches from the original image, which would introduce irregularities in

the graph structure. This capability can be explored in future works.

As previously mentioned, the Algorithm 1 can be used to build a patch-based

feature graph representing the image I in a single given scale of analysis N . Thus, in

order to obtain multiscale representations of I , we can apply the Algorithm 1 to generate

different patch-based feature graphs from each image I for different scales by varying the

value of N , as we show in Figure 4.2. Notice that the scales used in the diagram were

considered just for the sake of the example since our approach is flexible, allowing the

integration of more or fewer scales as needed. These different graphs can then be used as

input for our multi-input graph convolutional architecture for training and classifying the

image I . Thus, by considering different scales, our approach represents each image I as a

multiscale graph set (MGS), defined by a scale set SS of different scales (different values

of N ), considering a given stride S and a feature extractor FE, such that:

MGS(SS) = {x|i ∈ SS ∧ x = g(I, FE, i, S)} (4.2)

Thus, for example, MGS({1, 2, 3}) is the multiscale graph set whose elements

are three patch-based feature graphs, built with scales N = 1, N = 2, and N = 3,

respectively. That is:

MGS({1, 2, 3}) = {g(I, FE, 1, S), g(I, FE, 2, S), g(I, FE, 3, S)}. (4.3)
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4.2 Graph convolutional network for multiscale image classification

The second aspect of our approach is a multi-input graph convolutional network

for multiscale image classification based on the graph convolutional network (GCN) pro-

posed in (KIPF; WELLING, 2016). GCN can deal with classification problems by con-

sidering the features of each node and the relationships among them in data with a graph

structure. Our proposed GCN architecture can take as inputs an MGS representing a given

image at different scales (with one graph for each scale considered in the task). Thus, our

architecture can be adapted for dealing with different scales in a way that the number of

inputs of our architecture is defined as a function of the number of different scales in a

scale set SS that defines a multiscale graph set MGS(SS). The suitable scales in the

scale set can vary according to the characteristics of the task.

The key element of our architecture is the graph processing module (GPM), which

is composed of just one graph convolution layer (KIPF; WELLING, 2016) with hyper-

bolic tangent (tanh) as an activation function, followed by a global max pooling layer.

Thus, as stated in Section 2.2.1.3 in the graph convolution layer of a given GPM, the

feature matrix taken as input H(i) is multiplied by adjacency matrix A and by a trainable

weights matrix W . This matrix product allows aggregating the features extracted by FE

from each patch pi ∈ P (I, S) with their neighbors’ node features. The output matrix H(o)

resulting from this operation is a new node feature matrix. Thus, H(o) is calculated from

H(i) as follows (KIPF; WELLING, 2016):

H(o) = tanh(D̂−
1
2 ÂD̂−

1
2H(i)W ) (4.4)

where I is the identity matrix, so that Â = A + I represents the adjacency matrix with

inserted self-loops. Besides that, D̂ is the degree matrix, so that D̂ii =
∑

j=0 Âij . Finally,

W is the trainable weight matrix, where W ∈ Rd×dout , where d is the number of features

outputted by the chosen feature extractor FE and dout was chosen as 64.

Then, given a feature matrix H ∈ R|P (I,S)|×d, the global max pooling operation,

produces a feature vector r ∈ Rd, such that:

r = max
|P (I,S)|
n=1 Hn (4.5)

Depending on the target task, the architecture can be adapted for taking differ-

ent numbers of patch-based feature graphs, one for each scale. This adaptation involves
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including in the architecture one GPM for each graph considered as input.

Then, our architecture concatenates the outputs of the GPM’s in a single vector,

which is processed and classified by a fully connected layer with a linear function. Figure

4.2 represents the proposed architecture adapted with 3 GPM, for considering as input a

set MGS({1, 2, 3}) of 3 different patch-based feature graphs in a multiscale graph set.

We defined our architecture as a result of empirical experimentation. We tested

different architectures, with different numbers of convolutional layers, different kinds of

pooling, and different activation functions, with no improvements in the general perfor-

mance.

In an overview, the main characteristics of our approach are:

• It avoids inserting distortions of relevant visual features by keeping the original

image’s aspect ratio during all the processing steps.

• It avoids losing relevant information about the original image, since we split the

original image into regular patches that cover most of the image area. This method

contrasts with common practice in most of the approaches based on neural networks

for image classification, which involves a pre-processing step where some parts of

the original image are discarded.

• It can deal with images with different sizes in a given dataset since our approach rep-

resents these images with graphs of different sizes handled by the proposed graph

convolutional architecture.

• It captures informative local features of each patch of the original image using pre-

trained models as feature extractors, increasing the capabilities of our approach to

dealing with small datasets.

• It represents the spatial relationship of the local features of different patches of a

given image in a graph structure.

• It represents the visual features of a given image in different scales of analysis

through different patch-based feature graphs that can be collectively used as input

for training a multi-input graph convolutional network for classifying images.

To the best of our knowledge, our proposed approach is the first one to combine

all these advantages.
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Figure 4.2 – An example of the proposed approach for image classification. Given an image, we
apply Algorithm 1 with different values of N (1, 2 and 3, in this example), generating a

multiscale graph set MGS({1, 2, 3}), with three patch-based feature graphs representing the
image at three different scales. After, we train a multi-input graph convolutional architecture that
takes as input the patch-based feature graphs in MGS({1, 2, 3}) for predicting the image class.
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5 EXPERIMENTS

In this chapter, we discuss the experiments1 to evaluate our approach. This chapter

is organized as follows. In Section 5.1, we describe the datasets used in our experiments.

Next, in Section 5.2, we describe our experiments and present the results.

5.1 Datasets

We evaluate our approach in two datasets: a dataset of geological images (MICHE-

LIN et al., 2021) and the Stanford Cars dataset (KRAUSE et al., 2013). The dataset of

geological images is considered in this work because, as stated earlier, this work is part of

a project whose goal is to develop an image retrieval system for the petroleum industry. It

is important to notice that the geological dataset was developed in cooperation with com-

panies and cannot be shared due to copyright issues. The Stanford Cars dataset, which

is publicly available, was selected to allow the reproducibility of our results and demon-

strate that it can be applied to other domains. In the following sub-section, we describe

the characteristics of the geological dataset (Section 5.1.1) and the Stanford cars dataset

(Section 5.1.2).

5.1.1 Geological dataset

In (ABEL et al., 2019), the authors present an ontology for image classification in

Petroleum Geology. This ontology has 175 classes, such as a ternary diagram, satellite

image, geological map, profile, and cross-section. Figure 5.1 presents some examples of

images from these classes. After, a set of geological images was collected from geological

reports and labeled by experts (MICHELIN et al., 2021) for some of the classes specified

in the ontology. The resulting dataset contains 25725 images distributed in 45 classes.

It includes classes with only 36 images and classes with 8450 images, with an average

of 571.6 images per class and a standard deviation of 1290.9. Figure 5.2 represents the

distribution of images in each class, emphasizing its unbalanced distribution. Besides

that, the images in this dataset are heterogeneous in size and visual features. The average

image area in the dataset is 1072336 pixels with a standard deviation of 1861876. There

1Our code is available at <https://github.com/mvtodescato/MultiscaleGraphFeatures>

https://github.com/mvtodescato/MultiscaleGraphFeatures
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are classes with an average area smaller than half of the others, such as, for example, the

class aerial photograph that has 495539 pixels of the average area and the class reference

map that has 1095760 pixels of average area. Also, for some images, one of the dimen-

sions is much larger than the other. These aspects make this dataset challenging for image

classification. We emphasize this high variation in Figure 5.3 and in Figure 5.4, which

presents some statistical properties regarding this dataset’s image sizes and aspect ratios.

These figures show that the dataset has several outliers regarding height, width, and aspect

ratio.

Figure 5.1 – Examples of images illustrating some classes of the ontology: (a)ternary diagram,
(b) satellite image, (c) geological map, (d) profile, and (e) geological cross-section.

Source: (JúNIOR, 2014), (IVANOFF, 2013), (ARRUZZO, 2016), (PAIVA R, 2018),
(SILVA, 2015).

Figure 5.2 – Representation of the number of instances for each class of the geological dataset.

