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Abstract. Robustness is an essential pre-requisite to any control system. Furthermore, there 
exist situations where a fixed linear controller can not be used. The nonlinear H-infinity 
control theory allows the design of nonlinear robust controllers. However, there is not, until 
now, an effective procedure to compute control laws based on this theory. The difficulty to 
find a closed form solution which satisfies the Hamilton-Jacobi-Isaacs inequality (equation), 
that arises in the nonlinear H-infinity control theory, is recognized as the main limitation to 
use the results from that theory. In this work, some theoretic results which contribute to find a 
solution to this problem are presented. These results can also provide an estimate for the 
controller validity region, a subject that apparently has been largely neglected in the open 
scientific literature. The systematic implementation of these results is done via the 
formulation and the solution of some optimization problems. As an illustration the proposed 
approach is partially applied to control a chemical engineering system. 
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1. INTRODUCTION 

Robustness is a fundamental pre-requisite to any control system [Zhou et al., 1996]. 
Furthermore, there exist situations where a fixed linear controller can not be used to control a 
process [Secchi et al., 1999]. The nonlinear H-infinity control theory allows the design of 
nonlinear robust controllers. However, there is not, until now, an effective procedure to 
compute controllaws based on this theory. In fact, the difficulty to finda closed form solution 
to the Hamilton-Jacobi-Issacs (HJI) inequality (equation), that arises in the nonlinear H
infinity control theory similarly to the Riccati inequality (equation) in the corresponding 
linear problem, is recognized as the main limitation to use the results from that theory [Isidori 
and Lin, 1998] [Zhan and Wang, 1996]. 

During the 1990's, several methods to solve the HJI inequality (equation) arose in the 
1iterature [Van der Schaft, 1992] [Isidori and Kang, 1995] [Beard and McLain, 1998] 
[Tsiotras et al., 1998] [Yang et al., 1997] [Huang, 1998]. Most ofthesemethods are based on 
the app1ication of hard numerical methods to approximate the HJI equation. Following the 
suggestion ofthe first theoretical works [Van der Schaft, 1992] [Isidori and Kang, 1995], the 
main approach o f these methods is to search for a solution via polynomial expansions around 
the origin, according to Lukes's work (1969). Probably, the only exception which tries to 
explore the extra degrees o f freedom allowed by solving the inequality instead o f the eq:Uation 
is the work oflsidori and Kang (1995). Unfortunately, their procedure to finda so1ution is not 
much practical. 
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Besides the absence of an effective method to compute the control laws, another 
remarkable problem of the nonlinear H-infinity control theory is that its theoretical results do 
not provide any a priori information conceming the size o f the local attracting region for the 
closed-loop system (an exception to this rule is the work of Beard and McLain (1998)). So, 
the quantification of how better is the nonlinear controller over the linear one remains 
unanswered. 

From the experience acquired in solving that control problem using some of these 
methods from the literature, it seems evident that none produce a satisfactory solution to our 
problem 1. Maybe for this reason there are no reports o f experimental applications o f the 
nonlinear H-infinity control theory2

• 

The objective ofthis work isto present the results obtained in our research concerning the 
searching and development of effective and simple methods to fmd closed form solutions to 
the HJI inequality. Our intent is to show that, with the help of some new theoretic results, a 
very satisfactory solution, which includes an estimate of the controller validity region for 
some classes o f mathematical functions, can be obtained. 

The sequence of this work presents, in section 2, the formulation of the nonlinear H
infmity control problem. In section 3, the theoretical results that will be used to solve the 
problem are presented. In section 4, the systematic use of these results is formalized by 
enunciating and solving three optimization problems. Section 5 illustrates the application of 
the developed methodology designing a control law for a chemical engineering system. 
Finally, section 6 summarizes the main conclusions ofthe work. 

