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Abstract
We introduce the notion of conditional Lipschitz shadowing, which does not aim to shadow
every pseudo-orbit, but only those which belong to a certain prescribed set. We establish
two types of sufficient conditions under which certain nonautonomous ordinary differential
equations have such a property. The first criterion applies to a semilinear differential equation
provided that its linear part is hyperbolic and the nonlinearity is small in a neighborhood of
the prescribed set. The second criterion requires that the logarithmic norm of the derivative of
the right-hand side with respect to the state variable is uniformly negative in a neighborhood
of the prescribed set. The results are applicable to important classes of model equations
including the logistic equation, whose conditional shadowing has recently been studied.
Several examples are constructed showing that the obtained conditions are optimal.
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1 Introduction

One of the main properties of chaotic dynamical systems is that different orbits starting close
bywillmove apart as time evolves and this divergence can be very fast. In particular,whenever
performing numerical experiments, small numerical errors, which are inherent to the process
due to computer round off errors, tend to grow. Thus, a central question when performing
such numerical experiments is if the resulting behaviour presented by the computer reflects
the dynamics of the actual system. It turns out that for some classes of chaotic systems,
like the hyperbolic ones, even though a numerical orbit containing round off errors will
diverge rapidly from the true orbit with the same initial condition, there exists a different true
orbit which stays near the noisy orbit. Systems exhibiting this property are said to have the
shadowing property. In other words, a dynamical system has the shadowing property if close
to its approximate orbits we can find exact ones. The main objective of the present paper
is to present sufficient conditions under which a general class of nonautonomous nonlinear
ordinary differential equations exhibits a new variant of shadowing property, the so-called
conditional Lipschitz shadowing property, defined below (see Definition 2).

Let Rn and Rn×n denote the n-dimensional space of real column vectors and the space of
n × n matrices with real entries, respectively. The symbol | · | denotes any convenient norm
onRn and the associated induced norm onRn×n . Consider the ordinary differential equation

x ′ = g(t, x), (1.1)

where g : [0,∞) × R
n → R

n is continuous. We are interested in the noncontinuable solu-
tions of (1.1) starting at t = 0. It is known that these solutions are defined on intervals of
type [0, τ ), where τ ∈ (0,∞] may depend on the solution x . For this reason, we will con-
sider pseudosolutions (approximate solutions) of (1.1) on intervals of the same type in the
following sense. Given τ ∈ (0,∞], by a pseudosolution of Eq. (1.1) on [0, τ ), we mean any
continuously differentiable function y : [0, τ ) → R

n such that

σy := sup
0≤t<τ

|y′(t) − g(t, y(t))| < ∞. (1.2)

The function ey : [0, τ ) → [0,∞) defined by

ey(t) := |y′(t) − g(t, y(t))| for t ∈ [0, τ ), (1.3)

will be called the error function and the quantity σy is the maximum error corresponding
to y. Let us recall the definition of the standard Lipschitz shadowing property.

Definition 1 We say that Eq. (1.1) has the Lipschitz shadowing property if there exist ε0 > 0
and κ > 0 with the following property: if 0 < ε ≤ ε0 and y is a pseudosolution of (1.1)
on [0, τ ) for some τ ∈ (0,∞] such that σy ≤ ε, then Eq. (1.1) has a solution x on [0, τ )

satisfying

sup
0≤t<τ

|x(t) − y(t)| ≤ κε. (1.4)

The concept of Lipschitz shadowing is closely related to the stronger notion of Hyers–Ulam
stability (Ulam stability), which requires that the condition in the above definition is satisfied
for every ε > 0. For a related concept in the theory of smooth dynamical systems, see [15,
Definition 1.5].

Consider the semilinear differential equation

x ′ = A(t)x + f (t, x) (1.5)
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as a perturbation of the linear equation

x ′ = A(t)x, (1.6)

where A : [0,∞) → R
n×n and f : [0,∞)×R

n → R
n are continuous. The following known

result provides a sufficient condition for the Lipschitz shadowing property of (1.5) (see [2,
Theorem 6]).

Theorem 1 Suppose that the linear Eq. (1.6) has an exponential dichotomy on [0,∞) (see
Definition 3) and there exists L ≥ 0 such that

| f (t, x1) − f (t, x2)| ≤ L|x1 − x2| for all t ≥ 0 and x1, x2 ∈ R
n . (1.7)

If L is sufficiently small, then Eq. (1.5) has the Lipschitz shadowing property.

Note that Theorem 1 can be extended to the more general class of delay differential equations
(see [4, Theorem 2.3]). For further related results about shadowing and Hyers–Ulam stability
of ordinary differential equations and their discrete counterparts, see [1], [2], [3], [4], [5],
[6], [7], [8] and references therein.

Some recent studies (see [12], [19]) have been concerned with the shadowing (Hyers–
Ulam stability) of the scalar logistic equation

x ′ = x(ax + b), a, b ∈ R \ {0}, (1.8)

which is a particular case of Eq. (1.5) when n = 1, A(t) = b and f (t, x) = ax2. Note
that Theorem 1 cannot be applied to Eq. (1.8) because f does not satisfy the global Lip-
schitz condition (1.7). In [19] it has been shown that Eq. (1.8) with a = −1 and b = 1
is not Hyers–Ulam stable, but certain approximate solutions still can be shadowed by true
solutions. Motivated by this observation, we introduce the notion of conditional Lipschitz
shadowing, which does not require the validity of the Lipschitz shadowing property for all
pseudosolutions, but only for those which belong to a given set H ⊂ R

n .

Definition 2 Let H be a nonempty subset of Rn . We say that Eq. (1.1) has the conditional
Lipschitz shadowing property in H if there exist ε0 > 0 and κ > 0 with the following
property: if 0 < ε ≤ ε0 and y is a pseudosolution of (1.1) on [0, τ ) for some τ ∈ (0,∞]
such that σy ≤ ε and y(t) ∈ H for all t ∈ [0, τ ), then Eq. (1.1) has a solution x on [0, τ )

satisfying (1.4).