Source: The author
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Figure 5.3 – Boxplots representing the statistical properties of the images in the dataset of
geological images, focusing on their height, width, and aspect ratio.

Source: The author

5.1.2 Stanford cars dataset

The Stanford Cars dataset (KRAUSE et al., 2013) has 16185 images distributed in

196 classes. The average number of samples in each class is 84 with a standard deviation

of 6.28. The samples range from 61 in the smallest class to 110 in the biggest. Unlike the

geological dataset, this one is balanced but heterogeneous regarding the size and aspect

ratio, as shown in Figure 5.5 and Figure 5.7. In Figure 5.6 we show some images from

the dataset. We can notice that the cars have different colors and are presented in different

positions and scenarios.

5.2 Results

We performed two experiments. In Section 5.2.1, we present the setup and the

results of the first experiment, where the objective was to evaluate how the stride value

impacts the performance of our approach. In Section 5.2.2, we present the setup and

results of our approach evaluation, where we compare its performance with other ap-

proaches for image classification. The structure presented in the following paragraphs is

common to all experiments.

In both experiments, we used the datasets previously detailed in Section 5.1. All

images were pre-processed to ensure that they are in RGB format. In order to demonstrate
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Figure 5.4 – Distribution of the images according to their dimensions in the geological dataset.

Source: The author

that our approach can adopt different pre-trained models as feature extractors, we applied

our approach using the three pre-trained models presented in Section 2.2.3. To facilitate

the discussion we will refer to the models by the names of their corresponding architec-

tures. In this work, we used only the feature extraction module of the models so that the

classification layer is removed from the original model.

Our algorithm was applied to generate patch-based feature graphs of every image

in the datasets, using five different scales represented by the N parameter. We used N =

1, N = 2, N = 3, N = 4, and N = 5.

In our experiments, we do not use fine-tuning. We also do not apply data aug-

mentation, as our focus is on evaluating feature extraction to deal with small datasets.

As described in Chapter 4, our approach uses a classifier module that takes one or more

graphs as input, and the output is the predicted class. Thus, in order to use different

numbers of patch-based feature graphs (one for each scale), we adapted our multi-input

convolutional network architecture by including the necessary number of different graph

processing modules for each case. The images in the test set are also transformed into

patch-based feature graphs and then evaluated by the trained classifier.

We adopted a 5-fold cross-validation procedure. At each iteration, each fold is

used once as testing data, while from the union of the remaining four folds, we consider
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Figure 5.5 – Representation of the statistical properties of the images in the Stanford Cars dataset
through boxplots, focusing on their height, width, and aspect ratio (as Width/Height).

Source: The author

10% as validation data and the remaining as training data. We adopted Adam Optimizer

with a learning rate of 0.001 and a limit of 100 epochs and cross-entropy loss2. We ap-

plied early stopping, considering five epochs without a minimal improvement of 0.001

in the loss of the validation set. These hyperparameters were defined based on empirical

experiments using the approach. We use the following metrics (detailed in Section 2.2.6)

to evaluate the results: Top-1 Accuracy, Macro Precision, Weighted Precision, Macro

Recall, Weighted Recall, Macro F1, and Weighted F1. These metrics provide a good

evaluation of the results since they cover several evaluation aspects in a multiclass classi-

fication setting. The results reported in Tables 5.1, 5.2, 5.4, and 5.5 are averages obtained

from the test set in the cross-validation procedure. We performed the experiments on a

desktop with an Intel i7-10700 CPU, 32 gigabytes of RAM, and an NVIDIA RTX 3060

GPU. The code was implemented in Python, using mainly the PyTorch library3.

At the beginning of each of the following sections, we explain the experimental

setup and, we present the performance metrics, and then we discuss the results.

2In the pytorch implementation the cross-entropy loss is equivalent to the combination of LogSoft-
max and NLLLoss (More details in <https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.
html>).

3<https://pytorch.org/>

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/
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Figure 5.6 – Some images from the Stanford cars dataset. The cars are presented in different
positions and scenarios, and the images are of different sizes.

Source: (KRAUSE et al., 2013)

5.2.1 Effects of the stride value

In our first experiment, we evaluated how the classification performance of our

approach varies according to the stride S in Algorithm 1 for generating patch-based fea-

ture graphs. Notice that, as discussed in Section 4.1, the stride S is the length that the

window slides (vertically and horizontally) across the image in pixels, as a percentage of

the feature extractor’s input size.

In this experiment, we tested four different stride values: 100%, 50%, 25%, and

10%. We considered only patch-based feature graphs with a single scale, ranging from

N = 1 to N = 5. Notice that, by decreasing the value of S, the number of nodes in the

resulting graph and the overlapping between adjacent patches increase.

The experiment was performed considering only CLIP as a feature extractor, since

the goal of this experiment is not to compare the performance of each model. We adopted

CLIP due to its impressive performance reported in the literature (PULS, 2023) and due

to the amount of data used in its training.

Table 5.1 presents the results of this first experiment in the geological dataset and

Table 5.2 report the results obtained in the Stanford Cars dataset.

The behavior observed in the two datasets is different, but we can notice a general

pattern. The first four lines of Tables 5.1 and 5.2 present the results using MGS({1})
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Figure 5.7 – Distribution of the images according to their dimensions in the stanford cars dataset.

Source: The author

(i.e., N = 1), where we can see an increase in performance as we decrease the stride, in a

way that S = 100% resulted in the worst performance and S = 10% resulted in the best

one. When we analyze the other scales we can see a similar pattern. However, on scales

N = 2 to N = 5, when decreasing S to 10%, the performance decreases drastically.

Thus, on these scales, the performance increases as the value of S decreases, up to 25%,

and decreases when S = 10%. Thus, in both datasets, the performance obtained with

MGS(2), MGS(3), MGS(4), and MGS(5) achieves the best result by adopting 25% as

stride value and the worst result by adopting 10%.

The difference in performance caused by the stride S is remarkable. In the geolog-

ical dataset, the difference between the best and worst performance varies from ≈ 0.5%

to ≈ 12%, depending on the scale of analysis (value of N ). In the Stanford Cars dataset,

on the other hand, the performance varies from ≈ 5% to ≈ 60%, depending on the scale

of analysis. In the cases of MGS(4) and MGS(5), by adopting S = 10% the resulting

performance is remarkably poor on Stanford Cars dataset.

Figures 5.8 and 5.9 represent in a visual way how the value of S impacts the

classification performance. In these figures, we adopted macro F1 scores for comparing

the performance, since in our context we assign the same importance to every class in the

dataset.
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Macro WeightedScale Stride Top-1 Accuracy Precision Recall F1 Precision Recall F1
MGS({1}) 100% 91.97% 83.31% 81.24% 82.13% 91.86% 91.97% 91.88%
MGS({1}) 50% 92.05% 83.87% 81.51% 82.53% 91.94% 92.05% 91.96%
MGS({1}) 25% 92.39% 84.36% 82.20% 83.15% 92.30% 92.39% 92.32%
MGS({1}) 10% 92.67% 85.07% 82.89% 83.81% 92.60% 92.67% 92.60%
MGS({2}) 100% 91.96% 83.15% 81.22% 82.07% 91.90% 91.97% 91.91%
MGS({2}) 50% 92.26% 83.76% 81.52% 82.48% 92.21% 92.26% 92.20%
MGS({2}) 25% 92.33% 83.79% 81.85% 82.69% 92.26% 92.33% 92.27%
MGS({2}) 10% 90.68% 80.44% 77.93% 79.00% 90.50% 90.68% 90.55%
MGS({3}) 100% 91.27% 81.66% 79.03% 80.18% 91.17% 91.27% 91.18%
MGS({3}) 50% 91.52% 81.73% 79.39% 80.38% 91.44% 91.52% 91.45%
MGS({3}) 25% 91.69% 82.03% 79.65% 80.66% 91.58% 91.69% 91.60%
MGS({3}) 10% 86.45% 72.64% 68.43% 70.06% 86.15% 86.45% 86.19%
MGS({4}) 100% 90.35% 79.14% 76.34% 77.46% 90.17% 90.35% 90.15%
MGS({4}) 50% 90.75% 79.71% 77.41% 78.40% 90.58% 90.75% 90.62%
MGS({4}) 25% 90.79% 80.01% 77.35% 78.43% 90.69% 90.79% 90.70%
MGS({4}) 10% 81.37% 63.40% 57.70% 59.35% 80.86% 81.37% 80.81%
MGS({5}) 100% 89.39% 76.78% 74.39% 75.29% 89.24% 89.39% 89.26%
MGS({5}) 50% 89.96% 77.57% 75.38% 76.29% 89.79% 89.96% 89.83%
MGS({5}) 25% 89.92% 78.26% 75.75% 76.79% 89.81% 89.92% 89.82%
MGS({5}) 10% 77.50% 56.46% 50.44% 52.12% 76.72% 77.50% 76.73%

Table 5.1 – Experimental results using different stride values for different scales in the geological
dataset. CLIP (RADFORD et al., 2021) was used as a feature extractor. We group the results
according to the scale size (parameter N ) and highlight in green the best results and in red the

worsts.

