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RESUMO

Meduloblastoma, neuroblastoma e glioma pediatricos representam aproximadamente 30%
dos casos de cancer pediatricos. Estes tumores pediatricos do sistema nervoso sdo
considerados a primeira causa de morte relacionada a doenca na populacao pediatrica. Uma
das principais caracteristicas em comum entre 0s tumores pediatricos do sistema nervoso é
a presenca de uma subpopulacdo de células altamente tumorigénica que apresenta
caracteristicas similares as células tronco, conhecida como células tronco tumorais (CTT).
Esta populacdo de células contribui para iniciacdo, progressdo tumoral e resisténcia ao
tratamento. Modificagdes em histonas, metilacdo do DNA, remodeladores da cromatina e
microRNAs séo capazes de regular o estabelecimento e a manutencao da populagdo tronco
tumoral. Moduladores epigenéticos, em énfase aqueles capazes de alterar o perfil de
acetilacdo de histonas, como Acido Valproico (VPA), sdo considerados uma potencial
estratégia contra as células tronco tumorais. Neste trabalho, foi encontrado que o VPA reduz
a viabilidade de CTT e tem efeito em vias de sinalizacdo relacionadas ao processo de
diferenciacdo neuronal e genes de stemness. Nossos resultados sugerem um relacéo entre a
capacidade de moduladores epigenéticos de reduzirem a tumorigenicidade e alterar o estado
da cromatina permitindo a regulagdo de genes importantes para manutencdo das CTT, se
tornando terapias em potencial para o tratamento de tumores pediatricos do sistema nervoso

como meduloblastoma, neuroblastoma e glioma pediatrico.

Palavras-chave: Meduloblastoma, Neuroblastoma, Glioma pediatrico, células tronco

tumorais, epigenética.



ABSTRACT

Medulloblastoma (MB), neuroblastoma (NB), and pediatric glioma (pGM) account for
almost 30% of all cases of pediatric cancers and are the leading cause of death in this
population. A common feature between these pediatric nervous system tumors is the
presence of a highly tumorigenic subpopulation of cells, which presents stem cell-like
features, known as cancer stem cells (CSC). This subpopulation of cells plays a role in
initiation, progression, and resistance to treatment of pediatric nervous system tumors.
Histone modification, DNA methylation, chromatin remodeling, and microRNA regulation
are major drivers for the establishment and maintenance of CSC, and histone deacetylase
(HDAC) inhibitors are considered a therapeutic strategy to target this cell population.
Valproic acid (VPA) is an epigenetic modulator capable of inhibiting HDAC. Here we found
that VPA decreases MB cell and CSC viability through modulation of neuronal
differentiation and stemness pathways. Our results indicate that epigenetics can reduce
tumorigenicity by altering the chromatin state and therefore are potential therapies to

pediatric nervous system tumors.

Key words: Medulloblastoma, Neuroblastoma, pediatric Glioma, Cancer stem cells,

epigenetic modulators.



INTRODUCAO

Tumores pediatricos do sistema nervoso

Tumores de sistema nervoso sdo considerados a primeira causa de morte relacionada
a cancer em criancas e adolescentes. Os tumores de sistema nervoso mais frequentes séo
Meduloblastoma (MB), Neuroblastoma (NB) e Gliomas pediatricos (pGM), representando
aproximadamente 30% dos casos de cancer pediatrico (SIEGEL et al., 2022). NB € um tumor
derivado da crista neural que atinge o sistema nervoso periférico (JOHNSEN et al., 2019).
Gliomas pediatricos sdo um grupo de tumores de sistema nervoso central composto por
gliomas de baixo grau, gliomas de alto grau e glioma pontino intrinseco difuso (DIPG). Este
grupo heterogéneo de tumores afeta multiplas regides do cérebro (FUNAKOSHI et al.,
2021). Meduloblastoma é o tumor que ocorre no cerebelo e é o tumor maligno do sistema
nervoso central mais frequente em criangas e adolescentes (NORTHCOTT et al., 2019).

Meduloblastoma

Meduloblastoma (MB) é o tumor maligno de sistema nervoso central mais frequente
em pacientes pediatricos, apresentando taxa de sobrevida global de aproximadamente 75%
(ORR, 2020). Segundo estimativas, 70% dos casos de MB ocorrem em criangas com idade
inferior a 10 anos, sendo os picos de incidéncia entre 1 a 4 anos € 5 a 9 anos de idade
(OSTROM et al., 2019). MB ¢é considerado um tumor embrionario que acomete o cerebelo
e evidéncias apontam que a origem celular desse tumor inclui precursores de neurdnios
cerebelares, células tronco neurais e progenitores neurais (GIBSON et al., 2010)
(JURASCHKA & TAYLOR, 2019).

Estudos genbmicos, epigendmicos e transcriptdmicos possibilitaram o
estabelecimento de quatro subgrupos moleculares de MB: Wingless (WNT), Sonic
Hedgehog (SHH), Grupo 3 e Grupo 4. Os subgrupos apresentam diferentes perfis
transcricionais, alteracdes genéticas e prognostico clinico (Figura 1) (TAYLOR et al., 2012).

Tumores do subgrupo WNT correspondem a cerca de 10% dos diagndésticos de MB,
apresentam o melhor prognaostico entre 0s subgrupos, com rara presenca de metastase e taxas
de sobrevivéncia em 5 anos excedendo 95% (FATTET et al., 2009) (TAYLOR et al., 2012).

12



AlteragBes associadas & via de sinalizagdo Wingless proporcionaram 0 nome para 0
subgrupo, sendo a principal delas, presente em 85-90% dos casos, a mutagdo no exon 3 do
gene CTNNBL1 (gene que codifica a proteina beta-catenina). Esta mutacdo permite a
estabilizacdo de beta-catenina resultando na expressdo constitutiva da via de sinalizacao
WNT e propiciando o crescimento tumoral (THOMPSON et al., 2006) (NORTHCOTT et
al., 2017).

O subgrupo SHH representa 30% dos casos de MB e apresenta um prognostico
intermediario que estd associado ao status de TP53. Pacientes com SHH-TP53-WT (Wild
type) possuem uma taxa de sobrevivéncia de aproximadamente 80%, enquanto aqueles com
SHH-TP53-MUT (mutada) apresentam taxas menores que 50% (RAMASWAMY et al.,
2016). SHH foi denominado desta forma devido as mutacGes frequentemente serem
encontradas em genes participantes da via de sinalizacdo Sonic Hedgehog, como por
exemplo: PTCH1, SUFU, SMO, GLI1e GLI2 (TAYLOR etal., 2012). Além disso, tumores
SHH possuem heterogeneidade quanto a biologia e progndstico clinico, e estudos do perfil
de metilacdo do DNA e expressao génica identificaram 4 subtipos de meduloblastoma SHH:
SHH o, SHH B, SHH vy, e SHH 6. Os subtipos de SHH retém valor progndstico porque
apresentam diferentes taxas metastaticas, alteracdes genéticas e idade no diagnostico
(CAVALLI etal., 2017).

Tumores do grupo 3 correspondem a 25% dos diagnésticos de MB e apresentam o
pior prognostico entre 0s subgrupos, uma vez que 40-45% dos pacientes apresentam
metastases no momento do diagndstico e as chances de sobrevivéncia ap6s 5 anos
encontram-se abaixo de 60% (TAYLOR et al., 2012). Muta¢es somaticas sdo incomuns
neste subgrupo, de forma que uma das caracteristicas marcantes do grupo 3 sao
amplificacdes do gene MYC, que é considerado um fator de risco que contribui para
progressao dessa neoplasia (NORTHCOTT et al., 2012).

O grupo 4 representa cerca de 35-40% dos casos de MB e, apesar de ser uma
porcentagem significativa dos diagnosticos, as caracteristicas bioldgicas desse subgrupo
ainda séo pouco entendidas (TAYLOR et al., 2012). Assim como ocorre no grupo 3,
tumores do grupo 4 raramente apresentam mutagdes somaticas, e uma das alteracbes mais
frequentes é a instabilidade cromossomica que ocorre no isocromossomo 17q (KOOL et al.,

2012). Esse subgrupo possui um prognostico intermediario, com taxas de metéstases em
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aproximadamente 35% dos casos e tumores que ndo apresentam altos niveis de expressao de
fatores de risco MYC e MYCN (NORTHCOTT et al., 2012) (RAMASWAMY et al., 2013).
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Figura 1: Caracterizacdo clinica e molecular dos subgrupos de meduloblastoma
(JURASCHKA & TAYLOR, 2019).

Em geral o prognostico de MB pode ser associado a fatores de risco como idade,
tamanho do tumor e presenca de metéastase, assim como o subgrupo molecular ou
histoldgico, que pode ser classico, desmoplasico ou anaplasico (JURASCHKA & TAYLOR,
2019). Os tratamentos empregados para este tumor séo: ressec¢do cirurgica, radioterapia e
quimioterapia (THOMPSON et al., 2016). Apesar dos tratamentos auxiliarem nas taxas de
sobrevida, pacientes pediatricos de MB apresentam uma baixa qualidade de vida devido ao

efeito dos tratamentos no desenvolvimento do cérebro. Aproximadamente 25% dos
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pacientes que realizaram tratamento para MB apresentam dificuldades na fala e audicéo, e
perda de capacidade neuro cognitiva (CHEVIGNARD et al., 2017). Além disso, a ocorréncia
de metéastases e casos de recorréncia tumoral, sdo considerados um dos principais desafios
no tratamento do meduloblastoma (KUMAR et al., 2017).

Células tronco tumorais

Tumores sdo formados por uma populacdo heterogénea de células que apresentam
diversidade fenotipica que incluem diferentes taxas de crescimento, expressdo de
marcadores, alteracOes genéticas e epigenéticas, e sensibilidade ao tratamento
(PRASETYANTI & MADEMA, 2017). Existem dois modelos para compreender a
heterogeneidade intratumoral. O modelo de evolucdo clonal propde que células
geneticamente instaveis acumulam alteracfes gendmicas e genéticas possibilitando a
formacdo e manutencdo de células mais resistentes e agressivas, promovendo assim a
formacdo de um tumor heterogéneo (GERDES et al., 2014). O modelo de células tronco
tumorais propGe a existéncia de uma subpopulacgéo de células que apresentam caracteristicas
similares as células troncos normais (stemness), como auto renovacdo e potencial de
diferenciacdo em células com fendtipos distintos, proporcionando a formacdo de um tumor
heterogéneo (BECK & BLANPAIN, 2013). Além disso, células tumorais apresentam
plasticidade celular, sendo capazes de alterar seu fendtipo de acordo com estimulos do
microambiente, possibilitando que uma célula transite de um estado tronco para um estado
diferenciado (CABRERA et al., 2015) (RICH, 2016) (Figura 2). Dessa forma, o modelo de

evolucdo clonal e de células tronco tumorais ndo sdo mutuamente exclusivos.
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Figura 2: Teorias de heterogeneidade tumoral. Adaptado de (CORRO & MOCH, 2018).

Apesar de ndo termos uma definicdo da origem da heterogeneidade tumoral,
evidéncias sugerem que células com caracteristica tronco podem ser encontradas em todos
0s estagios da progressdo tumoral, e que sdo estas células que apresentam resisténcia aos
tratamentos antineoplasicos, possibilitando a recidiva tumoral (AYOB & RAMASAMY,
2018). Células tronco e células tronco tumorais (CTT) compartilham similaridades, dessa
forma, é possivel caracterizar e isolar CTT com marcadores de superficie de células tronco,
como por exemplo CD133, CD44, CD90, além de ser possivel isolar uma subpopulagédo de
células que podem ser enriquecidas in vitro e in vivo (BECK & BLANPAIN, 2013).

O estudo pioneiro sobre células tronco tumorais utilizou conhecimento de células
tronco hematopoiéticas (CTH) para isolar e identificar células tronco tumorais em leucemia
mieldide aguda humana (LMA). Este estudo demonstrou que apenas uma subpopulacédo de
células, que apresentava a expressdo de marcadores de CTH (CD34+CD38-), foi capaz de
originar e propagar leucemia em camundongos NOD/SCID. Essa populacédo de células foi
nomeada células iniciadoras de leucemia ou célula tronco de leucemia (LAPIDOT et al.,
1994) (BONNET & DICK, 1997). O primeiro estudo que foi capaz de caracterizar CTT em
tumores solidos tambeém utilizou esta estratégia, demonstrando que células de cancer de
mama que expressam CD44+CD24— possuem capacidade de propagar o tumor aos serem

transplantadas em camundongos imunodeficientes (AL-HAJJ et al., 2003).
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Em tumores do sistema nervoso central (SNC), como glioblastoma e
meduloblastoma, estudos demonstraram a presenca de células com capacidade de
diferenciacdo em células neurais distintas. Além disso, foi encontrado que tumores do SNC
e neuro esferas derivadas destes tumores expressam proteinas associadas a células tronco
neurais como por exemplo: CD133, SOX2 e BMI1 (HEMMATI et al., 2013) Dessa forma,
é sugerida uma participacao significativa de células tronco tumorais no desenvolvimento de
tumores do SNC. Em MB, foi identificado que apenas uma porcao de células do tumor
apresenta expressao do marcador de células tronco CD133, refor¢ando a ideia que existe
uma populacéo de células tronco tumorais nessa neoplasia (SINGH et al., 2003). Além disso,
estudos correlacionaram que vias de sinalizacdo relevantes para manutencdo de CTT
também tem um papel crucial em MB, indicando que a heterogeneidade do MB pode ser
decorrente de uma subpopulacdo de células que apresentam fenétipo similar a células tronco
(FAN & EBERHART, 2008).

