Universidade Federal do Rio Grande do Sul Escola de Engenharia Programa de Pós-Graduação em Engenharia Civil

Desempenho de Pavimentos com Materiais Alternativos do Estado do Rio Grande do Sul

Marlova Grazziotin Johnston

MARLOVA GRAZZIOTIN JOHNSTON

DESEMPENHO DE PAVIMENTOS COM MATERIAIS ALTERNATIVOS DO ESTADO DO RIO GRANDE DO SUL

TESE DE DOUTORADO APRESENTADA AO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL DA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL, COMO PARTE DOS REQUISITOS PARA A OBTENÇÃO DO TÍTULO DE DOUTOR EM ENGENHARIA

J73d Johnston, Marlova Grazziotin

Desempenho de pavimentos com materiais alternativos do Estado do Rio Grande do Sul / Marlova Grazziotin Johnston.— 2010.

Tese (doutorado) – Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia Civil. Porto Alegre, BR-RS, 2010.

Orientador: Prof. Jorge Augusto Pereira Ceratti

1. Pavimentos - Materiais alternativos. 2. Módulo de resiliência - Pavimentos. 3. Pavimentos - Desempenho. 4. Pavimentos - Manutenção. 5. Rodovias. I. Ceratti, Jorge Augusto Pereira, orient. II. Titulo.

CDU-625.8(043)

MARLOVA GRAZZIOTIN JOHNSTON

Desempenho de Pavimentos com Materiais Alternativos do Estado do Rio Grande do Sul

Esta Tese de Doutorado foi julgada adequada para a obtenção do título de DOUTOR EM ENGENHARIA, Área de Concentração Geotecnia, e aprovada em sua forma final pelo professor orientador e pelo Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Rio Grande do Sul.

Porto Alegre, 24 de novembro de 2010

Prof. Jorge Augusto Pereira Ceratti D.Sc. pela COPPE/UFRJ orientador

Prof. Dr. Luiz Carlos Pinto da Silva Filho Coordenador do PPGEC/UFRGS

BANCA EXAMINADORA

Prof. Washington Peres Núñez (UFRGS) Dr. pelo PPGEC/UFRGS

> Prof. Luciano Pivoto Specht (UIJUI) Dr. pelo PPGEC/UFRGS

Prof. Luiz Antônio Bressani (UFRGS) PhD pela University of London

Prof. Liedi Légi Bariani Bernucci (USP) Dr. pela EP/USP

AGRADECIMENTOS

Agradeço ao meu orientador Professor Jorge Augusto Pereira Ceratti, pela dedicação, ensinamentos, paciência, e amizade.

Ao Professor Washington, que por seu entusiasmo, sempre estimulou os alunos a concluírem seus trabalhos.

Aos colegas do LAPAV que auxiliaram na realização dos ensaios: João Bonzanini, Daniel Martell, Diego Treichel, Rodrigo Carreira e Cleber da Silva Pinto. Ao Jair por estar sempre pronto a auxiliar na execução dos ensaios. Ao Rodrigo Malysz, obrigada pela grande ajuda.

Ao DAER/RS por permitir o uso dos dados utilizados na execução da Tese e aos laboratoristas do CPR/DAER pela ajuda na aquisição dos dados e execução dos ensaios.

Aos colegas do CPR/DAER, José Augusto de Oliveira, Maria Cristina F. Passos, Mara Bianchini, Daniela de David, Jayme Tonon, Lineo Loder, Vincenzo Parisi, José Octávio Rodrigues e Francisco pela paciência, incentivo e discussão dos resultados.

Ao colega Lélio Brito pela paciência, pelas horas de estudo e dedicação, por ajudar a realizar o sonho de estudar na Inglaterra e principalmente pela grande amizade.

A Universidade de Nottingham por me receber por um período de aperfeiçoamento e crescimento profissional.

Ao Professor Andrew Dawson por me receber na Universidade de Nottingham transmitindo conhecimentos e facilitando contatos com as agências responsáveis pelas malhas rodoviárias da Inglaterra, Escócia e Suécia.

Agradeço a toda a minha família e os meus amigos que torceram pelo sucesso do trabalho.

Ao meu filho Guilherme, que mesmo estando longe, sempre me incentivou acompanhando todos os passos deste processo.

Ao Edgar, grande amigo e companheiro para todas as horas e todas as minhas invenções. Obrigada por todo o auxilio durante o doutorado, principalmente pelos conselhos e discussões técnicas, sem a tua ajuda não teria sido possível finalizar este trabalho.

RESUMO

JOHNSTON, M.G. Desempenho de Pavimentos com Materiais Alternativos do Estado do Rio Grande do Sul. Tese (Doutorado em Geotecnia)-Programa de Pós-Graduação em Engenharia Civil, UFRGS, Porto Alegre.

O uso de agregados convencionais, tais como brita graduada de rocha sã, em bases e subbases de rodovias tem se tornado praticamente inviável em algumas regiões do Estado do Rio Grande do Sul. O alto custo de exploração, distância de transporte, escassez destes materiais e preocupação com o meio ambiente tem dificultado sua obtenção. Por outro lado, o crescimento econômico acelerado exige estradas pavimentadas que facilitem o fluxo de cargas e a comunicação entre as regiões. Soluções economicamente viáveis que divirjam da prática atual e mantenham a trafegabilidade nestas regiões são necessárias e deverão ser utilizadas cada vez mais pelos engenheiros rodoviários. O presente trabalho tem como objetivo proporcionar um resgate histórico da construção de trechos experimentais pavimentados com materiais alternativos, localizados em quatro rodovias do Estado. Estas rodovias foram pavimentadas utilizando materiais locais como plintossolo da Planície Costeira, basalto alterado da região do Planalto e lateritas da região das Missões. O desempenho dos trechos experimentais foi analisado a partir de levantamentos periódicos dos defeitos funcionais e estruturais dos pavimentos. Trincheiras foram abertas para o conhecimento das espessuras das camadas da estrutura e coleta de materiais para caracterização em laboratório. Os módulos de resiliência das camadas constituídas de materiais alternativos retroanalisados através de programa computacional serviram como parâmetros para o entendimento do comportamento estrutural dos pavimentos. As análises de desempenho destes pavimentos permitiram a sugestão de uma proposta de manutenção para estas rodovias.

Palavras-chaves: Materiais alternativos; Desempenho; Módulo de resiliência; Manutenção.

ABSTRACT

JOHNSTON, M.G. Desempenho de Pavimentos com Materiais Alternativos do Estado do Rio Grande do Sul. Tese (Doutorado em Geotecnia)-Programa de Pós-Graduação em Engenharia Civil, UFRGS, Porto Alegre.

Performance of Alternative Pavement Materials of Rio Grande do Sul State.

The use of conventional aggregates such as graded crushed stone of bed rock, in bases and sub-bases of roads has become virtually unviable in some regions of Rio Grande do Sul. The high cost of exploration, distance of transport, lack of quarries and concern for the environment has hindered its use. On the other hand, the rapid economic growth requires paved roads to facilitate the flow of cargo and communication between regions. Economically feasible solutions that differ from current practice and maintain traffic flow in these regions are needed and should be increasingly used by roads engineers. This thesis aims to provide an historical rescue of experimental sections built with alternative materials, located in four state highways. These roads were built using local materials like Plintossolo Coastal Plain, weathered basalt in the Plateau Region and laterites in the Missions Region. The performance of the experimental lengths was analyzed using the periodic surveying of pavements. Trenches were opened to determine the thicknesses of the structure layers and sampled for laboratory characterization. The resilient moduli of the layers formed of alternative materials were calculated through back analysis using computer programs. They were used as parameters for understanding the structural behavior of pavements. Despite the lack of proper maintenance, the pavement formed with structure composed of alternative materials showed a good performance. Analyses of performance of these pavements have allowed for the suggestion of a proposal for the maintenance of these roads.

Keywords: Alternative Materials, Performance, Resilient modulus; Maintenance.

SUMÁRIO

1 INTRODUÇÃO	31
1.1 CONSIDERAÇÕES GERAIS	31
1.2 OBJETIVOS DA PESQUISA	33
1.3 DESENVOLVIMENTO DA PESQUISA	34
2 REVISÃO BIBLIOGRÁFICA	35
2.1 SOLOS	35
2.1.1 Formação dos solos	36
2.1.2 Solos Tropicais	37
2.1.2.1 Histórico	38
2.1.2.2 Solo Laterítico	39
2.1.2.3 Solo Saprolítico	39
2.1.2.4 Propriedades Índices	40
2.1.2.5 Metodologia MCT	41
2.2 MATERIAIS ALTERNATIVOS NO RIO GRANDE DO SUL	44
2.2.1 Lateritas.	45
2.2.1.1 Considerações gerais	45
2.2.1.2 Laterização.	46
2.2.1.3 Resultados experimentais	47
2.2.2 Plintossolos	47
2.2.2.1 Considerações Gerais	47
2.2.2.2 Plintossolo da Planície Costeira	48
2.2.3 Basalto alterado	49
2.2.3.1 Considerações gerais	49
2.2.3.2 Método para avaliar rochas para pavimentação	50
2.2.3.3 Resultados experimentais	51
2.2.3.4 Considerações sobre os resultados experimentais da APTP	51
2.2.4 Solos Arenosos Finos Lateríticos – SAFLs	55
2.2.5 Saibro de granito.	56
2.3 PROJETO DE UM PAVIMENTO	57
2.3.1 Métodos de projetos	57

2.3.2 Projeto mecanístico de pavimentos	60
2.3.3 Efeito da carga de tráfego	61
2.3.4 Limitações da análise linear elástica	63
2.3.5 Ensaios triaxiais	63
2.3.5.1 Ensaios triaxiais de carga repetida	63
2.3.5.2 Modelos resultantes do ensaio triaxial de carga repetida	65
2.3.5.3 Ensaio triaxial monotônicos	68
2.4 PAVIMENTOS ALTERNATIVOS	71
2.4.1 Introdução.	71
2.4.2 Rodovias de baixo volume de tráfego ou pavimentos de baixo custo	72
2.4.2.1 Considerações sobre o projeto para rodovias de baixo volume de tráfego	73
2.4.3 Utilização de materiais alternativos no Rio Grande do Sul	76
2.5 AVALIAÇÃO FUNCIONAL E ESTRUTURAL DE PAVIMENTOS	81
2.5.1 Avaliação funcional	82
2.5.2 Avaliação estrutural	86
2.5.2.1 Bacia de deflexão	86
2.5.2.2 Número estrutural	88
2.5.2.3 Retroanálise	90
2.6 ANÁLISE DE DESEMPENHO DE PAVIMENTOS	91
2.6.1 Resposta resiliente do subleito.	92
2.6.2 Resposta resiliente em materiais granulares	93
2.6.2.1 Nível de tensões	93
2.6.2.2 Outros parâmetros que influenciam na rigidez do material granular	94
2.6.2.3 Efeito da umidade no comportamento resiliente	95
2.6.3 Deformações recuperáveis ou elásticas	96
2.6.3.1 Trincamento por fadiga	96
2.6.3.2 Trincamento em tratamentos superficiais	98
2.6.4 Deformabilidade dos materiais granulares	100
2.6.4.1 Efeito das tensões	101
2.6.4.2 Efeito da densidade, teor de finos, forma das partículas	101
2.6.4.3 Efeito da umidade na deformação permanente	102
2.6.4.4 Afundamento de Trilhas de Roda no pavimento (ATR)	102
2.6.5 Modelos de previsão de desempenho	104
2.6.5.1 Modelos de desempenho considerando a fadiga dos materiais	104

2.6.5.2 Modelos de desempenho considerando a deformação permanente	107
2.7 TRÁFEGO.	109
2.7.1 Fatores de influência.	109
2.7.2 Classificação dos veículos.	111
2.7.3 Cálculo do número N.	112
2.8 CLIMA NO ESTADO DO RIO GRANDE DO SUL	113
2.9 PROGRAMAS DE MANUTENÇÃO DE PAVIMENTOS	115
2.9.1 Levantamentos.	115
2.9.2 Modelos de deterioração	116
2.9.3 Avaliação econômica	118
2.9.4 Gatilhos de manutenção.	119
2.9.5 Tipos de manutenção.	120
3 DADOS RESGATADOS UTILIZADOS NO ESTUDO	121
3.1 ERS-101, TRECHO BACOPARI-MOSTARDAS	122
3.1.1 - Histórico do pavimento	122
3.1.2 Dados do projeto original	125
3.1.3 Desempenho do pavimento até o ano de 1991	126
3.1.3.1 Levantamentos e ensaios realizados	127
3.1.3.2 Previsão de vida útil	130
3.1.4 Segunda etapa da pesquisa	130
3.1.5 Situação do pavimento em 1996	130
3.1.5.1 Visão geral de todo o trecho em 1996	131
3.1.5.2 Identificação de problemas	131
3.1.5.3 Trecho experimental km 85+500	132
3.1.5.4 Trecho experimental km 151+500.	132
3.1.5.5 Solução experimental para os acessos	133
3.1.5.6 Recomendações sugeridas em 1996	134
3.1.6 Dados obtidos do projeto de restauração - 1998	134
3.1.6.1 Tráfego	135
3.1.6.2 Análise realizada pelo projetista	135
3.1.7 Dados obtidos dos estudos realizados em 2004 e 2005	138
3.2 ERS-132, TRECHO: CAMARGO - NOVA ALVORADA	139
3.2.1 Histórico e localização do trecho experimental	139

3.2.2 Dados de projeto	140
3.2.2.1 Caracterização dos materiais	141
3.2.2.2 Projeto de pavimentação	141
3.2.3 Dados da obra	142
3.2.4 Dados da pista experimental 07 - APTP	143
3.2.5 Desempenho do pavimento até 2003	144
3.3 ERS-536, TRECHO: CAIBATÉ - ENTR. BR-285	146
3.3.1 Dados do projeto	146
3.3.1.1 Geologia e clima da região.	146
3.3.1.2 Estudos geotécnicos.	148
3.3.1.3 Estudo de tráfego.	149
3.3.2 Dados obtidos em 2000.	150
3.3.3 Restauração.	152
3.3.4 Localização do trecho	152
3.4 392 AM 9100 - ACESSO A SETE DE SETEMBRO	153
3.4.1 Localização do trecho experimental	154
3.4.2 Dados de projeto.	155
3.4.2.1 Tráfego	155
3.4.2.2 Drenagem.	155
3.4.2.3 Estudo da jazida.	155
3.4.2.4 Estrutura do pavimento	158
3.4.2.5 Comparativo de custos	158
3.4.2.6 Conclusões do projeto	159
3.4.3 Dados resgatados da obra.	159
3.4.3.1 Estrutura do pavimento.	159
3.4.3.2 Levantamentos das deflexões	160
3.4.3.3 Estudo de módulos de resiliência.	160
3.5 COMENTÁRIOS	160
4 METODOLOGIA DA PESQUISA	161
4.1 CONSIDERAÇÕES GERAIS	161
4.2 ESCOLHA DO TRECHO EXPERIMENTAL	161
4.3 MONITORAMENTO	162

4.4 ENSAIOS DE LABORATÓRIO	162
4.5 RETROANÁLISES	163
4.6 ANÁLISE DE DESEMPENHO E PROGRAMA DE MANUTENÇÃO	163
4.7 PROPOSTA DE PROGRAMA DE MANUTENÇÃO	163
4.8 FLUXOGRAMA GERAL DA PESQUISA	163
5 LEVANTAMENTOS E ENSAIOS	165
5.1 PLINTOSSOLO DA PLANÍCIE COSTEIRA DO RIO GRANDE DO SUL (ERS-101, TRECHO: BACOPARI-MOSTARDAS)	165
5.1.1 Definição do estudo	166
5.1.2 Considerações sobre o Clima	166
5.1.3 Dados de tráfego.	167
5.1.4 Levantamentos da superfície do pavimento	169
5.1.5 Levantamento das deflexões	169
5.1.6 Caracterização do material	171
5.1.6.1 Trincheiras	172
5.1.6.2 Ensaios de caracterização do material	172
5.1.6.3 Ensaios triaxiais cíclicos	173
5.1.6.4 Ensaios triaxiais monotônicos	177
5.2 BASALTO ALTERADO (ERS-132, TRECHO: CAMARGO - NOVA ALVORADA)	179
5.2.1 Definição do estudo.	179
5.2.2 Considerações sobre o clima	179
5.2.3 Dados de Tráfego	180
5.2.4 Levantamentos da superfície do pavimento	181
5.2.5 Análise das deflexões	183
5.2.6 Caracterização do material.	186
5.2.6.1 Trincheiras	186
5.2.6.2 Ensaios de caracterização do material	187
5.3 LATERITA (ERS-536, TRECHO: CAIBATÉ - ENTR. BR-285)	188
5.3.1 Definição do estudo	188
5.3.2 Considerações sobre o clima	189
5.3.3 Dados do tráfego	190

5.3.4 Levantamentos da superfície do pavimento	192
5.3.4.1 Defeitos superficiais	192
5.3.4.2 Irregularidade longitudinal	192
5.3.5 Levantamento de deflexões	193
5.3.6 Caracterização do material	195
5.3.6.1 Trincheiras	196
5.3.6.2 Ensaios de caracterização do material	197
5.3.6.3 Ensaios triaxiais cíclicos	198
5.4 LATERITA (392 AM 9100 - ACESSO A SETE DE SETEMBRO)	200
5.4.1 Definição do estudo	200
5.4.2 Considerações sobre o clima	201
5.4.3 Dados de tráfego	201
5.4.4 Levantamento da superfície do pavimento	201
5.4.4.1 Defeitos superficiais	201
5.4.4.2 Irregularidade longitudinal	202
5.4.5 Análise das deflexões	202
5.4.6 Caracterização do material	204
5.4.6.1 Trincheira	205
5.4.6.2 Ensaios de caracterização do material	205
5.4.6.3 Ensaios triaxiais cíclicos	207
6 ANÁLISES	209
6.1 PLINTOSSOLO DA PLANÍCIE COSTEIRA DO RIO GRANDE DO SUL	
(ERS-101, TRECHO: BACOPARI-MOSTARDAS)	209
6.1.1 Análise do Tráfego	209
6.1.2 Análise da superfície do pavimento.	210
6.1.3 Análise das deflexões	211
6.1.4 Análise da camada de base de plintossolo	213
6.1.4.1 Considerações sobre as espessuras	213
6.1.4.2 Considerações sobre a granulometria.	214
6.1.4.3 Considerações sobre a classificação e ensaios da metodologia MCT	214
6.1.5 Análise do comportamento elástico	216
6.1.5.1 Estudo das tensões atuantes na estrutura do pavimento	217
6.1.5.2 Considerações sobre a variação do módulo de resiliência	219

6.1.6 Análise das deformações	220
6.1.6.1 Influência da umidade no material alternativo em estudo	221
6.1.6.2 Intercepto coesivo efetivo (c') e ângulo de atrito interno efetivo (φ')	225
6.1.6.3 Verificação de segurança contra ruptura por cisalhamento	227
6.1.7 Comentários.	229
6.2 BASALTO ALTERADO (ERS-132, TRECHO: CAMARGO - NOVA	
ALVORADA)	230
6.2.1 Análise do tráfego	230
6.2.2 Análise da superfície do pavimento	232
6.2.2.1 Considerações sobre os defeitos superficiais	233
6.2.2.2 Considerações sobre a irregularidade longitudinal (IRI)	234
6.2.2.3 Considerações sobre o afundamento das trilhas de roda	235
6.2.3 Análise das deflexões	237
6.2.4 Análise da camada de base de basalto alterado	240
6.2.5 Análise do comportamento elástico	241
6.2.6 Verificação do modelo proposto por Núñez em 1997	243
6.2.7 Análise do desempenho	244
6.2.8 Comentários.	245
6.3 LATERITA (ERS-536, TRECHO: CAIBATÉ - ENTR. BR-285)	246
6.3.1 Análise do tráfego	246
6.3.2 Análise da superfície do pavimento.	248
6.3.2.1 Considerações sobre os defeitos superficiais	248
6.3.2.2 Considerações sobre a irregularidade longitudinal (IRI)	249
6.3.3 Análise das deflexões	250
6.3.4 Análise da camada de base de laterita	252
6.3.4.1 Considerações sobre as espessuras	252
6.3.4.2 Considerações sobre a granulometria.	252
6.3.4.3 Considerações sobre a característica exigidas pela norma DNIT 098/2007-ES	254
6.3.5 Análise do comportamento elástico	255
6.3.5.1 Estudo das tensões atuantes na estrutura do pavimento	255
6.3.5.2 Estudo da influência da umidade no módulo de resiliência	256
6.3.6 Comentários.	257
6.4 LATERITA (392 AM 9100 - ACESSO A SETE DE SETEMBRO)	258
6.4.1 Análise do tráfego	258

6.4.2 Análise da superfície do pavimento	259
6.4.2.1 Análise dos defeitos superficiais.	259
6.4.2.2 Análise da irregularidade longitudinal.	260
6.4.3 Análise das deflexões.	260
6.4.4 Análise da base de laterita	262
6.4.4.1 Considerações sobre as espessuras	262
6.4.4.2 Considerações sobre as granulometrias	263
6.4.4.3 Considerações sobre as características exigidas pela norma	263
6.4.5 Análise do comportamento elástico.	264
6.4.5.1 Estudo das tensões atuantes na estrutura do pavimento	264
6.4.5.2 Estudo do módulo de resiliência.	265
6.4.6 Comentários.	265
7 SUGESTÃO PARA PROGRAMA DE MANUTENÇÃO DE PAVIMENTOS COM MATERIAIS ALTERNATIVOS	266
7.1 INTRODUÇÃO	266
7.2 PLINTOSSOLO (ERS-101; BACOPARI-MOSTARDAS)	267
7.2.1 Caracterização do material alternativo	268
7.2.2. Levantamentos	268
7.2.3. Modelos de deterioração	269
7.2.4. Avaliação econômica	269
7.2.5. Gatilhos para manutenção	269
7.2.6. Tipos de manutenção	270
7.3 BASALTO ALTERADO (ERS-132; CAMARGO - NOVA ALVORADA)	270
7.3.1 Caracterização do material alternativo	270
7.3.2 Levantamentos	271
7.3.3 Modelos de deterioração	271
7.3.4 Avaliação econômica	272
7.3.5 Gatilhos para manutenção	272
7.3.6 Tipos de manutenção	272
7.4 LATERITA	273
7.4.1 Caracterização do material alternativo	274
7.4.2 Levantamentos.	274
7.4.3 Modelos de deterioração	274

7.4.4 Avaliação econômica	275
7.4.5 Gatilhos para manutenção	275
7.4.6 Tipos de manutenção	276
7.5 CONSIDERAÇÕES FINAIS	276
8 CONCLUSÕES E SUGESTÕES PARA NOVAS PESQUISAS	277
8.1 CONCLUSÕES GERAIS – PAVIMENTOS ALTERNATIVOS	277
8.2 PLINTOSSOLO DA PLANÍCIE COSTEIRA DO RIO GRANDE DO SUL	278
8.3 BASALTO ALTERADO	280
8.4 BASALTO ALTERADO: ERS-132 x PISTA 07 APTP	282
8.5 LATERITA	282
8.5.1 (ERS-536)	283
8.5.2 Acesso a Sete de Setembro 392AM9100	284
8.6 PROPOSIÇÕES SOBRE PROJETO DE PAVIMENTOS ALTERNATIVOS	285
8.7 PROPOSIÇÕES PARA MANUTENÇÃO DE PAVIMENTOS ALTERNATIVOS.	285
8.8 SUGESTÕES PARA NOVAS PESQUISAS	286
REFERÊNCIAS BIBLIOGRÁFICAS	288
ANEXOS	300

LISTA DE FIGURAS

Figura 2.1: Localização dos materiais alternativos no RS	44
Figura 2.2: Tensões que atuam em um elemento do solo	62
Figura 2.3 Merlin do TRRL	85
Figura 2.4: Componentes básicos do Merlin.	85
Figura 2.5: Precipitação média anual do Estado do Rio Grande do Sul	113
Figura 2.6: Temperatura média anual do Estado do Rio Grande do Sul	114
Figura 3.1: Localização das rodovias em estudo	121
Figura 3.2: Localização dos trechos experimentais da rodovia ERS-132	140
Figura 3.3: Situação do pavimento em 2007	140
Figura 3.4: Detalhe da construção da rodovia ERS-132	142
Figura 3.5: Localização da pista 07 na APTP	143
Figura 3.6: Configuração estrutural das pistas experimentais	143
Figura 3.7: Localização dos trechos experimentais	153
Figura 3.8: Situação superficial dos segmentos experimentais em 2007	153
Figura 3.9: Localização do trecho experimental	154
Figura 3.10: Situação superficial do trecho experimental em 2007	154
Figura 3.11: Faixa granulométrica da mistura de laterita estudada	156
Figura 4.1: Fluxograma geral da pesquisa	164
Figura 5.1: Trecho experimental localizado entre os km 85+500 e 86+000	165
Figura 5.2: Precipitações totais (mm) ocorridas mensalmente durante o estudo	167
Figura 5.3: Trincheiras realizadas na rodovia com espessuras das camadas	172
Figura 5.4: Sequência de retirada de amostra indeformada e moldagem de Corpos de Prova	175
Figura 5.5: Ensaio triaxial monotônico	178
Figura 5.6: Precipitações totais (mm) ocorridas mensalmente durante os anos em estudo	180

Figura 5.8: Trincheiras abertas na rodovia	186
Figura 5.9: Precipitações totais (mm) mensais durante o estudo	190
Figura 5.10: Estrutura do pavimento na Estaca 0+600 LD	196
Figura 5.11: Estrutura do pavimento na Estaca 8+460 LD	197
Figura 5.12: Trincheira aberta na estaca 0+900 LD	205
Figura 6.1: Taxa de crescimento anual do tráfego por categoria de veículo	210
Figura 6.2: Bacias de deflexões - 2005, 2007 e 2009	212
Figura 6.3: Espessuras de base e sub-base previstas no projeto e espessuras encontradas na rodovia	213
Figura 6.4: Resultado dos ensaios de granulometria – Base e Sub-base, ERS 101	214
Figura 6.5: Resultado ensaio de perda por imersão (LE)	215
Figura 6.6: Ensaio de infiltrabilidade ou permeabilidade capilar - base e sub-base	216
Figura 6.7: Curvas tensão x deformação - material da base km 85+800LD	221
Figura 6.8: Curvas tensão x deformação - material da base km 85+780LE	222
Figura 6.9: Curvas tensão x deformação - material da sub-base	222
Figura 6.10(a): Influência da umidade - material da base – LD; 30kPa	223
Figura 6.10(b): Influência da umidade - material da base – LD; 60kPa	223
Figura 6.10(c): Influência da umidade - material da base – LD; 100kPa	224
Figura 6.10(d): Influência da umidade - material da base – LE; 30kPa	224
Figura 6.10(e): Influência da umidade - material da base – LE; 60kPa	224
Figura 6.10(f): Influência da umidade - material da base – LE; 100kPa	225
Figura 6.11: Influência da umidade na curva tensão desvio x tensão confinante	225
Figura 6.12: Trajetória de tensões no espaço q e p para o material da base	226
Figura 6.13: Trajetória de tensões no espaço q e p para o material da sub-base	227
Figura 6.14: Taxa de crescimento anual do tráfego por categoria de veículo	231
Figura 6.15: Situação da superfície do pavimento nos dois segmentos experimentais da ERS-132 - 2010	232
Figura 6.16: Evolução da frequência relativa de defeitos – segmento 1	233

Figura 6.17: Evolução da freqüência relativa de defeitos - segmento 2	234
Figura 6.18: Evolução da irregularidade entre 2001 e 2010 nos dois segmentos	235
Figura 6.19: Evolução das trilhas de roda nos dois segmentos experimentais da ERS- 132 e na pista 07 da APTP	236
Figura 6.20: Desenvolvimento ATR pista 07 APTP e segmentos experimentais da ERS-132	236
Figura 6.21: Evolução da deflexão na pista 07 da APTP e nos dois segmentos experimentais da ERS-132	337
Figura 6.22: Esquema itinerário das deflexões, Rc e SN no segmento 1-2006 e 2009	238
Figura 6.23: Esquema itinerário das deflexões, Rc e SN no segmento 2-2006 e 2009	239
Figura 6.24: Espessura prevista no projeto e espessura encontrada "in situ"	240
Figura 6.25: Localização dos pontos retroanalisados da estrutura	241
Figura 6.26: bacias de deflexão - FWD - 2006 e 2009 para os três pontos estudados	242
Figura 6.27: Deflexão admissível e evolução das deflexões características - Segmento experimental 1 e 2 – ERS-132	244
Figura 6.28: Taxa de crescimento anual média do tráfego por categoria de veículo (1980-2002)	247
Figura 6.29: Evolução da freqüência relativa de defeitos nos dois segmentos experimentais	248
Figura 6.30: Evolução da freqüência relativa de trincamentos nos dois segmentos experimentais antes e após restauração	249
Figura 6.31: Evolução do IRI para os dois segmentos experimentais	250
Figura 6.32: Bacias de deflexões características para os dois segmentos	251
Figura 6.33: Espessura da camada de laterita projeto x rodovia	252
Figura 6.34: Distribuição granulométrica da laterita – estaca 0+600	253
Figura 6.35: Distribuição granulométrica da laterita - estaca 8+460	254
Figura 6.36: Taxa de crescimento anual média do tráfego por categoria de veículo (1999-2007)	259
Figura 6.37: Evolução dos defeitos superficiais no trecho experimental	259
Figura 6.38: Evolução da irregularidade no segmento experimental	260

Figura 6.39: Bacias de deflexão com deflexões médias, deflexão característica e deflexões no ponto 0+900	261
Figura 6.40: Espessuras do pavimento	262
Figura 6.41: Granulometria do material da base de laterita estaca 0+900	263
Figura 7.1: Tendência do trincamento nos dois segmentos experimentais da ERS-132	272
Figura 7.2: Tendência do trincamento nos dois segmentos experimentais da ERS-536 e do segmento experimental do acesso a Sete de Setembro	275

LISTA DE TABELAS

LateríticoLaterio para diferenciar solos de comportamento Laterítico e Nao	43
Tabela 2.2: Critérios tecnológicos para SAFLs	55
Tabela 2.3: Índices geotécnicos mínimos para saibros de granito	56
Tabela 2.4: Granulometria de saibros de granito para bases e sub-bases	57
Tabela 2.5: Parâmetros de resistência ao cisalhamento em materiais granulares	71
Tabela 2.6: Indicadores de desempenho para baixo volume de tráfego – ME-PDG	75
Tabela 2.7: Módulo de resiliência para baixo volume de tráfego – ME-PDG	75
Tabela 2.8a: Rodovias com pavimento de material alternativo no RS	78
Tabela 2.8b: Rodovias com pavimento de material alternativo no RS	79
Tabela 2.8c: Rodovias com pavimento de material alternativo no RS	80
Tabela 2.9: Conceitos de degradação do pavimento - IGG	82
Tabela 2.10: Condição do pavimento IRI (rodovias pavimentadas)	84
Tabela 2.11: Fatores de veículos adotados pelo DAER/RS	110
Tabela 2.12: Classificação de veículos adotada pelo DAER/RS	111
Tabela 2.13: Tipos e freqüência de levantamentos realizados pelas agências pesquisadas	116
Tabela 2.14: Modelos de deterioração nas agências visitadas	117
Tabela 2.15: Resumo dos indicadores de avaliação econômica utilizados pelas agências visitadas em 2008	119
Tabela 3.1: Deflexões medidas com VB no km 126+000	123
Tabela 3.2: Períodos de pavimentação da rodovia	124
Tabela 3.3: Composição química do material	126
Tabela 3.4: Localização e resultados dos ensaios de caracterização - 1991	128
Tabela 3.5: Localização e resultados dos ensaios de compactação, ISC e Mr - 1991	128
Tabela 3.6: Levantamentos e deflexões superficiais nos segmentos teste - 1991	129

Tabela 3.7: Deflexões (VB) no trecho experimental do km 85+500 (1994 e 1996)	132
Tabela 3.8: Deflexões (VB) no trecho experimental do km 151+500 (1994 e 1996)	133
Tabela 3.9: Análise das deflexões 1998.	136
Tabela 3.10: Comportamento do pavimento em aterros baixos.	137
Tabela 3.11: Conceitos utilizados na classificação do trecho em 2004	138
Tabela 3.12: Levantamentos realizados com VB em 2004	139
Tabela 3.13: Contagem de tráfego de 1992	141
Tabela 3.14: Estrutura do projeto em estudo	142
Tabela 3.15: Tráfego e profundidade de trilha de roda na pista 07	144
Tabela 3.16: Estimativas de módulos de resiliência	146
Tabela 3.17: Temperaturas e pluviometria da região	147
Tabela 3.18: Resultados dos ensaios de caracterização do subleito	148
Tabela 3.19: VDM em meia pista em 1980.	149
Tabela 3.20: Projeto final do pavimento	149
Tabela 3.21: Dados de IRI, Deflexão e LVC - 2000.	150
Tabela 3.21(cont.): Dados de IRI, Deflexão e LVC - 2000	151
Tabela 3.22: Rodovias escolhidas para participar do Projeto 2000	154
Tabela 3.23: Levantamento de VDM - 1999 e 2007	155
Tabela 3.24: Faixa granulométrica para a base de laterita DNER-ES P 47/74	156
Tabela 3.25: Resultados dos ensaios de laboratório – material da jazida e valores exigidos pela especificação	157
Tabela 3.26: Coeficiente de resiliência – material da jazida	157
Tabela 3.27: Projeto do pavimento	158
Tabela 3.28: Comparativo de custos: soluções para a camada de base	158
Tabela 3.29: Estrutura adotada para o pavimento da rodovia 392 AM 9100	159
Tabela 3.30: Dados de deflexão obtidos durante a obra	160
Tabela 5.1: Acumulação média anual de precipitações (mm) durante o estudo	167

Tabela 5.2: Número N (USACE) acumulado 1991-2010	168
Tabela 5.3: Levantamentos de dados de tráfego	168
Tabela 5.4: Levantamentos superficiais realizados em 2009	169
Tabela 5.5: Bacias de deflexão (deflexões em 10 ⁻² mm) - 2009 LE	170
Tabela 5.6: Bacias de deflexão (deflexões em 10 ⁻² mm) - 2009 LD	171
Tabela 5.7: Resumo dos resultados dos ensaios realizados em laboratório	172
Tabela 5.8: Resultados dos módulos de resiliência - tensão confinante	176
Tabela 5.9: Resultados dos módulos de resiliência - modelo k-θ	176
Tabela 5.10: Resultados dos módulos de resiliência - modelo de Uzan	177
Tabela 5.11: Valores de tensão e deformação de ruptura resultantes dos ensaios triaxiais monotônicos.	178
Tabela 5.12: Acumulação média anual de precipitações (mm) durante o estudo	180
Tabela 5.13: Dados de tráfego	181
Tabela 5.14: Levantamento de dados de tráfego	181
Tabela 5.15: Dados de levantamentos superficiais 2001-2010 Segmento 1	182
Tabela 5.16: Dados de levantamentos superficiais 2001-2010 Segmento 2	182
Tabela 5.17: Dados de levantamentos deflectométricos realizados no segmento 1	183
Tabela 5.18: Dados de levantamentos deflectométricos realizados no segmento 2	183
Tabela 5.19: Bacias de deflexão – segmento 1	184
Tabela 5.20: Bacias de deflexão – segmento 2	185
Tabela 5.21: Análise petrográfica da amostra de basalto alterado	187
Tabela 5.22: Índice de resistência à compressão puntiforme do basalto alterado obtido na base do pavimento da ERS-132 em 2007	187
Tabela 5.23: Segmentos homogêneos para a rodovia ERS-536 - 2007	189
Tabela 5.24: Acumulação média anual de precipitações (mm) durante o estudo	190
Tabela 5.25: Levantamentos de dados de tráfego	191
Tabela 5.26: Número N (USACE) acumulado 1980-2008	191
Tabela 5.27: Levantamentos superficiais - dois segmentos experimentais	192

Tabela 5.28: Evolução do IRI para os dois segmentos experimentais	193
Tabela 5.29: Levantamentos de deflexão com VB - 2005 e 2007	193
Tabela 5.30: Levantamentos de deflexão FWD - 2007 - segmento 1	193
Tabela 5.30(cont.): Levantamentos de deflexão FWD - 2007 - segmento 1	194
Tabela 5.31: Levantamento de deflexão FWD - 2007 - segmento 2	195
Tabela 5.32: Resultado dos ensaios realizados no laboratório	198
Tabela 5.33: Resultado dos ensaios de módulo de resiliência do subleito considerando a tensão desvio	199
Tabela 5.34: Resultados dos módulos de resiliência - tensão confinante	199
Tabela 5.35: Resultados dos módulos de resiliência - modelo k-θ	199
Tabela 5.36: Resultados dos módulos de resiliência - modelo Uzan	200
Tabela 5.37: Número N(USACE) para 2000 (abertura ao tráfego), 2007, 2008 e 2010.	201
Tabela 5.38: Defeitos superficiais - 2007, 2008 e 2010	202
Tabela 5.39: Evolução do IRI para o segmento experimental	202
Tabela 5.40: Levantamentos de deflexão com VB - 2000 e 2010	203
Tabela 5.41: Bacias de deflexão levantadas com o FWD - 2007	203
Tabela 5.41(cont.): Bacias de deflexão levantadas com o FWD - 2007	204
Tabela 5.42: Resultado dos ensaios realizados no laboratório	206
Tabela 5.43: Resultado dos ensaios realizados no campo	207
Tabela 5.44: Resultado dos ensaios de módulo de resiliência do reforço do subleito considerando a tensão desvio	207
Tabela 5.45 Resultados dos módulos de resiliência - tensão confinante	207
Tabela 5.46: Resultados dos módulos de resiliência – modelo k-θ	208
Tabela 5.47: Resultados dos módulos de resiliência – modelo Uzan	208
Tabela 6.1: Evolução da quantidade de veículos	209
Tabela 6.2: Resumo das deflexões características no segmento 85+500 até 86+000	211
Tabela 6.3: Resumo do estudo das bacias de deflexão LE e LD- segmento analisado	213
Tabela 6.4: Resultados obtidos através do critério baseado na Relação RIS	214

Tabela 6.5: Resultados dos ensaios de PI	215
Tabela 6.6: Espessuras das camadas da estrutura e localização dos pontos estudados	217
Tabela 6.7: Variação percentual das tensões na estrutura 2007 e 2009 - LD do segmento	218
Tabela 6.8: Variação percentual das tensões na estrutura 2007 e 2009 LE do segmento	218
Tabela 6.9: Valores de módulo de resiliência calculados	219
Tabela 6.10: Valores de módulo de resiliência retroanalisados	220
Tabela 6.12: Valores de ângulo de atrito interno efetivo e coesão efetiva	226
Tabela 6.13: Valores de F e N para base e sub-base - 2009	228
Tabela 6.14: Evolução do VDM durante a vida útil do pavimento	231
Tabela 6.15: Resultado da retroanálise	242
Tabela 6.16: Situação superficial e estrutural dos segmentos experimentais após $N(USACE) = 1,44 \times 10^6$	243
Tabela 6.17: Evolução do tráfego	247
Tabela 6.18: Resumo estudo das bacias de deformação - 2 segmentos experimentais	251
Tabela 6.19: Exigências da norma DNIT 098/2007 – ES	254
Tabela 6.20: Tensões, deformações e módulo de resiliência - Estaca 8+460 (2007)	255
Tabela 6.21: Resultado da retroanálise para a estrutura - Estaca 8+460 (2007)	256
Tabela 6.22: Resultado da retroanálise para a estrutura - Estaca 0+600 (2007)	256
Tabela 6.23: Módulos de resiliência em amostras de laterita em diferentes umidades	257
Tabela 6.24: Evolução da taxa de crescimento anual do tráfego por categoria de veículo entre 1999 e 2007	258
Tabela 6.25: Resumo do estudo das bacias de deformação no segmento experimental	261
Tabela 6.26: Exigências da norma DNIT 098/2007 – ES	264
Tabela 6.27: Resultado da retroanálise para a estrutura da estaca 0+900 (2007)	264
Tabela 6.28: Módulos de resiliência para as amostras de laterita da estaca 0+900	265
Tabela 7.1: Resumo do programa de manutenção para pavimentos com materiais alternativos.	276

LISTA DE ABREVIATURAS E SÍMBOLOS

AASHTO: American Association State Highway and Transportation Officials

APTP: Área de Pesquisas e Testes de Pavimentos

APDG: Austroads Pavement Design Guide (Guia de Projeto de Pavimentos da

Austrália)

ATR: Afundamento nas Trilhas de Roda

BG: Brita graduada

CBUQ: Concreto Betuminoso Usinado a Quente

CBR: California Bearing Ratio (Índice Suporte Califórnia)

CIENTEC: Fundação de Ciência e Tecnologia

COPPE:Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia

CPR: Centro de Pesquisas Rodoviárias

CREMA: (Programa de Conservação, Restauração e Manutenção das Rodovias do

Estado do Rio Grande do Sul).

DAER/RS: Departamento Autônomo de Estradas e Rodagens do Rio Grande do Sul

DER-SP: Departamento de Estradas de Rodagens de São Paulo

DNIT: Departamento Nacional de Infraestrutura Terrestre (antigo DNER)

DNER: Departamento Nacional de Estradas e Rodagens

Dc: Deflexão característica

D₀: Deflexão Máxima

EA: Equivalente de Areia

ESAL: Equivalent Single Axle Load (eixo de carga equivalente)

ET/SEP: Estatística de Tráfego/Setor de Projetos

EET-CPR/DAER: Equipe de Estatística de Tráfego do Centro de Pesquisas

Rodoviárias do DAER

FC: Fator de Carga

F_D: Fator directional

FE: Fator de Eixo

Fr: Fator climático regional

FCS: Forestry Commission Scotland (Comissão Florestal da Escócia)

FHWA: Federal Highway Administration (Admnistração de Autoestradas Federais dos Estados Unidos)

FIPAI: Fundação de Incentivo à Pesquisa e Apoio Industrial

FURG: Universidade Federal de Rio Grande

FWD: Falling Weight Deflectometer

HA: United Kingdom Highways Agency (Agência de Autoestradas do Reino Unido)

HC: Highland Council (Conselho responsável pelas rodovias de uma parte da Escócia)

HDM: Highway Development & Management (Gerência e Desenvolvimento de Autoestradas)

IAN 98: Interim Advice Note 98/07 (Guia de serviços da Agência de Autoestradas do Reino Unido)

INMET: Instituto Nacional de Meteorologia

IBGE: Instituto brasileiro de geografia

ICB: Índice de curvatura da base

IDB: Índice de destruição da base

ICS: Índice de curvatura superficial

IG: Índice de Grupo

IGI: Índice de Gravidade Individual

IGG: Índice de Gravidade Global

IP: Índice de Plasticidade

IPR: Instituto de Pesquisas Rodoviárias

IRI: International Roughness Index (Índice de Irregularidade Longitudinal)

I.S.R.M: International Society for Rock Mechanics (Sociedade internacional de mecânica das rochas)

ISSMFE: International Society for Soil Mechanics and Foundation Engineering (Sociedade Internacional de Engenharia de Fundações e Mecânica dos Solos)

LA: Lama Asfáltica

LA: solo laterítico arenoso

LA': solo laterítico areno-agiloso

LAPAV-UFRGS: Laboratório de Pavimentação da Universidade Federal do Rio

Grande do Sul

LCPC: Laboratoire Central des Ponts et Chaussées (Laboratório Central de Ponts

Chaussées)

LG': solo laterítico argiloso

LL: Limite de Liquidez

MCT: Miniatura Compactado Tropical (Metodologia para caracterização de solos

tropicais)

MCV: Moisture Condition Value (Valores de condição de umidade)

ME-PDG: Guia para projetos mecanístico empírico

MS: Macadame Seco

Mr_p: Módulos de resiliência in situ do pavimento

Mr_{subleito}: Módulos de resiliência do subleito

N: Número equivalente de aplicações do eixo padrão de 8,2t

NA: solo não laterítico arenoso

NA': solo não laterítico areno argiloso

NCI: Índice de Condição da Rede

NG': solo não laterítico argiloso

NS': solo não laterítico silto-arenoso

NTEC: Centro de Engenharia de Transportes da Universidade de Nottingham

OCEE: Organization de Coopération et de Développement Economique

QI: Quociente de Irregularidade

IS: Índice de resistência à compressão puntiforme

Rc: Raio de Curvatura

RCI: Indicador da Condição da Rodovia

RS: Rio Grande do Sul

SAFL: Solos arenosos finos

SAMDM: Método Mecanístico de Projeto da África do Sul

SCI: Índice de Condição da Superfície

SN: Número estrutural

SRA: Swedish Road Administration (Administração de Rodovias da Suécia)

SRE: Sistema Rodoviário Estadual

TNI: Índice de Necessidade de Transporte

TSD: Tratamento Superficial Duplo

TRRL: Transport and Road Research Laboratory (Laboratório de pesquisas em transportes e rodovias)

UFRGS: Universidade Federal do Rio Grande do Sul

UFRJ: Universidade Federal do Rio de Janeiro

UK: Reino Unido

UNP/DAER: Unidade de Normas e Pesquisas

USACE: United States Army Corps of Engineers (Corpo de Engenheiros Militares dos Estados Unidos da América)

USP: Universidade de São Carlos

VDM: Volume Diário Médio

 σ_1 : tensão vertical

 $\sigma_{3:}$ tensão confinante

c': intercepto coesivo efetivo

F – Fator de segurança

φ': ângulo de atrito interno efetivo

 $\sigma_{d:}$ Tensão desvio axial cíclica (σ_1 - σ_3)

 θ : soma das tensões principais ($\sigma_1 + \sigma_2 + \sigma_3$)

p: média das tensões normais

q: tensão desvio $(\sigma_1 - \sigma_3)$

 $\sigma_{1,f}$: tensão vertical de ruptura

a; α: parâmetros de resistência do diagrama q x p

p-q: espaço de tensões

τ: tensão de cisalhamento

s : sucção mátrica

ua: poro pressão do ar

uw: poro pressão da água

ε :deformação elástica ou resiliente

 ϵ_p : deformação permanente ou plástica

 ϵ_a : deformação resiliente axial

 ϵ_t : deformação máxima de tração

 $k_1 \, e \, k_2$: parâmetros de resiliência do solo ensaiado

p₀: pressão atmosférica

L₀: comprimento original da amostra

 $\Delta L_{(total)}$: deformação no comprimento final da amostra

 $\Delta L_{(N)}$: deformação resiliente no comprimento da amostra para N ciclos de carga

fa: freqüência absoluta

fr: freqüência relativa

γ_d: peso específico aparente seco

1 INTRODUÇÃO

A malha rodoviária do Estado do Rio Grande do Sul é composta por 18.957 km de rodovias estaduais e federais das quais 6.199 km são não pavimentadas. Estes dados foram fornecidos, em novembro de 2010, pelo Departamento Autônomo de Estradas e Rodagens do Rio Grande do Sul (DAER-RS) (www.daer.rs.gov.br/site/sistema_rodoviario_rodovias.php).