2. NONLINEAR H-INFINITY CONTROL PROBLEM 

The nonlinear H-infinity control theory deals with the nonlinear extension of the H
infinity problem3

. The results o f this theory started to arise in the literature after the 
publication of the famous paper by Doyle, Glover, Khargonekar and Francis (1989). For 
simplicity, in this work, only systems described by input-affine models will be regarded. 
Consider Eq. (1 ), 

x = f(x) + g(x).u + k(x).w 

y=x 

where x E M (M ç 9\n ) is the vector of state variables, w E 9\q is the vector of exogenous 
inputs, u E 9\m is the vector o f control actions, y E 9\P is the vector o f measured variables and 

1 An ideal approximation to the nonlinear H-infinity control law must satisfy the following criteria [Longhi, 
1998]: 

A. 1t must be explicit, to have an easy implementation and it must be simple to tune. 
B. lt should not require a prohibitive computational effort (both time for computation and memory 

requirements ). 
C. The validity region can be defined or at least it must be known. 
D. The augment of the controller complexity must imply the improvement of its performance. This 

improvement can be measured in two ways: 
D.l Some distance between the approximation and the true solution and; 
D.2 The size ofthe closed-loop attracting region. 

2 The authors do not know any report conceming experimental applications o f the theory to real systems 
3 The H-infinity control was originally conceived for linear systems. It must be remarked that the H-infinity 
norm does not make sense for nonlinear systems. The correct would be to say the induced L2 gain. 
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z is the vector of exogenous outputs which characterizes the control objective; f(x) and g(x) 
are nonlinear smooth functions, i.e., belonging to the C"" class, with f(x0)=h(x0)=0. 

It will be considered, also for simplicity, that the origin is the solution of interest (i.e., 
f(O)=O and h(O)=O for w=u=O) and that fis observable by h. 

Given the nonlinear state feedback (y=x) description of Eq. (1), the nonlinear H-infinity 
control objectives are two: 

1. to stabilize the plant (in closed-loop) and 
2. to attenuate the influence ofthe exogenous inputs, w, in the objective variable, z. 

The influence from w(t) on z(t) is measured as the finite L2-gain between these variables. 
Here, this gain is defmed as in Van der Schaft (1992). 

Definition 1 (Finite L2-gain). Given any y >O, the mapping from w(t) to z(t) is said to have 
k-gain less than or equal to y if, under the zero initial condition x(O) =O, 

(2) 

for all T ~O and all w(.) e L2(0,T), where 11·11 denotes the Euclidean norm. 
The solution for this L2-gain attenuation problem for a system described by Eq. (1) can 

be given by theorem 1 [V an der Schaft, 1992]. 

Theorem 1 (Local solution to L2-gain attenuation problem). Consider the nonlinear 
system o f Eq. (1) anda real parameter, y > O. Suppose that exists a smooth solution, V(x) :2: O, 
to the Hamilton-Jacobi equation (Eq. (3)): 

aV (x).f(x)-.!_ aV (x){g(x).g T (x)-~.k(x).k T (x)JaTV (x)+.!...h T (x).h(x) = 0 ax 2ax 1 ax 2 
V(O)= O (3) 

or to the Hamilton-Jacobi inequality (Eq. (4)): 

-(x).f(x)---(x) g(x).g T (x)---z.k(x).k T (x) -(x)+-.h T (x).h(x) ~O a v 1 a v { 1 J a T v 1 
ax 2ax y ax 2 

~~=O ~ 

so, the closed-loop system with the feedback of Eq. (5): 

;Pv 
u = -gT (x).T(x) (5) 

has locally a L2 gain (from w lo z ~[h~)} less than or equal to y. 

If we desire that the origin also presents asymptotic stability, some additional hypotheses 
must be done: 

1. V(x) must be positive definite (V(x) >O) and satisfy 2.1 or 2.2; 
2.1 V(x) must satisfy, instead ofEqs. (3) or (4), the strict inequality ofEq. (6): 



::~.. (x).f(x)-- ::~.. (x) g(x).gr (x)--
2 

.k(x).kr (x) (x)r +-.h(x).h r (x) <O av 1 av { 1 Y'v 1 
ox 2 ox r ax 2 

~~=O W 

2.2 Every limited trajectory x(t) of the non-disturbed system (with w=O) 

X = f( X) + g( X). u which satisfies z = [h( X) u r = o for all t > o goes to the origin 

when time approaches to infmity. 

