
 
 

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 

CENTRO DE BIOTECNOLOGIA 

PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA CELULAR E 

MOLECULAR 

 

 

 

 

 

 

 

 

Epigenética em tumores pediátricos do sistema nervoso: efeito do 

ácido valpróico em células tronco de meduloblastoma 

 

 

 

 

 

 

 

Natália Hogetop Freire 

 

 

 

 

 

 

 

 

Porto Alegre, novembro de 2022 



 
 

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 

CENTRO DE BIOTECNOLOGIA 

PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA CELULAR E 

MOLECULAR 

 

 

 

 

 

 

 

 

Epigenética em tumores pediátricos do sistema nervoso: efeito do 

ácido valpróico em células tronco de meduloblastoma 

 

 

Natália Hogetop Freire 

 

Dissertação submetida ao Programa de 

Pós-Graduação em Biologia Celular e 

Molecular do Centro de Biotecnologia da 

Universidade Federal do Rio Grande do 

Sul como requisito parcial para obtenção 

do título do grau de Mestre. 

 

 

 

Orientador: Prof. Dr. Rafael Roesler 

Coorientadora: Dr. Mariane da Cunha Jaeger 

 

 

Porto Alegre, novembro de 2022 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIP - Catalogação na Publicação 

 

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os 
dados fornecidos pelo(a) autor(a). 

 

 
Hogetop Freire , Natália 

Epigenética em tumores pediátricos do sistema 
nervoso: efeito do ácido valpróico em células tronco 
de meduloblastoma / Natália Hogetop Freire . -- 2022. 

91 f. 
Orientador: Rafael Roesler. 

Coorientador: Mariane da Cunha Jaeger. 

Dissertação (Mestrado) -- Universidade Federal do 
Rio Grande do Sul, Centro de Biotecnologia do Estado 
do Rio Grande do Sul, Programa de Pós-Graduação em 
Biologia Celular e Molecular, Porto Alegre, BR-RS, 
2022. 

1. Moduladores epigenéticos . 2. Meduloblastoma. 3. 
Células tronco tumorais . 4. Ácido Valpróico. I. 
Roesler, Rafael, orient. II. da Cunha Jaeger, 
Mariane, coorient. III. Título. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Este trabalho foi desenvolvido no 

Laboratório de Câncer e 

Neurobiologia, do Centro de Pesquisa 

Experimental do Hospital de Clínicas 

de Porto Alegre (HCPA) e no 

Laboratório do Instituto de Câncer 

Infantil com apoio financeiro do 

Conselho Nacional de 

Desenvolvimento Científico e 

Tecnológico (CNPq), do Programa 

Pesquisa para o SUS: gestão 

compartilhada em saúde (PPSUS), do 

Fundo de Incentivo à Pesquisa Eventos 

(FIPE) do HCPA e do Instituto de 

Câncer Infantil.    

  



 
 

Sumário 

 

INTRODUÇÃO ............................................................................................................................... 12 

Tumores pediátricos do sistema nervoso ..................................................................................... 12 

Meduloblastoma ........................................................................................................................... 12 

Células tronco tumorais ................................................................................................................ 15 

Modificações epigenéticas ........................................................................................................... 18 

Ácido Valpróico ....................................................................................................................... 19 

HIPÓTESE GERAL ......................................................................................................................... 21 

OBJETIVOS .................................................................................................................................... 22 

Objetivos específicos: .................................................................................................................. 22 

CAPÍTULO I .................................................................................................................................... 23 

CAPÍTULO II .................................................................................................................................. 39 

DISCUSSÃO .................................................................................................................................... 63 

CONCLUSÃO ................................................................................................................................. 65 

REFERÊNCIAS ............................................................................................................................... 66 

APÊNDICE 1: CURRICULUM VITAE RESUMIDO .................................................................... 73 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Lista de abreviaturas e siglas 

 

BMI1: BMI1 proto-oncogene, polycomb ring finger 

CD133: Prominin 1 

CD90: Thy-1 cell surface antigen 

CSC: Cancer stem cells  

CTH: Células tronco hematopoiéticas 

CTNNB1: Catenin Beta 1 

CTT: Células tronco tumorais 

DIPG: Glioma pontino intrínseco difuso 

DNA: Ácido desoxirribonucleico 

ENO2: Enolase 2 

GABA: Ácido gaba-aminobutírico 

GCN5: Lysine acetyltransferase 2A 

GLI: GLI family zinc finger 

GNAT: Glycine-N-acyltransferase like 1 

H3K27: Histona 3 lisina 27 

H3K4: Histona 3 lisina 4 

H3K9: Histona 3 lisina 9 

HAT: Histona acetiltransferase 

HDAC: Histona deacetilase 



 
 

HDACi: Inibidor de histona deacetilases 

HES1: Hes family BHLH transcription factor 1 

HSP90: Heat shock protein 90 alpha family class A member 1 

LMA: Leucemia mielóide aguda 

MB: Meduloblastoma 

MYC: MYC proto-oncogene, BHLH transcription factor 

NaB: Butirato de sódio 

NAD: Nicotinamida adenina dinucleotídeo 

NANOG: Nanog homeobox 

NB: Neuroblastoma 

NMDA: N-metil D-aspartato 

NMYC: MYCN proto-oncogene, BHLH transcription factor 

NOD/SCID: Nonobese diabetic/severe combined immunodeficiency 

NOTCH1: Notch receptor 1 

OCT4: POU class 5 homeobox 1 

p21: Inibidor de quinase dependente de ciclina 1 

p27: Inibidor de quinase dependente de ciclina 1B 

p300/CBP: E1A binding protein P300 

p53: Proteína de tumor p53 

pGM: Gliomas pediátricos 

pRB: Proteína retinoblastoma 



 
 

RBFOX3: RNA binding fox-1 homolog 3 

RNA: Ácido ribonucleico 

SHH: Sonic hedgehog 

SIRT: Sirtuinas 

SMO: Smoothened, frizzled class receptor 

SNC: Sistema nervoso central 

SOX2: SRY-Box transcription factor 2 

SUFU: SUFU negative regulator of hedgehog signaling 

TSA: Tricostatina A 

TUBB3: Tubulin Beta 3 class III 

VPA: Ácido valpróico 

WNT: Wingless 

 

 

 

 

 

 

 

 

 

 



 
 

Lista de figuras  

 

Figura 1 - Caracterização clínica e molecular dos subgrupos de meduloblastoma.........14 

Figura 2 - Teorias de heterogeneidade tumoral...............................................................16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

RESUMO  

Meduloblastoma, neuroblastoma e glioma pediátricos representam aproximadamente 30% 

dos casos de câncer pediátricos. Estes tumores pediátricos do sistema nervoso são 

considerados a primeira causa de morte relacionada à doença na população pediátrica. Uma 

das principais características em comum entre os tumores pediátricos do sistema nervoso é 

a presença de uma subpopulação de células altamente tumorigênica que apresenta 

características similares às células tronco, conhecida como células tronco tumorais (CTT). 

Esta população de células contribui para iniciação, progressão tumoral e resistência ao 

tratamento. Modificações em histonas, metilação do DNA, remodeladores da cromatina e 

microRNAs são capazes de regular o estabelecimento e a manutenção da população tronco 

tumoral. Moduladores epigenéticos, em ênfase aqueles capazes de alterar o perfil de 

acetilação de histonas, como Ácido Valpróico (VPA), são considerados uma potencial 

estratégia contra as células tronco tumorais. Neste trabalho, foi encontrado que o VPA reduz 

a viabilidade de CTT e tem efeito em vias de sinalização relacionadas ao processo de 

diferenciação neuronal e genes de stemness. Nossos resultados sugerem um relação entre a 

capacidade de moduladores epigenéticos de reduzirem a tumorigenicidade e alterar o estado 

da cromatina permitindo a regulação de genes importantes para manutenção das CTT, se 

tornando terapias em potencial para o tratamento de tumores pediátricos do sistema nervoso 

como meduloblastoma, neuroblastoma e glioma pediátrico.  

Palavras-chave: Meduloblastoma, Neuroblastoma, Glioma pediátrico, células tronco 

tumorais, epigenética. 

 

 

 

 

 



 
 

ABSTRACT  

Medulloblastoma (MB), neuroblastoma (NB), and pediatric glioma (pGM) account for 

almost 30% of all cases of pediatric cancers and are the leading cause of death in this 

population. A common feature between these pediatric nervous system tumors is the 

presence of a highly tumorigenic subpopulation of cells, which presents stem cell-like 

features, known as cancer stem cells (CSC). This subpopulation of cells plays a role in 

initiation, progression, and resistance to treatment of pediatric nervous system tumors. 

Histone modification, DNA methylation, chromatin remodeling, and microRNA regulation 

are major drivers for the establishment and maintenance of CSC, and histone deacetylase 

(HDAC) inhibitors are considered a therapeutic strategy to target this cell population. 

Valproic acid (VPA) is an epigenetic modulator capable of inhibiting HDAC. Here we found 

that VPA decreases MB cell and CSC viability through modulation of neuronal 

differentiation and stemness pathways. Our results indicate that epigenetics can reduce 

tumorigenicity by altering the chromatin state and therefore are potential therapies to 

pediatric nervous system tumors.  

Key words: Medulloblastoma, Neuroblastoma, pediatric Glioma, Cancer stem cells, 

epigenetic modulators.  
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INTRODUÇÃO 

Tumores pediátricos do sistema nervoso  

Tumores de sistema nervoso são considerados a primeira causa de morte relacionada 

a câncer em crianças e adolescentes. Os tumores de sistema nervoso mais frequentes são 

Meduloblastoma (MB), Neuroblastoma (NB) e Gliomas pediátricos (pGM), representando 

aproximadamente 30% dos casos de câncer pediátrico (SIEGEL et al., 2022). NB é um tumor 

derivado da crista neural que atinge o sistema nervoso periférico (JOHNSEN et al., 2019). 

Gliomas pediátricos são um grupo de tumores de sistema nervoso central composto por 

gliomas de baixo grau, gliomas de alto grau e glioma pontino intrínseco difuso (DIPG). Este 

grupo heterogêneo de tumores afeta múltiplas regiões do cérebro (FUNAKOSHI et al., 

2021). Meduloblastoma é o tumor que ocorre no cerebelo e é o tumor maligno do sistema 

nervoso central mais frequente em crianças e adolescentes (NORTHCOTT et al., 2019). 

 

Meduloblastoma 

Meduloblastoma (MB) é o tumor maligno de sistema nervoso central mais frequente 

em pacientes pediátricos, apresentando taxa de sobrevida global de aproximadamente 75% 

(ORR, 2020). Segundo estimativas, 70% dos casos de MB ocorrem em crianças com idade 

inferior a 10 anos, sendo os picos de incidência entre 1 a 4 anos e 5 a 9 anos de idade 

(OSTROM et al., 2019). MB é considerado um tumor embrionário que acomete o cerebelo 

e evidências apontam que a origem celular desse tumor inclui precursores de neurônios 

cerebelares, células tronco neurais e progenitores neurais (GIBSON et al., 2010) 

(JURASCHKA & TAYLOR, 2019).  

Estudos genômicos, epigenômicos e transcriptômicos possibilitaram o 

estabelecimento de quatro subgrupos moleculares de MB: Wingless (WNT), Sonic 

Hedgehog (SHH), Grupo 3 e Grupo 4. Os subgrupos apresentam diferentes perfis 

transcricionais, alterações genéticas e prognóstico clínico (Figura 1) (TAYLOR et al., 2012).   

Tumores do subgrupo WNT correspondem a cerca de 10% dos diagnósticos de MB, 

apresentam o melhor prognóstico entre os subgrupos, com rara presença de metástase e taxas 

de sobrevivência em 5 anos excedendo 95% (FATTET et al., 2009) (TAYLOR et al., 2012). 
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Alterações associadas à via de sinalização Wingless proporcionaram o nome para o 

subgrupo, sendo a principal delas, presente em 85-90% dos casos, a mutação no exon 3 do 

gene CTNNB1 (gene que codifica a proteína beta-catenina). Esta mutação permite a 

estabilização de beta-catenina resultando na expressão constitutiva da via de sinalização 

WNT e propiciando o crescimento tumoral (THOMPSON et al., 2006) (NORTHCOTT et 

al., 2017).  

O subgrupo SHH representa 30% dos casos de MB e apresenta um prognóstico 

intermediário que está associado ao status de TP53. Pacientes com SHH-TP53-WT (Wild 

type) possuem uma taxa de sobrevivência de aproximadamente 80%, enquanto aqueles com 

SHH-TP53-MUT (mutada) apresentam taxas menores que 50% (RAMASWAMY et al., 

2016). SHH foi denominado desta forma devido às mutações frequentemente serem 

encontradas em genes participantes da via de sinalização Sonic Hedgehog, como por 

exemplo: PTCH1, SUFU, SMO, GLI1 e GLI2 (TAYLOR et al., 2012).  Além disso, tumores 

SHH possuem heterogeneidade quanto a biologia e prognóstico clínico, e estudos do perfil 

de metilação do DNA e expressão gênica identificaram 4 subtipos de meduloblastoma SHH: 

SHH α, SHH β, SHH γ, e SHH δ. Os subtipos de SHH retêm valor prognóstico porque 

apresentam diferentes taxas metastáticas, alterações genéticas e idade no diagnóstico 

(CAVALLI et al., 2017).  

Tumores do grupo 3 correspondem a 25% dos diagnósticos de MB e apresentam o 

pior prognóstico entre os subgrupos, uma vez que 40-45% dos pacientes apresentam 

metástases no momento do diagnóstico e as chances de sobrevivência após 5 anos 

encontram-se abaixo de 60% (TAYLOR et al., 2012). Mutações somáticas são incomuns 

neste subgrupo, de forma que uma das características marcantes do grupo 3 são 

amplificações do gene MYC, que é considerado um fator de risco que contribui para 

progressão dessa neoplasia (NORTHCOTT et al., 2012).  

O grupo 4 representa cerca de 35-40% dos casos de MB e, apesar de ser uma 

porcentagem significativa dos diagnósticos, as características biológicas desse subgrupo 

ainda são pouco entendidas (TAYLOR et al., 2012).  Assim como ocorre no grupo 3, 

tumores do grupo 4 raramente apresentam mutações somáticas, e uma das alterações mais 

frequentes é a instabilidade cromossômica que ocorre no isocromossomo 17q (KOOL et al., 

2012). Esse subgrupo possui um prognóstico intermediário, com taxas de metástases em 
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aproximadamente 35% dos casos e tumores que não apresentam altos níveis de expressão de 

fatores de risco MYC e MYCN (NORTHCOTT et al., 2012) (RAMASWAMY et al., 2013). 

