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ABSTRACT 

Gene therapy has been increasingly researched for the treatment of diseases 

and the CRISPR/Cas9 system is considered a highly advanced and specific tool. 

However, it is necessary to reduce the chances of off-target cleavage, in order to 

reduce the harmful effects of mutations and chromosomal rearrangements, which 

may be a side effect of gene editing. Consequently, it is imperative to highlight 

the need to identify potential off-target cleavage sites that can cause mutagenesis 

and consequent tumor induction. In this sense, we analyzed off-target site 

prediction after hydrodynamic injection of liposomes as vectors of the 

CRISPR/Cas9 system in newborn mice. The overall characterization of 

formulations showed complexes of about 133 nm, with positive zeta potential of 

+43 mV. The biodistribution of complexes after hydrodynamic injection was 

markedly detected in the liver, lungs, and heart, which became the main target 

tissues of this study. Off-target experimental analysis based on the potential sites 

obtained from in silico predictions showed 0% of indels in the liver and lungs. We 

conclude that the set of experiments showed the potential of the chosen gRNA 

sequence to perform a safe gene editing in the murine ROSA26 locus. 

 

KEYWORDS: liposome, tumor, ROSA26, gene editing, mutation 
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RESUMO 

A edição gênica tem sido cada vez mais pesquisada para o tratamento de 

doenças, sendo o sistema CRISPR/Cas9 considerado uma ferramenta de 

clivagem de DNA altamente avançada e específica. No entanto, é necessário 

reduzir as chances de ocorrerem clivagens fora do alvo pretendido, 

denominados eventos off-target, a fim de evitar os efeitos nocivos de mutações 

e rearranjos cromossômicos, que podem ser uma consequência dessa edição. 

Dessa forma, é importante enfatizar a necessidade de identificar potenciais sítios 

de eventos off-target que possam causar mutagênese e consequente indução 

tumoral. Para isso, realizamos a injeção hidrodinâmica de complexos 

lipossomais de CRISPR/Cas9 em camundongos recém-nascidos. A 

caracterização geral das formulações apresentou complexos com cerca de 133 

nm, e potencial zeta positivo de +43 mV. A biodistribuição dos complexos após 

a injeção hidrodinâmica ocorreu principalmente no fígado, pulmões e coração, 

que se tornaram os principais tecidos alvos deste estudo. A análise experimental 

com base nos potenciais sítios obtidos através de previsões in silico mostrou 0% 

de indels no fígado e nos pulmões. Concluímos que o conjunto de experimentos 

demonstrou que a sequência de gRNA escolhida tem potencial para realizar uma 

edição gênica segura no locus murino ROSA26. 

PALAVRAS-CHAVE: edição gênica, lipossoma, mutação, ROSA26, tumor  
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INTRODUCTION 

Gene therapy has been increasingly researched for the treatment of 

diseases considered incurable, both preventive and therapeutic. The ability to 

transfer genetic material inserted by a vector (plasmid, viral or nanostructured) 

generated through recombinant DNA is a promising alternative in researching 

genetic diseases. Several non-clinical and clinical protocols have being studied 

over the years, focusing on several diseases, such as numerous types of cancer, 

inborn errors of metabolism, neurodegenerative disorders, and congenital 

pathologies1. With the increasing development of genetic engineering, cloning 

techniques and the use of plasmids as a "pro-drug" employing genes capable of 

suppressing or promoting the production of certain proteins, the use of gene 

therapy for the treatment of diseases has become more palpable 2.  

In this context, several systems that promote the integration of genetic 

material into the genome are being researched. The most innovative has been 

shown to be genomic editing using the CRISPR/Cas system (Clustered Regularly 

Interspaced Short Palindromic Repeats). This system is composed of a guide 

RNA and a nuclease, and together this complex cleaves sequences of interest 3, 

which can be used for various applications in the genetic field. This Cas9 protein-

associated (CRISPR/Cas9) genome editing approach demonstrates great 

potential for inserting or deleting genes at specific genomic locations. The 



8 
 

CRISPR/Cas9 system is a highly advanced and specific tool for gene therapy. 

