DETERMINAÇÃO DA REATIVIDADE DO CARVÃO UTILIZADO NO PROCESSO DE REDUÇÃO DIRETA DA AÇOS FINOS PIRATINI

TESE

Apresentada ao Programa de Pós-Graduação em Engenharia Metalúrgica e dos Materiais - PPGEMM, como parte dos requis<u>i</u> tos para a obtenção do Título de

MESTRE EM CIÊNCIA DOS MATERIAIS

por

José Schifino

Engenheiro Químico

Esta TESE foi julgada adequada para a obtenção do Título de Mestre em Ciência dos Materiais e aprovada, em sua forma final, pelo Orientador e pela Banca Examinadora do Curso de Pós-Graduação.

Ailao Antoti Prof. Anildo Bristoti - Orientador

Doutor em Engenharia

Banca Examinadora:

Doutor Heirich Wilhelm Gudenau Doutor Paulo Roberto Krahe Doutor Anildo Bristoti

Prof. Arno Müller Doutor em Engenharia Coordenador da PPGEMM

RODRIGO E LÚCIA

MAGDA

PARA

AGRADECIMENTOS

Ao Dr. Anildo Bristoti, pela orientação segura, pelo incentivo e pelo apoio no decorrer do trabalho.

A $Prof^{\underline{a}}$ Helena Leister, pela valiosa assessoria, pelas sugestões e pelo constante interesse demonstrado.

Ao Dr. Friedrich Franke, pelas informações fornecidas, pelo in teresse e alto espírito de colaboração.

À Colega Maria do Carmo R. Peralba, pelo inestimável auxílio na parte experimental.

Ao Dr. Arno Müller, pelas inúmeras e proveitosas sugestões.

À Aços Finos Piratini, pela cooperação constante, sem a qual o presente trabalho não poderia ter sido realizado.

À FINEP, pelo suporte financeiro dado a este projeto.

Ao Sr. Iraí Carlotto, pelos excelentes trabalhos executados em quartzo e vidro.

A todos aqueles que de uma ou de outra forma contribuiram para que este trabalho pudesse ser realizado.

INDICE

	-	RESUMO E ABSTRACT	
1	-	INTRODUÇÃO	1
		1.1 - O Processo de Redução Direta e a Reação de	
		Boudouard.	2
		1.2 - Objetivos	7
2	-	PARTE TEÓRICA	10
		2.1 - Definição de Reatividade	10
		2.2 - Determinação da Função Perda de Massa por	
		Reação	12
		2.3 - Cálculo da Reatividade Específica	15
3	1	PARTE EXPERIMENTAL	19
		3.1 - Equipamento Utilizado	19
		3.2 - Amostragem	26
		3.3 - Técnica de Ensaio	28
		3.4 - Escolha das Condições de Ensaio	29
		3.5 - Reatividades Determinadas	31
4	-	CONCLUSÕES	59
		4.1 - Interpretação dos Resultados	59
		4.2 - Possibilidades Futuras	66

- REFERÊNCIAS BIBLIOGRÁFICAS

V

RESUMO

Determinações da reatividade de amostras de carvão desgaseificado, provenientes do forno de redução direta da Aços Finos Piratini, foram feitas para determinar a forma de variação da reatividade ao longo do forno. Procurou-se estabelecer a influência da difusão dos gases e do teor de cinzas na cinética da reação de Boudouard. Verificou-se que a reatividade expressa em relação à massa total de amostra decresce no transcurso do processo.

ABSTRACT

Reactivity determinations of char samples from the Aços Finos Piratini direct reduction rotary kiln were determined in orden to know how the reactivity changes along the kiln. The role of gas diffusion and ash content on the kinetics of Boudouard's reaction were studied. It was verified that reactivity expressed by unit weight of the sample decreases during the process.

VI

1 - INTRODUÇÃO

Nos processos de redução de minérios que empregam o carvão como redutor, bem como nos processos de gaseificação do carvão, a reação do gás carbônico com o carbono é de grande importância por ser responsável pela produção de monóxido de carbono o qual constitui a atmosfera redutora necessária (1). A reação entre o gás carbônico e o carbono é uma reação heterogênea conhecida pelo nome de Reação de Boudouard, e que pode ser representada por

 $co_2 + c \longrightarrow 2co$

Tendo em vista o consumo de carbono e a produção de monóxido de carbono nos processos anteriormente referidos, torna-se importante um estudo cinético da reação de Boudouard. A velocidade da reação de Boudouard para uma determinada amostra de carvão caracteriza aquilo que passamos a chamar de "re<u>a</u> tividade frente ao CO₂" ou, neste trabalho, simplesmente reatividade.

A reatividade de carvões e coques têm sido determinadas, em especial na Alemanha, através de um método proposto por Koppers e para o qual várias modificações têm sido sugeridas. Basicamente os ensaios de reatividade devem consistir em executar a reação de Boudouard isotermicamente e procurar medir a velocidade de reação pela análise dos gases produzidos (2, 3). Os métodos tradicionalmente utilizados na Europa foram aperfeiçoados para carvão com um teor de cinzas relativamente

baixo. Considerando que os nossos carvões apresentam elevada quantidade de cinzas (cerca de 50%) torna-se necessário um estudo dos métodos existentes para determinação da reatividade visando adaptá-los às nossas condições.

A reatividade é um parâmetro importante na operação de um alto forno, de um forno de redução direta ou de um gaseificador. No primeiro caso, na operação de um alto forno, se requer de um coque uma reatividade baixa pois caso contrário haverá o risco de um consumo excessivo de coque (4). Já nos outros casos, para o forno de redução direta e para o gaseificador, é requerida uma elevada reatividade visando o rendimento do processo.

Tais fatos nos levaram a procurar desenvolver uma técnica de medida de reatividade que pudesse ser adequada aos carvões do Rio Grande do Sul.

No presente trabalho faremos um estudo cinético da reação de Boudouard, tendo em vista a sua importância para o Processo de Redução Direta de Minérios de Ferro em Forno Rotativo conforme veremos a seguir.

1.1 - O Processo de Redução Direta e a Reação de Boudouard

O processo clássico de redução de minérios em alto forno utiliza o chamado <u>coque metalúrgico</u> que é o produto da pirólise a alta temperatura e em atmosfera não oxidante de carvões do tipo betuminoso e seus vizinhos próximos na série genética. Para a obtenção do coque são necessários carvões com propriedades especiais no que tange a plasticidade, téor de matéria volátil, cinzas e enxôfre. Estes carvões, chamados co-

queificantes, vão se tornando cada vez mais escassos com o crescimento da demanda mundial (1,5). Dos carvões brasileiros atualmente explorados, só o de Santa Catarina se apresenta com características coqueificantes, o que nos leva a pensar em outro processo para redução de minérios, principalmente considerando as grandes jazidas de carvão não coqueificantes do Rio Grande do Sul.

O processo empregado no Rio Grande do Sul pela Aços Finos Piratini é um dos chamados processos de redução direta, o<u>n</u> de tudo se passa como se o ferro passasse diretamente do min<u>é</u> rio à forma de ferro metálico sem a formação intermediária de óxidos. O processo do qual vamos nos ocupar no presente trabalho é o processo SL/RN que utiliza forno rotativo e minério p<u>e</u> lotizado para a produção de ferro esponja.

O processo consiste em introduzir minério, carvão (redutor) e calcário (agente dessulfurante) pela extremidade mais elevada do forno. O forno é do tipo rotativo e é aquecido pela combustão dos gases formados pelo carbono da carga e pela matéria volátil do carvão. Pela outra extremidade do forno descarregam-se o ferro esponja, magnético, e o material não magnético constituído por cinza de carvão, cal ou dolomita calcinada contendo sulfetos e carvão desgaseificado empobrecido em carbono. Neste trabalho nosso interesse estará voltado para o material não magnético descarregado do forno, que será designado por NM. Na extremidade de descarga do forno injeta--se parte do carvão necessário ao processo e ar para a combustão parcial do mesmo. Alternativamente se pode utilizar uma chama de óleo ou gás para suprir a demanda térmica nesta posi-

ção do forno. Entradas de ar adicionais, dispostas ao longo do forno permitem o controle da combustão, do perfil de temperat<u>u</u> ra e da atmosfera gasosa. Os gases quentes após atravessarem o forno passam por ciclones e são conduzidos para a chaminé. Os produtos sólidos passam por um resfriador antes de entrarem em contato com a atmosfera. O ferro esponja é separado por peneiramento e por aplicação de campo magnético.

Para que uma velocidade de redução suficiente, e portanto, um grau de metalização satisfatório seja alcançado é neces sário que a temperatura do material não seja baixa. Esta por sua vez é limitada pelo comportamento da mistura que contém componentes que amolecem entre 1000 e 1060°C, dependendo de sua composição (5). A atmosfera gasosa do forno, onde queimam os voláteis do carvão e o monóxido de carbono que evola da car ga, é oxidante em relação a mesma devido a presença de dióxido de carbono, água, ar etc. No leito de materiais sólidos existem condições redutoras garantidas pela presença do monóxido de carbono e processam-se as seguintes reações:

 $Fe_{2}O_{3} + CO \longrightarrow Fe_{3}O_{4} + CO_{2}$ $Fe_{3}O_{4} + CO \longrightarrow FeO + CO_{2}$ $FeO + CO \longrightarrow Fe + CO_{2}$ $C + CO_{2} \iff 2CO$

A última das reações apresentada é a chamada reação de Boudouard, sendo de grande importância por ser a responsável pela regeneração do monóxido de carbono necessário para a redução (5).

Além das reações anteriores e da pirólise do carvão, ocor re, principalmente nas extremidades do forno, uma combustão direta de carbono por oxigênio proveniente do ar, reação que se limita à superfície da carga sólida.

Existem no forno duas fases gasosas distintas, embora isto possa parecer paradoxal. Uma fase gasosa é constituída pela atmosfera do forno, rica em dióxido de carbono e oxidante em r<u>e</u> lação a carga. A outra fase gasosa, fisicamente separada da pr<u>i</u> meira, encontra-se nos vãos da carga e é redutora por ser rica em monóxido de carbono. A separação das duas fases é garantida pela pressão parcial do monóxido de carbono que se forma pela reação de Boudouard e que impede os gases oxidantes de penetrarem na carga.

A temperatura do forno é mais elevada na atmosfera gasosa onde se gera o calor. O calor gerado é transmitido ao material onde se processam as reações endotérmicas, predominantemente por radiação.