Os dados apresentados no Atlas Socioeconômico do Rio Grande do Sul (www.seplag.rs.gov.br/atlas.asp?menu=559) em 2004 são os dados mais recentes de levantamento da extensão total das rodovias no Estado considerando a rede municipal, estadual e federal. Nesta data o Estado apresentava um total de 153.960 km de rodovias das quais 137.255 km eram de rodovias municipais sendo que somente 699 km eram rodovias pavimentadas.

O crescimento econômico acelerado exige rodovias pavimentadas para facilitar o fluxo de cargas sem onerar o orçamento do Estado, responsável pela manutenção das rodovias. Por outro lado, em algumas regiões, o uso de agregados convencionais em bases e sub-bases de rodovias, tais como brita graduada de rocha sã, torna-se praticamente inviável devido ao alto custo de exploração e transporte.

A preocupação com o meio ambiente tem dificultado a obtenção da rocha sã para usar na pavimentação das rodovias despertando o interesse pelo uso dos materiais alternativos existentes, muitas vezes, ao longo das rodovias a serem pavimentadas.

1.1 CONSIDERAÇÕES GERAIS

Materiais não convencionais, também conhecidos no meio rodoviário como materiais alternativos ou locais, são materiais encontrados próximos ou mesmo às margens das rodovias já implantadas, mas não pavimentadas, que podem ser utilizados em sua pavimentação contribuindo com o crescimento econômico das regiões sem prejudicar o meio ambiente.

Em 2007 estudos desenvolvidos na Universidade de Washington nos Estados Unidos da América (www.greenroads.us) deram os primeiros passos na incorporação dos conceitos de

sustentabilidade e responsabilidade social para uma rodovia concluindo que a rodovia precisa estar de bem com a natureza preservando a flora e a fauna da região: protegendo os mananciais, estando integrada ao paisagismo da região, respeitando a história e as comunidades que vivem ao seu entorno, utilizando materiais lindeiros ou matéria-prima reciclada ou subprodutos da indústria e minimizando o consumo de energia e de emissões de gazes na sua construção, manutenção e operação, além de ser, segura, confortável e econômica ao usuário.

A utilização destes materiais lindeiros torna a pavimentação da rodovia sustentável satisfazendo o usuário que quer uma superfície regular, mas ao mesmo tempo segura, protegendo o meio ambiente com economia, pois está aproveitando os materiais locais sem altos custos de transporte.

A viabilização econômica da pavimentação destas rodovias, normalmente, ocorre utilizandose uma camada de revestimento delgado sobre a camada de base e sub-base de materiais alternativos, ou seja, não convencionais.

A preocupação com o desempenho estrutural destes materiais alternativos tem incentivado estudos realizados por técnicos rodoviários no meio nacional e internacional que vêm desenvolvendo pesquisas procurando: (i) analisar a resistência destes materiais utilizados em camadas de base e/ou sub-base, (ii) analisar o comportamento mecânico destes pavimentos, e (iii) identificar as causas de degradações ocorridas nestes pavimentos.

O interesse do Estado em utilizar materiais alternativos nas estruturas dos pavimentos despertou pesquisas em conjunto com as Universidades.

O Departamento Autônomo de Estradas de Rodagens do Rio Grande do Sul (DAER/RS) e a Universidade Federal do Rio Grande do Sul (UFRGS) têm desenvolvido estudos em conjunto, sobre materiais alternativos, que possam ser utilizados em substituição à brita graduada:

- Arnold (1993) analisou os resultados de ensaios de agregados provenientes de sete jazidas de basalto alterado exploradas na construção dos trechos abertos ao tráfego em 1989. Propôs que a perda da resistência dos agregados de basalto alterado causada pela imersão em água fosse avaliada através do ensaio de compressão puntiforme, como critério de aceitação;

- Núñez (1997) analisou o comportamento mecânico de pavimentos delgados com basaltos alterados e estabeleceu um método de dimensionamento que considera as especificidades do material analisado e do tráfego de rodovias coletoras, empregando o Simulador de Tráfego DAER-UFRGS, em cinco pistas experimentais construídas na Área de Pesquisas e Testes de Pavimentos (APTP).

Utilizando a tecnologia desenvolvida nos estudos de Núñez, em 1999, o DAER/RS construiu um trecho experimental na rodovia RS-132 (entroncamento RS-324 – Nova Alvorada) que está sendo testado com o tráfego real.

Segundo Passos (2000), em 1988, o DAER iniciou uma pesquisa com os solos arenosos finos do Rio Grande do Sul, em convênio com a FIPAI (Fundação Incentivo à Pesquisa e Apoio Industrial) da Universidade de São Carlos - USP, onde material proveniente de doze jazidas foi ensaiado com a metodologia MCT. O projeto foi interrompido na metade do cronograma, antes de sua conclusão final, que previa a construção de vários segmentos experimentais com materiais alternativos.

Em estudo apresentado por Oliveira (2001) o Rio Grande do Sul possui potencialidade de emprego de alguns materiais que ocorrem em consideráveis áreas do Estado tais como lateritas, basaltos alterados, saibros de granito ou gnaisse, plintossolos e solos arenosos finos lateríticos. Alguns destes materiais alternativos já estão sendo utilizados na pavimentação de rodovias secundárias, de baixo volume de tráfego, no interior do Estado do Rio Grande do Sul.

O estudo desenvolvido neste trabalho analisa o comportamento de algumas destas soluções alternativas implantadas e propõe programas de manutenção de forma a consolidar estas soluções como alternativas de pavimento para o Estado do Rio Grande do Sul (RS).

1.2 OBJETIVOS DA PESQUISA

Esta Tese tem como objetivo principal analisar o desempenho de alguns pavimentos com revestimentos delgados executados pelo DAER/RS, no Estado do Rio Grande do Sul, onde foram utilizados materiais alternativos, não convencionais, nas camadas de base e/ou subbase.

Desempenho de Pavimentos com Materiais Alternativos do Estado do Rio Grande do Sul

A análise foi realizada através do estudo do comportamento estrutural e funcional dos pavimentos com camadas de base e/ou sub-base constituída por: (i) Plintossolo na rodovia ERS-101, trecho Bacopari – Mostardas; (ii) Basalto alterado na rodovia ERS/132, trecho Vila Maria – Camargo - Nova Alvorada e (iii) Laterita nas rodovias ERS/536 Caibaté - Entr. BR/285(A) (p/São Luiz Gonzaga) e na rodovia 392 AM 9100 Acesso a Sete de Setembro.

Como objetivo secundário o trabalho sugere um programa de manutenção para os pavimentos alternativos bem como divulga o conhecimento regional de soluções de pavimentos que empregam materiais locais.

1.3 DESENVOLVIMENTO DA PESQUISA

Esta Tese tem oito capítulos incluindo este, capítulo 1, de introdução.

O capítulo 2 apresenta uma revisão bibliográfica sobre solos, solos tropicais, materiais alternativos, projetos de pavimento, pavimentos alternativos, análise de desempenho dos pavimentos, modelos de desempenho de pavimentos, tráfego, clima no RS e programa de manutenção de pavimentos.

O capítulo 3 apresenta o resgate histórico de cada um dos trechos estudados com seus projetos propostos, alguns aspectos da construção e monitoramentos realizados antes do início da presente Tese.

O capítulo 4 apresenta a metodologia desenvolvida para esta Tese.

O capítulo 5 apresenta os levantamentos realizados durante o monitoramento, os ensaios de campo e os ensaios de laboratório realizados para as análises dos materiais que constituem a estrutura dos pavimentos dos trechos escolhidos.

O capítulo 6 apresenta as análises realizadas para cada um dos materiais estudados.

O capítulo 7 apresenta uma sugestão de programa de manutenção para as rodovias que utilizam os materiais alternativos estudados.

O capítulo 8 apresenta as conclusões da Tese e as recomendações para novos estudos que possam complementá-la.

2 REVISÃO BIBLIOGRÁFICA

A utilização de revestimentos delgados sobre bases de pavimentos constituídas de materiais alternativos ou locais resulta na preocupação com o bom desempenho estrutural destes materiais não convencionais exigindo estudos que analisam a resistência dos agregados alternativos bem como o comportamento mecânico destes pavimentos.

Este capítulo inicia fazendo uma revisão sobre a formação dos solos, solos tropicais e a metodologia MCT para estudar geotecnicamente os solos tropicais; apresenta os materiais locais encontrados no Rio Grande do Sul e que foram utilizados como base e ou sub-base de pavimentos em rodovias de baixo volume de tráfico no Estado. Em seguida é abordado tópicos sobre o projeto de um pavimento com ênfase em projetos mecanísticos e pavimentos alternativos. Finalmente é feita uma revisão sobre os parâmetros utilizados na análise de desempenho dos pavimentos estudados nesta tese, considerações sobre o tráfego empregado nos projetos de pavimento no Rio Grande do Sul, considerações sobre o clima do Estado do Rio Grande do Sul e considerações sobre programas de manutenção para pavimentos.

2.1 SOLOS

Vargas (1978) define solo como sendo todo o material da crosta terrestre que não oferece resistência intransponível à escavação mecânica e que perde totalmente a resistência, quando em contato prolongado com água. "São materiais que servem de suporte e que reagem sob as fundações e atuam sobre os arrimos, deformam-se e resistem a esforços nos aterros e taludes, influenciando as obras de engenharia segundo suas propriedades e comportamento".

Bastos (1999) escreve que os solos são componentes da paisagem e constituem um ecossistema particular. Formam sistemas dinâmicos abertos, com troca de matéria e energia, logo em constante alteração física e química de seus componentes. Descreve ainda que o conceito pedológico de solo deve-se ao geólogo russo Dokuchaev que definiu solo como um corpo natural, com uma gênese definida e características próprias, ocupando um lugar independente na crosta terrestre. Os solos são considerados produtores de interações

complexas entre clima, plantas e animais, rochas, relevo e idade das paisagens, sendo identificados através de seu perfil.

Atualmente o solo é estudado através da pedologia, ciência que estuda o solo sob o ponto de vista de sua gênese, classificação e distribuição na paisagem. Este estudo tem valor para o engenheiro como forte subsídio sobre o solo de uma região, com indicativos diretos e indiretos sobre inúmeras propriedades do solo, determinando seu melhor uso dentro da técnica mais adequada.

2.1.1 Formação dos solos

A formação do solo se dá a partir do processo físico químico de fragmentação e decomposição das rochas, ou através do transporte, sedimentação e evolução pedogênica.

Em 1941, Jenny, apud Bastos (1999) procurou formular relações entre os fatores de formação e as propriedades dos solos; o solo em função de materiais de origem, clima, relevo, organismos vivos (flora e fauna) e tempo.

Bastos (1999) esclarece que a transformação completa de um material original (rocha) em um solo envolve modificações morfológicas, físicas, químicas e mineralógicas devido à atuação de dois grupos de processos: intemperismo (reúne os processos de destruição natural das rochas) e processos pedogenéticos (atuam sobre o material resultante do intemperismo e determinam a chamada evolução do solo).

Os processos pedogenéticos são mecanismos físicos, químicos e biológicos que atuam em condições ambientais específicas, responsáveis pela formação dos horizontes superficiais do solo. Estes mecanismos também são chamados reações e são apresentados como: Adição (através da água, vegetação ou ar sendo provenientes de produtos de erosão, materiais aluviais, sais, matéria orgânica); Remoções (realizadas pela água por mecanismos de lixiviação, eluviação ou lavagem onde são removidos os cátions e a sílica); Translocação (movimento lento de argilas, sesquióxidos, matéria orgânica, sais e carbonatos dentro do perfil; também realizado pela água) e Transformação (toda a modificação física, química, mineralógica ou biológica), Bastos (1999).

A ação conjunta destes mecanismos determina os principais processos pedogenéticos apresentados por Bastos (1999) como: Dessilicação - ferralitização - latilozação; Eluviação -

iluviação; Gleização; Carbonatação ou Calcificação; Salinização; Podzolização; Paludização e Turbação. Os três primeiros processos ocorreram na formação dos materiais estudados neste trabalho.

O processo pedogenético de dessilicação - ferralitização - latilozação, ocorre em regiões tropicais e subtropicais úmidas com abundância de água e altas temperaturas. O intemperismo é intenso e rápido com predomínio das reações de hidrólise e oxidação. A dessilicação ocorre quando existe uma intensa lixiviação de cátions básicos e sílica. Uma boa drenagem favorece a ferralitização que é a formação de óxido de ferro – goethita e hematita; e alumínio – gibsita. Finalmente a formação do latossolo, ou latolização.

A eluviação – iluviação ocorre quando existe uma translocação de argila de um horizonte superior (eluvial) para um horizonte inferior (iluvial). O acúmulo de argilas forma camadas mais densas e menos permeáveis. Os solos Podzólicos e os Planossolos sofreram este tipo de processo pedogenético.

A gleização é uma formação de características hidromórficas, ou seja, os perfis aparecem com excesso de água e deficiência de oxigênio por drenagem impedida, ou alagamento completo. Ocorre a formação de íons de ferro e manganês pela deficiência de oxigênio que migram na água. Em locais oxigenados estes íons podem novamente ser oxidados. Existe a formação de concreções pretas em horizontes de alta condutividade hídrica e a formação de mosqueados ferruginosos em horizontes de baixa condutividade. Isto também pode ocorrer no interior de agregados, na existência de ar e quando os íons se difundem para o seu interior.

A presença de concreções ou mosqueados informa a condutividade hídrica do solo. A distribuição de mosqueados indica se a saturação do solo com água é permanente ou temporária.

Os solos formados sob o processo de gleização podem se apresentar como saturação permanente (Glei húmico, Glei Pouco Húmico e Glei Tiomórfico) ou como saturação temporária (Plintossolo e Planossolo).

2.1.2 Solos Tropicais

Solo Tropical é aquele que apresenta peculiaridades de propriedades e de comportamento, relativamente aos solos não tropicais, em decorrência da atuação no mesmo de processos

geológicos e/ou pedológicos, típicos das regiões tropicais úmidas (Committee on Tropical Soils of ISSMFE, 1985).

Dentre os solos tropicais destacam-se duas grandes classes: os solos lateríticos e os solos saprolíticos.

Os solos tropicais possuem peculiaridades que influenciam nos estudos geotécnicos de campo.

2.1.2.1 Histórico

Nogami e Villibor (1995) apresentam um histórico sobre o estudo dos solos tropicais no Brasil.

Em 1950, Villibor verificou que os procedimentos importados dos E.U.A., quanto às propriedades índices dos solos, não correspondiam com o real desempenho em obras rodoviárias.

A execução do Plano de Pavimentação 56/60 (abertura quanto a tipos de camadas de pavimentos), no Brasil, propiciou o desenvolvimento de uma tecnologia mais adaptada aos nossos solos e condições tropicais. Antes deste evento as bases rodoviárias eram constituídas de macadame hidráulico ou betuminoso e o revestimento das rodovias quase sempre betuminoso do tipo usinado a quente.

Nesta época começou-se a utilizar bases de solo cimento, bases estabilizadas granulometricamente, revestimentos do tipo tratamento superficial e reforço de subleito utilizando solos lateríticos arenosos ou argilosos.

O excelente desempenho de vários trechos experimentais, executados com base de solos arenosos finos lateríticos (SAFL), em São Paulo, no final da década de 60 e início de 70, comprovou as limitações dos procedimentos tradicionais para escolha de solos estabilizados granulometricamente.

No início da década de 80 foram desenvolvidos critérios de caracterização mais apropriados, ligados a propriedades mecânicas e hidráulicas dos solos compactados.

2.1.2.2 Solo Laterítico

Um solo é laterítico quando for considerado de comportamento geotécnico laterítico. É caracterizado por possuir uma série de propriedades que levam a classificá-lo como solo de comportamento laterítico segundo a classificação MCT.

Pedológicamente, solo laterítico é uma variedade de solo superficial pedogenético (camadas designadas horizontes pedológicos A e B; verdadeiro solo em pedologia, típico de partes bem drenadas das regiões tropicais úmidas).

Nogami e Villibor (1995) classificam os solos de comportamento Lateríticos como denominados Classe L e são constituídos, do ponto de vista pedológico, pelo horizonte B dos grupos pedológicos tipo Latossolos, Podzólicos e Terra Roxa Estruturada. As frações areia e pedregulho deste solo apresentam o quartzo como mineral predominante, resultando elevada resistência à compressão, elevado módulo de elasticidade, elevada dureza e estabilidade química. O horizonte B desses solos caracteriza-se por ser vermelho e/ou amarelo, com grande espessura e agregação dos grãos mais finos muito intensos (aspecto trincado e/ou poroso). A cor destes solos, em condições naturais, decorre da constituição mineralógica peculiar da fração argila, devido à presença de caolinita como o argilo-mineral predominante e elevada porcentagem de óxido e hidróxido de ferro, e hidróxido de alumínio.

As variedades areno-argilosas, quando apropriadamente compactadas apresentam maior capacidade suporte que as argilas e variedades mais argilosas.

Os solos de comportamento Laterítico possuem granulometria variando desde areias com poucos finos argilosos até argilas, sendo que a porcentagem de silte pode variar até 50%.

2.1.2.3 Solo Saprolítico

Solo Saprolítico, é aquele que resulta da decomposição e/ou desagregação "in situ" da rocha (considerada material consolidado da crosta terrestre), mantendo a estrutura da rocha que lhe deu origem (Committee on Tropical Soils of ISSMFE, 1985).

Nogami e Villibor (1995) classificam o solo saprolítico como um solo genuinamente residual, frequentemente designado solo residual ou solo residual jovem. Classificado pela Metodologia MCT como Classe N, possui comportamento não Laterítico. Destaca-se a presença de Feldspatos que permitem a fragmentação e facilidade de absorção de água e

Micas que elevam o LL e diminuem o IP; aumentam a umidade e como conseqüência elevam a expansibilidade; diminuem a massa específica aparente seca máxima quando o solo é compactado; elevam a umidade ótima de compactação; diminuem a capacidade de suporte e reduzem sensivelmente o módulo de resiliência.

2.1.2.4 Propriedades Índices

A classificação geotécnica e as avaliações técnicas de um solo são realizadas através de propriedades denominadas índices.

Nogami e Villibor (1995), entre outros autores, verificaram que os solos tropicais comportavam-se de maneira diversa quando analisados quanto a estas propriedades índices descritas aseguir:

- a) Limite de Liquidez (LL) e o Índice de Plasticidade (IP) O controle da variação de volume das camadas constituintes de um pavimento é realizado através do LL e do IP. Estes índices físicos são utilizados na classificação geotécnica dos solos e na avaliação da variação de volume dos solos compactados, ou seja, à variação do seu teor de umidade por secagem (contração) ou por imersão em água (expansão). Estudos realizados com solos tropicais mostraram que existem solos classificados pedológicamente como latossolos ou podzólicos que possuem LL elevados e não se expandem quando compactados e em seguida imersos em água, e existem solos como os saprolíticos (ricos em siltes caoliníticos e/ou micácios) que possuem baixo LL e IP e se expandem demonstrando que estes índices não podem ser usados para previsão de características expansivas dos solos tropicais.
- b) Índice de Grupo (IG) O IG é utilizado para distinguir solos de mesmo grupo da classificação AASHO, ou seja, é utilizado para distinguir solos que possuem constituições similares, não devendo ser aplicado para solos tropicais, pois, em solos tropicais é difícil saber quando ocorre efetivamente esta similaridade.
- c) Equivalente de Areia (EA) O Equivalente de areia foi desenvolvido por Hveen na década de 50 e é utilizado para avaliar a possibilidade de uso dos solos granulares. A especificação do DAER para bases de solo granulares exige que o EA seja superior a 50. Para solos tropicais, a utilização do EA pode levar a resultados insatisfatórios devido às peculiaridades mineralógicas e físico-químicas

- da fração argila dos solos lateríticos e, das propriedades mecânicas da fração areia dos solos saprolíticos.
- d) Granulometria É difícil identificar através da granulometria se um solo tropical é uma argila ou solo argiloso laterítico devido ao alto grau de resistência dos agregados, podendo resultar em valores diferentes dependendo do procedimento de desagregação adotado (dispersão) e do tipo de defloculante. Em muitos solos lateríticos, constata-se, elevada porcentagem de agregados de argila na fração areia. As frações areia e silte nos solos saprolíticos podem apresentar elevada porcentagem de minerais distintos do quartzo (mineral constituinte normal de solos tropicais) como micas (frações areia e silte) e caolinitas (frações silte) que interferem significativamente nas propriedades índices dos solos diferentemente do quartzo. Vários problemas geotécnicos dos solos tropicais estão relacionados ao clima quente e úmido o que não é o caso dos locais de clima temperado e frio onde se desenvolveram grande parte dos procedimentos adotados nas obras viárias.

2.1.2.5 Metodologia MCT

A metodologia com corpos de prova Miniatura, 50 mm de diâmetro, Compactados segundo procedimento especial com compactador de seção plena, destinada especificamente para o estudo de solos Tropicais (MCT), foi criada para estudar geotecnicamente os solos tropicais servindo para realizar os estudos geotécnicos em projetos de pavimentos de baixo custo.

Em 1972 Nogami, baseado no procedimento desenvolvido pelo Iowa State University, desenvolveu o primeiro ensaio Mini-CBR (dimensões reduzidas, 5cm de diâmetro e 5cm de altura, e compactação com uso de soquete de seção plena) e correlacionou com resultados de CBR realizados de acordo com o método adotado no Brasil. Em 1979, Nogami e Vilibor com os corpos de prova moldados desta maneira obtiveram outras propriedades, como contração, infiltrabilidade e permeabilidade.

Em 1976 Parsons, na Inglaterra, propôs um procedimento denominado "Moisture Condition Value" (MCV), com o objetivo de controlar a compactação. Em 1980, Nogami e Villibor adaptaram este procedimento para estudos em solos tropicais.

Em 1980, 1985, Nogami e Villibor desenvolveram a metodologia MCT utilizando o MCV em conjunto com o ensaio de Perda de Massa por Imersão, possibilitando a determinação de coeficientes e índices que permitem classificar os solos tropicais.

De acordo com a classificação MCT os solos tropicais podem ser classificados como:

NA – não laterítico arenoso. São areias, siltes e misturas de areia e silte onde os grãos são constituídos essencialmente de quartzo (não ou pouco expansivos) e/ou mica (altamente expansivas), praticamente sem finos argilosos coesivos e siltes caoliníticos. Possuem pequena capacidade de suporte, quando compactados.

NA' – não laterítico areno argiloso. Misturas de areias quartzosas com finos passando na #200. Solos saprolíticos originados de rochas ricas em quartzo como granitos, gnaisses, arenitos e quartzitos impuros. Quando a areia for bem graduada podem ser usados como base de pavimentos. Muitas de suas variedades podem ser expansivas, muito resilientes ou sujeitas à erosão hidráulica.

NS' - não laterítico silto-arenoso. Saprolítico resultante de intemperismo tropical nas rochas eruptivas e metamórficas. Caracterizam-se por possuírem baixa capacidade de suporte quando imerso em água depois de compactados na umidade ótima e massa específica aparente máxima da energia normal; elevada erodibilidade e elevada expansibilidade. Em condições naturais possuem baixa massa específica aparente seca, podendo ser colapsíveis e ter baixa capacidade suporte.

NG' – não lateríticos argilosos. Solos saprolíticos originados de rochas sedimentares argilosas, pobres em quartzos e ricas em feldspatos cálcicos. Quando compactados na umidade ótima e massa específica aparente máxima da energia normal, apresentam características de argilas muito plásticas e expansivas.

LA – solos lateríticos arenosos. Apesar de possuírem elevada capacidade de suporte e módulo de resiliência elevado, tornam-se indesejáveis para pavimentos econômicos porque quando devidamente compactados podem ser permeáveis, pouco coesivos e pouco contráteis quando secos.

LA' - solos lateríticos areno-agilosos. Conhecidos pedológicamente no Brasil por latossolos arenosos. São pouco erodíveis, apresentam matizes vermelho e

amarelo, nitidamente trincados quando expostos as intempéries. Possuem elevada capacidade de suporte quando compactados, elevado módulo de resiliência, baixa permeabilidade, pequena contração por perda por umidade, razoável coesão e pequena expansão por imersão em água, podendo ser utilizados em bases e subbases de pavimentos.

LG' - solos lateríticos argilosos. Conhecidos pedológicamente por latossolos, solos podzólicos e terra roxa estruturada. Apresentam propriedades similares às do solo LA' quando possuem porcentagem elevada de grãos de areia.

Os métodos de ensaio da sistemática MCT são apresentados no anexo 2 do livro Pavimentos Econômicos de Villibor e Nogami publicado em 2009. O trabalho aqui apresentado utilizou o ensaio de infiltrabilidade e perda por imersão desta metodologia para ajudar a análise do desempenho de um material de comportamento laterítico. O comportamento laterítico deste solo foi verificado pela relação RIS que é obtida pela relação percentual entre os resultados dos ensaios de mini CBR (umidade ótima e energia intermediária) após imersão e sem imersão. O critério para diferenciação dos solos de comportamento laterítico e não laterítico está apresentado na tabela 2.1.

Tabela 2.1: Critério para diferenciar solos de comportamento Laterítico e Não Laterítico.

CRITÉRIO	RELAÇÃO RIS
Solo de comportamento Laterítico (L)	≥ 50%
Solo de comportamento Não Laterítico (N)	≤ 50%

(Fonte: Villibor, Nogami, 2009)

2.2 MATERIAIS ALTERNATIVOS NO RIO GRANDE DO SUL

De acordo com Oliveira (2000, 2001) o Rio Grande do Sul possui potencialidade de emprego de alguns materiais que ocorrem em consideráveis áreas do estado conforme apresentado na figura 2.1.

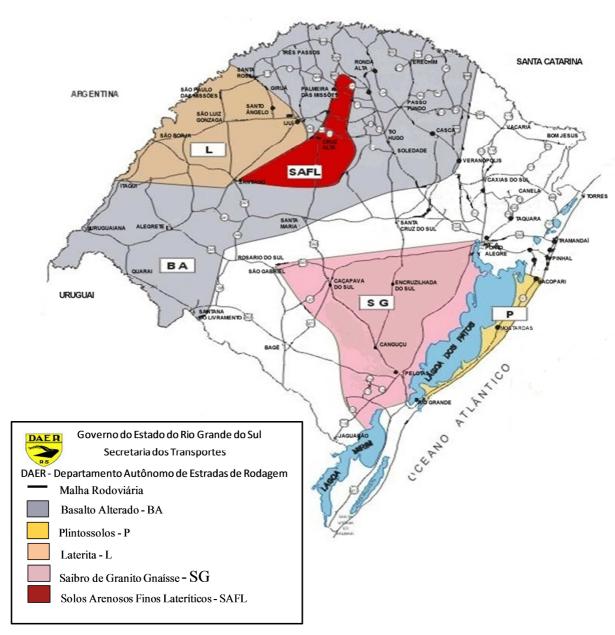


Figura 2.1: Localização dos materiais alternativos no RS (Fonte: Oliveira, 2001)

As lateritas ocorrem em grande concentração na região das Missões (noroeste do RS), os basaltos alterados ocorrem em quase toda a região do derrame vulcânico do RS abrangendo a metade norte do Estado, os saibros de granito ou gnaisse ocorrem na região central do Estado, região do escudo Rio-Grandense, os plintossolos ocorrem na planície costeira do Estado, no litoral sul; e os solos arenosos finos lateríticos ocorrem na região do Planalto, sobre as formações Serra Geral e Tupaciretã.

2.2.1 Lateritas

O dicionário livre de Geociências (www.dicionário.pro.br, 2007) define laterita como produto do processo de laterização. O mesmo que laterito. São formações superficiais ou subsuperficiais ferruginosas e aluminosas endurecidas, que se encontra em regiões tropicais ou subtropicais. Quando se acumulam em grande quantidade formam uma camada superficial resistente que recebe o nome de canga laterítica, carapaça laterítica ou crosta laterítica.

2.2.1.1 Considerações gerais

Vargas (1978) classifica as lateritas como um terceiro tipo de solo de natureza pedogênica, pedregulhos lateríticos. São concreções formadas em clima de profunda alternância de estações secas e úmidas.

Amaral (2004) descreve que segundo Melfi (1997) o termo laterita (do latim later = tijolo) foi usado em 1807, nas regiões montanhosas da costa do Malabar no sul da Índia, pelo geógrafo inglês F. Buchanann, para englobar material de aspecto argiloso sem estratificação, extremamente poroso, rico em cavidades e que possuía grande quantidade de ferro na forma de óxido e hidróxidos, de coloração amarela - avermelhada, que podia ser facilmente cortado com canivete, mas que em contato com o ar, sofria um notável endurecimento, de maneira irreversível, produzindo um excelente material para construção. Por outro lado Costa (1991) apud Amaral (2004) descreve que Berthier, em 1821, no sul da França, descreveu como "bauxite" um material similar, estratificado, rico em SL₂O₃ e pobre em SiO₂, depositado sobre rochas calcáreas.

Oliveira (2000) descreve laterita como sendo um material concrecionado, constituindo um maciço em forma de crosta ou carapaça, de aspecto vesicular, composto essencialmente de óxido de ferro e alumínio, silicatos e quantidades variáveis de óxidos de titânio, magnésio e

outros. Apresenta coloração amarelo avermelhado, variando em tons vermelho escuro ao negro.

O termo laterita é designado para rochas formadas, ou em fase de formação, por meio de intenso intemperismo químico de rochas preexistentes, inclusive de lateritas antigas, sob condições tropicais ou equivalentes, Costa (1991). Quando comparadas à composição da rocha que lhe deu origem, as lateritas são ricas em Fe e Al e pobres em Si, K e Mg.

Em 1980 Scellmann apud Amaral (2004) definiu laterita como: "acumulações superficiais ou subsuperficiais de produtos provenientes do intenso intemperismo de rochas, desenvolvidas sob condições favoráveis a uma maior mobilidade dos elementos alcalinos, alcalinos terrosos e sílica, e imobilização de ferro e alumínio".

No Rio Grande do Sul a laterita é encontrada em abundância na região das missões onde foi utilizada em algumas edificações. Nesta região a laterita é denominada de pedra cupim ou itacuru, em tupi-guarani, nome dado pelos índios devido a sua aparência vesicular. O nº 7 da revista Estradas (2004) descreve que a laterita, rica em óxido de ferro, foi utilizada como matéria prima na primeira fundição do Brasil no ano de 1700, na Redução de São João Batista localizado no município de Entre Ijuís.

No início da década de 80 e no final da década de 90 o DAER utilizou a laterita como material de base e ou sub-base de pavimento para alguns trechos de rodovias.

2.2.1.2 Laterização

Laterização é um processo que ocorre em regiões intertropicais úmidas, com estações chuvosas e secas alternadas. A chuva provoca a lixiviação, (processo que separa os sais contidos nas rochas e nos solos), que remove a sílica e enriquece os solos e rochas com ferro e alumina provocando mudança no equilíbrio iônico de suas moléculas. Quando o processo se completa temos solos transformados em lateritas.

Durante a formação das lateritas ocorre um acúmulo de água e a oxidação dos elementos; neste processo o ferro é liberado sob a forma de hidróxido férrico, além da eliminação quase total do silício e do óxido de magnésio, restando um resíduo denominado laterita.

No Brasil, a maior ocorrência de lateritas é na região Centro-oeste, na Amazônia e no nordeste, pois, nas regiões equatoriais e nas áreas de clima úmido, com chuvas sazonais abundantes, verificam-se com mais clareza os efeitos da lixiviação.

2.2.1.3 Resultados experimentais

Em 1998 Santos apud Medina e Motta (2005) estudou materiais coletados de base e sub-base constituídas de lateritas pedregulhosas do Estado do Mato Grosso. Os ensaios mostraram que as lateritas das bases e sub-bases possuíam 60% de pedregulho (diâmetro da partícula maior que 2mm) com valores de CBR da ordem de 85% . Foi observado que a umidade "in situ" coincidia com a ótima do ensaio de compactação de energia intermediária para a base e cerca de 2% superior à ótima nas sub-bases. O grau de saturação variou de 45% a 90%; o valor médio da densidade dos grãos era de 2,76g/cm³ e a massa específica aparente seca máxima 22,4 kN/m³. Foram realizados ensaios triaxiais de carga repetida em corpos de prova compactados em dez camadas com 100 mm de diâmetro. Utilizando a expressão $M_R=k_1\sigma_3^{k2}$ foram encontrados valores da declividade da reta pequenos: k_2 entre 0,04 e 0,28 para a base e entre 0,08 e 0,38 para a sub-base, tornando-se razoável considerar os valores médios de módulos: 250 a 700 MPa para bases, 300 a 550 MPa para sub-bases.

2.2.2 Plintossolos

O Levantamento de Recursos Naturais, vol. 33 (IBGE, 1986) denomina Plintossolos como "solos minerais formados sob condições de restrições à percolação da água, moderadamente, imperfeitamente ou mal drenados".

2.2.2.1 Considerações Gerais

Plintossolos são solos formados sob processo de gleização com saturação temporária. A gleização ocorre em perfis sob condições de drenagem impedida, imperfeita ou sob alagamento completo. Relaciona-se com o excesso de água e a deficiência de oxigênio. Em um primeiro momento a deficiência de oxigênio produz a redução dos óxidos de ferro e manganês. Os íons de ferro e manganês formados migram na água e determinadas porções de solo perdem óxidos. Em alguns locais, com a entrada de ar, os íons podem ser novamente oxidados. Em horizontes de alta condutividade hídrica e de ar formam-se concreções pretas, já em horizontes de baixa condutividade formam-se mosqueados ferruginosos (Passos, et al 1992).

Durante a década de 80 o DAER, desenvolveu uma pesquisa com um solo disponível denominado Plintossolo conhecido como "barrinho". O resultado desta pesquisa viabilizou a pavimentação de uma rodovia que há muito tempo era conhecida como a "estrada do inferno" tal a dificuldade de ser trafegada.

2.2.2.2 Plintossolo da Planície Costeira

Passos et al. (1993) caracterizam o "barrinho" como horizonte B de um plintossolo, originado dos sedimentos areno-argilosos pouco consolidados da formação Chuí (quartenário). Esclarecem ainda que a formação do horizonte plíntico ocorra por ciclos de umedecimento e secagem, provocados pela variação sazonal do lençol freático. Esta movimentação da água subsuperficial provoca a concentração dos óxidos (principalmente ferro e alumínio) originando um aspecto mosqueado peculiar. Nos casos de exposição do horizonte plíntico há formação, por processo irreversível, de concreções de ferro e manganês, constituindo, na superfície, uma fração cascalho.

As jazidas de plintossolos são encontradas entre as cotas máximas e mínimas do lençol freático.

Oliveira (2000) descreve Plintossolo da planície costeira como "solo de textura areno-argiloso denominado, na região, como "barrinho" constituído de 81% de areia fina, 1% de silte e 18% de argila, com concentração significativa de óxido de ferro, alumínio e manganês. Matriz de cloração amarela com mosqueados em tom alaranjados, vermelhos e acizentados. Ocorre a profundidades em torno de 0,30 metros com espessura média de 1,0 metro. O horizonte textural plíntico ocorre sob um horizonte arenoso e sobre uma camada de areia amarela, em áreas de relevo plano em cotas ligeiramente superiores às dos planossolos".

Segundo Bastos (2004), estudos realizados pela Universidade Federal de Rio Grande (FURG), chegaram à conclusão que os plintossolos encontrados na planície costeira do Rio Grande do Sul foram "reconhecidos como materiais areno argilosos e plásticos, mas de baixa atividade coloidal, com presença de mosqueados (manchas) vermelha e amarelas classificadas, segundo a MCT, como NG' (solos de comportamento argiloso não laterítico) ou LA'/LG' (solos de comportamento laterítico areno argiloso/laterítico argiloso). Segundo Nogami e Vilibor, (1995), quando identificados comportamento não laterítico, estes solos não são recomendados como base de pavimentos ou reforço de subleito compactado".

2.2.3 Basalto alterado

Os Basaltos alterados ou decompostos são fragmentos poligonais, de dimensões variadas que geralmente se distribuem em uma ampla faixa granulométrica. São encontrados em porções volumosas do derrame basáltico onde a rocha encontra-se intensamente fraturada sendo freqüentemente encontrada com processos de degradação predominando sobre os de decomposição.

2.2.3.1 Considerações gerais

O sul do Brasil, mais precisamente 40% do Rio Grande do Sul é coberto por maciços basálticos constituídos pela superposição de vários derrames de espessuras entre 20 e 60 m (Núñez, 1997).

Segundo Azambuja (1996) apud Núñez (1997), o Rio Grande do sul é caracterizado como região subtropical e nos períodos de seca acontece redução de umidade ocorrendo uma contração dos argilo-minerais presentes nos basaltos alterados. Nos períodos de chuvas, o aumento da umidade expande os argilo-minerais que exercem pressões nas paredes das fendas dos basaltos alcançando, em alguns casos, até 50,0MPa.

Para que ocorra a degradação dos basaltos alterados é necessário que os argilo-minerais presentes sejam expansivos e que o esqueleto pétreo não seja capaz de resistir às pressões de expansão decorrentes de ciclos de sol e chuva que os mesmos exercem.

Considerando as mesmas condições ambientais, as rochas basálticas se alteram mais rapidamente do que as rochas graníticas, pois seus minerais essenciais, os plagioclásios e os piroxênios (70 a 90% do volume total do basalto) são menos estáveis quimicamente do que os quartzos e feldspatos, constituintes do granito.

Oliveira (2000) descreve basalto alterado como "agregados resultantes de um processo de alteração de rochas vulcânicas, com grande fendilhamento. A alteração manifesta-se, em geral, na forma de esfoliação esferoidal".

De acordo com Arnold (1993), o emprego do basalto alterado fica condicionado às incertezas quanto à sua durabilidade ao longo da vida projetada do pavimento.

Arnold (1993), depois de analisar e verificar que nenhum dos ensaios de durabilidade de agregados, (durabilidade ao sulfato de sódio, degradação do Estado de Washington e Abrasão Los Angeles), utilizados internacionalmente, pode ser considerado critério confiável para aceitação do basalto alterado como constituinte de estruturas de pavimentos, estudou um critério de aceitação denominado ensaio de compressão puntiforme.

2.2.3.2 Método para avaliar rochas para pavimentação

A ruptura de uma camada de base composta por agregados em um pavimento ocorre pela indução de tensões de cisalhamento no interior dos agregados, uma vez que estes estão em contato através de suas arestas e vértices, e por forças internas de tração resultantes da ação de expansão das argilas expansivas induzida por contato com a água.

Arnold (1993) propôs o uso do ensaio de compressão puntiforme que qualifica as rochas alteradas para usar na pavimentação. O ensaio consiste na compressão de uma amostra rochosa até a ruptura, usando duas peças cônicas de dimensões padronizadas.

A International Society for Rock Mechanics I.S.R.M (1985) padronizou o índice de resistência à compressão puntiforme (Is) que deve ser corrigido de acordo com a forma do carregamento e tamanho do corpo de prova utilizado.

O carregamento mais utilizado para o ensaio é o diametral e o valor de Is (50) é obtido pela equação (2.1):

$$Is(50) = F \times Is \tag{2.1}$$

$$Is = \frac{P}{D^2} \tag{2.2}$$

$$F = \left(\frac{D}{50}\right)^{0.45} \tag{2.3}$$

Onde:

D = distância entre as peças cônicas na carga de ruptura

P = carga de ruptura

O ensaio é realizado com dois grupos de amostras. Antes da ruptura em prensa, um grupo de amostras é submerso em água durante sete dias, enquanto que o outro grupo fica armazenado

ao ar livre. O quociente entre os valores de resistências obtidas para os dois grupos de amostras é um indicativo da capacidade do agregado de resistir às forças expansivas da argila. Arnold (1993) definiu 0,7 como o valor mínimo para o quociente entre as resistências imersa e seca, e o valor de 3,5 MPa como mínimo para o índice de resistência de carga pontual em amostra previamente imersa.

2.2.3.3 Resultados experimentais

Conforme relatado por Beaven, Robinson e Aklilu (1987), apud Núñez (1997) foram estudados, na África, obtendo-se bons resultados, pavimentos de basalto alterado submetidos a tráfegos variando entre 30 e 175 veículos por dia. O desempenho deste material foi analisado em termos de resistência à deformação, taxa de perda de agregado e degradação da qualidade de rolamento.

O basalto alterado foi escolhido pelo DAER/RS e a Escola de Engenharia da UFRGS para ser estudado como alternativa econômica para a pavimentação de rodovias coletoras no Estado através de um protocolo técnico científico.

Foram ensaiados os agregados provenientes de sete jazidas exploradas na construção de trechos abertos ao tráfego em 1989, estudo este apresentado na dissertação de mestrado de Arnold em 1993 em que foi proposta a avaliação da perda da resistência do basalto alterado causada pela imersão em água, através do ensaio de compressão puntiforme.

Em 1996 foram construídas cinco pistas experimentais na Área de Pesquisas e Testes de Pavimentos (APTP), onde está localizado o Simulador de tráfego DAER/RS-UFRGS, quando foi analisado, através da tese de doutorado de Núñez (1997), o comportamento mecânico de pavimentos delgados com basalto alterado e estabelecido um método de dimensionamento considerando as especificidades do material analisado e do tráfego de rodovias coletoras. As considerações apresentadas a seguir foram obtidas desta tese de doutorado.

2.2.3.4 Considerações sobre os resultados experimentais da APTP

Rodrigues (1991) observa que os tratamentos superficiais podem apresentar trincamento no padrão couro de crocodilo nas trilhas de roda indicando fadiga do revestimento.

Autret, Boissoundy e Gramsammer (1987) apud Núñez (1997) sugeriram que os trabalhos de recuperação em pavimentos sujeitos a baixo volume de tráfego, devam iniciar quando a

densidade de trincamento atingir 6,0m/m² (critério de gravidade; para avaliar trincamento por fadiga) ou quando a extensão de pavimento trincada for 60% (critério de extensão; trincamento nas bordas).

Segundo Núñez (1997), a degradação superficial dos pavimentos ensaiados durante a solicitação de tráfego manifestou-se em forma de evolução da fissuração, desgaste de agregados e exsudação. Observou-se maior trincamento nas bordas, provavelmente causado pela compactação insuficiente e ação erosiva da água devido à drenagem insuficiente. As trincas longitudinais provavelmente foram causadas por deformações permanentes excessivas, características do tráfego canalizado aplicado pelo simulador de tráfego.