Durante a iniciacdo e progressdo tumoral, celulas tumorais mantém altas taxas de
crescimento, ativam vias que permitem o aumento de vasculariza¢do do tumor, e aumentam
taxas de migracdo (HANAHAN & WEINBERG, 2011). Estes processos celulares podem
ser associados a presenca de células tronco tumorais, visto que elas sdo capazes de modular
0 microambiente ativando a angiogénese e regulando a transicdo epitélio-mesénquima,
propiciando um aumento nas taxas de migracdo celular e de distribuigdo de nutrientes e
oxigénio para o tumor (BAO et al., 2006) (NGUYEN et al., 2012). Assim, a presenca de
células com caracteristicas tronco aumenta as chances de formacao de metastases, uma vez
que CTTs tém maiores taxas de migracdo e de invasdo e séo capazes de ativar vias de
angiogénese.

CTT também podem ser relacionadas a mecanismos de resisténcia e recorréncia
tumoral, visto que quimioterapias convencionais e radioterapias tem taxas de eficiéncia
reduzidas nesta populacdo de células. Estudos apontam que transportadores de drogas
encontram-se superexpressos em CTT, diminuindo os niveis intracelulares dos agentes
terapéuticos e, por consequéncia, reduzindo a eficiéncia do tratamento (BLEAU et al., 2009)
(RIZZO et al., 2011). Em relacdo a radioterapias, sabe-se que a eficacia de terapias radio-
ionizantes é influenciada pelo estagio do ciclo celular (PAWLIK & KEYOMARSI, 2004) e
que CTT tém baixas taxas de progresséo do ciclo celular e sdo, em sua maioria, quiescentes,

dessa forma, radioterapias possuem baixo efeito nesta populacdo de células (MOORE &
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LYLE, 2011). Assim, pode-se perceber que 0os mecanismos associados a CTT influenciam a

progresséo, resisténcia e recorréncia tumoral.

Modificacgdes epigenéticas

Modificacdes epigenéticas é o termo utilizado para se referir a mecanismos que
alteram a expressdo génica sem que haja alteracbes no DNA. Alteracdes epigenéticas sao
hereditérias e reversiveis e, em geral, sdo capazes de alterar o perfil transcricional ao
modificar o estado da cromatina (DAWSON & KOUZARIDES, 2012). A cromatina é
formada por repeticdes de octameros de histonas (H2A, H2B, H3 e H4) envolvidos por
DNA, denominados nucleossomos. As modificacbes em histonas, metilacdo do DNA e
remodeladores da cromatina sdo os principais mecanismos responsaveis pela arquitetura da
cromatina, visto que sdo capazes de alterar a cromatina de um estado mais condensado e
com atividade transcricional limitada (heterocromatina) para um estado menos condensado

com maior atividade transcricional (eucromatina) (ZHAO et al., 2021).

As histonas sdo proteinas que possuem uma estrutura globular e uma regido N-
terminal capaz de sofrer modificacbes covalentes. Modificacbes em histonas incluem
acetilacdo, metilacdo, fosforilacdo, ubiquitinacio e ADP-ribosilacio (ZHAO &
SHILATIFARD, 2019). Dentre estas modificac@es, a acetilacdo é uma das modificacdes
mais estudadas no cancer. A acetilacdo dos residuos de lisina na regido N-terminal das
histonas reduz a afinidade entre as histonas e DNA, permitindo a abertura da cromatina e
auxiliando na funcionalidade de proteinas envolvidas na transcricdo génica
(NIGHTINGALE et al., 2006). A acetilacdo de histonas é resultado de um processo
dindmico regulado por histonas acetiltransferases (HAT) e histonas desacetilases (HDAC).
A atividade de HAT ¢€ responsavel pela abertura da cromatina e as HDACSs sdo capazes de
reduzir os niveis de acetilacdo, condensando a cromatina e reduzindo a transcri¢cdo (YANG
& SETO, 2007). Existem trés principais familias de HATs: GNAT, GCN5 e p300/CBP, e
estas agem preferencialmente em histonas, mas também podem catalisar a acetilagdo direta
de proteinas supressoras tumorais ou oncogenes como por exemplo p53, RB, and MYC
(SINGH et al., 2010) (MARMORSTEIN & ZHOU, 2014). Em relagdo as HDACSs, existem
quatro principais familias: Classe | (HDACs 1, 2, 3, and 8), que sdo expressas no nucleo;
Classe 1l (HDACs 4, 5, 6, 7, 9 and 10), que possuem expressdo tecido especifica e podem

ser translocadas entre o nucleo e o citoplasma; Classe I11, também conhecidas como sirtuinas

18



(SIRT1-7), que apresentam um mecanismo dependente de NAD+; e Classe IV (HDAC 11)
que foi descoberta recentemente e possui apenas um membro em sua classificagdo (ZHAO
& SHILATIFARD, 2019). Assim como HATs, HDACs também sdo capazes de atuar em
proteinas como p53, HSP90, B-catenina (SINGH et al., 2010).

Tumores pediatricos, comparados a tumores adultos, apresentam baixa taxa de
mutacdes genéticas. Dentre as mutagcOes encontradas em tumores pediatricos, alteracdes em
genes envolvidos na maquinaria epigenética sao as mais frequentes (HUETHER et al., 2014)
(GROBNER et al., 2018). Em MB, o padrio de alteracdes em histonas demetilases, acetil
transferases e modificadores da cromatina auxiliam na estratificacdo dos subgrupos
moleculares. No subgrupo WNT, foi encontrado muta¢des em remodeladores da cromatina
responsaveis pela ativacao de genes da via WNT (ROBINSON et al., 2012). Em SHH, foi
possivel associar alteragdes somaticas e a superexpressdo de HATs (NORTHCOTT et al.,
2017). As mutacGes em membros da familia histonas lisinas demetilases s&o exclusivas dos
subgrupos 3 e 4, indicando um perfil de metilacdo alterado nestes subgrupos de MB
(NORTHCOTT et al., 2009). Além disso, o padréo de acetilacdo da lisina 27 da histona 3
(H3K27) e mono metilacdo da lisina 4 da histona 3 (H3K4) auxilia na distin¢gdo do subgrupo
3de MB (ROBINSON et al., 2012). No contexto de células tronco tumorais, estudos indicam
que a regulacdo de HAT e HDAC e, por consequéncia, o perfil de acetilacdo de histonas €
capaz de modular vias associadas a stemness (LIU et al., 2017), assim, inibidores capazes
de alterar mecanismos epigenéticos chaves para CTT de MB se tornam alvos terapéuticos

relevantes.

Acido Valproico

Acido Valproico (VPA, 4cido 2-propilpentéico) é um acido graxo utilizado como
anticonvulsivante de amplo espectro, podendo ser indicado para tratamento de epilepsia,
enxaqueca, dor neuropatica e estabilizador de humor em casos psiquiatricos
(CHATEAUVIEUX et al., 2010). O VPA ¢ capaz de atravessar a barreira hematoencefalica
e é considerado seguro para pacientes pediatricos, inclusive aqueles que apresentam
sintomas devido a presenca de tumores de sistema nervoso (VAN BREEMEN et al., 2007)

(WOLFF et al., 2008). Os primeiros mecanismos de acdo atribuidos ao VPA incluem:
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potencializar a atividade do Acido gaba-aminobutirico (GABA) (MESDJIAN et al., 1982),
atenuar a ativacéo de receptores de NMDA (GEAN et al., 1994) e de canais dependentes de
voltagem (VANDONGEN et al., 1986). Em 2001, foi descoberto que VPA tem efeito como
inibidor de histona deacetilase (HDACI) (GOTTICHER et al., 2001) (PHIEL et al., 2001).
VPA inibe as HDACs de classe | (HDAC1, 2 e 3) e Ila (HDAC4, 5 e 7). VPA néo é capaz
de modular HDACS6, 8 e 10 e ja foi visto que HDAC9 e 11 sdo ativadas por VPA
(BRADBURY et al., 2005) (CHATEAUVIEUX et al., 2010).

Em MB, VPA possui efeito antiproliferativo dose dependente e é capaz de alterar
mecanismos associados a progressao do ciclo celular, apoptose e senescéncia (LI et al.,
2005). Modelos in vivo utilizando VPA também demonstram resultados promissores em
MB. Camundongos com xenoenxerto ortotopico intracerebelar tratados com VPA tiveram
uma maior sobrevida, acompanhada de uma reduc¢do do tamanho tumoral, menores taxas de
angiogénese e um perfil de diferenciacdo aumentado (SHU et al., 2006). Existe uma
quantidade limitada de estudos que abordem o papel de VPA em CTT, entretanto, foi
encontrado que em CTT de glioblastoma, VPA € capaz de alterar a taxa de proliferacdo ao
modular a expressdo CD133, Nanog e OCT4. A reducdo de genes de stemness é
acompanhada pelo aumento da expresséo de marcadores de diferenciacdo neural, indicando
que VPA é capaz de alterar a manutencdo de CTT e induzir um perfil menos indiferenciado
nestas células (ALVAREZ et al., 2015). Até o momento, ndo existem estudos demonstrando
o efeito de VPA em CTT de MB, desta forma o presente trabalho busca elucidar o papel de
VPA em vias de stemness e de diferenciacdo neural e sua contribuicdo para manutencéo do

estado tronco em MB.
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HIPOTESE GERAL
Visto que:

- Células tronco tumorais contribuem para resisténcia e recidiva tumoral (PRASETYANTI
& MEDEMA, 2017);

- O desenvolvimento e progressdo de MB esta associado a presenca de CTT (HEMMATI et
al., 2003);

- Mecanismos epigenéticos encontram-se desregulados em MB e CTT (TOH et al., 2017)
(ROUSSEL & STRIPAY, 2018);

- Moduladores epigenéticos sdo propostos como alvos terapéuticos para CTT ao serem
capazes de induzir diferenciacdo (ABBALLE & MIELE, 2021);

A hipotese desse trabalho é que o modulador epigenético acido Valproico sera capaz
de alterar a manutencdo do estado tronco ao regular a inibicdo de vias de stemness e a

ativacdo de diferenciacdo neural em MB.
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OBJETIVOS
Avaliar o efeito da modulacdo epigenética de VPA em vias de stemness e

diferenciacdo neural de meduloblastoma humano.

Objetivos especificos:
CAPITULO |

I. Revisar os mecanismos epigenéticos envolvidos na regulacédo de células tronco

tumorais de tumores pediatricos do sistema nervoso;
CAPITULO Il

i.  Avaliar curvas dose resposta de VPA nas células de MB D283 e Daoy;
ii.  Caracterizar a expressdo de marcadores de stemness Nestina, SOX2 e NOTCH1 em
CTT de MB;
iii.  Avaliar o efeito de antiproliferativo de VPA em CTT e sua capacidade de impedir a
a inducao de CTT;
iv.  Determinar se a modulagéo de VPA reduz a atividade de HDAC e induz um aumento
no perfil de acetilacdo de histona 3 lisina 9 (H3K9) em células e CTT de MB;
v.  Analisar a modulacdo de VPA na progressdo do ciclo celular em células e CTT de
MB;
vi.  Avaliar a expresséo de genes de stemness SOX2, Nestina e NOTCH1 e marcadores
de diferenciacdo neural TUBB3, RBFOX3 e ENO2 apds a modulacdo de VPA em
células e CTT de MB;
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Abstract

Medulloblastoma, neuroblastoma, and pediatric glioma account for almost 30% of all cases of pediatric cancers. Recent
evidence indicates that pediatric nervous system tumors originate from stem or progenitor cells and present a subpopulation
of cells with highly tumorigenic and stem cell-like features. These cancer stem cells play a role in initiation, progression, and
resistance to treatment of pediatric nervous system tumors. Histone modification, DNA methylation, chromatin remodeling,
and microRNA regulation display a range of regulatory activities involved in cancer origin and progression, and cellular
identity, especially those associated with stem cell features, such as self-renewal and pluripotent differentiation potential.
Here, we review the contribution of different epigenetic mechanisms in pediatric nervous system tumor cancer stem cells.
The choice between a differentiated and undifferentiated state can be modulated by alterations in the epigenome through
the regulation of stemness genes such as CD133, SOX2, and BMI1 and the activation neuronal of differentiation markers,
RBFOX3, GFAP, and S100B. Additionally, we highlighted the stage of development of epigenetic drugs and the clinical
benefits and efficacy of epigenetic modulators in pediatric nervous system tumors.

Keywords Epigenetic - Medulloblastoma - Neuroblastoma - Pediatric glioma - Cancer stem cells
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Cancer is the leading cause of disease-related death world-
wide in children and adolescents [1]. Identification of
genomic alterations and the underlying mechanisms of
cancer progression in pediatric malignancies has revealed
new opportunities for developing treatment strategies spe-
cific for childhood cancers. While adult tumors seem to be
driven mostly by accumulating genetic alterations, recent
sequencing studies have demonstrated that pediatric tumors
have a significantly lower mutational rate [2, 3]. In addition,
mutations found in pediatric cancers are notably different
from those in adult tumors [4]. In many pediatric cancers,
the most frequent mutations are associated with genes that
encode proteins involved in epigenetic regulation [5].
Alterations in epigenetic mechanisms seem to contrib-
ute to the origin, cellular phenotype, and progression of
nervous system tumors, a group of diseases that account
for almost 30% of all cases of pediatric cancers [6, 7].
Pediatric nervous system cancer appears to originate
from stem or progenitor cells [8, 9], and some character-
istics of stem cells, such as self-renewal and pluripotent
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differentiation potential, are crucially regulated by epige-
netic mechanisms [10].