By conducting this experiment, we were able to determine a threshold for increas-

ing the graph size. We discovered that beyond this threshold, adding additional nodes

(i.e., patches with extracted features) could actually have a detrimental effect on perfor-

mance. Since S = 25% resulted in the best performance for scales N = 2 to N = 5, and

achieved the second-best performance for N = 1, we adopted 25% of stride as the default

value for the subsequent experiments discussed in Section 5.2.2.

Table 5.3 shows the number of patches generated in each stride and scale variation

in an image of 800x600 pixels. We can notice that a smaller stride generates a much

bigger amount of patches and that this effect is more pronounced at higher values of N .

The increase in the sizes of the resulting graphs can be a reason for the performance

degradation observed when we consider 10% of stride and scales bigger than N = 1 in

Figures 5.8 and 5.9.

5.2.2 Evaluation of the proposed approach

In this experiment, we compare our approach with three other different families

of approaches. In the first one, we only used the feature extraction layers of the pre-

trained DenseNet-121, which contains only convolution and pooling operations and can
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Macro WeightedScale Stride Top-1 Accuracy Precision Recall F1 Precision Recall F1
MGS({1}) 100% 79.51% 79.75% 79.44% 79.49% 79.73% 79.51% 79.52%
MGS({1}) 50% 81.79% 81.95% 81.77% 81.79% 81.97% 81.79% 81.82%
MGS({1}) 25% 83.12% 83.16% 83.02% 83.03% 83.21% 83.12% 83.11%
MGS({1}) 10% 84.34% 84.41% 84.27% 84.26% 84.45% 84.34% 84.33%
MGS({2}) 100% 62.68% 62.76% 82.69% 62.58% 62.70% 62.68% 62.55%
MGS({2}) 50% 78.57% 78.74% 78.52% 78.55% 78.72% 78.57% 78.56%
MGS({2}) 25% 79.84% 80.04% 79.76% 79.81% 80.03% 79.84% 79.85%
MGS({2}) 10% 57.31% 57.33% 57.19% 57.11% 57.34% 57.31% 57.17%
MGS({3}) 100% 56.11% 56.22% 56.06% 55.99% 56.12% 56.11% 55.96%
MGS({3}) 50% 72.22% 72.31% 72.14% 72.14% 72.35% 72.22% 72.20%
MGS({3}) 25% 75.05% 75.14% 74.93% 74.95% 75.18% 75.05% 75.03%
MGS({3}) 10% 24.39% 23.54% 24.26% 23.59% 23.57% 24.39% 23.67%
MGS({4}) 100% 48.30% 48.08% 48.31% 48.01% 47.95% 48.30% 47.94%
MGS({4}) 50% 65.07% 65.10% 65.06% 64.96% 65.06% 65.07% 64.94%
MGS({4}) 25% 67.56% 67.57% 67.48% 67.41% 67.61% 67.56% 67.47%
MGS({4}) 10% 6.86% 5.75% 6.74% 5.67% 5.68% 6.86% 5.72%
MGS({5}) 100% 40.56% 40.13% 40.65% 40.16% 39.97% 40.56% 40.04%
MGS({5}) 50% 57.73% 57.66% 57.74% 57.55% 57.62% 57.73% 57.53%
MGS({5}) 25% 61.49% 61.69% 61.43% 61.43% 61.66% 61.49% 61.45%
MGS({5}) 10% 3.81% 3.17% 3.70% 2.72% 3.19% 3.81% 2.76%

Table 5.2 – Experimental results using different stride values for different scales in the Stanford
Cars dataset. CLIP (RADFORD et al., 2021) was used as a feature extractor. We group the

results according to the scale size (parameter N ) and highlight in green the best results and in red
the worsts.

Stride N = 1 N = 2 N = 3 N = 4 N = 5
10% 4 56 182 342 550
25% 2 20 63 117 187
50% 1 10 29 51 84

100% 1 4 12 20 30
Table 5.3 – Number of patches generated for each stride value and for each value N in an image

of 800x600 pixels.

take input images of varying sizes. The only constraint of this model is that the smallest

image dimension should be greater or equal to 224 pixels. Thus, in this case, the only

preprocessing involved is for resizing (preserving the aspect ratio) images that are smaller

than the input requirements of this model. We used the preprocessed raw images as input

for this model, then, we used the features produced as an output for training a simple

classifier of a fully-connected layer with linear activation. Notice that in this approach,

we do not discard image information. Due to this, we refer to this methodology as lossless

in Table 5.4 and Table 5.5. For testing, we performed feature extraction with this model

over the images in the test set, and then, the features were evaluated by the trained model.

For the other two families of approaches, for each raw image, we resized its
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Figure 5.8 – Macro F1 results in geological dataset by varying the stride value (10%, 25%, 50%
and 100%) for each MGS (1-5).

Source: The author

smaller edge to the size required as input by each feature extractor, preserving the origi-

nal aspect ratio, and performed a center crop, keeping only the central part of the image.

The first of these two families of approaches considers the resulting fragment of the orig-

inal image as input of a pre-trained model used as a feature extractor, and the resulting

features are considered for representing the image. In this case, we used the same three

pre-trained models previously mentioned for extracting these simple features (SF). Notice

that this approach also uses transfer learning from the same pre-trained models, but uses

only the information of an arbitrary (central) part of the original image. We used the same

simple classifier of the first approach for evaluating this one. We applied in the test set the

same pre-processing step applied in the training images. This approach was included in

the comparison because it represents a common approach for image classification based

on neural networks using feature extraction.

Finally, we also trained an end-to-end DenseNet architecture (with the default

classifier layer) without pre-training, using as input only the fragments of the raw image

resulting from resizing and cropping (as previously discussed). We include this approach

in our experiments to compare our approach with the performance achieved by a sophisti-

cated architecture without adopting transfer learning. In this approach, the model input is

the raw image information, contrasting with the other approaches that use input features
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Figure 5.9 – Macro F1 results in Stanford Cars dataset by varying the stride value (10%, 25%,
50% and 100%).

Source: The author

provided directly by a pre-trained feature extractor.

We refer to these two last families of approaches that discard some image infor-

mation as lossy in Table 5.4 and Table 5.5.

Each experiment is organized in a separate row in the Tables 5.4 and 5.5, corre-

sponding to each specific approach. We grouped our results according to the input infor-

mation required for each compared approach. In order to improve readability, we also

specify in the tables if the approach uses transfer learning (TL column) and the metrics

mentioned in the methodology. In the following, we will discuss the results of Table 5.4,

which reports the results obtained in the dataset of geological images.

Line 1 presents the performance of the ResNeXt model trained using only parts of

the raw images (lossy information) as input, without taking advantage of transfer learning.

This approach presents the worst performance amongst the compared approaches, demon-

strating that using transfer learning significantly improved the results in this dataset. This

result is expected since the dataset is reasonably small and contains a high variability

regarding visual features for each class.