 

 

 

Figura 1: Caracterização clínica e molecular dos subgrupos de meduloblastoma 

(JURASCHKA & TAYLOR, 2019).   

 

 Em geral o prognóstico de MB pode ser associado a fatores de risco como idade, 

tamanho do tumor e presença de metástase, assim como o subgrupo molecular ou 

histológico, que pode ser clássico, desmoplásico ou anaplásico (JURASCHKA & TAYLOR, 

2019). Os tratamentos empregados para este tumor são: ressecção cirúrgica, radioterapia e 

quimioterapia (THOMPSON et al., 2016). Apesar dos tratamentos auxiliarem nas taxas de 

sobrevida, pacientes pediátricos de MB apresentam uma baixa qualidade de vida devido ao 

efeito dos tratamentos no desenvolvimento do cérebro. Aproximadamente 25% dos 
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pacientes que realizaram tratamento para MB apresentam dificuldades na fala e audição, e 

perda de capacidade neuro cognitiva (CHEVIGNARD et al., 2017). Além disso, a ocorrência 

de metástases e casos de recorrência tumoral, são considerados um dos principais desafios 

no tratamento do meduloblastoma (KUMAR et al., 2017).   

 

Células tronco tumorais 

Tumores são formados por uma população heterogênea de células que apresentam 

diversidade fenotípica que incluem diferentes taxas de crescimento, expressão de 

marcadores, alterações genéticas e epigenéticas, e sensibilidade ao tratamento 

(PRASETYANTI & MADEMA, 2017). Existem dois modelos para compreender a 

heterogeneidade intratumoral. O modelo de evolução clonal propõe que células 

geneticamente instáveis acumulam alterações genômicas e genéticas possibilitando a 

formação e manutenção de células mais resistentes e agressivas, promovendo assim a 

formação de um tumor heterogêneo (GERDES et al., 2014). O modelo de células tronco 

tumorais propõe a existência de uma subpopulação de células que apresentam características 

similares às células troncos normais (stemness), como auto renovação e potencial de 

diferenciação em células com fenótipos distintos, proporcionando a formação de um tumor 

heterogêneo (BECK & BLANPAIN, 2013). Além disso, células tumorais apresentam 

plasticidade celular, sendo capazes de alterar seu fenótipo de acordo com estímulos do 

microambiente, possibilitando que uma célula transite de um estado tronco para um estado 

diferenciado (CABRERA et al., 2015) (RICH, 2016) (Figura 2). Dessa forma, o modelo de 

evolução clonal e de células tronco tumorais não são mutuamente exclusivos.  
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Figura 2: Teorias de heterogeneidade tumoral. Adaptado de (CORRÒ & MOCH, 2018).   

Apesar de não termos uma definição da origem da heterogeneidade tumoral, 

evidências sugerem que células com característica tronco podem ser encontradas em todos 

os estágios da progressão tumoral, e que são estas células que apresentam resistência aos 

tratamentos antineoplásicos, possibilitando a recidiva tumoral (AYOB & RAMASAMY, 

2018). Células tronco e células tronco tumorais (CTT) compartilham similaridades, dessa 

forma, é possível caracterizar e isolar CTT com marcadores de superfície de células tronco, 

como por exemplo CD133, CD44, CD90, além de ser possível isolar uma subpopulação de 

células que podem ser enriquecidas in vitro e in vivo (BECK & BLANPAIN, 2013). 

O estudo pioneiro sobre células tronco tumorais utilizou conhecimento de células 

tronco hematopoiéticas (CTH) para isolar e identificar células tronco tumorais em leucemia 

mielóide aguda humana (LMA). Este estudo demonstrou que apenas uma subpopulação de 

células, que apresentava a expressão de marcadores de CTH (CD34+CD38−), foi capaz de 

originar e propagar leucemia em camundongos NOD/SCID.  Essa população de células foi 

nomeada células iniciadoras de leucemia ou célula tronco de leucemia (LAPIDOT et al., 

1994) (BONNET & DICK, 1997). O primeiro estudo que foi capaz de caracterizar CTT em 

tumores sólidos também utilizou esta estratégia, demonstrando que células de câncer de 

mama que expressam CD44+CD24− possuem capacidade de propagar o tumor aos serem 

transplantadas em camundongos imunodeficientes (AL-HAJJ et al., 2003). 
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Em tumores do sistema nervoso central (SNC), como glioblastoma e 

meduloblastoma, estudos demonstraram a presença de células com capacidade de 

diferenciação em células neurais distintas. Além disso, foi encontrado que tumores do SNC 

e neuro esferas derivadas destes tumores expressam proteínas associadas a células tronco 

neurais como por exemplo: CD133, SOX2 e BMI1 (HEMMATI et al., 2013) Dessa forma, 

é sugerida uma participação significativa de células tronco tumorais no desenvolvimento de 

tumores do SNC. Em MB, foi identificado que apenas uma porção de células do tumor 

apresenta expressão do marcador de células tronco CD133, reforçando a ideia que existe 

uma população de células tronco tumorais nessa neoplasia (SINGH et al., 2003). Além disso, 

estudos correlacionaram que vias de sinalização relevantes para manutenção de CTT 

também tem um papel crucial em MB, indicando que a heterogeneidade do MB pode ser 

decorrente de uma subpopulação de células que apresentam fenótipo similar a células tronco 

(FAN & EBERHART, 2008). 

Durante a iniciação e progressão tumoral, células tumorais mantêm altas taxas de 

crescimento, ativam vias que permitem o aumento de vascularização do tumor, e aumentam 

taxas de migração (HANAHAN & WEINBERG, 2011). Estes processos celulares podem 

ser associados a presença de células tronco tumorais, visto que elas são capazes de modular 

o microambiente ativando a angiogênese e regulando a transição epitélio-mesênquima, 

propiciando um aumento nas taxas de migração celular e de distribuição de nutrientes e 

oxigênio para o tumor (BAO et al., 2006) (NGUYEN et al., 2012). Assim, a presença de 

células com características tronco aumenta as chances de formação de metástases, uma vez 

que CTTs têm maiores taxas de migração e de invasão e são capazes de ativar vias de 

angiogênese.   

CTT também podem ser relacionadas a mecanismos de resistência e recorrência 

tumoral, visto que quimioterapias convencionais e radioterapias tem taxas de eficiência 

reduzidas nesta população de células. Estudos apontam que transportadores de drogas 

encontram-se superexpressos em CTT, diminuindo os níveis intracelulares dos agentes 

terapêuticos e, por consequência, reduzindo a eficiência do tratamento (BLEAU et al., 2009) 

(RIZZO et al., 2011). Em relação a radioterapias, sabe-se que a eficácia de terapias radio-

ionizantes é influenciada pelo estágio do ciclo celular (PAWLIK & KEYOMARSI, 2004) e 

que CTT têm baixas taxas de progressão do ciclo celular e são, em sua maioria, quiescentes, 

dessa forma, radioterapias possuem baixo efeito nesta população de células (MOORE & 
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LYLE, 2011). Assim, pode-se perceber que os mecanismos associados à CTT influenciam a 

progressão, resistência e recorrência tumoral.  

Modificações epigenéticas  

Modificações epigenéticas é o termo utilizado para se referir a mecanismos que 

alteram a expressão gênica sem que haja alterações no DNA. Alterações epigenéticas são 

hereditárias e reversíveis e, em geral, são capazes de alterar o perfil transcricional ao 

modificar o estado da cromatina (DAWSON & KOUZARIDES, 2012). A cromatina é 

formada por repetições de octâmeros de histonas (H2A, H2B, H3 e H4) envolvidos por 

DNA, denominados nucleossomos. As modificações em histonas, metilação do DNA e 

remodeladores da cromatina são os principais mecanismos responsáveis pela arquitetura da 

cromatina, visto que são capazes de alterar a cromatina de um estado mais condensado e 

com atividade transcricional limitada (heterocromatina) para um estado menos condensado 

com maior atividade transcricional (eucromatina) (ZHAO et al., 2021).   

As histonas são proteínas que possuem uma estrutura globular e uma região N-

terminal capaz de sofrer modificações covalentes. Modificações em histonas incluem 

acetilação, metilação, fosforilação, ubiquitinação e ADP-ribosilação (ZHAO & 

SHILATIFARD, 2019). Dentre estas modificações, a acetilação é uma das modificações 

mais estudadas no câncer. A acetilação dos resíduos de lisina na região N-terminal das 

histonas reduz a afinidade entre as histonas e DNA, permitindo a abertura da cromatina e 

auxiliando na funcionalidade de proteínas envolvidas na transcrição gênica 

(NIGHTINGALE et al., 2006).  A acetilação de histonas é resultado de um processo 

dinâmico regulado por histonas acetiltransferases (HAT) e histonas desacetilases (HDAC). 

A atividade de HAT é responsável pela abertura da cromatina e as HDACs são capazes de 

reduzir os níveis de acetilação, condensando a cromatina e reduzindo a transcrição (YANG 

& SETO, 2007). Existem três principais famílias de HATs: GNAT, GCN5 e p300/CBP, e 

estas agem preferencialmente em histonas, mas também podem catalisar a acetilação direta 

de proteínas supressoras tumorais ou oncogenes como por exemplo p53, RB, and MYC 

(SINGH et al., 2010) (MARMORSTEIN & ZHOU, 2014). Em relação às HDACs, existem 

quatro principais famílias: Classe I (HDACs 1, 2, 3, and 8), que são expressas no núcleo; 

Classe II (HDACs 4, 5, 6, 7, 9 and 10), que possuem expressão tecido específica e podem 

ser translocadas entre o núcleo e o citoplasma; Classe III, também conhecidas como sirtuinas 
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(SIRT1-7), que apresentam um mecanismo dependente de NAD+; e Classe IV (HDAC 11) 

que foi descoberta recentemente e possui apenas um membro em sua classificação (ZHAO 

& SHILATIFARD, 2019).  Assim como HATs, HDACs também são capazes de atuar em 

proteínas como p53, HSP90, β-catenina (SINGH et al., 2010).  

Tumores pediátricos, comparados a tumores adultos, apresentam baixa taxa de 

mutações genéticas. Dentre as mutações encontradas em tumores pediátricos, alterações em 

genes envolvidos na maquinaria epigenética são as mais frequentes (HUETHER et al., 2014) 

(GRÖBNER et al., 2018). Em MB, o padrão de alterações em histonas demetilases, acetil 

transferases e modificadores da cromatina auxiliam na estratificação dos subgrupos 

moleculares. No subgrupo WNT, foi encontrado mutações em remodeladores da cromatina 

responsáveis pela ativação de genes da via WNT (ROBINSON et al., 2012). Em SHH, foi 

possível associar alterações somáticas e a superexpressão de HATs (NORTHCOTT et al., 

2017). As mutações em membros da família histonas lisinas demetilases são exclusivas dos 

subgrupos 3 e 4, indicando um perfil de metilação alterado nestes subgrupos de MB 

(NORTHCOTT et al., 2009). Além disso, o padrão de acetilação da lisina 27 da histona 3 

(H3K27) e mono metilação da lisina 4 da histona 3 (H3K4) auxilia na distinção do subgrupo 

3 de MB (ROBINSON et al., 2012). No contexto de células tronco tumorais, estudos indicam 

que a regulação de HAT e HDAC e, por consequência, o perfil de acetilação de histonas é 

capaz de modular vias associadas a stemness (LIU et al., 2017), assim, inibidores capazes 

de alterar mecanismos epigenéticos chaves para CTT de MB se tornam alvos terapêuticos 

relevantes.  

 

Ácido Valpróico  

Ácido Valpróico (VPA, ácido 2-propilpentóico) é um ácido graxo utilizado como 

anticonvulsivante de amplo espectro, podendo ser indicado para tratamento de epilepsia, 

enxaqueca, dor neuropática e estabilizador de humor em casos psiquiátricos 

(CHATEAUVIEUX et al., 2010). O VPA é capaz de atravessar a barreira hematoencefálica 

e é considerado seguro para pacientes pediátricos, inclusive aqueles que apresentam 

sintomas devido a presença de tumores de sistema nervoso (VAN BREEMEN et al., 2007) 

(WOLFF et al., 2008). Os primeiros mecanismos de ação atribuídos ao VPA incluem: 
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potencializar a atividade do Ácido gaba-aminobutírico (GABA) (MESDJIAN et al., 1982), 

atenuar a ativação de receptores de NMDA (GEAN et al., 1994) e de canais dependentes de 

voltagem (VANDONGEN et al., 1986). Em 2001, foi descoberto que VPA tem efeito como 

inibidor de histona deacetilase (HDACi) (GÖTTICHER et al., 2001) (PHIEL et al., 2001).  

VPA inibe as HDACs de classe I (HDAC1, 2 e 3) e IIa (HDAC4, 5 e 7). VPA não é capaz 

de modular HDAC6, 8 e 10 e já foi visto que HDAC9 e 11 são ativadas por VPA 

(BRADBURY et al., 2005) (CHATEAUVIEUX et al., 2010).  

 Em MB, VPA possui efeito antiproliferativo dose dependente e é capaz de alterar 

mecanismos associados a progressão do ciclo celular, apoptose e senescência (LI et al., 

2005). Modelos in vivo utilizando VPA também demonstram resultados promissores em 

MB. Camundongos com xenoenxerto ortotópico intracerebelar tratados com VPA tiveram 

uma maior sobrevida, acompanhada de uma redução do tamanho tumoral, menores taxas de 

angiogênese e um perfil de diferenciação aumentado (SHU et al., 2006). Existe uma 

quantidade limitada de estudos que abordem o papel de VPA em CTT, entretanto, foi 

encontrado que em CTT de glioblastoma, VPA é capaz de alterar a taxa de proliferação ao 

modular a expressão CD133, Nanog e OCT4.  A redução de genes de stemness é 

acompanhada pelo aumento da expressão de marcadores de diferenciação neural, indicando 

que VPA é capaz de alterar a manutenção de CTT e induzir um perfil menos indiferenciado 

nestas células (ALVAREZ et al., 2015). Até o momento, não existem estudos demonstrando 

o efeito de VPA em CTT de MB, desta forma o presente trabalho busca elucidar o papel de 

VPA em vias de stemness e de diferenciação neural e sua contribuição para manutenção do 

estado tronco em MB.  
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HIPÓTESE GERAL 

 Visto que: 

- Células tronco tumorais contribuem para resistência e recidiva tumoral (PRASETYANTI 

& MEDEMA, 2017); 

- O desenvolvimento e progressão de MB está associado à presença de CTT (HEMMATI et 

al., 2003);   

- Mecanismos epigenéticos encontram-se desregulados em MB e CTT (TOH et al., 2017) 

(ROUSSEL & STRIPAY, 2018);  

- Moduladores epigenéticos são propostos como alvos terapêuticos para CTT ao serem 

capazes de induzir diferenciação (ABBALLE & MIELE, 2021);  

A hipótese desse trabalho é que o modulador epigenético ácido Valpróico será capaz 

de alterar a manutenção do estado tronco ao regular a inibição de vias de stemness e a 

ativação de diferenciação neural em MB.  
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OBJETIVOS 

 Avaliar o efeito da modulação epigenética de VPA em vias de stemness e 

diferenciação neural de meduloblastoma humano.    