Remarkably, several studies have shown that a highly
tumorigenic subpopulation of cells, which presents stem
cell-like features, is a key component of nervous system
tumors, including medulloblastoma (MB), neuroblastoma
(NB), and pediatric glioma [11-13]. MB is the most com-
mon malignant type of brain cancer in pediatric patients.
It arises in the cerebellum and is currently classified into
four distinct molecular subgroups with twelve molecular
subtypes [14]. NB is a peripheral nervous system tumor
and the most common type of extracranial solid cancer
occurring in children [15]. Pediatric gliomas are a group
of central nervous system tumors that can be divided in
low-grade gliomas (LGG) or glioneuronal tumors classi-
fied by the World Health Organization (WHO) as grade [
or II, high-grade glioma (HGG) (WHO grade III or IV),
and diffuse intrinsic pontine glioma (DIPG). This hetero-
geneous group of tumors can affect multiple brain regions
[16]. Although there are clear pathological differences
among these cancer types, modulation of the epigenetic
machinery is a potential common therapeutic target [17].

The presence of cells that express stemness genes and
feature stem cell properties are now recognized as major
contributors for the initiation, progression, and resistance
to treatment of pediatric nervous system tumors. Studies
in MB and glioblastoma (GBM) models, including tumor-
derived spheres, show that the expression of genes such
as Prominin 1 (PROM1) (also known as CD133), SRY-
Box Transcription Factor 2 (SOX2), and Proto-Oncogene,
Polycomb Ring Finger (BMI1) contributes to the initiation
and maintenance of an undifferentiated state [11]. Sphere
forming assays have been used to study cancer stem-like
cells, and the culture conditions permit the enrichment of
cells with stem cell features such as self-renewal and dif-
ferentiation capability [18]. Supporting this view, Singh
and colleagues [19] showed that a relatively small number
of CD133 4+ cells, but not a population of CD133- cells,
is sufficient for the formation of human MB or GBM in
NOD-SCID mice, in comparison with CD133- population,
indicating that CD133 expression is a marker for brain
tumor stem cells capable of cancer initiation. Aggressive
NB tumors also show stem cell features, such as expres-
sion of stem cell markers CD133 and Notch Receptor 1
(NOTCHI1) [20]. In addition, Pandian et al. [21] dem-
onstrated, in a metastatic NB model, that the expression
of stemness genes, such as SOX2 and Nanog Homeobox
(NANOG), contributes to NB plasticity and aggressive-
ness. In this review, we highlight the role of different
epigenetic regulatory mechanisms and some of the main
effects of epigenetic-modulating agents in pediatric nerv-
ous system tumor stem cells (Fig. 1).

@ Springer

Histone acetylation

Acetylation of lysine residues at histone tails can remove
positive charges, thus reducing the affinity between his-
tones and deoxyribonucleic acid (DNA). Therefore, his-
tone acetylation facilitates chromatin accessibility, serving
as a key helper for the recruitment of proteins involved in
gene transcription [22]. Histone acetylation is the result
of a dynamic process regulated by histone acetyltrans-
ferases (HATs) and deacetylases (HDACs). HAT activ-
ity is responsible for opening the chromatin structure and
increasing gene expression, whereas HDACs decrease
acetylation levels, hence inducing a condensed chroma-
tin state and limited transcriptional activity [23]. These
mechanisms play a relevant role in cancer stem cells, so
that acetylation and deacetylation can be considered key
regulating processes influencing the expression of genes
involved in viability, proliferation, stemness, and differen-
tiation. Accordingly, treatments that enhance HAT activ-
ity or inhibits HDAC function have become a promising
strategy to target cancer stem cells [24]. Diverse HDAC
inhibitors have been successfully tested as anticancer com-
pounds in experimental brain cancers [25, 26] (Table 1).

Given that HDACs regulate stemness features, stud-
ies have investigated its role in cancer stem cells. Parthe-
nolide, a Histone Deacetylase 1 (HDACT1) inhibitor, was
able to decrease CD133 expression in MB cells. In addi-
tion, HDAC inhibitors trichostatin A (TSA) and tacedin-
aline induced significant decreases in CD133 expression
in Daoy and D283 Med MB cells, respectively. Sphere
survival assay has shown that parthenolide and vorinostat
(also known as SAHA) can decrease the viability of MB
stem cell-enriched spheres [27].

Another HDAC inhibitor, sodium butyrate (NaB), was
shown to reduce sphere formation and likely promote neu-
ronal differentiation indicated by morphological changes
and upregulation of Glutamate Ionotropic Receptor
AMPA Type Subunit 2 (GRIA2) in MB cells [25]. NaB
also reduced the expression of stemness genes BMI1 and
CD133 at both transcriptional and protein content levels,
while increasing global acetylation, in human MB cells
[26]. In NB cells, the combination of retinoic acid and
NaB was able to upregulate neuronal markers RNA Bind-
ing Fox-1 Homolog 3 (RBFOX3) (also known as NeuN)
and Tubulin Beta 3 Class III (TUBB3) and downregulate
BMI1. These results suggest that the combination of reti-
noids with epigenetic modulators might be an efficient
novel strategy to inhibit NB tumor growth [28].

Valproic acid (VPA), a well-tolerated antiepileptic, has
been identified as an HDAC inhibitor [29]. NB treatment
with VPA was shown to increase cell death and improve
phenotypic changes associated with differentiation, such
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Fig.1 Overview of main epigenetic modifications in pediatric nerv-
ous system tumors. Chromosomal DNA is packaged around histone
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state. A-B Acetylation and methylation of histone tails are mediated
by histone acetyl-transferases (HATSs), histone deacetylases (HDACs),
histone methyltransferases (HMTs), and histone demethylases
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as neurite extension and upregulation of neuronal mark-
ers Neuropeptide Y (NPY) and Growth Associated Protein
43 (GAP43) [30]. However, under certain conditions VPA
can also induce CD133 expression and decrease sensitiv-
ity to cytostatic agents in NB cells [31]. Thereby, HDAC
inhibitors may have limited efficacy as single agents. The
combination of VPA and retinoic acid was more efficient
than VPA alone in inducing differentiation indicated by
increased neurite extension and upregulation of the dif-
ferentiation marker Neurofilament Medium Chain (NEFM)
in NB [32].

In chemoresistant NB cells, HDAC inhibition by vori-
nostat restored sensitivity to chemotherapy and reduced
sphere forming ability. In addition, stemness genes, SOX2,
Insulin Like Growth Factor Binding Protein 3 (IGFBP3)
and Vimentin (VIM) were downregulated in the presence
of vorinostat [33]. MS-275, also known as Entinostat, is an
HDAC inhibitor that preferentially inhibits class I HDACs.
In NB cells, MS-275 was able to reduce growth, increase
histone H3 and H4 acetylation, as well as increase expres-
sion of neurofilament and neuronal markers S100 Calcium
Binding Protein B (S100B) and Glial Fibrillary Acidic Pro-
tein (GFAP) [34]. Moreover, the combination of MS-275

>

(DNMT). Inhibitors of main epigenetic factors can alter the epige-
netic landscape and gene expression. D Epigenetic regulation can also
occur by the action of non-coding RNAs (ncRNAs), such as microR-
NAs, that act as transcriptional regulators. All these epigenetic modi-
fications interact with each other and are responsible for regulating
the chromatin state, and consequently the expression of genes related
to stemness phenotype and neuronal differentiation of pediatric nerv-
ous system tumors

and acetazolamide, a pan carbonic anhydrase inhibitor,
was capable to reduce the NB stem cell population through
downregulating stemness genes POU Class 5 Homeobox 1
(POUS5F1) (also known as OCT4), SOX2 and NANOG [35].
Another HDAC inhibitor that seems to have a relevant effect
in NB cells is HKI 46F08. Treatment with HKI 46F08 was
able to decrease clonogenic growth, cause morphological
changes similar to neurite-like extensions and upregulate dif-
ferentiation markers such as NEFM and Microtubule Associ-
ated Protein 2 (MAP2) [36].

Another strategy to increase histone acetylation is the
inhibition of specific classes of HDACs. Oehme et al. [37]
show that Histone Deacetylase 8 (HDACS) knockdown or
selective inhibition was able to decrease proliferation and
clone formation, induce differentiation, through the upreg-
ulation of differentiation markers MAP2, NEFM, Neuro-
trophic Receptor Tyrosine Kinase 1 (NTRK1), TUBB3,
GAP43, and downregulation of stemness gene, Nestin
(NES) in NB cells. When combining HDACS inhibition with
retinoic acid agent, an increase in neurite outgrowths and
expression of NEFM and NTRK1 in NB cells was exhib-
ited. Also, in vivo results demonstrate that the combination
of both agents is more efficient than either treatment alone
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Table 1 Histone acetylation inhibitors associated with pediatric nervous system tumor stem cells

Compound Target Results Clinical trials
Parthenolide HDACI1 Downregulates CD133 in MB cells and decreases sphere
viability [27]
Trichostatin A HDAC class I/IT Downregulates CD133 expression in Daoy [27]
Tacedinaline HDAC class I Downregulates CD133 expression in D283 med [27]
Vorinostat HDAC class I/II/IV  Decreases MB spheres viability [27] Phase I [111, 112, 122—-129]

Downregulates stemness genes, reduces sphere forming
ability and sensitizes NB resistant cells to chemo-

therapy [33]

Sodium butyrate HDAC class I/Ila

Phase I/I [130-132]
Phase I [133-134]

Reduces MB spheres formation, upregulates Gria2 and

downregulates stemness genes BMI1 and CD133 [25,

26]

Combination with retinoic acid upregulates RBFOX3
and TUBB3 and downregulates BMI1 in NB cells [28]

Valproic acid HDAC class I/I1

Promotes neurite extension and upregulates NPY and
GAP43 in NB cells [30]
Combination with temozolomide downregulates stem

Phase I [107, 135-137]
Phase 11 [138, 139]
Phase III [140]

cells marker musashil in pediatric glioma [43]

Combination with acetazolamide in NB cells downregu-

Reduces NB cell growth, upregulates S100beta and

Phase 1 [141]

Phase /11 [142]

lates OCT4, SOX2 and NANOG [35]

Promotes neurite like extensions and upregulates NEFM,

SYN and MAP2 in NB cells [36]

MS-275 HDAC class I

GFAP [34]
HKI 46F08
Selective inhibitor for HDAC8  HDACS8

Decreases NB proliferation and upregulates differentia-

tion markers such as MAP2 and TUBB3 and downregu-

lates NES [37]

Combination with retinoic acid increases neurite out-
growths and upregulates NEFM and NTRK1 expres-

sion [38]

Selective inhibitor for HDAC1/2 HDACI1 and HDAC2

Decreases NB viability and induces differentiation.

Combination with retinoic acid causes greater dif-
ferentiation [39]

Corin HDACSs and LSD1

Decreases NB growth in vitro and in vivo and regulates

differentiation and stemness genes [40]

Panobinostat HDAC class I/ II/IV

Reduces DIPG tumor growth in vivo [42]

Phase I [116, 128, 143-146]

Combination with inhibitor of AXL downregulates
SOX2 and NES and prolongs survival of mice with
DIPG xenografts [41]

Depsipeptide HDAC class I

Decreases expression of PCR2 components, including

EZH2 and SUZ12, and upregulates CASZ1 in NB cells

[50]

in decreasing tumor proliferation, indicating a synergistic
effect [38]. Moreover, HDAC1 and Histone Deacetylase 2
(HDAC?2) inhibition in NB cells, through knockdown or
pharmacological inhibition, was able to decrease viability
and induce differentiation. Combination of HDAC1/2 inhibi-
tion and retinoic acid caused significantly greater differentia-
tion and had a synergistic effect on NB viability [39].
DIPGs frequently have histone 3 lysine 27 mutations
(H3K27M) resulting in epigenetic dysfunction. Thereby, epi-
genetic modifiers have shown great potential in the treatment
of DIPGs. Anastas et al. [40] demonstrated that the use of
Corin, a bifunctional inhibitor of HDACs and lysine-specific
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histone demethylase 1 (LSD1), was capable of decreasing
growth in vitro and in vivo through increasing histone acety-
lation and methylation and regulating genes associated with
neuronal differentiation and progenitor markers. Combin-
ing HDACI, panobinostat, with the inhibition of AXL, a
receptor tyrosine kinase that is enrolled as a regulator of
the mesenchymal transition, also shows meaningful results
against DIPGs. Spheres treated with panobinostat or in com-
bination with AXL inhibitor resulted in downregulation of
stemness markers SOX2 and NES, and prolonged survival
of mice with DIPG xenografts [41]. Grasso et al. [42] also
demonstrated that panobinostat reduced tumor growth
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in vivo models using DIPGs spheres. Moreover, VPA also
shown potential in the treatment of pediatric glioma. Treat-
ment with VPA alone or in combination with temozolomide
(TZM) decreased cellular viability and downregulated stem
cells marker musashil in pediatric glioma cell lines [43].