However, it is necessary to reduce the chances of off-target cleavage, in order to 

reduce the harmful effects of mutations and chromosomal rearrangements. 

Studies with CRISPR/Cas9 also demonstrated the ability of off-target activity due 

to hybridization and it was revealed that the modified DNA may contain insertions 

or deletions, as well as base incompatibility, thus resulting in cleavages and 

mutagenesis in the genome 4,5. These studies highlight the need to identify 

potential off-target cleavage sites that can cause mutagenesis and consequent 

tumor induction. Therefore, it is essential to check these off-target sites in order 

to ensure the safety of these treatments. 

 However, although gene therapy proposes a range of promising 

treatments, its application depends on the successful internalization of DNA 

molecules directly into target tissue cells, and it faces several limitations, such as 

the intracellular stability of nucleic acids and interaction with plasma proteins 6. 

The introduction of genetically modified DNA is performed using viral and non-

viral vectors 7. Viral vectors are derived from different classes of viruses and 

undergo modifications to eliminate their pathogenicity and insert the gene of 

interest. Despite having high transduction capacity, they have low therapeutic 

safety, in view of the possibility of reverting to their initial form and binding to the 

genome in an unwanted location, causing insertional mutagenesis. On the other 
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hand, non-viral vectors present biocompatible particles in their structure, where 

the DNA plasmid that contains the therapeutic gene of interest is encapsulated 

or linked to a positive residual charge on the surface or core of the nanostructure. 

These structured carriers have versatile properties such as biodegradability, 

biocompatibility, nontoxicity, reduced immunogenicity, and low cost of production 

8,9. In this sense, liposomes are nanostructured carriers composed of a bilayer of 

phospholipids containing a water core. DNA can be adsorbed at the vesicle 

interface or inside the structure when associated with cationic lipids, and thus can 

be protected against degradation and can be carried inside the cells complexed 

to this transporter 8. 

In this sense, previous studies of our research group evaluated the 

hydrodynamic administration of liposomal vectors complexed to plasmids of the 

CRISPR/Cas9 system and a donor plasmid of the complete cDNA of IDUA gene  

for the treatment of MPS I mice (mucopolysaccharidosis type I), in order to correct 

the defect in the gene of the alpha-L-iduronidase enzyme (IDUA), responsible for 

the catabolism of the glycosaminoglycans dermatan and heparan sulfate 10. 

Experimental treatment using the complexes demonstrated increased gene 

expression and enzymatic activity in the previous work, reaching about 5% of 

normal mice IDUA activity serum and tissue levels 10–12. 
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Finally, in view of the positive results achieved in previous studies and 

based on the need to investigate this promising approach, the safety of these 

complexes were assessed in vivo to evaluate the potential to produce off-target 

effects, awaiting that this treatment can, in the near future, be used as therapy in 

patients affected by MPS I. 

 

MATERIALS AND METHODS 

Vectors 

The same PrecisionX CRISPR/Cas9 SmartNuclease™ system (System 

Biosciences, USA) was used for in vivo genomic editing experiments, except that 

the target sequence for cleavage by the Cas9, 5'ggattctcccaggcccaggg3', was 

selected at the ROSA26 locus of the mouse genome and was inserted into the 

vector 13. 

For homologous recombination, a vector containing the Idua cDNA that 

was customized by the company System Biosciences (USA) was used. The 

construct contains the mouse Idua cDNA sequence regulated by an EF promoter 

and two homologous regions (approximately 1 Kb each) to the ROSA26 locus of 

mice, in the region that Cas9 recognizes and cleaves. It also contains a 

hygromycin resistance gene for future experiments involving clone selection. 
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Preparation of formulations and complexes 

Liposomal formulation was prepared by microfluidization and the liposomal 

complexes (LC) and fluorescent liposomal complexes were prepared by 

adsorption of DNA onto blank liposomes at +4 /-1 charge ratio, as previously 

described 10. The charge ratio is due to the presence of the cationic lipid DOTAP, 

which confers a positive charge to the formulation, while the presence of nucleic 

acids and the pegylated phospholipid DSPE-PEG confer the negative charge. 