A seguir são apresentadas considerações sobre os defeitos observados nas pistas experimentais da APTP:

a) Trincas por Fadiga:

Núñez (1997) descreve que as trincas por fadiga podem iniciar a partir de microfissuras pré-existentes provocadas pelo processo de compactação. Iniciam próximo à fibra inferior, onde as tensões são maiores. Essas trincas capilares se propagam para a superfície, inicialmente como uma ou mais trincas longitudinais paralelas. Nos testes realizados, o trincamento desenvolveu-se em duas etapas, na primeira fase foi lento evoluindo rapidamente na segunda fase. De acordo com Jacobs (1995), citado por Núñez (1997) a zona de microfissuras se desenvolve imediatamente após o início do carregamento e a macrofissura não cresce continuamente, porque pode encontrar um componente que restrinja a propagação. Uma nova fissura aparece em outro ponto do pavimento.

b) Deformação Permanente

A deformação permanente específica do pavimento foi calculada dividindo-se a flecha média medida ao surgirem as primeiras trincas pela espessura do pavimento (tratamento mais camada de basalto alterado). Neste mesmo trabalho o autor realizou medidas das flechas nas trilhas de roda em intervalos regulares durante a solicitação de carga conseguindo uma evolução das flechas médias com o tráfego. Concordando com os resultados de estudos laboratoriais

realizados em agregados foi observado, nas pistas experimentais, que a evolução das deformações plásticas é exponencial podendo-se apresentar através da expressão (2.4), proposta por pesquisadores do Bundesanstalt für Strassenwesen (BaST) da Alemanha e, verificada nos resultados da pesquisa realizada pela OCEE (1991) no Centro de Nantes do LCPC.

$$f_N = f_0 + a \times N^{0.5} \tag{2.4}$$

Onde:

fN é a flecha correspondente a um número de aplicações de carga N;

f0 é a flecha inicial e

a é a declividade da reta.

Nesta equação f₀ caracteriza uma fase de consolidação no início da vida do pavimento que depende mais dos parâmetros de construção do que das propriedades dos materiais que determinam o afundamento estrutural posterior. O afundamento estrutural segue uma linha reta cuja declividade, a, denominada fator de afundamento, traduz a influência da carga e do tipo de pavimento.

Os testes realizados por Núñez também mostraram a influência do grau de saturação nas deformações permanentes, pois a flecha inicial numa seção ensaiada (S7) superou 20% às de outra seção ensaiada (S5) e o fator de afundamento da S7 mostrou-se 30% maior que o correspondente da seção S5. Os valores de sucção medidos na seção S7 foram sempre menores do que os valores de sucção medidos na seção S5; ou seja, o grau de saturação do solo empregado no subleito da seção S7 estava sempre maior do que na seção S5. Salientou a importância do controle do grau de saturação do subleito e das camadas granulares e da determinação da umidade de equilíbrio desse sistema. Reforçou a necessidade de se propiciar aos pavimentos, boas condições de drenagem, visando prolongar a sua vida útil.

Utilizando em seus estudos o conceito de velocidade de deformação plástica (vdp) definido por Chen, Fults e Murphy (1997) em que vdp é o quociente entre a diferença entre as flechas ocorridas entre os números de ciclos de carga

N_i e N_{i-1} e a diferença entre o número de ciclos correspondentes; Núñez (1997) sugere a existência de um período de tráfego para o qual as deformações permanentes crescem quase linearmente com o número de cargas e que há um número de ciclos a partir do qual o crescimento se torna exponencial. A velocidade de deformação plástica e o ponto de inflexão que caracteriza o fim do comportamento quase linear refletem a aptidão do pavimento para suportar o nível de carregamento aplicado.

Em estudos realizados no Centro de Nantes do LCPC, Corte e Caroff (1994) apud Núñez (1997) observaram que uma redução da velocidade da ordem de 15% ocasiona um aumento da flecha entre 20% e 40%.

c) Estudo das tensões

Realizando um estudo com a tensão principal maior (σ_1) Núñez salientou que durante o carregamento do setor subdimensionado houve redução dos módulos de resiliência do pavimento, o que ocasionou o surgimento de trincas por fadiga e o aumento da deflexão característica. A redução dos módulos resultou em aumento da tensão principal maior atuante no interior do pavimento e no correspondente crescimento da deformação específica vertical de compressão.

d) Modelo de dimensionamento

Através de um software desenvolvido por pesquisadores da UFRGS onde foi considerado que até o fim da vida de projeto, pelo menos 80% do pavimento não terá acumulado flecha superior a 25,0mm (80% de confiabilidade), Núñez obteve uma equação (2.5) de dimensionamento para pavimentos delgados com bases de basalto alterado, relacionando o número de ciclos N_i com a carga C_i, a espessura do pavimento e a procedência do basalto alterado. O modelo é válido para pavimentos com base ou sub-base de basalto alterado com IS compreendido entre 3,8 e 6,85 MPa.

$$N = 10^{5,25} \times L^{-3,97} \times T^{4,12} \times IS^{1,98}$$
 (2.5)

Onde:

• N é o número de ciclos de carga para 100% de degradação, ou seja, até a ruptura,

- L é a carga de eixo podendo variar entre 82 e 130 kN;
- T é a espessura do pavimento podendo variar entre 16 e 36cm;
- IS é o Índice de resistência de carga pontual do basalto alterado após imersão podendo variar entre 3,8 e 6,85 MPa.

2.2.4 Solos Arenosos Finos Lateríticos – SAFLs

SAFL é conceituado, segundo Bastos (2004) como sendo solo de comportamento laterítico, pertencente aos grupos LA, LA´ ou LG´ da classificação MCT, com menos de 50% passante na peneira n°10, sendo a fração arenosa constituída predominantemente por quartzo. Estes solos têm sido amplamente utilizados como base em pavimentação de baixo custo nos estados de São Paulo, Paraná, Bahia e Mato Grosso do Sul.

Nogami, Villibor (1995) estabeleceram critérios tecnológicos para SAFLs quando empregados em bases de rodovias de baixo volume de tráfego. A tabela 2.2 apresenta estes critérios.

Tabela 2.2: Critérios tecnológicos para SAFLs

PROPRIEDADE	ENSAIO	INTERVALO DE VALORES RECOMENDADOS	MÉTODO DE ENSAIO
Capacidade de Suporte	Índice Suporte Mini-CBR e Expansão	≥40%	DER SP M192-82 DNER ME 254/94
Perda da Capacidade de Suporte	Índice Suporte Mini-CBR e Expansão	<50%	DER SP M192-82 DNER ME 254/94
Expansão por imersão em água	Índice Suporte Mini-CBR e Expansão	<0,3%	DER SP M192-82 DNER ME 254/94
Contração ao ar	Contração de solos Compactados	0,1% a 0,5%	DER SP M193-89
Sorção	Infiltrabilidade de solos Compactados	10-2 a 10-4 cm/min1/2	DER SP M194-89

(Fonte: Bastos, 2004)

De acordo com Bastos (2004), os solos lateríticos graníticos da região sul do Estado do Rio Grande do Sul são solos argilosos avermelhados, plásticos e de baixa atividade coloidal, classificados como LG', pela metodologia MCT, e segundo Nogami e Vilibor, (1995), são considerados materiais de 3ª catergoria para base de pavimento, reforço de subleito compactado, subleito compactado e aterro compactado.

Segundo Bernucci et al (2007), SAFL "é uma mistura de argila e areia encontrada na natureza ou artificialmente composta por mistura de areia de campo ou rio com argila laterítica". Em São Paulo existem mais de 8.000 km de rodovias de baixo volume de tráfego com utilização deste material como base.

2.2.5 Saibro de granito

Saibro de granito, também denominados gnaisse, são solos residuais do horizonte C da alteração da rocha de granito que ocorrem na região do escudo Rio-Grandense (figura 2.1) e guardam em sua estrutura a rocha mãe sendo considerado solo residual jovem. Estes solos possuem textura grossa possibilitando melhores características tecnológicas. As rochas de textura grossa são as únicas capazes de dar origem a solos de alteração arenosa de granulometria adequada para serem empregadas como base de pavimentos (Oliveira, 2001).

O solo desta natureza guarda a estrutura e a textura da rocha que lhe deu origem. São rochas ricas em quartzo e feldspato de potássio, minerais com boa resistência a intempéries. A tabela 2.3 apresenta os índices geotécnicos mínimos para saibros de granito.

Tabela 2.3: Índices geotécnicos mínimos para saibros de granito

ENSAIOS	VALOR
Índice suporte Califórnia (ISC)	≥ 60%
Índice de plasticidade (IP)	< 6%
Índice de grupo (IG)	0
Equivalente de areia	≥ 30 %
Módulo de resiliência – classificação resiliente DNER	Grupo B (k ₂ ≤ 0,50) ou C

(Fonte: Oliveira, 2001)

Este material vem sendo utilizado como base e ou sub-base de rodovias estaduais como ERS-040, trecho Viamão-Águas Claras e na ERS-717, trecho Entr. BR-116 – Tapes.

Em 2002 foi executado um trecho experimental na ERs-118, trecho Lami-Itapuã onde foi empregado o solo residual de granito como material de base e sub-base do pavimento utilizando revestimento de CBUQ (Revista Estradas nº12, 2007). A implantação do trecho experimental permitiu a estimativa de um custo bastante atrativo de R\$ 6,50/m³. Está sendo avaliado o desempenho estrutural desta alternativa de pavimento nas condições reais de tráfego.

A tabela 2.4 apresenta a granulometria indicada para saibros de granito utilizados em bases ou sub-bases de pavimento.

Tabela 2.4: Granulometria de saibros de granito para bases e subbases

PENEIRAS	% PASSA
3/4"	100
N° 4	60 - 95
Nº 10	35 - 80
N° 40	10 - 45
N° 200	5 – 2

(Fonte: Oliveira, 2001)

2.3 PROJETO DE UM PAVIMENTO

A análise de desempenho de um pavimento inicia com o estudo de como o pavimento foi projetado. Um pavimento flexível deve ser projetado para atender limitações de tensões que podem provocar deformações permanentes, deformações recuperáveis ou elásticas e rupturas por cisalhamento.

O projeto de um pavimento envolve a seleção de materiais e a determinação da espessura das camadas que vão assegurar uma vida útil esperada. Atualmente a qualidade dos materiais utilizados é assegurada no atendimento às especificações vigentes para o local onde será executado o projeto.

2.3.1 Métodos de projetos

No Brasil a espessura das camadas do pavimento tem sido dimensionada pelo método DNER (1981). Este método considera a capacidade de suporte dos materiais o tráfego e as espessuras das camadas. O dimensionamento é baseado em curvas criadas pelo Corpo de Engenheiros Militares dos EUA (USACE) através de duas variáveis: a resistência do subleito em termos de CBR (California Bearing Ratio); e o tráfego em termos de eixos padrão equivalente (ESAs).

Medina e Motta (2005) descrevem o método de resiliência desenvolvido pela COPPE-UFRJ no qual é proposto o dimensionamento considerando fatores ambientais, limite quanto à ruptura plástica (limitar tensões atuantes nas camadas abaixo de um valor admissível), tráfego (semelhante ao DNER considerando variações diárias e sazonais), deformabilidade elástica

(ensaios laboratoriais), deformabilidade plástica e critérios de confiabilidade. Os principais parâmetros de projeto são: a deflexão, a tensão de tração na face inferior do revestimento e a tensão vertical no subleito.

Na Autrália e na Nova Zelândia as relações de desempenho fornecidas pelo Austroads Pavement Design Guide (APDG) para materiais granulares seguem o critério da deformação no subleito, Steven (2005).

Os métodos analíticos disponíveis que consideram o pavimento como uma estrutura semiinfinita de três ou quatro camadas, sendo cada uma isotrópica com propriedades elásticas
constantes apresentam dúvidas na previsão de tensões em pavimentos com revestimento
asfáltico delgado devido a não linearidade da camada granular (Hicks & Monismith, 1971;
Plaistow & Dawson, 1995). As propriedades dos materiais granulares devem ser definidas e
métodos analíticos apropriados podem ser usados para prever o comportamento de tais
pavimentos.

A forma da estrutura dos pavimentos é relativamente simples, mas a natureza dos carregamentos a que está sujeita exige uma análise rigorosa das tensões-deformações. Esta análise se torna muito difícil se o comportamento não linear de uma camada do pavimento não for corretamente representado.

A utilização de materiais alternativos ou locais na estrutura de um pavimento também exige a consideração das tensões a que estas camadas estarão sujeitas quando sofrerem carregamento devendo ser consideradas as propriedades mecânicas dos materiais. Métodos baseados em regras empíricas para projetar pavimentos não consideram as tensões na estrutura.

Nos EUA até 2002 era utilizado o método da American Association State Highway and Transportation Officials (AASHTO) publicado em 1993 para projetos de pavimentos. Atualmente está sendo utilizado um método de dimensionamento teórico-experimental através do guia para projetos mecanístico empírico (ME-PDG) publicado em 2004. Neste método são arbitradas estruturas de pavimentos e analisadas iterativamente até que atendam a critérios de desempenho estabelecidos pelo projetista como: deformações permanentes, trincamento por fadiga, trincamento térmico e irregularidade (ME-PDG, 2004). A resposta estrutural do pavimento é determinada devido ao tráfego e a influência ambiental. A influência ambiental pode ser direta devido à expansão e contração térmicas e indiretas através de efeitos das

propriedades dos materiais como a rigidez devido à temperatura e efeitos da umidade. As respostas do pavimento são analisadas através das tensões, deformações e deslocamentos entre as camadas do pavimento. As variáveis de resposta críticas são:

- a) Deformação de tração horizontal Na base e no topo do revestimento asfáltico (verificação de trincamento).
- b) Tensão /deformação vertical de compressão Na camada asfáltica (verificação das trilhas de roda no revestimento); Dentro das camadas de base e de sub-base (trilhas de roda em camadas granulares); Topo do subleito (trilha de roda no subleito).

A África do Sul também já utiliza um método mecanístico de projeto denominado SAMDM (Theyse et al., 1996), no qual considera a carga de tráfego e a caracterização do material utilizado nas camadas do pavimento incluindo espessura da camada e propriedades elásticas. Para fins de análise os materiais são divididos em agregados (módulo de resiliência nas condições seca e úmida), materiais cimentados (módulos de resiliência em função da degradação) e materiais asfálticos (módulos de resiliência em função da temperatura e do estado de degradação). A análise global da vida útil do pavimento considera a degradação que ocorre em cada uma das camadas que compõe o pavimento. Verificam-se os efeitos desta degradação nas demais camadas e em todo o pavimento. O método inclui um fator de segurança apresentado pela equação (2.6) calculado para as camadas granulares a partir dos parâmetros de resistência ao cisalhamento. O fator de segurança varia de acordo com a categoria da rodovia e o tráfego de projeto. O modelo (2.7) pode ser utilizada para rodovias com baixo volume de tráfego. As deformações verticais no topo da camada do subleito são avaliadas como verificação dos solos do subleito.

$$F = \frac{\sigma_3 \left\{ K \left[tan^2 \left(45 + \frac{\cancel{0}'}{2} \right) - 1 \right] \right\} + 2 \times K \times c \times tan \left(45 + \frac{\cancel{0}'}{2} \right)}{\sigma_1 - \sigma_3}$$
(2.6)

$$N = 10^{\left(\frac{F+1,472}{0,371}\right)} \tag{2.7}$$

 σ_I e σ_3 são as tensões principais maior e menor, respectivamente, que atuam no plano médio da camada granular (tensão de compressão positiva e tensão de tração negativa)

c' é a coesão ou intercepto coesivo

 ϕ' é o ângulo de atrito interno

k é constante (0,65 para condição saturada; 0,8 para condições moderadas de umidade e 0,95 para condições normais de umidade)

F é o fator de segurança

N é número recomendado de aplicações de carga que asseguram contra a ruptura por cisalhamento (calculado com os fatores de equivalência da AASHTO)

Fatores de segurança menores do que 1 indicam que a tensão de cisalhamento excede a resistência ao cisalhamento e o rompimento por cisalhamento será rápido no caso de carga estática. Para cargas dinâmicas, a tensão de cisalhamento vai exceder a resistência ao cisalhamento em um período pequeno de tempo e o rompimento por cisalhamento não vai ocorrer só numa aplicação de carga, mas, a deformação por cisalhamento irá se acumular rapidamente sob um número de aplicações de carga. Quando for maior que 1 a deformação vai se acumular gradualmente com o acréscimo da carga. Em ambos, a deformação de um material granular será o rompimento e a razão da deformação será controlada pelo fator de segurança contra o rompimento por cisalhamento.

A tendência mundial é o estabelecimento de métodos de dimensionamento mecanísticos utilizando ferramentas da análise estrutural no cálculo de tensões e deformações e determinando os mecanismos de fadiga e de deformabilidade (Medina e Motta, 2005).

2.3.2 Projeto mecanístico de pavimentos

O projeto mecanístico de pavimentos considera o comportamento elástico linear e não linear dos materiais para calcular deformações em locais críticos do pavimento. Na análise linear elástica cada camada do pavimento é caracterizada pelo valor do módulo de resiliência

(tensão sobre uma deformação elástica associada) e do coeficiente de Poisson (coeficiente entre a deformação radial e a deformação axial na direção do carregamento ou coeficiente de deformação para uma deformação axial na direção da carga aplicada).

As deformações resilientes em pontos críticos são usadas em relações empíricas conhecidas como critério de deformação para determinar a vida de um pavimento considerando o número equivalente de eixo padrão. Existe um critério de deformação que determina a máxima deformação de tração permitida na base da camada de revestimento e a máxima deformação vertical de compressão permitida no topo do subleito, pois, teoricamente o trincamento no revestimento ocorre devido a deformações de tração na base da camada do revestimento enquanto que a trilha de roda é resultante das deformações verticais no topo do subleito.

De acordo com Soares et al (2009), a opção pelo método mecanístico é feita considerando entre outros itens a coerência teórica, a versatilidade, formas adequadas de seleção de materiais locais e capacidade de incluir novos materiais.

Modernamente estudos demonstram que a deformação permanente que ocorre nas camadas da estrutura do pavimento (base e sub-base) também contribui para a formação da trilha de roda (Arnold et al, 2001 e Little, 1993) e o trincamento existente em rodovias nem sempre é resultado da deformação de tração na base do revestimento mas freqüentemente gerado no topo do revestimento e propagado para baixo. Thom et al (2002) monitorou por vários anos os pavimentos das principais auto estradas do Reino Unido no Laboratório de Pesquisas em Transportes do Reino Unido e raramente encontrou evidências de trincamento que evoluíram da base para a superfíciede do revestimento, encontrando inúmeros exemplos de evolução do trincamento da superfície para a base do revestimento.

O engenheiro de pavimentação enfrenta o constante desafio da utilização de novos materiais sem ter experiência de aplicação prática e a mecânica dos pavimentos oferece ferramentas teóricas e experimentais para avaliação de novos tipos de pavimentos e de materiais de pavimentação, Medina (2006).

2.3.3 Efeito da carga de tráfego

A carga de roda na rodovia resulta na distribuição e redução de tensões através do pavimento. Conforme o veículo vai passando sobre o pavimento, o nível de tensões muda de valores baixos para valores altos resultando em deformações que podem ser elásticas (recuperáveis) ou permanentes (não recuperáveis).

Um elemento cúbico que compõe a estrutura de um pavimento sofre tensões devido ao carregamento do tráfego conforme é mostrado na figura 2.2. As tensões agem em três direções, (Figura 2.2(a), 2.2(b)), e afetam o comportamento do material. Existem três planos ortogonais entre si nos quais a tensão atuante é normal ao próprio plano não existindo a tensão de cisalhamento. As tensões neles atuantes são denominadas tensões principais σ_1 (tensão principal maior), σ_3 (tensão principal menor) e σ_2 (tensão principal intermediária) (Figura 2.2(c)).

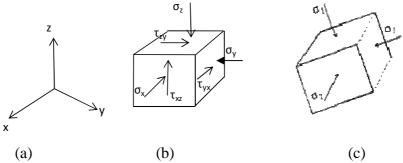


Figura 2.2: Tensões que atuam em um elemento do solo(Fonte: Lekarp, 1997 apud Arnold, 2004)

A tensão confinante (σ₃) permanece no elemento considerado mesmo sem a atuação do tráfego devido ao sobre carregamento das camadas do pavimento e da história de tensões já existentes. Quando o carregamento da roda se aproxima do elemento em estudo, este se sujeita a simultâneos aumentos da tensão principal maior e da tensão principal menor. Conforme o veículo se movimenta estas tensões giram em torno do centro deste elemento, aparecendo, assim, as tensões cisalhantes que aumentam quando a carga se aproxima, e, começam a diminuir até a carga ficar exatamente sobre o elemento estudado. Neste ponto não existe tensão cisalhante nos planos verticais e horizontais. Quando a carga se afasta aparecem as tensões cisalhantes ao contrário, chamadas de tensões principais de rotação (Brown, 1996).

A maneira mais fácil de descrever os sucessivos estados de tensões a que um material está sujeito sob carregamentos e descarregamentos devido ao tráfego em uma rodovia é plotar uma série de pontos representando as tensões (Boyce, 1976). As coordenadas destes pontos que

representam as tensões são denominadas invariantes p e q. A invariante p representa a média das tensões normais e a invariante q representa a tensão desvio $(\sigma_1 - \sigma_3)$. A plotagem destes pontos resulta na trajetória de tensões no espaço de tensões p-q.

2.3.4 Limitações da análise linear elástica

A análise linear elástica de um pavimento é uma aproximação grosseira do real comportamento do pavimento. Segundo De Beer et al (2002), na realidade as cargas são transientes e não uniformes. As camadas de solos e materiais granulares possuem relações tensão-deformação não lineares (Hicks e Monosmith, 1971) e são anisotrópicas, ou seja, o valor do módulo de resiliência também varia (Karasahin & Dawson, 2000). Outra limitação dos modelos elásticos lineares é não considerar a plasticidade existente nos materiais granulares, as tensões de tração calculadas podem exceder a resistência à plasticidade (Arnold, 2004). Na análise elástica linear a resistência ao cisalhamento não é considerada.

Boyce (1980) apresentou um modelo que representa a não linearidade na resposta tensãodeformação de materiais granulares. Plaistow & Dawson (1995) apresentaram uma modificação neste modelo definindo duas equações que relacionam a deformação cisalhante e a deformação volumétrica com a tensão desvio e a tensão volumétrica. Assim um simples valor de rigidez pode ser determinado com as tensões pré-determinadas p e q.

2.3.5 Ensaios triaxiais

A passagem de um veículo sobre um pavimento gera tensões nas camadas de materiais que compõe sua estrutura. Durante a vida útil do pavimento estas tensões são aplicadas repetidamente e sua magnitude varia com o tipo e a carga do veículo que vai percorrer a rodovia.

O desempenho de um material utilizado na estrutura de um pavimento pode ser verificado através de ensaios realizados em equipamentos triaxiais de carga repetida ou cíclica ou de carga estática.

2.3.5.1 Ensaios triaxiais de carga repetida

O ensaio triaxial de carga repetida é utilizado para caracterizar o comportamento elástico do material em função do estado de tensões de um pavimento.

As tensões aplicadas em um equipamento de ensaio triaxial são semelhantes àquelas que ocorrem nos pavimentos sob o carregamento do tráfego exceto que no pavimento a direção das tensões principais gira conforme a roda vai passando enquanto que no equipamento triaxial as tensões possuem sempre a mesma direção (Boyce, 1976).

Os equipamentos triaxiais utilizam uma amostra cilíndrica que fica submetida a uma tensão confinante (σ_3) e uma tensão desvio axial (σ_1 - σ_3). A carga vertical é aplicada dinamicamente representando a carga vertical do tráfego enquanto uma pressão confinante atua em todas as direções, inclusive na direção vertical, representando as tensões de compressão horizontal induzidas na estrutura do pavimento.

Durante o ensaio são registrados deslocamentos verticais e radiais na amostra. A deformação é obtida pela diferença entre o deslocamento maior e menor dividido pelo comprimento da amostra onde ocorreu o deslocamento. São registrados dois tipos de deformação: deformação elástica ou resiliente (ε) apresentada pela equação (2.8) e deformação permanente ou plástica (ε_p) apresentada pela equação (2.9).

A deformação elástica ou resiliente é obtida descontando a deformação permanente.

$$\varepsilon = \frac{\Delta L_{(N)}}{L_0 \left(1 - \varepsilon_{p(N-1)}\right)} \tag{2.8}$$

$$\varepsilon_p = \frac{\Delta L_{(total)}}{L_0} \tag{2.9}$$

Onde:

L₀ é o comprimento original da amostra

 $\Delta L_{(total)}$ é a deformação no comprimento final da amostra (mudança plástica que ocorreu na amostra)

 $\Delta L_{(N)}$ é a deformação resiliente no comprimento da amostra para N ciclos de carga e

N é o número de ciclos

O módulo de resiliência é então calculado dividindo a tensão desvio vertical (axial) aplicada pela deformação resiliente axial, equação (2.10).

$$M_r = \frac{\sigma_d}{\varepsilon_a} \tag{2.10}$$

Onde:

 M_r = Módulo de resiliência

 σ_d = Tensão desvio axial cíclica

 ε_a = Deformação resiliente axial

Para representar o comportamento elástico do material são utilizados modelos matemáticos, que relacionam o módulo de resiliência do material com as tensões atuantes no ponto de estudo.

De acordo com Medina e Motta (2005), a qualificação dos materiais de pavimentação através de carga repetida é mais propícia do que através dos antigos ensaios de caracterização tipo limite de liquidez e índice de plasticidade, mas as medidas de módulo de resiliência são particulares por obra, os valores de módulo utilizados no projeto de cada camada do pavimento devem ser exigidos durante a construção.

2.3.5.2 Modelos resultantes do ensaio triaxial de carga repetida

Existem vários modelos matemáticos que relacionam o módulo de resiliência do material com as tensões atuantes no ponto de estudo. A grande maioria dos modelos encontrados na literatura é baseada em ajustes de curvas usando dados de ensaios triaxiais realizados no laboratório.

Pesquisadores como Hicks and Monismith (1971), Uzan (1985), Thom and Brown (1989) e Medina (1997) têm mostrado que o módulo de resiliência é dependente da tensão confinante e da soma das tensões principais para materiais granulares não tratados.

Em solos granulares bem graduados o comportamento resiliente é melhorado devido ao intertravamento dos grãos, neste caso, quanto maior a tensão confinante maior o módulo resiliente.

Dunlap (1963) and Monismith (1971) concluiram que para materiais granulares o módulo de resiliência aumenta com a pressão confinante e não é sensivelmente afetado pela tensão desvio sugerindo a relação do módulo de resiliência com a tensão confinante apresentada na equação (2.11).

$$M_r = k_1(\sigma_3)^{k_2} (2.11)$$

Onde:

 M_r = Módulo de Resiliência

k₁ e k_{2 =} parâmetros de resiliência do solo ensaiado

 σ_3 = tensão confinante

Brown e Pell (1967) e Hicks (1970) sugerem, para materiais granulares, a utilização da soma das tensões principais ao invés de utilizar somente a tensão confinante, modelo k-θ, conforme a equação (2.12). A simplicidade deste modelo fez com que fosse extensivamente aceito para analisar a rigidez do material. A desvantagem deste modelo é que o coeficiente de Poisson é assumido como constante e é considerado somente o efeito da soma das tensões principais. Alguns autores como Sweere 1993 e Kolisoja 1997 têm registrado as limitações deste modelo.

$$M_r = k_1(\theta)^{k^2} \tag{2.12}$$

Onde:

 θ = soma das tensões principais ($\sigma_1 + \sigma_2 + \sigma_3$)

Arnold (2004) expõe que o modelo k-θ apresentado pela equação (2.13) de Hicks e Monismith (1971) acrescenta a tensão p₀ de referência para assegurar consistência nas unidades (1 kPa ou 100 kPa) e atualmente é o mais usado, apesar de negligenciar o importante efeito das tensões cisalhantes em bases granulares.

$$M_r = k_1 \left(\frac{\theta}{p_0}\right)^{k_2} \tag{2.13}$$

Uzan (1985) acrescentou a tensão desvio no modelo k-θ conforme é apresentado na equação (2.14).

$$M_r = k_1 p_0 \left(\frac{\theta}{p_0}\right)^{k_2} \left(\frac{q}{p_0}\right)^{k_3} \tag{2.14}$$

 θ = soma das tensões principais,

 $p_0 = pressão atmosférica,$

q = tensão desvio e,

 k_1 , k_2 , k_3 = coeficientes de regressão

Considerando o sistema de tensões tridimensional conforme apresentado na figura 2.1 onde a componente da tensão principal divide-se entre as tensões que causam mudança de volume (pressão) e aquelas que causam distorções de cisalhamento a tensão desvio foi substituída pela tensão octaédrica e a equação de Uzan passou a ser utilizada conforme a equação (2.15).

$$M_r = k_1 p_0 \left(\frac{\theta}{p_0}\right)^{k_2} \left(\frac{\tau_{oct}}{p_0}\right)^{k_3} \tag{2.15}$$

Kolisoja (1997) incluiu o efeito da densidade do material de acordo com a equação (2.16) no valor do módulo de resiliência no modelo k-θ e no modelo de Uzan.

$$M_r = A(n_{max} - n)p_0 \left(\frac{\theta}{p_0}\right)^{0.5}$$
 (2.16)

Onde:

n = porosidade do agregado, e

A = constante.

Segundo Medina (1997), por outro lado, realizando-se ensaios triaxial de carga repetida com diferentes tensões confinantes, verificou-se que aumentando os valores da tensão desvio, as deformações específicas axiais também crescem. Neste caso melhor utilizar o modelo sugerido por Rada & Witczak (1980) apresentado pela equação (2.17) ou (2.18):

$$M_r = k_3 \theta^{k_4} \varepsilon_a^c \quad \text{(sendo } \varepsilon_a > 10^{-5}\text{)} \tag{2.17}$$

Desempenho de Pavimentos com Materiais Alternativos do Estado do Rio Grande do Sul

$$M_r = k'_3 \theta^{k'_4} \varepsilon_a^{c'} \text{ (sendo } \varepsilon_a > 0.1\sigma_3)$$
 (2.18)

c, c', k_3 , k_4 , k'_3 e k'_4 são parâmetros determinados experimentalmente e ε_a é a deformação específica axial.

2.3.5.3 Ensaio triaxial monotônico

Este ensaio é utilizado na mecânica dos solos para determinar a resistência e a resposta tensão-deformação dos solos. Para uma dada tensão confinante, a tensão desvio é incrementada até a ruptura ou deformação excessiva do material. A condição em que o material se apresenta (densidade e conteúdo de umidade) é tão importante quanto o tipo e a graduação do agregado utilizado (Bavis, 1969 apud Boyce, 1976).

Saeed et al (2001) classificam este ensaio com um índice H, ou seja, alto. Este índice foi baseado numa composição de índices relativos de cada uma de seis categorias: Previsão de desempenho (regular), Acurácia (boa), Praticidade (alta), Complexidade (simplicidade regular), Precisão (boa) e Custo (médio). Para estes autores a resistência ao cisalhamento é a propriedade com maior importância para o desempenho de camadas estruturais de pavimento. O ensaio triaxial é o mais indicado para obtenção deste comportamento e as tensões confinantes sugeridas pelos autores para a condição seca e úmida são 34, 69 e 103 kPa (5, 10 e 15 psi).

Este ensaio tem o objetivo de determinar a resistência ao cisalhamento dos materiais sob condição de tensões semelhantes ao experimentado por um material utilizado na estrutura de um pavimento. Um pico de tensão estática é determinado para diferentes tensões confinantes representando as tensões esperadas que o material se submeta na estrutura do pavimento.

O comportamento quanto à ruptura é então representado pelos parâmetros de resistência ao cisalhamento de Mohr-Coulomb, ou seja, intercepto coesivo efetivo (c') e ângulo de atrito interno efetivo (ϕ ') representado pela equação (2.19).

$$\tau = c' + \sigma \times tan\emptyset' \tag{2.19}$$

$$\sigma_{1,f} = \frac{\left((1 + sen\emptyset') \right) \times \sigma_3 + 2 \times c' \times cos\emptyset'}{(1 - sen\emptyset')} \tag{2.20}$$

τ = tensão de cisalhamento

c' = intercepto coesivo efetivo

 ϕ '=ângulo de atrito interno efetivo

 $\sigma=$ tensão normal para a qual a envoltória de resistência ao cisalhamento tangencia o círculo de Mohr.

 $\sigma_{1,f}$ = tensão vertical de ruptura

 σ_3 = tensão de confinamento

Lambe e Whitman (1969) afirmam que os diagramas p-q podem ser utilizados para apresentar resultados dos ensaios triaxiais. Os pontos q e p utilizados para o cálculo dos parâmetros de resistência ao cisalhamento correspondem ao pico das curvas de tensão desvio versus deformação axial sendo definidos pela equação (2.21) e (2.22). A curva ajustada através desses pontos é chamada linha k_f representada de forma genérica pela equação (2.23). A envoltória de Mohr ou a linha k_f podem ser usadas indistintamente, mas, quando são feitos vários ensaios é mais fácil utilizar a linha k_f . A linha k_f é utilizada para facilitar o ajuste de uma curva aos pontos do diagrama p-q correspondentes à ruptura ao invés de tangenciar vários círculos de Mohr de ruptura.

Segundo Malysz (2009), os parâmetros "a" e " α " são obtidos dos diagramas p-q e não os parâmetros de resistência ao cisalhamento tradicionais da envoltória de Mohr-Coulomb. As relações entre os parâmetros da curva k_f e os parâmetros de resistência ao cisalhamento da envoltória de Mohr-Coulomb são apresentados pelas equações (2.24) e (2.25).

$$q = \frac{\sigma_1 - \sigma_3}{2} \tag{2.21}$$

$$p = \frac{\sigma_1 + \sigma_3}{2} \tag{2.22}$$

$$q = a + p \times tg(\alpha) \tag{2.23}$$

$$sen(\emptyset') = tg(\alpha) \tag{2.24}$$

$$c' = \frac{a}{\cos(\emptyset)} \tag{2.25}$$

q = metade da tensão desvio

p = média das tensões principais

 σ_1 = tensão vertical

 σ_3 = tensão de confinamento

a e α são os parâmetros de resistência do diagrama q x p

c e φ são o intercepto coesivo e o ângulo de atrito interno

Este tipo de ensaio utiliza conceitos da mecânica dos solos clássica na pavimentação e pode definir os estados de tensões dos ensaios triaxiais de deformação permanente. Alguns métodos de projeto como o da República Sul Africana utilizam seus parâmetros para o dimensionamento do pavimento.

A partir dos parâmetros de resistência ao cisalhamento e das pressões de confinamento calculam-se os pontos de tangência aos círculos de Mohr.

Dias (2007) destaca que o ensaio triaxial estático permite a determinação do comportamento mecânico dos solos segundo níveis de tensões.

Para Kenedy, 1974 apud Boyce, 1976 o módulo secante determinado através do resultado deste ensaio foi usado como parâmetro de resistência e rigidez.

A tabela 2.5 apresenta os valores de coesão e ângulo de atrito interno encontrados por vários autores para materiais granulares.

Tabela 2.5: Parâmetros de resistência ao cisalhamento em materiais granulares

AUTOR	MATERIAL UTILIZADO	c'(kPa)	ф' (°)
Lekarp et al. (1996)	Granodiorito, calcário, resíduo ardósia, areia+pedregulho e areia (Reino Unido)	5 - 82	29 - 59
Garg e Thompsom (1997)	Composições granulométricas para base e sub-base – Minnesota USA	48 - 124	31 - 51
Theyse (2000)	Brita, clinker ash, macadame hidráulico	26 - 121	48 - 55
Niekerk et al. (2000)	Resíduo de demolição na Holanda	4 - 142	37 - 44
Niekerk et al. (2002)	Resíduo de demolição na Holanda	20 - 49	40 - 45
Saeed et al. (2001)	Arenito, granito, areia+pedregulho, calcário, dolomita, basalto e pedregulho	0 - 1251	29 - 59
Jeon et al. (2008)	-	-	39 - 56
Malysz (2004)	Britas utilizadas em base e/ou sub-base	0 - 49	52 - 60

2.4 PAVIMENTOS ALTERNATIVOS

O DAER/RS considera pavimento alternativo quando a camada de base e/ou sub-base é constituída de materiais não convencionais econômicamente viáveis por serem encontrados próximos de rodovias implantadas trazendo benefícios ao meio ambiente. Materiais alternativos são materiais não usuais, que necessitam de estudos mais aprofundados para o entendimento de seu comportamento estrutural; acompanhamento constante na sua utilização e manutenção rigorosa durante sua vida útil.

Atualmente a preocupação com o meio ambiente e em alguns casos o alto custo de transporte para utilizar a brita graduada como camada de base ou sub-base facilita a utilização de materiais alternativos muitas vezes encontrados ao longo das rodovias a serem pavimentadas.

2.4.1 Introdução

As limitações de orçamento fazem com que os países em desenvolvimento possuam um desafio muito grande quando se trata de fornecer rodovias com boas condições de tráfego para suportar o crescimento das atividades de agricultura e turismo. Por outro lado países desenvolvidos enfrentam dificuldades em pavimentar suas estradas rurais uma vez que materiais granulares começam a ficar escassos.

Légèr e Tremblay (2003) comentam que no Canadá, os solos coesivos tem sido um problema para as estradas rurais não pavimentadas. Como os materiais granulares apropriados para usar

na construção de estradas estão em falta, muitas empresas têm usado solos estabilizados, aumentando sua resistência, fazendo com que não seja necessário utilizar materiais granulares na camada de base.

Solos encontrados no norte do Texas são muito expansivos e apresentam baixa resistência bem como características de deslizamento e de retração, Puppala et al (2003). As propriedades destes solos apresentam baixo desempenho para infra-estrutura de pavimentos de baixo volume de tráfego, pois causam desconforto ao usuário e induzem ao atraso no percurso devido aos reparos contínuos do pavimento.

Jones (2003) apresenta alguns ajustes para a certificação de aditivos para a utilização em estradas. Estabilizantes químicos e paliativos de poeira são usados na construção e manutenção das estradas melhorando suas características e desempenho para os materiais disponíveis baixando o nível de poeira.

O Rio Grande do Sul, desde o final dos anos 80, tem investido em pesquisas que viabilizam a utilização de pavimentos alternativos, de baixo custo, uma vez que a pavimentação de rodovias com baixo volume de tráfego é fundamental para o escoamento da produção das pequenas propriedades localizadas ao longo da rodovia, acesso às cidades e desenvolvimento do comércio local.

2.4.2 Rodovias de baixo volume de tráfego ou pavimentos de baixo custo

O DAER considera que rodovias de baixo volume de tráfego, (VDM igual ou inferior a 500 com até 40% de tráfego comercial e $N \le 5.5 \times 10^5$), são rodovias dimensionadas para um tráfego previsto de no mínimo 10^4 e no máximo 10^6 repetições de carga equivalentes ao eixo padrão (eixo simples de rodas duplas, como os eixos traseiros de alguns ônibus, caminhões médios e pesados da subclasse 2C - DNIT) de 82 kN, durante o período de projeto considerado, em geral 10 anos.

A AASHTO - 1986 considera rodovias com baixo volume de tráfego aquelas rodovias que suportam até 10⁶ repetições do eixo padrão de 82 kN sendo que o método expedito de dimensionamento estabelece três níveis para um tráfego de até 10⁶: baixo, médio e alto.

O DAER/RS considera pavimento de baixo custo quando, na camada de base e/ou sub-base, são utilizados materiais cujos custos de execução são substancialmente menores por m³ acabado, em relação aos convencionais.

Uma das maneiras de baixar os custos de execução de um pavimento é minimizar a distância de transporte de materiais, utilizando os solos locais, ou seja, materiais alternativos que devem ser cuidadosamente selecionados nas jazidas.

2.4.2.1 Considerações sobre o projeto para rodovias de baixo volume de tráfego

Os procedimentos de projetos de pavimentos geralmente utilizados foram desenvolvidos para estruturas de pavimentos de autoestradas ou para pavimentos de alto tráfego.

Para pavimentos de baixo volume de tráfego devem-se considerar parâmetros diferenciados, uma vez que, a intensidade de tráfego pode ser menor, mas a carga por eixo pode ser maior; o uso de revestimentos esbeltos leva a tensões maiores nas camadas subjacentes conseqüentemente tensões e deformações nestas camadas devem ser consideradas nos projetos. Além do critério de projeto tradicional que limita a deformação horizontal na base da camada asfáltica e da deformação de compressão no topo do subleito, trincas e deformações podem ocorrer na base ou sub-base e devem ser consideradas.

A AASHTO, em 1986 apresentou um método de dimensionamento exclusivo para rodovias de baixo volume de tráfego através da observação do desempenho de suas pistas experimentais, construídas no final da década de 50, e na experiência adquirida em três décadas de pesquisas, projetos, construções e análises de desempenho de rodovias norte americanas. Considerou como variáveis principais; o tráfego previsto para o período de projeto, o índice de serventia, e o módulo resiliente efetivo dos materiais. Neste estudo a AASHTO introduziu o conceito de confiabilidade nas previsões de tráfego e do comportamento dos materiais. Os valores de confiabilidade de projeto em 50% ou 75% recomendados para rodovias de baixo volume de tráfego dependem do risco que os projetistas assumem conforme o tipo de obra e do tráfego a que a rodovia vai suportar.

Bernucci (1997) fez uma aplicação do modelo da AASHTO-1986 para o dimensionamento de pavimentos de baixo custo. Apresentou o gráfico de dimensionamento de pavimentos flexíveis para rodovias de baixo volume de tráfego pelo modelo da AASHTO-1986 para a confiabilidade de 50% e de 75%. Para estimar o tráfego de projeto calculou o número N de

acordo com os fatores de equivalência de carga segundo a AASHTO, as distribuições de carga por eixo pela pesquisa do IPR (1981) e as distribuições de veículos pelo estudo das estatísticas de trânsito do DER-SP encontrando quatro níveis de tráfego das rodovias de baixo volume de tráfego para um período de projeto de 10 anos: muito baixo (N até $5x10^4$ com VDM até 20 veículos); baixo (N até 10^5 com VDM de 20 a 50 veículos); médio (até $5x10^5$ com VDM de 50 a 200 veículos) e alto (N de 10^6 com VDM de 200 a 400 veículos).

Para as rodovias de baixo volume de tráfego, cujo nível de tráfego é muito baixo ou baixo, Bernucci (1997) aconselha adotar nível de confiabilidade de 50% para não onerar a obra. Para o nível médio e alto a estrutura pode ser projetada para os dois níveis de confiança e de acordo com os custos das soluções e do tipo de usuário da rodovia deve-se decidir pelo projeto mais conveniente.

Utilizando os valores de módulo de resiliência de solos lateríticos obtidos em laboratório, Bernucci (1997) encontrou valores de coeficientes de camada (a_i) elevados da ordem de 0,14 a 0,20, semelhantes ao coeficiente recomendado pela AASHTO para britas (0,14). Este valor de coeficientes de camadas alto leva a estruturas com camadas esbeltas. O modelo da AASHTO-1986 fornece valores de número estrutural praticamente independente da variação de serventia imposta pelo projeto, quando a estrutura é bastante esbelta, representada por SN baixo, menor que 2,0.

Bernucci (1997) observa que: "O modelo da AASHTO pode ser interpretado como um modelo basicamente estrutural em casos de baixo volume de tráfego e altos módulos resilientes do subleito".

O guia de projeto mecanístico-empírico da AASHTO 2004 (ME-PDG) para rodovias de baixo volume de tráfego baseia-se, como em qualquer método de previsão de desempenho com base mecanística, na aplicação cumulativa da carga por eixo. O número máximo de veículos pesados classe 4 a 13 (classe de veículos da FHWA) permitido durante a vida útil do pavimento é 750.000 veículos, aproximadamente 70 caminhões por dia no primeiro ano crescendo 4% por ano até 20 anos. O número mínimo de veículos pesados considerados no projeto é de 50.000 veículos representando quatro a cinco caminhões ou ônibus por dia no primeiro ano crescendo 4% anualmente até 20 anos. Consideram-se os indicadores de IRI e de defeitos máximo permitidos conforme a tabela 2.6 e os níveis qualitativos de módulo de resiliência ou capacidade de suporte dos solos do subleito classificados de acordo com a

classificação Unificada e AASHTO como muito bom, bom, regular, ruim, e péssimo conforme a tabela 2.7.

Tabela 2.6: Indicadores de desempenho para baixo volume de tráfego – ME-PDG

TIPO DE PAVIMENTO	INDICADOR DE DESEMPENHO	CRITÉRIO	
	IRI	3,1 m/km	
Flexível	Trilha de Roda	15,24 mm	
	Trincas por fadiga	45%	

Tabela 2.7: Módulo de resiliência para baixo volume de tráfego – ME-PDG.

NÍVEL GERAL DE SUPORTE DO	CLASSIFICAÇÃO DO SOLO UNFICADA	M _R NA UMIDADE	
SUBLEITO	E AASHTO	ÓTIMA (MPA)	
Muito Bom	Solo granular:		
IP=1, N _o 200=5%, N _o 4=47%,	Granular e Solos granulares	172 até 310	
$D_{60}=8.0 \text{ mm}$	A-1-a, A-1-b	média = 269	
D ₆₀ –8.0 IIIII	GW, GP, GM-GM, GP-GC		
Bom	Solo granular:		
$IP=5, N_0200=20\%, N_04=61\%,$	Areia e solo arenoso	138 até 276	
	A-2-4, A-3	média = 228	
D ₆₀ =3.0 mm	GC, SM, GW-GC, GP-GM, GP-GC		
Regular	Solo granular fino:		
$IP=7$, $N_0200=30\%$, $N_04=70\%$,	Siltes misturados e argilas	103 até 207	
$D_{60}=1.0 \text{ mm}$	A-2-7, A-4, A-2-5, A-2-6	média = 179	
D ₆₀ -1.0 IIIII	SC, SP-SM, SP, SW-SM, SP-SC, SW-SC		
Ruim	Solo granular fino:		
IP=15, N _o 200=75%, N _o 4=95%,	baixa compressibilidade	69 até 172	
$D_{60}=0.04 \text{ mm}$	A-5, A-6	média = 124	
D ₆₀ -0.04 IIIII	ML, CL		
Péssimo	Solo granular fino:		
IP=30, N ₀ 200=85%, No4=95%,	alta compressibilidade	34 até 97	
D60=0.02 mm	A-7-5, A-7-6	média = 69	
D00-0.02 IIIII	СН, МН		

O método de projeto para pavimento de rodovias de baixo volume de tráfego tem sido bastante estudado e discutido (Bernucci, 1995, 1997; Motta e Medina, 1997, 2000), pois, o método de dimensionamento de pavimentos flexíveis do DNER tradicionalmente adotado, é muito mais sensível a valores de CBR do que ao número de repetições da carga padrão de 8,2t (número N).