Evidently, the standard Lipschitz shadowing property is a special case of the conditional
Lipschitz shadowing property with H = R

n . A different concept of conditional shadowing
for discrete nonautonomous systems in a Banach space has recently been introduced by
Pilyugin [16].

In this paper, we establish two types of sufficient conditions under which certain classes of
ordinary differential equations have the conditional Lipschitz shadowing property in a given
set H ⊂ R

n .
In Sec. 2, we consider the semilinear differential equation (1.5). Themain result of this part

is formulated in Theorem 2, which is a generalization of Theorem 1 to the case of conditional
Lipschitz shadowing. It says that Eq. (1.5) has the conditional Lipschitz shadowingproperty in
a prescribed set H whenever its linear part has an exponential dichotomy and the nonlinearity
f (t, x) is Lipschitz in x in a neighborhood of H (uniformly in t) with a sufficiently small
Lipschitz constant. The smallness condition on the Lipschitz constant can be expressed in
terms the dichotomy constants of the linear part. The importance of the obtained sufficient
condition will be shown by an application to a scalar logistic equation. In Example 1, we
show that our choice of pseudosolutions is optimal.
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In Sec. 3, we present sufficient conditions for the conditional Lipschitz shadowing of
Eq. (1.1) in terms of the logarithmic norm of gx (t, x), the partial derivative of g with respect
to x . The logarithmic norm (Lozinskiı̆ measure) of a square matrix A ∈ R

n×n is defined by

μ(A) := lim
h→0+

|I + hA| − 1

h
for A ∈ R

n×n, (1.9)

where I is the identity matrix in R
n×n . It should be noted that μ is not a norm, since it can

take negative values. In the scalar case (n = 1), we have that μ(A) = A. The values of
μ(A) for the standard norms in R

n can be given explicitly (see Sec. 3). The main result of
this section, Theorem 5, says that if μ(gx (t, x)) is uniformly negative (bounded away from
zero) for all t ≥ 0 and x in a neighborhood of the given set H ⊂ R

n , then Eq. (1.1) has the
conditional Lipschitz shadowing property in H . To the best of our knowledge, this criterion
has no previous analogue. It gives a new result even in the case of the standard Lipschitz
shadowing. The importance and the sharpness of the assumptions will be shown in a special
case of the Kermack–McKendrick equation from epidemiology.

2 Conditional Lipschitz shadowing via Exponential Dichotomy

In this section, we give sufficient conditions for the conditional Lipschitz shadowing of the
semilinear Eq. (1.5).

Let Φ be a fundamental matrix solution of the linear Eq. (1.6) so that its transition matrix
T (t, s) is given by

T (t, s) := Φ(t)Φ−1(s) for t, s ∈ [0,∞).

Definition 3 We say that Eq. (1.6) has an exponential dichotomy on [0,∞) if there exist a
family of projections (P(t))t≥0 in R

n×n and constants N , λ > 0 such that

P(t)T (t, s) = T (t, s)P(s) for all t, s ∈ [0,∞), (2.1)

|T (t, s)P(s)| ≤ Ne−λ(t−s) whenever t ≥ s ≥ 0 (2.2)

and

|T (t, s)(I − P(s))| ≤ Ne−λ(s−t) whenever 0 ≤ t ≤ s. (2.3)

If, in addition, P(t) = I (P(t) = 0) identically for t ≥ 0, we say that Eq. (1.6) admits an
exponential contraction (exponential expansion) on [0,∞).

Throughout the paper, for x ∈ R
n and δ > 0, Bδ(x)will denote the closed δ-neighborhood

of x inRn given by Bδ(x) := { x ∈ R
n : |y−x | ≤ δ }. For ∅ 
= H ⊂ R

n , the δ-neighborhood
of H is defined by

Nδ(H) :=
⋃

x∈H
Bδ(x).

The main result of this section is the following generalization of Theorem 1 to the case of
conditional Lipschitz shadowing.

Theorem 2 Let ∅ 
= H ⊂ R
n. Suppose that Eq. (1.6) has an exponential dichotomy on

[0,∞) and that there exist δ, L > 0 such that

| f (t, x1) − f (t, x2)| ≤ L|x1 − x2|, for all t ≥ 0 and x1, x2 ∈ Nδ(H). (2.4)

123



Journal of Dynamics and Differential Equations (2024) 36:3535–3552 3539

If

L <
λ

2N
, (2.5)

where N , λ > 0 are as inDefinition 3, thenEq. (1.5) has the conditional Lipschitz shadowing
property in H.

Proof From (2.5), it follows that the equation

2N

λ
(Lκ + 1) = κ (2.6)

has a unique solution κ given by

κ :=
(

λ

2N
− L

)−1

= 2N

λ − 2NL
> 0.

Set ε0 := κ−1δ > 0. Suppose that 0 < ε ≤ ε0 and y is a pseudosolution of (1.5) on [0, τ )

for some τ ∈ (0,∞] such that σy ≤ ε and y(t) ∈ H for all t ∈ [0, τ ). Observe that the
transformation z = x − y reduces Eq. (1.5) to the equation

z′ = A(t)z + f (t, y(t) + z) − f (t, y(t)) + hy(t), (2.7)

where

hy(t) := A(t)y(t) + f (t, y(t)) − y′(t) for t ∈ [0, τ ). (2.8)

Clearly, |hy(t)| = ey(t) for t ∈ [0, τ ), where ey is the error function corresponding to the
pseudosolution y of Eq. (1.5). Hence

sup
0≤t<τ

|hy(t)| = σy ≤ ε. (2.9)

Let Cb := C([0, τ ),Rn) denote the Banach space of bounded and continuous functions
z : [0, τ ) → R

n equipped with the supremum norm,

‖z‖ = sup
t∈[0,τ )

|z(t)|, z ∈ Cb.