If conditions 1 and 2.1 ( or 2.2) are satisfied, then it can be shown that V(x) is a Lyapunov 
function for the non-disturbed system. If V(x) satisfies theorem 1 and it is a Lyapunov 
function, the problem of disturbance attenuation with internai stability (i.e., the nonlinear H
infinity control problem) via state feedback is locally solved. It must be noted that theorem 1 
does not say anything about the size of the controller validity region. So, before to go ahead 
we must define the validity region for the nonlinear H-infinity controller and its estimates. 

Definition 2 (Nonlinear H-infinity controller validity region). The region ofthe state space 
of Eq. (1) that, subject to the nonlinear state feedback law from theorem 1, simultaneously 
satisfies the HJI inequality and guarantees asymptotic stability for the non-disturbed closed
loop system, is referred to as the validity region corresponding to the controller of Eq. (5). 
Any subset of this state space region is referred to as an estimate of the controller validity 
regwn. 

The region where the HJI inequality is satisfied is simply the intersection between its 
negativeness region and the positiveness region of V(x). The region of asymptotic stability 
can be estimated using the results from the Lyapunov stability theory. Then, to determine the 
controller validity region, it must be obtained a solution that fumishes not only a 
mathematical form to V(x) but also an estimate of the state space region where V(x) is 
positive definite (V(x) > O) and the HJI inequality is negative definite (H•(x) < 0). Some 
useful results to estimate these regions are presented in the next section. 

3. PRELIMINARY THEORETIC RESULTS 

The problem of fmding a solution to the nonlinear H-infinity control problem can be 
viewed as the problem o f finding a positive scalar function 

V(x) >O (7) 

which satisfies a strictly (or non-strictly added by a detectability condition) inequality known 
as HJI inequality 

H·(x) <O (8) 

both in some neighborhood ofthe desired solution (for simplicity, the origin is that solution). 
Therefore, independently on the method used to solve the nonlinear H-infinity control 

problem it would be of great value a method which allows the local sign evaluation of 
multivariable scalar functions. If such a method is available, it should be used in two ways: 
(a) as a synthesis tool, forcing V(x) to satisfy Eqs. (7) and (8); (b) as an analysis tool, just 
verifying ifthe Eqs. (7) and (8) are satisfied in some neighborhood ofx =O. 
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The acquired experience in solving problems ofthis kind shows that V(x) and H·(x) can 
be rewritten as quadratic forms in accordance with Eq. (9)4

. 

{
V(x) = y T (x).P.y(x) 

H.(x) = z T (x).H.z(x) 

The basis o f these quadratic forms are nonlinear functions o f the states, x: 

{
y(x) = [yl(x) Yz(x) ... Yn(x)r 

z(x) = [z1(x) z 2 (x) ... zm(x)] 

(9) 

(lO) 

With no loss of generality matrices P and H can be written as real symmetric matrices: 

p E 9\ nxn (p ij = p jJ 

H e 9\mxm (Hü = HiJ 
(11) 

Expressing Eqs. (7) and (8) in terms of the quadratic forms of Eq. (9) is the basis of this 
work. The approach used to solve the HJI inequality is based on mathematical results 
conceming the positiveness5 of multivariable scalar functions written as quadratic forms. 
These results can be summarized in the definitions 3 and 4 and theorems 2 to 4, presented 
below. The proofs o f these theorems can be found in [Longhi et al., 2000]. 

Definition 3 (Global suitable function). If a scalar function of n variables assumes real 
values when its variables belong to the real field, and assumes the null value only when all its 
variables are set to zero, then this function is called a global suitable function. 

Theorem 2 (Sufficient criterion for global positiveness). Let V(x) be a scalar function ofn 
real variables. Ifthe quadraticform representation ofV(x) is yT.B.y, where the elements ofy 
are global suitable functions o f x and B is a symmetric real matrix obtained directly from the 
coefficients ofV(x), then a sufficient condition to V(x) be positive (negative) is that B be a 
positive (negative) definite matrix. 