Pelo exposto é fácil verificar que o monóxido de carbono desempenha um importante papel e que sendo o mesmo formado pela reação de Boudouard, esta tem grande interesse no processo. A reatividade do carvão face ao dióxido de carbono, ou seja, a c<u>i</u> nética da reação de Boudouard é de fundamental importância para o processo de redução direta.

Os carvões do Rio Grande do Sul são essencialmente semelhantes quanto às suas propriedades (1,5)

- a) possuem elevado teor de cinzas, que no carvão saído da mina chega a 50 - 55%;
- b) são de difícil beneficiamento, dando baixo rendimento

em produto de baixo teor de cinzas. Quanto a esta característica, o carvão da mina do Leão apresenta melhores características de lavabilidade que os de Candiota e Charqueadas;

- c) possuem elevado teor de matéria volátil, que ultrapas sa 40% da substância carbonosa pura;
- d) não possuem capacidade aglutinante pois não amolecem durante a pirólise;
- e) seu produto sólido de desgaseificação ou "char" tem boa reatividade em relação ao dióxido de carbono;

f) possuem baixos teores de enxofre (da ordem de 1%).

O elevado teor de cinzas não se constitui, para o proce<u>s</u> so de redução direta, num problema tão sério quanto o represe<u>n</u> tado para o alto forno pois não há formação de escórias.

Assim, o processo de redução direta pode usar carvões com até 35% de cinzas, embora um teor mais baixo fosse melhor. A redução direta se adapta bastante bem a redutores de alto t<u>e</u> or de cinzas e difícil beneficiamento.

A reatividade do "char" é fator decisivo para o processo conforme já vimos. Quanto maior a reatividade do char, tanto maior a redução do dióxido de carbono pelo carbono a uma dete<u>r</u> minada temperatura. Isso implica em que a temperatura em que o processo é realizado possa ser mais baixa. Temperaturas baixas não são de todo convenientes por diminuirem a velocidade de r<u>e</u> ação dos componentes no estado sólido, que podem conduzir ao amolecimento e formação de colagem. A reatividade do redutor influencia as temperaturas vigentes no interior do forno; qua<u>n</u> to maior o seu valor mais baixa será a temperatura do leito em que se processa a redução para uma determinada temperatura da atmosfera gasosa. Uma reatividade elevada conduz a um bom apr<u>o</u> veitamento do carbono da carga, pois permite esgotá-lo até um teor residual baixo, sem prejuízo demasiado da reatividade do material.

Outros aspectos importantes no processo como o teor de enxofre e a natureza da matéria mineral deixam de ser aqui an<u>a</u> lisados por fugirem ao objetivo do presente trabalho.

1.2 - Objetivos

O objetivo primeiro do presente trabalho é o desenvolvimento de uma técnica de medida da reatividade de carvões de a<u>l</u> to teor de cinzas que permita um estudo sistemático de carvões do Rio Grande do Sul, visando futuras utilizações do mesmo.

Por outro lado, a fim de não tornar o trabalho excessiv<u>a</u> mente teórico, procuramos uma aplicação prática paralela ao d<u>e</u> senvolvimento da técnica de medida.

Contando com a colaboração da Aços Finos Piratini, fizemos um estudo da variação da reatividade do carvão utilizado no processo de redução direta, ao longo do forno rotativo.

O forno de redução direta é alimentado com carvão, calc<u>á</u> rio e minério. No interior do forno o minério de ferro é reduzido a ferro metálico que poderá ser então utilizado na produção de aços. A cinética do forno de redução direta é bastante complexa devido às inúmeras reações que tem lugar no interior do forno. No entanto, o conhecimento da cinética do processo é necessário para um perfeito entendimento dos mecanismos que afetam o rendimento da operação. A reatividade do carvão e o estudo de sua variação ao longo do forno se constitui numa ten tativa de contribuição de um melhor conhecimento da cinética do processo de redução direta. Foram feitas determinações da reatividade do carvão ao longo do forno de redução direta, ut<u>i</u> lizando amostras retiradas de amostradores existentes ao longo do mesmo. Procuramos determinar a variação da reatividade ao longo do forno numa tentativa de verificar a influência da me<u>s</u> ma no processo através de uma interpretação cinética. Tendo em vista que a reação de Boudouard é uma reação heterogênea, é n<u>e</u> cessário decidir se a mesma é determinada pela etapa química ou pela etapa de difusão.

De um modo geral, as seguintes etapas estão envolvidas numa reação heterogênea entre um sólido e um gás (6,7,8).

- a) transporte do reagente da fase gasosa para a interface gás-sólido;
- b) transporte do reagente por entre as partículas do s<u>ó</u> lido;
- c) adsorção do reagente nos microporos de sólido;
- d) reação química entre o reagente adsorvido e o sólido formando produtos adsorvidos;
- e) desorção dos produtos adsorvidos;
- f) transporte dos produtos desde os microporos até a su perfície exterior;
- g) transporte dos produtos da interface sólido-gás para a fase gasosa.

A cinética das reações carbono-gás podem ser controladas por uma ou mais destas etapas. Normalmente a cinética é controlada pela etapa química (etapas c,d,f) para baixas temperaturas, controlada pela etapa química e pela difusão a altas temperaturas (etapas b,c,d,e,f) e controlada pela difusão fora das partículas (etapas a,g) para temperaturas bem elevadas (4, 6,9,10).

Após a sua introdução no forno de redução direta, o carbo no vai sendo consumido pela reação de Boudouard e o carvão vai perdendo a sua matéria volátil. Segundo W. Peters (4,9,10,11) a 950°C o processo deve ser comandado pela etapa cinética e não pela difusão. A perda de matéria volátil aumenta a porosidade do carvão e o consumo do carbono faz crescer o teor de cinzas. A combustão do carvão se dá de fora para dentro do grão, resultando pois a deposição de uma camada de cinza na superfície do mesmo. Dependendo da espessura e das propriedades desta camada de cinza, pode a mesma vir a dificultar a difusão do dióxido de carbono, tornando-a importante na determinação da cinética do processo. Sendo elevado o teor de cinzas do carvão empregado, somos de opinião que tal hipótese não pode deixar de ser considerada, a despeito da informação de Peters.

Em nosso estudo vamos pois tentar obter informações sobre as variações da reatividade do carbono frente ao dióxido de ca<u>r</u> bono que ocorre ao longo do forno de redução direta, tendo em vista os diversos fatores capazes de afetar a cinética da reação de Boudouard.

2 - PARTE TEÓRICA

2.1 - Definição de Reatividade

Como reatividade de um combustível sólido entende-se a ve locidade de reação do mesmo com um agente de gaseificação adicionado em condições controladas de temperatura e pressão (12). A reatividade depende de variáveis de estado e de catalisadores. Os catalisadores podem ser externos ou internos. Catalisadores externos são substâncias que adicionadas ao sistema são capazes de alterar a velocidade da reação e consequentemente a reatividade. Os catalisadores internos são substâncias já existentes na amostra e que afetam sua reatividade. Devido a existência de catalisadores internos é que ocorrem variações na reatividade de carvões de origens diferentes (13,14,15). A reatividade é de terminada mediante uma gaseificação guase isotérmica em leito fixo de coque ou carvão desgaseificado, com dióxido de carbono. Prefere-se o CO₂ como agente de desgaseificação por ser de manu seio mais fácil que a água, possibilitando um controle melhor da temperatura (2).

Deve-se notar que a reatividade só pode ser determinada em carvões desgaseificados (coque ou "char") pois do contrário os gases produzidos na desgaseificação impedem a análise da relação CO/CO₂, na qual se baseiam os cálculos de reatividade.

Um carvão ao ser desgaseificado, ou seja, ao ser aquecido a temperaturas em torno de 1000[°]C em atmosfera não oxidante, p<u>o</u> de dar origem a um coque se suas propriedades assim o permitirem. Caso contrário, a desgaseificação conduzirá a formação de um produto designado por "char", que é um carvão desgaseificado sem as propriedades do coque. Os carvões do Rio Grande do Sul, por não apresentarem propriedades coqueificantes conduzem, após a desgaseificação, a formação de um "char".

Quando se faz reagir um "char" com o CO_2 , tem origem a reação de Boudouard e os gases que saem do leito de reação são constituídos por CO proveniente da reação de Boudouard e CO_2 que não tenha reagido. Assim a análise da relação CO/CO_2 permite acompanhar a cinética do processo.

Para caracterizar a reatividade pode ser usada a constante de velocidade k, determinada com auxílio da equação de E. Wicke e K. Hedden (16).

$$\frac{-dn_c}{dt} = -\frac{dn_{CO_2}}{dt} = k \cdot A \cdot m_c \cdot C_{CO_2}$$

onde A = superfície específica

 $m_{c} = massa de carbono$

A reação é de primeira ordem em relação ao CO₂ e a superfície específica pode ser englobada na constante de veloc<u>i</u> dade resultando uma constante de velocidade relativa dada por:

$$k_m = k \cdot A (cm^3 \cdot g^{-1} \cdot s^{-1})$$

A constante de velocidade relativa pode ser determinada em função do teor de CO₂ no gás de saída do reator, conforme será detalhado mais adiante.

Considerando que k_m varia com o tempo, o resultado do ensaio pode ser expresso fornecendo k_m após um certo tempo de reação (p.ex. 30min.) ou fornecendo o valor k_m para uma dada perda de carbono por reação (p.ex. 20%).

As formas de exprimir o resultado variam de acordo com o Instituto de Pesquisa que faz o ensaio. Apesar de já terem sido feitas algumas tentativas não se logrou uma padronização dos en saios. O importante em cada caso é que os resultados obtidos possam ser utilizados para a finalidade a que se propõem. No ca so presente os resultados obtidos serão expressos de duas formas distintas, uma atendendo aos interesses científicos e outra atendendo aos interesses tecnológicos. Por estas razões serão encontrados neste trabalho dois valores de reatividade; um dos valores é k_m expresso em relação a unidade de massa de carbono fixo e o outro é k_m expresso em relação a unidade de massa da amostra. O segundo valor é o que apresenta maior interesse na operação do forno de redução direta. Utilizaremos a notação R para representar a reatividade, ou seja k_m, expressa em relação à massa de carbono fixo e R_M para representar a reatividade expressa em relação a massa total de amostra. Em ambos os casos os valores serão fornecidos em $cm^3 \cdot s^{-1} \cdot g^{-1}$.