Set

S := { z ∈ Cb : ‖z‖ ≤ κε }.
Clearly, S is a nonempty and closed subset of Cb. For z ∈ S and t ∈ [0, τ ), define

(Fz)(t) :=
∫ t

0
T (t, s)P(s)

[
f (s, y(s) + z(s)) − f (s, y(s)) + hy(s)

]
ds

−
∫ τ

t
T (t, s)(I − P(s))

[
f (s, y(s) + z(s)) − f (s, y(s)) + hy(s)

]
ds.

Take an arbitrary z ∈ S and s ∈ [0, τ ). Then,

|(y(s) + z(s)) − y(s)| = |z(s)| ≤ ‖z‖ ≤ κε ≤ κε0 = δ.

Therefore,

y(s) ∈ H ⊂ Nδ(H) and y(s) + z(s) ∈ Bδ(y(s)) ⊂ Nδ(H), (2.10)
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which, together with (2.4), implies that

| f (s, y(s) + z(s)) − f (s, y(s))| ≤ L|z(s)| ≤ L‖z‖ ≤ Lκε.

This, combined with (2.2), (2.3) and (2.9) (see also (2.6)) yields that

|(Fz)(t)| ≤
∫ t

0
|T (t, s)P(s)| ( | f (s, y(s) + z(s)) − f (s, y(s))| + |hy(s)|

)
ds

+
∫ τ

t
|T (t, s)(I − P(s))| ( | f (s, y(s) + z(s)) − f (s, y(s))| + |hy(s)|

)
ds

≤ (Lκε + ε)

(∫ t

0
Ne−λ(t−s) ds +

∫ ∞

t
Ne−λ(s−t) ds

)

≤ 2N

λ
(Lκ + 1) ε = κε,

(2.11)

for z ∈ S and t ∈ [0, τ ). We conclude that Fz is well-defined and F(S) ⊂ S.
Let z1, z2 ∈ S. In view of (2.10), we have that y(s) + z j (s) ⊂ Nδ(H) for s ∈ [0, τ ) and

j = 1, 2. Hence,

| f (s, y(s) + z1(s)) − f (s, y(s) + z2(s))| ≤ L|z1(s) − z2(s)| ≤ L‖z1 − z2‖,
for s ∈ [0, τ ). Consequently,

|(Fz1)(t) − (Fz2)(t)|
≤

∫ t

0
|T (t, s)P(s)| ( | f (s, y(s) + z1(s)) − f (s, y(s) + z2(s))| ) ds

+
∫ τ

t
|T (t, s)(I − P(s))| ( | f (s, y(s) + z1(s)) − f (s, y(s) + z2(s))| ) ds

≤ L‖z1 − z2‖
(∫ t

0
Ne−λ(t−s) ds +

∫ ∞

t
Ne−λ(s−t) ds

)

≤ 2N

λ
L‖z1 − z2‖,

(2.12)

for t ∈ [0, τ ). Therefore, for all z1, z2 ∈ S,

‖Fz1 − Fz2‖ ≤ q‖z1 − z2‖ with q := 2N

λ
L < 1.

Thus, F : S → S is a contraction and it has a unique fixed point z in S. It follows by
differentiation that z is a solution of Eq. (2.7) on [0, τ ). Moreover, z ∈ S implies that

sup
t∈[0,τ )

|z(t)| = ‖z‖ ≤ κε.

Therefore, x = z + y is a solution of Eq. (1.5) on [0, τ ) with the desired property (1.4). The
proof of the theorem is complete. �
Remark 1 Theorem 1 is a corollary of Theorem 2 with H = R

n .

Remark 2 If D is a nonempty set inRn , then its convex hull, denoted by conv(D), is the small-
est convex set inRn which contains D. A sufficient condition for the Lipschitz condition (2.4)
to hold is that f is continuously differentiable and

| fx (t, x)| ≤ L for all t ≥ 0 and x ∈ conv (Nδ(H)) . (2.13)
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The following result is an improvement of Theorem 2 in the particular case when Eq. (1.6)
admits an exponential contraction or exponential expansion. It shows that in these settings
the smallness condition (2.5) for the Lipschitz constant L can be weakened.

Theorem 3 Let ∅ 
= H ⊂ R
n. Suppose that Eq. (1.6) has an exponential contraction or

exponential expansion on [0,∞) and there exist δ, L > 0 such that (2.4) holds. If

L <
λ

N
, (2.14)

then Eq. (1.5) has the conditional Lipschitz shadowing property in H.

Proof The proof proceeds in a similar manner as the proof of Theorem 2. Take κ > 0 such
that

N

λ
(Lκ + 1) = κ.

Let ε0 > 0, y, S and F be as in the proof of Theorem 2. By arguing as in (2.11) (recall that
either P(t) ≡ I or P(t) ≡ 0), we have that

|(Fz)(t)| ≤ N

λ
(Lκ + 1)ε = κε

for t ∈ [0, τ ) and z ∈ S. Moreover, by similar estimates as in (2.12), we conclude that

|(Fz1)(t) − (Fz2)(t)| ≤ N

λ
L‖z1 − z2‖,

for t ∈ [0, τ ) and z1, z2 ∈ S. Now one can complete the proof by the same arguments as in
the proof of Theorem 2. �

The following consequence of Theorems 2 and 3 gives sufficient conditions under which
Eq. (1.5) has the conditional Lipschitz shadowing property in a given neighborhood of the
origin.

Corollary 1 Let ρ > 0. Suppose that Eq. (1.6) has an exponential dichotomy on [0,∞) and
there exist δ, L > 0 such that

| f (t, x1) − f (t, x2)| ≤ L|x1 − x2| for all t ≥ 0 and x1, x2 ∈ Bρ+δ(0). (2.15)

Then, (2.5) implies that Eq. (1.5) has the conditional Lipschitz shadowing property in Bρ(0).
Moreover, if instead of the existence of an exponential dichotomy, we assume that Eq. (1.6)
has an exponential contraction or exponential expansion on [0,∞), then the conditional
Lipschitz shadowing property of Eq. (1.5) in Bρ(0) holds under the weaker condition (2.14).