Lines 2-5 present the approaches that adopt simple features (SF) as input. Line 2

presents the results of using the features extracted by DenseNet, taking the whole image

as input (lossless information). The results obtained by this approach are very similar to
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Row Model TL Input Information Top-1 Accuracy Macro Weighted
Precision Recall F1 Precision Recall F1

1 ResNeXt Raw image(lossy) 84.26% 72.49% 69.23% 70.4% 84.36% 84.26% 84.15%
2 DenseNet ✓ SF(lossless) 90.23% 81.16% 78.08% 79.39% 90.11% 90.23% 90.1%
3 ResNeXt ✓ SF(lossy) 87.77% 76.66% 72.77% 74.37% 87.45% 87.77% 87.53%
4 DenseNet ✓ SF(lossy) 89.87% 81.73% 77.91% 79.45% 89.65% 89.87% 89.68%
5 CLIP ✓ SF(lossy) 92.86% 86.33% 83.16% 84.45% 92.74% 92.86% 92.74%
6 ResNeXt ✓ MGS({1}) 87.73% 75.43% 72.41% 73.51% 87.50% 87.73% 87.52%
7 DenseNet ✓ MGS({1}) 89.46% 79.49% 76.14% 77.57% 89.25% 89.46% 89.30%
8 CLIP ✓ MGS({1}) 92.39% 84.36% 82.20% 83.15% 92.30% 92.39% 92.32%
9 ResNeXt ✓ MGS({2}) 88.44% 76.92% 73.67% 75.00% 88.30% 88.44% 88.31%

10 DenseNet ✓ MGS({2}) 90.17% 80.43% 77.43% 78.68% 89.99% 90.17% 90.03%
11 CLIP ✓ MGS({2}) 92.33% 83.79% 81.85% 82.69% 92.26% 92.33% 92.27%
12 ResNeXt ✓ MGS({3}) 88.38% 76.38% 72.44% 73.92% 88.11% 88.38% 88.16%
13 DenseNet ✓ MGS({3}) 89.79% 78.86% 75.81% 77.03% 89.59% 89.79% 89.64%
14 CLIP ✓ MGS({3}) 91.69% 82.03% 79.65% 80.66% 91.58% 91.69% 91.60%
15 ResNeXt ✓ MGS({4}) 87.88% 75.05% 71.29% 72.74% 87.61% 87.88% 87.66%
16 DenseNet ✓ MGS({4}) 89.37% 78.25% 74.86% 76.25% 89.16% 89.37% 89.21%
17 CLIP ✓ MGS({4}) 90.79% 80.01% 77.35% 78.43% 90.69% 90.79% 90.70%
18 ResNeXt ✓ MGS({5}) 87.49% 74.10% 70.50% 71.89% 87.20% 87.49% 87.28%
19 DenseNet ✓ MGS({5}) 88.86% 77.22% 73.66% 74.96% 88.66% 88.86% 88.69%
20 CLIP ✓ MGS({5}) 89.92% 78.26% 75.75% 76.79% 89.81% 89.92% 89.82%
21 ResNeXt ✓ MGS({1,2}) 89.55% 79.19% 75.90% 77.26% 89.37% 89.55% 89.39%
22 DenseNet ✓ MGS({1,2}) 90.83% 82.28% 78.68% 80.13% 90.70% 90.83% 90.71%
23 CLIP ✓ MGS({1,2}) 93.22% 85.78% 85.60% 84.56% 93.12% 93.22% 93.13%
24 ResNeXt ✓ MGS({1,2,3}) 90.01% 79.49% 76.71% 77.83% 89.88% 90.01% 89.90%
25 DenseNet ✓ MGS({1,2,3}) 91.36% 82.63% 80.19% 81.27% 91.19% 91.36% 91.24%
26 CLIP ✓ MGS({1,2,3}) 93.46% 86.78% 84.31% 85.36% 93.37% 93.46% 93.39%
27 ResNeXt ✓ MGS({1,2,3,4}) 90.27% 80.04% 77.67% 78.64% 90.19% 90.27% 90.17%
28 DenseNet ✓ MGS({1,2,3,4}) 91.61% 83.31% 80.40% 81.63% 91.56% 91.61% 91.54%
29 CLIP ✓ MGS({1,2,3,4}) 93.46% 86.01% 84.43% 85.10% 93.43% 93.46% 93.42%
30 ResNeXt ✓ MGS({1,2,3,4,5}) 90.56% 80.27% 77.59% 78.74% 90.40% 90.56% 90.43%
31 DenseNet ✓ MGS({1,2,3,4,5}) 91.67% 83.10% 80.85% 81.83% 91.58% 91.67% 91.60%
32 CLIP ✓ MGS({1,2,3,4,5}) 93.51% 86.36% 84.63% 85.41% 93.45% 93.51% 93.45%

Table 5.4 – Comparison of the metrics achieved by each experiment configuration in the
geological dataset. Each row represents a different configuration. We divided these setups in the
table according to the input information (Column 4) and the use of transfer learning (Column 3).
Column 4 Raw Image (lossy) indicates that raw image is used as an input with resize and center

crop to 224x224 input size. SF indicates that Simple Features are used as input. Lossless indicates
that the original image information is used as input and only images with the smallest dimension

small than 224 pixels are resized, whereas lossy indicates that resizing and cropping are
performed, discarding information. Lines 6-20 show the results achieved by our approach with
different scales, while lines 21-32 present the results achieved when combining different scales.

those of Line 4, which also uses DenseNet but discards some image information by crop-

ping the images after resizing them. Thus, the results suggest that resizing and cropping

images produce a reasonable representation of the information contained in the whole

image. In Line 4, only macro precision and macro F1 are slightly superior to the results

in Line 2.

In Lines 3-5 we report the results achieved by using the simple features with the

resize and crop (lossy). CLIP as a feature extractor outperformed DenseNet and Resnext.

These results suggest that CLIP can produce more representative features from the lossy

information of the images obtained after resizing and cropping operations.

In the following discussion, we focus on analyzing the performance of our ap-

proach and comparing it with the approaches that adopt simple features as input. Lines

6-20 present the results achieved using just a single scale of analysis to represent each

image (MGS({1}), MGS({2}), MGS({3}), MGS({4}), and MGS({5})). Thus, in

this context, the multiscale graph set consists of only one patch-based feature graph per
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Row Model TL Input Information Top-1 Accuracy Macro Weighted
Precision Recall F1 Precision Recall F1

1 ResNeXt Raw Image (lossy) 23.85% 25.44% 23.92% 23.93% 25.38% 23.85% 23.87%
2 DenseNet ✓ SF(lossless) 57.94% 59.30% 57.90% 58.21% 59.08% 57.94% 58.12%
3 ResNeXt ✓ SF(lossy) 47.61% 47.56% 47.67% 47.41% 47.37% 47.61% 47.29%
4 DenseNet ✓ SF(lossy) 57.33% 57.59% 57.34% 57.25% 57.39% 57.33% 57.15%
5 CLIP ✓ SF(lossy) 83.29% 83.44% 83.20% 83.24% 83.44% 83.29% 83.29%
6 ResNeXt ✓ MGS({1}) 45.98% 45.82% 46.12% 45.82% 45.60% 45.98% 45.63%
7 DenseNet ✓ MGS({1}) 55.83% 55.81% 55.81% 55.65% 55.70% 55.83% 55.61%
8 CLIP ✓ MGS({1}) 83.12% 83.16% 83.02% 83.03% 83.21% 83.12% 83.11%
9 ResNeXt ✓ MGS({2}) 55.49% 55.56% 55.46% 55.37% 55.47% 55.49% 55.35%