A técnica de realização do ensaio e a forma de exprimir o resultado varia de acordo com o autor mas de um modo geral segue o tradicional método de Koppers. Vários autores fornecem descrições dos métodos empregados e detalhes sobre a parte experimental (2,3,10,12,13,14,15,16,17 e 18).

2.2 - Determinação da Função Perda de Massa por Reação

A perda de massa por reação que ocorre durante o ensaio de reatividade pode ser determinada por um balanço de material feito para a reação de Boudouard. Já vimos que a reação de Boudouard ocorre segundo:

$$CO_2(g) + C_{(s)} \longrightarrow 2 CO_{(g)} \Delta_H = 38,2 \text{ Kcal.mol}^{-1}$$
 (24)

Supondo que <u>x</u> represente a fração molar do CO_2 no gás de saída do reator, resulta pela consideração da estequiometria da reação de Boudouard.

$$1/2 (1 + x) CO_2 + 1/2 (1 - x) C \longrightarrow xCO_2 + (1 - x) CO$$
 (I)

Por outro lado, a equação dos gases ideais permite calcular o número de móis de CO₂ em função de outras variáveis de e<u>s</u> tado.

$$n_{\rm CO_2} = \frac{P}{RT} \cdot V_{\rm CO_2} \tag{II}$$

A consideração de gás ideal para o CO₂ é perfeitamente aplicável neste caso, uma vez que o CO₂ possui uma pressão crít<u>i</u> ca de 72,9 atm. (23) o que resultará para a temperatura e pressão consideradas em um fator de compressibilidade praticamente unitário.

Considerando a pressão constante de l atmosfera e a temp<u>e</u> ratura de ensaio como 25⁰C ou 298 K, temos

$$n_{\rm CO_2} = \frac{1}{0,082 \times 10^3 \times 298} \cdot V_{\rm CO_2}$$
(III)

A vazão de CO2 durante os ensaios é mantida em

$$150 \text{ cm}^3 \cdot \text{min}^{-1}$$
 ,

e nestas condições a equação (III) fornece

$$n_{CO_2} = 6,14 \times 10^{-3} \text{ mois.min}^{-1}$$
 (IV)

Dividindo membro a membro a equação (I) por 1/2(1 + x), podemos escrever

$$\operatorname{CO}_{2} + \frac{1-x}{1+x} \cdot \operatorname{C} \longrightarrow \frac{2x}{1+x} \cdot \operatorname{CO}_{2} + \frac{2(1-x)}{1+x} \operatorname{CO}$$
(V)

A equação (V) mostra-nos agora que a perda de carbono por reação é dada por

$$n_{c} = \frac{1 - x}{1 + x} \cdot n_{CO_{2}} \text{ (mõis.min}^{-1}\text{)}$$
(VI)

E a perda de massa m_c é obtida facilmente a partir da equ<u>a</u> ção (VI) multiplicando a mesma pela massa atômica do carbono $(\overline{M}_{c} = 12g.mol^{-1})$

$$m_c = 12 \cdot \frac{1 - x}{1 + x} n_{CO_2} (g \cdot min^{-1})$$
 (VII)

Substituindo n_{CO_2} por seu valor dado em (IV)

$$m_c = 7.4 \times 10^{-2} \cdot \frac{1-x}{1+x} (g \cdot min^{-1})$$
 (VIII)

Integrando a equação (VIII) para um intervalo de tempo∆t, ficamos com

$$m_{c} = 7,4 \times 10^{-2} \cdot \frac{1-x}{1+x} \cdot \Delta t (g)$$
 (IX)

e a função perda de massa por reação será

$$m(t) = m_{o} - \sum_{i=1}^{n} \Delta m_{c_{i}}$$
(x)

A função perda de massa por reação definida por (X) representa a massa de carbono presente ao sistema em um tempo <u>t</u> quando se parte de uma massa m_o. A função perda de massa por reação permite que se calcule a massa de carbono presente ao sistema após cada intervalo de tempo Δ t no qual tenha sido registrada uma porcentagem média de x% de CO₂ no gás de saída do reator. Desta forma se pode obter o valor de k_m que é expresso por unidade de massa de carbono presente ao sistema no momento da med<u>i</u> da (17).

2.3 - Cálculo da Reatividade Específica

A reação de Boudouard é uma reação heterogênea que obedede a uma cinética de primeira ordem. A equação diferencial correspondente pode ser escrita:

$$-\frac{dn}{dt} = k_m \cdot m \cdot C$$
 (XI)

onde - $\frac{dn}{dt}$ = velocidade de reação (cm³.s⁻¹) k_m = constante de velocidade específica ou reatividade específica: cm³.g⁻¹.s⁻¹ C = concentração do CO₂ em g.cm⁻³

Consideremos um leito de coque, conforme representado na figura l.

Figura l

Vamos designar por C_o a concentração do CO₂ na altura h=0 e por C_x a concentração a uma certa altura h=x. Seja v_o a vazão de CO₂ na altura h=0 e v_x a vazão de CO₂ na altura de h=x.

Considerando uma secção infinitesimal dx do leito a uma altura \underline{x} , podemos escrever (12)

$$d\left[v_{x} \cdot c_{y}\right] = -k_{m} \cdot dm \cdot c_{y} \qquad (XII)$$

Por outro lado, a estequiometria da reação de Boudouard,

permite obter o valor de v em função de v e da concentração de CO_2 .

 $co_2 + c \longrightarrow 2 co$ (XIII)

Lembrando que a concentração de CO é igual a $1 - \frac{C_x}{C_o}$ e que cada 2 moléculas de CO provém de uma molécula de CO₂, temos

$$v_{o} = v_{x} - v_{x} \cdot \frac{1 - C_{x}/C_{o}}{2}$$
 (XIV)

de onde se tira

$$v_{x} = \frac{2v_{o}}{1 + c_{x}/c_{o}}$$
(XV)

Substituindo o valor de v dado em (XV) na equação (XII), x teremos após a diferenciação

$$2v_{o} \left[\frac{\left(\frac{1 + c_{x}/c_{o}}{c_{o}} \right) dc_{x} - c_{x}/c_{o}dc_{x}}{\left(1 + c_{x}/c_{o} \right)^{2}} \right] = -k_{m} \cdot dm \cdot c_{x}$$
$$2v_{o} \left[\frac{dc_{x} + c_{x}/c_{o}dc_{x} - c_{x}/c_{o}dc_{x}}{\left(1 + c_{x}/c_{o} \right)^{2}} \right] = -k_{m} \cdot dm \cdot c_{x}$$

$$2v_{o}\left[\frac{dC_{x}}{\left(1 + C_{x}/C_{o}\right)^{2}}\right] = -k_{m} \cdot dm \cdot C_{x}$$
(XVI)

Integrando a equação (XVI) ao longo do leito de coque:

$${}^{2v}_{o} \int_{C_{o}}^{C_{L}} \frac{dC_{x}}{(1 + C_{x}/C_{o})^{2}C_{x}} = -k_{m} \int_{o}^{m} dm$$

$$k_{\rm m} = -\frac{v_{\rm o}}{m} \left[\frac{1 - C_{\rm L}/C_{\rm o}}{1 + C_{\rm L}/C_{\rm o}} + 2 \ln \frac{2 C_{\rm L}/C_{\rm o}}{1 + C_{\rm L}/C_{\rm o}} \right]$$
(XVII)

A equação (XVII) pode ser escrita de uma forma simplificada fazendo

$$-\left[\frac{1 - C_{\rm L}/C_{\rm o}}{1 + C_{\rm L}/C_{\rm o}} + 2 \ln \frac{2 C_{\rm L}/C_{\rm o}}{1 + C_{\rm L}/C_{\rm o}}\right] = Da \qquad (XVIII)$$

onde Da é o chamado "número de Danköhler", adimensional e que só depende da concentração do CO₂ nos gases de saída, represe<u>n</u> tada por C₁.

$$k_{m} = \frac{v_{o} Da}{m}$$
(XIX)

onde k_m = reatividade específica

m = massa de carbono presente no momento da medida

 $v_0 = volume de CO_2$ que penetra no leito de coque.

Referências a este método de determinação da reatividade são encontradas nos trabalhos de Hedden (2), Dahme e Junker (3), Koch e Peters (9), Masuda (12), Wenzel et. al. (13,17), Franke et. al. (14,15), Wicke e Hedden (16) entre outros. Emb<u>o</u> ra as modificações que possam ser introduzidas no método, os princípios básicos são mantidos em todos os trabalhos. Para f<u>a</u> cilitar os cálculos é usual fazer uma tabela com os valores do número de Danköhler em função da porcentagem de CO₂ nos gases de saída do reator (12).

3 - PARTE EXPERIMENTAL

3.1 - Equipamento Utilizado

Para a preparação das amostras, o carvão era desgaseifica do a 950°C por 2 horas em atmosfera de nitrogênio, utilizando--se a retorta representada na Figura 2. A retorta foi construída em aço inox com formato adequado para sua utilização em forno vertical. Pela tampa superior da retorta, a qual era firmemente aparafusada, passavam duas canalizações para a circulação de nitrogênio. O nitrogênio, que era utilizado durante a desgaseificação, para assegurar uma atmosfera não oxidante, penetrava na retorta pela entrada de gases E e saía da retorta pe la saída de gases S. Mantendo a circulação de nitrogênio durante a desgaseificação era possível obter o "char" destinado à de terminação da reatividade. As dimensões da retorta eram tais que permitiam a obtenção de 20 a 25 gramas de "char" em cada operação.

A reatividade do carvão desgaseificado (char) ao CO₂ foi determinada segundo o método proposto por Koppers, usando o equipamento descrito a seguir.

A unidade principal do equipamento era constituída por um reator de quartzo que se encontra esquematizado na Figura 3. O reator foi construído de forma a conter um leito com cerca de 8 a 12 gramas de "char", no qual se procurava realizar a reação de Boudouard de forma quase isotérmica. O reator constava de:

a) um tubo externo TE (diâmetro = 40mm), o qual continha

Figura 2 - Retorta construída em aço inox, usada para a desgaseificação das amostras.