Proof Let H = Bρ(0). ThenNδ(H) = Bρ+δ(0) and the conclusion follows fromTheorems 2
and 3. �

The following theorem gives another reason for the interest in those pseudosolutions of
Eq. (1.5) which lie in a given ball around the origin.

Theorem 4 Let ρ > 0. Suppose that Eq. (1.6) has an exponential dichotomy on [0,∞) and
there exists L > 0 such that

| f (t, x)| ≤ L|x | for all t ≥ 0 and x ∈ Bρ(0). (2.16)
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Then, (2.5) implies that there exists ε > 0 such that if y is a pseudosolution of Eq. (1.5) on
[0, τ ) for some τ ∈ (0,∞] with σy ≤ ε, then Eq. (1.5) has a pseudosolution z on [0, τ )

which lies in Bρ(0) and has the same error function as y, i.e.

ez(t) = ey(t) for all t ∈ [0, τ ). (2.17)

Proof In view of (2.5), the equation

2N

λ
(Lρ + ε) = ρ (2.18)

has a unique solution ε given by

ε :=
(

λ

2N
− L

)
ρ > 0.

Suppose that y is a pseudosolution of (1.5) on [0, τ ) for some τ ∈ (0,∞] with σy ≤ ε.
Let C := C([0, τ ),Rn) denote the topological vector space of all continuous functions
z : [0, τ ) → R

n equipped with the topology of uniform convergence on compact subsets of
[0, τ ). Let

S :=
{
z ∈ C : sup

t∈[0,τ )

|z(t)| ≤ ρ

}
. (2.19)

Clearly, S is a nonempty, closed and convex subset of C. For z ∈ S and t ∈ [0, τ ), set

(Fz)(t) :=
∫ t

0
T (t, s)P(s)

[
f (s, z(s)) − hy(s)

]
ds

−
∫ τ

t
T (t, s)(I − P(s))

[
f (s, z(s)) − hy(s)

]
ds,

with hy as in (2.8). In view of (2.2), (2.3), (2.8), (2.9) and (2.16), we have for z ∈ S and
t ∈ [0, τ ),

|(Fz)(t)| ≤
∫ t

0
|T (t, s)P(s)|( L|z(s)| + |hy(s)| ) ds

+
∫ τ

t
|T (t, s)(I − P(s))|( L|z(s)| + |hy(s)| ) ds

≤
∫ t

0
Ne−λ(t−s)(Lρ + σy) ds +

∫ ∞

t
Ne−λ(s−t)(Lρ + σy) ds

≤ 2N

λ
(Lρ + ε) = ρ,

where the last equality follows from (2.18). Thus,Fz iswell-defined andF(S) ⊂ S. It follows
in a standard manner that F : S → S is continuous. In view of (2.19), the functions from
the image set F(S) ⊂ S are uniformly bounded on [0, τ ). Take now an arbitrary compact
subinterval I ⊂ [0, τ ) and z ∈ S. It follows by differentiation that

(Fz)′(t) = A(t)(Fz)(t) + f (t, z(t)) − hy(t), t ∈ [0, τ ). (2.20)

Hence,

sup
t∈I

|(Fz)′(t)| ≤ ρ max
t∈I |A(t)| + Lρ + ε.
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We conclude that the derivatives of the functions in F(S) are uniformly bounded on each
compact subinterval of [0, τ ), which implies that the functions in F(S) are equicontinuous
on every compact subinterval of [0, τ ). Therefore, the closure of F(S) is compact. By the
application of the Schauder–Tychonoff fixed point theorem (see, e.g., [9, Chap. I, p. 9]), we
conclude that there exists z ∈ S such that z = Fz. From (2.20), it follows that

z′(t) = A(t)z(t) + f (t, z(t)) − hy(t), t ∈ [0, τ ).

Hence (see (2.8)), hz = hy identically on [0, τ ), and hence (2.17) holds. Finally, (2.19) shows
that z lies in Bρ(0). �

In the following result, we point out another simple consequence of Theorems 2 and 3.

Corollary 2 Suppose that Eq. (1.6) has an exponential dichotomy on [0,∞). Assume that f
and fx are continuous on [0,∞) × R

n and there exist L1 ≥ 0 and L2 > 0 such that

| fx (t, x)| ≤ L1 + L2|x | for all t ≥ 0 and x ∈ R
n . (2.21)

If

L1 <
λ

2N
(2.22)

and

0 < ρ <
1

L2

(
λ

2N
− L1

)
, (2.23)

thenEq. (1.5) has the conditional Lipschitz shadowing property in Bρ(0).Moreover, if instead
of the existence of an exponential dichotomy, we assume that Eq. (1.6) has an exponential
contraction or exponential expansion on [0,∞), then the conditional Lipschitz shadowing
property of Eq. (1.5) in Bρ(0) holds under the weaker conditions

L1 <
λ

N
(2.24)

and

0 < ρ <
1

L2

(
λ

N
− L1

)
. (2.25)

Proof Wegive a proof of the first statement of the corollary. The proof of the second statement
is similar and hence it is omitted.

In view of (2.23), we have that

L1 + L2ρ <
λ

2N
.

Choose δ > 0 such that

L1 + L2(ρ + δ) <
λ

2N
.

From this and (2.21), we have for all t ≥ 0 and x ∈ Bρ+δ(0),

| fx (t, x)| ≤ L1 + L2|x | ≤ L1 + L2(ρ + δ) <
λ

2N
.

This implies that condition (2.15) of Corollary 1 holds with L := L1 + L2(ρ + δ). Since L
satisfies (2.5), the Lipschitz shadowing property of Eq. (1.5) in Bρ(0) follows from the first
statement of Corollary 1. �
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In the following example, we show the importance and the sharpness of the assumptions
of Corollary 2.