O projeto a ser adotado em rodovias de baixo volume de tráfego, deve ser baseado na experiência dos órgãos rodoviários com os materiais locais levando em conta as condições

climáticas e pluviométricas regionais, o uso da via e características particulares do tráfego, definindo parâmetros e especificando procedimentos que forneçam certa garantia para criar boas soluções do ponto de vista técnico e econômico.

A utilização de materiais menos nobres ou em menor espessura leva a um risco controlado podendo haver algum insucesso. A avaliação deve ser sempre global, pois a redução de custos costuma ser muito significativa no conjunto da obra.

2.4.3 Utilização de materiais alternativos no Rio Grande do Sul

Durante a década de 80 o DAER/RS começou a utilizar o basalto alterado, resultante dos derrames basálticos que ocupa praticamente a metade do Rio Grande do Sul, como material constituinte das camadas de pavimento.

Em 1982 técnicos da Divisão de Normas e Pesquisas do DAER/RS dedicaram-se à pesquisa de uma solução econômica que viabilizasse, em qualquer época do ano, a trafegabilidade da "Estrada do Inferno" (RST-101, trecho Bacopari-Mostardas), executando um trecho experimental com 500m de extensão utilizando o "barrinho", horizonte B de um plintossolo, originado dos sedimentos areno-argilosos pouco consolidados da Formação Chuí.

Passos (2001) relatou que a primeira utilização de pedregulho de laterita em base de pavimentos no Estado foi em 1985, na RS/536, trecho Caibaté - BR/285, com extensão de 13 km.

Em 1988, por ocasião do programa de construção de rodovias vicinais, o DAER/RS, pavimentou 41 trechos, perfazendo um total de cerca de seiscentos quilômetros com revestimento asfáltico. Em razão do custo de pavimentação estar limitado a valores reduzidos, procurou-se a utilização de materiais naturais locais, mesmo nas camadas mais nobres do pavimento, Passos (2001). Deste total, cinco trechos foram pavimentados com a utilização de seixo rolado, natural ou britado.

Segundo Passos (2001), em 1988, o DAER iniciou uma pesquisa nos solos arenosos finos do Rio Grande do Sul, em convênio com a FIPAI (Fundação Incentivo à Pesquisa e Apoio Industrial) da Universidade de São Carlos - USP, onde material proveniente de doze jazidas foi ensaiado com a metodologia MCT. O projeto foi interrompido na metade do cronograma,

antes de sua conclusão final que previa a construção de vários segmentos experimentais com materiais alternativos.

Uma vez estabelecido o interesse do Estado em utilizar os materiais alternativos nas estruturas dos pavimentos, foi criado um Protocolo Consensual de Colaboração Técnico-Científica realizado entre o DAER/RS e a Escola de Engenharia da UFRGS iniciando-se os estudos de alternativas econômicas para a pavimentação de rodovias coletoras no Estado.

Arnold (1993) analisou os resultados de ensaios de agregados provenientes de sete jazidas de basalto alterado exploradas na construção dos trechos abertos ao tráfego em 1989. Prepôs a perda da resistência dos agregados de basalto alterado causada pela imersão em água, avaliada através do ensaio de compressão puntiforme, como critério de aceitação.

Núñez (1997) analisou o comportamento mecânico de pavimentos delgados com basaltos alterados e estabeleceu um método de dimensionamento que considera as especificidades do material analisado e do tráfego de rodovias coletoras, empregando o Simulador de Tráfego DAER-UFRGS, em cinco pistas experimentais construídas na Área de Pesquisas e Testes de Pavimentos (APTP).

Utilizando a tecnologia desenvolvida nos estudos de Núñez, em 1998, o DAER/RS construiu um trecho experimental na rodovia RS-132 que está sendo testado com o tráfego real.

Bottin Filho (1997) estudou misturas de areia asfalto a ser utilizada na planície litorânea do Estado do Rio Grande do Sul.

As tabelas 2.8a, 2.8b e 2.8c apresentam um resumo das rodovias onde o DAER utilizou material alternativo na estrutura de seus pavimentos.

Nestas tabelas são utilizadas as siglas TSD (Tratamento Superficial Duplo), BG (Brita Graduada), PMF (Pré Misturado a Frio), MS (Macadame Seco), BA (Basalto Alterado) e CBUQ (Concreto Betuminoso Usinado a Quente).

Tabela 2.8a: Rodovias com pavimento de material alternativo no RS

RODOVIA		TRECHO	EXTENSÃO (km)	CAMADA	TIPO DE MATERIAL	ESPES. (cm)	Execução
		Entr. BRS-		Revestimento	TSD	2,0	
VRS - 303	0010	158/293	5,17	Base	BG	13,0	1989
VIII 303	(P/Sar	(P/Santana) - Palomas	3,17	Sub-base	Saibro de Basalto	15,0	. 1707
		Entr.RST - 287		Revestimento	PMF	7,0	
	0010	(P/Sta Maria) - Entr. ERS 511	5,38	Base	MS	16,0	1990
VRS - 304		P/Arroio Grande		Sub-base	Basalto Alterado	15,0	
VKS - 304		Entr. ERS 511		Revestimento	PMF	7,0	
	0030	P/Arroio Grande -	7,44	Base	MS	16,0	1990
		Silveira Martins		Sub-base	Basalto Alterado	15,0	
		Entr. BRS 392		Revestimento	TSD	2,5	
VRS - 308	0010	(Vila Block) -	19,63	Base	BG	12,0	1990
		Formigueiro		Sub-base	Basalto Alterado	15,0	
		Entr. BRS-		Revestimento	PMF	5,0	
VRS - 310	0010	153/386 (P/Soledade) -	10,50	Base	MS	17,0	1990
		Ibirapuitã		Sub-base	Basalto Alterado	13,0	
		Entr. ERS 130	11,25	Revestimento	TSD	2,5	1990
VRS - 311	0010			Base	Seixo Britado	15,0	
				Sub-base	Seixo Rolado	13,0	
		Entr.RST 453 (P/Lajeado) - Vila Palanque		Revestimento	TSD	2,5	1989
VRS - 316 0030	0030			Base	BG	12,0	
				Sub-base	Seixo Rolado	20,0	
		Entr. ERS 332 (Espumoso) - Campos Borges 26,6		Reabilitação	PMF	5,0	1995
	0010		26,66	Rev. original	TSD	2,5	1990
	0010			Base	BG	20,0	
VRS - 317				Sub-base	Basalto Alterado	20,0	
VKS - 317				Reabilitação	PMF	5,0	1995
	0030	Campos Borges - Salto Jacuí	13,72	Rev. original	TSD	2,5	1990
	0030			Base	BG	20,0	
				Sub-base	Basalto Alterado	12,5	
		Entr. RS 451		Revestimento	TSD	2,5	
VRS - 319 00	0010	(P/Colorado) - Entr. BR 285	20,96	Base	MS	20,0	1999
		(P/Passo Fundo)		Sub-base	Basalto Alterado	15,0	
		Entr. BRS	10,64	Revestimento	PMF	6,5	1988
	0010			Base	MS	14,5	
				Sub-base	Basalto Alterado	11,0	
VRS - 322		•		Revestimento	PMF	5,5	
	0030 Esperança do Sul - Linha Ismael	7,36	Base	MS	9,0	1988	
		Linna Ismael		Sub-base	Basalto Alterado	17,0	

Tabela 2.8b: Rodovias com pavimento de material alternativo no RS

RODOVIA		TRECHO	EXTENSÃO (km)	CAMADA	TIPO DE MATERIAL	ESPES. (cm)	Execução	
		Entr. RS 510	, ,	Revestimento	TSD	2,5		
	0010	(P/Fortaleza dos	18,810	Base	BG	13,0	1989	
VIDG 224		Valos) - XV de Novembro	-,	Sub-base	Basalto Alterado	20,0		
VRS - 324		XV de Novembro		Revestimento	TSD	2,5	1000	
	0030	- Entr. RS 223	12,23	Base	BG	18,0	1989	
		(Ibirubá)		Sub-base	Basalto Alterado	15,0		
LIDG 224	6 0010	Entr. RS 452	7.20	Revestimento	CBUQ	6,0	1000	
VRS - 326	0010	(Feliz) - Alto Feliz	7,29	Base	Seixo Britado	25,0	1990	
				Revestimento	TSD	3,0		
		Entr. BR 116	3,20	Base	Seixo Britado	15,0	1989	
VDC 227	0010	(P/Caxias do Sul)		Sub-base	Basalto Alterado	14,0		
VRS - 327	0010	- Entr. VRS 342		Revestimento	TSD	2,0		
		(Linha Temerária)	3,09	Base	Seixo Britado	25,0	1989	
				Sub-base	Basalto Alterado	16,0		
		Entr. BRS 472		Revestimento	CBUQ	5,0		
VRS - 334	0010	(P/Uruguaiana) -	5,99	Base	Seixo Rolado	11,0	1990	
		Vila São Marcos		Sub-base	Seixo Rolado	10,0		
				Revestimento	PMF	6,5		
VRS - 804	0010	Entr. RST 153 - Cerro Branco	12,54	Base	Seixo Britado	15,0	1998	
		Cerro Branco		Sub-base	Seixo Britado	20,0		
		010 (P/Candelária) - 12,86 Base		Revestimento	TSD	2,5	1997	
VRS - 808	0010		12,86	Base	Seixo Britado	25,0		
			Sub-base	Seixo Rolado	23,0			
		Onto Entr. BRS 153 - Olaria Municipal 7,54		Revestimento	PMF	6,5		
VRS - 809	0010		7,54	Base	Seixo Britado	18,0	1999	
			Olaria Municipal	Olaria Willineipai		Sub-base	Seixo Rolado	18,0
		E . IIDG 000		Revestimento	PMF	5,5		
VRS - 810	0010	Entr. VRS 809 - Aeroporto	0,67	Base	Seixo Britado	25,0	1997	
		Aeroporto	Aeroporto		Sub-base	Seixo Britado	30,0	
		Candelária -	Candelária -		Revestimento	TSD	2,5	
VRS - 842	0010	Balneário	1,23	Base	Seixo Britado	21,0	1996	
		Candelária		Sub-base	Seixo Rolado	33,0		
	Entr.ERS-324		Revestimento	TSD	2,5			
ERS - 132	0010	(Vila Maria) – Entr. ERS-332	6,77	Base	Macadame de basalto alterado	16,0		
	(P/Arvorezinha)		Sub-base	Macadame de Basalto Alterado	16,0			
				Revestimento	TSD	2,5		
ERS-132	0030	Acesso à Camargo - Nova Alvorada	13,36	Base	Macadame de Basalto Alterado	16,0		
	- Nova Aivolada		Sub-base	Macadame de Basalto Alterado	16,0			

Tabela 2.8c: Rodovias com pavimento de material alternativo no RS

RODOVIA		TRECHO	EXTENSÃO (km)	CAMADA	TIPO DE MATERIAL	ESPES. (cm)	Execução	
		F : 11 C :		Revestimento	TSD	2,5		
ERS - 149	0130	Faxinal do Soturno - Nova Palma	13,11	Base	BG	17,0	1997	
		140va i aiilia		Sub-base	Seixo Rolado	20,0		
				Revestimento	PMF	5,0		
ERS - 348	0090	Dona Francisca - Agudo	12,53	Base	Seixo Britado	17,0	1991	
		71gudo		Sub-base	Seixo Rolado	18,0		
		L'ala Davil		Revestimento	TSD	2,5		
ERS - 422	0020	Linha Brasil - Venâncio Aires	13,7	Base	Seixo Britado	18,0	1999	
		v chancio 7 mes		Sub-base	Seixo Rolado	15,0		
	00.10	Entr. ERS - 389	4.00	Revestimento	PMF	5,0	1001	
ERS - 486	0060	(P/Capão da Canoa) - Curumim	1,90	Base	Seixo Britado	25,0	1991	
		Caibaté - Entr. BR -		Revestimento	TSD	2,5		
ERS - 536	0010	` / `		0 285 (A) (P/São Luiz 12,32 Base	Base	Laterita	26,0	1982
		8 /		Revestimento	PMF+TSD	7,5+2,5		
			8,985	Base	Laterita	16,0	1999	
0010	Entr.BR - 477 (São Nicolau) - Entr. RS -		Sub-Base	Laterita	16,0			
	0010	550 (P/Pirapó)		Revestimento	PMF+TSD	7,5+2,5		
		(=/=====	13,785	Base	BG	12,0	1999	
EDG 561				Sub-Base	Laterita	24,0		
ERS - 561		Entr. RS - 550		Revestimento	PMF+TSD	7,5+2,5		
	0020	(P/Pirapó) - Entr. VRS - 332 (P/XV de	0,820	Base	BG	10,0	1999	
		Novembro)	,	(ovembro)	Sub-Base	Laterita	29,0	
		Entr. XV de		Revestimento	PMF	6,5	1999	
	0030	Novembro - Entr.RS	5,060	Base	BG	13,5	1000	
	- 168 (P/Roque Gonzales)		Sub-Base	Laterita	24,0	1998		
ERS - 786 0110	Entr. ERS - 040	10,24	Revestimento	TSD	2,5	1986		
EKS - 760	EKS - 780 0110	(Pinhal) - Quintão	10,24	Base	Saibro de Basalto	30,0	1900	
			Revestimento	TSD+CBUQ	2,5+6,0			
ERS - 101	4455	Bacopari - Mostardas	84,45	Base	Plintossolo com DS	15,0	1993	
				Sub-Base	Plintossolo	15,0		
392 AM9	100	Acesso a sete de	2,6	Revestimento	TSD	2,5	1998	
372 AWI9	100	Setembro		Base	Laterita	30,0		

2.5 AVALIAÇÃO FUNCIONAL E ESTRUTURAL DE PAVIMENTOS

A superfície dos pavimentos mostra a situação atual do pavimento através dos seus defeitos que refletem o comportamento da estrutura do pavimento e são causados por uma série de fatores como clima, tráfego, processos construtivos e características físicas dos materiais. Estes defeitos podem ser funcionais, quando são associados à qualidade de rolamento e à segurança do pavimento, ou, estruturais quando são associados à perda da capacidade do pavimento de suportar as cargas que o solicitam.

As avaliações das condições da superfície do pavimento são realizadas através de inventários que buscam identificar e catalogar os defeitos de um pavimento. Os inventários podem utilizar métodos objetivos e métodos subjetivos e podem ser realizados por inspeção visual ou por inspeção através de um veículo.

Países como Inglaterra, Suécia e Escócia utilizam scanners para realizar os levantamentos superficiais nas rodovias. No reino Unido estes levantamentos são normatizados e fornecem uma visão da condição do pavimento da rodovia fornecendo indicadores de exigência de manutenção. Neste caso a previsão de desempenho dos pavimentos realizada através dos defeitos superficiais pode ser calculada por medidas de perfis transversal e longitudinal, mapas de trincas, perfil de textura e posição geográfica do veículo (IAN 42/05).

O departamento Nacional de Infra-Estrutura (DNIT) estabeleceu quatro normas de avaliação superficial para pavimentos flexíveis:

- NORMA DNIT 006/2003 PRO Avaliação objetiva da superfície de pavimentos flexíveis e semi-rígidos – Procedimento
- NORMA DNIT 007/2003 PRO Levantamento para avaliação da condição de superfície de subtrecho homogêneo de rodovias de pavimentos flexíveis e semi-rígidos para gerência de pavimentos e estudos e projetos Procedimento.
- NORMA DNIT 008/2003 PRO Levantamento visual contínuo para avaliação da superfície de pavimentos flexíveis e semi-rígidos Procedimento.
- NORMA DNIT 009/2003 PRO Avaliação subjetiva da Serventia Procedimento.

Os levantamentos realizados nos trechos experimentais das rodovias em análise para esta tese seguiram o método de avaliação objetiva da superfície através do procedimento NORMA DNIT 006/2003 – PRO que estabelece conceitos de degradação de pavimento com base em cálculos de freqüências absolutas (fa) e relativas (fr) das ocorrências inventariadas. Para cada uma das ocorrências inventariadas, deve ser calculado o IGI - Índice de Gravidade Individual (freqüência relativa multiplicado por um fator de ponderação definido pela norma). O Índice de Gravidade Global (IGG) é obtido pelo somatório dos IGI.

Confere-se, assim, ao pavimento inventariado um conceito que retrate o grau de degradação atingido de acordo com a correspondência apresentada na tabela 2.9.

Tabela 2.9: Conceitos de degradação do pavimento - IGG
CONCEITOS LIMITES

CONCEITOS	LIMITES
Ótimo	0< IGG ≤ 20
Bom	20< IGG ≤ 40
Regular	40< IGG ≤ 80
Ruim	80< IGG ≤ 160
Péssimo	IGG ≥ 160

(Fonte: DNIT 006/2003 - PRO)

2.5.1 Avaliação funcional

Avaliação funcional é uma avaliação do conforto ao rolamento que considera a serventia e a Irregularidade Longitudinal.

Serventia do pavimento é a capacidade que um pavimento tem de proporcionar um rolamento suave, confortável e seguro. Um pavimento bem projetado e bem construído apresenta ao usuário, logo após sua conclusão, um alto grau de serventia traduzido pelo binômio: segurança e conforto, Pinto e Preussler (2002). Com o passar do tempo, o pavimento vai diminuindo seu grau de serventia, devido ao aparecimento de deformações em seu perfil transversal e longitudinal (afundamentos diferenciais e em trilha de rodas) e devido à presença de remendos que com a conservação rotineira vão substituindo trincas e panelas.

A AASHTO desenvolveu, através de uma avaliação subjetiva, em suas pistas experimentais uma maneira de aferir, num certo instante, a serventia de um pavimento. O DNIT normatizou esta avaliação subjetiva da Serventia com o DNIT 009/2003 – PRO.

A irregularidade longitudinal é a principal medida da condição do pavimento, pois os desvios no pavimento afetam a qualidade do rolamento e a ação dinâmica das cargas sobre a via. É a grandeza física que melhor se relaciona com o custo operacional do veículo, conforto e segurança do usuário, velocidade do percurso e economia de viagem.

Segundo Ullidtz (1998), o método de projeto da AASHTO é baseado na irregularidade, e o modelo de Custo de Operação de Veículos do HDMIII do Banco Mundial também utiliza a irregularidade como função básica.

A irregularidade de um pavimento pode ter origem congênita, devido às imperfeições do processo executivo, ou resultar de problemas após a construção como resultado da atuação do tráfego ou clima.

Vários pesquisadores modelaram o IRI com os tipos de defeitos no pavimento. O IRI pode ser afetado por trilha de roda, variação na profundidade da trilha e trincas por fadiga. Os defeitos relacionados com o IRI são causados pelo clima e pela carga de tráfego e podem ser previstos por modelos mecanísticos empíricos (trincas de fadiga, deformação permanente e trincas térmicas). Outros defeitos tipo panelas, trincas em bloco e trincamentos longitudinais também afetam o IRI, entretanto não podem ser modelados pelos princípios mecanísticos empíricos.

Segundo Pinto e Preussler (1998), as medidas de irregularidade longitudinal são utilizadas para:

- a) Avaliar os pavimentos como subsídio ao diagnóstico da situação existente e à definição da solução de restauração/manutenção a ser aplicada.
- b) Subsidiar o cálculo de custos de operação de veículos.
- c) Controlar a qualidade da execução.
- d) Atualizar e realimentar modelos de previsão de desempenho de pavimentos.
- e) Estimar a serventia de pavimentos.

A irregularidade está intimamente ligada à deterioração estrutural do pavimento, uma vez que, aumenta a carga dinâmica provocada pelo tráfego aumentando as tensões e deformações nas camadas, (Ullidtz, 1998).

O Índice de Irregularidade – IRI - International Roughness Index é uma escala de referência. É a relação entre os movimentos acumulados da suspensão do veículo e a distância percorrida pelo veículo, medida em m/km, é um parâmetro indicativo objetivo da condição funcional de um pavimento (DNER, 1998).

O Quociente de Irregularidade – QI é um índice de quarto de roda medido em contagem/km. Segundo DNER (1998) a equação (2.26) apresenta a correlação entre o QI e o IRI.

$$QI = 13 IRI \tag{2.26}$$

As estradas pavimentadas são consideradas excelentes quando o IRI fica próximo a 1,0m/km e consideradas péssimas quando é superior a 5,0m/km, Pinto e Preussler (2002). Estrada não pavimentada com IRI próximo a 3,0 m/km é considerada muito boa. Quando possuem o IRI superior a 15 m/km são muito ruins, Pinto e Preussler (2002). O DNER (1998) condiciona os pavimentos quanto à irregularidade de acordo com a tabela 2.10.

Tabela 2.10: Condição do pavimento IRI (rodovias pavimentadas)

CONDIÇÃO	IRI (m/km)	QI (contagem/km)
Boa	1,0-3,5	13 – 45
Regular	3,5-4,5	45 – 59
Ruim	>4,5	>60

(Fonte: DNER, 1998)

As rodovias pavimentadas possuem limites de aceitabilidade com QI de 60 contagens/km, enquanto que as não pavimentadas aumentam este limite até 200 contagens/km. O QI é um parâmetro objetivo da condição funcional e pode influenciar na condição estrutural de um pavimento.

O DAER-RS tem utilizado o Merlin do TRRL como equipamento para medir a irregularidade de seus trechos experimentais e das bases que serão utilizadas como calibração para as medidas de IRI obtidas com equipamentos tipo resposta. Merlin (Machine for evaluating roughness using low-cost instrumentation) é um equipamento de baixo custo utilizado para avaliação de conforto de pavimentos através de medidas de IRI. Pode ser aplicável como instrumento para calibração de equipamentos mais sofisticados. Este equipamento é um aparelho estático que, conduzido manualmente pelo operador ao longo de um determinado

alinhamento, registra as ondulações superficiais em intervalos regulares. A figura 2.3 demonstra o equipamento.

Figura 2.3: Merlin do TRRL

A figura 2.4 mostra os componentes básicos do Merlin. O braço móvel tem a capacidade de ampliar a medida vertical em 10 vezes, ou seja, cada 1 mm de variação vertical na superfície produzirá um deslocamento de 1 cm no ponteiro localizado na extremidade superior, Cassaniga e Machado Filho (2002) .

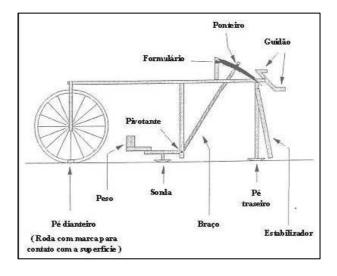


Figura 2.4: Componentes básicos do Merlin (Fonte: IBP 01602, 2002)

2.5.2 Avaliação estrutural

A capacidade de suporte de um pavimento tem grande influência em sua deterioração. Esta deterioração é devido às intempéries e às cargas de solicitação. As cargas de solicitação são previstas em projeto para que o pavimento possa ter uma vida útil, mas com o tempo, sempre tendem a ser excedidas abreviando esta vida útil.

A avaliação estrutural fornece informações quanto ao grau de deterioração que ocorre no pavimento e permite a seleção e o dimensionamento da mais adequada alternativa de reabilitação.

Segundo Rocha Filho (1996), esta avaliação fornece dados de deformabilidade e a resistência à ruptura por cisalhamento do sistema em camadas do pavimento. Está relacionada ao estado de tensões "in loco" produzido pelas rodas carregadas, em movimento transiente sobre a superfície do pavimento.

Marcon (1996), também descreve que a avaliação das características de resistência dos pavimentos pode ser feita através de parâmetros de espessura equivalente das camadas, deflexões de superfície e parâmetros mecanísticos. A espessura equivalente mencionada é obtida através da soma das espessuras das camadas, ponderadas pelos coeficientes de resistência dos materiais. Estes coeficientes de resistência são obtidos com base no princípio da capacidade de distribuição das cargas ou das tensões produzidas pelo tráfego sendo relacionados quanto ao desempenho quanto às tendências do crescimento da profundidade da trilha de roda e da rugosidade (irregularidade).

Os defeitos estruturais são resultantes da repetição das cargas e vinculam-se às deformações elásticas ou recuperáveis e plásticas ou permanentes. As deformações elásticas são responsáveis pelo surgimento da maioria dos trincamentos ao longo da vida do pavimento, podendo levar à fadiga do revestimento e são medidas através das deflexões, enquanto que as deformações plásticas são acumulativas durante os anos da vida de um pavimento e resultam em defeitos do tipo afundamento localizado ou nas trilhas de roda.

2.5.2.1 Bacia de Deflexão

Segundo Moreira (1977), a deflexão recuperável de um pavimento sob ação de uma determinada carga, em muitos casos, não consegue explicar por si só o comportamento

estrutural e o processo de distribuição de cargas no interior do pavimento. Observa-se que em alguns casos encontramos deflexões altas em locais avaliados com conceito Bom (funcionalmente), e em locais considerados Ruins (avaliação funcional), as deflexões apresentam-se baixas.

Sendo assim torna-se importante estabelecer a linha elástica das deflexões ou deformada elástica do pavimento podendo-se, então verificar a influência da carga em diversos pontos do pavimento. Bacia de deflexão é a linha de influência longitudinal ocasionada por uma carga aplicada à superfície do pavimento, são as medidas dos deslocamentos elásticos ou recuperáveis em vários pontos a partir do centro do carregamento.

Fabrício et al (1988) esclarecem que a forma da bacia de deflexão é conseqüência não só do carregamento imposto na superfície do pavimento como também das espessuras e dos módulos de elasticidade das diversas camadas existentes no pavimento e do módulo de elasticidade do subleito.

A equação (2.27) apresenta o cálculo do Raio de Curvatura (Rc) adotado pelo DNIT e as equações (2.28), (2.29) e (2.30) apresentam os parâmetros de avaliação da bacia obtidos por Fabrício et al (1988) e que podem servir como uma análise inicial das camadas do pavimento.

$$R_c = \frac{6250}{2 \times (D_0 - D_{25})} \tag{2.27}$$

$$ICS = D_0 - D_{30} (2.28)$$

$$ICB = D_{60} - D_{90} (2.29)$$

$$IDB = D_{30} - D_{60} (2.30)$$

Onde:

Rc é o Raio de Curvatura - parâmetro utilizado para avaliar estruturalmente um pavimento através da bacia de deflexão - é o arco de parábola que passa por dois pontos da deformada, sob a carga e a 25,0cm do centro da carga, (D0 e D25), DNIT ME 024/94.

ICS é o índice de curvatura superficial – indicativo da resistência das camadas superiores do pavimento (Revestimento + base) relativamente à resistência das camadas inferiores. Quanto menor o valor de ICS menor será a contribuição das camadas superiores na deflexão total D0 medida na superfície. ICS>25x10-2 mm associados a camadas superiores do pavimento pouco resistentes ou de pequena espessura.

ICB é o índice de curvatura da base – indicativo de resistência do subleito do pavimento. É inversamente relacionado com o CBR, ou seja, quanto menor o valor de ICB, maior o valor do CBR. Valores de ICB>10x10-2 mm foram associados a valores de CBR próximos a 10% ou menores.

IDB é o índice de destruição da base – indicativo aproximado da resistência do conjunto das camadas de revestimento, base e sub-base do pavimento. O IDB aumenta na fase de fadiga do pavimento. Segundo os autores, com o monitoramento dos valores de IDB pode-se avaliar o momento de início da fase de fadiga do pavimento.

D0, D25, D30, D60, D90, são as deflexões medidas à 0, 25, 30, e 90 cm da aplicação da carga.

As leituras de Deflexão Máxima (D_0) são um importante indicativo do comportamento futuro do pavimento, pois o trincamento, por fadiga das camadas asfálticas e cimentadas é função da Deformação Máxima de Tração (ε_t) na sua fibra inferior, a qual está ligada à magnitude das deflexões dos pavimentos.

Quanto maior o valor da deflexão recuperável máxima, mais elástico ou resiliente é a estrutura de um pavimento e maior o seu comprometimento estrutural.

Os dados obtidos com equipamentos associados a modernos programas de computador para cálculo de tensões, deformações e deslocamentos nas estruturas dos pavimentos, são capazes de permitir a determinação das propriedades elásticas por meio de procedimentos de retroanálise das bacias de campo.

2.5.2.2 Número estrutural

O número estrutural (SN) é um número indicativo da espessura total de um pavimento para resistir a um número total de eixos padrão equivalente, com determinadas combinações de

capacidade de suporte do solo, serventia final e clima. Este número foi criado a partir da pista da AASHTO e determinado através de coeficientes de camadas (característica de cada material), espessura do material e coeficientes de drenagem. O SN é calculado através da equação (2.31).

$$SN = (a_1 \times D_1) + (a_2 \times D_2 \times m_2) + (a_3 \times D_3 \times m_3) + \dots + (a_i \times D_i \times m_i)$$
 (2.31)

Onde:

a_i = coeficiente da i-ésima camada do pavimento

D_i = espessura (em polegadas) da i-ésima camada do pavimento

m_i = coeficiente de drenagem da i-ésima camada do pavimento.

Segundo Huang (1993), coeficiente da camada (a_i) é uma medida da capacidade relativa do material para funcionar como componente estrutural do pavimento.

Segundo a AASHTO (1993) embora o módulo de resiliência tenha sido adotado como medida padrão da qualidade do material de uma camada do pavimento é ainda necessário identificar o coeficiente desta camada. Este coeficiente pode variar com a espessura da camada, camada de suporte, posição na estrutura do pavimento, etc.

Em pavimentos com multicamadas, a deflexão máxima não se correlaciona bem com as tensões e deformações. A análise da deformada da bacia deflectométrica resulta em melhores respostas sobre a capacidade estrutural do pavimento. Neste caso o Rc deve ser considerado.

Johnston (2001) sugere a correlação entre o número estrutural (SN) e o raio de curvatura (Rc) para pavimentos com revestimento de TSD e base+sub-base granular com coeficiente de determinação de 0,86 (equação 2.32) e para pavimentos com revestimento de CBUQ e base+sub-base granular com coeficiente de determinação de 0,73 (equação 2.33). Estas correlações estão apresentadas pelas equações (2.32) e (2.33), respectivamente, facilitando o conhecimento do número estrutural destes tipos de pavimento.

Desempenho de Pavimentos com Materiais Alternativos do Estado do Rio Grande do Sul

$$SN = \frac{1}{\sqrt[3]{\left(0,02765 + \frac{83401}{R_c^3}\right)}}$$
 (2.32)

$$SN = \frac{1}{0,03588 + \frac{51,909}{R_c}} \tag{2.33}$$

2.5.2.3 Retroanálise

Retroanálise é a comparação de uma superfície deformada calculada (bacia de deflexão teórica), com a superfície deformada obtida em campo.

Os deslocamentos elásticos, deflexões, sofridos pelo pavimento devido à passagem de uma carga podem ser previstos pela teoria da elasticidade, utilizando parâmetros de resiliência dos materiais que constituem as camadas do pavimento.

Os dados obtidos com equipamentos associados a modernos programas de computador para cálculo de tensões, deformações e deslocamentos nas estruturas dos pavimentos, são capazes de permitir a determinação das propriedades elásticas por meio de procedimentos de retroanálise das bacias de campo.

As medidas de deflexões nos pavimentos podem ser obtidas através de equipamentos como o FWD (Falling Weight Deflectometer), ensaio não destrutivo, que simula a passagem de um veículo permitindo que dados de deflexões sejam obtidos em camadas de pavimento já executadas, ou seja, condição efetiva da camada em termos de umidade, densidade, temperatura e estado de tensões, sob um pulso de carga.

Preussler et al (2000), salienta que estudos realizados com o FWD, sob vários níveis de carga, mostraram a não linearidade das propriedades elásticas das camadas dos pavimentos, verificou também que as deformações elásticas dos pavimentos são influenciadas por vários fatores como: modelo matemático do processo iterativo; temperatura do ar e do revestimento; espessura e natureza dos materiais constituintes das camadas; carga solicitante e ponto de aplicação da carga; confinamento da camada, teor de umidade e granulometria; oxidação da mistura asfáltica e deterioração das camadas.

91

Desta forma, atualmente, os programas de computador apresentam relações que levam em consideração esta não linearidade dos materiais e vários destes fatores influenciáveis fazem parte das relações constitutivas do programa corrigindo os módulos de resiliência com base em equações pré-determinadas.

O presente trabalho utilizou o software de retroanálises EVERCALC 5.0 que realiza retroanálise das bacias de deflexão para obtenção dos módulos de resiliência das camadas, desenvolvido pelo Departamento de Transportes do Estado de Washington (EUA), é um programa gratuito e de domínio público. As camadas dos pavimentos, neste software, são consideradas infinitas no sentido longitudinal, com as espessuras uniformes e compostas de materiais elástico linear, homogêneos e isotrópicos, caracterizados por módulos elásticos e coeficiente de Poisson. Assim, para utilizar este programa, a espessura das camadas e o coeficiente de Poisson de cada camada devem ser conhecidos ou assumidos. A retroanálise realizada com este software neste trabalho considerou os valores de coeficientes de Poisson apresentados por Medina (1997):

 $\mu = 0.15$; concreto de cimento portland

 $\mu = 0.25$; misturas asfálticas

 $\mu = 0.35$; materiais granulares

 $\mu = 0.45$; solos argilosos

O software EVERCALC considera o subleito semi-infinito no sentido vertical e calcula a bacia de deflexões teóricas comparando com a bacia de deflexões medida pelo FWD ajustando os valores dos módulos das camadas do pavimento por iterações até uma diferença entre a bacia calculada e a bacia medida que se considere adequada.

2.6 ANÁLISE DE DESEMPENHO DE PAVIMENTOS

O desempenho das camadas de base nos pavimentos constituídos de materiais alternativos e revestimentos esbeltos é crítico e deve ser analisado de forma mecanística através do conhecimento do comportamento dos materiais que constituem estas camadas em relação às cargas e às condições do meio físico onde se encontram. Devem ser estudados os materiais empregados nas camadas que constituem o pavimento, sua espessura e o tráfego que o pavimento suportou durante o período estudado.

Um pavimento flexível deve ser projetado para atender limitações de tensões que possam provocar deformações recuperáveis ou elásticas, deformações permanentes, e rupturas por cisalhamento.

2.6.1 Resposta resiliente do subleito

A vida de fadiga das camadas superficiais mais rijas do pavimento como revestimentos de concreto asfálticos, base de solo cimento, etc., sujeitas a flexões sucessivas, é condicionada pela deformabilidade "elástica" ou resiliente das camadas do pavimento e do subleito. Quanto ao subleito, Medina (1997) explica que os módulos resilientes dependem da densidade e da umidade dos solos (fatores de estado). O modo como se arrumam e se aglomeram as partículas de solo, assim como, o teor de umidade da compactação é determinante da deformabilidade. Quanto maior o tempo de cura, sem variação de umidade (enrijecimento por tixotropia), menor a deformação na solicitação dinâmica.

O módulo de resiliência dos solos depende da sua natureza (constituição mineralógica, textura e plasticidade da fração fina), umidade, densidade e estado de tensões atuantes como o peso próprio e as tensões causadas pelas cargas dos veículos.

É necessário proceder-se uma correta compactação das camadas do pavimento para obter-se um peso específico aparente seco mais elevado e consequentemente um módulo de resiliência maior.

Preussler (1978) constatou que em ensaios triaxiais de carga repetida as amostras ensaiadas no ramo seco da curva de compactação apresentaram pequenas deformações permanentes e recuperáveis. Em amostras compactadas em umidades maiores que a umidade ótima, as deformações permanentes cresceram consideravelmente, atingindo valores até 10 vezes maiores que os obtidos para o ramo seco. Verificou também que, para uma mesma tensão confinante, o módulo de resiliência é maior, quanto menor for o nível de saturação.

Estudos realizados por Rodrigues (1991) indicaram que os módulos encontrados em laboratório não refletem necessariamente o comportamento do material no campo, devido à dificuldade de se reproduzir em laboratório às condições de umidade, compactação, temperatura, estado de tensões e modo de solicitação a que os materiais estão sujeitos no pavimento. Para um mesmo peso específico aparente seco, o módulo de resiliência diminui com o aumento do teor de umidade.

Os solos coesivos de um subleito, onde as tensões provenientes das cargas das rodas já estão bastante reduzidas, resistem de forma mais eficiente, com maior módulo resiliente, pois, apresentam a deformação resiliente axial dependendo consideravelmente da tensão-desvio $(\sigma_1$ - $\sigma_3)$ aplicada, neste caso, embora o solo possa ser homogêneo o módulo de resiliência aumentará com a profundidade, pois as tensões-desvio diminuem (Seed et al., 1963 apud Bernucci et al. 2007).

Para níveis mais altos de tensão-desvio e baixas tensões confinantes, a deformação permanente passa a ser excessiva (Seed et al., 1963; Lentz e Baladi,1980, apud Bernucci et al. 2007).

2.6.2 Resposta resiliente em materiais granulares

Para materiais granulares não se pode aplicar a lei de Hooke generalizada, pois esses materiais não são elásticos lineares. Esta não linearidade obriga a busca de relações empíricas entre o módulo resiliente e o estado de tensões.

Os ensaios triaxiais procuram determinar, em laboratório, uma relação entre o Módulo de Resiliência e tensões confinantes (σ_3) e verticais (σ_1) ou desvio (σ_1 - σ_3), nas condições de umidade e grau de saturação em que o material se apresenta "in situ".

Vários autores como Boyce (1976), Mundy (2002), Arnold (2004), Steven (2005) apresentaram indicadores chaves que influenciam diretamente o material granular que constitui as camadas de base e/ou sub-bases e conseqüentemente o comportamento do pavimento como módulo de resiliência, deformação permanente, durabilidade, permeabilidade, coesão e ângulo de atrito. Estes indicadores são estabelecidos de acordo com a condição do material (nível de tensões; densidade; granulometria, tipo e forma da partícula; freqüência do carregamento e número de aplicação de cargas; e conteúdo de umidade), sujeito à carga de tráfego e influência do clima.

2.6.2.1 Nível de tensões

As tensões que ocorrem em cada ponto da camada granular de um pavimento são as maiores responsáveis pelo seu comportamento resiliente. O cálculo destas tensões deve considerar a não linearidade dos materiais granulares quanto à relação tensão- deformação.

De acordo com Arnold (2004), pesquisadores como Hicks e Monismith (1971), Uzan (1985), Thom e Brown (1989) e Sweere (1990) encontraram, nos materiais granulares não tratados, um alto grau de dependência do módulo de resiliência com a pressão confinante e com a soma das tensões principais.

O cálculo das deformações resilientes em locais específicos da camada granular passa a ser um procedimento de projeto.

Geralmente quando o módulo de resiliência/rigidez de um material é baixo a resistência à deformação permanente também é baixa, ou seja, a deformação permanente é inversamente proporcional ao módulo de resiliência. Para Arnold (2004), geralmente, os mesmos fatores que resultam em altas deformações permanentes resultam em baixa rigidez, entretanto, Thom and Brown (1989) chegaram à conclusão de que um material com a mais baixa rigidez não possui a mais baixa resistência à deformação.

Todos os estudos neste campo registram um aumento da rigidez do material (expressa como módulo de resiliência) devido ao nível de tensões.

2.6.2.2 Outros parâmetros que influenciam na rigidez do material granular

No trabalho apresentado por Boyce (1976) o módulo de resiliência foi expresso em função da média das tensões normais (θ). Neste caso, considerando o modelo k- θ o valor do coeficiente k_1 depende da densidade relativa do material e o k_2 depende da forma da partícula.

A densidade, o teor de finos, a granulometria, o tipo e a forma dos grãos e a freqüência do carregamento também influenciam na rigidez da base ou sub-base de material granular conforme demonstrado por alguns autores e descrito a seguir:

Densidade – Trollope et al (1962) apud Boyce (1976) registrou um aumento de 50% no módulo de resiliência de amostras densas com relação a amostras soltas. Boyce (1976) descreve que Robinson (1974) registrou que o coeficiente k1 aumenta 50% em amostras densas relacionadas com amostras soltas, neste caso, o k2 quase não se alterou. Kennedy (1974) apud Boyce (1976) ensaiando agregados de material da base observou uma tendência do aumento do módulo de resiliência com a densidade seca. Barksdale e Itani (1989) concluíram que quando o valor da média das tensões normais é baixo o módulo de resiliência aumenta com o

aumento da densidade e que para altos níveis de tensões o efeito da densidade não é significativo.

Teor de finos – Hicks e Monismith (1971) concluíram que o aumento da porcentagem de material que passa na peneira nº 200 reduz o módulo de resiliência do material granular.

Granulometria, tipo e forma das partículas – Segundo Boyce (1976) estas variáveis têm grande efeito na densidade do material permitindo maior ou menor compactação influenciando na rigidez da camada granular. Agregados britados com partículas angulares absorvem melhor a carga devido ao melhor intertravamento das partículas, aumentando a rigidez da camada do pavimento.

Freqüência de carregamento e número de aplicação de carga — A freqüência do carregamento tem muito pouco ou nenhum efeito sobre a rigidez dos materiais granulares. Moore et al (1970) apud Boyce (1976) sugere que o aumento do módulo de resiliência se dá devido à perda gradual da umidade elevando as forças de sucção.

2.6.2.3 Efeito da umidade no comportamento resiliente

Dois fatores devem ser considerados quando se estuda a umidade em materiais granulares:

Poro pressão: A água exerce poro pressão ou uma sucção nas partículas de um material granular. Durante o ensaio triaxial, a poro pressão de um material saturado pode ser medida, mas é difícil medir a sucção.

Permeabilidade: A permeabilidade de uma base granular depende da graduação e da densidade do material utilizado.

Hicks (1970) verificou que em bases confinadas o módulo de resiliência decresce com o aumento do grau de saturação. Considerando o modelo k- θ , o grau de saturação afeta o k_1 (k_1 é menor para amostras parcialmente saturadas do que para amostras secas). Baseando-se em tensões efetivas o k_1 é praticamente o mesmo. O aumento da umidade reduz o módulo de resiliência. O comportamento da amostra é influenciado pela sucção do solo.

Lekarp et al (2000) concluíram que abaixo da umidade ótima, a rigidez tende a aumentar com o aumento do nível de umidade (sucção). Perto da umidade ótima quando o material começa a

ficar mais saturado, e desenvolve-se o processo de poro pressão, a rigidez começa a diminuir rapidamente.

Werkmeister et al. (2001) identificou o conteúdo de umidade como sendo o fator de maior influência nas propriedades mecânicas de um material granular.

2.6.3 Deformações recuperáveis ou elásticas

Medina (1997) cita que, Francis Hveem apresentou o primeiro estudo da deformabilidade dos pavimentos quando em 1938 o órgão rodoviário da Califórnia havia começado a medir as deflexões de pavimentos sujeitos ao tráfego. Hveem entendia que o trincamento progressivo dos revestimentos asfálticos se devia à deformação resiliente (elástica) das camadas subjacentes, em especial ao subleito.

Para atender as limitações de deformações recuperáveis, é necessário utilizar um método mecanístico de dimensionamento de pavimentos onde a diferença entre tensão máxima de compressão e de tração na fibra inferior do revestimento é considerado o principal fator desencadeador do trincamento por fadiga do revestimento de um pavimento flexível. Desta forma podemos determinar o limite admissível das deformações elásticas para um número N de Projeto, ou seja, verificar qual o número equivalente (N) de operações de um eixo tomado como padrão que vai causar defeito ao pavimento devido às deformações elásticas.

De acordo com Carpenter et al. (2003) apud Bernucci et al. (2007), o limite de ruptura no concreto asfáltico deve ser o correspondente àquele quando a mistura começa a apresentar as primeiras micro trincas. O mesmo autor estudou que, para níveis de deformação inferiores a $70x10^{-6}$, a vida de fadiga de um concreto asfáltico não é afetada e, portanto a mistura resiste ao trincamento por fadiga durante o período de projeto.

2.6.3.1 Trincamento por fadiga

De acordo com Pinto e Preussler (2002), fadiga é "um processo de deterioração estrutural que sofre um material quando submetido a um estado de tensões e de deformações repetidas, resultando em trincas ou fratura completa, após um número suficiente de repetições do carregamento, ou seja, é a perda de resistência que o material sofre, quando solicitado repetidamente por uma carga.