 

Objetivos específicos: 

CAPÍTULO I 

i. Revisar os mecanismos epigenéticos envolvidos na regulação de células tronco 

tumorais de tumores pediátricos do sistema nervoso;  

CAPÍTULO II 

i. Avaliar curvas dose resposta de VPA nas células de MB D283 e Daoy;  

ii. Caracterizar a expressão de marcadores de stemness Nestina, SOX2 e NOTCH1 em 

CTT de MB;  

iii. Avaliar o efeito de antiproliferativo de VPA em CTT e sua capacidade de impedir a 

à indução de CTT;   

iv. Determinar se a modulação de VPA reduz a atividade de HDAC e induz um aumento 

no perfil de acetilação de histona 3 lisina 9 (H3K9) em células e CTT de MB;  

v. Analisar a modulação de VPA na progressão do ciclo celular em células e CTT de 

MB;  

vi. Avaliar a expressão de genes de stemness SOX2, Nestina e NOTCH1 e marcadores 

de diferenciação neural TUBB3, RBFOX3 e ENO2 após a modulação de VPA em 

células e CTT de MB;  
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Abstract
Medulloblastoma, neuroblastoma, and pediatric glioma account for almost 30% of all cases of pediatric cancers. Recent 
evidence indicates that pediatric nervous system tumors originate from stem or progenitor cells and present a subpopulation 
of cells with highly tumorigenic and stem cell-like features. These cancer stem cells play a role in initiation, progression, and 
resistance to treatment of pediatric nervous system tumors. Histone modification, DNA methylation, chromatin remodeling, 
and microRNA regulation display a range of regulatory activities involved in cancer origin and progression, and cellular 
identity, especially those associated with stem cell features, such as self-renewal and pluripotent differentiation potential. 
Here, we review the contribution of different epigenetic mechanisms in pediatric nervous system tumor cancer stem cells. 
The choice between a differentiated and undifferentiated state can be modulated by alterations in the epigenome through 
the regulation of stemness genes such as CD133, SOX2, and BMI1 and the activation neuronal of differentiation markers, 
RBFOX3, GFAP, and S100B. Additionally, we highlighted the stage of development of epigenetic drugs and the clinical 
benefits and efficacy of epigenetic modulators in pediatric nervous system tumors.

Keywords Epigenetic · Medulloblastoma · Neuroblastoma · Pediatric glioma · Cancer stem cells

Introduction

Cancer is the leading cause of disease-related death world-
wide in children and adolescents [1]. Identification of 
genomic alterations and the underlying mechanisms of 
cancer progression in pediatric malignancies has revealed 
new opportunities for developing treatment strategies spe-
cific for childhood cancers. While adult tumors seem to be 
driven mostly by accumulating genetic alterations, recent 
sequencing studies have demonstrated that pediatric tumors 
have a significantly lower mutational rate [2, 3]. In addition, 
mutations found in pediatric cancers are notably different 
from those in adult tumors [4]. In many pediatric cancers, 
the most frequent mutations are associated with genes that 
encode proteins involved in epigenetic regulation [5].

Alterations in epigenetic mechanisms seem to contrib-
ute to the origin, cellular phenotype, and progression of 
nervous system tumors, a group of diseases that account 
for almost 30% of all cases of pediatric cancers [6, 7]. 
Pediatric nervous system cancer appears to originate 
from stem or progenitor cells [8, 9], and some character-
istics of stem cells, such as self-renewal and pluripotent 
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differentiation potential, are crucially regulated by epige-
netic mechanisms [10].

Remarkably, several studies have shown that a highly 
tumorigenic subpopulation of cells, which presents stem 
cell-like features, is a key component of nervous system 
tumors, including medulloblastoma (MB), neuroblastoma 
(NB), and pediatric glioma [11–13]. MB is the most com-
mon malignant type of brain cancer in pediatric patients. 
It arises in the cerebellum and is currently classified into 
four distinct molecular subgroups with twelve molecular 
subtypes [14]. NB is a peripheral nervous system tumor 
and the most common type of extracranial solid cancer 
occurring in children [15]. Pediatric gliomas are a group 
of central nervous system tumors that can be divided in 
low-grade gliomas (LGG) or glioneuronal tumors classi-
fied by the World Health Organization (WHO) as grade I 
or II, high-grade glioma (HGG) (WHO grade III or IV), 
and diffuse intrinsic pontine glioma (DIPG). This hetero-
geneous group of tumors can affect multiple brain regions 
[16]. Although there are clear pathological differences 
among these cancer types, modulation of the epigenetic 
machinery is a potential common therapeutic target [17].

The presence of cells that express stemness genes and 
feature stem cell properties are now recognized as major 
contributors for the initiation, progression, and resistance 
to treatment of pediatric nervous system tumors. Studies 
in MB and glioblastoma (GBM) models, including tumor-
derived spheres, show that the expression of genes such 
as Prominin 1 (PROM1) (also known as CD133), SRY-
Box Transcription Factor 2 (SOX2), and Proto-Oncogene, 
Polycomb Ring Finger (BMI1) contributes to the initiation 
and maintenance of an undifferentiated state [11]. Sphere 
forming assays have been used to study cancer stem-like 
cells, and the culture conditions permit the enrichment of 
cells with stem cell features such as self-renewal and dif-
ferentiation capability [18]. Supporting this view, Singh 
and colleagues [19] showed that a relatively small number 
of CD133 + cells, but not a population of CD133- cells, 
is sufficient for the formation of human MB or GBM in 
NOD-SCID mice, in comparison with CD133- population, 
indicating that CD133 expression is a marker for brain 
tumor stem cells capable of cancer initiation. Aggressive 
NB tumors also show stem cell features, such as expres-
sion of stem cell markers CD133 and Notch Receptor 1 
(NOTCH1) [20]. In addition, Pandian et al. [21] dem-
onstrated, in a metastatic NB model, that the expression 
of stemness genes, such as SOX2 and Nanog Homeobox 
(NANOG), contributes to NB plasticity and aggressive-
ness. In this review, we highlight the role of different 
epigenetic regulatory mechanisms and some of the main 
effects of epigenetic-modulating agents in pediatric nerv-
ous system tumor stem cells (Fig. 1).

Histone acetylation

Acetylation of lysine residues at histone tails can remove 
positive charges, thus reducing the affinity between his-
tones and deoxyribonucleic acid (DNA). Therefore, his-
tone acetylation facilitates chromatin accessibility, serving 
as a key helper for the recruitment of proteins involved in 
gene transcription [22]. Histone acetylation is the result 
of a dynamic process regulated by histone acetyltrans-
ferases (HATs) and deacetylases (HDACs). HAT activ-
ity is responsible for opening the chromatin structure and 
increasing gene expression, whereas HDACs decrease 
acetylation levels, hence inducing a condensed chroma-
tin state and limited transcriptional activity [23]. These 
mechanisms play a relevant role in cancer stem cells, so 
that acetylation and deacetylation can be considered key 
regulating processes influencing the expression of genes 
involved in viability, proliferation, stemness, and differen-
tiation. Accordingly, treatments that enhance HAT activ-
ity or inhibits HDAC function have become a promising 
strategy to target cancer stem cells [24]. Diverse HDAC 
inhibitors have been successfully tested as anticancer com-
pounds in experimental brain cancers [25, 26] (Table 1).

Given that HDACs regulate stemness features, stud-
ies have investigated its role in cancer stem cells. Parthe-
nolide, a Histone Deacetylase 1 (HDAC1) inhibitor, was 
able to decrease CD133 expression in MB cells. In addi-
tion, HDAC inhibitors trichostatin A (TSA) and tacedin-
aline induced significant decreases in CD133 expression 
in Daoy and D283 Med MB cells, respectively. Sphere 
survival assay has shown that parthenolide and vorinostat 
(also known as SAHA) can decrease the viability of MB 
stem cell-enriched spheres [27].

Another HDAC inhibitor, sodium butyrate (NaB), was 
shown to reduce sphere formation and likely promote neu-
ronal differentiation indicated by morphological changes 
and upregulation of Glutamate Ionotropic Receptor 
AMPA Type Subunit 2 (GRIA2) in MB cells [25]. NaB 
also reduced the expression of stemness genes BMI1 and 
CD133 at both transcriptional and protein content levels, 
while increasing global acetylation, in human MB cells 
[26]. In NB cells, the combination of retinoic acid and 
NaB was able to upregulate neuronal markers RNA Bind-
ing Fox-1 Homolog 3 (RBFOX3) (also known as NeuN) 
and Tubulin Beta 3 Class III (TUBB3) and downregulate 
BMI1. These results suggest that the combination of reti-
noids with epigenetic modulators might be an efficient 
novel strategy to inhibit NB tumor growth [28].

Valproic acid (VPA), a well-tolerated antiepileptic, has 
been identified as an HDAC inhibitor [29]. NB treatment 
with VPA was shown to increase cell death and improve 
phenotypic changes associated with differentiation, such 
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as neurite extension and upregulation of neuronal mark-
ers Neuropeptide Y (NPY) and Growth Associated Protein 
43 (GAP43) [30]. However, under certain conditions VPA 
can also induce CD133 expression and decrease sensitiv-
ity to cytostatic agents in NB cells [31]. Thereby, HDAC 
inhibitors may have limited efficacy as single agents. The 
combination of VPA and retinoic acid was more efficient 
than VPA alone in inducing differentiation indicated by 
increased neurite extension and upregulation of the dif-
ferentiation marker Neurofilament Medium Chain (NEFM) 
in NB [32].

In chemoresistant NB cells, HDAC inhibition by vori-
nostat restored sensitivity to chemotherapy and reduced 
sphere forming ability. In addition, stemness genes, SOX2, 
Insulin Like Growth Factor Binding Protein 3 (IGFBP3) 
and Vimentin (VIM) were downregulated in the presence 
of vorinostat [33]. MS-275, also known as Entinostat, is an 
HDAC inhibitor that preferentially inhibits class I HDACs. 
In NB cells, MS-275 was able to reduce growth, increase 
histone H3 and H4 acetylation, as well as increase expres-
sion of neurofilament and neuronal markers S100 Calcium 
Binding Protein B (S100B) and Glial Fibrillary Acidic Pro-
tein (GFAP) [34]. Moreover, the combination of MS-275 

and acetazolamide, a pan carbonic anhydrase inhibitor, 
was capable to reduce the NB stem cell population through 
downregulating stemness genes POU Class 5 Homeobox 1 
(POU5F1) (also known as OCT4), SOX2 and NANOG [35]. 
Another HDAC inhibitor that seems to have a relevant effect 
in NB cells is HKI 46F08. Treatment with HKI 46F08 was 
able to decrease clonogenic growth, cause morphological 
changes similar to neurite-like extensions and upregulate dif-
ferentiation markers such as NEFM and Microtubule Associ-
ated Protein 2 (MAP2) [36].

Another strategy to increase histone acetylation is the 
inhibition of specific classes of HDACs. Oehme et al. [37] 
show that Histone Deacetylase 8 (HDAC8) knockdown or 
selective inhibition was able to decrease proliferation and 
clone formation, induce differentiation, through the upreg-
ulation of differentiation markers MAP2, NEFM, Neuro-
trophic Receptor Tyrosine Kinase 1 (NTRK1), TUBB3, 
GAP43, and downregulation of stemness gene, Nestin 
(NES) in NB cells. When combining HDAC8 inhibition with 
retinoic acid agent, an increase in neurite outgrowths and 
expression of NEFM and NTRK1 in NB cells was exhib-
ited. Also, in vivo results demonstrate that the combination 
of both agents is more efficient than either treatment alone 

Fig. 1  Overview of main epigenetic modifications in pediatric nerv-
ous system tumors. Chromosomal DNA is packaged around histone 
octamer to form nucleosomes. Posttranslational histone modifica-
tions and DNA methylation act together to regulate the chromatin 
state. A-B Acetylation and methylation of histone tails are mediated 
by histone acetyl-transferases (HATs), histone deacetylases (HDACs), 
histone methyltransferases (HMTs), and histone demethylases 
(HDMs). C DNA methylation is regulated by DNA-methyltransferase 

(DNMT). Inhibitors of main epigenetic factors can alter the epige-
netic landscape and gene expression. D Epigenetic regulation can also 
occur by the action of non-coding RNAs (ncRNAs), such as microR-
NAs, that act as transcriptional regulators. All these epigenetic modi-
fications interact with each other and are responsible for regulating 
the chromatin state, and consequently the expression of genes related 
to stemness phenotype and neuronal differentiation of pediatric nerv-
ous system tumors
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in decreasing tumor proliferation, indicating a synergistic 
effect [38]. Moreover, HDAC1 and Histone Deacetylase 2 
(HDAC2) inhibition in NB cells, through knockdown or 
pharmacological inhibition, was able to decrease viability 
and induce differentiation. Combination of HDAC1/2 inhibi-
tion and retinoic acid caused significantly greater differentia-
tion and had a synergistic effect on NB viability [39].