Example 1 Consider the scalar autonomous equation

x ′ = −x − x2 − 1

4
= −

(
x + 1

2

)2

, (2.26)

which is a special case of (1.5) when n = 1, A(t) = −1 and f (t, x) = −x2 − 1
4 for

t ∈ [0,∞) and x ∈ R. Its linear part x ′ = −x admits an exponential contraction with
T (t, s) = e−(t−s), N = 1 and λ = 1. Moreover, f satisfies (2.21) with L1 = 0 and L2 = 2.
Therefore, conditions (2.24) and (2.25) of Corollary 2 reduce to 0 < ρ < 1/2. It follows
from Corollary 2 that (2.26) has the conditional Lipschitz shadowing in Bρ(0) = [−ρ, ρ]
for any ρ ∈ (0, 1/2). We will show the importance of the condition ρ < 1/2 by proving that
the conditional Lipschitz shadowing property for Eq. (2.26) in B1/2(0) = [−1/2, 1/2] does
not hold. Suppose, for the sake of contradiction, that (2.26) has the conditional Lipschitz
shadowing property in B1/2(0) with some constants ε0, κ > 0. Choose

δ ∈
(
0,min

{
1, ε1/20 , κ−1}) (2.27)

so that

ε := δ2 < ε0 and κδ2 < δ. (2.28)

Let y denote the unique solution of the initial value problem

y′ = −
(
y + 1

2

)2

+ δ2, y(0) = −1

2
. (2.29)

Observe that

y(t) = −1

2
+ 1 − e−2δt

1 + e−2δt δ for t ≥ 0. (2.30)

Hence,

lim
t→∞ y(t) = −1

2
+ δ, (2.31)

while (2.27), (2.28), (2.29) and (2.30) imply that

− 1

2
≤ y(t) ≤ −1

2
+ δ <

1

2
for all t ∈ [0,∞), (2.32)

and

σy = sup
t≥0

∣∣∣∣ y
′(t) +

(
y(t) + 1

2

)2 ∣∣∣∣ = δ2 = ε. (2.33)

This shows that y : [0,∞) → R is a pseudosolution of (2.26) on [0,∞) such thatσy = ε < ε0
(see (2.28)) and y(t) ∈ B1/2(0) for t ≥ 0. Hence, there exists a solution x : [0,∞) → R

of (2.26) such that

sup
t≥0

|x(t) − y(t)| ≤ κε = κδ2. (2.34)
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It follows by elementary calculations that if c ∈ R, then the unique noncontinuable solution
x of (2.26) with x(0) = c is given by

x(t) = −1

2
+ γc

γct + 1
with γc := c + 1

2

for t ∈ Ic, where Ic = (−∞,∞) for c = − 1
2 , Ic = (− 1

γc
,∞)

for c > − 1
2 and Ic =

(−∞,− 1
γc

)
for c < − 1

2 . Since the solution x satisfying (2.34) is defined on [0,∞), the last

possibility is excluded, and thus limt→∞ x(t) = − 1
2 . From this and (2.31), we have that

limt→∞(y(t) − x(t)) = δ. This, together with (2.28) and (2.34) implies that

δ = lim
t→∞ |x(t) − y(t)| ≤ sup

t≥0
|x(t) − y(t)| ≤ κδ2 < δ,

which is a contradiction. Thus, (2.26) does not have the conditional Lipschitz shadowing
property in B1/2(0).

Remark 3 It is easy to see that a conclusion similar to the one obtained in Corollary 2 holds
true for more general perturbations of Eq. (1.6). For instance, if Eq. (1.6) has an exponential
dichotomy on [0,∞), L1 satisfies (2.22) and f is such that

| fx (t, x)| ≤ L1 + L2|x | + L3|x |2 + . . . + Lk+1|x |k for all t ≥ 0 and x ∈ R
n,

with k ∈ N and L j ≥ 0 for every j ∈ {1, . . . , k + 1}, then for ρ > 0 small enough such that

L1 + L2ρ + L3ρ
2 + . . . + Lk+1ρ

k <
λ

2N
,

Eq. (1.5) has the conditional Lipschitz shadowing property in Bρ(0).

3 Conditional Lipschitz Shadowing via the Logarithmic Norm

In this section, we give sufficient conditions for the conditional Lipschitz shadowing of
Eq. (1.1). These conditions will be formulated in terms of the logarithmic norm μ defined
by (1.9). Let us recall some useful properties of μ from [9, p. 41]. For every α ≥ 0 and
A, B ∈ R

n×n , we have

μ(αA) = αμ(A), (3.1)

|μ(A)| ≤ |A|, (3.2)

μ(A + B) ≤ μ(A) + μ(B), (3.3)

|μ(A) − μ(B)| ≤ |A − B|. (3.4)

The values of |A| and μ(A) for the most commonly used norms

|x |∞ = max
i

|xi |, |x |1 =
∑

i

|xi |, |x |2 =
(∑

i

|xi |2
)1/2

,

in R
n are given by

|A|∞ = max
i

∑

k

|aik |, |A|1 = max
k

∑

i

|aik |, |A|2 =
√
s(AT A),

and
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μ∞(A) = max
i

(
aii +

∑

k, k 
=i

|aik |
)

, μ1(A) = max
k

(
akk +

∑

i, i 
=k

|aik |
)

, μ2(A) = s

(
AT + A

2

)
,

where s(AT A) and s((AT + A)/2) are the largest (real) eigenvalue of AT A and (AT + A)/2,
respectively. We will also need the following auxiliary result.

Lemma 1 For any continuous map M : [0, 1] → R
n×n, we have that

μ

(∫ 1

0
M(s) ds

)
≤

∫ 1

0
μ (M(s)) ds. (3.5)

Proof The existence of the integral on the right-hand side of (3.5) is a consequence of the con-
tinuity ofμ : Rn×n → R (see (3.4)). In order to prove (3.5), observe that the subadditivity and
positive homogeneity ofμ (see (3.1) and (3.3)), applied to the integral sums

∑k
i=1 M(si )�si ,

where 0 = s0 < s1 < · · · < sk = 1 is a partition of [0, 1] and �si := si − si−1 for
i = 1, . . . , k, imply that

μ

( k∑

i=1

M(si )�si

)
≤

k∑

i=1

μ (M(si )) �si .