 

Physicochemical characterization of liposomes and complexes 

The droplet size and polydispersity index (PDI) were determined by photon 

correlation spectroscopy at 25°C after appropriate dilution of samples in water. 

The ζ-potential was determined by electrophoretic mobility at 25°C after 

appropriate dilution with 1mM NaCl solution. The measurements were performed 

using a Zetasizer Nano-ZS90® (Malvern Instruments, England, GB) equipment.  

 

In vivo assay 

Animals 

Newborn C57BL/6 mice (2-3 days old) (n=6) were used for the 

experiments. The treatments consisted in one hydrodynamic injection (10% of 

body weight) of LC complexes (called only “Treated” group) in the superficial 
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temporal vein of newborn mice. Mice were weekly weighted and blood was 

collected for determination of serum Idua activity monthly after treatment. After 

21 months, mice were anesthetized with isoflurane prior to cervical dislocation 

and perfusioned through the portal vein with a solution containing at least 20mL 

of 0.9% NaCl for 3 min to eliminate blood. One untreated control group was used 

(n=6). 

 

Biodistribution of fluorescent complexes after newborn injection 

One experimental group of newborn mice (n=4) received one single 

injection of fluorescent liposomal complexes in the superficial temporal vein, as 

described above. One minute after treatment, mice were euthanized by 

decapitation by guillotine with a sharp blade. Blood was collected in EDTA. Brain, 

lung, heart, liver, spleen, and kidney tissues were removed and mounted on a 

metal sample holder using Tissue-tek O.C.T™ (Sakura Fine Technical, JPN). 

Then, the block was frozen at -80°C, and cut in 30 µm thick slices with a cryostat 

(Leica CM 1850, JPN). The slices were mounted on a microscope slide and 

analyzed under a fluorescence microscope (Olympus BX51TF, JPN). The 

images were taken at 200x magnification. 

 

Off-target analysis 



13 
 

Part of the animals' tissues was flash frozen immediately after collection 

and stored at -20ºC. Liver and lung samples were selected for initial analysis, as 

they were the organs with the highest percentage of editing and enzyme 

production in the previous studies10. Total DNA from these tissues was isolated 

using the Wizard® Genomic DNA Purification Kit (Promega, USA) according to 

the manufacturer's recommendations. Possible sites of off-target action of the 

gRNA GGATTCTCCCAGGCCCAGGG(NGG) were identified using the COSMID 

online tool (https://crispr.bme.gatech.edu/) 14. Five possible sites were identified 

on chromosomes 2, 5, 11, 17, and X. To analyze these regions, primers were 

designed so that each region was amplified by PCR and produced an amplicon 

of approximately 700 bp. The primers used were: 

Chr2: F-tcaactgtttgagccagctcaagg and R-ggctttgcctggctaacagattac; 

Chr5: F-acggcaaaggtagcaggcag and R-agcacgcccactacagggtt; 

Chr11: F-gtagataaggagctcaggtagcc and R-ctgccccagatgtagtctgaac; 

Chr17: F-gaagtgtatggctgccatgtgc and R-gtggagtttggatggccttcg; 

ChrX F-gcctggagcctcaagaaatgtc and R-cgtctctggagatgccttcatag. 

The regions of interest were amplified using the enzyme Phusion Green 

High-Fidelity DNA Polymerase (2 U/µL) (ThermoFisher Scientific) as 

recommended by the manufacturer. The amplification reactions were performed 

in a Veriti® 96-Well Thermal Cycler (Applied Biosystems) with an initial 

https://crispr.bme.gatech.edu/
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denaturation step at 98ºC for 3 min, followed by 35 cycles of 98ºC for 10 sec, 

64ºC for 10 sec and 72ºC for 20 sec and finished with a step at 72ºC for 10 min. 

Amplicons were purified using the Wizard SV Gel and PCR Clean-Up System kit 

(Promega, USA) according to the manufacturer's instructions. The sequencing of 

the samples was performed at the Molecular and Protein Analysis Unit (Centro 

de Pesquisa Experimental, HCPA, BR) using the ABI 3500 Genetic Analyzer 

equipment with 50 cm capillaries and POP7 polymer (Applied Biosystems, USA). 