DIPGs frequently have histone 3 lysine 27 mutations 
(H3K27M) resulting in epigenetic dysfunction. Thereby, epi-
genetic modifiers have shown great potential in the treatment 
of DIPGs. Anastas et al. [40] demonstrated that the use of 
Corin, a bifunctional inhibitor of HDACs and lysine-specific 

histone demethylase 1 (LSD1), was capable of decreasing 
growth in vitro and in vivo through increasing histone acety-
lation and methylation and regulating genes associated with 
neuronal differentiation and progenitor markers. Combin-
ing HDACi, panobinostat, with the inhibition of AXL, a 
receptor tyrosine kinase that is enrolled as a regulator of 
the mesenchymal transition, also shows meaningful results 
against DIPGs. Spheres treated with panobinostat or in com-
bination with AXL inhibitor resulted in downregulation of 
stemness markers SOX2 and NES, and prolonged survival 
of mice with DIPG xenografts [41]. Grasso et al. [42] also 
demonstrated that panobinostat reduced tumor growth 

Table 1  Histone acetylation inhibitors associated with pediatric nervous system tumor stem cells

Compound Target Results Clinical trials

Parthenolide HDAC1 Downregulates CD133 in MB cells and decreases sphere 
viability [27]

Trichostatin A HDAC class I/II Downregulates CD133 expression in Daoy [27]
Tacedinaline HDAC class I Downregulates CD133 expression in D283 med [27]
Vorinostat HDAC class I/II/IV Decreases MB spheres viability [27] Phase I [111, 112, 122–129]

Downregulates stemness genes, reduces sphere forming 
ability and sensitizes NB resistant cells to chemo-
therapy [33]

Phase I/II [130–132]
Phase II [133-134]

Sodium butyrate HDAC class I/IIa Reduces MB spheres formation, upregulates Gria2 and 
downregulates stemness genes BMI1 and CD133 [25, 
26]

Combination with retinoic acid upregulates RBFOX3 
and TUBB3 and downregulates BMI1 in NB cells [28]

Valproic acid HDAC class I/II Promotes neurite extension and upregulates NPY and 
GAP43 in NB cells [30]

Combination with temozolomide downregulates stem 
cells marker musashi1 in pediatric glioma [43]

Phase I [107, 135–137]
Phase II [138, 139]
Phase III [140]

MS-275 HDAC class I Reduces NB cell growth, upregulates S100beta and 
GFAP [34]

Phase I [141]

Combination with acetazolamide in NB cells downregu-
lates OCT4, SOX2 and NANOG [35]

Phase I/II [142]

HKI 46F08 Promotes neurite like extensions and upregulates NEFM, 
SYN and MAP2 in NB cells [36]

Selective inhibitor for HDAC8 HDAC8 Decreases NB proliferation and upregulates differentia-
tion markers such as MAP2 and TUBB3 and downregu-
lates NES [37]

Combination with retinoic acid increases neurite out-
growths and upregulates NEFM and NTRK1 expres-
sion [38]

Selective inhibitor for HDAC1/2 HDAC1 and HDAC2 Decreases NB viability and induces differentiation. 
Combination with retinoic acid causes greater dif-
ferentiation [39]

Corin HDACs and LSD1 Decreases NB growth in vitro and in vivo and regulates 
differentiation and stemness genes [40]

Panobinostat HDAC class I/ II/IV Reduces DIPG tumor growth in vivo [42] Phase I [116, 128, 143–146]
Combination with inhibitor of AXL downregulates 

SOX2 and NES and prolongs survival of mice with 
DIPG xenografts [41]

Depsipeptide HDAC class I Decreases expression of PCR2 components, including 
EZH2 and SUZ12, and upregulates CASZ1 in NB cells 
[50]
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in vivo models using DIPGs spheres. Moreover, VPA also 
shown potential in the treatment of pediatric glioma. Treat-
ment with VPA alone or in combination with temozolomide 
(TZM) decreased cellular viability and downregulated stem 
cells marker musashi1 in pediatric glioma cell lines [43].

Histone methylation

Histone methylation occurs predominantly on lysine (K) and 
arginine (R) residues and can happen at three different lev-
els: mono-, di-, and tri-methylation. Histone methylation can 
also be associated with gene expression regulation. Recent 
discoveries show that methylation on specific residues can 
result in gene activation or repression. Gene activation 
has been associated with histone 4 lysine 20 methylation 
(H4K20me), histone 2B lysine 5 methylation (H2BK5me), 
histone 3 lysine 4 trimethylation (H3K4me3), histone 3 
lysine 36 trimethylation (H3K36me3) and histone 3 lysine 
79 trimethylation (H3K79me3), while histone 3 lysine 
9 dimethylation (H3K9me2), histone 3 lysine 9 trimeth-
ylation (H3K9me3) and histone 3 lysine 27 trimethylation 
(H3K27me3) are usually related to gene repression [44]. The 
balance of methylation levels is sustained by histone methyl-
transferases (HMT) and histone demethylases (HDM). It is 
known that aberrant histone methylations can effect regula-
tion of gene expression, differentiation and DNA damage 
repair, but recently it was established that histone methyla-
tion can also contribute to the acquisition of self-renewal 
features and cancer stem cell formation [45] (Table 2).

Enhancer of zeste homologue 2 (EZH2) is an HMT that 
participates on the Polycomb repressive complex 2 (PRC2), 
which catalyzes the trimethylation of histone 3 lysine 27 
(H3K27). Several studies have shown that EZH2 can con-
tribute to the origin of cells with cancer stem cell features 

in pancreatic, breast and brain tumors [46]. Moreover, inhi-
bition of EZH2 affects cancer stem cells formation in MB 
cells demonstrating the importance of this methyltransferase 
on stemness of pediatric tumors [47, 48]. Furthermore, 
recent discoveries demonstrated that the protein maternal 
embryonic leucine-zipper kinase (MELK) collaborates with 
EZH2 in MB stem cells, suggesting that the two proteins act 
together to maintain cancer stem cell features [49].

In NB cells, upregulation of EZH2 was associated with 
maintenance of the undifferentiated state through regulation 
of tumor suppressor genes. Wang et al. [50] demonstrated 
that inhibition of EZH2 decreased cell growth, increased 
cells with neurite-like features and the expression of tumor 
suppressor genes such as Castor Zinc Finger 1 (CASZ1), 
Clusterin (CLU), Nerve Growth Factor Receptor (NGFR) 
and RUNX Family Transcription Factor 3 (RUNX3). Fur-
thermore, treatment with HDAC inhibitor, depsipeptide, 
was shown to decrease the expression of PRC2 components, 
including EZH2, and upregulate CASZ1, suggesting that 
PRC2 components have a relevant role on the undifferenti-
ated state of NB tumors.

Lysine-specific demethylase 1 (LSD1) is a histone dem-
ethylase involved in the regulation of gene expression. 
Schulte, J and colleagues [51] demonstrated that knockdown 
or pharmacological inhibition of LSD1 decreased cellular 
growth of NB cells. Besides that, differentiated NB cells 
(with retinoic acid) showed lower expression of LSD1, sug-
gesting the participation of LSD1 on cellular differentiation 
process. Histone methylation can also modulate MYC sign-
aling, which is an important genetic mark in NB cells. Lysine 
Demethylase 4B (KDM4B) inhibition was able to regulate 
NB cell proliferation and differentiation in vitro and in vivo. 
Knockdown of KDM4B decreased the expression of SOX2 
and increased differentiation markers [52]. Another histone 
lysine demethylase relevant in NB is Lysine Demethylase 

Table 2  Histone and DNA methylation inhibitors related with pediatric nervous system tumor stem cells

Compound Target Results Clinical trials

EZH2 inhibitor EZH2 Decreases proliferation MB stem cell formation and downregu-
lates stemness markers in vitro and in vivo [47, 48]

Phase II [147, 148]

Decreases NB growth, improves neurite-like feature and upregu-
lates tumor suppressor genes CASZ1, CLU, NGFR and RUNX3 
[50]

GSK-J4 H3 methylation levels Inhibits NB growth in vitro and in vivo, and upregulates differ-
entiation markers such as ENO2, CHD5, NGF and NRG1 [54]

In pediatric glioma GSK-J4 treatment increases K27me2 and 
K27me3 in cells with and without K27M mutation [56]

Monoamine oxidase inhibitor LSD1 Decreases NB growth and is involved in the differentiation 
process [51]

DNA hypomethylating agents Global DNA methylation Increases CD133 expression in NB cell lines, suggesting that 
DNA methylation can be responsible for the regulation of 
CD133 expression [64]

Phase I [149–152]
Phase I/Ib [117]

Nucleoside DNMT inhibitors DNMT Induces stem cell adhesion and upregulates TUBB3 [63]
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5B (KDM5B). KDM5B expression was associated with 
stem cell features in NB cells. Silencing KDM5B decreased 
cell invasion capability, sphere formation and was able to 
sensitize NB cells to cisplatin treatment [53]. Studies have 
shown that treatment with the histone demethylase inhibitor 
GSK-J4 is able to regulate H3 methylation levels, specially 
H3K27. In NB tumors, GSK-J4 inhibited NB growth in vitro 
and in vivo, and upregulated differentiation markers such as 
Enolase 2 (ENO2), Nerve Growth Factor (NGF) and Neu-
regulin 1 (NRG1). Also, combination with retinoic acid was 
able to overcome drug resistance [54].

In pediatric gliomas, mutations on the H3F3A gene, 
which encodes histone 3 variant H3.3, causes a substitution 
of lysine 27 for methionine (K27M) or glycine 34 to arginine 
(G34R), altering important sites of regulatory methylation 
[55]. Hashizume et al. [56] demonstrated that GSK-J4 treat-
ment increased H3K27me2 and H3K27me3 in cells with and 
without K27M mutation. Despite that, GSK-J4 treatment 
seems to have different in vitro effects depending on K27 
mutation status. Cells harboring K27M were more sensi-
tive to GSK-J4 showing complete inhibition of clonogenic 
capabilities, while GSK-J4 had no effect on wild-type cells, 
suggesting that demethylation is a possible target for NB 
and pediatric glioma treatment. Moreover, pediatric gliomas 
with H3K27M mutation appear to affect EZH2 subunit and 
consequently reduce PRC2 activity [57, 58]. Mohammad 
et al. [59] showed that EZH2 inhibitors were able to reduce 
growth of H3K27M DIPG cells but had no effect on patient-
derived primary glioma neural stem cell lines. Although his-
tone methylation inhibition affects MB and NB stemness 
pathway, this epigenetic mechanism is not yet elucidated in 
pediatric gliomas.

DNA methylation

DNA methylation also has a significant role in cancer stem 
cells. Recent discoveries show a link between the undiffer-
entiated phenotype and DNA methyltransferases [60]. DNA 
methyltransferases (DNMTs) are enzymes responsible for 
adding a methyl group from S-adenosyl methionine (SAM) 
to cytosine bases of CpG dinucleotides at gene promoters 
and regulatory regions, turning these regions less accessible 
for transcription. Thus, DNA hypermethylation can contrib-
ute to reduce gene expression; hence, recent reports show 
that an increase of methylation is common at promoters of 
tumor suppressor and differentiation genes, suggesting that 
DNA methylation is a relevant process in cancer stem cells 
[61].

In the past decade, research on the effect of non-nucleo-
side DNA methyltransferases inhibitor (DNMTi) in cancer 
has been increased [62]. Valente et al. [63] demonstrated 
that non-nucleoside DNMTi was able to induce stem cell 

adhesion and upregulate differentiation marker, TUBB3, in a 
MB stem cell model. These results suggest that this DNMTi 
is a potential treatment against MB stem cells.

Cancer stem cells are significantly enriched within 
CD133 + populations derived from all types of solid tumors, 
and this may raise the question if methylation status can 
regulate CD133 expression. Castresana and colleagues [64] 
have shown that treatment with the de-methylation agent 
5-Azacytidine (5-AZA) increased CD133 expression at 
ribonucleic acid (RNA) and protein level in NB cell lines, 
suggesting that epigenetic changes can be responsible for 
the regulation of CD133 expression. Although the use of 
epigenetic modifiers have great potential against cancer stem 
cells, there are studies showing that short-term treatment 
with DNA methylation agents and/or histone deacetylase 
inhibitors can increase the expression of stemness genes in 
NB cells [65].

In pediatric gliomas, there is a shortcoming of studies 
exploring DNA methylation as a therapeutic target or its 
involvement on the stemness pathway, even though DNA 
hypomethylation has been considered a main driver for these 
tumors [58]. Recent findings in the DNA methylation pro-
file indicate that pediatric HGG and DIPGs have different 
molecular subgroups with distinct epigenetic contributions 
[66]. The molecular signatures in pediatric gliomas brought 
to light specific oncogenic drivers and methylation patterns 
that impact clinical outcomes [67, 68].

Chromatin remodeling

Although histone modification and DNA methylation are 
major players in the epigenetic machinery, chromatin modi-
fiers also have a relevant role in the chromatin integrity and 
accessibility. Chromatin remodelers are responsible for 
packaging the DNA and incorporating or releasing histones 
into the nucleosomes [69].

Recent discoveries demonstrated that the chromatin 
remodeler Lymphoid Specific (HELLS) has a significant 
role in MB tumors. Robinson et al. [70] showed that HELLS 
is especially important in the Sonic hedgehog (SHH) MB 
group, and the SHH pathway is capable of modulating 
HELLS expression. Also, in an embryonic stem cell model, 
researchers have shown that HELLS was capable of regulat-
ing stemness, suggesting that this chromatin remodeler can 
have a relevant role in cancer stem cell differentiation [71].

In NB tumors, elevated expression of the histone chaper-
one and epigenetic regulator, Chromatin Assembly Factor 1 
Subunit A (CHAF1A), can be linked to an undifferentiated 
state of cancer cells. Silencing of CHAF1A caused mor-
phologic changes associated with cell differentiation and 
increased expression levels of the neuronal marker TUBB3. 
Also, gene expression profiling revealed that CHAF1A 
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silencing was correlated with the repression of oncogenic 
pathways such as KRAS Proto-Oncogene, GTPase (KRAS), 
ALK Receptor Tyrosine Kinase (ALK), AKT Serine/Threo-
nine Kinase 1 (AKT), and BMI1, suggesting that CHAF1A 
can prevent the differentiation process in NB tumors [72]. 
The plant homeodomain finger-containing protein 20 
(PHF20) is considered an important epigenetic regulator, 
since it is a main reader of methylated states of histone H3 
lysine 4 (H3K4) and participates in the lysine acetyltrans-
ferase complex MOF, that is capable of adding a acetyl 
group on the histone H4 lysine 16 (H4K16) [73]. PHF20 
interacts with poly (ADP-ribose) polymerase 1 (PARP1) and 
directly binds to the promoter regions of stemness genes, 
such as OCT4 and SOX2. Therefore, deletion of PHF20 was 
able to decrease NB cell proliferation, sphere formation, 
and increase differentiation features. These data suggest 
that PHF20 is involved in NB aggressiveness through the 
regulation of stemness genes [74].