10 DenseNet ✓ MGS({2}) 66.76% 66.93% 66.68% 66.70% 66.91% 66.76% 66.73%
11 CLIP ✓ MGS({2}) 79.84% 80.04% 79.76% 79.81% 80.03% 79.84% 79.85%
12 ResNeXt ✓ MGS({3}) 55.80% 55.74% 55.76% 55.61% 55.72% 55.80% 55.62%
13 DenseNet ✓ MGS({3}) 66.18% 66.31% 66.07% 66.08% 66.34% 66.18% 66.15%
14 CLIP ✓ MGS({3}) 75.05% 75.14% 74.93% 74.95% 75.18% 75.05% 75.03%
15 ResNeXt ✓ MGS({4}) 53.64% 53.77% 53.49% 53.47% 53.74% 53.64% 53.53%
16 DenseNet ✓ MGS({4}) 64.18% 64.43% 64.16% 64.17% 64.42% 64.18% 64.18%
17 CLIP ✓ MGS({4}) 67.56% 67.57% 67.48% 67.41% 67.61% 67.56% 67.47%
18 ResNeXt ✓ MGS({5}) 51.24% 51.39% 51.20% 51.17% 51.33% 51.24% 51.15%
19 DenseNet ✓ MGS({5}) 62.70% 62.72% 62.65% 62.57% 62.75% 62.70% 62.62%
20 CLIP ✓ MGS({5}) 61.49% 61.69% 61.43% 61.43% 61.66% 61.49% 61.45%
21 ResNeXt ✓ MGS({1,2}) 59.87% 60.20% 59.89% 59.92% 60.03% 59.87% 59.83%
22 DenseNet ✓ MGS({1,2}) 70.45% 70.71% 70.39% 70.44% 70.67% 70.45% 70.45%
23 CLIP ✓ MGS({1,2}) 85.88% 86.01% 85.82% 85.86% 86.05% 85.88% 85.91%
24 ResNeXt ✓ MGS({1,2,3}) 63.48% 63.84% 63.47% 63.52% 63.76% 63.48% 63.49%
25 DenseNet ✓ MGS({1,2,3}) 74.62% 74.92% 74.55% 74.64% 74.92% 74.62% 74.67%
26 CLIP ✓ MGS({1,2,3}) 86.79% 86.90% 86.69% 86.72% 86.98% 86.79% 86.81%
27 ResNeXt ✓ MGS({1,2,3,4}) 64.60% 65.09% 64.52% 64.65% 65.05% 64.60% 64.68%
28 DenseNet ✓ MGS({1,2,3,4}) 76.02% 76.32% 76.00% 76.04% 76.28% 76.02% 76.04%
29 CLIP ✓ MGS({1,2,3,4}) 86.57% 86.69% 86.50% 86.52% 86.77% 86.57% 86.60%
30 ResNeXt ✓ MGS({1,2,3,4,5}) 66.74% 67.18% 66.65% 66.77% 67.14% 66.74% 66.79%
31 DenseNet ✓ MGS({1,2,3,4,5}) 77.61% 77.83% 77.52% 77.57% 77.83% 77.61% 77.62%
32 CLIP ✓ MGS({1,2,3,4,5}) 86.28% 86.32% 86.18% 86.18% 86.43% 86.28% 86.29%

Table 5.5 – Achieved results in the Stanford Cars dataset. This table adopts the same notation
adopted in Table 5.4.

image. In these settings, by using ResNeXt with scales N = 2 and N = 3 and by using

DenseNet with scale N = 2, our approach outperforms the approaches that take as input

only simple features and the same feature extractors. However, in most cases, the results

obtained by our approach are lower or similar to those achieved by approaches that adopt

simple features as input. As we will show later, our approach effectively improves the

results only when we combine different scales. We can also notice a superiority of CLIP

over DenseNet and ResNeXt. In these experiments, we can also notice that by adopting

bigger scales, the performance of our approach decreases. The worst results in these set-

tings were obtained by MGS({4}) and MGS({5}). A possible hypothesis for explaining

the performance degradation observed when we consider scales N = 4 and N = 5 is that

contextual information may be lost, since patches capture smaller areas at bigger scales.

Since the performance decreased as the scale increased, we decided to limit the maxi-

mum scale considered in this experiment as N = 5. It is important to emphasize that our

method can generate patch-based feature graphs for greater scales. However, as the scale

increases, the memory necessary for storing patch-based feature graphs increases, and,

due to this, it is necessary to evaluate if it is worth considering larger scales.

Lines 21-32 present the results achieved by combining in the input graph set multi-

ple patch-based feature graphs representing multiple scales of each image (MGS({1, 2}),
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Figure 5.10 – Learning curves that show the loss during the training and validation phase, using
CLIP in the folds with the best result.

(a) Training on the geological dataset using
simple features (SF - Lossy).

(b) Training on the geological dataset using
three graph scales (MGS({1, 2, 3})).

(c) Training on Cars dataset using simple
features (SF - Lossy).

(d) Training on Cars dataset using three graph
scales (MGS({1, 2, 3})).

Source: The author

MGS({1, 2, 3}), MGS({1, 2, 3, 4}), and MGS({1, 2, 3, 4, 5})). Since the previous ex-

periments showed that smaller scales achieved better performance than larger scales, we

performed the experiments using the smaller scales first and iteratively added a larger

scale in each experiment.

Lines 21-23 present the performance of our approach combining scales N = 1

and N = 2 (i.e., MGS({1, 2})). In these settings, our approach obtained presents better

results than by considering only single scales (lines 6-17). This experiment showed that

combining scales can increase the overall performance of our approach. In lines 24-26,

when we add the scale N = 3 (i.e., MGS({1, 2, 3})), our approach achieves superior

results when compared to the scenario in which we adopt only simple features (lines 2-

5), reaching 3.46% of improvement in Macro F1 using ResNeXt, 1.82% of improvement
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using DenseNet, and around 1% of improvement by using CLIP.

Lines 27-29 present the performance of our approach when we combine the scales

N = 1, N = 2, N = 3 and N = 4 (i.e., MGS({1, 2, 3, 4})). In this setting, when adopt-

ing ResNeXt and DenseNet, our approach outperforms the results achieved by adopting

MGS(1, 2, 3) as input. We can notice an improvement of around 1% in Macro F1 for

ResNeXt over the performance achieved using MGS({1, 2, 3}). By using DenseNet, our

approach improves on all metrics, most notably in Macro precision, increasing around 1%

over the performance achieved using MGS({1, 2, 3}). Also, by using CLIP, our approach

achieves similar results to the previous combination, with weighted metrics improving

slightly, but showing a more significant decrease in performance in the macro precision.

Finally, lines 30-32 present the results achieved by our approach when we add the

scale N = 5 to the MGS (i.e. MGS({1, 2, 3, 4, 5})). This graph set shows the best result

for most metrics in all three models. The difference between the performance achieved

in this setting and the performance achieved by using only simple features (Lines 3-5) as

input is around 4.5% of Macro F1 when using ResNeXt as feature extractor and around

2.5% when using DenseNet. By using CLIP the difference is smaller, reaching around

1% of improvement in all metrics. However, it achieves 85.41% of macro F1, which is

the best overall performance achieved in the geological dataset.

Next, we will discuss the results regarding the Stanford Cars dataset, reported in

Table 5.5. Generally, the results obtained in this dataset follow the patterns observed in the

dataset of geological images. However, in this dataset, the results show that our approach

achieves a more significant performance increase, when compared with the alternative

approaches.

We can notice an important difference compared to the behavior observed in the

dataset of geological images regarding the performance of our approach when adopt-

ing single scales (MGS({1}), MGS({2}), MGS({3}), MGS({4}), and MGS({5})).

When considering N = 2, N = 3, N = 4, and N = 5, and adopting DenseNet and

ResNeXt (Lines 9, 10, 12, 13, 15, 16, 18, and 19), our approach achieves a performance

comparable to the performance achieved when adopting simple features as input (Lines 2-

5). We can notice a performance increase ranging from ≈5% to ≈9% in all metrics. This

improvement achieved by adopting single scales does not occur when we adopt CLIP as

a feature extractor. We can also notice that CLIP performs better in single scales using

smaller scales, such as N = 1, while by adopting Resnext and Densenet, our approach

achieves the best results using N = 2 and N = 3, respectively. These results also demon-
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strate a heterogeneity regarding the scales at which each model performs better in each

dataset.

When combining different scales in this dataset, our approach achieves the best re-

sults, following the same pattern observed in the geological dataset. When scales N = 1

and N = 2 are combined (i.e., MGS({1, 2})), in lines 21-23, it is possible to notice

an overall increase in all metrics, with the three different feature extractors, in compar-

ison with the performance obtained by the approaches using only simple features and

the performance obtained by our approach considering only single scales. The perfor-

mance of our approach still increases when we combine the scales N = 1, N = 2,

and N = 3 (i.e., MGS({1, 2, 3})), as shown in lines 24-26. We can observe this effect

for all the feature extractors. When we combine the scales N = 1, N = 2, N = 3,

and N = 4 (i.e., MGS({1, 2, 3, 4})), our approach’s performance still increases when

adopting ResNeXt and Densenet as feature extractors, but we can notice a performance

drop when adopting CLIP. The same behavior can be observed when we use the set with

five scales MGS({1, 2, 3, 4, 5}). In the geological dataset, CLIP still achieves a slight

performance improvement using scales greater than N = 3 in the graph set, while in

the Stanford cars dataset this behavior does not occur. It is possible to notice that the

characteristics of the datasets and models can influence the behavior in different scales.