PCR products were labeled using 5.0 pmol of forward primers from each region 

and 1 µL of BigDye Terminator v3.1 Cycle Sequencing reagent Kit (Applied 

Biosystems, USA) in a final volume of 10 µL. The labeling reactions were 

performed in a Veriti® 96-Well Thermal Cycler (Applied Biosystems) with an initial 

denaturation step at 96ºC for 1 min followed by 35 cycles of 96ºC for 15 sec, 50ºC 

for 15 sec and 60ºC for 4 min. After labeling, the samples were purified by 

precipitation with BigDye XTerminator Purification Kit (Applied Biosystems) and 

electroinjected into the genetic analyzer. The resulting chromatograms were 

analyzed using the ICE Analysis software (Synthego, USA), which compares the 

sequences of samples submitted to the editing protocol with that of a control, and 

estimates the percentage of indels generated at the site of possible cleavage. 

The higher the percentage of indels, the greater the CRISPR/Cas9 system 

activity at the site. 
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Ethics 

All experiments were approved by the ethics committee of our institution 

(Research Ethics Committee - Hospital de Clínicas de Porto Alegre #20160482). 

Animal procedures were carried out in accordance with the recommendations in 

the Guide for Care and Use of Laboratory Animals of the National Institutes of 

Health15, monitored by our veterinarian and designed to minimize animal 

suffering. Possible gender effects were analyzed in all tests, and no significant 

differences were found between males and females if not specified. 

 

Statistics 

Results were presented as mean ± standard deviation of at least three 

independent experiments. Group differences were analyzed by Student’s T test 

or One-Way ANOVA, with Tukey as post hoc, using the PASW Statistics 18 

software (v 18.0; SPSS, IBM, USA). Differences were considered statistically 

significant at p <0.05. 

 

RESULTS 

Physicochemical characterization of complexes 

The results of physicochemical characterization of complexes are 

summarized in Table 1. LC exhibited droplet size of approximately 133 nm , while 
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PDI was below 0.15, indicating monodisperse formulations. In addition, there was 

no difference inter days when comparing droplet diameter, although PDI results 

increased with storage time. ζ-potential was around +43 mV. 

 

Table 1. Physicochemical characterization of liposomal complexes. 

Formulation 

0/7/30 days 

Mean diameter 

(nm) 
PDI 

ζ-potential 

(mV) 

LC 

133.0 ± 3.29 

139.0 ± 3.05 

138.9 ± 1.01 

0.101 ± 0.01 

0.132 ± 0.02* 

0.143 ± 0.01* 

+41.50 ± 0.95 

+43.80 ± 1.41 

+46.07 ± 0.55 

PDI.: polydispersity index; LC: CRISPR/Cas9 and Idua donor plasmids liposomal complex. 

*Significant difference (p <0.05). 

Formulation Days 
Mean diameter 

(nm) 
PDI ζ-potential (mV) 

LC 

0 

7 

30 

133.0 ± 3.29 

139.0 ± 3.05 

138.9 ± 1.01 

0.101 ± 0.01 

0.132 ± 0.02* 

0.143 ± 0.01* 

+41.50 ± 0.95 

+43.80 ± 1.41 

+46.07 ± 0.55 

PDI.: polydispersity index; LC: CRISPR/Cas9 and Idua donor plasmids liposomal complex. 

*Significant difference (p <0.05). 

 

 



17 
 

Vector biodistribution after intravenous injection 

We observed that our complexes go primarily to the lung and liver, as seen 

in fluorescence analysis (Figure 1). The number of transgene copies in these 

organs, along with kidney, liver, and spleen made us perform off-target analysis 

in these organs, as well as on any abnormal-appearing regions. 

 

 

Figure 1. Biodistribution of fluorescent liposomal complexes after injection. The 

biodistribution of ‘fluorescent LC’ complexes in newborn MPS I mice after a single 

injection in the superficial temporal vein was analyzed under a fluorescence 

microscope. Images were acquired in fluorescence (Ex/Em = 596/619 nm) at 

200x (scale bars 100 µm) magnification. Untreated MPS I mice had no detectable 

fluorescence in any of the analyzed organs. 