Histone methylation

Histone methylation occurs predominantly on lysine (K) and
arginine (R) residues and can happen at three different lev-
els: mono-, di-, and tri-methylation. Histone methylation can
also be associated with gene expression regulation. Recent
discoveries show that methylation on specific residues can
result in gene activation or repression. Gene activation
has been associated with histone 4 lysine 20 methylation
(H4K20me), histone 2B lysine 5 methylation (H2BK5me),
histone 3 lysine 4 trimethylation (H3K4me3), histone 3
lysine 36 trimethylation (H3K36me3) and histone 3 lysine
79 trimethylation (H3K79me3), while histone 3 lysine
9 dimethylation (H3K9me2), histone 3 lysine 9 trimeth-
ylation (H3K9me3) and histone 3 lysine 27 trimethylation
(H3K27me3) are usually related to gene repression [44]. The
balance of methylation levels is sustained by histone methyl-
transferases (HMT) and histone demethylases (HDM). It is
known that aberrant histone methylations can effect regula-
tion of gene expression, differentiation and DNA damage
repair, but recently it was established that histone methyla-
tion can also contribute to the acquisition of self-renewal
features and cancer stem cell formation [45] (Table 2).
Enhancer of zeste homologue 2 (EZH2) is an HMT that
participates on the Polycomb repressive complex 2 (PRC2),
which catalyzes the trimethylation of histone 3 lysine 27
(H3K27). Several studies have shown that EZH2 can con-
tribute to the origin of cells with cancer stem cell features

in pancreatic, breast and brain tumors [46]. Moreover, inhi-
bition of EZH2 affects cancer stem cells formation in MB
cells demonstrating the importance of this methyltransferase
on stemness of pediatric tumors [47, 48]. Furthermore,
recent discoveries demonstrated that the protein maternal
embryonic leucine-zipper kinase (MELK) collaborates with
EZH2 in MB stem cells, suggesting that the two proteins act
together to maintain cancer stem cell features [49].

In NB cells, upregulation of EZH2 was associated with
maintenance of the undifferentiated state through regulation
of tumor suppressor genes. Wang et al. [50] demonstrated
that inhibition of EZH?2 decreased cell growth, increased
cells with neurite-like features and the expression of tumor
suppressor genes such as Castor Zinc Finger 1 (CASZI),
Clusterin (CLU), Nerve Growth Factor Receptor (NGFR)
and RUNX Family Transcription Factor 3 (RUNX3). Fur-
thermore, treatment with HDAC inhibitor, depsipeptide,
was shown to decrease the expression of PRC2 components,
including EZH2, and upregulate CASZI, suggesting that
PRC2 components have a relevant role on the undifferenti-
ated state of NB tumors.

Lysine-specific demethylase 1 (LSD1) is a histone dem-
ethylase involved in the regulation of gene expression.
Schulte, J and colleagues [51] demonstrated that knockdown
or pharmacological inhibition of LSD1 decreased cellular
growth of NB cells. Besides that, differentiated NB cells
(with retinoic acid) showed lower expression of LSDI, sug-
gesting the participation of LSD1 on cellular differentiation
process. Histone methylation can also modulate MYC sign-
aling, which is an important genetic mark in NB cells. Lysine
Demethylase 4B (KDM4B) inhibition was able to regulate
NB cell proliferation and differentiation in vitro and in vivo.
Knockdown of KDM4B decreased the expression of SOX2
and increased differentiation markers [52]. Another histone
lysine demethylase relevant in NB is Lysine Demethylase

Table 2 Histone and DNA methylation inhibitors related with pediatric nervous system tumor stem cells

Compound Target Results

Clinical trials

EZH2 inhibitor EZH2

Decreases proliferation MB stem cell formation and downregu-

Phase I1 [147, 148]

lates stemness markers in vitro and in vivo [47, 48]

Decreases NB growth, improves neurite-like feature and upregu-
lates tumor suppressor genes CASZI, CLU, NGFR and RUNX3

[50]

GSK-J4 H3 methylation levels

Inhibits NB growth in vitro and in vivo, and upregulates differ-

entiation markers such as ENO2, CHD5, NGF and NRG1 [54]

In pediatric glioma GSK-J4 treatment increases K27me2 and
K27me3 in cells with and without K27M mutation [56]

Monoamine oxidase inhibitor LSD1

DNA hypomethylating agents Global DNA methylation Increases CD133 expression in NB cell lines, suggesting that
DNA methylation can be responsible for the regulation of

Decreases NB growth and is involved in the differentiation
process [51]

Phase I [149-152]
Phase I/Ib [117]

CD133 expression [64]

Nucleoside DNMT inhibitors DNMT

Induces stem cell adhesion and upregulates TUBB3 [63]
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5B (KDM5B). KDM5B expression was associated with
stem cell features in NB cells. Silencing KDM5B decreased
cell invasion capability, sphere formation and was able to
sensitize NB cells to cisplatin treatment [53]. Studies have
shown that treatment with the histone demethylase inhibitor
GSK-J4 is able to regulate H3 methylation levels, specially
H3K27. In NB tumors, GSK-J4 inhibited NB growth in vitro
and in vivo, and upregulated differentiation markers such as
Enolase 2 (ENO2), Nerve Growth Factor (NGF) and Neu-
regulin 1 (NRG1). Also, combination with retinoic acid was
able to overcome drug resistance [54].

In pediatric gliomas, mutations on the H3F3A gene,
which encodes histone 3 variant H3.3, causes a substitution
of lysine 27 for methionine (K27M) or glycine 34 to arginine
(G34R), altering important sites of regulatory methylation
[55]. Hashizume et al. [S6] demonstrated that GSK-J4 treat-
ment increased H3K27me?2 and H3K27me3 in cells with and
without K27M mutation. Despite that, GSK-J4 treatment
seems to have different in vitro effects depending on K27
mutation status. Cells harboring K27M were more sensi-
tive to GSK-J4 showing complete inhibition of clonogenic
capabilities, while GSK-J4 had no effect on wild-type cells,
suggesting that demethylation is a possible target for NB
and pediatric glioma treatment. Moreover, pediatric gliomas
with H3K27M mutation appear to affect EZH2 subunit and
consequently reduce PRC2 activity [57, 58]. Mohammad
et al. [59] showed that EZH?2 inhibitors were able to reduce
growth of H3K27M DIPG cells but had no effect on patient-
derived primary glioma neural stem cell lines. Although his-
tone methylation inhibition affects MB and NB stemness
pathway, this epigenetic mechanism is not yet elucidated in
pediatric gliomas.

DNA methylation

DNA methylation also has a significant role in cancer stem
cells. Recent discoveries show a link between the undiffer-
entiated phenotype and DNA methyltransferases [60]. DNA
methyltransferases (DNMTs) are enzymes responsible for
adding a methyl group from S-adenosyl methionine (SAM)
to cytosine bases of CpG dinucleotides at gene promoters
and regulatory regions, turning these regions less accessible
for transcription. Thus, DNA hypermethylation can contrib-
ute to reduce gene expression; hence, recent reports show
that an increase of methylation is common at promoters of
tumor suppressor and differentiation genes, suggesting that
DNA methylation is a relevant process in cancer stem cells
[61].

In the past decade, research on the effect of non-nucleo-
side DNA methyltransferases inhibitor (DNMT1) in cancer
has been increased [62]. Valente et al. [63] demonstrated
that non-nucleoside DNMTi was able to induce stem cell
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adhesion and upregulate differentiation marker, TUBB3, in a
MB stem cell model. These results suggest that this DNMTi
is a potential treatment against MB stem cells.

Cancer stem cells are significantly enriched within
CD133 + populations derived from all types of solid tumors,
and this may raise the question if methylation status can
regulate CD133 expression. Castresana and colleagues [64]
have shown that treatment with the de-methylation agent
5-Azacytidine (5-AZA) increased CD133 expression at
ribonucleic acid (RNA) and protein level in NB cell lines,
suggesting that epigenetic changes can be responsible for
the regulation of CD133 expression. Although the use of
epigenetic modifiers have great potential against cancer stem
cells, there are studies showing that short-term treatment
with DNA methylation agents and/or histone deacetylase
inhibitors can increase the expression of stemness genes in
NB cells [65].

In pediatric gliomas, there is a shortcoming of studies
exploring DNA methylation as a therapeutic target or its
involvement on the stemness pathway, even though DNA
hypomethylation has been considered a main driver for these
tumors [58]. Recent findings in the DNA methylation pro-
file indicate that pediatric HGG and DIPGs have different
molecular subgroups with distinct epigenetic contributions
[66]. The molecular signatures in pediatric gliomas brought
to light specific oncogenic drivers and methylation patterns
that impact clinical outcomes [67, 68].

Chromatin remodeling

Although histone modification and DNA methylation are
major players in the epigenetic machinery, chromatin modi-
fiers also have a relevant role in the chromatin integrity and
accessibility. Chromatin remodelers are responsible for
packaging the DNA and incorporating or releasing histones
into the nucleosomes [69].

Recent discoveries demonstrated that the chromatin
remodeler Lymphoid Specific (HELLS) has a significant
role in MB tumors. Robinson et al. [70] showed that HELLS
is especially important in the Sonic hedgehog (SHH) MB
group, and the SHH pathway is capable of modulating
HELLS expression. Also, in an embryonic stem cell model,
researchers have shown that HELLS was capable of regulat-
ing stemness, suggesting that this chromatin remodeler can
have a relevant role in cancer stem cell differentiation [71].

In NB tumors, elevated expression of the histone chaper-
one and epigenetic regulator, Chromatin Assembly Factor 1
Subunit A (CHAF1A), can be linked to an undifferentiated
state of cancer cells. Silencing of CHAF1A caused mor-
phologic changes associated with cell differentiation and
increased expression levels of the neuronal marker TUBB3.
Also, gene expression profiling revealed that CHAF1A
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silencing was correlated with the repression of oncogenic
pathways such as KRAS Proto-Oncogene, GTPase (KRAS),
ALK Receptor Tyrosine Kinase (ALK), AKT Serine/Threo-
nine Kinase 1 (AKT), and BMI1, suggesting that CHAF1A
can prevent the differentiation process in NB tumors [72].
The plant homeodomain finger-containing protein 20
(PHF20) is considered an important epigenetic regulator,
since it is a main reader of methylated states of histone H3
lysine 4 (H3K4) and participates in the lysine acetyltrans-
ferase complex MOF, that is capable of adding a acetyl
group on the histone H4 lysine 16 (H4K16) [73]. PHF20
interacts with poly (ADP-ribose) polymerase 1 (PARP1) and
directly binds to the promoter regions of stemness genes,
such as OCT4 and SOX2. Therefore, deletion of PHF20 was
able to decrease NB cell proliferation, sphere formation,
and increase differentiation features. These data suggest
that PHF20 is involved in NB aggressiveness through the
regulation of stemness genes [74].

Another chromatin remodeler associated with the main-
tenance of an undifferentiation state is the nucleosome-
remodeling factor, Bromodomain PHD Finger Transcrip-
tion Factor (BPTF). In pediatric HGG, BPTF appears to be
a key regulator of tumor growth and differentiation. Green
et al. [75] showed that silencing BPTF decreased SRY-Box
Transcription Factor 10 (SOX10) and GFAP expression, and
increased TUBB3 and Oligodendrocyte Transcription Fac-
tor 3 (OLIG3), thus promoting differentiation of HGG cells.
BPTF inhibition was able to reduce sphere growth and size,
demonstrating a relevant role of BPTF in pediatric glioma
stemness.

MicroRNAs

Recent findings suggest that microRNAs, which are a class
of small non-coding RNA, are key regulators in human
cancer. MicroRNAs commonly regulate gene expression by
interacting with the 3’-untranslated region of specific mRNA
targets leading to the degradation of RNA transcripts and
ultimately to translational repression [76]. MicroRNAs can
be down or upregulated in human tumors compared to nor-
mal tissues, but recent discoveries show that microRNA can
also contribute to the formation and maintenance of cancer
stem cells [77] (Table 3).

Venkataraman et al. [78] demonstrated that several micro-
RNAs, in specific miR-128a, involved on the normal neu-
ronal differentiation process appear to be downregulated
in MB cells. Re-expression of miR-128a impaired MB cell
growth and downregulated BMI1 expression and addition-
ally reduced colony formation and tumor sphere size [79].

Patient data set in association with survival outcome is
a practical tool to find new molecules relevant to cancer
progression. For instance, upregulation of miR-199b-5p

was associated with better prognosis in MB patients. Fur-
thermore, overexpression of miR-199b-5p decreased MB
proliferation and clonogenic capabilities, while positively
regulating the differentiation marker GFAP. In vivo data
also demonstrated that miR199b-5p expression was able to
reduce tumor growth by reducing CD133 +and CD15 + pop-
ulations. Also, de-methylation with 5-AZA was shown to
upregulate miR-199b-5p expression in three MB cell lines,
suggesting that 5-AZA may be a potential treatment for
modulation of this microRNA [80, 81]. Another miRNA
that is capable of reducing CD133 +and CD15 + population
is miR-34a. This microRNA targets Delta-like 1 (DI111) that
is considered a regulator of the Notch pathway. mir-34a was
capable to decrease DIl1 expression and affect cell prolifera-
tion and neuronal differentiation in MB cells [82].

In a MB cancer stem cell model, results indicate that miR-
135a could be a potential tumor suppressor miRNA. miR-
135a appears to be downregulated in highly tumorigenic
cancer stem cells and its re-expression was able to impair
the tumorigenesis process [83]. In addition, a model using
MB stem cells versus RA-differentiated stem cells found that
miR-135b, miR-195 and miR-145 seems to regulate prolif-
eration, stemness maintenance and tumor invasiveness [84].
So far, we reveal that miRNA could potentially contribute to
reduce tumorigenic potential. However, miRNAs might also
be involved in cancer progression. Kaid et al. [85] found that
miR-367 overexpression was able to enhance cell prolifera-
tion, invasion, and capability to form spheres, demonstrating
that miR-367 has a pro-oncogenic activity in MB cells.