A ruptura de um pavimento por fadiga provoca um trincamento excessivo do revestimento, prejudicando a capacidade das camadas superiores do pavimento na sua função de distribuir as tensões às camadas inferiores e ao subleito, propiciando ainda a percolação da água para o interior da estrutura e sua conseqüente deterioração e falência. As altas tensões e deformações de tração na base do revestimento aparecem devido a três fatores: (i) camada do revestimento esbelta; (ii) elevadas cargas de roda ou alta pressão dos pneus; (iii) material das camadas abaixo do revestimento com baixo suporte ou mau compactado ou com aumento de umidade.

As trincas de fadiga podem iniciar na base do revestimento e progredir para a superfície como também podem iniciar na superfície e progredir para a base dos revestimentos.

Segundo o ME-PDG (2004) trincas de fadiga tipo Jacaré aparecem primeiro como uma trinca longitudinal curta na trilha de roda que rapidamente se espalha e começa a se interconectar para formar trincas tipo jacaré. Esta trinca inicia na base da camada do revestimento asfáltico e se propaga para o topo devido ao tráfego, é o resultado da repetição da carga de tráfego e depende da elasticidade do material asfáltico. O revestimento vai fletir devido ao tráfego aparecendo tensões e deformações de tração na base da camada. Com a continuidade da flexão aparecem as trincas de baixo para cima.

As trincas de fadiga longitudinais estão relacionadas com a carga de tráfego. As causas deste tipo de trinca ainda são muito discutidas, mas é de consenso que a tensão e deformação de tração induzida pela carga da roda que ocorrem na superfície dos pavimentos causam trincas e, a idade do revestimento acelera o início e a propagação destas trincas. O guia de projeto mecanístico empírico da AASHTO 2004 (ME-PDG) salienta o cisalhamento da mistura asfáltica causada pelos pneus radiais com alta pressão de contato perto da borda do pneu onde iniciam as trincas que se propagam por tração e cisalhamento. A idade avançada da mistura asfáltica resulta em alta rigidez que quando combinada com a alta pressão de contato, adjacentes a borda do pneu, causa o início e a propagação das trincas.

A espessura da camada asfáltica e a rigidez da mistura são importantes para a resistência a fadiga. O método da AASHTO 2004 sugere que para camadas esbeltas é desejável baixa rigidez do material, pois, a alta rigidez é suscetível a jacarés. Em camadas espessas deve ser usada a alta rigidez do material para diminuir as deformações de tração críticas na base da camada do revestimento assegurando a resistência a trincas tipo jacarés.

Trincas de fadiga tipo jacaré estão relacionadas fundamentalmente à alta relação entre E_i (rigidez do revestimento) / E_{i-1} (rigidez da base). Qualquer estrutura de pavimento que reduz o valor desta relação vai diminuir significativamente os danos de fadiga. Qualquer aumento de rigidez na camada inferior vai dificultar o aparecimento de trincas por fadiga de baixo para cima.

Quando a camada de base ou sub-base ou subleito estiver significantemente impactada pela presença de umidade deve ser usado algum tipo de drenagem para baixar o lençol freático fornecendo benefícios positivos para reduzir ou eliminar trincas por fadiga tipo couro de jacaré.

2.6.3.2 Trincamento em tratamentos superficiais

Rodovias para baixo volume de tráfego normalmente possuem revestimento esbelto. Nestas rodovias, onde o agregado passa a ser a parte estrutural mais importante da estrutura, a falência do revestimento se manifesta como trilha de roda e trincamento por fadiga.

Saaed et al (2001) apresenta os fatores que afetam o desempenho de camadas granulares sob revestimentos asfálticos esbeltos:

- 1. Trincamento por fadiga Aparecem longitudinalmente em paralelo na trilha de roda e na direção do tráfego. Quando progridem se conectam formando couro de jacaré. Só ocorrem sob tráfego pesado. A manifestação de colapso da base se dá com a perda de sua rigidez causando altas deflexões/deformações na superfície do revestimento sob cargas de roda repetidas, resultando em trincamento por fadiga do revestimento asfáltico. Os fatores que contribuem são: baixo módulo da base, granulometria imprópria, alto conteúdo de finos, alto nível de umidade, perda da angularidade das partículas e textura da superfície e degradação sob cargas repetidas e ciclos de congelamento e descongelamento.
- 2. Afundamento da trilha de roda Aparecem como depressão na superfície na trilha de roda e podem ser notadas somente com acúmulo de água da chuva. O pavimento pode se elevar nas bordas das trilhas. As trilhas são resultados de deformação permanente em uma ou mais camadas do pavimento ou do subleito, usualmente causadas por consolidação e ou movimentos laterais dos materiais

devido ao tráfego. A manifestação de colapso da base se dá quando a resistência ao cisalhamento na base é inadequada permitindo o deslocamento lateral das partículas devido ao tráfego resultando em decréscimo da espessura do revestimento nas trilhas de roda. Os afundamentos também podem ser resultado da consolidação da base devido à inadequada densidade inicial ou devido a pouca durabilidade dos seus materiais. Os fatores que contribuem são: Baixa resistência ao cisalhamento, baixa densidade do material da base granulometria imprópria, alto conteúdo de finos, alto nível de umidade, perda da angularidade das partículas e textura da superfície e degradação sob cargas repetidas e ciclos de congelamento e descongelamento.

3. Depressões - São localizadas em áreas baixas da superfície do pavimento causadas por assentamentos de fundação do solo ou consolidação do subleito ou da base ou da sub-base devido à má compactação. As depressões podem contribuir com a irregularidade e podem causar hidroplanagem quando preenchidas com água. A manifestação de colapso da base se dá quando a compactação inicial é inadequada ou quando o material não é uniforme resultando em redução adicional do volume devido à aplicação das cargas do tráfego. Mudanças nas condições do material devido à pouca durabilidade ou efeito de congelamento também podem resultar em densificação localizada com eventual colapso por fadiga. O fator que contribui é a baixa densidade do material da base.

Segundo Rodrigues (2003) deve-se pesquisar a existência ou não de correlações entre o trincamento de superfície em termos de área trincada e um parâmetro relacionado ao mecanismo de trincamento por fadiga como a deflexão máxima (D_0) ou a deformação máxima de tração sob o revestimento (ε_t).

Rodrigues (2003) apresenta um modelo de fadiga apresentado pelas equações (2.34) e (2.35) considerando o final da vida útil definida por porcentagem da área trincada (TR) igual a 20%.

$$N_f = F_c \times D_0^{-2,31} \tag{2.34}$$

$$N_f = F_c^{'} \times \varepsilon_t^{-3,3} \tag{2.35}$$

Desempenho de Pavimentos com Materiais Alternativos do Estado do Rio Grande do Sul

Onde F_c e F_c ' são os fatores de calibração apresentados pelas equações (2.36) e (2.37).

$$F_c = \frac{N_{acum}}{D_1^{-2.31}} \tag{2.36}$$

$$F_c' = \frac{N_{acum}}{\varepsilon_1^{-3,3}} \tag{2.37}$$

Rodrigues (2003) explica que em pavimentos flexíveis com tratamento superficial, o mecanismo de trincamento por fadiga ocorre devido a uma relação clara entre o trincamento e a deflexão enquanto que o mecanismo de desgaste por abrasão se revela devido a uma correlação entre a severidade do desgaste da superfície e o Volume total diário de veículos que compõe o tráfego (VDM). O modelo de previsão de desempenho do HDM, para o início do trincamento, calibrado com a correlação entre o trincamento e a deflexão está apresentado pela equação (2.38).

$$N_{acum}(10^6) = F_c \times 1{,}13 \times D_0^{-1{,}06}$$
 (2.38)

Rodrigues (2003) identifica duas causas para o trincamento:

- a) Trincas devido às cargas de tráfego trincas de fadiga, trincas produzidas por uma única passagem de uma carga excessiva, as de escorregamento, as decorrentes de movimentação lateral de aterros e aquelas que são induzidas por afundamentos em trilhas de roda excessivos.
- b) Trincas devido a solicitações térmicas, deficiência construtiva e intemperismo.

Segundo Rodrigues um determinado padrão de trincamento não será observado de forma uniforme ao longo de um mesmo projeto mesmo que todas as condições sejam aparentemente uniformes. As trincas começam a surgir em áreas isoladas, situadas aleatoriamente. Com o tempo, o tráfego e a exposição contínua às condições ambientais, a situação progredirá para um ponto em que alguma medida de conservação será necessária.

2.6.4 Deformabilidade dos materiais granulares

Existem muitos fatores que afetam a deformação permanente de materiais granulares. As tensões no interior da camada granular causam os maiores efeitos na deformação permanente seguido por número de aplicações da carga, características do material in situ (densidade de

compactação, conteúdo de umidade) e propriedade da fonte do material (granulometria, teor de finos e tipo de agregado).

2.6.4.1 Efeito das tensões

Ambas as tensões confinante e desvio tem efeito na acumulação da deformação permanente. Muitas pesquisas relacionam a magnitude da deformação permanente encontrada no ensaio triaxial de carga repetida devido a um tipo de relação de tensões desvio (q) e tensão normal principal (p) ou tensão confinante (Lashine et al, 1971; Barksdale, 1972; Pappin, 1979; Paute et al., 1996; Lekarp and Dawson, 1998). Lekarp and Dawson (1998) também mostraram que um aumento no comprimento da trajetória de tensões no espaço p-q aumentou a magnitude da deformação permanente.

Outra aproximação usada por pesquisadores é usar relações da deformação permanente com tensões em termos de proximidade com a linha de ruptura por cisalhamento (Barksdale, 1972; Maree, 1978 citado em Theyse, 2002; Thom 1988). Assume-se que o estado de tensões próximo a linha de ruptura por cisalhamento resulta em deformação permanente maior e, o estado de tensões excedendo a linha de ruptura resultará em rompimento mais cedo do material.

A deformação permanente é diretamente relacionada com o histórico de tensões da camada do pavimento. Quanto maior o nível de tensões maior a deformação permanente. Brown et al (1975) apud Kancherla (2004) concluíram que a deformação permanente resultante de um aumento sucessivo do nível de tensões é menor que a deformação que ocorre quando a camada está sujeita a tensões altas aplicadas de uma só vez.

2.6.4.2 Efeito da densidade, teor de finos, forma das partículas

Lekarp (1997) concluiu que o aumento da massa específica aparente seca melhora significativamente a resistência à deformação permanente; aumentando o teor de finos a resistência à deformação permanente diminui e que materiais britados apresentam menores deformações permanentes que os naturais com formas mais arredondadas.

Barksdale (1972) apud Kancherla (2004) concluiu que a deformação permanente axial em materiais granulares aumenta 185% quando o material é compactado a 95% ao invés de 100%.

Barksdale (1972) apud Kancherla (2004) e Thom e Brown (1988) registram que a deformação permanente aumenta com o aumento da porcentagem de finos no material granular.

Barksdale e Itani (1989) concluíram que agregados lamelares, com forma achatada, são mais suscetíveis a trilhas de roda.

2.6.4.3 Efeito da umidade na deformação permanente

O efeito da umidade em deformações permanentes deve ser relacionado com a existência de poro pressões. Lekarp et al (2000) explica que com o aumento da umidade, próximo a saturação, poro pressão positiva são desenvolvidas sob a aplicação das cargas. Poro pressões excessivas reduzem a tensão efetiva resultando na menor resistência à deformação permanente.

Alto grau de saturação e baixa permeabilidade devido à falta de condições de drenagem levam a altos valores de poro pressão, baixas tensões efetivas e consequentemente baixa rigidez e baixa resistência à deformação permanente. A graduação do material determina sua permeabilidade na condição saturada e o nível das forças de sucção na condição parcialmente saturada. Barksdale (1972) registrou aumento de 68% na deformação permanente em amostras saturadas.

2.6.4.4 Afundamento de Trilhas de Roda no pavimento (ATR)

De acordo com Dawson & Kolisoja (2004) os afundamentos de trilhas de roda podem ocorrer por várias razões. Existem quatro mecanismos principais que podem formar os afundamentos de trilha de roda denominados como modo 0, modo 1, modo 2 e modo 3, descritos a seguir:

Modo 0 - Somente devido à compactação. Ocorre uma pós-compactação da camada de material granular devido ao tráfego. Este modo de trilha de roda pode ser benéfico ao pavimento, promovendo a rigidez da camada resultando numa melhor distribuição das cargas do tráfego. Neste caso não existe deformação no subleito.

Modo 1 - Somente cisalhamento da camada de agregado. Ocorre em materiais granulares fracos. Aparecem elevações adjacentes a trilha de roda. Não ocorre deformação no subleito.

Modo 2 - Todo o pavimento vai ter trilha de roda. A camada de agregado acompanha à deformação do subleito.

Modo 3 - Ocorre quando as partículas do agregado são danificadas por atrito ou abrasão. O aspecto é semelhante ao modo 0.

As deformações permanentes têm sido estudadas através do ensaio triaxial. Neste caso as deformações resilientes são excluídas da análise considerando-se somente a evolução do somatório dos deslocamentos plásticos em função do número de ciclos. Usando a nomenclatura do trabalho de Werkmeister (2003), adiantando alguns conceitos de Shakedown, de acordo com Malysz (2008) o resultado típico do ensaio triaxial de deformação permanente pode ser dividido em três partes principais: pós compactação, taxa de deformação permanente constante e colapso incremental (estado de tensões muito elevado).

O modelo mais utilizado para o cálculo de deformações permanentes é o de Monismith et al (1975) apresentado pela equação (2.39).

$$\varepsilon_p = A \times (N)^B \tag{2.39}$$

Onde:

 ε_p = deformação permanente

N = número de aplicações cíclicas de carga

A e B são parâmetros de regressão estatística

Guimarães et al (2004) utiliza o modelo de Monismith em conjunto com um ajuste linear apresentado pelas equações (2.40) e (2.41) de acordo com suas condições de aplicação. A parte inicial da curva de deformações permanentes corresponde à fase de pós compactação e é ajustada pelo modelo de Monismith, a parte correspondente a fase de deformação permanente constante, é ajustada pelo modelo linear.

$$\varepsilon_p = A \times (N)^B$$
 quando $N \le N_{SD}$ (2.40)

$$\varepsilon_p = C \times N + D$$
 quando N > N_{SD} (2.41)

Onde:

 ε_p = deformação permanente

N = número de aplicações cíclicas

A, B, C e D = parâmetros de regressão estatística

 N_{SD} = número de ciclos para o qual ocorre o acomodamento das deformações permanentes, ou seja, Shakdown.

2.6.5 Modelos de previsão de desempenho

A avaliação estrutural de um pavimento flexível pelo método mecanístico utiliza modelos de previsão de desempenho dos materiais que constituem suas camadas (revestimento, base, subbase) e do subleito.

Estes modelos são desenvolvidos através de estudos em pistas experimentais ou em laboratórios e representam a previsão do número de repetições da carga de tráfego para atingir o trincamento do revestimento por fadiga ou a deformação permanente causada pelos afundamentos que ocorrem nas trilhas de roda.

Motta (1991) descreve que a fadiga é considerada nos projetos de pavimento através de modelos que relacionam o número de repetições do carregamento com o estado de tensões atuantes.

Atualmente existem programas computacionais que integram a resposta do pavimento aos modelos de previsão da condição do pavimento como o MMOPP (Mathematical Model of Pavement Performance) que prevê o afundamento da trilha de roda, o trincamento e as irregularidades longitudinais; ou de acordo com Ayres (1997) o AYMA que a partir da resposta do pavimento calculada pelo JULEA prevê o afundamento da trilha de roda e a deformação do subleito permitindo a análise probabilística dos resultados.

2.6.5.1 Modelos de desempenho considerando a fadiga dos materiais.

As misturas betuminosas que constituem os revestimentos dos pavimentos sofrem dano por fadiga devido à repetição do tráfego. Neste caso, os modelos de desempenho consideram a previsão do número de repetições da carga para atingir o trincamento por fadiga. Estes modelos relacionam-se com as tensões e deformações de tração que ocorrem nos pontos críticos do pavimento.

Franco (2000) relacionou os seguintes modelos:

a) Modelo da "Shell Oil" apresentado pela equação (2.42)

$$N_f = 6.85 \times 10^{-2} \left(\frac{1}{\varepsilon_t}\right)^{5.671} \left(\frac{1}{E}\right)^{2.363} \tag{2.42}$$

Onde:

N_f é o número de repetições de carga para a ruptura por fadiga;

E é o módulo complexo ou dinâmico da camada betuminosa em psi;

 ϵ_t é a deformação de tração na fibra inferior do revestimento, cm/cm.

b) Modelo do "Asphalt Institute" apresentado pela equação (2.43).

$$N_f = f_0 \left(4{,}325 \times 10^{-3} \varepsilon_t^{-3{,}291} E^{-0{,}854} \right) \tag{2.43}$$

Onde:

N_f é o número equivalente de solicitações da carga do eixo padrão rodoviário, considerado como terminal no que tange ao trincamento por fadiga da camada de concreto asfáltico;

E é o módulo complexo ou dinâmico da camada betuminosa em psi;

 ϵ_t é a máxima deformação específica horizontal de tração na face inferior da camada de concreto asfáltico, cm/cm;

f₀ é o fator laboratório-campo =18,4

Segundo Bernucci et al. (2007) é comum o uso de fatores laboratório-campo (FLC) devido à dificuldade de se considerar determinados fatores nos ensaios e no cálculo das tensões geradas nos corpos-de-prova tais como, envelhecimento da mistura e da progressão do dano no material durante o ensaio de laboratório ou aspectos presentes no campo e não simulados em laboratório como a variação térmica e a recuperação de trincas devido à ausência de cargas em algum período.

Pinto, S. (1991) apresentou dois modelos conforme as equações (2.44), (2.45) e (2.46)

$$N = f_0 \times 1,21 \times 10^{-8} \left(\frac{1}{\varepsilon_i}\right)^{2,66}$$
(Modelo 1)

onde:

N é a vida de fadiga da mistura betuminosa (determinada no ensaio de compressão diametral).

ε_i é a deformação específica de tração resiliente inicial, cm/cm;

 f_0 é o fator laboratório-campo = 10^5

$$N_L = 5.63 \times 10^5 \left(\frac{1}{\Delta \sigma}\right)^{2.61}$$
 (2.45)

$$N_c = f_0 N_L \tag{2.46}$$

Onde:

 N_c é o número terminal do eixo padrão rodoviário para uma área afetada por trincas de fadiga na ordem de 20% da área total do respectivo pavimento;

 f_0 é o fator laboratório-campo definido nos estudos de Pinto (1991), igual a 10^4 ;

 N_L é o número de repetições de cargas necessárias à ruptura completa da mistura betuminosa no laboratório, ou vida de fadiga da mistura betuminosa em laboratório.

 $\Delta\sigma$ é a diferença algébrica entre as tensões horizontal (de tração) e vertical (de compressão) no centro da amostra;

O DNIT especificou o modelo do DNER-PRO 269/94 através do modelo (2.47)

$$logD = 3,148 - 0,188logN (2.47)$$

Onde:

D é a deflexão máxima admissível, (0,01mm);

N é o número acumulado de solicitações de eixo padrão de 80,12kN (8,17tf), para o período de projeto.

2.6.5.2 Modelos de desempenho considerando a deformação permanente

De acordo com Pinto e Preussler (2002) a deformação permanente se caracteriza fundamentalmente pelos afundamentos que ocorrem ao longo da trilha de roda do revestimento.

Segundo Brown (1996) apud Núñez (1997), o afundamento nas trilhas de roda dos pavimentos decorre do acúmulo de deformações verticais permanentes, podendo incluir contribuições de todas as camadas. Em pavimentos com camadas asfálticas finas, as camadas granulares e o subleito são dominantes, especialmente se as condições de drenagem não forem satisfatórias.

Segundo Bernucci et al. (2007) As camadas não asfálticas abaixo do revestimento podem apresentar deformações permanentes pricipalmente por densificação adicional pelo tráfego e por ruptura ao cisalhamento. Esses problemas podem ser evitados por uma seleção dos materiais e compactação adequada e um bom projeto estrutural de forma a limitar as tensões atuantes aos níveis admissíveis e seguros.

A deformação permanente total de um pavimento pode ser estimada baseando-se na deformação permanente de cada camada utilizando-se a equação (2.48).

$$\Delta_p = \sum_{i=1}^n \left(\varepsilon_p^i \times h_i \right) \tag{2.48}$$

Onde:

 Δ_p = deformação permanente total;

 ϵ^{i}_{p} = deformação específica permanente da camada de ordem i;

 h_i = espessura da camada de ordem i;

n = número de camadas.

A avaliação da relação entre o número de solicitações do carregamento e a deformação permanente acumulada tem sido feita através de ensaios triaxiais de laboratório ou com simuladores de tráfego.

Santos (1998) estudando solos lateríticos definiu alguns modelos quando $\sigma_3 = 1,05 \text{ kgf/cm}^2 \text{ e}$ $\sigma_d = 3,15 \text{kgf/cm}^2$, representados pelas equações (2.49) (2.50) e (2.51).

$$\varepsilon_p = 5 \times 10^{-3} N^{0,11} \text{ (camada de base)} \tag{2.49}$$

$$\varepsilon_p = 2 \times 10^{-3} N^{0.06} \text{ (sub-base)}$$
 (2.50)

$$\varepsilon_p = 3 \times 10^{-3} N^{0,10} \text{ (subleito)} \tag{2.51}$$

Motta (1991) apresentou o modelo da equação (2.52)

$$\varepsilon_p = 2.2 \times 10^{-3} N^{0.081} \tag{2.52}$$

A limitação da tensão vertical no topo do subleito é bastante utilizada, pois, o subleito é a camada de menor resistência ao cisalhamento. Heukelom e Klomp apud Pinto e Preussler (2002) indicam as equações (2.53) até (2.56) para pavimentos dimensionados pelo método CBR.

$$(\sigma_v)_{adm} = \frac{0,006M_r}{1 + 0,70\log N} \tag{2.53}$$

$$(\varepsilon_v)_{adm} = \frac{(\sigma_v)_{adm}}{M_r} \tag{2.54}$$

$$M_r = 100CBR \tag{2.55}$$

$$(\sigma_v)_{adm} = 3.87 \times 10^{-2} CBR^{1.5}$$
 (2.56)

Onde:

 $(\sigma_v)_{adm}$ – Tensão vertical admissível no topo do subleito;

M_R – módulo de resiliência no subleito (kgf/cm²);

N – número de aplicações de carga (AASHTO);

CBR – Índice suporte Califórnia do subleito.

2.7 TRÁFEGO

O Tráfego de uma rodovia é um dos itens que influencia o desempenho de um pavimento. O dimensionamento da rodovia prevê a evolução do tráfego ao longo de certo tempo e avalia o poder de destruição que as cargas exercem em diferentes níveis de repetição. O pavimento é dimensionado em função do número equivalente de operações de um eixo padrão (N) a partir de dados de tráfego para o período de projeto escolhido.

2.7.1 Fatores de influência

Embora não seja difícil determinar a carga por eixo para um veículo individual, fica difícil saber o número e os tipos de veículos que um determinado pavimento estará sujeito durante sua vida útil. O dano que a carga do veículo causa no pavimento tem sido calculado através de uma conversão para um número equivalente padrão ou carga equivalente. A partir de 1960 a AASHTO vem utilizando a carga equivalente de 80 kN conhecida como ESAL (Equivalent Single Axle Load) tornando simples a utilização de um único número para representar todo o carregamento de tráfego na previsão de vida útil de um pavimento.

Avaliações realizadas com diferentes tipos de eixos e cargas nas pistas experimentais da AASHTO e do USACE (United States Army Corps of Engineers) forneceram dados para o desenvolvimento de fatores de equivalência de carga que convertem cargas variadas do tráfego em cargas equivalentes. Na AASHTO foram avaliadas efeitos do carregamento na perda de serventia para diversas concepções de pavimento considerando o índice de serventia terminal e a resistência do pavimento através do número estrutural. No USACE foram encontrados fatores de equivalência diferentes, pois, foram avaliados os efeitos do carregamento na deformação permanente.

As equações (2.57) e (2.58), onde P é o peso bruto total sobre o eixo, apresentam, como exemplo, as equações dos fatores de equivalência de carga obtidos pela AASHTO

considerando eixo simples de roda dupla e pela USACE considerando eixo simples de roda simples ou dupla para faixa de carga ≥ 8 t, Pinto e Preussler (2002).

$$FC = 1,8320 \times 10^{-6} \times P^{6,2542}$$
 (USACE) (2.57)

$$FC = 1,8320 \times 10^{-6} \times P^{6,2542}$$
 (USACE) (2.57)
 $FC = \left(\frac{P}{8.17}\right)^{4,32}$ (AASHTO) (2.58)

As cargas por eixo inferior a 4 toneladas apresentam um fator de equivalência muito baixo e praticamente não influenciam no cálculo do fator de carga, assim, os automóveis não são considerados neste cálculo.

A solicitação de tráfego para a vida de projeto de uma rodovia pode ser obtida com o cálculo dos fatores de veículo (FV) que é o produto do FE, média ponderada das quantidades percentuais dos diversos tipos de eixos que atuam no pavimento, pelo FC. Os FV podem ser calculados individualmente para cada categoria de veículo através de dados de uma estação de pesagem representativa e com as percentagens das categorias de veículos que ocorrem na rodovia. O FV e o FC são números que multiplicados pelo número de veículos que operam resulta no número de eixos equivalentes ao eixo padrão.

De acordo com Pinto e Preussler (2002) "o número equivalente de solicitações do eixo padrão de 8,2 tf referido aos fatores de equivalência de cargas de eixo da AASHTO é cerca de quatro vezes menor que o baseado nos fatores de equivalência de cargas de eixo do DNER (USACE), ou seja: $N_{AASHTO} = 0.25 N_{DNER}$ ".

O DAER utiliza os fatores de equivalência de carga do USACE nos cálculos de número N e a tabela 2.11 apresenta estes fatores de veículos

CATEGORIA DE VEÍCULO FV 0,345 Coletivo 0,063 Carga leve Carga média 1,371 4,986 Carga pesada Carga ultra-pesada 11,205

Tabela 2.11: Fatores de veículos adotados pelo DAER/RS.

O fator climático regional (F_R) é considerado na equação que calcula o número N uma vez que expressa as variações ambientais que podem modificar as propriedades dos materiais. O DAER/RS adota o F_R igual à unidade, a favor da segurança, pois, nas condições climáticas

brasileiras os materiais trabalham em uma umidade de equilíbrio inferior à do corpo de prova das condições do ensaio de CBR (ensaio realizado após quatro dias imerso na água). Sendo assim, os pavimentos podem ser superdimensionados, pois, os materiais trabalham em melhores condições de suporte que àquela suposta em projeto.

De acordo com Bernucci (1995), a AASHTO (1986) recomenda que a resistência dos materiais seja medida através do módulo resiliente efetivo que expressa de forma ponderada a resistência do material nos diferentes estados que estes posam se apresentar, dependendo das condições climáticas e da sazonalidade regional. Neste caso o F_R seria considerado no cálculo da resistência dos materiais que compõe o pavimento e o subleito e não mais no cálculo do número N.

O fator direcional (F_D) é considerado 0,5 uma vez que a contagem de tráfego é realizada nos dois sentidos da rodovia e, assume-se que metade do volume diário médio de veículos trafegue em cada um dos sentidos da via. VDM é o volume diário médio de veículos que passa em uma determinada seção da via, nos dois sentidos, calculado com base em contagens de veículos em postos de pesquisa de campo.

2.7.2 Classificação dos veículos

Para a avaliação do efeito do tráfego sobre o pavimento é preciso conhecer as cargas por eixo com as quais os veículos de carga solicitam a estrutura. Assim é necessário adotar uma classificação de veículos por eixos. A tabela 2.12 apresenta a classificação de veículos adotada pelo DAER/RS.

Tabela 2.12: Classificação de veículos adotada pelo DAER/RS.

CATEGORIA DE VEÍCULO	CARACTERIZAÇÃO				
Passeio	Automóveis, caminhonete e furgão (2 eixos); caminhonete e furgão com semi-reboque (3 eixos); caminhonete e furgão com semi-reboque (4 eixos).				
Coletivo	Ônibus e micro ônibus com 2 eixos e ônibus com 3 eixos				
Carga leve	Caminhão com 2 eixos e capacidade de carga inferior a aproximadamente toneladas				
Carga média	Caminhão com 2 eixos e capacidade de carga igual ou superior a aproximadamente de 5 toneladas.				
Carga pesada	Caminhão com 3 eixos				
Carga ultrapesada	Caminhão com 4, 5, 6, 7 ou mais eixos.				
Outros	Motocicletas, tração mecânica, tração animal e bicicleta				

A classificação dos veículos adotada pelo DNIT é diferente da classificação de veículos adotada pelo DAER/RS. O DNIT faz uma classificação mais detalhada em função do tipo de veículo e de sua rodagem apresentada no Manual de Estudos de Tráfego (DNIT, 2006). A carga ultrapesada é denominada de reboque/semireboque e é classificada em: 2S1; 2S2; 3S2; 2S3; etc. onde o primeiro algarismo representa o número de eixos do cavalo mecânico e o segundo, o número de eixos do semi-reboque.

2.7.3 Cálculo do número N

Nos pavimentos constituídos por materiais alternativos considera-se que o número N de repetições de carga não ultrapasse $N=10^6$. Com este valor de repetições de carga equivalente ao eixo padrão de 82 kN, estas rodovias são também denominadas de baixo volume de tráfego.

A equação (2.59) apresenta o cálculo do número N, utilizado pelo DAER/RS, que é influenciado pelo volume diário médio de veículos inicial, a composição da frota, a frequência de distribuição de cargas por cada tipo de veículo ou por cada tipo de eixo, a distribuição do tráfego por sentido ou por faixa, a taxa de crescimento do tráfego, o período de projeto e fator climático regional.

$$N = 365 \times VDM_{comercial} \times F_{v} \times F_{D} \times F_{R}$$
 (2.59)

Onde:

N = número equivalente de eixos padrão de 8,2t.

 F_v = Fator de veículo (apresentado na Tabela 2.11)

 F_D = Fator Directional (0,5)

 F_R = Fator regional (1,0)

Marlova Grazziotin Johnston; (marlovajohnston@gmail.com); Tese de Doutorado; PPGEC/UFRGS; 2010

2.8 CLIMA NO ESTADO DO RIO GRANDE DO SUL

O atlas socioeconômico do Rio Grande do Sul especifica o clima do Rio Grande do Sul como temperado tipo subtropical, classificado como mesotérmico úmido (www.scp.rs.gov.br/atlas/atlas.asp?menu=340). A posição geográfica do Estado entre os paralelos 27°03'42" e 33°45'09" latitude sul, e 49°42'41" e 57°40'57" longitude oeste, apresenta grandes diferenças em relação ao Brasil. A latitude reforça as influências das massas de ar oriundas da região polar e da área tropical continental e Atlântica. A movimentação e os encontros destas massas definem muitas de nossas características climáticas. As temperaturas apresentam grande variação sazonal, com verões quentes e invernos bastante rigorosos, com a ocorrência de geada e precipitação eventual de neve. As temperaturas médias variam entre 15 e 18°C, com mínimas de até -10°C e máximas de 40°C. A figura 2.5 apresenta o mapa de temperatura média anual para o Estado do Rio Grande do Sul fornecido pela Secretaria de Energia Minas e Comunicações.

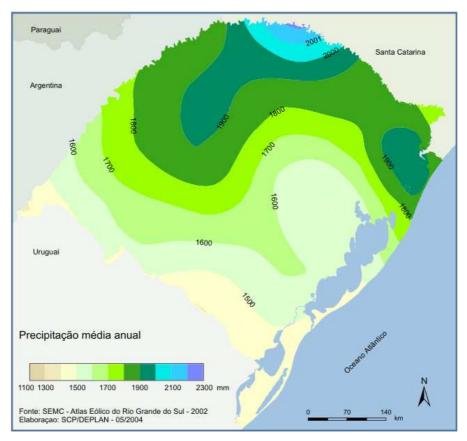


Figura 2.5: Precipitação média anual do Estado do Rio Grande do Sul (Fonte SEMC-Atlas Eólico do RS – 2002, SCP/DEPLAN-2004)

Com relação às precipitações, o Estado apresenta uma distribuição relativamente equilibrada das chuvas ao longo de todo o ano, em decorrência das massas de ar oceânicas que penetram no Estado. O volume de chuvas, no entanto é diferenciado. Ao sul a precipitação média situase entre 1.299 e 1.500 mm e, ao norte entre 1.500 e 1.800 mm, com intensidade maior de chuvas a nordeste do Estado, especialmente na encosta do planalto, local com maior precipitação no Estado. A figura 2.6 apresenta o mapa de precipitação média anual para o Estado do Rio Grande do Sul fornecido pela Secretaria de Energia Minas e Comunicações.

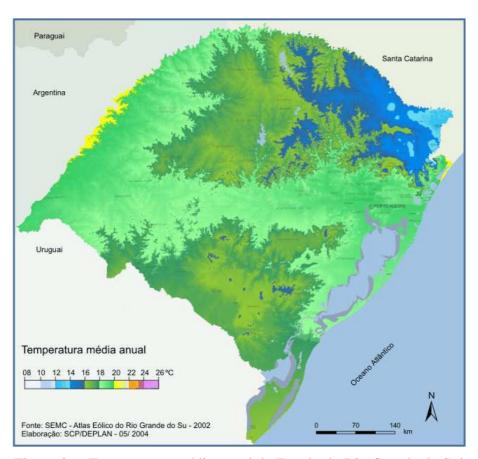


Figura 2.6: Temperatura média anual do Estado do Rio Grande do Sul (Fonte SEMC-Atlas Eólico do RS – 2002, SCP/DEPLAN-2004)

2.9 PROGRAMAS DE MANUTENÇÃO DE PAVIMENTOS

O nível de desempenho de qualquer pavimento depende da manutenção recebida durante sua vida útil. Para otimizar o custo total de transporte, o pavimento deve ser mantido dentro de níveis funcionais e estruturais desejáveis ou admissíveis exigindo um contínuo e adequado processo de manutenção. Os órgãos responsáveis pelas rodovias devem estabelecer um sistema de gerenciamento das manutenções nos pavimentos encontrando estratégias para manter os pavimentos em boas condições de uso assegurando segurança e conforto ao usuário com razoáveis custos para a sociedade.

Durante um período de 60 dias como estudante no Centro de Engenharia de Transportes da Universidade de Nottingham (NTEC) foi possível conhecer os sistemas de gerencia de manutenção utilizados pela Agência de Autoestradas do Reino Unido (United Kingdom Highways Agency- HA), o sistema de gerência de manutenção utilizado pelo Conselho responsável pelas rodovias de uma parte da Escócia (Highland Council - HC), o sistema de gerenciamento utilizado pela Comissão Florestal da Escócia (Forestry Commission Scotland) e o sistema de gerenciamento de manutenções utilizado pela Administração de Rodovias da Suécia (SRA- Swedish Road Administration). A pesquisa realizada nos setores responsáveis pelas rodovias destes países identificou itens indispensáveis para um programa de manutenção de rodovias, tais como, levantamentos, identificação de modelos de deterioração, avaliação econômica e identificação de gatilhos para manutenção.

2.9.1 Levantamentos

O primeiro passo para realizar um programa de manutenção em uma malha rodoviária é obter os levantamentos das superfícies dos pavimentos de todas as rodovias. Estes levantamentos vão indicar uma escala de possíveis exigências de manutenção. Os levantamentos realizados por inspeção visual ou através de veículos fornecem dados do perfil do pavimento. O Reino Unido (UK) utiliza levantamentos visuais em rodovias com baixo volume de tráfego e utiliza equipamentos tipo Scanner com até 17 lasers nas rodovias com alto volume de tráfego, já na Suécia todos os levantamentos são realizados com Scanner. A tabela 2.13 apresenta os tipos de levantamentos e a freqüências em que os mesmos são realizados nas rodovias pertencentes a cada uma das agências pesquisadas.

Tabela 2.13: Tipos e freqüência de levantamentos realizados pelas agências pesquisadas.

LOCAL	Defeitos levantados	Equipamento	Classe da rodovia	Frequência do levantamento	Identificação de defeitos
		Scanner	Motorway Classe A	Anual	
INGLATERRA (Highway		Scame	Classe B		
Agency)	Trincas; Trilha de Rodas;	Scanner/Visual (Baixo Volume de Tráfego)	Classe C Classe U (não classificadas)	A cada 2 anos (2 direções)	
	Irregularidade; Textura; Atrito	1. Monitor multifuncional	Classe A	A cada 2 anos (2 direções)	Identificar comprimento da
ESCÓCIA (Highland	Атпо	(velocidade normal)	Classe B Classe C	A cada 4 anos (2 direções)	rodovia com
Council)		2. Scanner (velocidades > 100km/h)	Classe U (não classificadas)	10% Amostragem (1 direção)	deterioração na superfície
SUÉCIA	Trilhas de rodas;		Alto Volume de Tráfego	Anual	
(Swedish Road Administration)	Irregularidade; Macro e Micro textura	Scanner (17 lasers)	Baixo Volume de Tráfego	A cada 3 ou 6 anos (depende do tráfego)	
ESTRADAS FLORESTAIS ESCÓCIA (Forestry Commission)	Drenagem; Vegetação; Pedras soltas; Panelas; Trilha de rodas; Superfície escorregadia; Água na superfície; Irregularidade; etc	Carro com PC de bolso com GPS	-	-	Identificar o problema: 1. Sem defeito 2. Pouco Defeito 3. Muito Defeito

2.9.2 Modelos de deterioração

Um programa de manutenção em rodovias depende da determinação dos modelos de deterioração de cada rodovia. A determinação dos modelos de deterioração depende de dois ou mais levantamentos devendo ser considerados os defeitos particulares de cada região.

Após determinar o tipo de avaliação para cada tipo de rodovia é determinado o indicador desta avaliação. Em seguida é criado um índice que represente a condição do pavimento e determinado como esta condição deve ser considerada. A tabela 2.14 apresenta como foram criados os modelos de deterioração em cada uma das agências visitadas.

Tabela 2.14: Modelos de deterioração nas agências visitadas.

Local	Indicador	Tipo de Avaliação	Índice	Condição	Resultados	Criação de Modelos		
INGLATERRA (Highway Agency)	Profundidade Trilha de Roda Variação no perfil longitudinal Profundidade Textura Trincamento Ruído	Segurança Estrutura Qualidade para o usuário Perda de atrito Condição da superfície Nível de ruído	NCI = SRI+SCI NCI = Índice de Condição da Rede SRI = Índice de Resistência ao Atrito SCI = Índice de Condição da Superfície	Acréscimo do NCI indica deterioração NCI=combinaçã o de uma nota de 1 a 100 para cada defeito	O aumento do NCI indica a deterioração	Depende da experiência do engenheiro		
ESCÓCIA (Highland Council)	Profundidade Trilha de Roda Variação no perfil longitudinal Profundidade Textura Trincamento	Segurança Estrutura Qualidade para o usuário Perda de atrito Condição da superfície	Indicador da Condição da Rodovia (RCI)	Severidade de cada defeito e importância relativa para o usuário: < 40 aceitável 40 a 100 investigável > 100 reparos	O aumento do valor de RCI indica deterioração	A cada 10 anos		
ESCÓCIA (Rodovias Florestais)	Profundidade Trilha de Roda Variação no perfil longitudinal Profundidade Textura	Segurança Estrutura Qualidade para o usuário Perda de atrito		Condição da	ı rodovia			
	Irregularidade longitudinal (IRI)	Qualidade para o usuário	IRI	Acréscimo do IRI indica a deterioração (Aumento máximo de IRI 0,09m/km/ano)	Aumento da trilha de roda e IRI	A cada 6 anos para baixo volume de tráfego.		
SUÉCIA (Swedish Road Administration)	Trilha de Roda	Segurança Estrutura	Trilha de Roda	Acréscimo da TR indica a deterioração (Aumento máximo da TR 0,9mm/ano)	indicam Fadiga	A cada 2 anos outras rodovias		
	Inspeção Visual/ Inspeção detalhada	Restauração						

2.9.3 Avaliação econômica

O terceiro passo para a criação de um programa de manutenção é a avaliação econômica.

A avaliação econômica é utilizada para analisar os benefícios recebidos pelo usuário em função da qualidade do pavimento. Permite comparar custos e benefícios e capacita o operador para distribuir o orçamento disponível da melhor maneira, otimizando a alocação do orçamento em nível de rede. Numa avaliação econômica, custos de manutenção são comparados com os custos do usuário, acidentes, operação do veículo, tempo de viagem e impacto do tráfego no meio ambiente.

Para uma rede de auto-estradas é fácil provar o benefício que o uso de um orçamento em manutenção vai causar no custo de operação dos veículos ou no custo com os acidentes e custos com o tempo de viagem. Neste caso não é necessário considerar qualquer avaliação de benefícios sociais que venham a ocorrer com esta decisão.

Johansson (2006) mostra que um grande investimento em manutenção numa rodovia de baixo volume de tráfego causa uma pequena redução nos custos do usuário enquanto que pequenos melhoramentos numa autoestrada causam grandes reduções no custo da sociedade, pois, o grande volume de usuários passa a ser um multiplicador para o pequeno benefício.

Para comprovar o bom emprego de recursos do orçamento em manutenção de uma rodovia de baixo volume de tráfego, é importante considerar os benefícios do aumento do bem estar social, tal como possibilitar a freqüência a escolas, atendimento a saúde e outras necessidades da população das pequenas cidades servidas por estas rodovias. Quando estes benefícios são incluídos na decisão, pequenos melhoramentos nas condições da rodovia podem ser responsáveis por grandes aumentos nos benefícios do usuário.

Johansson (2006) esclarece que áreas consideradas frágeis são áreas que sofrem com o declínio da população devido à dificuldade de manter serviços sociais fundamentais. Esta fragilidade é considerada na avaliação das prioridades de manutenção das rodovias públicas de baixo volume de tráfego da Escócia. Outra avaliação considerada na priorização das intervenções de manutenção na Escócia é "lifeline", ou seja, verificar o quanto aquela rodovia é importante como ligação com outros centros urbanos.

O Índice de Necessidade de Transporte (TNI) utilizado no Highland Council, baseado na fragilidade social, "lifeline", necessidade dos usuários e comércio das áreas rurais, parece fornecer um significado relevante para as manutenções na rodovia incluindo estes aspectos para decidir a questão econômica da rodovia.

A tabela 2.15 apresenta um resumo dos modelos de indicadores de avaliação econômica utilizado pelas agências visitadas.

Tabela 2.15: Resumo dos indicadores de avaliação econômica utilizados pelas agências visitadas em 2008.

LOCAL	INDICATOR	EVALUATION	CONDITION
		Segurança	
		Acessibilidade	
INGLATERRA	NCI	Meio ambiente	Auto-estradas
		Usuários	
		Ruído	
		Fragilidade	
ESCÓCIA	TNI	Lifeline	Baixo volume de
(Higlands) Rodovias Públicas		Necessidade da população	tráfego
		Necessidade de comércio	
ESCÓCIA	A: L:1 : dd	Condições funcionais	Custos de transporte (produtos e industria)
(Rodovias Florestais)	Acessibilidade	Condições estruturais	Economia
		Drenagem	(áreas rurais)
SUÉCIA	Gerenciamento da rede de rodovias	-	Alto volume de tráfego e Baixo volume de Tráfego

2.9.4 Gatilhos de Manutenção

Os gatilhos de início de uma manutenção são dependentes do local onde se encontra a rodovia e do material utilizado na estrutura do pavimento. O momento ideal para realizar uma intervenção deve ser escolhido após várias pesquisas realizadas na rodovia, pois, cada estrutura de pavimento apresenta defeitos particulares a serem considerados.

As manutenções podem trazer benefícios imediatos ao usuário ou podem trazer benefícios futuros à sociedade, mas, sempre vão trazer benefícios (HDM-4, 2004).

Para alto volume de tráfego o Reino Unido desenvolveu um software que permite aos engenheiros acompanhar o desempenho e decidir sobre as intervenções de manutenção nas rodovias.

Para baixo volume de tráfego, a Escócia desenvolveu um software que considera as prioridades de quatro níveis de serviço nas rodovias. Os níveis de serviço são baseados nas necessidades de transporte como acessibilidade, fragilidade e "lifeline".

O conforto do usuário (velocidade, IRI, panelas), a segurança no tráfego (atrito pneupavimento, trilha de roda), a restrição de carga e a acessibilidade são os indicadores prioritários para uma rodovia de baixo volume de tráfego na Escócia.

Após várias pesquisas a administração das rodovias da Suécia concluiu que o aumento da trilha de rodas e o aumento do IRI são os únicos gatilhos que devem ser considerados para realizar manutenção nas rodovias de alto e de baixo volume de tráfego.

2.9.5 Tipos de manutenção

A pesquisa realizada junto às agências citadas concluiu que o Reino Unido utiliza como manutenção reativa a Selagem de trincas, os Remendos e os Reparos localizados menores. Como manutenção proativa utiliza a Selagem com lama para rejuvenescer o revestimento; a Reperfilagem para promover atrito e proteger as camadas inferiores da entrada de água; o Recapeamento com 4,0cm de revestimento para reconstituir o atrito e reparar defeitos menores e o Recapeamento espesso parcial ou total ou, por último, Reconstrução quando houver necessidade de adicionar estrutura.