Letting� := max1≤i≤k �si → 0 and using the continuity ofμ again, we conclude that (3.5)
holds. �

Now we can state and prove the main result of this section which provides a sufficient
condition under which Eq. (1.1) has the conditional Lipschitz shadowing property in a given
set H ⊂ R

n .

Theorem 5 Let ∅ 
= H ⊂ R
n and suppose that g and gx are continuous on [0,∞) × R

n. If
there exist δ > 0 and m > 0 such that

μ(gx (t, x)) ≤ −m for all t ≥ 0 and x ∈ Nδ(H), (3.6)

then Eq. (1.1) has the conditional Lipschitz shadowing property in H.

Proof We will show that Eq. (1.1) has the conditional Lipschitz shadowing property in H
with ε0 = mδ and κ = m−1. Suppose that 0 < ε ≤ ε0 = mδ and y is a pseudosolution of
Eq. (1.1) on [0, τ ) for some τ ∈ (0,∞] such that σy = sup0≤t<τ |y′(t) − g(t, y(t))| ≤ ε

and y(t) ∈ H for all t ∈ [0, τ ). Let x be the noncontinuable solution of Eq. (1.1) with initial
value x(0) = y(0). It is known (see, e.g., [9, Chap. I (III), p. 16]) that x is defined on [0, σ )

for some σ ∈ (0,∞] and σ = ∞ whenever x is bounded. Let ω := min{σ, τ }. Define
z(t) := x(t) − y(t) for t ∈ [0, ω). (3.7)

We claim that

|z(t)| <
ε

m
for all t ∈ [0, ω). (3.8)

Suppose, for the sake of contradiction, that (3.8) does not hold. Since z(0) = x(0)−y(0) = 0,
there exists t1 ∈ (0, ω) such that

|z(t)| <
ε

m
for all t ∈ [0, t1) and |z(t1)| = ε

m
. (3.9)
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From (1.1) and (3.7), we find for t ∈ [0, ω),

z′(t) = g(t, y(t) + z(t)) − y′(t) = g(t, y(t) + z(t)) − g(t, y(t)) + ky(t),

where

ky(t) := g(t, y(t)) − y′(t) for t ∈ [0, ω).

Hence

z′(t) = A(t)z(t) + ky(t) for t ∈ [0, ω), (3.10)

where

A(t) :=
∫ 1

0
gx (t, y(t) + sz(t)) ds for t ∈ [0, ω). (3.11)

From (3.5) and (3.11), we obtain

μ (A(t)) ≤
∫ 1

0
μ(gx (t, y(t) + sz(t))) ds for t ∈ [0, ω). (3.12)

Let t ∈ [0, t1] be fixed. In view of (3.9), for every s ∈ [0, 1], we have
| (y(t) + sz(t)) − y(t)| = s|z(t)| ≤ |z(t)| ≤ ε

m
≤ ε0

m
= δ.

Hence, for every t ∈ [0, t1] and s ∈ [0, 1], we have that y(t) ∈ H and y(t) + sz(t) ∈
Bδ(y(t)) ⊂ Nδ(H). This, together with (3.6) and (3.12), yields

μ (A(t)) ≤ −m for all t ∈ [0, t1]. (3.13)

Let T (t, s) denote the transition matrix of the homogeneous linear differential equation (1.6),
where A(t) is given by (3.11). Then, for every s ∈ [0, ω) and ξ ∈ R

n , the solution of Eq. (1.6)
with initial value ξ at t = s is given by x(t) = T (t, s)ξ for t ∈ [0, ω). By Coppel’s inequality
[9, Chap. III, Theorem 3, p. 58], we have for 0 ≤ s ≤ t < ω,

|T (t, s)ξ | ≤ exp

(∫ t

s
μ(A(u)) du

)
|ξ |.

Since ξ ∈ R
n was arbitrary, this implies that

|T (t, s)| = sup
0 
=ξ∈Rn

|T (t, s)ξ |
|ξ | ≤ exp

(∫ t

s
μ(A(u)) du

)
whenever 0 ≤ s ≤ t < ω.

(3.14)

Since z is a solution of the nonhomogeneous equation (3.10) with initial value z(0) = 0, by
the variation of constants formula, we have

z(t) =
∫ t

0
T (t, s)ky(s) ds for all t ∈ [0, ω).

From this, (3.13) and (3.14), and taking into account that sup0≤t<ω |ky(t)| ≤ σy ≤ ε, we
obtain

|z(t1)| ≤
∫ t1

0
|T (t1, s)||ky(s)| ds ≤ ε

∫ t1

0
exp

(∫ t1

s
μ(A(u))

)
du

≤ ε

∫ t1

0
e−m(t1−s) ds = ε

m
(1 − e−mt1) <

ε

m
.
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This contradicts (3.9) and hence (3.8) holds.
Next we show that σ ≥ τ . Otherwise, 0 < σ < τ and hence ω = σ . This, together

with (3.7) and (3.8), implies that for all t ∈ [0, σ ),

|x(t)| = |y(t) + z(t)| ≤ |y(t)| + |z(t)| ≤ max
0≤t≤σ

|y(t)| + ε

m
.

Consequently, x is bounded on [0, σ ) and hence σ = ∞ contradicting the fact that σ < τ .
Thus, σ ≥ τ and henceω = τ . This, together with (3.7) and (3.8), implies that condition (1.4)
is satisfied with κ = m−1. The proof of the theorem is completed. �
Example 2 (Example 1 revisited) We note that Eq. (2.26) is a special case of (1.1) with

g(t, x) = −
(
x + 1

2

)2

, t ≥ 0, x ∈ R.