NB tumors are considered phenotypically heterogene-
ous, each having distinct differentiation and tumorigenic
properties. The neuroblastic and non-neuronal phenotypes
are examples of this heterogeneity. Samaraweera et al. [§6]
has reported that specific miRNAs define each phenotype.
Upregulation of miR-21, miR-221 and miR-335 can be cor-
related with the non-neuronal phenotype, while miR-124 and
miR-375 are specific to neuroblastic cells. Decreased expres-
sion of miR-335 in non-neuronal cells was able to regulate
neuronal differentiation markers, Heart And Neural Crest
Derivatives Expressed 1 (HANDI) and Jagged Canonical
Notch Ligand 1 (JAG!). Moreover, miR-124 overexpression
is capable to induce neuronal differentiation in stem cells.

Recent discoveries have shown that microRNAs have
important roles in cellular differentiation processes and
that retinoic acid models has become an important tool
for the detection of differential expression of microR-
NAs. Foley et al. [87] demonstrated that miR-10a and
miR-10b were upregulated after retinoic acid treatment
in NB cell lines. These data suggest that overexpression
of this microRNAs can lead to a differentiated phenotype.
Beveridge et al. [88] also showed that all members of the
miR-17 cluster were downregulated after retinoic induced
differentiation in NB cells. Screening approaches can be
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Table 3 MicroRNA regulation associated with pediatric nervous system tumor stem cells

MicroRNA Expression Results

miR-128a Downregulated Re-expression decreases MB cell growth and downregulates BMI1 expression [78]

miR-218 Downregulated Re-expression reduces MB growth, colony formation and sphere size [79]

miR-199b-5p Downregulated Over-expression upregulates GFAP and reduces tumor growth through downregulation of
CD133 +and CD15 + population in vivo [80]

Treatment with 5-aza upregulates miR-199b-5p in MB cell lines, suggesting that 5-AZA

modulates this microRNA [81]

miR-34a Downregulated Targets DIl1, therefore affecting cell proliferation and neural differentiation in MB cells [82]

miR-135a Downregulated Low expression is associated with highly tumorigenic cancer stem cells features and re-
expression impairs tumorigenesis in MB [83]

miR-135b Downregulated Upregulation is associated with MB stem cells differentiation [84]

miR-195 Upregulated Downregulation is associated with MB stem cells differentiation [84]

miR-145

miR-367 Upregulated Over-expression enhances cell proliferation, invasion, and MB sphere formation [85]

miR-124 Downregulated Overexpression induces differentiation in stem cells in NB [86]

miR-10a, miR-10b Downregulated Overexpression is associated with a differentiated phenotype in NB [87]

miR-17 cluster Upregulated Treatment with retinoic acid causes downregulation of all members miR-17 cluster in NB
cells [88]

miR-124-3p, miR-135b-5p, Downregulated Re-expression increases differentiation markers GAP43, NSE and TUBB3, and reduces NB

miR-506-3p, miR-34a-5p miR- cell growth [89]
103a-3p

miR-432 Downregulated Re-expression increases CNRI, MAP2, BDNF, RARa and TH expression, and downregu-
lates NESTIN [90]

miR-449a Downregulated Overexpression decreases NB growth and upregulates TUBB3, NSE and GAP43 [91]

miR-7 Upregulated Downregulation contributes to neurite outgrowth [92]

miR-214 Downregulated Upregulation contributes to neurite outgrowth [92]

miR-340 Downregulated Associated with aggressive NB tumors

Upregulation decreases SOX2 expression in response to retinoic acid treatment [93]

miR-137 Downregulated Upregulation reduces PCR1/2 proteins such as EZH2 SUZ12, RING1B and BMI1 [94]

miR-25 Downregulated Participates in SLC34A2-miR-25-Gsk3b signaling pathway to promote NB stemness [96]

miR-487 Downregulated Overexpression reduces colony formation and downregulates CD/33 and NES in pediatric

gliomas [100]
Associated with prognosis in neuroblastoma [103]

considered a useful tool to find new targets. Zhao et al.
[89] found 14 microRNAs involved in NB differentiation,
and re-expression of miR-124-3p, miR-135b-5p, miR-
506-3p, miR-34a-5p miR-103a-3p were capable to increase
differentiation markers GAP43, ENO2 and TUBB3, and
reduce NB cell growth.

Studies have found that the overexpression of miR-432
was able to increase the expression of neuronal marker, such
as MAP2, Brain Derived Neurotrophic Factor (BDNF) and
Retinoic Acid Receptor Alpha (RARa) in NB cells. Moreo-
ver, miR-432 also downregulated the stemness gene, NES
[90]. Similarly, overexpression of miR-449a was able to
decrease cellular growth and survival in NB cells, and to
increase differentiation markers such as TUBB3, ENO2 and
GAP43 [91]. In addition, Chen et al. [92] have shown that
downregulation of miR-7 and upregulation of miR-214 can
contribute to neurite outgrowth, demonstrating that these
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microRNAs were modulated during the differentiation of
NB cells.

Epigenetic regulation by miRNAs has been associated
with patient survival in NB tumors, suggesting that micro-
RNAs could be prognostically relevant. Das et al. [93] have
reported the association between DNA methylation, miRNA
regulation and overall patient survival. miR-340 has been
identified as an epigenetically silenced miRNA in aggres-
sive NB tumors. Increased miR-340 expression has been
found following 5-AZA and retinoic acid treatment, showing
that this microRNA can be modulated by DNA methylation
and associated with differentiation. Moreover, the authors
have discovered that upregulation of miR-340 is capable
of decreasing SOX2 expression in response to retinoic acid
treatment.

As it was mentioned above, an important epigenetic
mechanism in several tumors is the activity of histone
methyltransferase EZH2. Ren et al. demonstrated that this
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enzyme can be regulated by miR-137 in NB cells. A model
using resveratrol showed that upregulation of miR-137 was
capable of reducing EZH2 level. This treatment can also
reduce other PRC2 and Polycomb repressive complex 1
(PCR1) proteins, such as Embryonic Ectoderm Develop-
ment (EED), SUZ12, and BMI1, suggesting that miR-137
was able to modulate relevant epigenetics proteins [94].
Likewise, microRNAs can be modulated by different fac-
tors, an example is the let-7 family regulation by the protein
Lin-28 Homolog B (LIN28B). LIN28B was able to repress
let-7 miRNAs and upregulate MYCN Proto-Oncogene and
BHLH Transcription Factor (MYCN) protein expression in
NB cells. These alterations result in impairment of the dif-
ferentiation process in NB cells and normal neuroblasts [95].
Chen et al. [96] have found that the regulation of stemness
genes Aldehyde Dehydrogenase 1 Family Member Al
(ALDHI1A1) and NANOG was associated with Solute Car-
rier Family 34 Member 2 (SLC34A2) expression. The tran-
scription factor SLC34 A2 directly binds to the promoter of
miR-25, enhancing its expression in NB cells and spheres.
Hence, miR-25 is capable to bind with Glycogen Synthase
Kinase 3 Beta (Gsk3b), activating the Wnt signaling path-
way. Therefore, SLC34A2 promotes NB stemness through
miR-25-Gsk3b regulation.

In cerebellar neural stem cells (NSC), the Hedgehog-Gli
pathway is essential for NANOG expression and mainte-
nance of self-renewal features. In a model using differenti-
ated NSC vs normal NSC, it has been shown that the protein
Forkhead Box M1 (Foxm1), which is regulated by GLI Fam-
ily Zinc Finger (Gli) and NANOG, was able to modulate
miR-130b, miR-301a, and members of the miR-15-16 and
miR-17-92 clusters. Moreover, inhibition of miR-130b,
miR-301a, and miR-19a was able to reduce sphere forma-
tion and upregulate differentiation markers [97]. Since the
Hedgehog pathway is a relevant pathway in certain types of
MB [98] and NB tumors [99], these findings could indicate
similar mechanisms for these two pediatric tumors.

In pediatric LGG and glioneuronal tumors, Ames et al.
[100] demonstrated that 61 microRNAs are differentially
expressed in tumors compared to brain tissue. Furthermore,
overexpression of miR-487b in a pediatric glioma cell line
was able to reduce colony formation and decrease CD133
and NES expression, suggesting that microRNA have a piv-
otal role in regulating stemness in pediatric glioma. Like-
wise, the 14q32 cluster seems to be relevant to high grade
gliomas. Jha et al. [101] have shown that several 14q32
microRNAs, including miR-431, miR-433, miR-380, miR-
323a, miR-329, miR-543, miR-1185, miR-487b, miR-539,
miR-487a, miR- 485, miR-668, miR-154 and miR-410 are
downregulated in pediatric gliomas. Also, underexpression
of 14932 miRNAs has been reported in MB [102] and some
microRNAs of the 14q32 cluster, especially miR-487b and
miR-410, have been associated with prognosis in NB [103].

Conclusions and perspectives

In this review, we have summarized and highlighted epige-
netic modulators as promising drug targets for cancer stem
cells in pediatric nervous system tumors. Despite that,
most of these epigenetic modifications are still far from
clinical trials and approved drug use. Mostly, due to dif-
ficulties in modulating these specific epigenetic regulators,
only six epigenetic drugs are approved by the Food and
Drug Administration (FDA): two DNMT inhibitors and
four HDAC inhibitors, mainly for myelodysplastic syn-
drome (MDS), cutaneous T-cell lymphoma (CTCL), and
peripheral T-cell lymphoma (PTCL) [104]. DNMT inhibi-
tors Azacitidine and Decitabine, approved for patients with
MDS, improved overall survival compared to conventional
care regimens or supportive care [152, 153]. Moreover,
HDAC inhibitors, Vorinostat, and Depsipeptide, author-
ized for the treatment of CTCL patients, showed clinical
benefits with objective or complete responses in phase II
trials [154, 155]. Belinostat, approved for PTCL patients,
showed an overall response rate in almost 30% of cases,
including complete and partial responses in phase II tri-
als [156]. Furthermore, a phase II trial showed that inclu-
sion of Panobinostat to Bortezomib regimen has clinical
activity and benefits to relapsed or/and refractory multiple
myeloma patients [157]. The main side effects associated
with these epigenetic drugs were myelosuppression and
gastrointestinal symptoms [154—156, 158-160].

Given that cancer stem cells can be associated with
tumor recurrence and metastatic potential [105, 106], trials
with relapsed or recurrent tumors using epigenetic modu-
lators can produce relevant results in the cancer stem cells
context. Clinical trials in pediatric patients with nervous
system tumors seem to focus mostly on histone deacetylase
inhibitors. Phase I trials with VPA show well tolerated
doses in children with central nervous system tumors. In
patients with HGG or DIPG, a phase II trial showed that
the addition of VPA and bevacizumab to the radiation regi-
men was well tolerated [107, 108]. A previous trial also
indicated that VPA in combination with radio and chemo-
therapy is well tolerated and have encouraging response
rates [109]. In addition, there is currently an ongoing
phase III trial with VPA plus TMZ for pediatric glioma
patients [140]. Moreover, trials with Vorinostat also show
promising responses. In a phase I and II trial five out of
fifty-two patients achieved partial responses. Among these
patients, three had HGG diagnosis, suggesting that Vori-
nostat can penetrate blood—brain barrier [110]. A phase I
trial combining Vorinostat and TMZ in relapsed brain or
spinal cord tumors had also showed promising results of
stable disease or partial response [111]. For patients with
relapsed or refractory NB, a phase I trial with vorinostat
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as a radio sensitizing agent resulted in establishment of a
tolerable dose of vorinostat with MIBG (131I-metaiodo-
benzylguanidine) [112]. Completed phase II trials with
HDAC inhibitors indicate that adverse effects described
for pediatric patients with nervous system tumors are simi-
lar to side effects of FDA-approved epigenetic drugs [108,
109].

Besides that, there are currently several trials active or
in recruitment for patients with pediatric nervous system
tumors. Phase I trial with HDACI, Entinostat, for recur-
rent solid tumors as single agent or in combination with
an immunotherapy agent against PD-1 receptor, Nivolumab
[113, 114]. For patients with HGG or DIPG there are also
trials focusing on the combination of vorinostat, TZM or
bevacizumab, and panobinostat with the proteasome inhibi-
tor Marizomib, respectively [115, 116]. DNMTi are also
being tested for patients with recurrent brain tumors using
azacitidine [117]. These open trials illustrate the potential of
epigenetic drugs for the treatment of pediatric patients and
indicate promising alternative treatments.