3 DADOS RESGATADOS UTILIZADOS NO ESTUDO

A análise de desempenho dos materiais alternativos utilizados nas camadas de base e/ou subbase, estudados nesta Tese, foi realizada em trechos experimentais executados em rodovias pavimentadas localizadas conforme apresentado na figura 3.1. O Plintossolo foi analisado na rodovia ERS-101, trecho Bacopari – Mostardas; o Basalto alterado foi analisado em dois trechos experimentais da rodovia ERS-132, trecho Vila Maria – Camargo - Nova Alvorada e a Laterita foi analisada na rodovia ERS-536 Caibaté - Entr. BR/285(A) (p/São Luiz Gonzaga) e na rodovia 392 AM 9100 Acesso a Sete de Setembro.

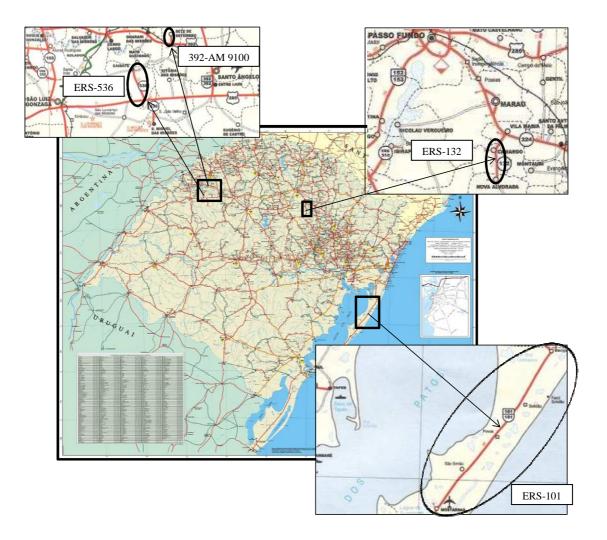


Figura 3.1: Localização das rodovias em estudo

Cada pavimento escolhido para o estudo exigiu uma pesquisa detalhada de dados já existentes, levantados ao longo da sua vida útil, que será apresentada separadamente para cada trecho. Este capítulo apresenta dados sobre o projeto, construção e estudos relacionados com as rodovias escolhidas para esta Tese.

3.1 ERS-101, TRECHO BACOPARI-MOSTARDAS

A ERS-101 é uma rodovia estadual com 319,78 quilômetros que liga a cidade de Osório à cidade de São José do Norte. Segundo o Sistema Rodoviário Estadual (SRE), do Estado do Rio Grande do Sul, o trecho, entre a cidade de Bacopari e a cidade de Mostardas, com 84,45 quilômetros é identificado pelo código 4455 e inicia-se no km 178+970 em Bacopari e termina no km 263+420 em Mostardas. Localiza-se na planície costeira do Rio Grande do Sul, numa estreita faixa de terras arenosas situada entre a Lagoa dos Patos e o Oceano Atlântico. O relevo baixo e plano da região é formado predominantemente por sedimentos areno-argilosos inconsolidados da Formação Chuí – Quartenário, resultando na carência de materiais pétreos ou argilosos normalmente utilizados em projetos de pavimentação.

3.1.1 - Histórico do pavimento

Oliveira et al. (1992) descrevem que o primeiro caminho percorrido no Estado, foi o trecho São José do Norte – Mostardas – Bacopari – Palmares, pelos portugueses que buscavam uma ligação por terra ao porto de Laguna. A pavimentação desta rodovia foi assumida pelo DAER em 1983 sendo inicialmente contratado o subtrecho Bacopari - Mostardas.

A pavimentação desta rodovia exigiu a elevação do greide de terraplenagem para 1,0 ou até 1,5m a partir do terreno natural, pois o lençol freático, neste local, está próximo à superfície. A areia fina disponível para os aterros definidos em projeto se tornou um problema, tanto no verão devido à falta de coesão, como no inverno devido ao trilhamento da areia úmida prejudicando, assim o tráfego da região. A erosão hidráulica e eólica também contribuía para que, a cada ano, extensões consideráveis de aterros fossem destruídas.

Atualmente, o marco quilométrico da cidade de Capivari encontra-se no km 40+000 da rodovia, conseqüentemente, a cidade de Bacopari encontra-se no km 80+000 e a cidade de Mostardas no km 163+972,38. O trabalho aqui apresentado segue a quilometragem encontrada hoje, diferente daquela apresentada pelo Sistema Rodoviário Estadual (SRE).

Durante a década de 1980 a Unidade de Normas e Pesquisas (UNP/DAER), desenvolveu uma pesquisa com um solo disponível naquela região denominado Plintossolo conhecido na região como "barrinho". O resultado desta pesquisa viabilizou a pavimentação desta rodovia que há muito tempo era conhecida como a "estrada do inferno" tal a dificuldade de ser trafegada.

Em 1982, entre os meses de janeiro e abril, a UNP em conjunto com a residência de Osório, executou um trecho experimental de 500m entre os quilômetros 125+780 e 126+480 cuja estrutura do pavimento foi constituída com 15,0cm de sub-base de barrinho natural, 15,0cm de base de barrinho mais aditivo DS 328 ou DYNACAL (para diminuir a susceptibilidade ao efeito erosivo da água) e revestimento de Tratamento Superficial Duplo (TSD) com capa selante.

A tabela 3.1 apresenta os dados de deflexão obtidos no trecho experimental localizado no quilômetro 126+000 durante o período de 1982 até 1985;

Tabela 3.1: Deflexões medidas com VB no km 126+000.

DATA	DEFLEXÕES				
DATA	LE	LD			
2/06/1982	61	60			
15/12/1982	79	60			
24/03/1983	65	59			
30/09/1983 (Primavera)	83	71			
11/04/1984	69	65			
31/10/1984	80	74			
17/07/1985	74	70			

(Fonte: Oliveira et al., 1992).

A análise das deflexões mostra que no período da primavera os dados obtidos estão mais elevados, acréscimo justificável pelo aumento de umidade das camadas do pavimento decorrentes do período de chuvas correspondente ao inverno, Oliveira et al (1992). O efeito da temperatura no revestimento foi desprezado por se tratar de Tratamento Superficial com espessura de 2,5cm.

A tabela 3.2 apresenta os períodos de construção da rodovia. Todos estes trechos foram construídos com a mesma estrutura do trecho experimental, de acordo com Oliveira et al (1992).

Tabela 3.2: Períodos de pavimentação da rodovia

ESTACAS (km)	PERÍODO (anos)
125+780 ao 126+480	1982 (trecho experimental)
135+810 ao 164+490	1984 a 1986
83+000 ao 90+600	1987
80+000 ao 83+000	1989 a 1990
90+600 ao 99+000	1989 a 1990
99+000 ao 110+000	1991
110+000 ao 122+000	1992
Restante do trecho	1993

De acordo com a tabela 3.2, entre os anos de 1984 e 1986, a construção estendeu-se entre os quilômetros 135+810 e 164+490, em 1987 foi construído o trecho entre os quilômetros 83+000 e 90+600 e entre os anos de 1989 e 1990 foi construído o trecho entre os quilômetros 80+000 e 83+000.

A partir de 1991 os 44.485,47 m restantes, ou seja entre os quilômetros 90+600 até 125+780 e 126+480 até 135+810 foram pavimentados recebendo a mesma estrutura de pavimento anteriormente projetada, ou seja 15cm de sub-base de barrinho natural, 15cm de base de barrinho mais aditivo DS 328 ou DYNACAL e revestimento de TSD com capa selante. O TSD se estendeu para os acostamentos (1,00m), mas a capa selante foi aplicada somente na pista de rolamento com 6,60m de largura.

Em março de 1993 foi concluída a pavimentação dos 84,45km do trecho em questão.

Este pavimento foi concebido para ser executado em etapas considerando a evolução do tráfego.

Segundo o projeto apresentado a primeira etapa teve sua estrutura definida baseada na experiência dos técnicos da UNP que levaram em conta uma vida útil de projeto de cinco anos. A segunda etapa estava prevista para o final da vida útil de projeto da primeira etapa, ou seja, cinco anos, quando deveria ser executado um reforço da estrutura através da construção de uma camada de revestimento de 5cm de CBUQ ou outro revestimento a ser especificado, camada esta que deveria ser estendida sobre os acostamentos.

A partir de 1998, através de seu distrito operacional de Osório, o DAER começou a realizar reperfilagem com CBUQ em trechos isolados, onde apareciam defeitos, iniciando próximo à cidade de Bacopari.

Ainda em 1998 foi executado um projeto de restauração para o trecho Bacopari Mostardas.

Em 2000 foi prevista uma restauração com 5,0cm de CBUQ nas duas faixas de rolamento em todo o trecho, que foi executada entre 2001 e 2002.

Em 2005 um novo levantamento identificou espessuras de revestimento constituídas por TSD+CBUQ variando ao longo dos 84,49km entre 4,0cm e 16,0cm.

3.1.2 Dados do projeto original

Segundo estudos realizados pela UNP nos anos 80, o "barrinho", é um solo de textura arenoargilosa, constituído de 81% de areia fina, 1% de silte e 18% de argila, com concentração de
óxidos. A matriz possui coloração amarela com mosqueados em tons vermelhos e
acinzentados e pode apresentar manchas pretas, ocorrendo a profundidades em torno de
30,0cm com as espessuras entre 80,0 e 100,0cm. O material seco e destorroado passa
totalmente na peneira n°10 (2,0mm).

De acordo com o laudo técnico do Prof. Dr. E. Vertamatti do Instituto da Aeronáutica (ITA) de 1987, DYNACAL "é um produto empregado na estabilização de solos para a construção de estradas e aeroportos a baixo custo. O processo de estabilização é resultante da aplicação conjunta de um sal metálico (sulfato de alumínio) ou uma cal (resíduo de carbureto) atuando como reagente de modo a produzir impermeabilização e/ou cimentação dos solos com baixa capacidade de suporte. Seu mecanismo de funcionamento consiste em fazer perene a resistência dos solos tratados com o produto, tanto através da impermeabilização como da cimentação de partículas. O sulfato de alumínio pode produzir um efeito de impermeabilização, produzido pelo fato das partículas argilosas absorverem parte do produto (retendo os íons de alumínio) produzindo mudanças na atividade superficial dessas partículas. Possui a capacidade de criar formações que tendem a reduzir a capilaridade e de formar um gel insolúvel que passa a preencher os microporos existentes nos solos. O solo fica estabilizado na presença de água, pelo porte do seu poder de sucção, de maneira que para aumento de umidade até uma eventual saturação, os materiais tratados passam a perder menos

resistência em relação aos que não foram tratados. A incorporação com resíduo de carburetos pode gerar ao solo efeitos de impermeabilização e de cimentação."

Na época da pesquisa realizada pela UNP conforme relatado por Passos et al. (1993) pôde-se observar que mesmo na fração inferior a 0,075mm (peneira #200) o teor de sílica era bastante elevado confirmando o caráter quartzoso do material, e, que em termos de classificação rodoviária o barrinho é classificado como A-2-4, ou seja areia siltosa pela classificação AASHTO e como SM, solo arenoso não plástico, na classificação unificada. Na classificação MCT o solo foi classificado como LA, areia laterítica, situando-se no limite para NA, areia não laterítica. Finalmente nos ensaios de compactação na energia intermediária foram obtidas umidades ótimas em torno de 10,5% e densidades de 19,5 kN/m³. A capacidade suporte na energia intermediária alcançou ISC entre 40 e 50%.

A tabela 3.3 apresenta a composição química de uma amostra do plintossolo utilizado na base e sub-base da rodovia.

COMPOSIÇÃO QUÍMICA FRAÇÃO < 0,075mm (%) AMOSTRA TOTAL (%) Ferro (Fe) 1,24 4,4 1,78 Oxido de Ferro (Fe2O3) 6,8 Aluminio (Al) 2 10.4 Oxido de Aluminio (Al2O3) 3,78 19,6 Manganês (Mn) 0,007 0.024 0,022 Cálcio (Ca) 0,14 0,076 Sódio (Na) Potássio (K) 0,20,41 Dióxido de Silício (SiO2) 91,4 34,7

Tabela 3.3: Composição química do material

3.1.3 Desempenho do pavimento até o ano de 1991

Em 1991 o DAER, através da UNP, iniciou um estudo com a finalidade de analisar o desempenho deste material como base de pavimento. Na época a rodovia apresentava um VDM de 565 veículos resultando um número N de 2,7 x 10⁵ operações do eixo de 8,2t para o primeiro ano. Os dados aqui apresentados foram obtidos dos trabalhos de Passos et al (1993) e Oliveira et al (1996).

3.1.3.1 Levantamentos e ensaios realizados

Foram escolhidos cinco segmentos característicos com datas de execução distintas variando de seis meses a nove anos. Foram retiradas amostras indeformadas (blocos de 30x30cm) e amostras amolgadas da camada de base da pista de quatro segmentos para realização de ensaios de laboratório. Foram também realizados levantamentos de deflexões com a viga Benkelman e avaliação da superfície de acordo com a DNER PRO 08/79 hoje DNIT (006/2003-PRO).

Segundo Passos et al. (1993) das amostras indeformadas foram realizados ensaios verificando o comportamento da camada de base e/ou sub-base nas mesmas condições em que se encontrava na pista. Das amostras amolgadas foram realizados ensaios de caracterização e verificação da capacidade de suporte do material. Das amostras indeformadas foram realizados ensaios de módulo de resiliência. As tabelas 3.4 e 3.5 apresentam a localização da retirada de amostras e um resumo dos resultados dos ensaios realizados em 1991.

As diferenças de coloração encontradas durante a retirada das amostras, material amarelo nos quilômetros 81 e 108 e material mais vermelho e concrecionado dos quilômetros 126 e 137 refletiram-se também com relação à coesão. O material amarelado da base do km 81 e 108 apresentava maior facilidade de ser escavado do que o material mais avermelhado e concrecionado dos quilômetros 126 e 137, Passos et al. (1993).

Verificou-se também uma diferença de comportamento em relação à presença de água. No km 137 os bordos encontravam-se totalmente submersos devido a problema de drenagem e o material da base apresentava-se rijo, já no km 81 e 108, a base na presença de algum defeito na superfície do pavimento que permitisse a entrada de água, podia ser escavada com facilidade, Passos et al. (1993).

Tabela 3.4: Localização e resultados dos ensaios de caracterização 1991

Estacas	Camada	Espes. (cm)	Idade	Descrição Visual	# 10	# 200	Argila (%)	Silte (%)	Areia fina(%)	LL	IP	PInat (%)	PIaditivo (%)
81+243	base	14,5			100	17	15	1	84	NP	NP	-	310
81+243	sub-base	16	2 0000	areia amarela	-	-	-	-	-	-	-	-	-
81+740	base	-	2 anos	amarcia	-	-	-	-	-	-	-	-	370
81+740	sub-base	-			-	-	-	-	-	-	-	290	-
				horizonte								218	88
104+000	B 005 (jazida)	-	-	plíntico amarelado, mosqueados laranja	15	14	1	85	NP	NP	235	106	
108+600	base	18	6	areia	100	17	16	1	83	NP	NP	1	100
100+000	sub-base	20	meses	amarela	-	-	-	-	-	-	1	180	-
126+020	base	16	9 anos	barrinho	100	20	18	1	81	19	6	-	100
126+240	1	-	9 anos	-	-	ı	-	-	1	-	-	110	-
				horizonte								49	0
129+300	B 021 (jazida)	-	-	plíntico mosqueados vermelho, cinza, amarelo	100	18	17	0	83	NP	NP	88	0
137+700	base	14	6 ana -	barrinho	100	19	18	1	81	NP	NP	-	9
13/+/00	sub-base	18	6 anos	Darriiiio	-	-	-	-	-	-	-	310	-

Tabela 3.5: Localização e resultados dos ensaios de compactação, ISC e módulos de resiliência - 1991

Estacas	Camada	hcampo (%)	hót (%)	γdmáx	ISC (%)	Módulo de	resiliência
Estacas	Camada	ncampo (%)	HOt (%)	(kN/m3)	ISC (%)	k1	k2
81+243	base	10,3	11	19,30	42	2820	0,66
81+243	sub-base	-	9	19,55	59	-	-
81+740	base	-	-	-	ı	2310	0,42
81+740	sub-base	-	-	-	ı	-	-
104+000	B 005 jazida)	-	10,7	19,1	40	-	-
108+600	base	10,4	10,7	19,25	65	1510	0,50
108+600	sub-base	10,4	10,5	19,40	60	-	-
126+020	base	9,5	10,3	19,75	44	1820	0,47
126+240	-	-	-	-	-	3090	0,37
129+300	B 021 jazida)	-	12	19,20	42	-	-
137+240	-	-	-	-	-	2680	0,30
127 - 700	base	11,5	10,3	19,46	43	3100	0,30
137+700	sub-base	11,7	10,5	19,10	25	-	-

Estas diferenças de coloração também apareceram nos resultados dos ensaios de Permeabilidade capilar e Perda por Imersão realizada nas amostras retiradas da pista. A velocidade de absorção de água apresentou-se muito maior nas bases do km 81 e 108 do que no material retirado do km 126 e 137.

Ensaios triaxiais de carga repetida foram realizados em amostras indeformadas retiradas da pista. De acordo com Passos et al. (1993), a diferença de coloração também se refletiu nos resultados de módulo de resiliência.

A grande variedade nos resultados dos ensaios de módulo de resiliência do km 126 foi atribuído a uma falta de homogeneidade do solo ou da mistura solo-aditivo, Passos et al. (1993).

A tabela 3.6 apresenta os levantamentos superficiais e as deflexões características medidas através da viga Benkelman em 1991 nos cinco segmentos teste.

Tabela 3.6: Levantamentos e deflexões superficiais nos segmentos teste - 1991.

						Dc	(10-2r	nm)	
Segmento	100	ATR	Principais	Conceito	L	E	LI)	Total
(Km)	IGG	(mm)	contribuições DNIT(006/2003-PRO)	TRE	TRI	TRE	TR I	da Trilha Externa	
81 ao 82	32	5,2	FC-2: 37%	BOM	74	40	57	48	67
85 ao 86	88	8	Exudação: 52% FC-2: 22%	RUIM	53	48	47	41	50
108 ao 109	22	3,3	Exudação: 58%	BOM	46	37	42	37	44
126 a 126+500	95	4,1	Panelas: 31% Desgaste: 26% Remendos: 21%	RUIM	63	55	55	52	63
136 ao 137	69	6,4	FC-2: 32%	REGULAR	58	60	64	51	61

Os resultados encontrados demonstraram que todos os segmentos apresentavam baixos valores de trilha de roda (< 10) e índices de gravidade global (IGG) aceitáveis. Pela classificação do DNIT teríamos o IGG com conceitos variando de ruim a bom.

Segundo Passos et al. (1993) no segmento 85 ao 86 o conceito Mau foi devido a problemas de exsudação, não caracterizando defeito estrutural. No segmento 126+000 ao 126+500 deve-se considerar que o pavimento já se encontrava com 9 anos de tráfego.

Segundo Oliveira et al (1992) o sub-trecho 83+000 ao 90+600 que na época estava com 5 anos de tráfego foi também avaliado em 1992 pelo método VIZIR. Este subtrecho obteve nota 3,19 indicando um desempenho satisfatório para o período de utilização.

3.1.3.2 Previsão de vida útil

Passos et al. (1993) viabilizaram tecnicamente o emprego do "barrinho" (Plintossolo) para um período de projeto de cinco anos na situação de tráfego da época do estudo. Deixaram clara a necessidade de conservação rotineira a partir dos primeiros anos de vida do pavimento – ação preventiva. Após os cinco anos de vida útil sugeriram o emprego de uma camada betuminosa de 6cm de espessura sobrejacente a estrutura existente.

3.1.4 Segunda etapa da pesquisa

Das observações do desempenho dos trechos durante dez anos de operação surgiram critérios sobre alturas de aterros, seleção de materiais, preservação de aterros e soluções para acessos que passaram a ser adotados na execução dos pavimentos subsequentes.

Em 1993 foram executados outros dois trechos experimentais, a seguir descritos, devido ao aumento do tráfego e devido ao problema dos aterros baixos.

Para testar o aumento de tráfego foi executado um trecho experimental com extensão de 500 metros entre a estaca 85+500 e 86+000 onde foi aplicada sobre o TS já fatigado uma camada de regularização de CBUQ, numa espessura média de 2,0 cm, largura de 8,60 m, e uma camada uniforme de CBUQ com 4,0 cm de espessura, largura de 7,0 m.

Onde o aterro apresentava-se baixo, entre a estaca 151+500 e 152+000, foi executado um segundo trecho experimental, também com 500 metros.

3.1.5 Situação do pavimento em 1996

Os dados aqui apresentados foram obtidos do Relatório Técnico das Condições da RST/101 Trecho Bacopari-Mostardas DAER-UNP dezembro de 1996. Este relatório faz uma análise de todo o trecho até 1996, identifica alguns problemas; analisa os dois trechos experimentais

criados em 1993 e apresenta as soluções para os acessos e as recomendações sugeridas de manutenção.

3.1.5.1 Visão geral de todo o trecho em 1996

De acordo com o relatório realizado em dezembro de 1996 (13 anos após a execução do primeiro trecho experimental), 80% da extensão dos 84,49 km da rodovia já havia ultrapassado o período de vida inicialmente previsto de cinco anos. Neste mesmo relatório foi lembrado que o desempenho deste tipo de pavimento deve levar em conta a eventual falta de homogeneidade na exploração de materiais utilizados in natura, pois no caso, o "barrinho" ocorre em camadas delgadas e áreas restritas.

Apesar da idade (em geral, mais de nove anos) e do trincamento, vários trechos apresentavam boas condições funcionais sem evolução significativa de defeitos. Alguns trechos de execução mais recentes apresentavam piores condições superficiais com evolução acentuada da deterioração.

Os km 82+650 e km 156+300 (novos trechos experimentais) apresentavam estado de superfície ruim, mas não apresentavam evolução do trincamento. No km 92+250 houve ruína do acostamento devido ao desvio do trânsito provocado pela falta de manutenção numa panela do pavimento. No km 136+050 a drenagem superficial ficou comprometida devido à formação de banqueta lateral provocada pela deposição de areia trazida pelo vento.

3.1.5.2 Identificação de problemas

Três problemas foram identificados na ocasião do estudo:

- a) Aterros com alturas insuficientes permitindo a proximidade da água em épocas de chuvas e conseqüentemente abreviando a vida útil do pavimento.
- b) Dificuldade de conservação, acelerando a deterioração do pavimento, uma vez que, as panelas ficam abertas progredindo em área e profundidade.
- c) Proliferação de acessos facilitando a erosão progressiva dos bordos do pavimento, decorrente, segundo o relatório técnico de 1996, da pouca resistência aos esforços tangenciais que caracterizam este tipo de material, atingindo inclusive a pista de rolamento.

3.1.5.3 Trecho experimental km 85+500

A solução a ser testada neste trecho experimental era a solução de restauração composta de reperfilagem de CBUQ (2,0 cm) + camada de CBUQ (4,0 cm) sobre a estrutura de pavimento existente de "barrinho" + TSD. Este trecho experimental foi executado em 1993 quando o pavimento de "barrinho" já estava com seis anos de vida útil e apresentava estado da superfície com 52% de exsudação e 22% de fissuras tipo FC-2, baixa deflexão e flecha média de 8,0 mm.

Em 19/10/1994, após um ano de tráfego, a condição superficial era ÓTIMO e a flecha média medida em ambas as trilhas de roda era de 1,8 mm. Em 1996 foi observado BOM estado superficial e conseqüentemente bom desempenho funcional. O resumo das medidas de deflexões realizadas com a Viga Benckelman em 1994, primeiro ano de abertura ao tráfego e em 1996 ocasião da avaliação apresentadas na tabela 3.7, mostraram o bom comportamento do trecho experimental.

No levantamento realizado em 1996 foi observado um acréscimo na deflexão característica atribuído à variação da condição da umidade ou ao próprio comportamento da estrutura devido ao carregamento do tráfego.

Tabela 3.7: Deflexões medidas com a VB no trecho experimental do km 85+500 (1994 e 1996)

Estada (I.E.)	I	Deflexões Vl	В	Estado (LD)	I	Deflexões Vl	В
Estaca (LE)	Ago-94	Nov-94	Nov-96	Estaca (LD)	Ago-94	Nov-94	Nov-96
Média (10 ⁻² mm)	65	63	75	Média (10 ⁻² mm)	69	66	74
Desvio padrão	5	10	10	Desvio padrão	9	10	11
D _c (10 ⁻² mm)	70	73	85	$D_{c} (10^{-2} \text{ mm})$	77	76	85

3.1.5.4 Trecho experimental km 151+500

Este trecho experimental foi executado em 1993 em local de PÉSSIMO estado superficial e com deformações causadas pela proximidade da água decorrente da altura insuficiente de aterro.

A solução a ser testada neste trecho experimental era uma nova base de 15,0 cm de barrinho com aditivo e revestimento em TSD com capa selante adicionada à estrutura existente.

Em 1994 foi realizado um levantamento resultando em 60% das estações inventariadas com fissuras incipientes. O lado esquerdo do trecho experimental apresentava exsudações e afundamento longitudinal de consolidação na trilha de roda externa.

Na ocasião foi verificado que o afundamento era resultante de problema executivo associado ao excesso de ligante empregado na imprimação e/ou TSD que também ocasionou as exsudações acentuadas. Conseqüentemente ocorreu um escorregamento plástico do TSD e da parte superior da base impregnada com material asfáltico. O levantamento realizado pelo método VIZIR, após quatro anos de vida útil, indicou um índice de fissuração médio igual a 3 (mais de 50% da área com defeito de gravidade 1- pequenas fissuras) e índice de deformação igual a 1(problema executivo na trilha de roda externa).

O comportamento deflectométrico apresentado na tabela 3.8 mostra uma pequena evolução considerada, na época, aceitável.

Até o quarto ano de tráfego o trecho experimental apresentou comportamento satisfatório, correspondendo ao esperado como desempenho funcional.

Tabela 3.8: Deflexões medidas com a VB no trecho experimental do km 151+500 (1994 e 1996)

	AGOST	O 1994	OUTUBRO 1996		
	Deflexão LD	Deflexão LE	Deflexão LD	Deflexão LE	
Média (10-2 mm)	57	40	59	65	
Desvio padrão	8	7	8	19	
Dc (10-2 mm)	64	47	67	84	

3.1.5.5 Solução experimental para os acessos

Em 1993, quando se aproximava a finalização da pavimentação, era necessário adotarem-se medidas que preservassem a integridade do pavimento devido à grande quantidade de acessos que surgiam ao longo da rodovia.

Em face da altura necessária de aterro, os acessos apresentavam declividades acentuadas, submetendo o TSD, as camadas de barrinho e a própria saia do aterro a grandes esforços ocasionados pela tração dos pneus dos veículos nas manobras de entrada e saída da pista.

Para solucionar o problema foi proposta a execução de uma terraplenagem em cerca de 5m de extensão de maneira a viabilizar uma rampa máxima de 5% nos acessos. Nos locais onde o pavimento já estava concluído, foi utilizada uma base de saibro com revestimento de TSD. Onde ainda não existia pavimentação foi utilizado 15 cm de barrinho com aditivo revestido com TSD.

Ao final de quatro anos, ou seja em 1996 a solução com saibro + TSD apresentava-se com bons resultados nos locais onde a configuração geométrica dos acessos, largura e declividade, foram respeitadas.

3.1.5.6 Recomendações sugeridas em 1996

Retirada das banquetas de areia que dificultavam a drenagem.

Nos segmentos com altura de aterro insuficiente utilizar a solução adotada no trecho experimental do km 112.

Nos segmentos que não apresentassem condições adversas de umidade, recomendava-se um reforço com uma camada estrutural de CBUQ assente sobre o revestimento existente (semelhante ao trecho experimental do km 45+500).

3.1.6 Dados obtidos do projeto de restauração - 1998

De acordo com o relatório deste projeto a estrutura adotada na construção do pavimento desta rodovia, para os segmentos que possuíam terraplenagem concluída (km 40+000 até o 113+000), foi: Sub-base com 15cm de barrinho na compactação a 100% do proctor intermediário; base de 15cm de barrinho com estabilizante químico DS-328, na compactação superior a 100% do proctor intermediário, de modo a obter-se ISC mínimo igual a 60%; revestimento da pista de rolamento, de 6,60m de largura, com tratamento superficial duplo e revestimento dos acostamentos com tratamento superficial simples com 1,0m de largura.

Para o segmento entre os km 113+000 até 123+972,38, onde já existia revestimento primário, constituído de saibro de basalto, foi utilizado como sub-base este revestimento primário com compactação a 100% do Proctor intermediário e o restante da estrutura prevista no projeto.

A imprimação da base foi executada com CM-70 (asfalto diluído de cura média), ao invés de CM-30, pois se adaptava melhor a textura do barrinho.

Foi utilizada emulsão asfáltica RR-2C na execução do Tratamento superficial e foi incluída uma capa selante na pista de rolamento. Para proteger a base, o tratamento superficial duplo estendeu-se aos acostamentos.

De acordo com depoimentos colhidos na época foi verificado que:

- a) As intervenções realizadas ficaram aquém do necessário pela falta de recursos e pela carência de material pétreo da região.
- b) A base implantada, material alternativo, necessitaria de constantes trabalhos de conservação.
- c) A inexistência de balança no trecho poderia estar permitindo o tráfego de veículos excessivamente carregados com conseqüências danosas ao pavimento.
- d) A análise do comportamento dos dois últimos trechos experimentais foi utilizada para a elaboração do projeto de restauração.

3.1.6.1 Tráfego

Em 1998 o DAER, através da ET/SEP (Estatística de Tráfego/Setor de Projetos) forneceu estudo de tráfego com projeção do número N (número equivalente de aplicações do eixo padrão de 8,2t), para um período de 10 anos (1998-2012). O ano de 1999 foi considerado como o ano de abertura ao tráfego e o N acumulado 1999-2008 encontrado foi de 1,98 x 10⁶.

3.1.6.2 Análise realizada pelo projetista

O projetista, na época, verificou que a rodovia encontrava-se em região plana e era toda constituída de aterros. Tanto os solos de fundação como os de aterros eram areias de coloração variada com predomínio da amarela e freqüente incidência de cinza. A percentagem de material que passava na peneira #200 raramente ultrapassa 20% (maioria <10%) e o ISC destes solos eram superiores a 10%.

A análise estrutural foi realizada através de dados de deflexões obtidos através da Viga Benkelman, na trilha de roda externa, a cada 20m, alternadamente com relação ao eixo da pista. A análise das deflexões realizada neste projeto é apresentada na tabela 3.9. Nesta época pode-se verificar que a deflexão média no lado esquerdo da rodovia era um pouco maior que a deflexão média obtida no lado direito, pois os veículos carregados trafegavam

preferencialmente no sentido Mostardas-Bacopari. O cálculo dos raios de curvatura resultou em média igual a 84,04m no LD e 80,25m no LE.

Tabela 3.9: Análise das deflexões - 1998

ANÁLISE	DEFLEXÕES (10-2 mm)
Deflexões características em 86% do trecho	50 - 100
Deflexões características em 14% do trecho	100 - 140
Deflexão característica média para todo o trecho	82
Deflexão média obtida no Lado Esquerdo (LE)	74
Deflexão média obtida no Lado Direito (LD)	66

Quanto aos defeitos superficiais o projeto fez as seguintes considerações:

- a) 72% dos segmentos homogêneos apresentaram trincas interligadas (FC-2 + FC-3) em 80% da área.
- b) 89% dos segmentos homogêneos apresentaram trincas tipo FC-1+FC-2+FC-3 em 90% da área.
- c) 62% dos segmentos homogêneos apresentaram trincas classe 3 em mais de 30% da área.
- d) O elevado trincamento levou a exposição da base e consequentemente formação de panelas profundas.
- e) 60% dos segmentos homogêneos apresentaram panelas em mais de 10% da área.
- f) 78% dos segmentos homogêneos apresentaram remendos em mais de 10% da área.
- g) A média das flechas das trilhas de roda era 4,6mm. No segmento mais antigo (km 135+810) a flecha apresentou-se um pouco maior: 6,4mm.
- h) 99% dos segmentos homogêneos apresentaram conceito RUIM e PÉSSIMO (elevado grau de deterioração do revestimento).
- i) A média dos valores de QI no trecho era de 58,6cont./km (IRI = 4,5m/km), mais altos nos segmentos mais antigos, a partir do km 135+690 onde o QI era igual a 66,6cont./km (5,1m/km).

Quanto aos aterros baixos o pavimento mostrou pior comportamento, a tabela 3.10 apresenta a situação superficial encontrada nesta situação.

Tabela 3.10: Comportamento do pavimento em aterros baixos.

SEGM	ENTO	LOCALIZAÇÃO	DEFLEXÃO MÉDIA (10 ⁻² mm)	DEFLEXÃO CARACTERÍSTICA (10 ⁻² mm)	IGG
82+380	82+540	aterro baixo	68	84	180
83+200	83+300	aterro baixo	81	100	220
87+320	89+560	aterro baixo	83	99	218
91+060	91+500	aterro baixo	84	99	193
152+300	152+780	aterro baixo	84	103	254
154+700	155+440	aterro baixo	81	102	262
159+500	160+100	aterro baixo	87	96	263
160+700	161+400	aterro baixo	74	95	298

Através das sondagens realizadas foi verificado que a base de barrinho + estabilizante químico estava com os 15,0cm de espessura previstos pelo projeto e em alguns casos ocorria perda de coesão de baixo para cima. Os materiais utilizados na base e na sub-base eram muito variados (coloração) e todas as camadas do pavimento e parte superior do subleito encontravam-se bem compactadas. Verificou-se também que as umidades de campo situavam-se abaixo da ótima (mesmo nos aterros baixos). A densidade de campo era maior que a de laboratório devido ao alto grau de compactação das camadas.

Após análises realizadas pelo projetista foi concluído que:

- a) O estado do pavimento encontrava-se em condições precárias.
- b) O revestimento da pista de rolamento encontrava-se em fase avançada de desagregação, desprotegendo a base (sinais de deterioração).
- c) A estrutura de baixo custo, conforme o previsto exigia uma conservação adequada, intensa e atenta além de uma segunda etapa construtiva com inclusão de um novo revestimento. Como nenhuma destas medidas foi tomada entendeu-se que o pavimento comportou-se acima das expectativas.
- d) Apesar de o revestimento se encontrar em colapso as demais camadas permaneciam com valor residual elevado.

e) A execução de CBUQ com espessura adequada após a confecção de reparos localizados necessários deveria conferir à estrutura capacidade para suportar o tráfego previsto por um determinado período pré-fixado, evidentemente sob conservação rotineira permanente, exigência própria para qualquer pavimento.

3.1.7 Dados obtidos dos estudos realizados em 2004 e 2005

Em 2004, a Unidade de Normas e Pesquisas do DAER foi solicitada a manifestar-se quanto a um indicativo de solução relativo aos problemas observados na RST/101.

Nesta ocasião os dados do último levantamento de tráfego foram atualizados encontrando-se um VDM de 961 veículos.

Em visita ao local observaram-se problemas generalizados de trincamentos e panelas. O trecho Bacopari – Mostardas apresentava um trincamento evoluído inclusive com vários segmentos com trincas do tipo couro de jacaré com bordas erodidas. Apresentava, também, a ocorrência de deformações plásticas junto aos pontos mais trincados.

Nesta ocasião foram escolhidos nove segmentos deste trecho, com extensão de um quilômetro cada, não consecutivos, para um estudo que possibilitasse um levantamento de dados representativos para avaliar a condição do pavimento.

De acordo com a condição superficial do pavimento foi realizada uma classificação visual para definir parâmetros para análise de desempenho. Esta classificação resultou em quatro conceitos apresentados na tabela 3.11.

Tabela 3.11: Conceitos utilizados na classificação do trecho em 2004

CONCEITO	CONDIÇÃO VISUAL	ÁREA TRINCADA (%)	IRI (m/km)	PANELAS	REMENDOS	Afundamento elevado nas trilhas de roda
A	Boa	0	2,5	Não	Não	Não
В	Satisfatória	7	3,5	Não	Sim	Sim
С	Razoável	15	4,5	Não	Sim	Sim
D	Péssima	70	5,5	Sim	Sim	Sim

Com este estudo a UNP chegou à conclusão que apenas 4.800 m da rodovia encontrava-se em Boa condição de rolamento, 41.450 m em condição Satisfatória, 35.000 m em condição Razoável e 3.200 m em Péssima condição.

Os levantamentos de deflexão, realizados no final de 2004, com a viga Benkelman de 20,0 em 20,0 metros alternando-se o lado e a condição da superfície (IGG) encontrada nos pontos estudados estão apresentados na tabela 3.12.

ESTACA DEFLEXÃO DEFLEXÃO MÉDIA CARACTERÍSTICA IGG **CONCEITO** (10^{-2} mm) **INICIAL FINAL** (10^{-2} mm) 77 87 + 00088+00063 38 REGULAR 96+00097+00051 52 **REGULAR** 64 **REGULAR** 106+000 107 + 00037 55 35 118+000119+00074 89 **RUIM** 54 131+000 132+000 94 120 117 **RUIM** 135+000136+000 **REGULAR** 70 89 46 142+000 143+000 54 44 REGULAR 75 149+000 150+000 52 68 BOM

84

26

REGULAR

Tabela 3.12: Levantamentos realizados com VB em 2004

3.2 ERS-132, TRECHO: CAMARGO – NOVA ALVORADA

65

151+000

152+000

A ERS/132 é uma rodovia estadual, localizada no planalto do Rio Grande do Sul, possui 57,030 quilômetros e liga o entroncamento da ERS-324 (Vila Maria) até o entroncamento da ERS-332 (P/Arvorezinha). O Sistema Referencial Básico (SRE), do Estado do Rio Grande do Sul, identifica com o código 0010 o trecho que inicia no km 0+000 no Entr. ERS-324 (Vila Maria) e termina no km 6+770 no trevo de acesso a Camargo e como 0030 o trecho que inicia no km 6+770 no acesso a Camargo e termina no km 20+130 em Nova Alvorada.

3.2.1 Histórico e localização do trecho experimental

Em 1999 o DAER construiu dois segmentos experimentais no trecho 0030 da rodovia ERS-132. Estes segmentos experimentais foram construídos utilizando a mesma tecnologia desenvolvida por Núñez (1997) em sua tese de doutorado.

O Centro de Pesquisas Rodoviárias do DAER vem monitorando estes dois segmentos nas reais condições ambientais e de tráfego. O segmento 1 localiza-se entre os quilômetros 12+680 e 13+140 com 460 metros de extensão e o segmento 2 entre os quilômetros 13+860 e 14+520 com 660 metros de extensão. A figura 3.2 apresenta a localização dos segmentos experimentais e a figura 3.3 mostra a situação superficial em que os mesmos se encontravam em 2007.

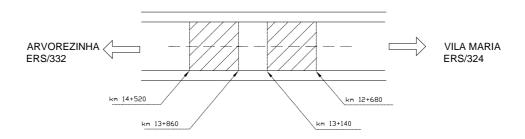


Figura 3.2: Localização dos trechos experimentais da rodovia ERS-132.

Figura 3.3: Situação do pavimento em 2007

3.2.2 Dados de projeto

De acordo com o projeto de pavimentação desta rodovia, apresentado em novembro de 1997, a mesma desenvolve-se integralmente sobre litologias de Formação Serra Geral constituída por rochas basálticas e riodacitos.

O número N utilizado para o projeto foi calculado utilizando-se um VDM de 405 veículos medido no ano de 1992. O ano de abertura ao tráfego foi estimado para 1995 com um VDM de 446 veículos/dia. A tabela 3.13 apresenta a contagem de tráfego em 1992.

Tabela 3.13: Contagem de tráfego de 1992

Data	Passeio	Coletivo	Carga				TOTAL
Data	rasseio	Coletivo	Leve	Média	Pesada	Ultra Pesada	TOTAL
1992	227	9	15	139	15	0	405

3.2.2.1 Caracterização dos materiais

A caracterização do material do subleito foi realizada através de 195 sondagens ao longo da rodovia onde foram coletadas 213 amostras das quais foram selecionadas 148 para realizar ensaio de compactação e ISC.

Pela classificação AASHTO o solo foi considerado A-7-5. O valor do ISC médio encontrado foi de 13%.

Foi estudada uma cascalheira localizada à margem da rodovia, lado direito do km 12+250 onde foram realizados três furos de sondagens rotativas com recuperação de testemunhos. Tratava-se de rocha basáltica fraturada com grau de alteração variando de muito alterada no topo do perfil (primeiros 2,50m) passando para pouco alterada no centro (espessura em torno de 7,00m) e para extremamente alterada na base. Apresentava Is(50) de amostras secas ao ar igual a 11MPa e Is(50)amostras imersas por sete dias igual a 10MPa. O quociente entre resistências imersa/seca era igual a 0,91.

3.2.2.2 Projeto de pavimentação

O pavimento foi dimensionado considerando um número N de aplicação de carga (8,2t) igual a 5,8 x 10⁵ (seria alcançado em 2002) e índice suporte do subleito, ISC, igual a 13%.

Antes de iniciar a obra este projeto foi alterado devido a problemas de liberação da pedreira indicada pelo projetista. A tabela 3.14 apresenta a estrutura do projeto original e a estrutura do projeto modificado no início da obra.

Tabela 3.14: Estrutura do projeto em estudo

CAMADA	PROJETO O	RIGINAL	PROJETO PROPOSTO		
CAMADA	Material	Espessura (cm)	Material	Espessura (cm)	
Revestimento	TSD + Capa Selante	2,5	TSD + Capa Selante	2,5	
Base	Brita graduada (Basalto de rocha sã)	14,0	Macadame Seco (Basalto de rocha sã)	16,0	
Sub-base	Macadame Seco (Basalto de rocha sã)	16,0	Macadame Seco (Basalto de rocha sã)	16,0	

3.2.3 Dados da obra

A obra foi executada com duas camadas de 16 cm de basalto alterado sobre subleito de solo residual de basalto. O revestimento foi mantido o Tratamento Superficial Duplo com capa selante na pista de 6m de largura e nos dois acostamentos de 0,50cm.

A figura 3.4 mostra um detalhe da construção do trecho experimental onde aparece o basalto alterado utilizado como base de macadame seco. A execução do macadame seco seguiu mesma tecnologia desenvolvida por Núñez (1997) em sua tese de doutorado realizada na área de pesquisa de teste de pavimentos (APTP) com um simulador de tráfego e a especificação de serviço DAER-ES-P 09/91.

Figura 3.4: Detalhe da construção da rodovia

3.2.4 Dados da pista experimental 07 - APTP

A pista experimental denominada 07 por Núñez (1997) serviu como comparação quanto ao desempenho do pavimento em estudo. A localização da pista 07 entre as dez pistas construídas na APTP para a pesquisa em 1997 está apresentada na figura 3.5.

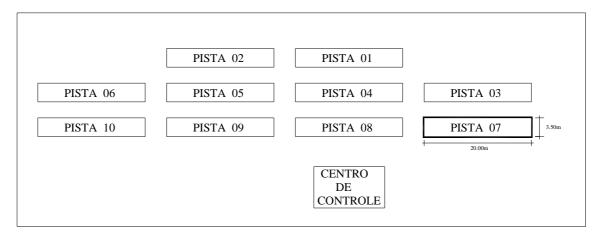


Figura 3.5: Localização da pista 07 na APTP

Todas as pistas executadas possuíam o mesmo revestimento superficial: 25 mm de tratamento superficial duplo com capa selante. Seis pistas (01, 02, 03, 04, 07 e 08) foram executadas com base de macadame de basalto alterado onde foi utilizada argila laterítica vermelha no subleito com CBR mínimo de 10%. A figura 3.6 apresenta as estruturas do pavimento destas pistas.

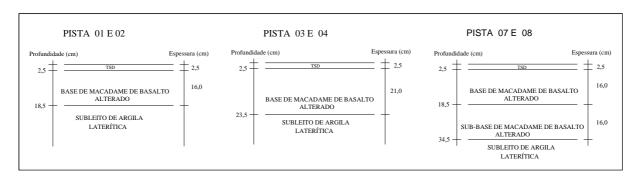


Figura 3.6: Configuração estrutural das pistas experimentais

O simulador de tráfego utilizado nos ensaios possui 15 m de comprimento, 4,3 m de altura e 2,5 m de largura, pesando em torno de 220 kN e está montado em um semi-eixo simples com rodas duplas que aplicam as cargas. O sistema possui controle computadorizado de velocidade

de aplicação da carga e deslocamento transversal com largura ajustável de 0,60 a 1,0 m. São aplicadas cargas hidraulicamente que variam entre 41 kN a 65 kN. A pressão dos pneus varia de 0,56 MPa a 0,73 MPa e o rodado desloca-se na velocidade de 6 km/h sobre uma extensão de 7 m de pavimento. As cargas são aplicadas em um único sentido e normalmente distribuídas sobre uma trilha de roda.

Em cada pista, foram solicitadas duas trilhas de roda, cada uma com largura de 75 cm, onde foi aplicada uma determinada carga por eixo variando de 82 a 130 kN. A pista 07 recebeu cargas de 120 e 130 kN.