In Example 1we have shown that Eq. (2.26) has the conditional Lipschitz shadowing property
in [−ρ, ρ], for every 0 < ρ < 1

2 . From Theorem 5, we can deduce a stronger result showing
that the interval [−ρ, ρ] with ρ ∈ (

0, 1
2

)
can be replaced with the larger interval [−ρ,∞).

Indeed, as already noted, in the scalar case, we have thatμ(A) = A, and hence condition (3.6)
reduces to

gx (t, x) ≤ −m < 0 for all t ≥ 0 and x ∈ Nδ(H). (3.15)

Let H := [−ρ,∞), where 0 < ρ < 1
2 . Choose δ ∈ (0, 1

2 − ρ). Then, for all x ∈ Nδ(H) =
[−ρ − δ,∞),

gx (t, x) = −2

(
x + 1

2

)
≤ −2

(
−ρ − δ + 1

2

)
< 0,

which shows that condition (3.15) is satisfiedwithm := 2(−ρ−δ+ 1
2 ) > 0.By the application

of Theorem 5, we conclude that, for every ρ ∈ (0, 1
2 ), Eq. (2.26) has the conditional Lipschitz

shadowing property in [−ρ,+∞). Since the result obtained in Example 1 implies that the
conditional Lipschitz shadowing property for (2.26) in [− 1

2 ,+∞) does not hold, this is the
best result which can be achieved.

The following corollary of Theorem 5 for H = R
n provides a new criterion for the

standard Lipschitz shadowing property of Eq. (1.1) and hence it is interesting itself.

Corollary 3 Suppose that g and gx are continuous on [0,∞) × R
n and there exists m > 0

such that

μ(gx (t, x)) ≤ −m for all t ≥ 0 and x ∈ R
n .

Then, Eq. (1.1) has the Lipschitz shadowing property.

Now we present a simple corollary of Theorem 5 for the autonomous equation

x ′ = h(x), (3.16)

where h : Rn → R
n is continuously differentiable.

Corollary 4 Let H be a nonempty, bounded subset of Rn. If h : Rn → R
n is a continuously

differentiable function such that

sup
x∈H

μ(h′(x)) < 0, (3.17)

then Eq. (3.16) has the conditional Lipschitz shadowing property in H.
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Proof Equation (3.16) is a special case of (1.1) with g(t, x) := h(x) for t ≥ 0 and x ∈ R
n .

Choose ε ∈ (0,−k), where k := supx∈H μ(h′(x)) < 0 (see 3.17). Since H is bounded, there
exists ρ > 0 such that H ⊂ Bρ(0). The continuity ofμ and h′ implies thatμ◦h′ is uniformly
continuous on the compact set Bρ+1(0). Therefore, there exists δ ∈ (0, 1) such that

|μ(h′(x)) − μ(h′(x̃))| ≤ ε whenever x, x̃ ∈ Bρ+1(0) and |x − x̃ | ≤ δ. (3.18)

Let x ∈ Nδ(H). Then, there exists x̃ ∈ H such that |x − x̃ | ≤ δ. Hence, x̃ ∈ H ⊂ Bρ(0) and
|x | ≤ |x̃ | + |x − x̃ | ≤ ρ + δ < ρ + 1. Thus, we have that x, x̃ ∈ Bρ+1(0) and |x − x̃ | ≤ δ.
From (3.18) and the definition of k, we obtain that

μ(gx (t, x)) = μ(h′(x)) ≤ μ(h′(x̃)) + ε ≤ k + ε.

Since x ∈ Nδ(H) was arbitrary, condition (3.6) is satisfied with m = −(k + ε) > 0. The
desired conclusion now follows readily from Theorem 5. �

Finally, we illustrate the importance of assumption (3.17) of Corollary 4 in a special case
of a classic model from epidemiology.

Example 3 Consider the system

S′ = 1 − I S − S,

I ′ = I S − I ,
(3.19)

which is a special case of the modified Kermack–McKendrick equation (see [11, Chap. 2,
Sec. 2.3, p. 53]). Biologically meaningful solutions are generated by initial data (S(0), I (0))
from the set

� := {
(S, I ) ∈ R

2 : S ≥ 0, I ≥ 0, S + I ≤ 1
}
.

For c ∈ [0, 1), define
�c := {

(S, I ) ∈ R
2 : S ≥ 0, I ≥ 0, S + I ≤ 1 − c

}
.

Observe that �0 = � and �c ⊂ �0 for c ∈ [0, 1). Eq. (3.19) is a special case of Eq. (3.16),
where h : R2 → R

2 is given by

h(S, I ) = (1 − I S − S, I S − I )T for (S, I )T ∈ R
2.

We will show that, for every c ∈ (0, 1), Eq. (3.19) has the conditional Lipschitz shadowing
property in �c, but the same property in �0 does not hold. Evidently, h is continuously
differentiable and

h′(S, I ) =
(−I − 1 −S

I S − 1

)
for (S, I )T ∈ R

2.

Hence,

μ∞(h′(S, I )) = max{−I − 1 + |S|, S − 1 + |I | } for (S, I )T ∈ R
2.

From this and the definition of �c, we obtain

μ∞(h′(S, I )) = S − 1 + I ≤ −c for all (S, I )T ∈ �c, (3.20)

where c ∈ [0, 1) is arbitrary. This shows that if c ∈ (0, 1), then condition (3.17) of Corollary 4
is satisfiedwithμ = μ∞ and H = �c. By the application ofCorollary 4,we conclude that, for
every c ∈ (0, 1), Eq. (3.19) has the conditional Lipschitz shadowing property in �c. Next we
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show that the same property in �0 does not hold. Suppose, for the sake of contradiction, that
Eq. (3.19) has the conditional Lipschitz shadowing property in �0. Note that the definition of
the conditional Lipschitz shadowing is independent of the norm used since all norms on Rn

are equivalent. Therefore, we may (and do) use the infinity norm | · |∞ on R2. Let ε0, κ > 0
be the constants from the definition of the conditional Lipschitz shadowing property in �0.
It is easily verified that for every ε > 0,