Another chromatin remodeler associated with the main-
tenance of an undifferentiation state is the nucleosome-
remodeling factor, Bromodomain PHD Finger Transcrip-
tion Factor (BPTF). In pediatric HGG, BPTF appears to be 
a key regulator of tumor growth and differentiation. Green 
et al. [75] showed that silencing BPTF decreased SRY-Box 
Transcription Factor 10 (SOX10) and GFAP expression, and 
increased TUBB3 and Oligodendrocyte Transcription Fac-
tor 3 (OLIG3), thus promoting differentiation of HGG cells. 
BPTF inhibition was able to reduce sphere growth and size, 
demonstrating a relevant role of BPTF in pediatric glioma 
stemness.

MicroRNAs

Recent findings suggest that microRNAs, which are a class 
of small non-coding RNA, are key regulators in human 
cancer. MicroRNAs commonly regulate gene expression by 
interacting with the 3’-untranslated region of specific mRNA 
targets leading to the degradation of RNA transcripts and 
ultimately to translational repression [76]. MicroRNAs can 
be down or upregulated in human tumors compared to nor-
mal tissues, but recent discoveries show that microRNA can 
also contribute to the formation and maintenance of cancer 
stem cells [77] (Table 3).

Venkataraman et al. [78] demonstrated that several micro-
RNAs, in specific miR-128a, involved on the normal neu-
ronal differentiation process appear to be downregulated 
in MB cells. Re-expression of miR-128a impaired MB cell 
growth and downregulated BMI1 expression and addition-
ally reduced colony formation and tumor sphere size [79].

Patient data set in association with survival outcome is 
a practical tool to find new molecules relevant to cancer 
progression. For instance, upregulation of miR-199b-5p 

was associated with better prognosis in MB patients. Fur-
thermore, overexpression of miR-199b-5p decreased MB 
proliferation and clonogenic capabilities, while positively 
regulating the differentiation marker GFAP. In vivo data 
also demonstrated that miR199b-5p expression was able to 
reduce tumor growth by reducing CD133 + and CD15 + pop-
ulations. Also, de-methylation with 5-AZA was shown to 
upregulate miR-199b-5p expression in three MB cell lines, 
suggesting that 5-AZA may be a potential treatment for 
modulation of this microRNA [80, 81]. Another miRNA 
that is capable of reducing CD133 + and CD15 + population 
is miR-34a. This microRNA targets Delta-like 1 (Dll1) that 
is considered a regulator of the Notch pathway. mir-34a was 
capable to decrease Dll1 expression and affect cell prolifera-
tion and neuronal differentiation in MB cells [82].

In a MB cancer stem cell model, results indicate that miR‐
135a could be a potential tumor suppressor miRNA. miR-
135a appears to be downregulated in highly tumorigenic 
cancer stem cells and its re-expression was able to impair 
the tumorigenesis process [83]. In addition, a model using 
MB stem cells versus RA-differentiated stem cells found that 
miR-135b, miR-195 and miR-145 seems to regulate prolif-
eration, stemness maintenance and tumor invasiveness [84]. 
So far, we reveal that miRNA could potentially contribute to 
reduce tumorigenic potential. However, miRNAs might also 
be involved in cancer progression. Kaid et al. [85] found that 
miR-367 overexpression was able to enhance cell prolifera-
tion, invasion, and capability to form spheres, demonstrating 
that miR-367 has a pro-oncogenic activity in MB cells.

NB tumors are considered phenotypically heterogene-
ous, each having distinct differentiation and tumorigenic 
properties. The neuroblastic and non-neuronal phenotypes 
are examples of this heterogeneity. Samaraweera et al. [86] 
has reported that specific miRNAs define each phenotype. 
Upregulation of miR-21, miR-221 and miR-335 can be cor-
related with the non-neuronal phenotype, while miR-124 and 
miR-375 are specific to neuroblastic cells. Decreased expres-
sion of miR-335 in non-neuronal cells was able to regulate 
neuronal differentiation markers, Heart And Neural Crest 
Derivatives Expressed 1 (HAND1) and Jagged Canonical 
Notch Ligand 1 (JAG1). Moreover, miR-124 overexpression 
is capable to induce neuronal differentiation in stem cells.

Recent discoveries have shown that microRNAs have 
important roles in cellular differentiation processes and 
that retinoic acid models has become an important tool 
for the detection of differential expression of microR-
NAs. Foley et al. [87] demonstrated that miR-10a and 
miR-10b were upregulated after retinoic acid treatment 
in NB cell lines. These data suggest that overexpression 
of this microRNAs can lead to a differentiated phenotype. 
Beveridge et al. [88] also showed that all members of the 
miR-17 cluster were downregulated after retinoic induced 
differentiation in NB cells. Screening approaches can be 
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considered a useful tool to find new targets. Zhao et al. 
[89] found 14 microRNAs involved in NB differentiation, 
and re-expression of miR-124-3p, miR-135b-5p, miR-
506-3p, miR-34a-5p miR-103a-3p were capable to increase 
differentiation markers GAP43, ENO2 and TUBB3, and 
reduce NB cell growth.

Studies have found that the overexpression of miR-432 
was able to increase the expression of neuronal marker, such 
as MAP2, Brain Derived Neurotrophic Factor (BDNF) and 
Retinoic Acid Receptor Alpha (RARa) in NB cells. Moreo-
ver, miR-432 also downregulated the stemness gene, NES 
[90]. Similarly, overexpression of miR-449a was able to 
decrease cellular growth and survival in NB cells, and to 
increase differentiation markers such as TUBB3, ENO2 and 
GAP43 [91]. In addition, Chen et al. [92] have shown that 
downregulation of miR-7 and upregulation of miR-214 can 
contribute to neurite outgrowth, demonstrating that these 

microRNAs were modulated during the differentiation of 
NB cells.

Epigenetic regulation by miRNAs has been associated 
with patient survival in NB tumors, suggesting that micro-
RNAs could be prognostically relevant. Das et al. [93] have 
reported the association between DNA methylation, miRNA 
regulation and overall patient survival. miR-340 has been 
identified as an epigenetically silenced miRNA in aggres-
sive NB tumors. Increased miR-340 expression has been 
found following 5-AZA and retinoic acid treatment, showing 
that this microRNA can be modulated by DNA methylation 
and associated with differentiation. Moreover, the authors 
have discovered that upregulation of miR-340 is capable 
of decreasing SOX2 expression in response to retinoic acid 
treatment.

As it was mentioned above, an important epigenetic 
mechanism in several tumors is the activity of histone 
methyltransferase EZH2. Ren et al. demonstrated that this 

Table 3  MicroRNA regulation associated with pediatric nervous system tumor stem cells

MicroRNA Expression Results

miR-128a Downregulated Re-expression decreases MB cell growth and downregulates BMI1 expression [78]
miR-218 Downregulated Re-expression reduces MB growth, colony formation and sphere size [79]
miR-199b-5p Downregulated Over-expression upregulates GFAP and reduces tumor growth through downregulation of 

CD133 + and CD15 + population in vivo [80]
Treatment with 5-aza upregulates miR-199b-5p in MB cell lines, suggesting that 5-AZA 

modulates this microRNA [81]
miR-34a Downregulated Targets Dll1, therefore affecting cell proliferation and neural differentiation in MB cells [82]
miR‐135a Downregulated Low expression is associated with highly tumorigenic cancer stem cells features and re-

expression impairs tumorigenesis in MB [83]
miR-135b Downregulated Upregulation is associated with MB stem cells differentiation [84]
miR-195 Upregulated Downregulation is associated with MB stem cells differentiation [84]
miR-145
miR-367 Upregulated Over-expression enhances cell proliferation, invasion, and MB sphere formation [85]
miR-124 Downregulated Overexpression induces differentiation in stem cells in NB [86]
miR-10a, miR-10b Downregulated Overexpression is associated with a differentiated phenotype in NB [87]
miR-17 cluster Upregulated Treatment with retinoic acid causes downregulation of all members miR-17 cluster in NB 

cells [88]
miR-124-3p, miR-135b-5p, 

miR-506-3p, miR-34a-5p miR-
103a-3p

Downregulated Re-expression increases differentiation markers GAP43, NSE and TUBB3, and reduces NB 
cell growth [89]

miR-432 Downregulated Re-expression increases CNR1, MAP2, BDNF, RARa and TH expression, and downregu-
lates NESTIN [90]

miR-449a Downregulated Overexpression decreases NB growth and upregulates TUBB3, NSE and GAP43 [91]
miR-7 Upregulated Downregulation contributes to neurite outgrowth [92]
miR-214 Downregulated Upregulation contributes to neurite outgrowth [92]
miR-340 Downregulated Associated with aggressive NB tumors

Upregulation decreases SOX2 expression in response to retinoic acid treatment [93]
miR-137 Downregulated Upregulation reduces PCR1/2 proteins such as EZH2 SUZ12, RING1B and BMI1 [94]
miR-25 Downregulated Participates in SLC34A2-miR-25-Gsk3b signaling pathway to promote NB stemness [96]
miR-487 Downregulated Overexpression reduces colony formation and downregulates CD133 and NES in pediatric 

gliomas [100]
Associated with prognosis in neuroblastoma [103]
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enzyme can be regulated by miR-137 in NB cells. A model 
using resveratrol showed that upregulation of miR-137 was 
capable of reducing EZH2 level. This treatment can also 
reduce other PRC2 and Polycomb repressive complex 1 
(PCR1) proteins, such as Embryonic Ectoderm Develop-
ment (EED), SUZ12, and BMI1, suggesting that miR-137 
was able to modulate relevant epigenetics proteins [94]. 
Likewise, microRNAs can be modulated by different fac-
tors, an example is the let-7 family regulation by the protein 
Lin-28 Homolog B (LIN28B). LIN28B was able to repress 
let-7 miRNAs and upregulate MYCN Proto-Oncogene and 
BHLH Transcription Factor (MYCN) protein expression in 
NB cells. These alterations result in impairment of the dif-
ferentiation process in NB cells and normal neuroblasts [95]. 
Chen et al. [96] have found that the regulation of stemness 
genes Aldehyde Dehydrogenase 1 Family Member A1 
(ALDH1A1) and NANOG was associated with Solute Car-
rier Family 34 Member 2 (SLC34A2) expression. The tran-
scription factor SLC34A2 directly binds to the promoter of 
miR-25, enhancing its expression in NB cells and spheres. 
Hence, miR-25 is capable to bind with Glycogen Synthase 
Kinase 3 Beta (Gsk3b), activating the Wnt signaling path-
way. Therefore, SLC34A2 promotes NB stemness through 
miR-25-Gsk3b regulation.

In cerebellar neural stem cells (NSC), the Hedgehog-Gli 
pathway is essential for NANOG expression and mainte-
nance of self-renewal features. In a model using differenti-
ated NSC vs normal NSC, it has been shown that the protein 
Forkhead Box M1 (Foxm1), which is regulated by GLI Fam-
ily Zinc Finger (Gli) and NANOG, was able to modulate 
miR-130b, miR-301a, and members of the miR-15–16 and 
miR-17–92 clusters. Moreover, inhibition of miR-130b, 
miR-301a, and miR-19a was able to reduce sphere forma-
tion and upregulate differentiation markers [97]. Since the 
Hedgehog pathway is a relevant pathway in certain types of 
MB [98] and NB tumors [99], these findings could indicate 
similar mechanisms for these two pediatric tumors.

In pediatric LGG and glioneuronal tumors, Ames et al. 
[100] demonstrated that 61 microRNAs are differentially 
expressed in tumors compared to brain tissue. Furthermore, 
overexpression of miR-487b in a pediatric glioma cell line 
was able to reduce colony formation and decrease CD133 
and NES expression, suggesting that microRNA have a piv-
otal role in regulating stemness in pediatric glioma. Like-
wise, the 14q32 cluster seems to be relevant to high grade 
gliomas. Jha et al. [101] have shown that several 14q32 
microRNAs, including miR-431, miR-433, miR-380, miR-
323a, miR-329, miR-543, miR-1185, miR-487b, miR-539, 
miR-487a, miR- 485, miR-668, miR-154 and miR-410 are 
downregulated in pediatric gliomas. Also, underexpression 
of 14q32 miRNAs has been reported in MB [102] and some 
microRNAs of the 14q32 cluster, especially miR-487b and 
miR-410, have been associated with prognosis in NB [103].

Conclusions and perspectives

In this review, we have summarized and highlighted epige-
netic modulators as promising drug targets for cancer stem 
cells in pediatric nervous system tumors. Despite that, 
most of these epigenetic modifications are still far from 
clinical trials and approved drug use. Mostly, due to dif-
ficulties in modulating these specific epigenetic regulators, 
only six epigenetic drugs are approved by the Food and 
Drug Administration (FDA): two DNMT inhibitors and 
four HDAC inhibitors, mainly for myelodysplastic syn-
drome (MDS), cutaneous T-cell lymphoma (CTCL), and 
peripheral T-cell lymphoma (PTCL) [104]. DNMT inhibi-
tors Azacitidine and Decitabine, approved for patients with 
MDS, improved overall survival compared to conventional 
care regimens or supportive care [152, 153]. Moreover, 
HDAC inhibitors, Vorinostat, and Depsipeptide, author-
ized for the treatment of CTCL patients, showed clinical 
benefits with objective or complete responses in phase II 
trials [154, 155]. Belinostat, approved for PTCL patients, 
showed an overall response rate in almost 30% of cases, 
including complete and partial responses in phase II tri-
als [156]. Furthermore, a phase II trial showed that inclu-
sion of Panobinostat to Bortezomib regimen has clinical 
activity and benefits to relapsed or/and refractory multiple 
myeloma patients [157]. The main side effects associated 
with these epigenetic drugs were myelosuppression and 
gastrointestinal symptoms [154–156, 158–160].