 

Off-target analysis 

Five possible off-target sites were analyzed in lung and liver samples from 

treated animals. These tissues were chosen because they showed the highest 
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biodistribution 10 and the highest percentage of editing (about 3%) compared to 

the others and, therefore, would present a greater chance of occurrence of off-

target mutations. 

 

Table 2. Potential off-target sites obtained with COSMID tool 

(https://crispr.bme.gatech.edu/). 

Result 
Query 

type 
Mismatch 

Ends 

with 

RG 

Chr Position Strand Cut site Score 

GGATTCTCCCAGGCCCAGGGCGG -- hit  

GGATTCTCCCAGGCCCAGGGNGG -- query 
No indel 0 Yes 

Chr6:113076075-

113076097 
+ 113076091 0 

TGATTCTCCCAGGCCCAGGGAAG -- hit  

GGATTCTCCCAGGCCCAGGGNGG -- query 
No indel 2 Yes 

Chr5:113445565-

113445587 
- 113445571 20,12 

GGCTTCTCCCAGGCCCAGGATGG -- hit  

GGATTCTCCCAGGCCCAGGGNGG -- query 
No indel 2 Yes 

ChrX:166717699-

166717721 
- 166717705 6,15 

GGAATCTCCCAGGCTCAGGGAGG -- hit  

GGATTCTCCCAGGCCCAGGGNGG -- query 
No indel 2 Yes 

Chr2:69238534-

69238556 
- 69238540 2,07 

GGAGTCTCCCAGGCCTAGGGTGG -- hit  

GGATTCTCCCAGGCCCAGGGNGG -- query 
No indel 2 Yes 

Chr11:73171299-

73171321 
+ 73171315 2,47 

GATTCTCCCAGGCCCAGGGCGG -- hit  

GATTCTCCCAGGCCCAGGGNGG -- query 

Del 19, or 

Del 20 
0 Yes 

Chr6:113076076-

113076097 
+ 113076091 0,63 

GATTCTCCCAGGCCCAGGGAAG -- hit  

GATTCTCCCAGGCCCAGGGNGG -- query 

Del 19, or 

Del 20 
1 Yes 

Chr5:113445565-

113445586 
- 113445571 20,63 

GATTCTCCCAGGCCCAGGGCGG -- hit  

GGTTCTCCCAGGCCCAGGGNGG -- query 
Del 18 1 Yes 

Chr6:113076076-

113076097 
+ 113076091 0,79 

https://crispr.bme.gatech.edu/
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GGATTTCCCAGGCCCAGAGTGG -- hit  