Para a análise comparativa entre os segmentos experimentais construídos na ERS-132 e a pista 07 da APTP foi considerado o desempenho da pista 07 durante o tempo em que foi aplicado 120 kN de carga. A tabela 3.15 apresenta os números de ciclos realizados com a carga de 120 kN o número N (USACE) equivalente e a média da profundidade da trilha de roda observada.

Tabela 3.15: Tráfego e profundidade de trilha de roda na pista 07

Numero de ciclos	Carga (kN)	NUSACE	ATR - APTP - 07 (mm)
700	120	1,45E+04	6,0
9036	120	1,87E+05	12,0
15597	120	3,23E+05	13,4
21100	120	4,37E+05	15,5
28400	120	5,89E+05	17,0
36000	120	7,46E+05	18,0
40247	120	8,34E+05	19.3
42209	120	8,75E+05	20,3

As deflexões na pista 07 foram realizadas regularmente com a viga Benkelman. As deflexões características (média da deflexão+ desvio padrão) calculadas em cada levantamento ficaram em torno de 45 e 50 x 10⁻² durante a pesquisa.

3.2.5 Desempenho do pavimento até 2003

Núñez et al (2003) apresentam os resultados da avaliação estrutural e funcional realizada nas pistas experimentais em 2001 e 2002. Neste trabalho o desempenho do pavimento considerando o afundamento nas trilhas de roda (ATR) foi avaliado através do modelo

desenvolvido por pesquisadores da Bundesäntalt für Strassenwesen (BaST), Alemanha conforme descrito no capítulo 2 item 2.2.3.4. De acordo com OCDE (1991) o fator de afundamento (a) é relacionado com a agressividade da carga de eixo e a estrutura do pavimento, Núñez et al (2003).

Utilizando os dados de 2001 e 2002 neste modelo foi estimado que o afundamento da trilha de roda inicial, fase de consolidação, foi $W_0 = 4.0$ mm e o fator de afundamento foi 0,0011 mm/carga de eixo padrão. O valor de W_0 estimado comparou-se bem com os valores encontrados para as pistas experimentais, mas o valor de afundamento estimado é muito menor do que aqueles computados para as pistas experimentais da APTP.

Este modelo se ajustou ao comportamento de deformações plásticas das pistas experimentais, mas não ao trecho experimental testado com o tráfego real.

Quanto à irregularidade, em 2001, o IRI era 3,0 m/km, valor aceitável para uma rodovia de baixo volume de tráfego com TSD. Aparentemente o uso de agregado graúdo (até 10,0cm) no macadame seco não originou uma irregularidade excessiva, Núñez et al. (2003).

O trincamento, não era severo e aparecia em situações especiais como sobre bueiros e pontes. A avaliação funcional de acordo com o procedimento DNIT 006/2003 – PRO atribuiu conceito BOM para os segmentos experimentais, concordando com as pistas APTP.

De acordo com Núñez et al. (2003), o estudo realizado com as deflexões medidas com a Viga Benkelman em 2000, 2001 e 2003 verificou que estas aumentaram de 2000 para 2001 e mantiveram-se estáveis posteriormente concordando com as pistas APTP, O trecho também apresentou um comportamento homogêneo, pois não houve variação na deflexão ao longo dos segmentos.

Este trabalho também apresentou uma estimativa de módulos de resiliência in situ do pavimento (Mr_p) e do subleito ($Mr_{subleito}$) realizado julho de 2001 quando o trecho experimental tinha recebido um volume de tráfego (N) de aproximadamente $1,3x10^5$ apresentados na tabela 3.16.

DEFLEXÃO (10⁻² mm) **ESTACA** Mr_p (MPa) Mr_{subleito} (MPa) 70 12 + 74091 120 97 150 12 + 76052 13+920 75 300 52 14 + 380107 120 52

Tabela 3.16: Estimativas de módulos de resiliência

Núñez et al. (2003) concluiu que as deflexões eram elevadas e os módulos de resiliência baixos. "Entretanto os valores correspondem a pavimentos delgados com número estrutural variando de 2,0 a 3,0 (dependendo do valor da espessura), apropriado para rodovias de baixo volume de tráfego".

3.3 ERS-536, TRECHO: CAIBATÉ - ENTR. BR-285

Em julho de 1982, a Superintendência de Estudos e Projetos (SEP) do DAER/RS apresentou o projeto de engenharia final da ERS/536, trecho Caibaté – BR/285.

Na época da execução deste projeto, a rodovia já se encontrava totalmente implantada necessitando apenas ajustes no "greide" através de terraplenagem complementar. A implantação da rodovia esteve a cargo da 14ª Superintendência regional do DAER (14° SR) com sede na cidade de Santa Rosa. Atualmente a conservação desta rodovia pertence a Superintendência regional da cidade de Santiago (12° SR).

3.3.1 Dados do projeto

A extensão total da rodovia é de 12.351,77 metros. O km 0+000 situa-se no entroncamento da rua Seffrim com a Avenida Santa Lúcia, na cidade de Caibaté, e o km 12+351,77, situa-se sobre a rodovia federal BR/285.

3.3.1.1 Geologia e clima da região

Conforme o projeto apresentado pela SEP/DAER, esta rodovia desenvolve-se sobre rochas basálticas dos derrames de lava da formação Serra Geral. As rochas da região são representadas principalmente por basaltos cinza e avermelhados, maciços, fraturados ou amigdalóides. Como decorrência os solos são constituídos por argila vermelha e raramente por alteração de rocha. Neste local ocorrem afloramento de lateritas e solos lateríticos. Estas

lateritas são constituídas por couraças com espessuras variáveis entre 40 e 80 cm e os solos lateríticos que se encontram sotopostos a estas couraças apresentam-se com espessuras em torno de 70 cm. As crostas de lateritas ocorrem na forma de camadas horizontalizadas com extrema dureza, impenetrável a pá e picareta, sendo por este motivo, classificadas como material de segunda categoria. Os solos lateríticos são granulares, friáveis e pulvurulentos, sendo classificados como material de primeira categoria.

No projeto de base deste pavimento foi sugerida a utilização dos horizontes com laterita e com solos lateríticos sendo que a laterita com britagem primária ou até secundária de forma que os blocos originários do processo de extração fossem aproveitados.

O relevo da região apresenta coxilhas alongadas e morros pequenos de altitude variável não existindo zonas planas. Os cursos de água que drenam a região são de pequeno porte, com exceção do rio Ijuí.

A tabela 3.17 apresenta as temperaturas máximas e mínimas e as precipitações pluviométricas máximas e mínimas da região.

Tabela 3.17: Temperaturas e pluviometria da região

Temperatura	ı	Precipitação Pluviométrica		
Máxima	Mínima	Máxima	Mínima	
Dezembro, Janeiro	Junho, Julho	Agosto, Setembro, Outubro	Fevereiro, Março	
25°C	14,5°C	150 mm	120 mm	

(Fonte: Projeto SEP/DAER 1982)

A inspeção realizada na época do projeto constatou que a rodovia estava totalmente implantada e as descargas de projeto foram obtidas para um período de recorrência de 20 anos, calculados utilizando-se os registros de chuvas de São Luiz Gonzaga (pluviógrafos). As obras de arte já executadas foram aproveitadas com recomendações, em alguns casos de execução de proteção a jusante. Em alguns pontos foram projetados novos bueiros.

A drenagem superficial foi projetada com valetas de pé de corte, proteção de aterro e proteção de corte e a drenagem subterrânea com drenos longitudinais profundos. Foram ainda projetados drenos transversais de base para escoar as águas que se infiltram no pavimento.

3.3.1.2 Estudos geotécnicos

A análise dos resultados dos ensaios realizados com o material retirado do subleito da pista na época do projeto concluiu que o índice de suporte de projeto era igual a 11% (IS_{proj} = 11%).

A tabela 3.18 apresenta os resultados dos ensaios de caracterização realizados com o material retirado do subleito da pista para os segmentos homogêneos (km 0+000 a 0+780 e km 8+340 a 8+800) em estudo nesta pesquisa.

Tabela 3.18: Resultados dos ensaios de caracterização do subleito

ES	STACA	0+000	0+200	0+400	0+600	0+800	8+300	8+500	8+700
Profun	didade (m)	1,50	1,50	1,00	0,40	0,70	1,50	1,50	1,50
a	3/8"				97,0				94,4
Granulometria	n°4	96,1	97,8	98,8	95,9		95,1		93,4
llon	n°10	87,2	96,1	96,9	92,8	96,8	80,0	96,9	89,1
ranı	n°40	83,0	80,7	89,4	81,1	81,3	67,7	74,0	70,6
	n°200	81,5	75,4	78,5	74,0	67,4	57,0	58,0	62,0
	LL	40	42	47	61	39	49	51	45
	IP	22	22	23	39	25	26	27	23
ctação HTO	Dmáx (kN/m3)	16,2	16,38	16,08	16,38	15,86	18,4	15,36	16,42
Compactação AASHTO	hót (%)	24,8	24,0	26,2	23,1	24,9	18,6	26,0	20,3
R	DENS. (kN/m3)	16,98	16,95	16,25	16,73	16,08	17,8	16,04	16,74
CBR	EXP.	1,12	0,81	1,22	0,79	0,63	0,30	1,07	0,88
	ISC	5	6	8	12	14	16	3	11
ade	Н	5,0	28,4	17,1	8,8	30	19,4	5,1	5,4
Densidade campo	DENS. (kN/m3)	16,77	16,24	16,27	16,28	15,28	18,39	15,57	17,00
Descri	ção Visual	argila	argila arenosa						
	sificação ASHTO	A7-6	A7-6	A7-6	A7-6	A6	A7-6	A7-6	A7-6
Ind. C	Grupo (IG)	14	15	16	20	13	13	15	13

A laterita utilizada nas camadas de base e sub-base do pavimento foi obtida nas jazidas localizadas nas estradas secundárias dos quilômetros 6+700 LD e 9+800 LE. O volume total provável de laterita encontrado nestas jazidas foi de 32000m³.

Foi sugerido que a extração da laterita fosse realizada com trator de esteira pesado e pá carregadeira e que o material extraído passasse por um britador primário 85-100, um britador secundário, um conjunto de peneiras e uma central de mistura.

3.3.1.3 Estudo de tráfego

Os estudos de tráfego foram baseados em pesquisas de ordem e destino realizadas pela 14ª SR durante o ano de 1980. O volume diário médio apresentado foi de 352 veículos, contados nos dois sentidos considerando como taxa de crescimento anual: 6% para veículo de passeio, 4% para ônibus e 7% para veículo de carga. Foi considerado o ano de 1983 como o ano de abertura da rodovia ao tráfego.

A tabela 3.19 apresenta o levantamento de volume diário médio (VDM) para cada categoria de veículo realizado em 1980.

Tabela 3.19: VDM em 1980

DATA	PASSEIO	COLETIVO	LEVE	MÉDIA	PESADA	ULTRA PESADA	TOTAL
1980	276	2	22	34	16	2	352

O número N de aplicações equivalentes do eixo padrão de 8,2t determinado pela Equipe de Tráfego do DAER para o período de projeto de cinco e quinze anos foi: $N_{5anos} = 5,49 \times 10^5$, e $N_{15anos} = 1,82 \times 10^6$.

De posse do valor de CBR (11%) representativo do subleito e dos parâmetros de tráfego para N de cinco anos e N de quinze anos foi realizado o projeto de pavimentação. A pista de rolamento foi projetada com 7,00 m de largura com revestimento de TSD e os acostamentos com 0,60 m de largura com revestimento de TSS.

A tabela 3.20 apresenta o projeto final do pavimento apresentado para o DAER.

Tabela 3.20: Projeto final do pavimento

ESTRUTURA	MATERIAL	ESPESSURA (cm)
Revestimento	TSD	2,5
Base	Laterita estabilizada granulométricamente	21,4 a 25,0

3.3.2 Dados obtidos em 2000

No ano de 2000, dezoito anos após a pavimentação da rodovia, por ocasião do cadastro de pavimentos realizados pelo DAER, foi realizado um furo de sondagem no km 8+220 (LD) onde foi encontrada uma estrutura composta por 2,5cm de TSD e 26,0cm de base de laterita. No ano de 2000, também foram levantados dados de deflexão, dados de irregularidade longitudinal (IRI) e realizado um levantamento da superfície do pavimento através do LVC (levantamento visual contínuo), pois esta rodovia pertencia ao lote cinco do Programa CREMA (Programa de Conservação, Restauração e Manutenção das Rodovias do Estado do Rio Grande do Sul).

Os dados apresentados na tabela 3.21 foram obtidos do relatório entregue pela empresa contratada, na época, para realizar os levantamentos.

Tabela 3.21: Dados de IRI, Deflexão e LVC - 2000.

II	RI (m/km)		Deflexão (10-2	2 mm)		LVC	
Segme	ento	IRI	Estado DO		Segmento		ICPF
Início	Fim	IKI	Estaca	D0	Início	Fim	ICPF
1+000	1200	2,3			1000		
1+200	1400	2,8					
1+400	1600	2,7	1+500	54			
1+600	1800	2,9					
1+800	2000	2,3				2000	2,5
2+000	2200	3,5	2+000	61	2000		
2+200	2400	1,9					
2+400	2600	2,2	2+500	54			
2+600	2800	2,6					
2+800	3000	2,7	3+000	52		3000	2,5
3+000	3200	3,1			3000		
3+200	3400	2,7					
3+400	3600	1,9	3+500	49			
3+600	3800	2,1					
3+800	4000	4,7	4+000	54		4000	2
4+000	4200	2,8			4000		
4+200	4400	4,9					
4+400	4600	4,6	4+500	69			

Marlova Grazziotin Johnston, (marlovajohnston@gmail.com), tese de doutorado, PPGEC/UFGRS, 2010

Tabela 3.21(cont.): Dados de IRI, Deflexão e LVC - 2000.

II	RI (m/km)		Deflexão (10	-2 mm)		LVC	
Segme					Segmento		
Início	Fim	IRI	Estaca	D0	Início	Fim	ICPF
4+600	4800	4,5					
4+800	5000	2,9	5+000	60		5000	2
5+000	5200	2,3			5000		
5+200	5400	4,5					
5+400	5600	4,3	5+500	70			
5+600	5800	2,7					
5+800	6000	4,6	6+000	59		6000	2
6+000	6200	13,5			6000		
6+200	6400	4,2					
6+400	6600	4,1	6+500	60			
6+600	6800	4,3					
6+800	7000	2,6	7+000	88		7000	2
7+000	7200	4,1			7000		
7+200	7400	7,6					
7+400	7600	4,8	7+500	141			
7+600	7800	1,9					
7+800	8000	2,0	8+000	63		8000	2,5
8+000	8200	1,9			8000		
8+200	8400	2,1					
8+400	8600	2,1	8+500	67			
8+600	8800	1,5					
8+800	9000	2,0	9+000	57		9000	2,5
9+000	9200	2,0			9000		
9+200	9400	2,4					
9+400	9600	1,9	9+500	76			
9+600	9800	1,7					
9+800	10000	2,9	10+000	62		10000	2,5
10+000	10200	2,0			10000		
10+200	10400	1,5					
10+400	10600	2,0	10+500	49			
10+600	10800	2,2					
10+800	11000	1,9	11+000	61		11000	2,5
11+000	11200	2,6			11000		
11+200	11400	1,9					
11+400	11600	2,3	11+500	67			
11+600	11800	2,2					
11+800	12000	4,6	12+000	53		12000	2
12+000	12200	3,5					

3.3.3 Restauração

A solução de restauração, de acordo com o projeto referencial básico do "Programa Restauração", previa uma camada de Reperfilagem em todo o trecho como obras preliminares e uma camada de Lama Asfáltica em todo o trecho como obra de reabilitação a ser executada com prioridade "3", ou seja, no ano 4 do contrato.

Em 2003, a empresa contratada pelo programa CREMA, propôs uma alternativa ao projeto referencial básico. A solução alternativa foi TSD com a justificativa de que a base estava em bom estado e a rodovia apresentava apenas desgaste do revestimento.

Segundo informações do 12º SR, em 2005, o pavimento apresentava-se com muitas panelas e o revestimento muito desgastado. Nesta ocasião, após levantamento de deflexão, a empresa contratada pelo programa CREMA, executou remendos localizados com Rachão, Reperfilagem descontínua nos subtrechos mais críticos e TSD em toda a extensão do trecho.

No início de 2006 o pavimento já apresentou degradação com ocorrência de panelas e com deformações plásticas. Nesta ocasião a empresa refez alguns segmentos críticos utilizando Reperfilagem com CBUQ sem, entretanto, obter sucesso.

3.3.4 Localização do trecho

O estudo que está sendo apresentado refere-se a dois segmentos selecionados em 2007 após prévia análise funcional (procedimento DNIT 006/2003 – PRO) e estrutural (dados de deflexão obtidos com VB) realizada na rodovia. Foi escolhido um segmento classificado com IGG com conceito ÓTIMO localizado entre os quilômetros 0+000 e 0+780 e um segmento classificado com IGG com conceito RUIM localizado entre os quilômetros 8+340 e 8+800.

A figura 3.7 apresenta a localização dos segmentos de estudo no trecho experimental e a figura 3.8 mostra a situação superficial em que os mesmos se encontravam em 2007.

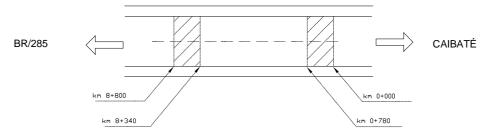


Figura 3.7: Localização dos trechos experimentais

Figura 3.8: Situação superficial dos segmentos experimentais em 2007.

3.4 RODOVIA 392 AM 9100 – ACESSO A SETE DE SETEMBRO

A rodovia 392 AM 9100, trecho: Acesso a Sete de Setembro, escolhida para este estudo, pertence a um plano de intervenção rodoviário denominado PROJETO 2000 – DAER no qual a estratégia seria a pavimentação de rodovias em caráter experimental com utilização de materiais alternativos e de novas técnicas construtivas objetivando a pesquisa e o desenvolvimento de novas tecnologias e redução de custos de construção.

A Tabela 3.22 apresenta as rodovias escolhidas para participar deste plano como obras em caráter experimental com utilização de materiais alternativos.

RODOVIA	TRECHO	MAT. ALTERNATIVO	EXTENSÃO (km)
392 AM 9100	Acesso a Sete de Setembro	Laterita	2,60
285 AM 9160	Acesso a Vitória das Missões	Laterita	4,62
453 AM 9180	Acesso a Boa Vista do Sul	Basalto Alterado	2,50
463 AM 9010	Acesso a Vila Lângaro	Basalto Alterado	4,70
RS/323	Jaboticaba – Pinhal – Rodeio Bonito	Basalto Alterado	22,50
486 AM 9110	Itati (Final Perímetro Urbano – Entr.RS486)	Basalto Alterado	2,20

Tabela 3.22: Rodovias escolhidas para participar do Projeto 2000

3.4.1 Localização do Trecho experimental

A figura 3.9 apresenta a localização do trecho experimental na rodovia, e a figura 3.10 a situação superficial do trecho experimental em 2007.



Figura 3.9: Localização do trecho experimental

Figura 3.10: Situação superficial do trecho experimental em 2007

3.4.2 Dados de Projeto

Em dezembro de 1998, o projeto final de engenharia para a pavimentação da rodovia 392 AM 9100, foi apresentado ao DAER/RS com extensão total de 2.597,70m. Os dados aqui apresentados foram obtidos deste projeto.

3.4.2.1 Tráfego

Para executar este projeto foi realizado contagem especial classificatória nas imediações da cidade de Sete de Setembro, no segmento BR/392 - Sete de Setembro, no período de 6 às 22horas (contagem volumétrica de 24/07/1999). O volume de 24horas foi conseguido com expansão de 12% e foi encontrado um VDM de 454 veículos.

A estimativa do tráfego futuro para o período de dez anos foi realizada pela adoção de uma taxa de crescimento de 5%, para todos os tipos de veículos (recomendada pelo DAER, na época, para trechos novos) e o número N de projeto foi determinado como sendo àquela equivalente à passagem de 2,61x10⁵ eixos-padrão, de 8,2t.

A tabela 3.23 apresenta os levantamentos de VDM realizados para cada categoria de veículo em 1999.

CARGA DATA PASSEIO COLETIVO TOTAL ULTRA MÉDIA LEVE **PESADA PESADA** 1999 381 16 25 21 454

Tabela 3.23: Levantamento de VDM - 1999

3.4.2.2 Drenagem

Todos os cursos de água transpostos pela rodovia são de pequeno porte e fazem parte da bacia do rio Comandai afluente do rio Uruguai. Ao longo da rodovia foram previstos 06 bueiros localizados nos quilômetros 0+079, 0+172, 0+344, 0+900, 1+710, 2+200 e 2+500,50.

3.4.2.3 Estudo da jazida

O relatório "Emprego de Lateritas na Pavimentação – Estudos Complementares de Jazida" (ENECON, 02/2000), apresenta os resultados obtidos dos estudos realizados em amostras de laterita retirados da jazida utilizada neste projeto. Apresenta a caracterização das lateritas

realizadas em laboratório através de ensaios de Granulometria, Ensaios físicos (LL, IP), Compactação e CBR.

A tabela 3.24 apresenta a faixa granulométrica da mistura estudada e as faixas granulométricas especificadas pelo DNIT, na ocasião do estudo (DNER-ES P 47/74).

A figura 3.11 apresenta a representação gráfica da faixa granulométrica desta mistura.

Tabela 3.24: Faixa granulométrica para a base de laterita DNER-ES P 47/74

ESPEC	MISTURA ESTUDADA						
PENEIRAS	mm	A	В	MÍNIMO	MÁXIMO		
2"	50,8	100	-	-	-		
1"	25,4	75-100	100	100	-		
3/8"	9,5	40-85	60-95	(*)98	(*)99		
N° 4	4,8	20-75	30-85	(*)89	(*)92		
Nº 10	2,0	15-60	15-60	45	48		
Nº 40	0,42	10-45	10-45	22	27		
N° 200	0,074	5-30	5-30	15	22		
(*) Valores que requeren	(*) Valores que requerem certa ajustagem por adição de graúdos, se desejado o enquadramento na norma citada.						

(Fonte: ENECON, 02/2000)

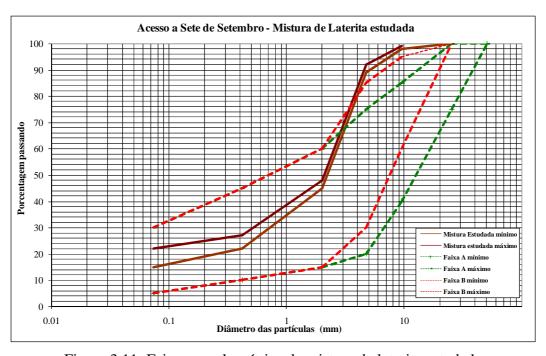


Figura 3.11: Faixa granulométrica da mistura de laterita estudada

A Tabela 3.25 apresenta os valores obtidos, na época do projeto, para ensaios físicos, compactação e CBR e os valores exigidos pelo DAER, atendendo as diretrizes para execução da base estabilizada granulometricamente com utilização de solo laterítico do DNIT (Norma DNIT 098/2007 – ES) e a especificação DAER-ES-P 08/91 – Base Granular, Especificação de Serviço.

Tabela 3.25: Resultados dos ensaios de laboratório – material da jazida e valores exigidos pela especificação

ENSAIOS	DIRETRIZES (DNIT)	ENSAIOS LABORATÓRIO
LL (%)	≤ 40	37
IP (%)	≤ 15	5
Densidade máxima Proctor Intermediário – PI (kN/m3)	-	20,90
Umidade ótima – Proctor Intermediário (%)	-	15,7
ISC (%)	≥ 60	70
Expansão máxima (%)	0,5	-

A tabela 3.26 apresenta os coeficientes de resiliência, considerando somente a tensão confinante, obtidos nos ensaios realizados em amostras (amostra CIENTEC nº 584/00, registro ENECON 383) retiradas da jazida de laterita utilizada para a pavimentação.

Tabela 3.26: Coeficiente de resiliência – material da jazida

COEFICIENTE	VALORES DE ENSAIO
k1	3746
k2	0,58

Estes valores indicaram que a laterita encontrada nesta jazida alcançava valores aproximados ao de uma brita graduada em similares condições de utilização.

A Fundação de Ciência e Tecnologia (CIENTEC) realizou em duas amostras da laterita o ensaio que determina a relação Sílica-sesquióxidos encontrando os valores de 0,33 para a amostra de concreções e de 0,50 para a amostra de solo sotoposto atendendo as diretrizes do DNIT para execução da base estabilizada granulometricamente com utilização de solo laterítico onde diz que a relação sílica-sesquióxidos deve ser menor que 2.

3.4.2.4 Estrutura do pavimento

Originalmente a estrutura deste pavimento foi projetada pelo método de dimensionamento para pavimentos flexíveis do DNIT. Adotando-se coeficientes estruturais tomando como base os resultados obtidos na pista experimental da AASHTO. A capacidade de suporte do subleito e dos materiais constituintes das camadas do pavimento foi definida pelo CBR, adotando-se o método de ensaio preconizado pelo DNIT (corpos de prova moldados em laboratório para as condições de massa específica aparente e umidade especificada para o serviço no campo, embebidos em água por quatro dias).

Os estudos do subleito indicaram o índice suporte de 8% e foi considerando a premissa de tráfego com um número $N=2,6x10^5$.

A tabela 3.27 apresenta as espessuras de cada uma das camadas projetadas para compor a estrutura deste pavimento.

Tabela 3.27: Projeto do pavimento

ESTRUTURA	MATERIAL	ESPESSURA DAS CAMADAS (cm)
Revestimento	TSD	2,5
Base	Brita Graduada	20,0
Sub-base	Solo laterítico (ISC ≥ 20%)	26,0

3.4.2.5 Comparativo de custos

Em maio de 2000 foi realizado um comparativo de custos considerando os orçamentos básicos elaborados pela Equipe de Economia Rodoviária da Divisão de Planejamento do DAER/RS (tabela 3.28), contemplando a solução do projeto final de engenharia com base de brita graduada e uma alternativa com base de laterita estabilizada granulometricamente.

Tabela 3.28: Comparativo de custos: soluções para a camada de base.

ALTERNATIVA	CUSTOS (R\$)				
ALIERNATIVA	TOTAL	R\$/km			
1 – Projeto (base de brita graduada)	410.781,76	158.132,87			
2 – Estudo complementar (base de laterita)	253.804,76	97.703,64			
Diferença: (Alternativa 1 – Alternativa 2)	156.977,00	60.429,23			

(Fonte: ENECON, 02/2000)

A solução com base de laterita proporcionava redução de 38,21% no custo dos serviços de pavimentação do trecho.

3.4.2.6 Conclusões do projeto

O caráter experimental, a constatação do baixo volume de tráfego da rodovia (N = 2,6x10⁵) e os estudos complementares realizados na jazida de laterita localizada no km 0+260 LD, a 6.600,0m do eixo da rodovia resultou na substituição da base de brita graduada (20,0cm) por igual espessura de laterita com 50% de volume britado.

3.4.3 Dados resgatados da obra

Documentos apresentados pela empresa consultora da obra em questão mostram que uma nova adequação foi inserida ao projeto durante a construção.

3.4.3.1 Estrutura do pavimento

A aplicação de uma camada de reforço de subleito com 15,0cm, efetivamente realizada pela empreiteira resultou em um novo projeto para a estrutura do pavimento.

Uma amostragem dos ensaios de ISC do reforço de subleito, realizados durante a obra apresentou valor de ISC médio de 10,2% com desvio padrão de 1,5% e expansão de 0,47% com desvio padrão de 0,12%.

Uma vez estabelecido à utilização do reforço de subleito com 15,0cm, um novo valor de ISC para o projeto foi calculado encontrando-se o valor de 9,3%. A tabela 3.29 apresenta a nova estrutura utilizada neste pavimento.

Tabela 3.29: Estrutura adotada para o pavimento da rodovia 392 AM 9100

ESTRUTURA	MATERIAL	ESPESSURA DAS CAMADAS (cm)
Revestimento	TSD	2,5
Base + Sub-base	Laterita britada	30,0
Reforço de Subleito	Argila	15,0

3.4.3.2 Levantamentos das deflexões

Durante a obra foi realizado o controle das deflexões, medidas com a viga Benkelman, nas camadas de subleito, sub-base e base. A tabela 3.30 apresenta os valores destas deflexões médias, os desvios padrão e as deflexões características.

11/5/2000 25/7/2000 jul/ago 2000 VB **SUBLEITO SUB-BASE BASE** Média 64 46 DP 33 21 18 64 Dc 112 85

Tabela 3.30: Dados de deflexão obtidos durante a obra

3.4.3.3 Estudo de módulos de resiliência

Durante a obra foi apresentado uma análise preliminar das bacias de deformação levantadas logo após a execução da sub-base encontrando valores de módulo de resiliência retroanalisados como: M_r máximo de 3.298 kgf/cm²; M_r mínimo de 399 kgf/cm² e M_r médio de 1.342 kgf/cm². Informações obtidas durante a obra indicam que os locais de baixos módulos sofreram as devidas correções.

3.5 COMENTÁRIOS

Este capítulo apresentou dados obtidos através de pesquisas realizadas nos locais das obras, entrevistas com os responsáveis pelas obras, empresas envolvidas e distritos operacionais do DAER/RS. Foram utilizados dados de trabalhos existentes e publicados sobre os trechos experimentais.

Os materiais alternativos, aqui apresentados, viabilizaram a pavimentação de rodovias de difícil construção como a ERS-101, trecho Bacopari – Mostardas ou permitiram a pavimentação com economia e respeito ao meio ambiente, pois os materiais utilizados encontravam-se nas regiões das obras.

A pavimentação destas rodovias com estes materiais facilitaram o desenvolvimento das regiões servidas por estas rodovias.

4 METODOLOGIA DA PESQUISA

Este capítulo apresenta a metodologia utilizada para analisar o comportamento de quatro pavimentos de revestimentos delgados com base e/ou sub-base de material alternativo, apresentados no capítulo 3 desta Tese e propor um programa de manutenção para estas rodovias.

4.1 CONSIDERAÇÕES GERAIS

Para avaliar o desempenho de um pavimento analíticamente é necessário conhecer o comportamento estrutural de suas camadas considerando o dano causado pelas cargas de tráfego e considerando à deterioração natural dos materiais que constituem estas camadas.

A metodologia utilizada para realizar esta Tese dividiu-se em seis etapas: escolha do trecho experimental; monitoramento; ensaios de laboratório; retroanálises; análise de desempenho e programa de manutenção.

Respeitando-se as peculiaridades de cada um dos trechos experimentais, esta metodologia foi aplicada igualmente para as quatro rodovias estudadas . Quando foram estudados dois segmentos experimentais no mesmo trecho os procedimentos foram os mesmos para os dois segmentos.

4.2 ESCOLHA DO TRECHO EXPERIMENTAL

Os trechos experimentais foram escolhidos após análise conjunta de dois levantamentos. Inicialmente realizou-se uma avaliação subjetiva dos trechos através de um levantamento visual contínuo (LVC) padronizado pelo DNIT 008/2003 – PRO obtendo-se uma análise da condição de superfície do pavimento de modo contínuo. Simultaneamente foi realizado o levantamento de deflexões com a viga Benkelman e/ou o equipamento FWD. A análise conjunta destes dois levantamentos determinou a homogeniedade, ou não, da rodovia permitindo a escolha de um ou dois segmentos experimentais. Após a escolha dos segmentos experimentais iniciaram-se os procedimentos específicos para alcançar o objetivo proposto na Tese.

4.3 MONITORAMENTO

Os trechos experimentais foram monitorados, sempre que possível, através de levantamentos superficiais anuais ou com intervalo de dois anos. Estes levantamentos avaliados em conjunto com o levantamento de tráfego da rodovia permitiram verificar o desempenho funcional do trecho estudado. Os levantamentos de tráfego foram fornecidos pela equipe de estatística de tráfego do DAER.

O índice de Irregularidade (IRI) foi obtido através de levantamentos realizados periódicamente com o equipamento Merlin a cada 200m.

O levantamento dos defeitos superficiais e das medidas das trilhas de roda foram realizados de acordo com a avaliação objetiva da superfície preconizada pela norma DNIT 006/2003 – PRO.

As medidas de deflexão foram obtidas com o equipamento FWD ou com a Viga Benkelman a cada 20m. Os dados de deflexão obtidos com FWD permitiram traçar bacias de deflexão para melhor compreensão do comportamento estrutural do pavimento e puderam ser retroanalisados com o auxílio do software EVERCALC obtendo-se as tensões, deformações e módulos de resiliência para cada uma das camadas constituintes dos pavimentos estudados.

4.4 ENSAIOS DE LABORATÓRIO

Em cada um dos segmentos experimentais foi escolhida uma estaca onde foi aberta uma trincheira para se obter as medidas exatas das camadas constituintes do pavimento. Na abertura da trincheira, também foi possível realizar o ensaio de densidade "in situ" e coletar amostras representativas para ensaios de laboratório.

Com o material obtido nas camadas dos pavimentos foi possível executar ensaios de caracterização (granulometria, ensaios físicos, equivalente de areia e MCT), ensaios de compactação (densidade máxima e umidade ótima), Índice Suporte Califórnia, ensaios triaxiais de carga repetida (módulo de resiliência) e triaxiais monotônicos (resistência ao cisalhamento).

4.5 RETROANÁLISES

As espessuras das camadas da estrutura do pavimento foram utilizadas em conjunto com os dados de deflexão levantados com o FWD para obter, através de retroanálise com o software EVERCALC, os módulos de resiliência, tensões e deformações na base do revestimento, em pontos preestabelecidos da base e sub-base e no topo do subleito.

Com os resultados dos ensaios de módulo de resiliência realizados no laboratório e a ajuda do software EVERSTRESS foi possível obter as tensões e deformações que cada camada do pavimento está suportando devido às cargas de tráfego.

4.6 ANÁLISE DE DESEMPENHO E PROGRAMA DE MANUTENÇÃO

A análise dos valores de módulo de resiliência e das tensões e deformações encontradas para cada uma das camadas da estrutura do pavimento permitiram a análise de desempenho do mesmo.

4.7 PROPOSTA DE PROGRAMA DE MANUTENÇÃO

A análise do desempenho dos materiais alternativos em conjunto com os dados resgatados de projeto e execução de cada um dos pavimentos permitiu a sugestão de um programa de manutenção para os pavimentos analisados na Tese.

4.8 FLUXOGRAMA GERAL DA PESQUISA

Par facilitar o estudo, foi criado um fluxograma geral da metodologia utilizado nesta Tese mostrado na figura 4.1.

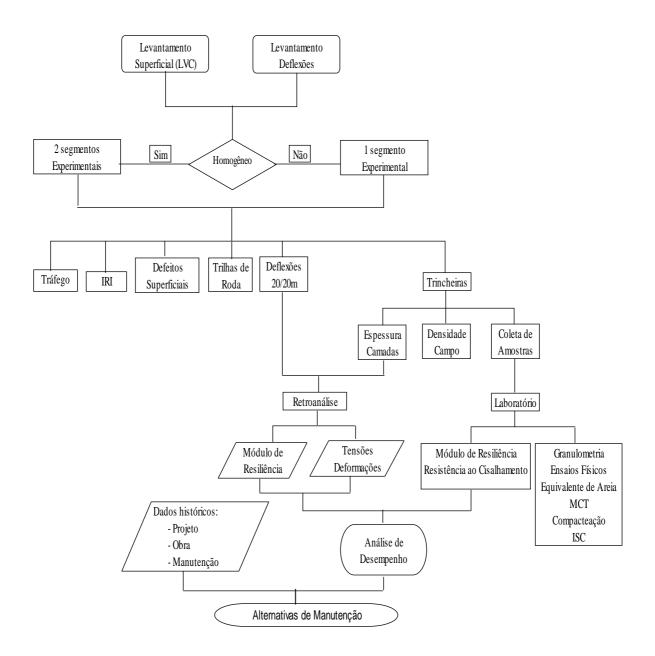


Figura 4.1: Fluxograma geral da pesquisa

5 LEVANTAMENTOS E ENSAIOS

5.1 PLINTOSSOLO DA PLANÍCIE COSTEIRA DO RIO GRANDE DO SUL (ERS-101, TRECHO: BACOPARI-MOSTARDAS)

Estes materiais são utilizados para pavimentar rodovias com baixo volume de tráfego com revestimentos esbeltos como foi o caso de 85,0 km da rodovia ERS-101 na época de sua construção. Hoje, apesar do histórico de restaurações apresentado no capítulo 3 desta Tese o material alternativo, Plintossolo, continua sendo o material da base e sub-base deste pavimento sendo escolhido para estudos realizados em laboratório mostrando a importância destes estudos na escolha de um material alternativo.

Para as análises de desempenho, foi considerado o material obtido do trecho experimental executado entre os quilômetros 85+500 e 86+000 apresentado na figura 5.1. O trecho experimental, visualmente, possui o lado esquerdo da rodovia com maior número de defeitos superficiais quando comparado com o lado direito da rodovia.

Figura 5.1: Trecho experimental localizado entre os km 85+500 e 86+000

5.1.1 Definição do estudo

Em fevereiro de 2009 foram realizados levantamentos superficiais de defeitos através do procedimento DNIT 006/2003-PRO, levantamentos de irregularidades com o equipamento Merlin e levantamentos deflectométricos com o equipamento tipo FWD. A análise destes levantamentos permitiu a escolha de uma estaca do lado esquerdo do trecho experimental da rodovia, que representasse um ponto em pior estado, e uma estaca do lado direito do trecho experimental da rodovia, que representasse um ponto em melhor estado. Foram realizadas sondagens através de trincheiras nestes dois locais para reconhecimento das espessuras das camadas que compõe a estrutura do pavimento e retirada de amostras para ensaios em laboratório.

A análise estrutural considerou o estudo da rigidez e o estudo da resistência ao cisalhamento do material. A rigidez do material pode ser conhecida pelos resultados dos ensaios de módulo de resiliência, triaxial cíclico, (corpos de prova moldados em laboratório e obtidos de amostras indeformadas) ou por retroanálise (softwares) das bacias de deflexões medidas na rodovia. A resistência ao cisalhamento pode ser conhecida através de ensaios triaxiais estáticos ou monotônicos.

Os ensaios de módulo de resiliência (triaxiais cíclicos) e resistência ao cisalhamento (triaxiais monotônicos) foram realizados com materiais obtidos, no ano de 2009, do segmento experimental da rodovia que teve sua pavimentação concluída em 1987 (km 85+500 até km 86+000), vinte e dois anos de vida útil. No ano de 1993, o pavimento original (TSD com capa selante + 15,0cm base de plintossolo com DS + 15,0cm sub-base plintossolo) deste segmento, recebeu recapeamento com 2,5cm de Reperfilagem e 6,0cm de CBUQ e no ano de 2000 foi acrescentado 4,0cm de CBUQ. Salienta-se que o estudo aqui apresentado refere-se somente às camadas do pavimento onde foi utilizado o plintossolo, ou seja, base e sub-base.

5.1.2 Considerações sobre o Clima

A rodovia em estudo localiza-se numa região de clima subtropical com temperaturas médias anuais entre 16 e 20°C. As precipitações de chuva acumulam em média 1300,0 mm por ano. A tabela 5.1 apresenta os dados obtidos no INMET (Instituto Nacional de Meteorologia) durante os anos deste estudo na estação automática de Rio Grande. A análise destes dados

mostrou que o ano de 2009 apresentou um acréscimo de 110% nas precipitações. A figura 5.2 ilustra as precipitações totais ocorridas mensalmente durante os anos de estudo.

Ano	Temperatura Média	Precipitação Total	Umidade Relativa do Ar
Allo	(°C)	(mm)	(%)
2005	17.3	1228,6	71
2006	18.2	1096,5	79
2007	17.8	1285,6	77
2008	18.4	1114,6	78
2009	18.2	1434,7	80

Tabela 5.1: Acumulação média anual de precipitações (mm) durante o estudo

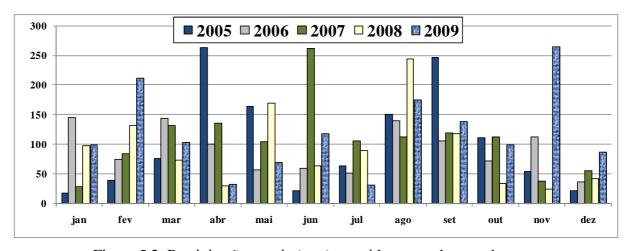


Figura 5.2: Precipitações totais (mm) ocorridas mensalmente durante o estudo

5.1.3 Dados de tráfego

Durante a vida útil deste pavimento foram realizados cinco levantamentos de tráfego pela Equipe de Estatística de Tráfego do Centro de Pesquisas Rodoviárias do DAER (EET-CPR/DAER), nos anos de 1991, 1998, 2001, 2004 e 2010.

A tabela 5.2 apresenta o número N acumulado de carga equivalente de eixo padrão de acordo com o USACE (United States Army Corps of Engineers) a partir de 1991 (primeiro levantamento de VDM) até o ano de 2010. O DAER/RS considerou taxa de crescimento médio anual de 3% para os anos em que não foram realizados levantamentos de VDM.

Tabela 5.2: Número N (USACE) acumulado 1991-2010

A	Número N (USACE)	N _{acum.} (USACE)
Ano	(10^6)	(10^6)
1991	0,15	0,15
1992	0,16	0,31
1993	0,16	0,47
1994	0,15	0,79
1995	0,16	0,95
1996	0,16	1,12
1997	0,17	1,29
1998	0,18	1,64
1999	0,18	1,82
2000	0,19	2,01
2001	0,29	2,49
2002	0,29	2,78
2003	0,30	3,08
2004	0,23	3,63
2005	0,23	3,86
2006	0,24	4,10
2007	0,25	4,35
2008	0,26	4,61
2009	0,26	4,87
2010	0,35	5,49

A tabela 5.3 apresenta os dados de VDM levantados nos anos de 1991, 1998, 2001, 2004 e 2010.

Tabela 5.3: Levantamentos de dados de tráfego

VDM	1991	1994	1998	2001	2004	2010
Automóveis	357	364	545	695	672	633
Coletivos	14	37	36	52	22	61
Carga leve	21	14	27	47	29	42
Carga média	79	42	57	92	77	55
Carga pesada	54	86	90	224	108	134
Carga ultrapesada	40	31	38	27	53	104
Total	565	574	793	1137	961	1029

5.1.4 Levantamentos da superfície do pavimento

Em 2009, foram realizados levantamentos superficiais utilizando a metodologia do procedimento do DNIT 006/2003 PRO apresentados no anexo 1 desta Tese, e levantamento de irregularidade com o equipamento Merlin. Os resultados destes levantamentos estão apresentados na tabela 5.4.

Tabela 5.4: Levantamentos superficiais - 2009

GG FLECHA PRINCIPAIS CONCEIT

SEGMENTO (km)	IGG	FLECHA (mm)	PRINCIPAIS CONTRIBUIÇÕES	CONCEITO DNIT (006/2003 PRO)	IRI (m/km)
85+600 a 86+000 LD	39	4,02	FC-1:29% FC-2: 33% R: 10%	ВОМ	2,2
85+600 a 86+000 LE	79	4,48	FC-1: 5% FC-2: 71% P: 5% R: 29%	REGULAR	4,9

5.1.5 Levantamento das deflexões

Os dados de deflexão levantados no trecho experimental, aqui analisado, estão apresentados no anexo 1 desta Tese.

Em 2009 foram realizados os levantamentos deflectométricos através do FWD no segmento escolhido para análise obtendo-se as bacias de deflexão a cada 20,0 m nos dois lados da rodovia. Estes levantamentos estão apresentados na tabela 5.5 e 5.6.

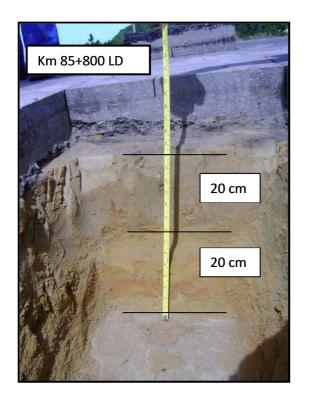
O lado esquerdo do segmento experimental desta rodovia apresenta valores de deflexão mais elevados quando comparados com os valores de deflexão medidos do lado direito do segmento experimental.

O desvio padrão calculado para o conjunto de dados obtidos do lado direito do segmento experimental é menor quando comparado com o desvio padrão calculado para os dados de deflexão obtidos do lado esquerdo mostrando maior homogeneidade da estrutura do pavimento.