Figura 3 - Reator de quartzo usado para a determinação de reatividade, constituído de; tubos de entrada e saí da de gás (E e S), tubo do termopar (T), tubo interno (TI) e tubo externo (TE) uma entrada lateral para admissão de CO₂ em quantidade controlada;

- b) um tubo interno TI (diâmetro = 23mm) que possuia um fundo perfurado sobre o qual o leito de "char" era mantido, sustentado por lã de quartzo. A lã de quartzo é necessária quando se pretende trabalhar a 950° C. A lã de vidro não pode ser utilizada por formar um e<u>u</u> tético com o quartzo, de ponto de fusão inferior a 950° C. O tubo interno em sua parte superior continha uma saída lateral para os gases de combustão (CO₂ + CO);
- c) um tubo T (diâmetro = 8mm) o qual continha um termopar e ficava imerso no leito de carvão desgaseificado.

O CO2, usado para a determinação da reatividade, penetra va no reator pelo tubo lateral, conforme indicado na Figura 3, entrando no tubo externo TE onde era pré-aquecido até a temperatura de reação. O gás pré-aquecido penetrava pelo fundo do tubo interno TI atravessando o leito de "char" onde se processava a reação de Boudouard. Os gases resultantes da combustão, uma mistura de CO, e CO, deixavam o reator pelo tubo lateral de saída, onde podiam ser coletados e analisados. A quantidade de amostra utilizada no ensaio ficava limitada pelas dimensões do tubo interno do reator, uma vez que o leito de carvão não deve exceder 5 a 7 cm de altura. A altura do leito se torna crítica pelo fato da reação de Boudouard ser endotérmica, 0 que cria um gradiente de temperatura no leito de carvão desgaseificado. Sendo a altura do leito relativamente pequena é pos sível, considerar um perfil linear de temperatura. Nestas cond<u>i</u> ções, sendo o termopar colocado a meia-altura no leito teremos a indicação da temperatura média de realização do ensaio. O te<u>r</u> mopar utilizado ficava encapsulado no tubo de quartzo T e era do tipo Cromel-Alumel.

O reator era colocado em um forno vertical (Figura 4), com potência de 2,8 kW, que se encarregava de manter o leito aquecido à temperatura de trabalho, ou seja 950^oC. O forno possuia um diâmetro de 10 cm e foi construído com uma resistência convenientemente dimensionada, que operando a 220V permitia a passagem de uma corrente de 12A.

O controle do forno era feito através do termopar que se encontrava imerso no leito de carvão desgaseificado. Para o co<u>n</u> trole da temperatura foi utilizado um controlador Engro modelo 310 - TR, acoplado a um amperímetro HB O a 15A, chaves térmicas de 15A e um contactor de 16A, de acordo com o esquema apresent<u>a</u> do na Figura 5.

O CO₂ utilizado para a reação de Boudouard provinha de um cilindro de aço. Uma válvula de redução White-Martins reduzia a pressão e o gás era conduzido para um rotâmetro OMEL onde a va zão do CO₂ era controlada e mantida em 150 ml/min durante os en saios. Um outro cilindro com Nitrogênio, dotado de válvula de redução e rotâmetro idênticos era utilizado para manter uma atmosfera inerte enquanto o carvão desgaseificado era aquecido a 950°C. A vazão de nitrogênio no período de aquecimento foi sempre mantida em 150 ml/min.

Um segundo termopar Cromel-Alumel foi colocado diretamen-

<u>Figura 4</u> - Esquema geral da aparelhagem utilizada para a determinação de reatividade, incluindo os cilindros de gás, rotâmetros ($R_1 \in R_2$), forno ve<u>r</u> tical (F), controlador de temperatura (C.T.), ap<u>a</u> relho de Orsat (O), registrador (R.G.), reator de quartzo (R.Q.) e termopares ($T_1 \in T_2$).

Figura 5 - Esquema das ligações elétricas, mostrando o controlador de temperatura e o registrador de temperaturas, bem como os dois termopares utilizados. te no forno, externamente ao reator e na altura do leito do car vão desgaseificado para registro da temperatura nesta região. A temperatura indicada neste termopar, bem como a indicada pelo termopar interno foram registradas num registrador Engro de 4 canais modelo 800 TC. O registro destas temperaturas permitia detetar qualquer irregularidade de funcionamento durante os ensaios.

Os gases de saída (CO e CO_2) eram conduzidos para um aparelho de Orsat, onde era feita a determinação do teor de CO_2 , o que permitia o cálculo da reatividade da amostra ensaiada. O aparelho de Orsat utilizado era do tipo clássico sendo usado como líquido confinante uma solução de NaCl a 35% e como absorve<u>n</u> te para o CO₂ uma solução de KOH a 30%.

3.2 - Amostragem

As amostras utilizadas na determinação de reatividade eram provenientes do forno de redução direta da Aços Finos Piratini, sendo retiradas da carcaça do mesmo, através de amostrado res. O forno possui um comprimento total de 50 metros e os amos tradores, que são aberturas onde podem ser adaptados recipientes para o recolhimento das amostras, estão assim dispostos

Código do amostrador	Disposição
MC2	15 m da boca de alimentação
MC 3	33 m da boca de alimentação
MC4	44 m da boca de alimentação
MC5	descarga do forno (externamente)

Para a retirada das amostras, um recipiente amostrador era colocado no forno durante a operação do mesmo. A fim de conseguir uma amostra representativa, o forno era deixado girar por duas vezes antes que o recipiente de amostragem fosse retirado. As amostras retiradas do forno foram separadas magneticamente a fim de remover o ferro metálico e o minério não reduzido. A parte restante, ou seja, a não magnética, foi utilizada no presente trabalho e designada pela sigla NM. Duas granulometrias foram utilizadas para o estudo da reatividade:

NMl - maior que 5 mm (de 5 a 12mm)
NM2 - menor que 5 mm (de 1 a 5 mm)

A alimentação do forno rotativo de redução direta é feita com minério de ferro pelotizado, carvão e calcário. O calcário, conforme já vimos é usado como agente dessulfurante. O carbonato de cálcio ainda existente, durante o aquecimento, produz CO₂ devido à reação;

$$CaCO_3 \longrightarrow CaO + CO_2$$

O CO₂ pode então interferir nas medições de reatividade, uma vez que estas estão baseadas no teor de CO₂ no gás de saída do reator. Por isto será necessário proceder a uma desgaseificação prévia conforme será visto adiante.

As amostras são designadas neste trabalho de acordo com o seguinte código;

- a) sigla do amostrador: MC2, MC3, MC4 ou MC5;
- b) granulometria: NMl ou NM2;

c) remessa: I, II ou III.

As três remessas a que nos referimos correspondem a retiradas de amostras do forno de redução direta feitas nas seguintes datas

Remessa	Data
I	07/01/77
II	05/04/77
III	10/08/77

3.3 - Técnica de Ensaio

As amostras que foram recebidas da Aços Finos Piratini eram submetidas a uma desgaseificação, constituída de um aquecimento por 2 horas a 950°C em atmosfera de nitrogênio. A desgaseificação foi feita em retorta especial, construída em aço inox para preservar o reator. A desgaseificação não era efetuada no próprio reator devido ao ataque que o quartzo sofre por parte dos elementos constituintes da cinza do carvão. Como o nosso carvão apresenta elevado teor de cinzas, o ataque ao quartzo é um problema que não pode deixar de ser considerado. A retorta utilizada, a qual já nos referimos anteriormente, perm<u>i</u> tia obter de cada vez cerca de 20 a 25 gramas de carvão desgaseificado ou "char".

As amostras desgaseificadas eram submetidas à análise para a determinação de: teor de cinzas, carbono fixo, matéria volátil e umidade. De posse do resultado da análise era possível calcular a massa de amostra que deveria ser colocada no reator para que se tivessem 5,0 gramas de carbono no leito de reação. Na prática não é crítica a colocação no reator de exatamente 5,0 gramas de carbono, uma vez que a reatividade é referida à unidade de massa. De qualquer forma, é necessário conhecer a massa de carbono colocada no reator, o que é possível pelo conhecimento do teor de carbono fixo da amostra utilizada.

3.4 - Escolha das Condições de Ensaio

A reação de Boudouard obedece a uma cinética de primeira ordem e se constitui numa reação heterogênea do tipo gás-sólido. Em se tratando de uma reação heterogênea, é necessário ana lisar o processo a fim de determinar qual a etapa mais importante para a determinação da velocidade; se a etapa química ou se a etapa de difusão. Trabalhos anteriormente feitos para outros carvões indicam que abaixo de 1100ºC a etapa química é a mais lenta e é responsável pela velocidade do processo (10,20). Acima desta temperatura a etapa química se torna mais rápida que a etapa de difusão, sendo esta última a responsável pela velocidade do processo. Uma vez que se o nosso interesse se prende ao estudo da cinética da reação de Boudouard, devemos trabalhar abaixo de 1100°C. A temperatura escolhida para os en saios foi de 950°C, o que nos garante que o processo será comandado pela etapa química, pelo menos em princípio.

A granulometria do carvão utilizado não se constitui num parâmetro crítico se o processo for comandado pela etapa quími ca, uma vez que a superfície interna dos grãos é bem mais ele-

vada que a superfície externa. Assim, para um tamanho de grão de 0,15mm a superfície externa é de 0,04 m²/g, enquanto que para grãos de 1,5mm é de 0,004 m²/g. No entanto isto não chega a ser significativo se considerarmos que a superfície interna é da ordem de 1 m²/g. A diferença no caso, considerando a superfície t<u>o</u> tal é de 1,04 para 1,004 m²/g. Duas granulometrias foram seleci<u>o</u> nadas para os ensaios de reatividade, conforme anteriormente explicado (3).

A quantidade de material a ser ensaiado fica limitada por alguns fatores que devem ser levados em consideração. Em primeiro lugar, as dimensões do reator são determinantes de tamanho da amostra a ser ensaiada. O tubo interno do reator possui um diâme tro de 23mm e a altura do leito de carvão não deve ser excessiva para evitar ao máximo as diferenças de temperatura ao longo do mesmo e manter o ensaio tão isotérmico quanto possível (3, 12). Outro fator a ser considerado é a composição desejável do gás de saída do reator. É conveniente, para fins de análise, que o gás de saída contenha de 50 a 80% de CO2. Tendo em vista estas condi ções e considerando a vazão de CO2 utilizada, a quantidade de amostra foi estabelecida em 5,0 gramas de carbono fixo. De qualquer forma, sendo a reatividade expressa por unidade de massa do material ensaiada, não deve se esperar que a mesma seja afetada pela quantidade de amostra.

A vazão de CO₂ utilizada no decorrer dos ensaios foi estabelecida em função de dados existentes na literatura, dos quais falaremos a seguir.