GGATTTCCCAGGCCCAGGGNGG -- query 
Del 15 1 Yes 

Chr17:8602794-

8602815 
+ 8602809 5,72 

GGATTCTCCCAGGCCCAGGGCG -- hit  

GGATTCTCCCAGGCCCAGGNGG -- query 

Del  1, or 

Del  2, or 

Del  3 

1 No 
Chr6:113076075-

113076096 
+ 113076090 24,51 

GGATTCTCCCAGGCCCAGGGCG -- hit  

GGATTCTCCCAGGCCCAGGGGG -- query 
Del PAM  3 1 No 

Chr6:113076075-

113076096 
+ 113076090 40,51 

GGATTCTCCCAGGCCCAGGGCG -- hit  

GGATTCTCCCAGGCCCAGGGNG -- query 

Del PAM  1, 

or Del PAM  

2 

0 No 
Chr6:113076075-

113076096 
+ 113076090 20,51 

GGGATTCTCCCAGGCCCAGGGCGG -- hit  

GNGATTCTCCCAGGCCCAGGGNGG -- query 
Ins 19 0 Yes 

Chr6:113076074-

113076097 
+ 113076091 0,83 

GGGATTCTCCCAGGCCCAGGGCGG -- hit  

GGNATTCTCCCAGGCCCAGGGNGG -- query 
Ins 18 0 Yes 

Chr6:113076074-

113076097 
+ 113076091 0,85 

GGGATTCTCCCAGGCCCAGGGCGG -- hit  

GGANTTCTCCCAGGCCCAGGGNGG -- query 
Ins 17 1 Yes 

Chr6:113076074-

113076097 
+ 113076091 1,02 

GGATTCTCCCAGGCCCAGGGCGGT -- hit  

GGATTCTCCCAGGCCCAGGGNNGG -- query 

Ins PAM  2, 

or Ins PAM  

3 

1 No 
Chr6:113076075-

113076098 
+ 113076092 40,7 

GGATTCTCCCAGGCCCAGGGCGGT -- hit  

GGATTCTCCCAGGCCCAGGGNGNG -- query 
Ins PAM  1 1 No 

Chr6:113076075-

113076098 
+ 113076092 40,7 

 

The on-target site is the first one, Gt(ROSA)26S or target locus. Chr6: 

113,076,075–113,076,097. The regions containing the off-target sites were 

amplified by PCR and sequenced by the Sanger method. The sequences 

obtained were analyzed by the ICE tool (Synthego, USA), which compares the 

characteristics of the chromatograms between possibly edited samples and a 
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control, generating an indels score and the possibility of knockouts (Figure 2); 

therefore, it is possible to evaluate the activity of cleavage and generation of 

mutations in the analyzed sequences. 

There were no signs of alterations in any sample analyzed for all proposed 

sites. All samples showed 0% indels, with a sequence similarity score of 0.99-1 

(maximum). 
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Figure 2. Experimental off-target analysis. Example of chromatograms used 

in the analysis. Each off-target shows sequence variations in relation to the target, 

because the target is specific and unique in the genome. The red dotted underline 

represents what the PAM sequence would be; underlined in black is the gRNA 

sequence. Vertical dots indicate the location where cleavage would occur if the 

CRISPR/Cas9 system were active at this site. 

 

DISCUSSION 

In this study, we evaluated the safety and the possibility of tumor induction 

after hydrodynamic administration of the CRISPR/Cas9 system and the IDUA 

gene donor plasmid complexed to liposomal vectors in newborn mice and their 

potential to produce off-target effects. 

Physicochemical properties of the liposomal complexes showed stability 

of the formulations, since they were small (about 133 nm) and monodisperse 

droplets (PDI < 0.15), even when associated with DNA. These characteristics 

were expected and desirable, once they enhance the chances of penetration into 

the target cells. This may be achieved due to the microfluidization procedure and 

the presence of pegylated phospholipids, which bring stability to the preparations 

by avoiding aggregation and leading to small-sized nanostructures 10,16. The 
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positive ζ-potential provided by the cationic lipids is also essential to provide 

stability and to promote interaction with cell membranes16,17. 

The biodistribution of fluorescent labeled complexes, demonstrated high 

affinity of LC primarily to the lung and liver, corroborating with previous 

publications of our reasearch group10. The efficient delivery to hepatocytes by 

hydrodynamic injection forces the permeability of the plasma membrane to allow 

DNA to enter the cells 18. The lung accumulation of cationic liposomes has also 

been reported 10,19–21, as its fenestrae capillary bed may entrap the complexes, 

what might induce effective gene expression in this organ 21. 

When CRISPR/Cas system is delivered into a cell, the gRNAs will guide 

Cas enzyme to locate on a specifically targeted DNA sequence that is 

complementary to it. Then, Cas nuclease cuts the double strands of DNA and 

forms a double-strand break (DSB)22,23. DSBs can be repaired through several 

endogenous repair pathways, including the predominant non-homologous end 

joining (NHEJ) and less-frequently the homology-directed repair (HDR)24. While 

NHEJ directly link two broken DNA molecules together, HDR uses donor DNA 

template to precisely repair DSBs for gene modification 22,25.  

 Although an ideal engineered nuclease would have singular genome-wide 

specificity, many studies demonstrated off-target events when using 

CRISPR/Cas9 gene editing tools 26,27. Multiple mismatches between the guide 
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RNA and its complementary target DNA sequence can be tolerated depending 

on the quantity, position, and base identity of mismatches, leading to potential 

off-target events28. An off-target event can be defined as a programmable 

nuclease-induced DNA cleavage at a site anywhere in the genome other than the 

intended on-target site. Usually, off-target sites are similar in sequence to the 

desired target sites. However, they may present up to seven mismatches; small 

indels that cause DNA or RNA bulges; or even a different PAM sequence 29.  