Given that cancer stem cells can be associated with 
tumor recurrence and metastatic potential [105, 106], trials 
with relapsed or recurrent tumors using epigenetic modu-
lators can produce relevant results in the cancer stem cells 
context. Clinical trials in pediatric patients with nervous 
system tumors seem to focus mostly on histone deacetylase 
inhibitors. Phase I trials with VPA show well tolerated 
doses in children with central nervous system tumors. In 
patients with HGG or DIPG, a phase II trial showed that 
the addition of VPA and bevacizumab to the radiation regi-
men was well tolerated [107, 108]. A previous trial also 
indicated that VPA in combination with radio and chemo-
therapy is well tolerated and have encouraging response 
rates [109]. In addition, there is currently an ongoing 
phase III trial with VPA plus TMZ for pediatric glioma 
patients [140]. Moreover, trials with Vorinostat also show 
promising responses. In a phase I and II trial five out of 
fifty-two patients achieved partial responses. Among these 
patients, three had HGG diagnosis, suggesting that Vori-
nostat can penetrate blood–brain barrier [110]. A phase I 
trial combining Vorinostat and TMZ in relapsed brain or 
spinal cord tumors had also showed promising results of 
stable disease or partial response [111]. For patients with 
relapsed or refractory NB, a phase I trial with vorinostat 
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as a radio sensitizing agent resulted in establishment of a 
tolerable dose of vorinostat with MIBG (131I-metaiodo-
benzylguanidine) [112]. Completed phase II trials with 
HDAC inhibitors indicate that adverse effects described 
for pediatric patients with nervous system tumors are simi-
lar to side effects of FDA-approved epigenetic drugs [108, 
109].

Besides that, there are currently several trials active or 
in recruitment for patients with pediatric nervous system 
tumors. Phase I trial with HDACi, Entinostat, for recur-
rent solid tumors as single agent or in combination with 
an immunotherapy agent against PD-1 receptor, Nivolumab 
[113, 114]. For patients with HGG or DIPG there are also 
trials focusing on the combination of vorinostat, TZM or 
bevacizumab, and panobinostat with the proteasome inhibi-
tor Marizomib, respectively [115, 116]. DNMTi are also 
being tested for patients with recurrent brain tumors using 
azacitidine [117]. These open trials illustrate the potential of 
epigenetic drugs for the treatment of pediatric patients and 
indicate promising alternative treatments.

The first and second wave of epigenetic drugs resulted in 
the development of the HDAC and DNMT inhibitors already 
approved by FDA [118]. In the last decade, the discovery 
of small-molecules capable of targeting specific epigenetic 
components led to the development of clinically relevant 
drugs that are in trials for several types of tumors. Phases 
I and II trial with EZH2 inhibitor, Tazemetostat, are active 
for pediatric patients with relapsed or refractory advanced 
solid tumors, and non-Hodgkin lymphomas [147, 148]. 
Completed phase I or II trial using Tazemetostat in refrac-
tory B-cell non-Hodgkin lymphoma indicated that inhibi-
tion of EZH2 has clinical benefits with complete and partial 
responses in these oncological patients [119]. Trials with 
methyltransferase inhibitors are also open for cancer patients 
[120]. Also, evaluation of microRNA-10b expression level 
is in trial for adult patients with glioma [121]. Depending on 
results, this and other epigenetic modulators will potentially 
have a role in the improvement of survival rates of patients 
with medulloblastoma, neuroblastoma and pediatric glioma 
in the future.
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Abstract 

Medulloblastoma (MB) is the most common malignant childhood brain tumor. Recurrent 

and metastatic disease, which occurs in approximately 30% of patients, is the main cause of 

death and may be related to the presence of cancer stem cells (CSCs). Epigenetic 

mechanisms are major drivers for the establishment and maintenance of CSC, and inhibition 

of histone deacetylase enzymes (HDAC) has shown potential as a therapeutic strategy to 

target this cell population. Here, we found that HDAC inhibitor Valproic acid (VPA) 

enhances histone acetylation and decreases cell and CSC viability. VPA main effects are 

related to the increase in neuronal differentiation and decrease in stemness pathways. 

Specific molecular mechanisms of VPA seem to be dependent on MB molecular subgroups. 

In Sonic Hedgehog (SHH) MB, VPA modulates the cell cycle through the MYC-P21-SOX2 

axis, whereas in Group 3 VPA regulates the Notch1 pathway. These findings suggest that 

HDAC inhibiting by VPA could be a novel effective approach against cell with stemness 

features and high malignant traits.  

  

Key words: Medulloblastoma, Cancer stem cells, Valproic acid, Stemness 
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Introduction  

Medulloblastoma (MB) is the most common malignant childhood brain tumor [1]. 

MB arises from neural stem cells (NSCs) or cerebellar granule neuron precursors (GNPs) 

that undergo genetic and epigenetic alterations [2-3]. Genomic, epigenomic, and 

transcriptional analyses have shown that MB is a heterogeneous tumor that differs in 

molecular, clinical, and prognosis features [4]. The World Health Organization (WHO) 2016 

classification established that MB is comprised of distinct molecular subgroups: Wingless 

(WNT) MB, Sonic Hedgehog (SHH) MB/TP53 wild type, SHH MB/ TP53 mutated, group 

3, and group 4 [5].  

Even though there were advancements in MB therapies in the last decades, metastatic 

and recurrent tumors are still a challenge. Relapse MB tumors occur in approximately 30% 

of patients and have high mortality rates [6]. According to the cancer stem cell (CSC) theory, 

tumor heterogeneity can be explained by the presence of a specific subpopulation of cells, 

known as cancer stem cells [7]. CSC have stem cell features such as self-renewal and 

differentiation potential. Studies show that CSCs are more resistant to treatment and have 

higher metastatic capabilities [8-10]. MB tumor-derived cells and neurospheres express 

CD133, SOX2, and BMI1, markers related to neural progenitors and stem cell features [11]. 

Moreover, CD133 positive (CD133+) MB cells were able to initiate tumors that present the 

same characteristic that the patient's original tumors when implanted in NOD-SCID mice 

[12], supporting the premise that CSC contributes to MB initiation and recurrence.   

Epigenetic mechanisms are major drivers for the establishment and maintenance of 

CSC. Most common mutations found in cancer can be related to epigenetic regulators [13]. 

Thus, an altered epigenetic profile enables cellular reprogramming that contributes to an 

aberrant activating of stem cell pathways promoting the acquisition of uncontrolled self-

renewal [14-15]. Moreover, the choice between an undifferentiated and differentiated state 

can be controlled by alterations in the epigenome [16]. Valproic acid (VPA) is an 

anticonvulsant drug that also has an effect as an epigenetic modulator capable of inhibiting 

histone deacetylases (HDAC). VPA inhibits specifically HDAC class I and IIa (HDAC 1–5, 

7) and consequently enhances the histone acetylation landscape [17]. In MB, VPA was 

associated with changes in cell cycle progression, senescence, and apoptosis [18].  In 

Glioblastoma stem cells, VPA downregulates the expression of stemness genes CD133, 

Nanog, OCT4, and enhances differentiation markers [19]. Hence, suggesting that VPA 



43 
 

modulates the epigenome and contributes to CSC fate. Here, we elucidate the role of VPA 

in the stemness maintenance of MB cancer stem cells.  

 

Materials and Methods 

Cell lines and cell culture conditions 

MB cell lines D283 (ATCC® HTB-185™) and Daoy (ATCC® HTB-186™) were 

originally obtained from the American Type Culture Collection (ATCC, Rockville, 

USA).  Cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM low 

glucose, Gibco®) containing 10% (v/v) fetal bovine serum (FBS, Gibco®), 1% (v/v) 

penicillin-streptomycin solution (10,000U/mL, Gibco®) and 0.1% (v/v) amphotericin B 

(250 μg/mL; Gibco®). Cells were cultured at 37°C in a humidified incubator under 5% CO2. 

Experiments were conducted in exponentially growing cell cultures. 

Drug Treatment  

Histone deacetylase inhibitor Valproic acid (VPA; Santa Cruz Biotechnology - CAS 

1069-66-5) was dissolved in sterile water to a stock concentration of 0.3 M.   

 

Cell viability  

Cells were treated with VPA (0.5, 1.0, 2.5, 5.0, 10.0 or 20.0 mM) for 48 and 72 hours. 

MB cells were seeded at 3000 cells/well in 96 wells plates and, after VPA exposure, cells 

were detached with trypsin-EDTA (Gibco®) and counted in a Neubauer chamber with 

trypan for viability measurement. The doses of VPA were chosen based on previous in vitro 

studies using cultured medulloblastoma and glioblastoma cell lines [18, 20]. Experiments 

were conducted in three biological replicates. For IC50 determination, cell viability data were 

fitted in a dose-response curve (Graphpad Prism v. 6.0).  

 

Sphere Formation Assay  

Sphere formation assay was used as a model to study cancer stem cells and 

experiment parameters were on the bases of previous in vitro studies [21-22]. To analyze the 

effects of VPA during sphere formation, MB cells were dissociated with trypsin-EDTA into 

cell suspension and seeded at 500 cells/well in 24-well plates. Agarose solution (1%) was 
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used to overcome cell adherence. Cells were cultured in serum-free sphere-induction 

medium, containing DMEM/F12 supplemented with 20 ng/mL epidermal growth factor 

(Sigma-Aldrich), 20 ng/mL basic fibroblast growth factor (Sigma-Aldrich), B-27 

supplement 1X (Gibco, Life Technologies), N-2 supplement 0.5X (Gibco, Life 

Technologies), 50 μg/mL bovine serum albumin (Sigma Aldrich), and antibiotics during 5 

days as described [22]. Cells were monitored daily until sphere formation. To analyze effects 

during sphere formation, VPA (1.0, 2.5, 5.0, 10.0 or 20.0 mM) was added at the first day of 

sphere induction and sphere size was measured after a period of 5 days. To verify VPA 

modulation after sphere formation, MB cells were dissociated with trypsin-EDTA into cell 

suspension and seeded at 500 or 1000 cells/well in 24-well ultra-low attachment plates 

(Corning®) in serum-free sphere-induction medium. After 5 days, VPA was added at a final 

concentration equal to IC50 dose (D283, 2.3 mM; Daoy, 2.2 mM). Spheres size and number 

were analyzed after period of 48 hours of VPA exposure. Images were taken an inverted 

microscope at ×5 magnification. Sphere size was measured using ImageJ (National Institutes 

of Health, Bethesda, USA). A sphere was considered if it had at least 15 cells. Experiments 

were conducted in three biological replicates. 

 

Reverse Transcriptase Polymerase Chain Reaction (RT-qPCR) 

The mRNA expression of target genes was analyzed by RT-qPCR. RNA was 

extracted from MB spheres and monolayer cells using ReliaPrep™ RNA Miniprep System 

(Promega), in accordance with the manufacturer’s instructions and quantified in NanoDrop 

(Thermo Fisher Scientific). The cDNA was obtained using the GoScript Reverse System 

(Promega) also according to the manufacturer's instructions. The mRNA expression levels 

of CDKN1A, ENO2, HES1, Nestin, NOTCH1, RBFOX3, SOX2 and TUBB3 were quantified 

using PowerUp SYBR Green Master Mix (Applied Biosystems, Thermo Fisher Scientific). 

The primers used for RT-qPCR amplification were designed according to literature and are 

shown in Table 1. The expression of ACTB was measured as control.  

Table 1.  Forward and reverse primers used for RT-qPCR amplification 

Gene Primer Forward (5’-3’) Primer Reverse (5’-3’) 

ACTB AAACTGGAACGGTGAAGGTG AGAGAAGTGGGGTGGCTTTT 

CDKN1A ACTCTCAGGGTCGAAAACGG CTTCCTGTGGGCGGATTAGG 
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ENO2 AGCCTCTACGGGCATCTATGA TTCTCAGTCCCATCCAACTCC 

HES1 AGTGAAGCACCTCCGGAAC TCACCTCGTTCATGCACTC 

Nestin GATCGCTCAGGTCCTGGAAG GGGGTCCTAGGGAATTGCAG 

NOTCH1 AAGCTGCATCCAGAGGCAAAC TGGCATACACACTCCGAGAACAC 

RBFOX3 CCAGGCTCCGAGGCCAGCACAC TGTAGGGTCGGAGGGGTGGAG 

SOX2 CAGCTCGCAGACCTACATGA GGGAGGAAGAGGTAACCACAG 

TUBB3 CTCAGGGGCCTTTGGACATC CAGGCAGTCGCAGTTTTCAC 

 

Cell Cycle 

 

To assess cell cycle, MB treated with IC50 doses of VPA. After 48 hours of exposure cells 

were detached, centrifuged and washed with PBS twice. The cells were then resuspended in 

50 μg/ml propidium iodide (Sigma-Aldrich, St. Louis, Mo., USA) in 0.1% Triton X-100 in 

0.1% sodium citrate solution and incubated on ice for 15 min. The cells were analyzed by 

flow cytometry (Attune® Applied Biosystems) and 20,000 events were collected per sample. 

 

Western Blot 

Monolayer MB cells VPA-treated, and control were lysed with 1X Lysis Buffer (Cell 

Lysis Buffer, Cell Signaling Technology), and protein was quantified using the Bradford 

protein assay (Pierce, Thermo Scientific, Waltham, USA). For blotting, 40 µg of protein 

were separated by SDS-PAGE and transferred to a PVDF membrane. After 1 h with blocking 

solution (5% milk in TTBS), the membrane was incubated overnight at 4 °C with primary 

antibodies against p21 (1:200; Santa Cruz Biotechnology) and β-actin (1:2000; Santa Cruz 

Biotechnology) as loading control. Incubation of primary antibodies was followed by 

incubation with the secondary antibody adequate to each primary antibody for 1 h. 

Chemiluminescence was detected using ECL Western Blotting substrate (Pierce, Thermo 

Scientific) and analyzed using iBright (Thermo Fisher Scientific). Immunodetection signals 

were analyzed using ImageJ (National Institutes of Health, Bethesda, USA). 

 

Immunofluorescence 

The immunofluorescence assays were performed on control and VPA-treated MB 

monolayer and spheres using primary antibody against histone H3K9ac (1:3000; Abcam) 
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histone H3 (1:250; Thermo Fischer Scientific), SOX2 (1:1000; Abcam).  Alexa Fluor 488-

conjugated goat anti-rabbit (1:1000; Abcam) and Alexa Fluor 594-conjugated anti-mouse 

(1:1000; Abcam) was used as the secondary antibody. Flourished with DAPI (Sigma 

Aldrich) was used to counterstain the nuclei. 

Briefly, cells were seeded into coverslips treated with Poli-L-Lysine solution 0.01% 

(Sigma Aldrich) and treated with VPA for 48 hours, while spheres were moved to coverslips 

treated with Poli-L-Lysine solution 0.01% after treatment. Monolayer cells and spheres were 

washed with Phosphate-Buffered Saline (PBS), fixed with methanol for 5 min at room 

temperature (RT) and washed 2x with ice cold PBS. Coverslips were incubated for 30 min 

at RT in blocking solution (1% of Bovine Serum Albumin (BSA), 0.1% Tween 20 in PBS) 

and with the primary antibodies at 4°C overnight. Then, the coverslips were rinsed three 

times with PBS and incubated with secondary fluorescent antibodies for 1 h at RT. Cells and 

spheres were then washed with PBS and coverslips were mounted. Fluorescent spheres were 

examined using Leica microscope 5 or 10 x amplification. 