Os métodos de medida da reatividade de coque ou de "char"
variam no que diz respeito às condições que acabamos de analisar. A título de informação transcreveremos na Tabela 1 as cond<u>i</u> ções de ensaio de quatro Institutos de Pesquisa alemães, cujos resultados foram cotejados por Peters (10).

Considerando tais condições e levando em conta em especial os trabalhos de Franke et. al. (13,14,15,17), estabelecemos as seguintes condições de ensaio

Quantidade de amostra: 5,0 gramas de carbono fixo Granulometria: tipos NMl e NM2 (ver explicações anteriores)

Gás reagente: CO,

Vazão do gás reagente: 150 ml/min

Temperatura do ensaio: 950°C

3.5 - Reatividades Determinadas

A seguir são apresentados os resultados das determinações de reatividade feitas nas amostras provenientes do forno de red<u>u</u> ção direta da Aços Finos Piratini. Em primeiro lugar é apresent<u>a</u> do o resultado das análises das amostras submetidas a uma desgaseificação prévia. A tabela apresenta para cada amostra os resu<u>l</u> tados dos seguintes ensaios expressos em base seca:

a) teor de cinzas;

b) teor de carbono fixo;

c) matéria volátil;

d) umidade.

O valor do teor de carbono fixo permitiu, em cada caso, calcular a massa de amostra necessária para que se tivesse no re

	AMO	STRA	GÁS RE.	AGENTE	TEMPERATURA
INSTITUTO	quantidade	granulometria (mm)	tipo	vazão ml/min	DE ENSAIO
Ruhrkohlen- Beratung	35 cm ³	0,5 - 1,0	co ₂	180	950 ⁰ C
Universitat Hamburg	5 g	0,4 - 1,0	co ₂	150	1050 ⁰ C
Bergbau- Forschung	5 g	1,0 - 2,0	co ₂	150	1050 ⁰ C
Phoenix- Rheinrohr	50 g	3,0 - 5,0	Ar	25,2	não isotérmico

Tabela l

ator, 5,0 gramas de carbono.

As reatividades determinadas para cada uma das amostras es tão relatadas nas tabelas que se seguem. Ao todo são 24 amostras, sendo 8 de cada série de ensaios. As tabelas de resultados apresentam:

- a) o tempo em minutos da determinação, contado desde o momento em que o CO₂ era ligado;
- b) o teor de CO₂ no gás de saída do reator, determinado por análise em aparelho de Orsat;
- c) a massa de carbono existente no reator, calculada através da função perda de massa por reação. O valor da concentração do CO₂ usado para esse cálculo era o valor médio entre o imediatamente anterior e o determinado, a fim de permitir uma integração da curva usando uma constante de tempo de quinze minutos;
- d) a variação de massa expressa sob a forma de porcentagem;
- e) o número de Danköhler usado para o cálculo da reatividade;
- f) a reatividade R_c, calculada em função da massa de carbono existente no reator no momento da medida;
- g) a reatividade R_M, calculada em função da massa de amostra existente no reator no momento da medida.

Amostra	Cinzas	Voláteis	Carb. Fixo	Umidade
	% b.s.	% b.s.	% b.s.	0jo
MC2-NM1-I	44,8	1,1	54,1	1,5
MC3-NM1-I	66,9	0,7	32,4	1,6
MC4-NM1-I	68,5	0,5	31,0	1,0
MC5-NM1-I	70,8	0,9	28,3	0,6
MC2-NM2-T	48 6	23	49 1	0.8
MC3-NM2-T	57 6	2,5	41 8	1 3
MC4-NM2-T	68 3	1,6	30 1	1,0
MC5-NM2-T	71 6	1,0	27.2	1,0
MCJ-MM2-1	11,0	1,2	21,2	0,1
MC2-NM1-II	49,8	1,6	48,6	0,7
MC3-NM1-II	64,6	1,0	34,4	1,2
MC4-NM1-II	69,9	1,0	29,1	0,9
MC5-NM1-II	83,0	0,6	16,4	0,8
MC2-NM2-II	48,3	1,5	50,2	0,5
MC3-NM2-II	60,2	1,3	38,5	0,4
MC4-NM2-II	68,8	1,3	29,9	1,1
MC5-NM2-II	72,7	0,8	26,5	0,7
MC2-NM1-TTT	50.0	1.4	48.6	0.4
MC3-NM1-TTT	58.3	1.8	39.9	0.8
MC4-NM1-III	62.7	0.7	36.6	0.4
MC5-NM1-III	68,0	1,9	30,1	0,7
MC2-NM2-III	47,5	0,8	51,7	0,6
MC3-NM2-III	54,8	0,8	44,4	0,3
MC4-NM2-III	61,3	1,3	37,4	0,6
MC5-NM2-III	64,1	2,6	33,3	0,8

ANÁLISE IMEDIATA DAS AMOSTRAS DE CARVÃO DESGASEIFICADAS

Amostra: MC2-NM1-I Data do ensaio: 8/7/77 Massa da amostra: 9,2 gramas Teor de cinzas (b.s.): 44,8 % Teor de carbono fixo (b.s.): 54,1 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO₂ Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 ^OC

^co2	m (gramas)	∆ m %	Da	Rc	R _M
0,675	4,78	4,4	0,306	0,65	0,35
0,675	4,57	8,6	0,306	0,68	0,36
0,690	4,36	12,8	0,232	0,54	0,28
0,700	4,16	16,8	0,217	0,53	0,26
0,710	3,97	20,6	0,207	0,53	0,26
0,710	3,78	24,4	0,202	0,55	0,26
0,720	3,60	28,0	0,197	0,56	0,26
0,690	3,40	32,0	0,207	0,62	0,28
	0,675 0,675 0,690 0,700 0,710 0,710 0,720 0,690	0,675 4,78 0,675 4,57 0,690 4,36 0,700 4,16 0,710 3,97 0,710 3,78 0,720 3,60 0,690 3,40	0,675 4,78 4,4 0,675 4,57 8,6 0,690 4,36 12,8 0,700 4,16 16,8 0,710 3,97 20,6 0,710 3,78 24,4 0,720 3,60 28,0 0,690 3,40 32,0	0,675 4,78 4,4 0,306 0,675 4,57 8,6 0,306 0,690 4,36 12,8 0,232 0,700 4,16 16,8 0,217 0,710 3,97 20,6 0,207 0,710 3,78 24,4 0,202 0,720 3,60 28,0 0,197 0,690 3,40 32,0 0,207	0,675 4,78 4,4 0,306 0,65 0,675 4,57 8,6 0,306 0,68 0,690 4,36 12,8 0,232 0,54 0,700 4,16 16,8 0,217 0,53 0,710 3,97 20,6 0,207 0,53 0,710 3,78 24,4 0,202 0,55 0,720 3,60 28,0 0,197 0,56 0,690 3,40 32,0 0,207 0,62

Amostra: MC3-NM1-I Data do ensaio: 6/7/77 Massa da amostra: 15,4 gramas Teor de cinzas (b.s.): 66,9 % Teor de carbono fixo (b.s.): 32,4 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO₂ Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 ^OC

Minutos	×co2	m (gramas)	∆ m %	Da	Rc	R _M
15	0,540	4,67	6,6	0,411	0,90	0,28
30	0,580	4,36	12,8	0,381	0,89	0,26
45	0,630	4,08	18,4	0,322	0,80	0,23
60	0,650	3,84	23,2	0,276	0,73	0,20
75	0,610	3,59	28,2	0,288	0,82	0,21
90	0,580	3,30	34,0	0,336	1,04	0,25
105	0,680	3,05	39,0	0,288	0,96	0,22
120	0,640	2,82	43,6	0,254	0,92	0,20
2007.90 A		-/	,.	07254	0,52	0,20

Amostra: MC4-NM1-I Data do ensaio: 19/8/77 Massa da amostra: 13,7 gramas Teor de cinzas (b.s.): 62,7 % Teor de carbono fixo (b.s.): 36,6 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO₂ Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 ^OC

Minutos	×co2	m (gramas)	∆m %	Da	R _c	R _M
15	0,740	4,84	3,2	0,174	0,37	0,13
30	0,690	4,65	7,0	0,198	0,43	0,15
45	0,690	4,45	11,0	0,222	0,51	0,17
60	0,710	4,25	15,0	0,212	0,51	0,17
75	0,690	4,06	18,8	0,212	0,53	0,17
90	0,690	3,84	23,2	0,248	0,66	0,20
105	0,790	3,67	26,6	0,174	0,48	0,14
120	0,770	3,53	29,4	0,148	0,43	0,12

Amostra: MC5-NM1-I Data do ensaio: 18/7/77 Massa da amostra: 17,7 gramas Teor de cinzas (b.s.): 70,8 % Teor de carbono fixo (b.s.): 28,3 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO₂ Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 ^OC

Minutos	×co2	m (gramas)	∆ m %	Da	Rc	R _M
15	0,750	4,84	3,2	0,166	0,35	0,10
30	0,700	4,67	6,6	0,188	0,41	0,11
45	0,760	4,49	10,2	0,182	0,41	0,11
60	0,710	4,32	13,6	0,178	0,42	0,11
75	0,740	4,15	17,0	0,188	0,46	0,11
90	0,750	3,98	20,4	0,170	0,44	0,11
105	0,700	3,81	23,8	0,188	0,50	0,12
120	0,730	3,62	27,6	0,198	0,56	0,12

Amostra: MC2-NM2-I Data do ensaio: 1/4/77 Massa da amostra: 10,2 gramas Teor de cinzas (b.s.): 48,6 % Teor de carbono fixo (b.s.): 49,1 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO_2 Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 °C

Minutos	×co2	m (gramas)	∆m %	Da	Rc	R _M
15	0,500	4,63	7,4	0,478	1,05	0,50
30	0,510	4,26	14,8	0,469	1,12	0,51
45	0,495	3,90	22,0	0,478	1,25	0,54
60	0,530	3,54	29,2	0,455	1,31	0,53
75	0,500	3,18	36,4	0,451	1,45	0,55
90	0,525	2,83	43,4	0,455	1,64	0,58
105	0,530	2,48	50,4	0,427	1,75	0,57
120	0,610	2,18	56,4	0,370	1,73	0,51

Amostra: MC3-NM2-I Data do ensaio: 7/7/77 Massa da amostra: 12,0 gramas Teor de cinzas (b.s.): 57,6 % Teor de carbono fixo (b.s.): 41,8 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO_2 Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 $^{\circ}C$