Theorem 3 (Local properties of a scalar function). /f a real multivariable scalar function 
has a null solution at the origin, has null gradient value at the origin, can be extended in 
Maclaurin Series, and rewritten as: V(x) = x T .P.x + fNL (x), where P is a real symmetrical 

matrix and fNL(x) contains the terms with order greater than 2, then the local sign ofV(x) can 
be inferred by analyzing the eigenvalues o f the matrix P in the following way: 

1. Ifthe eigenvalues are ali positive (negative), V(x) is locally positive (negative) definite; 
2. /f at least one eigenvalue is null and the others have the same sign, nothing can be said 

about the sign ofV(x); 
3. /f at least one eigenvalue has sign different from the others, then V(x) is locally sign 

undefined. 

4 The variables y(x) and z(x) are not the same as in Eq. (1 ). 
5 To prove the negativity of V(x) in theorems 2 and 4, it is sufficient to prove the positiveness o f ( -1 ).V(x). 



Definition 4 (Real local region). The real local region of a multivariable scalar function y(x) 
is the set composed by the subsets o f the real field where each element o f x can assume values 
such that y(x) is real and y ::f. O unless x =O. 

Theorem 4 (Local positiveness with estima te of the positiveness region size). Let V(x) be a 
scalar function of n real variables. !f the quadratic form representation of V(x) is l.B.y, 
where the components o f y are functions o f x and B is a symmetric real matrix obtained 
directly from V(x), then a sujjicient condition for the local positive definiteness ofV(x) is that 
B be a positive definite matrix. 
Furthermore, a local region with this defini te sign is obtained from the intersection o f the real 
local regions ofy(x) involved in the quadraticform description ofV(x). 

4. EFFECTIVE SOLUTION TO NONLINEAR H-INFINITY CONTROL PROBLEM 

The proposal of this work is to explore the theoretic results of section 3 in a systematic 
fashion. For this end, we combine these mathematical results with an optimization procedure. 
This is important because applying theorems 2 to 4 directly to solve the nonlinear H-infinity 
control problem based only in the algebraic talent o f the control engineer may result in ·a very 
tedious work or even useless ifthe problem's dimension is reasonably large. 

As it was seen before, finding a solution to the nonlinear H-infinity control problem can 
be viewed as the problem of finding a positive scalar function V(x) which satisfies the HJI 
inequality. So, the first step to use the results of theorems 2 to 4 is to write the HJI inequality 
for a certain attenuation levei (y) and verify if a local solution exists. This leads to the 
optimization problem 1. 

Optimization problem 1 (Local nonlinear H-infinity control solution). Choose the form o f 
function V(x) and substitute in H•(x). Expand these two functions in McLaurin series: 
V(x)=xT.P.x+fNL(x), H.(x)=xT.H.x+gNL(x) where P and H are real symmetric 

matrices and fNL(x) and gNL(x) contains the terms with order greater than 2. Choose the 
parameters ofV(x) in a way to minimize the y levei attenuation (y > O) of the HJI inequality 
subject to the constraints P > O and H < 0: 

However, the solution of optimization problem 1, despite its simplicity, can only furnish 
a local solution without any information about the size o f the local controller validity region. 
Its main importance is to give an answer to the question about the existence of a local solution 
to the problem. If its solution exists the obtained y--value can also be interpreted as the lowest 
bound to y >O for any nonlinear form of V(x) (Van der Schaft, 1992). This last information 
can be very useful in the next optimizations problems. 

If it is desired quantitative informations conceming the size o f the local controller validity 
region, it is required the solution o f the optimization problems 2 or 3. 

Optimization problem 2 (Global nonlinear H-infinity control solution). Choose the form 
of function V(x) and substitute in H·(x). Write these two functions as quadratic form 
representations: V(x) = yT .Py and H.(x) = zT .H.z where the elements ofy and z are global 
suitable functions o f x and P and H are symmetric real matrices obtained directly from the 
coejjicients of V(x) and H•(x), respectively. Choose the parameters of V(x) in a way to 
minimize the y levei attenuation (y > O) of the HJI inequality subject to the constraints P > O 
andH< O. 