Statistics 

Data are shown as mean ± standard error of mean (SEM). Statistical analyses were 

performed by either Student's T-test, when comparing two groups, or one-way analysis of 

variance (ANOVA) followed by Bonferroni post-hoc tests for multiple comparisons. 

Experiments were replicated at least three times; P values under 0.05 were considered 

significant. The GraphPad Prism 6 software (GraphPad Software, San Diego, USA) was 

used for analyses. 

 

Results  

VPA decreases MB cell and neurospheres viability  

To evaluate the effects of VPA inhibition on MB cell viability, we exposed the cells 

to different concentrations of VPA (0.5; 1.0; 2.5; 5.0; 10.0; 20.0 mM) for 48 or 72 

hours.  VPA was able to reduce MB cells viability in a dose-dependent manner (Fig. 1A). 

Fifty percent inhibition of growth (IC50) was determined and both MB cell lines presented 

similar responses to VPA inhibition (2.3 mM for D283 and 2.2 mM for Daoy cells) (Fig. 

1B). Since exposure to VPA had only a slight increase in VPA inhibition capability, 

following experiments were conducted using 48 hours of exposure time.  
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Neurosphere assays are widely used to investigate the proliferation of MB cancer 

stem cells [21, 23]. First, we verified the expression of stemness genes Nestin, SOX2, and 

NOTCH1 in D283 and Daoy neurospheres compared to monolayer cells. After 7 days of 

culturing cells in appropriated medium for expansion of tumor stem cells, D283 and Daoy 

neurospheres had an increase of transcriptional levels of all evaluated stemness genes (2.2-

fold, p < 0.01 in Nestin; 0.9-fold, p < 0.01 in SOX2; 1.2-fold, p < 0.01 in NOTCH1) (63.4-

fold, p < 0.0001 in Nestin; 26-fold, p < 0.01 in SOX2; 8.5-fold, p < 0.001  in NOTCH1), 

respectively (Fig. 1C-D). These data suggest that the neurosphere assay is able to enrich the 

CSC population in MB cells.  

To elucidate whether VPA could impair MB neurosphere formation, we measured 

neurosphere size after growth in the presence of VPA (1.0; 2.5; 5.0 mM). VPA was able to 

impair neurosphere formation in both MB cell lines. VPA at all concentrations tested 

significantly reduced the sphere size after 5 days of VPA exposure compared to controls 

(Fig. 1E-F). We also examined if VPA could be capable of reducing sphere size and the 

number of MB neurospheres. After 5 days of CSC induction, MB neurospheres were treated 

with VPA at the estimated IC50s (2.3 mM for D283 and 2.2 mM for Daoy) for 48 hours. 

VPA was able to reduce D283 neurosphere number and size (33%, P < 0.05; 27%, P < 

0.0001; respectively). In Daoy neurospheres, we found that VPA was able to reduce 

neurosphere size (25.5%, P < 0.01) (Fig 1G-H).  
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Figure 1: VPA decreases MB cell and neurospheres viability. A.  MB cells were treated 

with a range of VPA concentrations (0.5; 1.0; 2.5; 5.0; 10.0; 20.0 mM) for 48 and 72 hours 

and cell viability was measured by trypan exclusion assay. B. IC50 concentrations of VPA 

for MB cells with 95% confidence interval (CI). C-D. Relative mRNA levels of Nestin, 

SOX2 and NOTCH1 in MB monolayer cells and neurospheres were verified using RT-

qPCR. E. VPA effect on MB neurospheres formation after 5 days of VPA exposure. F. MB 

neurospheres size relative to control neurospheres. G. After 5 days of neurospheres 

formation VPA was added and evaluated after 48 hours. MB neurospheres number and size 

relative to control neurospheres. All images were taken in an inverted microscope with 5X 

amplification. Scale bar 500 μm. Results represent the mean ± SD of three independent 
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experiments; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 compared to controls or 

monolayer cells.  

 

To confirm that VPA effects were due to an increase in histone acetylation, we 

verified acetylation on histone 3 lysine 9 residue (H3K9ac) by immunofluorescence assay. 

We found that VPA enhances the histone acetylation profile in MB cells and neurospheres 

(Fig. 2). 
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Figure 2: VPA enhances histone acetylation. Immunofluorescence assay using histone H3 

lysine 9 acetylated residue (H3K9ac), total histone H3 total. MB cells and neurospheres were 

treated with VPA (D283 2.3mM; Daoy 2.2mM) for 48 hours. A. MB cells. B. MB 

neurospheres. Images were taken in an inverted microscope with 10X amplification. Scale 

bar 200 μm. 

 

VPA increases p21 levels in SHH MB cells and neurospheres 

To evaluate the effect of VPA on the arrest of the cell cycle, we first measured the 

expression of Cyclin-dependent kinase inhibitor 1 (CDKN1A), gene that encodes p21. VPA 

was able to increase the transcriptional levels of CDKN1A only in Daoy cells (3.2-fold, P 

<0.05 in Daoy cells). In addition, VPA exposure also caused an increase in p21 protein levels 

in Daoy cells (97 %, P <0.05) and a slight decrease in D283 cells (22%, P <0.05) (Fig 3B). 

VPA effects in p21 levels were accompanied by changes in cell cycle progression. Cell cycle 

analysis showed that VPA causes G1 arrest only in Daoy cells (P <0.05) (Fig. 3C). These 

results indicate that VPA modulation on the cell cycle pathway could be different depending 

on the MB molecular subgroup.  

Next, we measured MYC transcriptional levels in D283 and Daoy cells and found 

that D283 has higher levels of MYC in comparison to Daoy (3.5-fold, p< 0.001) (Fig. 3D). 

VPA was able to decrease MYC levels only in Daoy cells (0.4-fold, p<0.05) (Fig. 3E). 

Studies indicate that MYC acts as a negative regulator of p21 [24-25]. Therefore, it is 

possible that VPA was not able to increase p21 levels in D283 cells due to high levels of 

MYC.  In the MB CSC context, VPA reduced MYC in D283 neurospheres (0.3-fold, p<0.05) 

and Daoy neurospheres (0.8-fold, p<0.01) (Fig. 3F). Furthermore, VPA increases CDKN1A 

levels in both MB neurospheres (0.9-fold, P <0.05 in D283; 6-fold, P < 0.0001 in Daoy 

spheres) (Fig. 3F).  
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Figure 3: VPA increases p21 levels in SHH MB cells and neurospheres. A. Relative 

mRNA levels of CDKN1A in MB cells after VPA exposure was verified using RT-qPCR. 

B Western blot analysis of p21 in MB cells after VPA exposure. Relative Densitometric Unit 

(RDU) analysis normalized by ACTB and corrected by control. C. Cell cycle distribution of 

MB cells after VPA exposure. D. Relative mRNA levels of MYC between D283 and Daoy 

cells was verified using RT-qPCR. E. Relative mRNA levels of MYC and CDKN1A in MB 

cells and neurospheres after VPA exposure was verified using RT-qPCR. All experiments 

with D283 cells and neurospheres used 2,3 mM and Daoy cells and neurospheres used 2,2 

mM of VPA, and a exposure time of 48 hour. Results represent the mean ± SD of three 

independent experiments; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 compared 

to controls.  

 

VPA enhances neuronal differentiation markers in MB  

To elucidate whether VPA could promote neuronal differentiation in MB cells and 

neurospheres, we measured the transcriptional levels of Tubulin Beta 3 Class III (TUBB3), 



52 
 

Enolase 2 (ENO2), and RNA Binding Fox-1 Homolog 3 (RBFOX3; the gene that encodes 

NeuN). RT-qPCR results indicated that VPA upregulates all three differentiation markers in 

D283 (4.6-fold, P < 0.01 in TUBB3; 1.5-fold, P < 0.01 in ENO2; 4.2-fold, P < 0.0001 in 

RBFOX3) and Daoy cells (0.4-fold, P < 0.01 in TUBB3; 1-fold, P < 0.01 in ENO2; 3.4-fold, 

P < 0.0001 in RBFOX3) (Fig. 4A-B).  Moreover, VPA exposure promoted morphological 

changes similar to neuronal prolongation (Fig. 4C). In MB CSC, VPA increased all neuronal 

differentiation markers in D283 (1.9-fold, P < 0.0001 in TUBB3; 2-fold, P < 0.001 in ENO2; 

14-fold, P < 0.0001 in RBFOX3 for D283 neurospheres) (Fig. 4D). In Daoy neurospheres, 

VPA upregulated TUBB3 (6.1-fold, P < 0.01) (Fig. 4E).  

 

 

 

Figure 4: VPA enhances neuronal differentiation in MB. A-B and D-E. Relative mRNA 

levels of TUBB3, ENO2 and RBFOX3 in MB cells and neurospheres after VPA exposure 
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were verified using RT-qPCR. C. Representative images of MB cells exposed to VPA for 

48 hours. Images were taken in an inverted microscope with 10X amplification. Scale bar 

200 μm. Results represent the mean ± SD of three independent experiments; *p < 0.05; **p 

< 0.01; ***p < 0.001; ****p < 0.0001 compared to controls.  

 

VPA modulation of SOX2 is specific to SHH MB 

Since VPA modulation can be correlated to a more differentiated state, we aimed to 

investigate whether VPA could cause changes in SOX2 levels. VPA exposure was able to 

reduce SOX2 transcriptional levels specifically in SHH MB cells, Daoy (0.4-fold, p < 0.05) 

(Fig. 5A). Daoy neurospheres also had a significant reduction of SOX2 levels (0.82-fold, P 

< 0.001) after VPA exposure (Fig. 5B). Moreover, protein levels of SOX2 were diminished 

in Daoy neurospheres (Fig. 5C). Neuronal progenitor marker, Nestin, is a target gene of 

SOX2. Hence, we sought to investigate if VPA exposure also resulted in Nestin modulation. 

VPA was capable of reducing Nestin transcriptional levels in Daoy cells (0.4-fold, P < 0.05) 

and neurospheres (0.87-fold, P < 0.001).   
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Figure 5: VPA modulation of SOX2 is specific to SHH MB. Relative mRNA levels of 

SOX2 after VPA exposure was verified using RT-qPCR. A. MB cells. B. Daoy 

neurospheres. C. Immunofluorescence assay using SOX2. Daoy neurospheres were treated 

with VPA (2.2mM) for 48 hours. Images were taken in an inverted microscope with 10X 

amplification. Scale bar 200 μm.D. Relative mRNA levels of Nestin in MB cells and 

neurospheres after VPA exposure was verified using RT-qPCR. Results represent the mean 

± SD of three independent experiments; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 

compared to controls.  

 

VPA downregulates Notch1 in Group 3 MB cells and neurospheres 

In Group 3 MB, Notch1 signaling pathway can be associated with self-renewal [26]. 

We sought to elucidate the VPA effect on Notch1 signaling pathway. RT-qPCR results 

indicated that VPA downregulates Notch1 levels only in D283 cells (0.18-fold, p < 0.01) 

(Fig. 6A). Notch1 downregulation was accompanied by modulation of Notch1 target gene, 

HES1. VPA exposure decreases HES1 transcriptional levels in D283 cells (0.26-fold, p < 

0.05). In D283 neurospheres, VPA was able to reduce Notch1 (0.63-fold, p < 0.01) and HES1 

(0.21-fold, p < 0.05) (Fig. 6B).  
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Figure 6: VPA downregulates Notch1 in Group 3 MB cells and neurospheres. Relative 

mRNA levels of Notch1 and Hes1after VPA exposure was verified using RT-qPCR. A. 

Notch1 levels in MB cells. B. HES1 levels in MB cells. C. Notch1 and HES1 levels in D283 

neurospheres. Results represent the mean ± SD of three independent experiments; *p < 0.05; 

**p < 0.01; ***p < 0.001; ****p < 0.0001 compared to controls.  

 

Discussion  

MB is a pediatric tumor that presents high frequencies of mutation in epigenetic 

factors [13]. Dysregulation of the epigenome is also associated with MB cancer stem cells. 

Modulation of the histone acetylation landscape is considered a therapeutic alternative to 

alter stemness pathways responsible for the maintenance of CSC [27]. VPA is a well-known 

anti-convulsant drug that has an effect as an HDAC inhibitor [17]. Previous in vitro and in 

vivo studies indicate that VPA alters pathways related to cell cycle progression, senescence, 

apoptosis, and prolongs survival rates [18, 28]. Here, we found that VPA has an 

antiproliferative effect not only in MB cells but also in MB CSC (Fig. 1).  

Reduction of MB cell and CSC viability can be associated with the increase of 

histone acetylation (Fig. 2). Hyperacetylation is related to the opening of the chromatin 

structure. VPA downregulates proteins essential to the chromatin state, such as SMCs 

(Structural Maintenance of chromatin), HP1 (Heterochromatin Protein-1), and DNMT1 

(DNA methyl transferase-1) [29]. Therefore, VPA increase in histone acetylation contributes 

to an open chromatin state that enables several alterations in the epigenetic landscape. Here, 

we found that VPA changes the expression of genes that regulates cell cycle progression, 

differentiation, and stemness maintenance. 

Cell cycle progression is an essential step to maintain cell viability and growth.  The 

cyclin-dependent kinase inhibitor p21 (also known as p21WAF1/Cip1) acts as a repressor 

and contributes to cell cycle arrest [30]. VPA was capable of increasing CDKN1A (gene that 

encodes p21) levels in Daoy cells and neurospheres. In Daoy cells, the upregulation of 

CDKN1A was accompanied by an increase in p21 protein levels. p21 is the target of several 

epigenetic regulations [31]. HDAC inhibition by SAHA demonstrated accumulation of 

acetylated H3 and H4 on the promoter region of p21 [32]. In addition, HDAC1 directly binds 

to the Sp1 site at the CDKN1A promoter region, preventing transcription [33].  VPA targets 

HDAC1 activity thereby it is likely that VPA disrupts HDAC1 repression of CDKN1A and 
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enables the increase of p21 levels. Hence, upregulation of p21 was followed by an increase 

in G1 arrest in Daoy cells, indicating that VPA arrests the cell cycle progression by 

modulation of cell cycle regulators. Even though our data is limited to CDKN1A levels in 

Daoy CSC, it is probable that VPA also promotes cell cycle arrest in this cellular context.  