Minutos	×co2	m (gramas)	∆ m %	Da	Rc	R _M
15	0,500	4,63	7,4	0,478	1,05	0,42
30	0,520	4,27	14,6	0,460	1,09	0,42
45	0,530	3,92	21,6	0,435	1,13	0,40
60	0,660	3,60	28,0	0,403	1,15	0,39
75	0,560	3,33	33,4	0,313	0,96	0,31
90	0,590	3,03	39,4	0,361	1,22	0,37
105	0,660	2,77	44,6	0,296	1,08	0,31
120	0,630	2,53	49,4	0,270	1,09	0,29

Amostra: MC4-NM2-I Data do ensaio: 6/4/77 Massa da amostra: 16,6 gramas Teor de cinzas (b.s.): 69,9 % Teor de carbono fixo (b.s.): 30,1 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO_2 Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 $^{\circ}C$

Minutos	×co2	m (gramas)	∆ m %	Da	Rc	R _M
15	0,465	4,60	8,1	0,544	1,21	0,34
30	0,470	4,19	16,1	0,534	1,30	0,34
45	0,475	3,80	24,1	0,534	1,43	0,35
60	0,480	3,40	31,9	0,515	1,54	0,35
75	0,530	3,04	39,2	0,478	1,60	0,33
90	0,580	2,72	45,6	0,469	1,76	0,33
105	0,510	2,40	52,1	0,403	1,72	0,29
120	0,590	2,07	58,5	0,396	1,95	0,30
2						

ESCOLA DE ENGENHARIA BIBLIOTECA

Amostra: MC5-NM2-I Data do ensaio: 25/4/77 Massa da amostra: 18,4 gramas Teor de cinzas (b.s.): 71,6 % Teor de carbono fixo (b.s.): 27,2 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO_2 Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 °C

Minutos	×co2	m (gramas)	∆ m %	Da	Rc	R _M
15	0,500	4,63	7,4	0,478	1,05	0,27
30	0,490	4,25	15,0	0,487	1,17	0,28
45	0,500	3,88	22,4	0,487	1,28	0,29
60	0,560	3,54	29,2	0,427	1,23	0,26
75	0,550	3,22	35,6	0,403	1,28	0,25
90	0,560	2,90	42,0	0,403	1,42 ·	0,25
105	0,620	2,62	47,6	0,339	1,32	0,22
120	0,640	2,37	52,6	0,288	1,24	0,19

Amostra: MC2-NM1-II Data do ensaio: 22/7/77 Massa da amostra: 15,0 gramas Teor de cinzas (b.s.): 49,8 % Teor de carbono fixo (b.s.): 48,6 % Massa inicial de carbono: 7,3 gramas Gás reagente: CO₂ Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 ^OC

Minutos	×co2	m (gramas)	∆ m %	Da	Rc	R _M
15	0,670	7,07	3,0	0,243	0,35	0,17
30	0,640	6,84	6,2	0,260	0,39	0,18
45	0,590	6,58	9,7	0,306	0,47	0,22
60	0,650	6,32	13,3	0,300	0,48	0,22
75	0,560	6,04	17,1	0,322	0,54	0,24
90	0,560	5,73	21,4	0,381	0,68	0,29
105	0,560	5,42	25,6	0,381	0,72	0,30
120	0,650	5,14	29,5	0,322	0,64	0,26

Amostra: MC3-NM1-II Data do ensaio: 9/8/77 Massa da amostra: 14,5 gramas Teor de cinzas (b.s.): 64,6 % Teor de carbono fixo (b.s.): 34,4 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO₂ Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 ^OC

Minutos	×co2	m (gramas)	∆ m %	Da	Rc	R _M
15	0,670	4,78	4,4	0,243	0,52	0,17
30	0,700	4,57	8,6	0,227	0,51	0,16
45	0,600	4,34	13,2	0,265	0,62	0,19
60	0,630	4,07	18,6	0,306	0,77	0,23
75	0,625	3,82	23,6	0,286	0,76	0,22
90	0,630	3,57	28,6	0,286	0,82	0,22
1.05	0,690	3,34	33,2	0,254	0,78	0,20
120	0,630	3,11	37,8	0,254	0,83	0,20

Amostra: MC4-NM1-II Data do ensaio: 29/7/77 Massa da amostra: 15,0 gramas Teor de cinzas (b.s.): 69,9 % Teor de carbono fixo (b.s.): 29,1 % Massa inicial de carbono: 4,37 gramas Gás reagente: CO₂ Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 ^OC

Minutos	×co2	m (gramas)	∆m %	Da	Rc	R _M
15	0,770	4,23	3,2	0,148	0,36	0,10
30	0,770	4,08	6,6	0,148	0,37	0,10
45	0,720	3,92	10,3	0,166	0,43	0,12
60	0,760	3,76	14,0	0,174	0,47	0,12
75	0,760	3,61	17,4	0,157	0,44	0,11
90	0,750	3,45	21,1	0,162	0,48	0,12
105	0,750	3,29	24,7	0,166	0,51	0,12
120	0,700	3,12	28,6	. 0,187	0,61	0,14

Amostra: MC5-NM1-II Data do ensaio: 12/7/77 Massa da amostra: 15,0 gramas Teor de cinzas (b.s.): 83,0 % Teor de carbono fixo (b.s.): 16,4 % Massa inicial de carbono: 2,5 gramas Gás reagente: CO_2 Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 °C

Minutos	×co2	m (gramas)	∆ m %	Da	Rc	R _M
15	0,790	2,33	5,3	0,132	0,58	0,09
30	0,800	2,20	10,6	0,128	0,60	0,09
45	0,800	2,08	15,5	0,125	0,61	0,09
60	0,800	1,96	20,3	0,125	0,65	0,09
75	0,810	1,84	25,2	0,121	0,67	0,08
90	0,790	1,72	30,1	0,125	0,74	0,09
105	0,800	1,59	35,4	0,128	0,82	0,09
120	0,800	1,47	40,2	0,125	0,87	0,09
				E Contraction of the second se		

Amostra: MC2-NM2-II Data do ensaio: 15/7/77 Massa da amostra: 15,0 gramas Teor de cinzas (b.s.): 48,3 % Teor de carbono fixo (b.s.): 50,2 % Massa inicial de carbono: 7,5 gramas Gás reagente: CO_2 Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 °C

Minutos	× _{CO2}	m (gramas)	∆m %	Da	R _c	R _M
15	0,490	7,15	5,0	0,496	0,71	0,35
30	0,460	6,76	10,2	0,524	0,79	0,38
45	0,500	6,37	15,4	0,515	0,82	0,38
60	0,520	6,00	20,3	0,460	0,78	0,35
75	0,490	5,65	25,0	0,469	0,85	0,37
90	0,410	5,22	30,7	0,575	1,12	0,46
105	0,495	4,81	36,1	0,570	1,21	0,47
120	0,500	4,44	41,0	0,480	1,10	0,41
				1		

Amostra: MC3-NM2-II Data do ensaio: 14/7/77 Massa da amostra: 15,0 gramas Teor de cinzas (b.s.): 60,2 % Teor de carbono fixo (b.s.): 38,5 % Massa inicial de carbono: 5,8 gramas Gás reagente: CO₂ Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 ^OC

Minutos	×co2	m (gramas)	∧m %	Da	Rc	R _M
15	0,500	5,41	6,4	0,478	0,90	0,33
30	0,520	5,05	12,6	0,460	0,93	0,33
45	0,510	4,70	18,7	0,452	0,98	0,33
60	0,600	4,38	24,2	0,388	0,90	0,29
75	0,590	4,10	29,1	0,336	0,84	0,26
90	0,550	3,80	34,2	0,370	0,99	0,29
105	0,630	3,51	39,3	0,339	0,98	0,27
120	0,660	3,27	43,4	0,270	0,84	0,22

Amostra: MC4-NM2-II Data do ensaio: 21/7/77 Massa da amostra: 15,0 gramas Teor de cinzas (b.s.): 68,8 % Teor de carbono fixo (b.s.): 29,9 % Massa inicial de carbono: 4,5 gramas Gás reagente: CO_2 Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 °C

Minutos	×co2	m (gramas)	∆m %	Da	Rc	R _M
15	0,680	4,27	4,7	0,232	0,55	0,16
30	0,560	4,01	10,5	0,300	0,76	0,21
45	0,665	3,74	16,5	0,310	0,85	0,22
60	0,700	3,53	21,2	0,230	0,66	0,17
75	0,700	3,34	25,4	0,212	0,65	0,16
90	0,660	3,13	30,1	0,232	0,76	0,17
105	0,710	2,92	34,8	0,227	0,79	0,17
120	0,740	2,74	38,8	0,188	0,70	0,14

Amostra: MC5-NM2-II Data do ensaio: 20/7/77 Massa da amostra: 15,0 gramas Teor de cinzas (b.s.): 72,7 % Teor de carbono fixo (b.s.): 26,5 % Massa inicial de carbono: 3,98 gramas Gás reagente: CO₂ Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 ^OC

Minutos	×co2	m (gramas)	△ m %	Da	Rc	R _M
15	0,730	3,81	4,3	0,182	0,49	0,12
30	0,770	3,65	8,3	0,166	0,46	0,12
45	0,755	3,50	12,1	0,155	0,45	0,11
60	0,750	3,34	16,1	0,164	0,50	0,12
75	0,780	3,19	19,8	0,152	0,49	0,11
90	0,730	3,04	23,6	0,162	0,54	0,12
105	0,700	2,85	28,4	0,198	0,71	0,15
120	0,720	2,66	33,2	0,202	0,77	0,15

Amostra: MC2-NM1-III Data do ensaio: 14/9/77 Massa da amostra: 10,3 gramas Teor de cinzas (b.s.): 50,0 % Teor de carbono fixo (b.s.): 48,6 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO_2 Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 °C

Minutos	×co2	m (gramas)	∆m %	Da	Rc	R _M
15	0,720	4,82	3,6	0,193	0,41	0,19
30	0,680	4,62	7,6	0,212	0,47	0,21
45	0,630	4,39	12,2	0,260	0,60	0,27
60	0,620	4,14	17,2	0,294	0,72	0,32
75	0,660	3,89	22,2	0,276	0,72	0,31
90	0,580	3,63	27,4	0,300	0,84	0,34
105	0,620	3,36	32,8	0,332	1,01	0,39
120	0,660	3,11	37,8	0,276	0,91	0,34