In the stanford cars dataset, when adopting DenseNet and ResNeXt as feature

extractors, the best results were achieved by considering MGS({1, 2, 3, 4, 5}) as input

(Lines 30 and 31). On the other hand, when adopting CLIP as feature extractor, the

best result was achieved when considering MGS({1, 2, 3}) as input (Line 26), which is

also the best overall result in this dataset, reaching 86.79% of accuracy and 86.72% of

macro F1. This result follows the same pattern observed in the geological dataset, whose

best result was also achieved by using MGS({1, 2, 3}) as input and CLIP as feature

extractor. When compared with the approaches using simple features as input (Lines 2-

5), our approach using these graph sets improves, in all metrics, ≈19% when adopting

ResNeXt, ≈19% when adopting DenseNet, and ≈3% with CLIP.

Figures 5.11 and 5.12 visually represent the performance achieved by our ap-

proach with different scales and their combinations. In these Figures, each bar represents

the Macro F1 and best and worst F1 measures among all the folds during the cross-

validation process and each point represents the average considering all folds. These

figures emphasize the pattern of performance improvement obtained by adding scales to

represent the images. They also show that by using CLIP as feature extractor, there is no
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Figure 5.11 – Evolution of the classification performance in the geological dataset as scales are
added in the graph set. Each bar represents the F1 measure obtained in the worst and best folds in

the cross-validation process and each point represents the average considering all folds.
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Source: The author

performance improvement by adding the N = 4 and N = 5 scales in the Stanford Cars,

differently from the case of the geological dataset. We can also notice that by adopt-

ing DenseNet and ResNeXt as feature extractors, the best results were achieved by using

MGS({1, 2, 3, 4, 5}) as input.

Figure 5.10 shows the learning curves of the training process of our approach and

the approach using simple features as input. In our approach, we adopted CLIP as feature

extractor and the MGS({1, 2, 3}) as input. This configuration achieved the best result

in Stanford Cars and the third-best result in the geological dataset. The charts represent

the training process focusing on the folds with the best results in our cross-validation

procedure. In the first two charts at the top, we present the training on the geological

dataset (a) adopting simple features as input and (b) using our approach and considering

MGS({1, 2, 3}) as input. The two graphs at the bottom (c,d) show the training of the

same approaches on the Stanford Cars dataset. We can observe that the proposed approach

allows the classifier to achieve a lower loss in fewer epochs than when considering as input

simple features extracted after the pre-processing of the images. These learning curves

show that our approach performs better with less training time. The learning curves also
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Figure 5.12 – Evolution of the classification performance in the Cars dataset as new graph scales
is added in the graph set. Each bar represents the F1 measure obtained in the worst and best folds

in the cross-validation process and each point represents average considering all folds.
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demonstrate that overfitting does not happen during the training process.

As a general conclusion of these experiments, in both datasets, representing im-

ages with patch-based feature graphs of different scales showed performance improve-

ments when compared to the approaches adopting simple features as input. This suggests

that multiscale graph sets capture a more informative representation of the image infor-

mation that our multiscale graph convolutional network architecture was able to exploit

for obtaining results that outperformed the alternative approaches. It is important to no-

tice that the performance improvement by using our approach was observed for all the

pre-trained models used as feature extractors. This also demonstrated that our approach

is agnostic to the adopted feature extraction model.
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6 CONCLUSION

In this work, we propose an approach for image classification using multiscale

patch-based feature graphs. We resize images to multiple scales and split them into over-

lapping patches. After, we use transfer learning to extract features from the patches and

join them into graphs. A node represents the features extracted from each patch, and

the edges represent the neighborhood between adjacent patches. Finally, we use multiple

patch-based feature graphs for representing each image and this set of graphs is taken as

input by a graph convolutional network.

Our approach was designed for dealing with challenges that are common when

dealing with real-world datasets such as the geological dataset which is the main focus

of this work. Our methodology allows us to deal with images of varying sizes without

introducing noise or discarding information. By adopting overlapping patches at different

scales, we highlight different visual features of the original image, and by using graph

convolution networks, we can process graphs of multiple sizes. The adoption of transfer

learning also allows our approach to deal with small datasets.

We performed two different experiments. The first was carried out for understand-

ing how beneficial the overlapping between patches is for the results. In this experiment,

we compared the performance achieved by our approach with different values of the stride

that controls the sliding window that extracts patches from the images. This experiment

showed that a tiny stride is detrimental, and the highest performance point was using

around 25% of stride value.

In the second experiment, we compared our approach with conventional image

classification approaches. Our results showed that the proposed approach achieved the

best performance in the two datasets considered in the proposed experiments. Our ap-

proach improved the classification performance with all feature extraction models con-

sidered in the experiment, suggesting that the proposed approach is agnostic to the choice

of feature extractor. The experiments also showed that by using CLIP as feature extrac-

tor our approach achieves the best results in all experimental setups, outperforming the

results achieved by adopting DenseNet and ResNeXt as feature extractors.

It is worth noting that while fine-tuning is a powerful technique, we were able to

achieve satisfactory performance through feature extraction alone. One key advantage of

feature extraction is that it requires retraining only in the classifier module, which can

save time and resources.
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The main limitations of our approach are related to the process of generating

patch-based feature graphs from images and the size of the resulting graphs. The pre-

processing phase of our approach that is necessary to transform images in patch-based

feature graphs is complex and computationally costly. In addition, after building the

patch-based feature graphs, it is necessary to keep them in memory, which can become an

issue, since the memory cost increases depending on the stride, the scales, and the number

of scales considered simultaneously.

In future works, we plan to investigate how and why the results vary depending on

the scale used and how much this relates to the characteristics of the pre-trained models

and the datasets used. Also, it would be interesting to investigate methods for reducing

the size of the graphs and then reducing memory costs. One possible solution would be

to analyze each patch’s importance to dropout uninformative nodes and keep only the

most relevant information represented in each graph. This would also allow us to explore

the flexibility of representing images as graphs, since by discarding some patches of the

original image, the graphs built from the remaining patches can have irregular structures.

We plan also to explore different types of neighborhoods between nodes and different

schemes for assigning weights to edges. Performing experiments on more datasets and

using other models can also bring insights. Future works can also investigate how data

augmentation techniques affect the performance of our approach.

Part of the contributions of this work was presented in (TODESCATO. et al.,

2023).
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APPENDIX A — RESUMO EXPANDIDO

This chapter presents a summary of this master thesis in the Portuguese language,

as required by the PPGC Graduate Program in Computing.

Este capítulo apresenta um resumo desta dissertação de mestrado em língua por-

tuguesa, conforme exigido pelo Programa de Pós-Graduação em Computação.

A.1 Introdução

Atualmente, redes sociais, sistemas corporativos e diversos aplicativos na web

geram grandes quantidades de dados a cada segundo. Devido à disponibilidade, gerenciar

e recuperar os dados relevantes para apoiar as tarefas de interesse tornam-se desafios. Esse

cenário também está presente dentro das empresas, que gastam recursos consideráveis

tentando solucionar esse problema. Nesse contexto, lidar com imagens é uma tarefa ainda

mais desafiadora. O principal motivo é a ausência de significado explícito associado às

imagens, dificultando a recuperação desse tipo de dado por meio de consultas de pesquisa.

Uma abordagem comum para lidar com este cenário envolve a anotação de imagens com

tags semânticas para permitir buscas e recuperá-las (HOLLINK et al., 2003). No entanto,

a anotação manual é trabalhosa e inviável. Assim, abordagens automáticas para clas-

sificação de imagens podem ser de grande valia para rotular imagens automaticamente

neste cenário (WONG; LEUNG, 2008; ZHANG; ISLAM; LU, 2012), possibilitando uma

posterior recuperação destes dados por meio de consultas convencionais. As técnicas

de aprendizado profundo são candidatas naturais para rotular automaticamente grandes

bancos de dados de imagens.