The first and second wave of epigenetic drugs resulted in
the development of the HDAC and DNMT inhibitors already
approved by FDA [118]. In the last decade, the discovery
of small-molecules capable of targeting specific epigenetic
components led to the development of clinically relevant
drugs that are in trials for several types of tumors. Phases
I and II trial with EZH?2 inhibitor, Tazemetostat, are active
for pediatric patients with relapsed or refractory advanced
solid tumors, and non-Hodgkin lymphomas [147, 148].
Completed phase I or II trial using Tazemetostat in refrac-
tory B-cell non-Hodgkin lymphoma indicated that inhibi-
tion of EZH2 has clinical benefits with complete and partial
responses in these oncological patients [119]. Trials with
methyltransferase inhibitors are also open for cancer patients
[120]. Also, evaluation of microRNA-10b expression level
is in trial for adult patients with glioma [121]. Depending on
results, this and other epigenetic modulators will potentially
have a role in the improvement of survival rates of patients
with medulloblastoma, neuroblastoma and pediatric glioma
in the future.
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Abstract

Medulloblastoma (MB) is the most common malignant childhood brain tumor. Recurrent
and metastatic disease, which occurs in approximately 30% of patients, is the main cause of
death and may be related to the presence of cancer stem cells (CSCs). Epigenetic
mechanisms are major drivers for the establishment and maintenance of CSC, and inhibition
of histone deacetylase enzymes (HDAC) has shown potential as a therapeutic strategy to
target this cell population. Here, we found that HDAC inhibitor Valproic acid (VPA)
enhances histone acetylation and decreases cell and CSC viability. VPA main effects are
related to the increase in neuronal differentiation and decrease in stemness pathways.
Specific molecular mechanisms of VPA seem to be dependent on MB molecular subgroups.
In Sonic Hedgehog (SHH) MB, VPA modulates the cell cycle through the MYC-P21-SOX2
axis, whereas in Group 3 VPA regulates the Notchl pathway. These findings suggest that
HDAC inhibiting by VPA could be a novel effective approach against cell with stemness

features and high malignant traits.

Key words: Medulloblastoma, Cancer stem cells, Valproic acid, Stemness
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Introduction

Medulloblastoma (MB) is the most common malignant childhood brain tumor [1].
MB arises from neural stem cells (NSCs) or cerebellar granule neuron precursors (GNPs)
that undergo genetic and epigenetic alterations [2-3]. Genomic, epigenomic, and
transcriptional analyses have shown that MB is a heterogeneous tumor that differs in
molecular, clinical, and prognosis features [4]. The World Health Organization (WHQO) 2016
classification established that MB is comprised of distinct molecular subgroups: Wingless
(WNT) MB, Sonic Hedgehog (SHH) MB/TP53 wild type, SHH MB/ TP53 mutated, group
3, and group 4 [5].

Even though there were advancements in MB therapies in the last decades, metastatic
and recurrent tumors are still a challenge. Relapse MB tumors occur in approximately 30%
of patients and have high mortality rates [6]. According to the cancer stem cell (CSC) theory,
tumor heterogeneity can be explained by the presence of a specific subpopulation of cells,
known as cancer stem cells [7]. CSC have stem cell features such as self-renewal and
differentiation potential. Studies show that CSCs are more resistant to treatment and have
higher metastatic capabilities [8-10]. MB tumor-derived cells and neurospheres express
CD133, SOX2, and BMI1, markers related to neural progenitors and stem cell features [11].
Moreover, CD133 positive (CD133+) MB cells were able to initiate tumors that present the
same characteristic that the patient's original tumors when implanted in NOD-SCID mice
[12], supporting the premise that CSC contributes to MB initiation and recurrence.

Epigenetic mechanisms are major drivers for the establishment and maintenance of
CSC. Most common mutations found in cancer can be related to epigenetic regulators [13].
Thus, an altered epigenetic profile enables cellular reprogramming that contributes to an
aberrant activating of stem cell pathways promoting the acquisition of uncontrolled self-
renewal [14-15]. Moreover, the choice between an undifferentiated and differentiated state
can be controlled by alterations in the epigenome [16]. Valproic acid (VPA) is an
anticonvulsant drug that also has an effect as an epigenetic modulator capable of inhibiting
histone deacetylases (HDAC). VPA inhibits specifically HDAC class | and Ila (HDAC 1-5,
7) and consequently enhances the histone acetylation landscape [17]. In MB, VPA was
associated with changes in cell cycle progression, senescence, and apoptosis [18]. In
Glioblastoma stem cells, VPA downregulates the expression of stemness genes CD133,

Nanog, OCT4, and enhances differentiation markers [19]. Hence, suggesting that VPA
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modulates the epigenome and contributes to CSC fate. Here, we elucidate the role of VPA

in the stemness maintenance of MB cancer stem cells.

Materials and Methods
Cell lines and cell culture conditions

MB cell lines D283 (ATCC® HTB-185™) and Daoy (ATCC® HTB-186™) were
originally obtained from the American Type Culture Collection (ATCC, Rockville,
USA). Cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM low
glucose, Gibco®) containing 10% (v/v) fetal bovine serum (FBS, Gibco®), 1% (v/v)
penicillin-streptomycin solution (10,000U/mL, Gibco®) and 0.1% (v/v) amphotericin B
(250 pg/mL; Gibco®). Cells were cultured at 37°C in a humidified incubator under 5% CO..

Experiments were conducted in exponentially growing cell cultures.
Drug Treatment

Histone deacetylase inhibitor Valproic acid (VPA; Santa Cruz Biotechnology - CAS

1069-66-5) was dissolved in sterile water to a stock concentration of 0.3 M.

Cell viability

Cells were treated with VPA (0.5, 1.0, 2.5, 5.0, 10.0 or 20.0 mM) for 48 and 72 hours.
MB cells were seeded at 3000 cells/well in 96 wells plates and, after VPA exposure, cells
were detached with trypsin-EDTA (Gibco®) and counted in a Neubauer chamber with
trypan for viability measurement. The doses of VPA were chosen based on previous in vitro
studies using cultured medulloblastoma and glioblastoma cell lines [18, 20]. Experiments
were conducted in three biological replicates. For ICsdetermination, cell viability data were

fitted in a dose-response curve (Graphpad Prism v. 6.0).

Sphere Formation Assay

Sphere formation assay was used as a model to study cancer stem cells and
experiment parameters were on the bases of previous in vitro studies [21-22]. To analyze the
effects of VPA during sphere formation, MB cells were dissociated with trypsin-EDTA into

cell suspension and seeded at 500 cells/well in 24-well plates. Agarose solution (1%) was
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used to overcome cell adherence. Cells were cultured in serum-free sphere-induction
medium, containing DMEM/F12 supplemented with 20 ng/mL epidermal growth factor
(Sigma-Aldrich), 20 ng/mL basic fibroblast growth factor (Sigma-Aldrich), B-27
supplement 1X (Gibco, Life Technologies), N-2 supplement 0.5X (Gibco, Life
Technologies), 50 pg/mL bovine serum albumin (Sigma Aldrich), and antibiotics during 5
days as described [22]. Cells were monitored daily until sphere formation. To analyze effects
during sphere formation, VPA (1.0, 2.5, 5.0, 10.0 or 20.0 mM) was added at the first day of
sphere induction and sphere size was measured after a period of 5 days. To verify VPA
modulation after sphere formation, MB cells were dissociated with trypsin-EDTA into cell
suspension and seeded at 500 or 1000 cells/well in 24-well ultra-low attachment plates
(Corning®) in serum-free sphere-induction medium. After 5 days, VPA was added at a final
concentration equal to 1C,, dose (D283, 2.3 mM; Daoy, 2.2 mM). Spheres size and number
were analyzed after period of 48 hours of VPA exposure. Images were taken an inverted
microscope at x5 magnification. Sphere size was measured using ImageJ (National Institutes
of Health, Bethesda, USA). A sphere was considered if it had at least 15 cells. Experiments

were conducted in three biological replicates.

Reverse Transcriptase Polymerase Chain Reaction (RT-gPCR)

The mRNA expression of target genes was analyzed by RT-gPCR. RNA was
extracted from MB spheres and monolayer cells using ReliaPrep™ RNA Miniprep System
(Promega), in accordance with the manufacturer’s instructions and quantified in NanoDrop
(Thermo Fisher Scientific). The cDNA was obtained using the GoScript Reverse System
(Promega) also according to the manufacturer's instructions. The mRNA expression levels
of CDKN1A, ENO2, HES1, Nestin, NOTCH1, RBFOX3, SOX2 and TUBB3 were quantified
using PowerUp SYBR Green Master Mix (Applied Biosystems, Thermo Fisher Scientific).
The primers used for RT-gPCR amplification were designed according to literature and are

shown in Table 1. The expression of ACTB was measured as control.

Table 1. Forward and reverse primers used for RT-qPCR amplification

Gene Primer Forward (5°-37) Primer Reverse (57-3”)
ACTB AAACTGGAACGGTGAAGGTG AGAGAAGTGGGGTGGCTTTT
CDKN1A [ ACTCTCAGGGTCGAAAACGG CTTCCTGTGGGCGGATTAGG
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ENO2 AGCCTCTACGGGCATCTATGA TTCTCAGTCCCATCCAACTCC
HES1 AGTGAAGCACCTCCGGAAC TCACCTCGTTCATGCACTC
Nestin GATCGCTCAGGTCCTGGAAG GGGGTCCTAGGGAATTGCAG
NOTCH1 | AAGCTGCATCCAGAGGCAAAC | TGGCATACACACTCCGAGAACAC
RBFOX3 | CCAGGCTCCGAGGCCAGCACAC | TGTAGGGTCGGAGGGGTGGAG
SOX2 CAGCTCGCAGACCTACATGA GGGAGGAAGAGGTAACCACAG
TUBB3 CTCAGGGGCCTTTGGACATC CAGGCAGTCGCAGTTTTCAC

Cell Cycle

To assess cell cycle, MB treated with IC50 doses of VPA. After 48 hours of exposure cells
were detached, centrifuged and washed with PBS twice. The cells were then resuspended in
50 pg/ml propidium iodide (Sigma-Aldrich, St. Louis, Mo., USA) in 0.1% Triton X-100 in
0.1% sodium citrate solution and incubated on ice for 15 min. The cells were analyzed by

flow cytometry (Attune® Applied Biosystems) and 20,000 events were collected per sample.

Western Blot

Monolayer MB cells VPA-treated, and control were lysed with 1X Lysis Buffer (Cell
Lysis Buffer, Cell Signaling Technology), and protein was quantified using the Bradford
protein assay (Pierce, Thermo Scientific, Waltham, USA). For blotting, 40 pg of protein
were separated by SDS-PAGE and transferred to a PVDF membrane. After 1 h with blocking
solution (5% milk in TTBS), the membrane was incubated overnight at 4 °C with primary
antibodies against p21 (1:200; Santa Cruz Biotechnology) and p-actin (1:2000; Santa Cruz
Biotechnology) as loading control. Incubation of primary antibodies was followed by
incubation with the secondary antibody adequate to each primary antibody for 1 h.
Chemiluminescence was detected using ECL Western Blotting substrate (Pierce, Thermo
Scientific) and analyzed using iBright (Thermo Fisher Scientific). Immunodetection signals

were analyzed using ImageJ (National Institutes of Health, Bethesda, USA).
Immunofluorescence

The immunofluorescence assays were performed on control and VPA-treated MB

monolayer and spheres using primary antibody against histone H3K9ac (1:3000; Abcam)

45



histone H3 (1:250; Thermo Fischer Scientific), SOX2 (1:1000; Abcam). Alexa Fluor 488-
conjugated goat anti-rabbit (1:1000; Abcam) and Alexa Fluor 594-conjugated anti-mouse
(1:1000; Abcam) was used as the secondary antibody. Flourished with DAPI (Sigma
Aldrich) was used to counterstain the nuclei.

Briefly, cells were seeded into coverslips treated with Poli-L-Lysine solution 0.01%
(Sigma Aldrich) and treated with VVPA for 48 hours, while spheres were moved to coverslips
treated with Poli-L-Lysine solution 0.01% after treatment. Monolayer cells and spheres were
washed with Phosphate-Buffered Saline (PBS), fixed with methanol for 5 min at room
temperature (RT) and washed 2x with ice cold PBS. Coverslips were incubated for 30 min
at RT in blocking solution (1% of Bovine Serum Albumin (BSA), 0.1% Tween 20 in PBS)
and with the primary antibodies at 4°C overnight. Then, the coverslips were rinsed three
times with PBS and incubated with secondary fluorescent antibodies for 1 h at RT. Cells and
spheres were then washed with PBS and coverslips were mounted. Fluorescent spheres were
examined using Leica microscope 5 or 10 x amplification.

Statistics

Data are shown as mean * standard error of mean (SEM). Statistical analyses were
performed by either Student's T-test, when comparing two groups, or one-way analysis of
variance (ANOVA) followed by Bonferroni post-hoc tests for multiple comparisons.
Experiments were replicated at least three times; P values under 0.05 were considered
significant. The GraphPad Prism 6 software (GraphPad Software, San Diego, USA) was

used for analyses.

Results

VPA decreases MB cell and neurospheres viability

To evaluate the effects of VPA inhibition on MB cell viability, we exposed the cells
to different concentrations of VPA (0.5; 1.0; 2.5; 5.0; 10.0; 20.0 mM) for 48 or 72
hours. VPA was able to reduce MB cells viability in a dose-dependent manner (Fig. 1A).
Fifty percent inhibition of growth (ICs) was determined and both MB cell lines presented
similar responses to VPA inhibition (2.3 mM for D283 and 2.2 mM for Daoy cells) (Fig.
1B). Since exposure to VPA had only a slight increase in VPA inhibition capability,

following experiments were conducted using 48 hours of exposure time.
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Neurosphere assays are widely used to investigate the proliferation of MB cancer
stem cells [21, 23]. First, we verified the expression of stemness genes Nestin, SOX2, and
NOTCHL1 in D283 and Daoy neurospheres compared to monolayer cells. After 7 days of
culturing cells in appropriated medium for expansion of tumor stem cells, D283 and Daoy
neurospheres had an increase of transcriptional levels of all evaluated stemness genes (2.2-
fold, p < 0.01 in Nestin; 0.9-fold, p < 0.01 in SOX2; 1.2-fold, p < 0.01 in NOTCH1) (63.4-
fold, p < 0.0001 in Nestin; 26-fold, p < 0.01 in SOX2; 8.5-fold, p < 0.001 in NOTCH1),
respectively (Fig. 1C-D). These data suggest that the neurosphere assay is able to enrich the
CSC population in MB cells.