Amostra: MC3-NM1-III Data do ensaio: 15/9/77 Massa da amostra: 10,0 gramas Teor de cinzas (b.s.): 58,8 % Teor de carbono fixo (b.s.): 58,3 % Massa inicial de carbono: 5,8 gramas Gás reagente: CO_2 Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 ^{O}C

Minutos	× _{CO2}	m (gramas)	∆m %	Da	Rc	R _M
15	0,720	5,65	3,1	0,193	0,35	0,20
30	0,710	5,46	6,3	0,198	0,37	0,21
45	0,720	5,28	9,4	0,198	0,38	0,21
60	0,740	5,11	12,3	0,182	0,36	0,20
75	0,710	4,94	15,3	0,182	0,38	0,20
90	0,750	4,76	18,4	0,182	0,39	0,21
105	0,720	4,59	21,3	0,178	0,40	0,21
120	0,710	4,41	24,4	0,198	0,46	0,24

Amostra: MC4-NM1-III Data do ensaio: 19/9/77 Massa da amostra: 13,7 gramas Teor de cinzas (b.s.): 62,7 % Teor de carbono fixo (b.s.): 36,6 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO_2 Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 °C

Minutos	×co2	m (gramas)	∆ m %	Da	Rc	R _M
15	0,610	4,73	5,4	0,313	0,67	0,24
30	0,630	4,47	10,6	0,300	0,68	0,23
45	0,600	4,21	15,8	0,307	0,74	0,24
60	0,660	3,96	20,8	0,288	0,74	0,23
75	0,660	3,73	25,4	0,254	0,69	0,21
90	0,590	3,47	30,6	0,294	0,86	0,25
105	0,660	3,22	35,6	0,294	0,93	0,25
120	0,600	2,96	40,8	0,288	0,99	0,25
				a second s	and the second second second second	

Amostra: MC5-NM1-III Data do ensaio: 17/9/77 Massa da amostra: 16,6 gramas Teor de cinzas (b.s.): 68,0 % Teor de carbono fixo (b.s.): 30,1 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO_2 Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 $^{\circ}C$

Minutos	×co2	m (gramas)	∆m %	Da	Rc	R _M
15	0,650	4,76	4,8	0,265	0,57	0,16
30	0,600	4,51	9,8	0,294	0,66	0,19
45	0,640	4,25	15,0	0,300	0,72	0,19
60	0,610	4,01	19,8	0,294	0,75	0,19
75	0,640	3,78	24,4	0,294	0,79	0,19
90	0,580	3,51	29,8	0,313	0,91	0,21
105	0,590	3,22	35,6	0,346	1,10	0,24
120	0,680	2,97	40,6	0,277	0,95	0,19

Amostra: MC2-NM2-III Data do ensaio: 8/9/77 Massa da amostra: 9,7 gramas Teor de cinzas (b.s.): 47,5 % Teor de carbono fixo (b.s.): 51,7 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO₂ Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 ^OC

Minutos	×co2	m (gramas)	∆m %	Da	Rc	R _M
15	0,590	4,71	5,8	0,339	0,73	0,37
30	0,540	4,41	11,8	0,376	0,87	0,42
45	0,610	4,11	17,8	0,361	0,90	0,42
60	0,600	3,83	23,4	0,322	0,86	0,39
75	0,520	3,52	29,6	0,381	1,10	0,47
90	0,570	3,19	36,2	0,404	1,29	0,52
105	0,600	2,90	42,0	0,346	1,22	0,47
120	0,560	2,61	47,8	0,352	1,38	0,49

Amostra: MC3-NM2-III Data do ensaio: 9/9/77 Massa da amostra: 11,3 gramas Teor de cinzas (b.s.): 54,8 % Teor de carbono fixo (b.s.): 44,4 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO₂ Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 ^OC

Minutos	× _{co2}	m (gramas)	∆ m %	Da	Rc	R _M
15	0,500	4,63	7,4	0,478	1,05	0,45
30	0,520	4,27	14,6	0,460	1,10	0,45
45	0,600	3,96	20,8	0,381	0,98	0,38
60	0,560	3,66	26,8	0,352	0,98	0,36
75	0,520	3,33	33,4	0,411	1,26	0,44
90	0,500	3,07	38,6	0,460	1,53	0,50
105	0,600	2,75	45,0	0,396	1,47	0,45
120	0,600	2,43	51,4	0,396	1,66	0,46

Amostra: MC4-NM2-III Data do ensaio: 12/9/77 Massa da amostra: 13,4 gramas Teor de cinzas (b.s.): 61,3 % Teor de carbono fixo (b.s.): 37,4 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO_2 Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 °C

15 0,500 4,63 7,4 0,478 1,05 30 0,560 4,29 14,2 0,427 1,02 45 0,530 3,96 20,8 0,404 1,04 60 0,600 3,65 27,0 0,375 1,05	R _M
30 0,560 4,29 14,2 0,427 1,02 45 0,530 3,96 20,8 0,404 1,04 60 0,600 3,65 27,0 0,375 1,05	0,38
450,5303,9620,80,4041,04600,6003,6527,00,3751,05	0,34
60 0,600 3,65 27,0 0,375 1,05	0,33
	0,32
75 0,640 3,39 32,2 0,300 0,90	0,26
90 0,640 3,15 37,0 0,276 0,89	0,24
105 0,550 2,87 42,6 0,336 1,19	0,30
120 0,580 2,56 48,8 0,375 1,49	0,35

Amostra: MC5-NM2-III Data do ensaio: 15/9/77 Massa da amostra: 15,0 gramas Teor de cinzas (b.s.): 64,1 % Teor de carbono fixo (b.s.): 33,3 % Massa inicial de carbono: 5,0 gramas Gás reagente: CO₂ Vazão do gás reagente: 150 cm³.s⁻¹ Temperatura do ensaio: 950 ^OC

500			the second se		
,590	4,71	5,8	0,339	0,73	0,20
,610	4,44	11,2	0,332	0,76	0,23
,605	4,16	16,8	0,323	0,79	0,23
,700	3,93	21,4	0,265	0,69	0,19
,640	3,71	25,8	0,243	0,67	0,18
,700	3,49	30,2	0,243	0,71	0,18
,710	3,30	34,0	0,207	0,64	0,16
,700	3,10	38,0	0,207	0,68	0,16
	,610 ,605 ,700 ,640 ,700 ,710 ,700	,6104,44,6054,16,7003,93,6403,71,7003,49,7103,30,7003,10	,6104,4411,2,6054,1616,8,7003,9321,4,6403,7125,8,7003,4930,2,7103,3034,0,7003,1038,0	,6104,4411,20,332,6054,1616,80,323,7003,9321,40,265,6403,7125,80,243,7003,4930,20,243,7103,3034,00,207,7003,1038,00,207	,6104,4411,20,3320,76,6054,1616,80,3230,79,7003,9321,40,2650,69,6403,7125,80,2430,67,7003,4930,20,2430,71,7103,3034,00,2070,64,7003,1038,00,2070,68

4 - CONCLUSÕES

4.1 - Interpretação dos Resultados

Analisando os resultados obtidos, de forma individual, é possível concluir que o carvão de Charqueadas, utilizado pela Aços Finos Piratini, apresenta uma reatividade razoável frente ao CO_2 , que para as amostras de granulometria NM2 fica situada entre 0,7 e 1,1. Para que se possa ter uma idéia mais clara do significado desta reatividade, transcrevemos a seguir alguns va lores de reatividade obtidos por Wenzel et. al. (17). Os valores são fornecidos em cm³. g⁻¹. s⁻¹ para uma perda de carbono de 20%

MATERIAL	REATIVIDADE
Lignito Renano	2,8
Lignito Nova Zelândia	4,8
Coque de carvão de alto	
volátil	0,28
Coque de carvão de pedra	0,066

Durante o nosso trabalho, fizemos determinações das reati vidades de coque de Santa Catarina com a finalidade de testar o método empregado. Os coques analisados apresentavam reatividades da ordem de 0,1 a 0,2, portanto bem inferiores ao "char", como era de se esperar.

Uma observação dos resultados obtidos permite concluir

que o valor de reatividade R determinado, tende a aumentar com o tempo de reação. Isto se deve ao fato de ser a reatividade ex pressa em relação a unidade de massa de carbono fixo. Como a di minuição da massa de carbono é mais significativa que o aumento no teor de CO, do gás de saída, ocorre este aparente aumento da reatividade. Sob o ponto de vista físico, o que deve ocorrer é uma diminuição da massa de carbono acompanhada por um aumento da porosidade do material, aumentando a área específica responsável pela cinética do processo, quando este é comandado pela etapa química. Os valores de R_M apresentam o mesmo fenômeno de forma menos acentuada devido ao fato de estarem relacionados a uma massa maior de material e que portanto sofre menores variações relativas.

Se procurarmos agora comparar os resultados sob o ponto de vista exclusivamente das granulometrias, torna-se evidente sem sombra de dúvidas, que as amostras de granulometria menor (NM2) apresentam sempre uma reatividade mais elevada que as cor respondentes de granulometria maior (NM1). Em princípio isto vem a contrariar afirmações anteriormente feitas de que a reati vidade, para um processo governado pela etapa química, não depende da granulometria (3). No entanto, nos parece que este aspecto deve ser examinado com maior cuidado antes de se chegar a uma conclusão definitiva. Ocorre, na prática, que as amostras de granulometria maior, no caso as designadas por NMl, apresentam problemas sérios de amostragem quando se consideram as limi tações naturalmente impostas ao tamanho da amostra pelas dimensões do reator. Aparentemente este problema não chegou a afetar

o trabalho, uma vez que a dispersão dos resultados se situou den tro dos limites esperados. Quando as amostras de granulometria maior eram colocadas no reator, a acomodação dos grãos era tal que permitia muitos caminhos preferenciais para os gases de reação, diminuindo por certo o tempo de contato destes gases com o material reagente. Tal fato, segundo nossa opinião deve ser o predominante para explicar a menor reatividade destas amostras. Isto poderia ser melhor esclarecido utilizando-se um reator de tamanho maior, que permitisse um ensaio com uma quantidade maior de material.

A fim de comparar os resultados entre si, organizamos diagramas representativos da reatividade (gráfico 1 e gráfico 2), onde estão apresentados valores de reatividade após 30 minutos de reação para cada um dos pontos de amostragem e para cada uma das granulometrias utilizadas no ensaio. Os gráficos foram organizados de acordo com as remessas de amostras para que se pudesse ter uma idéia de conjunto dos dados obtidos.