Na última década, Redes Neurais Convolucionais (CNN) (SZEGEDY et al., 2015;

TAN; LE, 2019; KRIZHEVSKY; SUTSKEVER; HINTON, 2012) e, mais recentemente,

Vision Transformers (ViTs) (DOSOVITSKIY et al., 2020) melhoraram significativamente

o desempenho em tarefas de classificação de imagens. Os pesquisadores usaram essas téc-

nicas em vários domínios distintos (SLADOJEVIC et al., 2016; DUNG et al., 2019; AB-

BAS; ABDELSAMEA; GABER, 2021; HONG et al., 2020). Apesar desses excelentes re-

sultados, arquiteturas de redes neurais sofisticadas geralmente demandam dados de treina-

mento consideráveis para atingir bons desempenhos (ZHU et al., 2021). Aprendizado por

transferência (TORREY; SHAVLIK, 2010) surgiu como uma abordagem promissora para

lidar com este problema (LIANG; ZHENG, 2020; HORRY et al., 2020) uma vez que estas
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abordagens permitem aproveitar o conhecimento aprendido a partir de quantidades signi-

ficativas de dados para lidar com tarefas em que apenas poucos dados estão disponíveis.

Em geral, quando o aprendizado por transferência é aplicado, as imagens usadas

para alimentar as redes neurais pré-treinadas são padronizadas para corresponder aos req-

uisitos de entrada das arquiteturas (LECUN et al., 1998; KRIZHEVSKY; HINTON et

al., 2009). Em geral, esse processo de padronização descarta partes críticas da imagem

ou altera sua proporção, causando perda de informações ou introdução de ruído. No

entanto, conjuntos de dados de imagens com diferentes tamanhos e proporções são co-

muns em configurações do mundo real. Alguns trabalhos (ANTHIMOPOULOS et al.,

2016; ARAÚJO et al., 2017) abordam essas questões adotando, por exemplo, abordagens

baseadas em patches que lidam com imagens considerando diferentes patches extraídos

delas. Outras abordagens também adotam Fully Convolutional Network (FCN) (WANG

et al., 2021; ZHUANG et al., 2021) para evitar o descarte de informações relevantes da

imagem.

Recentemente, alguns trabalhos (ZHANG; ZOU; ZHANG, 2022; BAE et al.,

2022) têm explorado redes neurais de grafos (GNN) para classificação de imagens. Essas

abordagens envolvem a representação de imagens como grafos, onde os nós representam

pixels ou regiões irregulares de pixels (chamados superpixels) e as arestas representam

relações espaciais entre pixels ou superpixels. Cada nó é caracterizado por características

de cada pixel ou propriedades estatísticas do conjunto de pixels que constituem cada su-

perpixel (ZHANG; ZOU; ZHANG, 2022). Como algumas GNNs podem lidar com grafos

com números heterogêneos de nós e arestas, essas abordagens também podem lidar com

imagens de tamanhos diferentes.

Outra característica essencial dos conjuntos de dados de imagens do mundo real

são as características visuais em diferentes escalas de análise e algumas características

visuais que são aparentes apenas em algumas escalas de análise. Recentemente, alguns

trabalhos têm lidado com essas características propondo abordagens de aprendizado pro-

fundo que alavancam diferentes características visuais em múltiplas escalas de maneiras

diferentes (CHEN; FAN; PANDA, 2021; MOHAN; VENKATESAN, 2020).

O conjunto de dados de imagens geológicas utilizado durante o desenvolvimento

do sistema de recuperação de imagens possui características que dificultam o processo de

classificação: é desbalanceado, possui imagens de tamanhos variados e não possui grande

volume de dados. Nesse contexto, este trabalho se concentra em conjuntos de dados de

imagens do mundo real que geralmente possuem pequenas amostras, onde as imagens
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podem ter tamanhos diferentes e cujas características visuais podem ser aparentes em

diferentes escalas. Para lidar com esses conjuntos de dados, propomos uma abordagem

baseada em redes convolucionais de grafos multiescala para classificação de imagens.

Nossa abordagem consiste em dois aspectos principais que apresentaremos a seguir:

(i) uma estratégia para representar imagens como conjuntos de grafos de características

baseados em patches que podem capturar os características visuais de cada imagem em

diferentes escalas; e (ii) uma arquitetura de rede convolucional de grafos multi-entrada

para classificação de imagens multiescala que recebe como entrada um conjunto de grafos

de características baseados em patches representando uma dada imagem em diferentes es-

calas.

Primeiro, então, representamos uma dada imagem por um grafo constituído de

nós, denotando características dos patches e arestas regulares da imagem original, repre-

sentando relações espaciais entre patches na imagem original. Um aspecto essencial de

nossa abordagem é caracterizar cada nó do grafo gerado com características extraídas de

cada patch da imagem original por modelos pré-treinados. Ao adotar extração de car-

acterísticas de modelos pré-treinados, nossa abordagem pode aplicar o aprendizado de

transferência para alavancar o conhecimento capturado em modelos pré-treinados para

gerar representações informativas da imagem original.

Na sequência, temos em nossa abordagem uma rede convolucional de grafos

multi-entrada para classificação de imagens multiescala baseada na rede convolucional

de grafos (GCN) proposta em (KIPF; WELLING, 2016). A GCN pode lidar com proble-

mas de classificação considerando as características de cada nó e o relacionamento entre

eles em dados com uma estrutura de grafo. Nossa arquitetura GCN proposta pode receber

como entrada um conjunto de grafos multiescala (MGS) representando uma determinada

imagem em diferentes escalas (com um grafo para cada escala considerada na tarefa). As-

sim, nossa arquitetura pode ser adaptada para lidar com diferentes escalas de forma que

o número de entradas de nossa arquitetura seja definido em função do número de difer-

entes escalas é um conjunto de escalas SS que define um conjunto de grafos multiescala

MGS(SS). As escalas adequadas no conjunto de escalas podem variar de acordo com as

características da tarefa.

O elemento-chave de nossa arquitetura é o módulo de processamento de grafos

(GPM), que é composto de apenas uma camada de convolução de grafo (KIPF; WELLING,

2016) com tangente hiperbólica (tanh) como função de ativação, seguida por uma camada

de pooling.
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Então, nossa arquitetura concatena as saídas dos GPMs em um único vetor, que é

processado e classificado por uma camada totalmente conectada com uma função linear.

Definimos nossa arquitetura como resultado da experimentação empírica. Testa-

mos diferentes arquiteturas, com diferentes números de camadas convolucionais, difer-

entes tipos de pooling e diferentes funções de ativação.

Em uma visão geral, as principais características de nossa abordagem são:

• Evitar a inserção de distorções em características visuais relevantes, mantendo a

proporção da imagem original durante todas as etapas do processamento.

• Evitando a perda de informações relevantes sobre a imagem original, pois dividi-

mos a imagem original em patches regulares que cobrem a maior parte da área da

imagem. Este método contrasta com a prática comum na maioria das abordagens

baseadas em redes neurais para classificação de imagens, que envolve uma etapa de

pré-processamento onde algumas partes da imagem original são descartadas.

• Capacidade de lidar com imagens com tamanhos diferentes em um determinado

conjunto de dados, pois nossa abordagem representa essas imagens com grafos

de tamanhos diferentes manipulados pela arquitetura convolucional de grafos pro-

posta.

• Capturando características locais informativos de cada patch da imagem original

usando modelos pré-treinados como extratores de características, aumentando as

capacidades de nossa abordagem para lidar com pequenos conjuntos de dados.

• Representando a relação espacial das características locais de diferentes partes de

uma determinada imagem em uma estrutura de grafo.

• Representação das características visuais de uma determinada imagem em difer-

entes escalas de análise através de diferentes grafos de características baseados em

patches que podem ser usados coletivamente como entrada para treinar uma rede

convolucional de grafos de múltiplas entradas para classificação de imagens.

Até onde sabemos, nossa abordagem proposta é a primeira a combinar todas essas

vantagens.