Pε := (1 − √
ε,

√
ε)T ∈ R

2

is an equilibrium of the system

S′ = 1 − I S − S − ε,

I ′ = I S − I + ε,

which is a perturbation of Eq. (3.19). Therefore, for every ε ∈ (0,min{ε0, 1}), Pε = (1 −√
ε,

√
ε)T is a constant pseudosolution of (3.19) on [0,∞)withmaximumerrorσPε = ε ≤ ε0

and such that Pε ∈ �0. By the definition of the conditional Lipschitz shadowing, this implies
that, for every ε ∈ (0,min{ε0, 1}), Eq. (3.19) has a solution (Sε(t), Iε(t))T on [0,∞) such
that

(Sε(t), Iε(t))
T ∈ Bκε(Pε) = Bκε((1 − √

ε,
√

ε)T ) for all t ∈ [0,∞). (3.21)

In particular, we have that

∅ 
= ω(Sε, Iε) ⊂ Bκε(Pε) whenever ε > 0 is sufficiently small , (3.22)

where ω(Sε, Iε) denotes the omega-limit set of the solution (Sε(t), Iε(t))T . If ε > 0 is
sufficiently small, then κε <

√
ε. Hence,

Bκε(Pε) ⊂ G := (0, 1) × (0, 1) whenever ε > 0 is sufficiently small. (3.23)

Choose ε > 0 small enough such that both (3.21) and (3.23) are satisfied. Define V : R2 → R

by

V (S, I ) = I for (S, I )T ∈ R
2.

Then V ′(S, I ) = (0, 1) and for the derivative of V along system (3.19), we have

V̇(3.19)(S, I ) = V ′(S, I )h(S, I ) = −I (1 − S) ≤ 0 for (S, I )T ∈ G = [0, 1] × [0, 1].
Thus, V is a Lyapunov function for Eq. (3.19) on G (see [10, Chap. 2, Definition 6.1, p. 30])
and

E := { (S, I )T ∈ G | V̇(3.19)(S, I ) = 0 } = { (S, I )T ∈ G | I = 0 or S = 1 }. (3.24)

By the application of LaSalle’s invariance principle (see, e.g., [10, Chap. 2, Theorem 6.1,
p. 30]), we conclude that ω(Sε, Iε) ⊂ E . This, combined with (3.22), yields

∅ 
= ω(Sε, Iε) ⊂ Bκε(Pε) ∩ E .

Thus, Bκε(Pε) ∩ E 
= ∅. On the other hand, (3.23) and (3.24) imply that Bκε(Pε) ∩ E = ∅.
This contradiction proves that Eq. (3.19) does not have the conditional shadowing property
in �0. Note that if we take H = �0 and μ = μ∞, then (3.20) with c = 0 implies that

sup
(S,I )T ∈�0

μ∞(h′(S, I )) = 0,

which shows the importance and the sharpness of condition (3.17) in Corollary 4.
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Science Foundation under the Project IP-2019-04-1239 and by the University of Rijeka under the Projects
uniri-prirod-18-9 and uniri-prprirod-19-16. M. Onitsuka was supported in part by the Japan Society for the
Promotion of Science (JSPS) KAKENHI Grant No. JP20K03668. M. Pituk was supported by the Hungarian
National Research, Development and Innovation Office Grant No. K139346.

Availability of data andmaterials not applicable

Declarations

Conflict of interests The authors declare that they have no conflicts of interest.

Ethical Approval not applicable

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
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3. Backes, L., Dragičević, D.: A general approach to nonautonomous shadowing for nonlinear dynamics.
Bull. Sci. Math. 170, 102996 (2021)
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8. Buşe, C., O’Regan, D., Saierli, O., Tabassum, A.: Hyers-Ulam stability and discrete dichotomy for
difference periodic systems. Bull. Sci. Math. 140, 908–934 (2016)

9. Coppel, W.: Stability and Asymptotic Behaviour of Differential Equations. D.C. Heath, Boston (1965)
10. LaSalle, J.P.: The Stability of Dynamical Systems. SIAM, Philadelphia (1976)
11. Li,M.Y.: An Introduction toMathematicalModeling of Infectious Diseases.Mathematics of Planet Earth,

vol. 2. Springer, Cham (2018)
12. Onitsuka, M.: Conditional Ulam stability and its application to the logistic model. Appl. Math. Lett. 122,

107565 (2021)
13. Palmer, K.: Shadowing in Dynamical Systems. Theory and Applications. Kluwer, Dordrecht (2000)
14. Palmer, K., Pilyugin, S. Yu., Tikhomirov, S.: Lipschitz shadowing and structural stability of flows. J.

Differ. Equ. 252, 1723–1747 (2012)
15. Pilyugin, S. Yu.: Shadowing in Dynamical Systems. Lecture Notes in Mathematics, vol. 1706. Springer,

Berlin (1999)

123

http://creativecommons.org/licenses/by/4.0/


3552 Journal of Dynamics and Differential Equations (2024) 36:3535–3552

16. Pilyugin, S. Yu.: Multiscale conditional shadowing. J. Dynam. Differ. Equ. (2021). https://doi.org/10.
1007/s10884-021-10096-0

17. Pilyugin, S. Yu., Sakai, K.: Shadowing and Hyperbolicity Lecture Notes in Mathematics, vol. 2193.
Springer, Cham (2017)

18. Pilyugin, S. Yu., Tikhomirov, S.: Lipschitz shadowing implies structural stability. Nonlinearity 23, 2509–
2515 (2010)

19. Popa, D., Rasa, I., Viorel, J.: Approximate solutions of the logistic equation and Ulam stability. Appl.
Math. Lett. 85, 64–69 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s10884-021-10096-0
https://doi.org/10.1007/s10884-021-10096-0

	Conditional Lipschitz Shadowing for Ordinary Differential Equations
	Abstract
	1 Introduction
	2 Conditional Lipschitz shadowing via Exponential Dichotomy
	3 Conditional Lipschitz Shadowing via the Logarithmic Norm
	References