To elucidate whether VPA could impair MB neurosphere formation, we measured
neurosphere size after growth in the presence of VPA (1.0; 2.5; 5.0 mM). VPA was able to
impair neurosphere formation in both MB cell lines. VPA at all concentrations tested
significantly reduced the sphere size after 5 days of VPA exposure compared to controls
(Fig. 1E-F). We also examined if VPA could be capable of reducing sphere size and the
number of MB neurospheres. After 5 days of CSC induction, MB neurospheres were treated
with VPA at the estimated 1Csos (2.3 mM for D283 and 2.2 mM for Daoy) for 48 hours.
VPA was able to reduce D283 neurosphere number and size (33%, P < 0.05; 27%, P <
0.0001; respectively). In Daoy neurospheres, we found that VPA was able to reduce
neurosphere size (25.5%, P < 0.01) (Fig 1G-H).
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Figure 1: VPA decreases MB cell and neurospheres viability. A. MB cells were treated
with a range of VPA concentrations (0.5; 1.0; 2.5; 5.0; 10.0; 20.0 mM) for 48 and 72 hours
and cell viability was measured by trypan exclusion assay. B. 1Cso concentrations of VPA
for MB cells with 95% confidence interval (Cl). C-D. Relative mMRNA levels of Nestin,
SOX2 and NOTCH1 in MB monolayer cells and neurospheres were verified using RT-
gPCR. E. VPA effect on MB neurospheres formation after 5 days of VPA exposure. F. MB
neurospheres size relative to control neurospheres. G. After 5 days of neurospheres
formation VPA was added and evaluated after 48 hours. MB neurospheres number and size
relative to control neurospheres. All images were taken in an inverted microscope with 5X
amplification. Scale bar 500 um. Results represent the mean + SD of three independent
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experiments; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 compared to controls or
monolayer cells.

To confirm that VPA effects were due to an increase in histone acetylation, we
verified acetylation on histone 3 lysine 9 residue (H3K9ac) by immunofluorescence assay.

We found that VPA enhances the histone acetylation profile in MB cells and neurospheres
(Fig. 2).

A
H3 total

Daoy
Control

VPA

D283
VPA Control

H3K9ac

) -

0

N

(a]
g
>
©
S
s
c
o
o

Control

Daoy

VPA

49



Figure 2: VPA enhances histone acetylation. Immunofluorescence assay using histone H3
lysine 9 acetylated residue (H3K9ac), total histone H3 total. MB cells and neurospheres were
treated with VPA (D283 2.3mM; Daoy 2.2mM) for 48 hours. A. MB cells. B. MB
neurospheres. Images were taken in an inverted microscope with 10X amplification. Scale
bar 200 pum.

VPA increases p21 levels in SHH MB cells and neurospheres

To evaluate the effect of VPA on the arrest of the cell cycle, we first measured the
expression of Cyclin-dependent kinase inhibitor 1 (CDKNZ1A), gene that encodes p21. VPA
was able to increase the transcriptional levels of CDKN1A only in Daoy cells (3.2-fold, P
<0.05 in Daoy cells). In addition, VPA exposure also caused an increase in p21 protein levels
in Daoy cells (97 %, P <0.05) and a slight decrease in D283 cells (22%, P <0.05) (Fig 3B).
VPA effects in p21 levels were accompanied by changes in cell cycle progression. Cell cycle
analysis showed that VPA causes G1 arrest only in Daoy cells (P <0.05) (Fig. 3C). These
results indicate that VPA modulation on the cell cycle pathway could be different depending
on the MB molecular subgroup.

Next, we measured MYC transcriptional levels in D283 and Daoy cells and found
that D283 has higher levels of MYC in comparison to Daoy (3.5-fold, p< 0.001) (Fig. 3D).
VPA was able to decrease MYC levels only in Daoy cells (0.4-fold, p<0.05) (Fig. 3E).
Studies indicate that MYC acts as a negative regulator of p21 [24-25]. Therefore, it is
possible that VPA was not able to increase p21 levels in D283 cells due to high levels of
MYC. Inthe MB CSC context, VPA reduced MY C in D283 neurospheres (0.3-fold, p<0.05)
and Daoy neurospheres (0.8-fold, p<0.01) (Fig. 3F). Furthermore, VPA increases CDKN1A
levels in both MB neurospheres (0.9-fold, P <0.05 in D283; 6-fold, P < 0.0001 in Daoy
spheres) (Fig. 3F).
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Figure 3: VPA increases p21 levels in SHH MB cells and neurospheres. A. Relative
MRNA levels of CDKN1A in MB cells after VPA exposure was verified using RT-gPCR.
B Western blot analysis of p21 in MB cells after VPA exposure. Relative Densitometric Unit
(RDU) analysis normalized by ACTB and corrected by control. C. Cell cycle distribution of
MB cells after VPA exposure. D. Relative mRNA levels of MYC between D283 and Daoy
cells was verified using RT-gPCR. E. Relative mRNA levels of MYC and CDKN1A in MB
cells and neurospheres after VPA exposure was verified using RT-qgPCR. All experiments
with D283 cells and neurospheres used 2,3 mM and Daoy cells and neurospheres used 2,2
mM of VPA, and a exposure time of 48 hour. Results represent the mean + SD of three
independent experiments; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 compared
to controls.

VPA enhances neuronal differentiation markers in MB

To elucidate whether VPA could promote neuronal differentiation in MB cells and

neurospheres, we measured the transcriptional levels of Tubulin Beta 3 Class 111 (TUBB3),
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Enolase 2 (ENO2), and RNA Binding Fox-1 Homolog 3 (RBFOX3; the gene that encodes
NeuN). RT-qPCR results indicated that VPA upregulates all three differentiation markers in
D283 (4.6-fold, P < 0.01 in TUBB3; 1.5-fold, P < 0.01 in ENOZ2; 4.2-fold, P < 0.0001 in
RBFOX3) and Daoy cells (0.4-fold, P <0.01 in TUBBS3; 1-fold, P < 0.01 in ENOZ2; 3.4-fold,
P < 0.0001 in RBFOX3) (Fig. 4A-B). Moreover, VPA exposure promoted morphological
changes similar to neuronal prolongation (Fig. 4C). In MB CSC, VPA increased all neuronal
differentiation markers in D283 (1.9-fold, P <0.0001 in TUBB3; 2-fold, P <0.001 in ENO2;
14-fold, P < 0.0001 in RBFOXS3 for D283 neurospheres) (Fig. 4D). In Daoy neurospheres,
VPA upregulated TUBB3 (6.1-fold, P < 0.01) (Fig. 4E).
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Figure 4: VPA enhances neuronal differentiation in MB. A-B and D-E. Relative mMRNA
levels of TUBB3, ENO2 and RBFOX3 in MB cells and neurospheres after VPA exposure
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were verified using RT-qPCR. C. Representative images of MB cells exposed to VPA for
48 hours. Images were taken in an inverted microscope with 10X amplification. Scale bar
200 um. Results represent the mean + SD of three independent experiments; *p < 0.05; **p
<0.01; ***p < 0.001; ****p < 0.0001 compared to controls.

VPA modulation of SOX2 is specific to SHH MB

Since VPA modulation can be correlated to a more differentiated state, we aimed to
investigate whether VPA could cause changes in SOX2 levels. VPA exposure was able to
reduce SOX2 transcriptional levels specifically in SHH MB cells, Daoy (0.4-fold, p < 0.05)
(Fig. 5A). Daoy neurospheres also had a significant reduction of SOX2 levels (0.82-fold, P
< 0.001) after VPA exposure (Fig. 5B). Moreover, protein levels of SOX2 were diminished
in Daoy neurospheres (Fig. 5C). Neuronal progenitor marker, Nestin, is a target gene of
SOX2. Hence, we sought to investigate if VPA exposure also resulted in Nestin modulation.
VPA was capable of reducing Nestin transcriptional levels in Daoy cells (0.4-fold, P < 0.05)
and neurospheres (0.87-fold, P < 0.001).
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Figure 5: VPA modulation of SOX2 is specific to SHH MB. Relative mRNA levels of
SOX2 after VPA exposure was verified using RT-qPCR. A. MB cells. B. Daoy
neurospheres. C. Immunofluorescence assay using SOX2. Daoy neurospheres were treated
with VPA (2.2mM) for 48 hours. Images were taken in an inverted microscope with 10X
amplification. Scale bar 200 um.D. Relative mRNA levels of Nestin in MB cells and
neurospheres after VPA exposure was verified using RT-qPCR. Results represent the mean
+ SD of three independent experiments; *p < 0.05; **p < 0.01; ***p <0.001; ****p < 0.0001
compared to controls.

VPA downregulates Notchl in Group 3 MB cells and neurospheres

In Group 3 MB, Notch1 signaling pathway can be associated with self-renewal [26].
We sought to elucidate the VPA effect on Notchl signaling pathway. RT-qPCR results
indicated that VPA downregulates Notchl levels only in D283 cells (0.18-fold, p < 0.01)
(Fig. 6A). Notchl downregulation was accompanied by modulation of Notchl target gene,
HES1. VPA exposure decreases HES1 transcriptional levels in D283 cells (0.26-fold, p <
0.05). In D283 neurospheres, VPA was able to reduce Notchl (0.63-fold, p < 0.01) and HES1
(0.21-fold, p < 0.05) (Fig. 6B).
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Figure 6: VPA downregulates Notchl in Group 3 MB cells and neurospheres. Relative
MRNA levels of Notchl and Heslafter VPA exposure was verified using RT-gPCR. A.
Notchl levels in MB cells. B. HES1 levels in MB cells. C. Notchl1 and HESL1 levels in D283
neurospheres. Results represent the mean + SD of three independent experiments; *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001 compared to controls.

Discussion

MB is a pediatric tumor that presents high frequencies of mutation in epigenetic
factors [13]. Dysregulation of the epigenome is also associated with MB cancer stem cells.
Modulation of the histone acetylation landscape is considered a therapeutic alternative to
alter stemness pathways responsible for the maintenance of CSC [27]. VPA is a well-known
anti-convulsant drug that has an effect as an HDAC inhibitor [17]. Previous in vitro and in
vivo studies indicate that \VPA alters pathways related to cell cycle progression, senescence,
apoptosis, and prolongs survival rates [18, 28]. Here, we found that VPA has an

antiproliferative effect not only in MB cells but also in MB CSC (Fig. 1).

Reduction of MB cell and CSC viability can be associated with the increase of
histone acetylation (Fig. 2). Hyperacetylation is related to the opening of the chromatin
structure. VPA downregulates proteins essential to the chromatin state, such as SMCs
(Structural Maintenance of chromatin), HP1 (Heterochromatin Protein-1), and DNMT1
(DNA methyl transferase-1) [29]. Therefore, VPA increase in histone acetylation contributes
to an open chromatin state that enables several alterations in the epigenetic landscape. Here,
we found that VPA changes the expression of genes that regulates cell cycle progression,

differentiation, and stemness maintenance.

Cell cycle progression is an essential step to maintain cell viability and growth. The
cyclin-dependent kinase inhibitor p21 (also known as p21WAF1/Cipl) acts as a repressor
and contributes to cell cycle arrest [30]. VPA was capable of increasing CDKNZ1A (gene that
encodes p21) levels in Daoy cells and neurospheres. In Daoy cells, the upregulation of
CDKN1A was accompanied by an increase in p21 protein levels. p21 is the target of several
epigenetic regulations [31]. HDAC inhibition by SAHA demonstrated accumulation of
acetylated H3 and H4 on the promoter region of p21 [32]. In addition, HDAC1 directly binds
to the Sp1 site at the CDKN1A promoter region, preventing transcription [33]. VPA targets
HDACL activity thereby it is likely that VPA disrupts HDACL1 repression of CDKN1A and
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enables the increase of p21 levels. Hence, upregulation of p21 was followed by an increase
in G1 arrest in Daoy cells, indicating that VPA arrests the cell cycle progression by
modulation of cell cycle regulators. Even though our data is limited to CDKNZ1A levels in

Daoy CSC, it is probable that VPA also promotes cell cycle arrest in this cellular context.

VPA modulation of p21 and cell cycle progression seems to be dependent on MB
molecular subgroups. Daoy represents MB SHH whereas D283 is a group 3/group 4 cell
line. Group 3 tumors frequently present amplification on the MYC gene. Although D283
does not have MYC amplification, D283 presents high levels of MYC similar to MYC
amplificated MB cell lines [34-35]. MYC binds to the promoter region of CDKN1A and
represses transcription [24-25]. Li and colleagues show that a long time of VPA exposure is
necessary to reduce MYC expression in D283 in comparison to Daoy cells [18]. Here, we
confirm that D283 cells have higher levels of MYC in comparison to Daoy cells and VPA
was only able to reduce MYC levels in Daoy cells. Therefore, it is possible that 48 hours of
exposure time was not sufficient to reduce MYC levels and thereby increase p21 levels in
D283 cells. However, in the CSC context, VPA was capable of decreasing MYC in D283
and Daoy neurospheres, suggesting that CDKNZ1A increase in MB CSC can be associated
with downregulation of MYC. Recent studies indicate that MYC activity can alter the
epigenetic landscape, promoting a cellular reprogramming that favors a stem cell-like state
[36-37]. Hence, our results indicate that VPA’s ability to alter MYC signaling not only

changes cycle progression but also contributes to a more differentiated state in MB CSC.