Optimization problem 3 (Nonlinear H-infinity control solution with size of local region). 
Choose the form of function V(x) and substitute in H•(x). Write these two functions as 
quadratic form representations: V(x) = yT .Py and H.(x) = zT .H.z where P and H are 
symmetric real matrices obtained directly from the coefficients of V(x) and H·(x), 
respectively. Choose the parameters ofV(x) in a way to minimize the y leve! attenuation ('Y > 
O) ofthe HJI inequality subject to the constraints P >O and H< O. The solution solves locally 
the problem within a region defined by the intersection ofthe real local regions ofy(x) and 
z(x) involved in the quadratic form descriptions ofV(x) and H·(x). 

Finding an effective solution to optimization problems 1 to 3 considering general 
nonlinear functions is a difficult task. However, if we constrain the results o f section 3 only to 
the class of po1ynomials, we can arrive to an approximated procedure to solve these 
problems6

. 

So, to effectively solve the optimization problem 1, the function (polynomial) V(x) must 
be chosen such that when substituted in the corresponding HJI inequality all possible 
combinations of second order polynomials are formed. Thís way, we will be solving this 
problem in the most broad context. 

To solve problem 2, a similar approach can be used, but now we have a serious 
limítatíon. Different from problem 1, we can not select V(x) to províde all possíble 
combinations to solve the problem. So, thís problem can be solved wíth success íf ít is known 
that exists a certain form of V(x) that globally satisfies its HJI inequality. In this case, the 
optimization problem ís used only to give the optimal parameters to thís particular V(x) form. 

If the optimízation problem 1 is solved, then, at least, a local solution exists. To find an 
estimate to the size o f this local stability region we can try to solve the optimization problem 3 
somehow. At this time, the more interesting procedure to solve the optimízation problem 3 is 
the one gíven by the following steps (using the terminology from theorem 4): 

1. Chose the functions y(x) and z(x) such that both matrices P and H have no null 
diagonal elements. 

2. The new expanded space resulting from the quadratic form description of V(x) and 
H·(x) must have enclosed at least one component of y(x) or z(x) with one parameter 
which regulates the size o f the sign definiteness region. 

3. Maximize the size of the sign defmiteness region (or, alternatively, the size of the 
stability region) for a certain range of attenuation y, while maintaining the 
positiveness ofV(x) and the negativeness ofH.(x) as constraints. 

It must be noted that this last procedure only gives a sub-optimal solution because we are 
not minimizing y. However, as it is well known in the controlliterature, arriving closer to the 
minimum of y frequently reduces significantly the stability region. So, a more realistic 
approach is not to find the minimum but to search for a solution inside an interval: 'Ymin < y < 
'Ymax· These conditions can be easily entered in an optímization problem as two new 
inequalíties constraints. 

To end this section, it must be said that, ali problems stated here are nonlinear constrained 
optimization problems. The solutions presented, despíte the well succeeded results, are not the 
definitive ones. The search for more systematic solutions for optimization problems 2 and 3 is 
the actual focus o f the research. Ali results o f this section were implemented using the Matlab 
(with some functions from the optimízation toolbox) and Maple softwares. 

6 
It must be said that this constraint is not so restrictive because an important result from the nonlinear system 

theory states that ali smooth functions can be represented by Volterra series (i.e., infinite polynomial series). 

F!SCOLA DE ENGENHARIA 
bUH.I OTECA 



5. APPLICATION TO A CHEMICAL REACTOR MODEL 

The CSTR with van de Vusse reaction scheme has been used as a benchmark problem for 
nonlinear process control algorithms [Engell and Klatt, 1993]. It consists of the following 
reaction scheme: 

Here, B is the wanted product and C and D are the undesired byproducts. The van de 
Vusse reaction is carried out in an ideal isothermal continuous stirred tank reactor (CSTR) 
which is modeled by: 

(12) 

(13) 

In the present study, it is used the same kinetic parameters used in Sistu and Bequette 
(1995), i.e., CAin = 50 gmol/liter, k1 = 50 h-I, k2 = 100 h-1 and k3 = 10 liter/(gmol.h). The 
manipulated and controlled variables are f= Fin NR (the inverse ofthe residence time) and CB 
(concentration of component B), respectively. The variable f is assumed to vary without 
constraints. 