A.2 Metodologia

Avaliamos nossa abordagem em dois conjuntos de dados: um conjunto de dados

de imagens geológicas (MICHELIN et al., 2021) e o conjunto de dados stanford cars
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(KRAUSE et al., 2013). O conjunto de dados de imagens geológicas é considerado neste

trabalho porque este trabalho faz parte de um projeto cujo objetivo é desenvolver um

sistema de recuperação de imagens para a indústria do petróleo. É importante notar que o

conjunto de dados geológicos foi desenvolvido em cooperação com empresas e não pode

ser compartilhado devido a questões de direitos autorais. O conjunto de dados Stanford

Cars, que está disponível publicamente, foi selecionado para permitir a reprodutibilidade

de nossos resultados e demonstrar que pode ser aplicado a outros domínios. Os aspectos

desses conjuntos de dados tornam-os desafiadores a classificação das imagens.

Para demonstrar que nossa abordagem pode adotar diferentes modelos pré-treinados

como extratores de características, aplicamos nossa abordagem usando três modelos pré-

treinados distintos1: ( i) resNext-101 (XIE et al., 2017), pré-treinado no ImageNet, (ii)

DenseNet-121 (HUANG et al., 2017), pré-treinado no ImageNet; e (iii) CLIP Vit-B/32

(RADFORD et al., 2021), pré-treinado em um conjunto de dados com 400 milhões de

imagens. Os dois primeiros apresentam bom desempenho com ajuste fino (BAKER;

ZENGELER; HANDMANN, 2022) e como extrator de características (VARSHNI et al.,

2019), respectivamente, enquanto o último é um modelo baseado em Transformers que

apresentou resultados impressionantes em estudos recentes (ZHAI et al., 2022) . Neste

trabalho, utilizamos apenas o módulo de extração de características dos modelos, para

que a camada de classificação seja removida do modelo original.

Avaliamos a eficácia de nossa abordagem em representar a informação da imagem

em diferentes escalas simples e por suas combinações. Nosso algoritmo foi aplicado para

gerar grafos de características baseados em patches de cada imagem nos conjuntos de

dados, aplicando os três modelos pré-treinados como extratores de características usando

cinco escalas diferentes representadas pelo parâmetro N . Usamos N = 1, N = 2, N = 3,

N = 4 e N = 5. Para usar diferentes números de grafos de características baseados em

patches (um para cada escala), adaptamos nossa arquitetura de rede convolucional multi-

entrada incluindo o número necessário de diferentes módulos de processamento de grafos

para cada caso.

Em nossos experimentos, usamos modelos pré-treinados como extratores de car-

acterísticas sem ajuste fino. Conforme descrito na seção anterior, nossa abordagem usa

um módulo classificador que recebe um ou mais grafos como entrada e a saída é a classe

prevista. As imagens no conjunto de teste também são transformadas em grafos de carac-

1Os modelos pré-treinados resNext-101 e DenseNet-121 foram obtidos de <https://pytorch.org/vision/
stable/models.html>, e o modelo pré-treinado CLIP Vit-B/32 foi obtido de <https://github.com/openai/
CLIP>

 https://pytorch.org/vision/stable/models.html
 https://pytorch.org/vision/stable/models.html
https://github.com/openai/CLIP
https://github.com/openai/CLIP
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terísticas baseados em patches e, em seguida, avaliadas pelo classificador treinado.

Em nossos experimentos, adotamos validação cruzada com cinco folds. A cada it-

eração, cada fold é usado uma vez como dados de teste, enquanto que a partir da união dos

quatro folds restantes. Consideramos 10% como dados de validação e o restante como da-

dos de treinamento. Adotamos o adam optimizer com uma taxa de aprendizado de 0, 001 e

um limite de 100 épocas. Aplicamos a parada antecipada, considerando cinco épocas sem

uma melhora mínima de 0, 001 na perda do conjunto de validação. Esses hiperparâmetros

foram definidos com base em experimentos empíricos usando a abordagem. Realizamos

os experimentos em um desktop com CPU Intel i7-10700, 32 gigabytes de RAM e GPU

NVIDIA RTX 3060. O código foi implementado em python, usando principalmente a

biblioteca PyTorch2.

Em nosso primeiro experimento, testamos diferentes valores para o stride S e

realizamos um segundo experimento no conjunto de dados geológicos e no conjunto de

dados stanford cars, comparando nossa abordagem com três outras famílias diferentes de

abordagens.

A.3 Resultados e Conclusão

No primeiro experimento, onde avaliamos a variação de valores do stride, ambos

datasets MGS({2}), MGS({3}), MGS({4}), e MGS({5}) tem os melhores resultados

usando 25% como valor da passada e o pior usando 10%. Essa diferença de desempenho

é notável: no conjunto de dados geológicos a diferença entre o melhor e o pior desem-

penho varia de ≈0,5% a ≈ 12% e nos stanford cars varia de ≈ 5% a ≈ 60%. MGS({4})

e MGS({5}) com valor de stride 10% não conseguiram convergir e tiveram um desem-

penho muito ruim no dataset stanford cars.

Como obtivemos o melhor desempenho geral adotando 25% de stride, com apenas

a escala N = 1 desviando desse padrão, padronizamos e adotamos 25% de stride como

padrão para os experimentos subsequentes.

No segundo experimento tivemos a nossa abordagem superando os resultados dos

métodos comparados. Com o conjunto de grafos multiescala MGS({1, 2, 3, 4, 5}) tive-

mos o melhor resultado para a maioria das métricas em todos os três modelos no conjunto

de dados geológicos. A diferença entre o desempenho alcançado por essa configuração

em relação ao desempenho obtido usando features simples é de cerca de 4, 5% de Macro

2<https://pytorch.org/>

https://pytorch.org/
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F1 no ResNeXt e cerca de 2, 5% para o DenseNet. O CLIP, tem uma diferença mais

sucinta, chegando em torno de 1% de melhoria em todas as métricas, porém, consegue a

melhor Macro F1 em relação a todos os experimentos, alcançando 85, 41%.

Os melhores resultados no conjunto de dados stanford cars de cada um dos mod-

elos são MGS({1, 2, 3, 4, 5}) para DenseNet e ResNeXt e MGS({1, 2, 3}) para CLIP,

sendo este último o melhor resultado geral neste conjunto de dados. Quando comparada

com as abordagens que usam features simples, nossa abordagem usando esses conjuntos

de grafos melhora, em todas as métricas, ≈19% em ResNeXt, ≈19% em DenseNet e

≈3% em CLIP. Seguindo o padrão do conjunto de dados anterior, MGS({1, 2, 3}) com

CLIP tem o melhor resultado, atingindo 86,79% de precisão e 86,72% Macro F1.

Nesses experimentos, houve um padrão geral de melhoria de desempenho obtido

pela adição de escalas para representar as imagens. Fugindo desse padrão temos o CLIP,

que não teve melhora de desempenho adicionando as escalas N = 4 e N = 5 no stanford

cars, diferentemente do desempenho obtido no conjunto de dados geológicos e os outros

modelos, que têm seus melhores resultados em MGS({1, 2, 3, 4, 5}).

A abordagem do grafo multiescala permite que o classificador obtenha uma perda

menor em menos épocas do que as características simples extraídas após um simples pré-

processamento das imagens. Nossa abordagem funciona melhor com menos tempo de

treinamento e o overfitting não acontece durante o processo, com a parada antecipada

definindo o melhor ponto de parada.

Esses resultados confirmam que nossa abordagem é eficaz e melhora a classifi-

cação. Em ambos os conjuntos de dados, a representação de imagens com grafos de car-

acterísticas baseados em patches de diferentes escalas resulta em uma representação mais

informativa das informações da imagem que podem ser exploradas por nossa arquitetura

de rede convolucional de grafos multiescala. É essencial notar que esses efeitos aconte-

cem com todos os modelos pré-treinados usados como extratores de características. Isso

representa que nossa abordagem é independente do modelo de extração de características.

Em trabalhos futuros, podemos investigar como e por que os resultados variam

dependendo da escala utilizada e o quanto isso está relacionado com as características

dos modelos e datasets utilizados. A busca por métodos que possam reduzir o tamanho

dos grafos e assim reduzir o custo de memória utilizada pode ser muito interessante, pois

assim será possível adicionar mais escalas ao conjunto de grafos. Uma possível solução

seria usar uma análise da importância de cada patch para eliminar os nós e melhorar

as informações representadas por cada grafo. Realizar experimentos em mais conjuntos
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de dados e usar outros modelos também pode trazer informações. Com isso, podemos

entender como podemos melhorar nossa abordagem.
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