When an off-target cutting event occurs, it can be repaired via the NHEJ 

pathway, which is intrinsically error-prone, typically resulting in small indels at the 

site of the break. If it causes a frameshift mutation, there may be loss of gene 

function due to the production of truncated polypeptides and/or nonsense-

mediated mRNA decay29. In addition, if an off-target cutting event occurs 

simultaneously with a second cutting event, it can generate a chromosomal 

rearrangement, such as an inversion or translocation, or a large deletion between 

the two break points 30. Genomic rearrangements could lead to loss of 

heterozygosity (LOH), which is a serious safety concern. Studies reported that 

human preimplantation embryos also employ this alternative HDR mechanism, 

where DSBs are repaired by interallelic gene conversion, utilizing the 

homologous wildtype allele as a template. As a result, the DSB locus and 

adjacent area become identical to the template DNA, leading to LOH. 
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Consequently, it could lead to homozygosity of deleterious alleles and disease in 

offspring, and may also erase parent-specific epigenetic DNA modifications 

leading to imprinting abnormalities 31. Other concerns reported in the literature 

about the off-target genotoxicity are gene inactivation and indel formation at 

unintended loci, which may affect cell viability or instead promote 

tumorigenesis24.  

Considering that the extent of off-target activity is highly dependent on the 

gRNA 29, it is necessary to identify potential off-target sites and to examine off-

target effects experimentally when using CRISPR/Cas systems. There are many 

different tools which can be chosen to perform in silico off-target predictions, 

although the researcher may choose any of them 30. In this study, we chose to 

use COSMID software because it is an easy and reliable prediction tool. We have 

performed off-target analysis in the lung and liver due to the number of transgene 

copies in these organs, as seen in fluorescence analysis and previous reports 10. 

Comparing the characteristics of the chromatograms of the possibly edited 

samples and a control, it was verified that they had high similarity score, what 

demonstrates a great activity of cleavage and that no signs of alterations or indels 

were found in the analyzed sequences. Other studies in animal models also 

presented the absence or rare occurrence of off-target events, denoting 

CRISPR/Cas9 genome editing safety and specificity 32–36. However, it is 
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important to consider that off-target mutations may occur at sites beyond those 

predicted in silico 29 therefore, studies involving whole-genome sequencing would 

be important to acknowledge the safety of this approach. 

The probability of occurrence of tumors and activation of oncogenes 

causing deleterious effects are risks of gene therapy. When the CRISPR system 

recognizes sequences similar to the target sequence, cleavages that lead to off-

target mutations can occur, which can lead to the malfunction of important genes 

27. This off-target potential has already been reported in several studies37–39. As 

the CRISPR system is composed of gRNAs (guide RNAs) that bind to a target 

genomic locus, mutations may occasionally occur in unwanted genomic loci, and 

it is important to identify the presence of mutations outside the genomic on-target 

site. Several studies demonstrate that CRISPR amplification showed increased 

insertions and/or deletions (indels) in the target DNA, confirmed by NGS (New 

Generation Sequencing) and DNA cleavage assays40, reinforcing how imperative 

is to perform safety experiments before its use in clinical therapy. 

 

CONCLUSION 

This study assessed the safety after hydrodynamic administration of the 

CRISPR/Cas9 system and the IDUA gene donor plasmid complexed to liposomal 
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vectors in newborn mice. The off-target sites analysis based on the potential sites 

obtained from in silico predictions showed 0% of indels. This set of results 

demonstrated that the chosen gRNA sequence has potential to perform a safe 

gene editing in the murine ROSA26 locus, and the set of experiments performed 

bring hope to the use of this tool in clinic studies. In this sense, our future efforts 

will focus on studies involving whole-genome sequencing to acknowledge the 

safety of CRISPR/Cas9 gene editing approach. 
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Análise estatística 
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