The control objective stated in this work is to maintain the production of B at a certain 
value despite the uncertainties in the mathematical model. To use the results from nonlinear 
H-infmity theory we have to rewrite the system equations such that the steady state of interest 
is the null solution (the origin). So, we define the new variables: 

u =f -f88 

(14) 

where the index SS means the steady state of interest. 
To eliminate the CB off-set, the system is augmented by a new state x3, such that x3 = -x2 . 

So, the system model can be rewritten according to Eq. (1 ), where f(x), g(x) and h(x) are 
described by Eqs. (15) to (17). 

[

-kl.xl -k3.xl2 -(2.CAss·k3 +fss).xiJ 
f(x)= k1.x1 -k2.x2 -f88 .x2 

-x2 

(15) 

[

CAin -CASS -xlJ 
g(x) = - Cass- x2 

o 
(16) 

h(x) = x2 (17) 



To introduce robustness to the system, the first state equation is added by an exogenous 
perturbation, w(t). Returning to Eq. (1), the amplitude of that perturbation is arbitrarily 
assumed to be described by Eq. (18). It must be noted that the correspondence between this 
perturbation and the realistic variations on parameters k1, k2, k3 and CAin is not obvious. 

(

0.1] 
k(x) = ~ (18) 

Then, the HJI inequa1ity for this system assumes the form ofEq. (19). 

H*(x)={[-k1 -2.k3.CAss -f88 }x1 -k3.x/ }vx
1 

+(k1.x1 -[k2 +f88 ].x2).Vx
2 

+(-x2).Vx
3 

2 1 1 T 2 r ]2 2 X2 +-.(-2 .k (x).k(x).Vx -LCAin-CAss-XJ .Vx -
4 r l l 

(19) 

2.[CAin- CAss- x1J[- Csss- x2Jvx1 .Vx2 - [- Csss -x2fvx
2 

2
) <O 

To solve the optimization problem 1 for this system we must depart from the form o f Eq. 
(20) as a so1ution to V(x): 

So, with the help ofthe software MATLAB, we arrive to the following solution7
: 

ali = 1.309534257854861.101; 
a13 = 6.866826057038236.10-3; 
a23 = -6.803489668553544.10-3; 
'Y = 1.500664046938835.10-4 

0.8 

0.6 

0.4 

0.2 

N o X 

-0.2 

-0.4 

-0.6 

-0.8 

-1 

-1 -0.5 o 
x1 

a12 = -9.081782877831930.10-5
; 

a22 = 4.633988340265012.10-3; 
a33 = 6.639058486487478.10-1. 

0.5 

Figure 1. Some trajectories ofthe non-disturbed closed-loop system. 

(20) 

Figure 1 shows the asymptotically stable behavior o f the non-disturbed system around the 
origin. It must be remarked that the size of the controller validity region can not be defined 

7 The values ofthe parameters aii need to have the precision presented in the text dueto the minimization ofy. 



just solving optimization problem 1. lf it was desired to estimate this region we should solve 
the optimization problem 2 or 3. 

6. CONCLUSION 

The main contribution of this work is the development of some methods to effectively 
solve the nonlinear H-infmity control problem. These methods were developed departing 
from theoretic results obtained in preliminary works [Longhi et ai., 2000]. The results of this 
work are applicable to a broad class of nonlinear systems. This can be justified if it is 
remembered that ali smooth nonlinear systems (i.e., which belongs to the C"" class) can be 
described by infinite polynomial series (V oi terra series ). An example o f the application o f the 
method to a chemical engineering model was also presented. 
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