A observação dos gráficos nos mostra que as reatividades expressas em relação a massa de carbono fixo (R_c) pouco nos informam sobre a variação da reatividade ao longo do forno de red<u>u</u> ção direta. Por outro lado, as reatividades expressas em relação à massa total de amostra nos revelam claramente uma diminuição da reatividade ao longo do forno, de tal forma que a última amo<u>s</u> tra (MC5) apresenta uma reatividade igual ou inferior a metade da reatividade da primeira amostra (MC2). O decréscimo de reatividade era esperado e diversos fatores precisam ser considerados para que se possa oferecer uma explicação para o processo. Em primeiro lugar deve ser dito que a reatividade não é senão o re-

> ESCOLA DE ENGENHARIA BIBLIOTECA

62

Gráfico 2

sultado de um somatório muito grande de variáveis que atuam simultâneamente, dificultando bastante a interpretação do fenômeno. Durante a reação do carbono com o CO₂ ocorrem modificações na estrutura do material. O estudo das modificações que ocorrem quando a reação é realizada em condições quase ideais, empregan do bastões de grafite já foi realizado e os resultados são encontrados na literatura (19,20,22). Em nosso caso, as variáveis a serem consideradas são bem mais numerosas, uma vez que a reação se dá com um material que além de carbono contém uma quant<u>i</u> dade apreciável de cinzas e que está misturado com minério de ferro e calcário.

A observação do gráfico 3, que mostra a variação do teor de cinzas das amostras desgaseificadas, indica claramente que o aumento é bastante acentuado na porção final do forno, onde o teor de cinzas chega a atingir de 70 a 80% contra um valor inicial situado em torno de 50%.

Considerando o elevado teor de cinzas é necessário levar em conta a influência que a mesma deve exercer sobre a reatividade. Ocorre que a cinza pode agir de duas maneiras opostas no que diz respeito à reatividade. A composição da cinza é tal que seus elementos constituintes (alcalino e alcalino-terrosos) podem agir como catalisadores da reação de Boudouard, o que viria a aumentar a reatividade específica. Por outro lado, como a com bustão se dá de fora para dentro do material, uma camada de cin za irá se depositando na superfície do mesmo enquanto a reação tem lugar. A camada de cinza depositada irá por certo dificultar a passagem do CO_2 até a superfície do carbono onde se dá a reação. Se esta difusão se tornar mais lenta que a própria rea-

ção química, ela passará a comandar o processo. Não é fácil dec<u>i</u> dir até que ponto a difusão é importante neste caso, pois isto vai depender entre outras coisas, da própria natureza da cinza e de suas propriedades de permeabilidade. Torna-se então importante determinar a temperatura acima da qual o processo passa a ser comandado pela difusão, pois esta temperatura deverá ser difere<u>n</u> te da correspondente para um carvão ou coque de baixo teor de cinzas. Tal determinação deverá se constituir em objeto de estudo para trabalhos posteriores.

A composição do minério e o calcário adicionado também devem influir na reatividade, uma vez que os elementos presentes em ambos devem agir como catalisadores da reação de Boudouard.

Em resumo, concluimos que as reatividades relacionadas a unidade de massa de carbono fixo pouco nos informam sobre a variação da reatividade ao longo do forno de redução direta. As r<u>e</u> atividades expressas em relação a unidade de massa total de amo<u>s</u> tra presente nos mostram um decréscimo da reatividade ao longo do forno. O decréscimo de reatividade verificado não é constante, mas depende essencialmente da data em que as amostras foram ret<u>i</u> radas, indicando que a composição do minério ou do calcário utilizado devem ter alguma influência sobre a reatividade. A mane<u>i</u> ra de operar o forno também deve de alguma forma afetar os valores de reatividade, uma vez que irá determinar uma maior ou menor queima do carvão, bem como modificações na sua estrutura.

4.2 - Possibilidades Futuras

A continuação natural do presente trabalho é a busca de uma melhor interpretação para a reação de Boudouard, procurando
esclarecer a importância da difusão e a influência que a cinza exerce neste processo. Para isto será necessário executar medidas de reatividade a diferentes temperaturas para determinar f<u>a</u> tores como a energia de ativação e a entropia de ativação que irão permitir esclarecer o papel da difusão na reação. Outro a<u>s</u> pecto a ser considerado é a influência da granulometria na reatividade, que deverá ser melhor estudada, fazendo-se ensaios de diversas amostras do mesmo carvão com granulometrias diferentes. Cremos que estas informações serão de grande utilidade na inte<u>r</u> pretação do mecanismo de queima do carbono no forno de redução direta.

O equipamento utilizado nas determinações poderá vir a ser melhorado com o emprego de um cromatógrafo de gás em subst<u>i</u> tuição ao clássico aparelho de Orsat. Durante nossas determinações, um cromatógrafo de gás chegou a ser utilizado para confi<u>r</u> mar a composição do gás de saída do reator, o que foi conseguido com uma precisão de mais ou menos 1%. Como grande parte do trabalho já havia sido feita, as análises foram concluidas com o aparelho de Orsat.

Para trabalhos futuros, deixamos aqui registradas as seguintes sugestões;

- a) estabelecimento de um modelo matemático para o cálculo da reatividade, levando em conta a difusão de gases e a etapa química;
- b) comparação das reatividades do carvão saído da mina e desgaseificado a diversos níveis. Verificação das modi ficações estruturais ocorridas na desgaseificação.

c) emprego da microscopia eletrônica para a determinação

67

das propriedades da camada de cinza formada sobre a s \underline{u} perfície do carvão.

REFERÊNCIAS BIBLIOGRÁFICAS

- (1) LEISTER, H. <u>Propriedades do carvão da jazida de</u> <u>Charqueadas, Rio Grande do Sul, com vista à re-</u> <u>dução de minérios de ferro em forno rotativo</u>. -Universidade Federal do Rio Grande do Sul -(Tese)
- (2) HEDDEN, K. <u>Uber die reaktionsfähigkeit von koks</u> Brennstoff Chemie, <u>41</u>, (7), 193-203, (1960)
- (3) DAHME, A. & JUNKER, H.J. <u>Die reaktivitat von</u> <u>koks gegen CO₂ in temperaturbereich 1000 -</u> <u>1200 ^OC</u>. - Brennstoff Chemie, <u>36</u>, 13-14, (1955)
- (4) PETERS, W. <u>Die eigenschaften von hüttenkoks aus</u> <u>der sich der vergasungskinetik</u> - Deutscher Kok<u>e</u> reiausschuss, <u>130</u>, (1964)
- (5) ABM Associação Brasileira de Metais <u>Curso so-</u> <u>bre combustão aplicada à siderurgia</u> - Coordenação; Juvilar, J. e Ratton, A. - Poços de Caldas maio de 1975
- (6) SOLEDADE, L. <u>Reactivity of Coal Char in Air</u>, -Pennsylvania State University, (1976) (Thesis)
- (7) MOELWYN-HUGHES, <u>Physical Chemistry</u>, Oxford, Perg. (1965)
- (8) CASTELLAN, G. <u>Physical Chemistry</u>, Mass., Ad. Wesley, 2nd Ed. (1971)
- (9) KOCH, K.H. & PETERS, W. <u>Zur reaktivitat von koks</u> Brennstoff Chemie, 44, (12), 383-387, (1963)
- (10) PETERS, W. <u>Vergleich von reaktionfähigkeitsmes-</u> <u>sungen an koks</u> - Gluckauf, <u>96</u>, 16, 997-1006, -(1960)

(11) - PETERS, W. & LONGHOFF - <u>Zur reaktivität von koks</u> -Brennstoff Chemie, <u>2</u>, 44 (1963).

(12) - MASUDA, H; - <u>Um método para a medição da reativi</u> dade de coque e seu emprego na Companhia Siderur

gica Nacional - XXII Congresso da ABM - (1967)

- (13) WENZEL, W. ; MERAIKIB, M. ; FRANKE, F. <u>Die kata-</u> <u>lytische beeinflussung der reaktionfähigkeit von</u> <u>festen brennstoffen durch alkalicarbonate bei -</u> <u>hüttenmannischen verfahren</u> - Zeitschrift fur das eisenhuttenwesen, <u>6</u>, 305, (1971).
- (14) FRANKE, F. ; MERAIKIB, M. ; NEFEDOW, J. <u>Der ein-</u> <u>fluß von metalldämpfen an die reaktionsfähigkeit</u> <u>von festen köhlenstofftragern</u> - Erdol und Kohle Erdgas Petrochimie, <u>24</u>, 2 (1971).
- (15) FRANKE, F. & MERAIKIB, M. <u>Die katalytische wir -</u> <u>kung von alkalien auf die vergasungsreaktion des</u> <u>kohlenstoffs</u> - Carbon, <u>8</u>, 423-433, (1970)
- (16) WICKE, E. & HEDDEN, K. Z. Elektrochem., <u>57</u>', S 630-45, (1953).
- (17) WENZEL, W. ; FRANKE, F. ; MERAIKIB, M. <u>Braunkohle</u> <u>reaktionsfähiger kohlenstoffträger fur vergasungz</u> <u>wecke</u>, Braunkohle, <u>4</u>, 19-28, (1971).
- (18) PETERS, W. & LASK, G.W. <u>Zur reaktivität von koks</u> -Brennstoff Chemie (1961).
- (19) WALKER, P.L. & RAATS, E. <u>Changes in physical pro-</u> perties os graphitized carbon rods upon gasification with carbon dioxide - J. Phys. Chem. <u>60</u>, 364, (1956)

- (20) WALKER, P.L. & RAATS, E. <u>Effect of gas diffusion</u> <u>in graphitized carbon rods on their gasification</u> <u>rate with carbon dioxide</u>, J. Phys. Chem., <u>60</u>, 370, (1956).
- (21) JOLLEY, L.J. & POLL, A. <u>Effects of reactivity</u> -<u>and some other variables on gasification of coke</u> with steam, J. Inst. Fuel (1953).
- (22) ARTHUR, J.R. & BINGHAM, D.H. <u>The mechanism of e-</u> <u>nergy release in the combustion of solid carbona</u> <u>ceous fuels</u>, J. Chim. Physique, <u>47</u>, (1950).
- (23) GLASSTONE, S. Thermodynamics for chemists -V. Nostrand - N. York - (1946).
- (24) <u>Selected Values of Chemical Properties</u>, Natl. Bur. Standarts, (U.S.), Circ., <u>500</u> (1952)