Induction of differentiation is an important strategy to reduce tumorigenicity,
especially in the CSC context. Therapies that promote differentiation enable cancer cells
with high malignancy to differentiate to a state of low tumorigenicity, increasing survival
rates [38]. Cheng and colleagues demonstrated that induction of a neuronal differentiation
process in glioma stem cells causes cell cycle arrest and inhibits proliferation [39]. Recent
studies indicate that epigenetic modulators are essential to maintain the balance between
differentiated and undifferentiated states [40]. HDAC inhibitors VPA, TSA, and NaB
induces neuronal differentiation in progenitor cells [41]. In MB, previous studies indicate
that NaB promotes differentiation and reduces stemness genes [22, 42]. Here, we found that
the VPA antiproliferative effect on MB cells and CSC was followed by an increase in
differentiation markers (Fig. 4). Upregulation of TUBB3, ENO2, and RBFOX3 was
accompanied by morphologic changes similar to neuron-like in MB cells, indicating that
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VPA promotes neuronal differentiation. Cheng and colleagues demonstrate that once MB
cells differentiate, the cells lose their proliferative capacity and tumorigenic potential, and
this process is crucially related to epigenetic modulation [43]. Hence, the neuronal
differentiation induced by VPA in MB cells and CSC could indicate that it decreases MB

malignancy.

VPA modulation seems to have an important role in defining the state of
differentiation on MB, so we explore the SOX2 role in MB stemness. SOX2 is associated
with self-renewal, pluripotency, and neuronal differentiation in embryonic stem cells [44-
45]. In MB, recent studies indicate that SOX2 expression is crucial to MB development,
especially in SHH molecular subgroup [46]. SHH MB tumors frequently harbor mutations
that activate SHH signaling pathway. GL11/2 are downstream factors of SHH and positively
regulate SOX2 by binding to its promoter, promoting self-renewal and tumorigenesis [47].
In addition, SOX2-positive cells show lower sensitivity to chemotherapy agents, thereby
contributing to tumor resistance and relapse [48]. Therefore, it was not surprising that SOX2
was upregulated in MB CSC in comparison to MB cells (Fig 1). VPA was able to reduce
SOX2 transcriptional levels only in Daoy cells, indicating that the stemness pathways that
maintain CSC differ according to MB molecular subgroup. In Daoy neurospheres, SOX2
levels were reduced by VPA, suggesting that VPA impairs CSC in SHH tumors through
SOX2 expression. Moreover, VPA decreases Nestin transcriptional levels, which is a
progenitor marker regulated by SOX2 [49], suggesting that VPA not only reduces SOX2
expression but also disrupts signaling pathways downstream of SOX2. VPA modulation of
SOX2 could be related to p21 expression. Marqués-Torrejon and colleagues show that in
neural stem cells p21 binds to SOX2 enhancer region, suppressing its transcription [50]. We
found that VPA enhances CDKNZ1A expression in Daoy cells and neurospheres, reinforcing
the idea of p21-SOX2 regulation in SHH MB. SOX2 is also susceptible to epigenetic
regulation. Kidder and colleagues show that HDACL is a positive regulator of SOX2 in
embryonic stem cells [51]. HDACL1 is a target of VPA modulation, thereby it is possible that
VPA could influence HDACL1 regulation of SOX2.

So far, our results indicate that VPA has different mechanisms depending on the MB
molecular subgroup. To further explore that idea, we choose to better understand the
contribution of Notch signaling pathway. Notch signaling is known to promote proliferation

by inhibiting neuronal differentiation and maintaining cells in a neural stem cell state [52].
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In MB, Notch inhibition resulted in reduced CD133+ subpopulation and an increase in
differentiation [53]. Here, we found the MB enriched CSC population has higher levels of
Notchl in comparison to MB cells (Fig. 1). VPA was able to reduce transcriptional levels of
Notchl and Hes1 only in D283 cells, suggesting that VPA modulates Notch1 specifically in
the group 3/4 context. In D283 neurospheres, VPA was also capable of downregulating
Notchl and Hesl. Recent studies indicate that Notchl signaling regulates self-renewal and
metastasis in Group 3 MB [26]. Hence, VPA’s abilities to reduce Notchl levels or Notchl
+ subpopulation, and the increase in differentiation suggest that VPA has therapeutic
potential against Group 3 MB CSC. It’s not yet clear how HDAC inhibitors regulate Notchl
expression but is believed to be related to modulation of the chromatin state [54].

In conclusion, our results indicate that VPA can induce MB to a state of low
tumorigenicity by reducing MB viability, increasing differentiation, and downregulating
stemness pathways. VPA effect seems to depend on the MB molecular subgroup. In SHH
MB, VPA modulates the MYC-P21-SOX2 axis, whereas in Group 3 VPA regulates the
Notchl pathway. Therefore, our results provide evidence indicating that VPA inhibits cells
with high malignant traits and should be further investigated with different cellular models

such as chemo resistant cells and metastatic animal models.
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DISCUSSAO

As neoplasias pediatricas de sistema nervoso apresentam um dos principais desafios
para o tratamento oncolégico. Isto porque, tumores como MB, NB e pGM possuem elevadas
taxas de resisténcia a tratamentos, formacao de metéstase e recidiva tumoral (JOHNSEN et
al., 2019) (NORTHCOTT et al., 2019) (FUNAKOSHI et al., 2021). A alta capacidade
tumorigénica e baixa sensibilidade aos tratamentos pode ser explicada pela presenca de uma
subpopulacdo de células, as células tronco tumorais (CTT) (ARAVINDAN et al., 2019).
Um dos principais mecanismos envolvidos no estabelecimento e manutencao de um estado
tronco tumoral sdo as modificacGes epigenéticas. Estudos sugerem que alteracbes no perfil
epigenético permitem a reprogramacdo celular que contribuem para a ativagdo de vias de
stemness (JAGANI et al., 2010) (OLEKSIEWICZ et al., 2017). Além disso, a escolha entre
um estado diferenciado ou indiferenciado pode ser controlada por alteracdes no epigenoma
(WAINWRIGHT & SCAFFIDI, 2017).

No capitulo | demonstramos que mecanismos epigenéticos como modificacfes em
histonas, metilacdo do DNA, remodeladores da cromatina e regulacdo por microRNAS estdo
envolvidos na formacédo e manutencéo de células tronco tumorais de tumores pediatricos do
sistema nervoso. Além disso, foi possivel perceber que existe uma dificuldade de transpor a
modulacdo de mecanismos epigenéticos realizados em estudos de pesquisa béasica para
estudos clinicos. Neste sentido, o0 VPA, um modulador epigenético, apresenta vantagem por
ser um farmaco considerado seguro para pacientes pediatricos, facilitando seu
reposicionamento. Estudos clinicos com pacientes pediatricos utilizando VPA indicam que
doses de VPA séo bem toleradas e apresentam respostas clinicas promissoras no tratamento
de tumores pediatricos de sistema nervoso (MASOUDI et al., 2008) (SU et al., 2011) (SU
et al., 2020). E importante ressaltar que estudos clinicos em pacientes pediétricos abrangem
tumores recorrentes e recidivos, assim, seus resultados s&o relevantes no contexto de células
tronco tumorais.

VPA atua inibindo a acdo de histonas deacetilases (HDAC) e, consequentemente,
alterando a regulacédo da transcricdo génica. Um dos mecanismos regulados por HDAC ¢ a
progressdo do ciclo celular, considerado um passo indispensavel para proliferacdo e
crescimento tumoral. HDAC sé@o capazes de controlar a progressédo do ciclo celular ao
modular reguladores desse processo, como por exemplo: p53 (proteina de tumor p53), pRB

(proteina retinoblastoma), p21 (inibidor de quinase dependente de ciclina 1) e p27 (inibidor
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de quinase dependente de ciclina 1B) (TELES & SETO, 2011). Além disso, um dos
principais mecanismos em comum entre inibidores de HDAC (HDACI) é a capacidade de
alterar a progresséo do ciclo celular (BOLDEN et al., 2006). Em NB, HDACi como Butirato
de sodio (NaB), Tricostatina A (TSA) e VPA causam acimulo de células em GO/G1 ou
G2/M promovendo parada na progresso do ciclo celular (MUHLETHALER-MOTTET et
al., 2008) (GU et al., 2012). Estudos em MB utilizando Dacinostat e Quisinostat sugerem
que inibir HDACs reduz a proliferacdo por meio da parada de ciclo celular (ZHANG et al.,
2019).

Nosso estudo, apresentado no capitulo I, também demonstrou que o VPA foi capaz
de causar parada na progressao do ciclo além de modular a expressao de p21 em MB. HDACI
sdo capazes de regular p21 por causarem aumento de H3 e H4 acetiladas em regibes
préximas ao promotor de p21, permitindo um aumento na transcricdo deste gene que, por
sua vez, regula a progresséo do ciclo celular (RICHON et al., 2000). Sabe-se que a regulagéo
das fases do ciclo tem suma importancia na proliferacdo das células de cancer, mas a
progressdo do ciclo também esta relacionada ao processo de diferenciacao celular. Estudos
indicam que a inducdo da diferenciacdo é dependente das fases do ciclo (PAUKLIN &
VALLIER, 2014) (HARDWICK et al., 2015) e, dessa forma, a capacidade de HDACI de
regular a progresséo do ciclo também implica que estes inibidores sdo capazes de controlar
0 processo de diferenciacédo celular.

A diferenciacdo celular é um processo que permite que células tumorais adquiram
um estado de menor tumorigenicidade, visto que células diferenciadas perdem a capacidade
proliferativa e apresentam diminuicdo de tracos de malignidade (CHENG et al., 2020).
Estudos recentes indicam que a maquinaria epigenética € um fator chave para decisdo entre
um estado indiferenciado e diferenciado de uma célula (ZHANG et al., 2017). No capitulo
I, foram elencados diferentes inibidores de HDAC capazes de causar aumento em
marcadores de diferenciacdo neural e alteracbes morfoldgicas relacionadas a aquisicdo de
um estado mais diferenciado em células de MB, NB e pGM. Assim, é sugerido que em
tumores pediatricos de sistema nervoso, a reducao da tumorigenicidade causada por HDACi
estd extremamente relacionada a indugdo de diferenciacdo. Nossos resultados em MB
utilizando VPA reforgam esta premissa, visto que VPA foi capaz de aumentar marcadores
de diferenciacéo neural, além de reduzir a viabilidade de células e CTT de MB.
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Moduladores epigenéticos também sdo capazes de causar uma reprogramacéo celular
que limita a sinalizacdo de vias de stemness, diminuindo os tracos caracteristicos de células
tronco tumorais. De acordo com o capitulo I, os genes de stemness CD133, SOX2, BMI1,
NANOG e Nestin sdo os principais alvos de inibidores de HDAC em tumores pediatricos de
sistema nervoso. Apesar da modulacdo de vias de stemness ser altamente dependente do
contexto celular ou tumoral, é possivel notarmos que um denominador em comum €é que a
modulacdo de genes de stemness estd associada a reducdo na viabilidade e proliferacéo
celular, declinio nas taxas de formacdo de CTT, e diminuicdo do crescimento in vivo
(STOCKHAUSEN et al., 2005) (ZHENG et al., 2013) (ANASTAS et al., 2019) (DA
CUNHA JAEGER et al., 2020). Os resultados experimentais do capitulo 11, demonstram
que, em MB, a reducao na viabilidade e inducdo de diferenciacdo neural causadas por VPA
podem ser também relacionadas a regulacéo dos genes de stemness SOX2, Nestina e Notchl
em células e CTT de MB. Ainda ndo foi possivel definir se moduladores epigenéticos
induzem diferenciacdo e este processo controla a expressao de genes de stemness ou se a
modulacdo epigenética tem como alvo principal a regulacdo de genes de stemness e, por
consequéncia, ocorre a inducdo de um estado mais diferenciado das células. Apesar do
mecanismo especifico de atuacdo de moduladores epigenéticos ndo estar claro, os resultados
obtidos no capitulo I e Il sugerem que inibidores epigenéticos, em especial aqueles que
alteraram a acetilacdo de histonas, sdo potenciais terapias para tumores pediatricos de
sistema nervoso Vvisto que sdo capazes de reduzir a tumorigenicidade por alterar o estado da

cromatina e permitir o estabelecimento de um perfil mais diferenciado nas células.

CONCLUSAO

Nas ultimas décadas os casos de neuroblastoma, meduloblastoma e glioma
pediatricos tém aumentado e a principal caracteristica comum entre estes tumores pediatricos
do sistema nervoso sdo alteracdes epigenéticas, além das altas taxas de mortalidade e
morbilidade. Logo, o uso de inibidores de HDAC como VPA tem se mostrado uma potencial
estratégia terapéutica, principalmente por atingir células tronco tumorais, as quais Sao
identificadas como responsaveis pelo aparecimento de metéstases e recidiva tumoral. Dessa

forma, concluimos os resultados in vitro sugerem que estudos que melhor caracterizem o
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efeito de VPA, especialmente em tumores pediétricos do sistema nervoso com alta

malignidade, devem ser continuados.
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