VPA modulation of p21 and cell cycle progression seems to be dependent on MB 

molecular subgroups. Daoy represents MB SHH whereas D283 is a group 3/group 4 cell 

line. Group 3 tumors frequently present amplification on the MYC gene. Although D283 

does not have MYC amplification, D283 presents high levels of MYC similar to MYC 

amplificated MB cell lines [34-35].  MYC binds to the promoter region of CDKN1A and 

represses transcription [24-25]. Li and colleagues show that a long time of VPA exposure is 

necessary to reduce MYC expression in D283 in comparison to Daoy cells [18]. Here, we 

confirm that D283 cells have higher levels of MYC in comparison to Daoy cells and VPA 

was only able to reduce MYC levels in Daoy cells. Therefore, it is possible that 48 hours of 

exposure time was not sufficient to reduce MYC levels and thereby increase p21 levels in 

D283 cells. However, in the CSC context, VPA was capable of decreasing MYC in D283 

and Daoy neurospheres, suggesting that CDKN1A increase in MB CSC can be associated 

with downregulation of MYC.  Recent studies indicate that MYC activity can alter the 

epigenetic landscape, promoting a cellular reprogramming that favors a stem cell-like state 

[36-37]. Hence, our results indicate that VPA’s ability to alter MYC signaling not only 

changes cycle progression but also contributes to a more differentiated state in MB CSC.   

Induction of differentiation is an important strategy to reduce tumorigenicity, 

especially in the CSC context. Therapies that promote differentiation enable cancer cells 

with high malignancy to differentiate to a state of low tumorigenicity, increasing survival 

rates [38]. Cheng and colleagues demonstrated that induction of a neuronal differentiation 

process in glioma stem cells causes cell cycle arrest and inhibits proliferation [39]. Recent 

studies indicate that epigenetic modulators are essential to maintain the balance between 

differentiated and undifferentiated states [40]. HDAC inhibitors VPA, TSA, and NaB 

induces neuronal differentiation in progenitor cells [41]. In MB, previous studies indicate 

that NaB promotes differentiation and reduces stemness genes [22, 42].  Here, we found that 

the VPA antiproliferative effect on MB cells and CSC was followed by an increase in 

differentiation markers (Fig. 4). Upregulation of TUBB3, ENO2, and RBFOX3 was 

accompanied by morphologic changes similar to neuron-like in MB cells, indicating that 
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VPA promotes neuronal differentiation. Cheng and colleagues demonstrate that once MB 

cells differentiate, the cells lose their proliferative capacity and tumorigenic potential, and 

this process is crucially related to epigenetic modulation [43]. Hence, the neuronal 

differentiation induced by VPA in MB cells and CSC could indicate that it decreases MB 

malignancy.  

VPA modulation seems to have an important role in defining the state of 

differentiation on MB, so we explore the SOX2 role in MB stemness. SOX2 is associated 

with self-renewal, pluripotency, and neuronal differentiation in embryonic stem cells [44-

45]. In MB, recent studies indicate that SOX2 expression is crucial to MB development, 

especially in SHH molecular subgroup [46]. SHH MB tumors frequently harbor mutations 

that activate SHH signaling pathway. GLI1/2 are downstream factors of SHH and positively 

regulate SOX2 by binding to its promoter, promoting self-renewal and tumorigenesis [47]. 

In addition, SOX2-positive cells show lower sensitivity to chemotherapy agents, thereby 

contributing to tumor resistance and relapse [48]. Therefore, it was not surprising that SOX2 

was upregulated in MB CSC in comparison to MB cells (Fig 1). VPA was able to reduce 

SOX2 transcriptional levels only in Daoy cells, indicating that the stemness pathways that 

maintain CSC differ according to MB molecular subgroup. In Daoy neurospheres, SOX2 

levels were reduced by VPA, suggesting that VPA impairs CSC in SHH tumors through 

SOX2 expression. Moreover, VPA decreases Nestin transcriptional levels, which is a 

progenitor marker regulated by SOX2 [49], suggesting that VPA not only reduces SOX2 

expression but also disrupts signaling pathways downstream of SOX2.  VPA modulation of 

SOX2 could be related to p21 expression. Marqués-Torrejón and colleagues show that in 

neural stem cells p21 binds to SOX2 enhancer region, suppressing its transcription [50]. We 

found that VPA enhances CDKN1A expression in Daoy cells and neurospheres, reinforcing 

the idea of p21-SOX2 regulation in SHH MB. SOX2 is also susceptible to epigenetic 

regulation. Kidder and colleagues show that HDAC1 is a positive regulator of SOX2 in 

embryonic stem cells [51]. HDAC1 is a target of VPA modulation, thereby it is possible that 

VPA could influence HDAC1 regulation of SOX2.  

So far, our results indicate that VPA has different mechanisms depending on the MB 

molecular subgroup. To further explore that idea, we choose to better understand the 

contribution of Notch signaling pathway.  Notch signaling is known to promote proliferation 

by inhibiting neuronal differentiation and maintaining cells in a neural stem cell state [52]. 
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In MB, Notch inhibition resulted in reduced CD133+ subpopulation and an increase in 

differentiation [53].  Here, we found the MB enriched CSC population has higher levels of 

Notch1 in comparison to MB cells (Fig. 1). VPA was able to reduce transcriptional levels of 

Notch1 and Hes1 only in D283 cells, suggesting that VPA modulates Notch1 specifically in 

the group 3/4 context. In D283 neurospheres, VPA was also capable of downregulating 

Notch1 and Hes1. Recent studies indicate that Notch1 signaling regulates self-renewal and 

metastasis in Group 3 MB [26]. Hence, VPA’s abilities to reduce Notch1 levels or Notch1 

+ subpopulation, and the increase in differentiation suggest that VPA has therapeutic 

potential against Group 3 MB CSC. It’s not yet clear how HDAC inhibitors regulate Notch1 

expression but is believed to be related to modulation of the chromatin state [54].  

In conclusion, our results indicate that VPA can induce MB to a state of low 

tumorigenicity by reducing MB viability, increasing differentiation, and downregulating 

stemness pathways. VPA effect seems to depend on the MB molecular subgroup. In SHH 

MB, VPA modulates the MYC-P21-SOX2 axis, whereas in Group 3 VPA regulates the 

Notch1 pathway. Therefore, our results provide evidence indicating that VPA inhibits cells 

with high malignant traits and should be further investigated with different cellular models 

such as chemo resistant cells and metastatic animal models.  
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DISCUSSÃO  

As neoplasias pediátricas de sistema nervoso apresentam um dos principais desafios 

para o tratamento oncológico. Isto porque, tumores como MB, NB e pGM possuem elevadas 

taxas de resistência a tratamentos, formação de metástase e recidiva tumoral (JOHNSEN et 

al., 2019) (NORTHCOTT et al., 2019) (FUNAKOSHI et al., 2021).  A alta capacidade 

tumorigênica e baixa sensibilidade aos tratamentos pode ser explicada pela presença de uma 

subpopulação de células, as células tronco tumorais (CTT) (ARAVINDAN et al., 2019).  

Um dos principais mecanismos envolvidos no estabelecimento e manutenção de um estado 

tronco tumoral são as modificações epigenéticas. Estudos sugerem que alterações no perfil 

epigenético permitem a reprogramação celular que contribuem para a ativação de vias de 

stemness (JAGANI et al., 2010) (OLEKSIEWICZ et al., 2017). Além disso, a escolha entre 

um estado diferenciado ou indiferenciado pode ser controlada por alterações no epigenoma 

(WAINWRIGHT & SCAFFIDI, 2017). 

No capítulo I demonstramos que mecanismos epigenéticos como modificações em 

histonas, metilação do DNA, remodeladores da cromatina e regulação por microRNAs estão 

envolvidos na formação e manutenção de células tronco tumorais de tumores pediátricos do 

sistema nervoso. Além disso, foi possível perceber que existe uma dificuldade de transpor a 

modulação de mecanismos epigenéticos realizados em estudos de pesquisa básica para 

estudos clínicos. Neste sentido, o VPA, um modulador epigenético, apresenta vantagem por 

ser um fármaco considerado seguro para pacientes pediátricos, facilitando seu 

reposicionamento. Estudos clínicos com pacientes pediátricos utilizando VPA indicam que 

doses de VPA são bem toleradas e apresentam respostas clínicas promissoras no tratamento 

de tumores pediátricos de sistema nervoso (MASOUDI et al., 2008) (SU et al., 2011) (SU 

et al., 2020). É importante ressaltar que estudos clínicos em pacientes pediátricos abrangem 

tumores recorrentes e recidivos, assim, seus resultados são relevantes no contexto de células 

tronco tumorais.  

VPA atua inibindo a ação de histonas deacetilases (HDAC) e, consequentemente, 

alterando a regulação da transcrição gênica. Um dos mecanismos regulados por HDAC é a 

progressão do ciclo celular, considerado um passo indispensável para proliferação e 

crescimento tumoral. HDAC são capazes de controlar a progressão do ciclo celular ao 

modular reguladores desse processo, como por exemplo: p53 (proteína de tumor p53), pRB 

(proteína retinoblastoma), p21 (inibidor de quinase dependente de ciclina 1) e p27 (inibidor 
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de quinase dependente de ciclina 1B) (TELES & SETO, 2011). Além disso, um dos 

principais mecanismos em comum entre inibidores de HDAC (HDACi) é a capacidade de 

alterar a progressão do ciclo celular (BOLDEN et al., 2006). Em NB, HDACi como Butirato 

de sódio (NaB), Tricostatina A (TSA) e VPA causam acúmulo de células em G0/G1 ou 

G2/M promovendo parada na progressão do ciclo celular (MÜHLETHALER-MOTTET et 

al., 2008) (GU et al., 2012). Estudos em MB utilizando Dacinostat e Quisinostat sugerem 

que inibir HDACs reduz a proliferação por meio da parada de ciclo celular (ZHANG et al., 

2019).  

Nosso estudo, apresentado no capítulo II, também demonstrou que o VPA foi capaz 

de causar parada na progressão do ciclo além de modular a expressão de p21 em MB. HDACi 

são capazes de regular p21 por causarem aumento de H3 e H4 acetiladas em regiões 

próximas ao promotor de p21, permitindo um aumento na transcrição deste gene que, por 

sua vez, regula a progressão do ciclo celular (RICHON et al., 2000). Sabe-se que a regulação 

das fases do ciclo tem suma importância na proliferação das células de câncer, mas a 

progressão do ciclo também está relacionada ao processo de diferenciação celular. Estudos 

indicam que a indução da diferenciação é dependente das fases do ciclo (PAUKLIN & 

VALLIER, 2014) (HARDWICK et al., 2015) e, dessa forma, a capacidade de HDACi de 

regular a progressão do ciclo também implica que estes inibidores são capazes de controlar 

o processo de diferenciação celular. 

A diferenciação celular é um processo que permite que células tumorais adquiram 

um estado de menor tumorigenicidade, visto que células diferenciadas perdem a capacidade 

proliferativa e apresentam diminuição de traços de malignidade (CHENG et al., 2020). 

Estudos recentes indicam que a maquinaria epigenética é um fator chave para decisão entre 

um estado indiferenciado e diferenciado de uma célula (ZHANG et al., 2017). No capítulo 

I, foram elencados diferentes inibidores de HDAC capazes de causar aumento em 

marcadores de diferenciação neural e alterações morfológicas relacionadas à aquisição de 

um estado mais diferenciado em células de MB, NB e pGM. Assim, é sugerido que em 

tumores pediátricos de sistema nervoso, a redução da tumorigenicidade causada por HDACi 

está extremamente relacionada à indução de diferenciação. Nossos resultados em MB 

utilizando VPA reforçam esta premissa, visto que VPA foi capaz de aumentar marcadores 

de diferenciação neural, além de reduzir a viabilidade de células e CTT de MB.   
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Moduladores epigenéticos também são capazes de causar uma reprogramação celular 

que limita a sinalização de vias de stemness, diminuindo os traços característicos de células 

tronco tumorais. De acordo com o capítulo I, os genes de stemness CD133, SOX2, BMI1, 

NANOG e Nestin são os principais alvos de inibidores de HDAC em tumores pediátricos de 

sistema nervoso. Apesar da modulação de vias de stemness ser altamente dependente do 

contexto celular ou tumoral, é possível notarmos que um denominador em comum é que a 

modulação de genes de stemness está associada a redução na viabilidade e proliferação 

celular, declínio nas taxas de formação de CTT, e diminuição do crescimento in vivo 

(STOCKHAUSEN et al., 2005) (ZHENG et al., 2013) (ANASTAS et al., 2019) (DA 

CUNHA JAEGER et al., 2020). Os resultados experimentais do capítulo II, demonstram 

que, em MB, a redução na viabilidade e indução de diferenciação neural causadas por VPA 

podem ser também relacionadas a regulação dos genes de stemness SOX2, Nestina e Notch1 

em células e CTT de MB. Ainda não foi possível definir se moduladores epigenéticos 

induzem diferenciação e este processo controla a expressão de genes de stemness ou se a 

modulação epigenética tem como alvo principal a regulação de genes de stemness e, por 

consequência, ocorre a indução de um estado mais diferenciado das células. Apesar do 

mecanismo específico de atuação de moduladores epigenéticos não estar claro, os resultados 

obtidos no capítulo I e II sugerem que inibidores epigenéticos, em especial aqueles que 

alteraram a acetilação de histonas, são potenciais terapias para tumores pediátricos de 

sistema nervoso visto que são capazes de reduzir a tumorigenicidade por alterar o estado da 

cromatina e permitir o estabelecimento de um perfil mais diferenciado nas células.  

 

CONCLUSÃO  

Nas últimas décadas os casos de neuroblastoma, meduloblastoma e glioma 

pediátricos têm aumentado e a principal característica comum entre estes tumores pediátricos 

do sistema nervoso são alterações epigenéticas, além das altas taxas de mortalidade e 

morbilidade. Logo, o uso de inibidores de HDAC como VPA tem se mostrado uma potencial 

estratégia terapêutica, principalmente por atingir células tronco tumorais, as quais são 

identificadas como responsáveis pelo aparecimento de metástases e recidiva tumoral. Dessa 

forma, concluímos os resultados in vitro sugerem que estudos que melhor caracterizem o 
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efeito de VPA, especialmente em tumores pediátricos do sistema nervoso com alta 

malignidade, devem ser continuados.  
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