Tabela 5.5: Bacias de deflexão, LD (deflexões em $10^{-2}\,\mathrm{mm}$) - 2009

ESTACA	D_1	D_2	D_3	D_4	D_5	D_6	D_7
85+600	67	39	23	10	5	3	3
85+620	66	39	24	10	5	2	2
85+640	67	38	22	10	5	2	2
85+660	74	43	26	11	6	3	3
85+680	64	39	23	10	5	3	3
85+700	75	42	24	10	5	3	3
85+720	62	37	24	12	7	3	3
85+740	62	37	24	14	8	4	3
85+760	74	46	28	14	7	4	4
85+780	69	41	25	11	5	3	3
85+790	49	35	23	11	6	3	3
85+800	51	34	23	12	7	4	3
85+800	63	40	25	12	6	4	4
85+810	57	34	22	11	6	3	3
85+820	45	29	20	10	6	3	3
85+840	37	24	16	8	4	3	3
85+860	47	30	19	9	5	3	3
85+880	59	37	23	9	4	3	3
85+900	78	43	24	9	5	3	3
85+920	49	33	21	9	5	3	3
85+940	71	43	26	11	5	3	3
85+960	46	31	21	9	4	3	3
85+980	52	34	20	7	3	3	4
85+980	77	36	19	5	2	2	3
85+980	79	39	20	5	2	2	3
85+990	52	33	20	7	4	3	3
85+990	52	34	21	8	4	3	3
86+000	38	23	14	7	5	3	3
$ m D_{mcute{d}ia}$	60	36	22	10	5	3	3
DesvPad	12	6	3	2	1	1	0
Dc	72	42	25	12	7	3	3

Tabela 5.6: Bacias de deflexão, LE (deflexões em 10⁻² mm) - 2009


ESTACA	D_1	D_2	D_3	D_4	D_5	D_6	D_7
85+600	43	21	11	6	5	3	3
85+620	163	72	21	0	0	1	2
85+640	70	35	17	5	3	2	2
85+660	135	67	22	0	0	1	0
85+680	92	69	35	9	2	1	3
85+690	60	35	20	10	6	3	3
85+740	118	60	29	6	1	2	2
85+760	76	44	25	11	7	4	4
85+780	97	51	25	7	4	3	3
85+790	46	30	19	10	6	3	3
85+800	41	28	19	11	6	3	3
85+810	49	32	22	11	7	3	3
85+820	83	45	25	9	4	3	3
85+840	56	36	21	8	3	2	3
85+860	91	55	30	9	3	2	3
85+880	54	34	21	10	5	3	3
85+900	84	49	27	9	4	3	3
85+920	57	31	17	6	3	3	3
85+940	81	41	18	4	1	2	3
85+960	47	30	16	6	4	3	3
85+970	39	25	16	7	3	3	3
85+980	80	46	23	4	0	1	3
85+990	45	26	16	7	4	3	3
86+000	62	32	16	5	3	3	3
$\mathrm{D}_{\mathrm{m\'edia}}$	74	41	21	7	3	2	3
DesvPad	31	15	5	3	2	1	1
Dc	105	56	27	10	6	3	3

5.1.6 Caracterização do material

Os levantamentos superficiais e os levantamentos de deflexão indicaram uma diferença considerável nas duas pistas da rodovia induzindo à escolha de dois locais de abertura das trincheiras, uma do lado direito (km 85+800) e uma do lado esquerdo (km 85+780).

5.1.6.1 Trincheiras

As trincheiras foram abertas para a identificação correta das espessuras das camadas que compõe o pavimento e obter material da base e da sub-base para realizar ensaios no laboratório. A figura 5.3 apresenta as duas trincheiras.

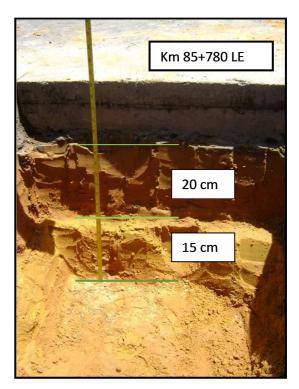


Figura 5.3: Trincheiras realizadas na rodovia com espessuras das camadas

No laboratório de solos do DAER/RS, numa primeira fase, foram realizados ensaios de granulometria, ensaios físicos, compactação AASHTO e Índice Suporte Califórnia e, posteriormente, foram realizados ensaios seguindo a metodologia MCT. No CIENTEC foram realizados ensaios de granulometria por sedimentação.

No Laboratório de Pavimentação da UFRGS (LAPAV) foram realizados ensaios triaxiais estáticos e cíclicos.

5.1.6.2 Ensaios de caracterização do material

As espessuras das camadas encontradas no campo, bem como, um resumo dos resultados dos ensaios da primeira fase estão apresentadas na tabela 5.7.

Tabela 5.7: Resumo dos resultados dos ensaios realizados em laboratório

	AC	(cm)	ÄO		GRAN	NULOME	ETRIA						
LOCAL	CAMADA	Espessura (cm)	DESCRIÇÃO VISUAL	# 10	# 200	% argila	% silte	% areia fina	LL	IP	h _{ót}	$\frac{\gamma_{dm\acute{a}x}}{kN/m^3}$	ISC
85+800 LD	Base	20	Plintossolo amarelado, com mosqueados laranja	100	20	15	2	74	18	7	9,9	19,46	42
LD _	Sub-base	20	areia argilosa amarela	98	16	12	2	74	NP	NP	9,7	18,85	51
85+780 LE	Base	20	Plintossolo com mosqueados vermelho, cinza, amarelo	100	22	17	4	72	19	8	11	19,7	46
	Sub-base	15	areia argilosa amarela	100	16	14	1	75	NP	NP	9,3	18,82	46

A descrição visual realizada na ocasião da abertura das trincheiras confirma a falta de homogeneidade do material da base, verifica-se também que a sub-base na estaca do lado esquerdo da rodovia apresenta menor espessura.

O material obtido por ocasião da abertura das trincheiras mostra que o material da sub-base é mais homogêneo apresenta menor quantidade de argila e apresenta um ISC um pouco mais elevado, em média 49%, enquanto que o material da base apresenta um ISC médio de 44%.

5.1.6.3 Ensaios triaxiais cíclicos

A verificação da rigidez dos materiais da base e da sub-base deste pavimento foi realizada determinando módulos de resiliência através do ensaio padronizado pelo método de ensaio DNER-ME 131/94 ou pela AASHTO TP46-97 utilizando-se um equipamento triaxial e aplicando-se as cargas através de um sistema pneumático de ar comprimido e reguladores de pressões. O equipamento do Laboratório de Pavimentação da Universidade Federal do Rio Grande do Sul (LAPAV-UFRGS), utilizado para realização dos ensaios, trabalha com freqüência cíclica de 1 Hz e tempo de carregamento de 0,1 s.

Para estes ensaios foram moldados, em laboratório, corpos de prova com o peso específico aparente seco (γ_d) máximo encontrado no ensaio de Proctor com energia intermediária (mesma energia utilizada na execução do pavimento) e variando-se as umidades em três pontos (1,5% acima da umidade ótima, umidade ótima e 1,5% abaixo da umidade ótima). O material da sub-base da estaca 85+800 foi ensaiado em corpos de prova na umidade ótima e com 5% abaixo da umidade ótima para melhor verificação da influência da umidade. Foram moldados corpos de prova com 10,0 cm de diâmetro e com 20,0 cm de altura. A variação da umidade permitiu verificar a influência que a água exerce na rigidez do material. Os resultados destes ensaios estão apresentados no anexo 2 desta Tese.

Foram retirados amostras indeformadas nos dois pontos de estudo. Em cada uma das estacas estudadas, ao lado das trincheiras iniciais, foram retirados quatro blocos de amostras quadradas (30,0 x 30,0 cm) com altura de 30,0 cm. Do centro de cada um dos blocos procurou-se moldar um corpo de prova com altura de 20,0 cm (altura da camada de base encontrada no pavimento) e diâmetro de 10,0 cm. A figura 5.4 apresenta a seqüência da retirada das amostras e moldagem dos corpos de prova.

Não foi possível realizar ensaio de módulo de resiliência das amostras indeformadas obtidas da estaca 85+780 LE, pois, três quebraram durante a moldagem e uma perdeu a umidade antes do ensaio. Foi possível realizar três ensaios das amostras obtidas da estaca 85+800 LD, dois resultados foram aproveitados por apresentaram resultados semelhantes e o terceiro foi descartado por apresentar valores de k_1 muito elevados e k_2 muito reduzidos com relação às outras duas amostras.

Os valores de módulo de resiliência foram calculados seguindo os modelos matemáticos, que relacionam o módulo de resiliência do material com as tensões atuantes ($Mr = f(\sigma)$). Os resultados dos ensaios foram testados em três modelos apresentados no item 2.3.5.2 desta Tese e o modelo de UZAN foi o modelo que melhor se ajustou na relação do módulo de resiliência com as tensões utilizadas no ensaio.

Figura 5.4: Sequência de retirada de amostra indeformada e moldagem de corpos de prova

As tabelas 5.8, 5.9 e 5.10 apresentam um resumo dos resultados dos ensaios de módulo de resiliência, utilizando, respectivamente, o modelo da tensão confinante, o modelo $k-\theta$ e o modelo de Uzan, para os ensaios realizados com os materiais obtidos da base e sub-base do pavimento em estudo.

Tabela 5.8: Resultados dos módulos de resiliência - tensão confinante

Modelo	Estaca	Local		γd (kN/m3)	Umidade (%)	k1	k2	R2
		Base		19,67	12,0 h>hót	8,986	0,457	0,940
				19,67	10,5 hót	37,267	0,240	0,900
				19,67	9,0 h <hót< td=""><td>21,521</td><td>0,397</td><td>0,745</td></hót<>	21,521	0,397	0,745
	85+780			18,82	11,0 h>hót	5,520	0,765	0,981
		Sub-base		18,82	9,4 hót	9,063	0,685	0,960
$M_r = k_1 \sigma_3^{k_2}$		Sub-base		18,82	7,8 h <hót< td=""><td>10,615</td><td>0,671</td><td>0,988</td></hót<>	10,615	0,671	0,988
				19,46	11,5 h>hót	6,323	0,622	0,695
				19,46	9,9 hót	15,295	0,526	0,978
				19,46	8,4 h <hót< td=""><td>49,748</td><td>0,153</td><td>0,770</td></hót<>	49,748	0,153	0,770
		Base	das	19,69	10,7	16,367	0,635	0,970
	85+800		Indeformadas	20,06	10,8	15,154	0,597	0,970
			lefoi	Média	10,7	15,760	0,616	0,970
			Ind	20,7	10,1	67,213	0,276	0,890
		Sub-base		18,84	11,6 hót	11,580	0,637	0,882
		Sub-base		18,05	5,4 h <hót< td=""><td>19,741</td><td>0,456</td><td>0,846</td></hót<>	19,741	0,456	0,846

Tabela 5.9: Resultados dos módulos de resiliência - modelo k- θ

Modelo	Estaca	Local		$\gamma_d (kN/m^3)$	Umidade (%)	\mathbf{k}_1	k_2	\mathbb{R}^2
				19,67	12,0 h>h _{ót}	4,451	0,458	0,902
		Base		19,67	10,5 h _{ót}	22,268	0,271	0,940
				19,67	9,0 h <h<sub>ót</h<sub>	9,448	0,433	0,859
	85+780			18,82	11,0 h>h _{ót}	1,815	0,753	0,911
$M_r = k_1 \left(\frac{\theta}{p_0}\right)^{k^2}$		Sub-base		18,82	9,4 h _{ót}	3,857	0,642	0,866
				18,82	7,8 h <h<sub>ót</h<sub>	4,132	0,649	0,937
				19,46	11,5 h>h _{ót}	1,619	0,710	0,869
				19,46	9,9 h _{ót}	6,287	0,545	0,891
				19,46	8,4 h <h<sub>ót</h<sub>	37,002	0,165	0,860
		Base	las	19,69	10,7	5,428	0,663	0,940
	85+800		Indeformadas	20,06	10,8	5,143	0,631	0,960
			defo	Média	10,7	5,285	0,647	0,960
			In	20,7	10,1	38,930	0,300	0,930
		Sub-base		18,84	11,6 h _{ót}	6,679	0,548	0,656
		Sub-base		18,05	5,4 h <h<sub>ót</h<sub>	9,179	0,465	0,888

Tabela 5.10: Resultados dos módulos de resiliência - modelo de Uzan

Modelo	Estaca	Local		$\frac{\gamma_d}{(kN/m^3)}$	Umidade (%)	\mathbf{k}_1	\mathbf{k}_2	k ₃	\mathbb{R}^2
				19,67	12,0 h>h _{ót}	0,420	0,662	-0,9344	0,967
		Base		19,67	10,5 h _{ót}	0,774	0,266	0,0271	0,941
$M_r = k_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\left(\frac{\tau_{oct}}{p_a}\right) + 1\right)^{k_3}$	85+780			19,67	9,0 h <h<sub>ót</h<sub>	0,666	0,331	0,3433	0,929
	03+700			18,82	11,0 h>h _{ót}	0,746	1,127	-1,7104	0,990
		Sub-base		18,82	9,4 h _{ót}	0,881	0,985	-1,2768	0,957
				18,82	7,8 h <h<sub>ót</h<sub>	0,906	0,881	-0,789	0,989
				19,46	11,5 h>h _{ót}	0,479	0,869	-0,824	0,902
				19,46	9,9 h _{ót}	0,912	0,775	-1,116	0,986
				19,46	8,4 h <h<sub>ót</h<sub>	0,783	0,148	0,0809	0,864
		Base	das	19,69	10,7	1,273	0,856	-0,8055	0,980
	85+800		Indeformadas	20,06	10,8	0,988	0,725	-0,391	0,970
			lefo	Média	10,7	1,131	0,791	-0,59825	0,975
			JuI	20,7	10,1	1,537	0,284	0,0686	0,930
		Sub-base		18,84	11,6 h _{ót}	1,121	1,029	-2,019	0,881
		Sub-base		18,05	5,4 h <h<sub>ót</h<sub>	0,863	0,621	-0,6519	0,933

5.1.6.4 Ensaios triaxiais monotônicos

Foram realizados ensaios triaxiais estáticos CD (Consolidated Drained) para determinar o comportamento mecânico do solo segundo diferentes níveis de tensões. Foram utilizadas tensões confinante de 30, 60 e 100 kPa, pois, aproximam-se das tensões de confinamento sugeridas por Saeed et al (2001) e podem representar as tensões confinantes encontradas em bases e sub-bases de material granular em pavimentos.

Para esta pesquisa, da mesma forma que em Malysz (2004), para realizar os ensaios monotônicos foi utilizado uma câmara convencional, empregada normalmente para os ensaios triaxiais de carregamento repetido. As tensões confinantes foram aplicadas através de ar comprimido e reguladas a partir de dois manômetros e as tensões desvio foram aplicadas com uma prensa com capacidade para 50 kN, e medidas com um anel dinamométrico com capacidade de 15 kN e sensibilidade em torno de 20 N. Os ensaios foram realizados através de deformações controladas, adensados e drenados. Os parâmetros obtidos no ensaio são ângulo de atrito interno efetivo (φ´) e intercepto coesivo efetivo (c´) uma vez que a drenagem é

permitida e, teoricamente, não ocorrem excessos de poro- pressão. A figura 5.5 apresenta este ensaio.

Figura 5.5: Ensaio triaxial monotônico

Os resultados dos ensaios triaxiais monotônicos estão apresentados no anexo 2 desta Tese. A tabela 5.11 apresenta os valores de tensão e deformação de ruptura encontrados nestes ensaios.

Tabela 5.11: Valores de tensão e deformação de ruptura resultantes dos ensaios triaxiais monotônicos

LOCALIZAÇÃO	σ _c (kPa)	$h < h_{\acute{o}t}$		h _{ót}		$h > h_{\acute{o}t}$	
		σ _d rup (kPa)	Erup (mm/mm)	σ _d rup (kPa)	Erup (mm/mm)	σ _d rup (kPa)	Erup (mm/mm)
BASE Km 85+780 LE $\gamma_d = 19,67 \text{kN/m}^3$	30	325	0,025	180	0,025	143	0,080
	60	401	0,020	226	0,040	280	0,080
	100	460	0,040	409	0,045	338	0,090
$BASE \\ Km 85+800 LD \\ \gamma_d = 19,46kN/m^3$	30	248	0,030	269	0,040	137	0,090
	60	351	0,035	330	0,045	203	0,090
	100	425	0,040	426	0,060	329	0,090
$SUB\text{-}BASE \\ Km 85+780 LE \\ \gamma_d = 18,82kN/m^3$	30	183	0,040	201	0,055	105	0,065
	60	349	0,035	314	0,055	258	0,070
	90	400	0,040	418	0,045	260	0,050

5.2 BASALTO ALTERADO (ERS-132, TRECHO: CAMARGO – NOVA ALVORADA)

Este material foi utilizado como base e sub-base na pavimentação da rodovia ERS-132 que foi aberta ao tráfego em 1999.

5.2.1 Definição do estudo

O Centro de Pesquisas Rodoviárias do DAER, a partir do ano 2000, vem monitorando os dois segmentos experimentais, executados nesta rodovia, nas reais condições ambientais e de tráfego. O segmento 1 localiza-se entre os quilômetros 12+680 e 13+140 e o segmento 2 entre os quilômetros 13+860 e 14+520 apresentados no item 3.2.1 desta Tese.

O basalto alterado já havia sido utilizado como camada de base e sub-base em pistas experimentais testadas no simulador de tráfego UFRGS/DAER originando a tese de doutorado realizada por Núñez em 1997. Os resultados desta tese serviram como base para a execução destas pistas experimentais.

O monitoramento dos trechos experimentais tem sido realizado para acompanhar o desempenho do pavimento através de levantamentos de dados de tráfego, deflexão, IGG e IRI.

5.2.2 Considerações sobre o clima

A rodovia em estudo localiza-se numa região de clima subtropical com temperaturas médias anuais entre 16 e 18°C. As precipitações de chuva acumulam em média 1800,0 mm por ano. A tabela 5.12 apresenta os dados obtidos no INMET durante os anos deste estudo na estação de Passo Fundo. A precipitação total para os meses de julho a dezembro de 2009 foi de 1605,9 mm, 89% do total médio previsto para o ano. A figura 5.6 ilustra as precipitações totais ocorridas mensalmente durante os anos de estudo.

Tabela 5.12: Acumulação média anual de precipitações (mm) durante os anos de estudo

Ano	Temperatura Média (°C)	Precipitação Total (mm)	Umidade Relativa do Ar (%)
2005	18,1	2087	71
2006	18,0	1470	72
2007	17,6	1700	77
2008	17,4	1977	73
2009	17,8	2197	75

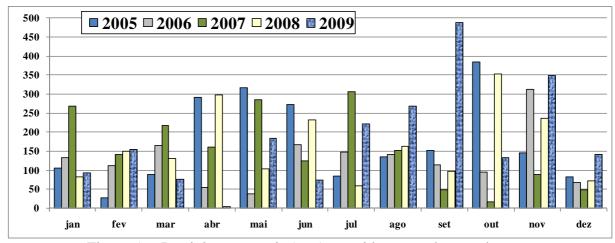


Figura 5.6: Precipitações totais (mm) ocorridas mensalmente durante os anos em estudo

5.2.3 Dados de tráfego

Os dados de tráfego foram levantados nos anos de 2003, 2004, 2007 e 2009. Para os anos em que não foi possível realizar levantamento foi previsto um acréscimo de 3% no VDM, taxa de crescimento anual utilizada pelo DAER. A tabela 5.13 apresenta o valor do número N acumulado para o período de monitoramento e a tabela 5.14 o valor do VDM medido.

Tabela 5.13: Dados de tráfego

ANO	N ano (10 ⁶) DAER-USACE	N acumulado (10 ⁶) DAER-USACE
2000	0,06	0,50
2001	0,06	0,56
2002	0,06	0,63
2003	0,18	0,81
2004	0,20	1,10
2005	0,21	1,22
2006	0,22	1,44
2007	0,13	1,57
2008	0,13	1,70
2009	0,18	1,88
2010	0,21	2,09

Tabela 5.14: Levantamento de dados de tráfego

Tipo de Veículo	1992	2003	2004	2007	2009
Automóveis	227	694	788	663	634
Coletivos	9	15	23	29	17
Carga leve	15	64	58	59	43
Carga média	139	120	102	84	90
Carga pesada	15	125	152	90	134
Carga ultra pesada	0	14	17	11	15
Total	405	1032	1140	936	933

5.2.4 Levantamentos da superfície do pavimento

Os levantamentos superficiais de defeitos realizados através do procedimento DNIT 006/2003 – PRO, durante os 10 anos de monitoramento, estão apresentados no anexo 1 desta Tese. O resumo dos dados de levantamento superficiais e o resumo dos dados de irregularidade, realizados através do equipamento Merlin, estão apresentados na tabela 5.15 para o segmento1 e na tabela 5.16 para o segmento 2.

Tabela 5.15: Dados de levantamentos superficiais 2001-2010 Segmento 1

4	ANO	2001	2002	2003	2004	2006	2008	2010
SC	FC-1	14	59	8	50	29	15	58
feite	FC-2	0	0	8	9	29	73	35
Frequência relativa defeitos	FC-3	0	0	0	0	8	0	0
lativ	AP	0	0	0	0	4	0	0
a re	O/P	0	0	0	0	0	0	23
ênci	EX	0	0	0	5	21	0	0
nbə.	D	0	0	15	18	4	0	4
표	R	0	0	4	14	21	4	8
FL	ECHAS	4,00	4,50	3,43	2,88	5,30	4,73	6
	IGG	12	21	20	39	67	57	86
COI	NCEITO	Ótimo	Bom	Bom	Bom	Regular	Regular	Ruim
IRI		3,2	-	-	-	4,1	4,6	6,5

Tabela 5.16: Dados de levantamentos superficiais 2001-2010 Segmento 2

1	ANO	2001	2002	2003	2004	2006	2008	2010
SC	FC-1	0	9	0	37	6	15	54
feite	FC-2	0	0	0	6	6	19	8
a de	FC-3	0	0	6	0	0	0	0
Frequência relativa defeitos	AP	0	0	0	0	0	0	0
a re	O/P	0	0	0	6	0	0	8
ênci	EX	0	0	3	80	14	0	19
nbə.	D	0	0	3	0	0	0	0
H	R	0	3	0	0	3	0	0
FLI	ECHAS	4,5	4,7	4,2	2,6	2,8	3,6	3,6
	IGG	9	13	15	62	22	23	43
COI	NCEITO	Otimo	Ótimo	Ótimo	Regular	Bom	Bom	Regular
	IRI	3,0	-	-	-	3,3	3,8	4,8

5.2.5 Análise das deflexões

A média dos valores de deflexão obtidos em cada um dos levantamentos deflectométricos realizados nos dois segmentos experimentais, bem como, seu respectivo desvio padrão e sua deflexão característica (média das deflexões + desvio padrão) está apresentada nas tabelas 5.17 e 5.18. Os levantamentos completos realizados com a viga Benkelman estão apresentados no Anexo 1 desta Tese.

Tabela 5.17: Dados de levantamentos deflectométricos realizados no segmento 1

			V	В			FWD	V	В	VB	FWD	VB
	Jul	Jul	Out	Jul	Nov	Dez	Abr	Out	Ago	Mar	Mar	Fev
	2000	2001	2002	2003	2003	2004	2006	2006	2007	2009	2009	2010
D _{média} (10 ⁻² mm)	64	60	64	55	36	59	58	60	62	76	59	83
DesvPad	15	17	17	18	12	23	19	22	23	28	17	24
Dc (10 ⁻² mm)	79	77	81	72	49	81	76	83	84	103	75	108

Tabela 5.18: Dados de levantamentos deflectométricos realizados no segmento 2

			V	В			FWD	VI	3	VB	FWD	VB
	Jul	Jul	Out	Jul	Nov	Dez	Abr	Out	Ago	Mar	Mar	Fev
	2000	2001	2002	2003	2003	2004	2006	2006	2007	2009	2009	2010
D _{média} (10 ⁻² mm)	57	65	64	57	43	56	56	53	58	74	55	73
DesvPad	13	17	12	18	20	18	15	19	16	22	13	17
Dc (10 ⁻² mm)	69	82	77	75	63	74	71	71	74	96	68	90

No ano de 2006 e no ano de 2009, além das deflexões realizadas com a viga Benkelman, foram obtidas deflexões com o FWD. A tabela 5.19 e a tabela 5.20 apresentam os dados das bacias de deflexão obtidos com o FWD para os segmentos experimentais1 e 2.

Tabela 5.19: Bacias de deflexão – segmento 1

De	flexõe	es (10°	mm)) - 200	06			De	eflexõe	s (10 ⁻³	² mm)	- 200)9		
Estaca	\mathbf{D}_1	D_2	D_3	D_4	D_5	D_6	D_7	Estaca	D_1	D_2	D_3	D_4	D_5	D_6	D_7
12+660	53	38	27	15	8	4	3	12+660	59	41	30	15	8	4	3
12+680	42	28	18	12	7	4	3	12+680	45	25	19	12	8	4	3
12+700	48	30	20	11	6	3	3	12+700	63	40	27	20	8	5	3
12+720	53	36	25	15	9	5	4	12+720	60	41	27	18	10	4	3
12+740	69	47	30	16	9	5	4	12+740	59	40	28	14	8	4	3
12+760	80	59	43	31	24	16	13	12+760	84	57	46	32	24	13	11
12+780	28	19	13	9	6	4	3	12+780	36	27	19	13	9	4	3
12+800	54	40	29	19	15	11	8	12+800	48	36	27	22	17	10	8
12+820	57	45	32	24	17	11	7	12+820	46	34	24	18	14	5	5
12+840	47	28	22	17	14	10	7	12+840	64	48	36	25	20	10	8
12+860	57	44	33	19	12	6	6	12+860	51	35	24	14	10	5	4
12+880	49	38	27	17	10	5	4	12+880	46	34	25	16	11	6	4
12+900	64	48	38	26	17	9	5	12+900	68	47	34	18	11	8	4
12+920	98	72	54	30	18	8	6	12+920	108	81	63	40	26	12	9
12+940	68	46	36	25	16	9	8	12+940	72	56	43	28	19	10	7
12+960	36	23	16	10	8	5	4	12+960	36	26	19	12	7	4	4
12+980	45	32	21	14	10	7	5	12+980	50	35	26	17	13	7	5
13+000	35	25	17	12	9	5	3	13+000	43	26	19	11	7	4	3
13+020	33	22	17	12	10	6	4	13+020	49	28	22	16	11	5	4
13+040	94	65	49	33	22	14	10	13+040	41	27	20	14	11	6	5
13+060	49	35	24	14	10	6	4	13+060	58	34	25	16	11	6	5
13+080	63	42	29	18	12	7	5	13+080	62	46	30	17	11	6	4
13+100	78	61	44	29	17	8	5	13+100	61	47	35	24	16	9	8
13+120	68	44	28	13	7	4	4	13+120	72	42	26	14	8	3	4
D _{média}	57	40	29	18	12	7	5	$\mathrm{D}_{\mathrm{m\'edia}}$	58	40	29	19	12	6	5
DesvPad	18	14	11	7	5	3	2	DesvPad	16	13	10	7	5	3	2
Dc	75	54	40	25	17	11	8	Dc	74	53	39	26	18	9	7

Tabela 5.20: Bacias de deflexão— segmento 2

	De	eflexõe		Deflexões (10 ⁻² mm) - 2009											
Estaca	D_1	D_2	D_3	D_4	D_5	D_6	D_7	Estaca	D_1	D_2	D_3	D_4	D_5	D_6	D_7
13+860	59	39	28	17	11	7	6	13+860	59	41	29	17	11	6	5
13+880	49	36	28	19	12	7	5	13+880	47	36	27	17	11	6	5
13+900	57	41	29	18	12	7	6	13+900	61	48	36	21	14	7	6
13+920	59	46	32	20	12	7	5	13+920	44	28	18	13	10	6	5
13+940	56	44	30	17	12	7	5	13+940	71	52	37	23	16	7	6
13+960	36	27	18	11	7	5	4	13+960	36	26	19	11	8	6	4
13+980	66	51	36	22	15	8	5	13+980	65	49	34	24	14	7	5
14+000	64	39	28	19	13	8	6	14+000	54	42	29	18	13	7	6
14+020	60	49	37	25	19	12	8	14+020	58	44	33	23	16	9	7
14+040	68	54	43	30	20	9	6	14+040	63	47	32	21	14	7	6
14+060	64	44	31	20	15	10	8	14+060	59	41	29	19	15	10	9
14+080	76	56	41	26	19	11	8	14+080	74	51	38	24	15	8	7
14+100	67	45	32	18	11	7	6	14+100	55	37	24	17	10	6	5
14+120	36	26	18	12	9	6	4	14+120	47	33	25	16	11	6	5
14+140	65	50	37	24	17	10	7	14+140	72	56	42	26	19	10	9
14+160	34	21	14	10	8	5	4	14+160	38	24	17	10	8	5	4
14+180	54	36	24	15	11	6	5	14+180	66	42	28	17	11	6	5
14+200	48	35	25	16	12	7	5	14+200	51	40	30	20	13	7	5
14+220	45	27	17	11	8	6	5	14+220	54	31	22	14	8	5	5
14+240	51	40	31	20	15	9	7	14+240	47	34	24	16	12	7	5
14+260	48	36	24	15	10	6	5	14+260	55	41	28	16	11	5	4
14+280	52	39	31	20	15	10	7	14+280	36	24	19	13	9	5	4
14+300	41	29	19	11	8	5	4	14+300	49	30	22	12	8	5	4
14+320	40	31	21	13	9	5	4	14+320	39	30	21	12	9	5	4
14+340	38	28	19	12	8	5	4	14+340	41	28	20	13	9	5	4
14+360	46	35	24	15	11	7	6	14+360	38	28	17	11	8	6	4
14+380	97	76	56	31	20	11	8	14+380	95	68	51	32	21	11	9
14+400	94	76	56	31	19	8	5	14+400	58	46	33	17	11	6	4
14+420	70	48	34	21	14	7	5	14+420	59	43	30	20	14	6	5
14+440	61	45	33	23	16	8	6	14+440	68	52	38	24	15	8	6
14+460	44	32	22	13	9	6	5	14+460	42	30	21	11	9	5	5
14+480	57	37	28	18	13	9	6	14+480	48	35	24	15	11	6	5
14+500	60	43	30	19	12	7	5	14+500	58	41	29	19	13	6	5
14+520	53	37	27	18	12	7	5	14+520	58	36	21	16	12	7	5
D _{média}	56	41	29	18	13	8	6	D _{média}	55	40	28	18	12	7	5
DesvPad	15	12	10	6	4	2	1	DesvPad	13	10	8	5	3	2	1
Dc	71	53	39	24	16	9	7	Dc	68	50	36	23	15	8	7

5.2.6 Caracterização do material

A caracterização da base de macadame de basalto alterado levou à abertura de uma trincheira em cada um dos segmentos experimentais.

5.2.6.1 Trincheiras

Em março de 2006 foi realizada uma trincheira no quilômetro 12+880 (segmento 1) e uma trincheira no quilômetro 14+300 (segmento 2) para verificação das espessuras das camadas do pavimento e coleta de amostras para realizar ensaios no laboratório. A figura 5.8 apresenta as trincheiras abertas no local.

Figura 5.8: Trincheiras abertas na rodovia

Na abertura da trincheira foi possível verificar que a espessura da base + sub-base era de 29,5 cm ao invés de 32,0 cm previstos no projeto. Na estaca 12+880 situada no segmento 1 o macadame encontrava-se contaminado com argila e apresentava umidade até a altura de 20,0 cm a partir do subleito.

5.2.6.2 Ensaios de caracterização do material

O material proveniente da base de macadame da estaca 12+880 apresentou equivalente de areia entre 31% e 43% mostrando a contaminação com argila. A especificação DAER-ES-P 07/91 para macadame seco estabelece um valor mínimo de 50% para o equivalente de areia da fração fina.

Amostras de basalto alterado obtidas da base do pavimento da ERS-132 foram enviadas à Fundação de Ciência e Tecnologia do Estado do Rio Grande do Sul (CIENTEC) para realização de análise petrográfica macroscópica (tabela 5.21) e ensaio de resistência à compressão puntiforme (tabela 5.22).

Após sete anos de vida útil do pavimento o basalto alterado apresentou valor de $I_{S(50)}$ maior que o mínimo exigido pelo critério definido por Arnold (1993): $I_{S(50)saturada} > 3,5$ MPa e $I_{S(50)saturada} / I_{S(50)seca} > 0,7$ MPa.

Tabela 5.21: Análise petrográfica da amostra de basalto alterado

AMOSTRA	Cor	Estrutura Fraturamento	Textura	Alteração	Classificação Provável	Propriedade Físico- Mecânicas
SECA	Cinza esverdeada escura, com manchas vermelhas	Fraturada; fraturas com superfícies irregulares, planas e côncavo/convexa, cobertas por película de cor amarela (argila) e óxido de manganês.	Afanítica	Rocha sã a pouco alterada	Basalto	Rocha muito coerente
ÚMIDA	verde escura					

Tabela 5.22: Índice de resistência à compressão puntiforme do basalto alterado obtido na base do pavimento da ERS-132 em 2007

Condição da amostra	IS(50) (MPa)	IS(50)saturada / IS(50)seca	TESTE
Seca ao ar	7,5	0.02	0,93 > 0,7
Saturada	7,0	0,93	7,0MPa > 3,5 MPa

5.3 LATERITA (ERS-536, TRECHO: CAIBATÉ - ENTR. BR-285)

A base do pavimento da rodovia ERS-536 foi executada com lateritas, que passaram pelo britador primário, obtidas nas jazidas localizadas nas estradas secundárias dos quilômetros 6+700 LD e 9+800 LE.

5.3.1 Definição do Estudo

Em março de 2007 o CPR/DAER (Centro de Pesquisas Rodoviárias do DAER) realizou levantamentos no local para conhecer a condição estrutural do pavimento. Foi realizado levantamento de deflexão ao longo do trecho em estações demarcadas a cada 20 metros, alternadamente, LD e LE, de forma que o espaçamento longitudinal entre duas estações consecutivas localizadas na mesma faixa de tráfego fosse igual a 40,0m. Nesta mesma ocasião foi realizado inventário do estado da superfície do pavimento de acordo com os procedimentos preconizados pelo DNIT 006/2003 – PRO, nas estações coincidentes com as estações onde foram obtidos os valores de deflexão.

De posse dos dados de deflexão e do inventário de superfície foram definidos os segmentos homogêneos que deram origem ao projeto de restauração para a rodovia. A tabela 5.23 apresenta os segmentos homogêneos com as deflexões características, a freqüência relativa de defeitos, a média das flechas de trilha de rodas e o conceito de IGG.

Uma vez definidos os segmentos homogêneos foram escolhidos dois deles, que fossem representativos da rodovia, para a análise de desempenho realizada pelo estudo aqui apresentado. O segmento 1 foi escolhido entre os quilômetros 0+000 e 0+780 com 780,0 m de extensão em local de conceito ÓTIMO e o segmento 2 foi escolhido entre os quilômetros 8+340 e 8+800 com 460,0 m de extensão em local de conceito RUIM. Estes segmentos estão evidenciados na tabela 5.24.

Tabela 5.23: Segmentos homogêneos para a rodovia ERS-536 - 2007

	SEGMENTOS HOMOGÊNEOS									IGG					
SE	GMENTO	OS HOMO	OGENEOS	(10 ⁻² mm)	FRE	QÜÊN	CIA RE	ELAT	IVA I	DEFE	ITC)S	EA.		ТО
	T / '	75'	D . ()			Trincas	3	4.5	0.70	T. X.	_		FLECHA (mm)	IGG	CONCEI TO
Seg	Início	Fim	Exten. (m)	Dc	FC-1	FC-2	FC-3	AP	O/P	EX	D	R	FL)		CON
1	0+000	0+780	780	69	5	2	0	0	0	0	0	0	5,77	18	Ótimo
	0+780	1+340	560	58	29	18	0	4	0	0	0	4	11,51	53	Regular
	1+340	1+920	580	74	41	3	0	17	0	0	0	0	13,63	63	Regular
	1+920	2+220	300	78	33	27	7	20	0	0	0	13	12,89	92	Ruim
	2+220	2+600	380	78	37	0	0	5	0	0	0	0	11,76	33	Bom
	2+600	3+380	780	71	28	28	3	28	0	0	0	3	14,49	103	Ruim
	3+380	3+600	220	83	36	0	0	0	0	0	0	0	7,45	22	Bom
	3+600	3+960	360	152	11	33	0	0	0	0	0	0	9,17	53	Regular
	3+960	4+360	400	159	25	10	15	15	0	0	0	0	12,00	79	Regular
	4+360	6+020	1660	137	18	23	25	24	14	0	0	1	13,15	135	Ruim
	6+020	6+460	440	94	18	45	0	5	0	0	0	5	9,09	87	Ruim
	6+460	6+780	320	59	0	0	0	0	0	0	0	0	6,33	9	Ótimo
	6+780	7+100	320	73	6	44	31	0	38	0	0	0	9,21	106	Ruim
	7+100	7+640	540	119	19	30	4	4	0	0	0	0	8,53	49	Regular
	7+640	8+340	700	78	6	6	0	6	0	0	0	0	8,92	27	Bom
2	8+340	8+800	460	102	39	35	9	22	9	0	0	0	10,30	124	Ruim
	8+800	9+140	340	56	6	29	0	0	0	0	0	0	7,17	28	Bom
	9+140	9+900	760	106	47	32	11	45	11	0	0	3	14,55	129	Ruim
	9+900	10+140	240	101	8	0	0	0	0	0	8	0	11,39	27	Bom
	10+140	10+380	240	70	75	0	0	75	0	0	0	0	17,17	115	Ruim
	10+380	10+760	380	61	11	11	0	0	0	0	0	0	11,44	32	Bom
	10+760	12+280	1520	77	17	34	3	25	1	0	0	7	12,51	95	Ruim

5.3.2 Considerações sobre o clima

A rodovia em estudo localiza-se numa região de clima subtropical com temperaturas médias anuais entre 18 e 20°C. As precipitações de chuva acumulam em média 1900 mm por ano. A tabela 5.24 apresenta os dados de precipitações médias, anuais, obtidos no Instituto Nacional de Meteorologia (INMET) durante os anos desta pesquisa na estação de São Luiz Gonzaga, estação mais próxima da rodovia ora estudada. A figura 5.9 ilustra as precipitações totais ocorridas mensalmente durante os anos de estudo.

73

Os anos de 2005 e 2009 apresentaram as médias anuais de precipitação maiores que o previsto.

Temperatura Média Precipitação Total Umidade Relativa do Ar Ano (°C) (%) (mm) 2005 20,8 2168,9 73 2006 21,2 1592,1 70 2007 20,4 1241,9 71 20,3 72 2008 1639,9

2171,3

Tabela 5.24: Acumulação média anual de precipitações (mm) durante o estudo

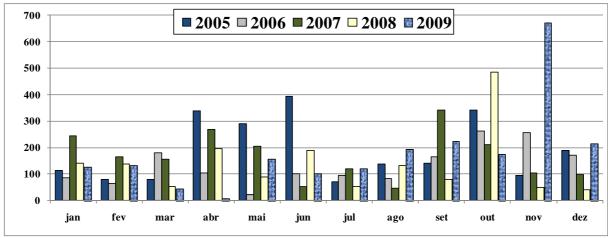


Figura 5.9: Precipitações totais (mm) mensais durante o estudo

5.3.3 Dados do tráfego

2009

20,4

Os levantamentos de tráfego obtidos pela EET-CPR/DAER estão apresentados na tabela 5.25 e foram realizados na época do projeto em 1980 e no ano de 2002. A tabela 5.26 apresenta o número N acumulado de carga equivalente de eixo padrão de acordo com o USACE a partir de 1980 (primeiro levantamento de VDM) até o ano de 2008. Os anos em que não foram realizados levantamentos de VDM, o DAER considerou taxa de crescimento médio anual de 3%.

Tabela 5.25: Levantamentos de dados de tráfego

VDM	1980	2002
Automóveis	276	304
Coletivos	2	22
Carga leve	22	30
Carga média	34	41
Carga pesada	16	16
Carga ultrapesada	2	23
Total	352	436

Tabela 5.26: Número N (USACE) acumulado 1980-2008

Ano	Número N (USACE)	N _{acum.} (USACE)
Ano	(10^6)	(10^6)
1980	0,03	0,03
1981	0,03	0,06
1982	0,03	0,09
1983	0,03	0,12
1984	0,03	0,15
1985	0,03	0,18
1986	0,03	0,21
1987	0,03	0,24
1988	0,04	0,28
1989	0,04	0,32
1990	0,04	0,36
1991	0,04	0,40
1992	0,04	0,44
1993	0,04	0,48
1994	0,04	0,52
1995	0,04	0,56
1996	0,05	0,61
1997	0,05	0,66
1998	0,05	0,71
1999	0,05	0,76
2000	0,05	0,81
2001	0,05	0,86
2002	0,07	0,93
2003	0,08	1,01
2004	0,08	1,09
2005	0,08	1,17
2006	0,08	1,25
2007	0,09	1,34
2008	0,09	1,43

5.3.4 Levantamentos da superfície do pavimento

A avaliação superficial do pavimento foi realizada através de levantamentos superficiais de defeitos utilizando o procedimento DNIT 006/2003 – PRO (DNIT, 2003), levantamentos de irregularidades longitudinais (IRI) através do Merlin e levantamentos de tráfego realizados pela equipe de tráfego do DAER.

5.3.4.1 Defeitos superficiais

Os levantamentos superficiais de defeitos realizados em 2007 e 2008, bem como o cálculo dos respectivos valores de IGG para os dois segmentos experimentais, estão apresentados no anexo 1 desta Tese. A tabela 5.27 apresenta a freqüência relativa de defeitos para os dois segmentos experimentais.

Tabela 5.27: Levantamentos superficiais - dois segmentos experimentais

	ANO	2007-Segmento1	2008-Segmento 1	2007-Segmento 2	2008-Segmento 2
sc	FC-1	5	10	39	0
feite	FC-2	2	13	35	96
a de	FC-3	0	0	9	0
Frequência relativa defeitos	AP	0	0	22	0
a re	O/P	0	0	9	0
ênci	EX	0	0	0	0
nbə.	D	0	15	0	0
Fi	R	0	3	0	38
FI	LECHAS	5,77	4,84	10,30	8,9
IGG		18	31	124	102
CC	NCEITO	ÓTIMO	BOM	RUIM	RUIM

5.3.4.2 Irregularidade longitudinal

Os levantamentos de irregularidade longitudinal (IRI) considerados para este estudo foram realizados em 2000 (item 3.3.2, tabela 3.21 desta Tese), em 2007 e em 2008. A evolução do IRI, principalmente no segmento 2 (tabela 5.28) em 2008, para 3,6 m/km já indicava necessidade de manutenção do pavimento.

Tabela 5.28: Evolução do IRI para os dois segmentos experimentais

IRI (m/km)	2000	2007	2008
Segmento1	2,1	2,7	3,0
Segmento2	3,3	3,3	3,6

5.3.5 Levantamento de deflexões

Os dados de levantamento de deflexão realizados com a VB nos anos de 2005 e 2007 estão apresentados no anexo 1 desta Tese. O resumo destes levantamentos está apresentado na tabela 5.29 mostrando que a manutenção realizada em 2005 causou um ótimo efeito no pavimento, pois a deflexão característica no segmento1 diminuiu de $91x10^{-2}$ para $69x10^{-2}$ mm. Apesar de não se conhecer a deflexão do segmento 2 em 2005, o levantamento realizado em 2007 mostrou que a deflexão continuava elevada 100×10^{-2} mm.

Tabela 5.29: Levantamentos de deflexão com VB - 2005 e 2007

VB (10 ⁻² mm)	Segm	ento1	Segmento2		
VB (10 IIIIII)	2005	2007	2005	2007	
$\mathrm{D}_{\mathrm{M\'edia}}$	72	44	-	65	
$\mathrm{D}_{\mathrm{pad}}$	19	25	-	36	
D_c	91	69	-	100	

No ano de 2007 além das deflexões realizadas com a viga Benkelman, foram obtidas deflexões com o FWD. A tabela 5.30 e a tabela 5.31 apresentam os dados das bacias de deflexão obtidos com o FWD para os dois segmentos experimentais.

Tabela 5.30: Levantamentos de deflexão FWD - 2007 - segmento 1

Estaca	FWD 19/04/2007 (10-2 mm)										
	D0	D20	D30	D45	D60	D90	D120				
0+000	48	27	16	10	7	6	4				
0+040	61	34	20	10	6	4	4				
0+080	49	29	16	8	6	4	3				
0+120	44	24	15	9	7	5	4				

Tabela 5.30(cont.): Levantamentos de deflexão FWD - 2007 - segmento 1

Б.			FWI	D 19/04/2007 ((10-2 mm)		
Estaca	D0	D20	D30	D45	D60	D90	D120
0+140	41	20	12	7	6	5	4
0+160	48	26	15	8	6	4	4
0+180	38	25	15	7	5	4	3
0+200	36	24	16	10	7	4	3
0+220	47	28	19	12	10	7	5
0+240	48	32	22	15	11	7	6
0+260	54	38	29	21	17	11	8
0+280	62	46	34	24	19	12	9
0+300	73	49	35	22	13	7	5
0+320	61	43	30	19	13	8	5
0+340	51	26	16	11	8	5	4
0+360	63	48	37	24	17	11	8
0+380	39	21	11	7	5	3	3
0+400	47	33	23	14	9	5	4
0+420	49	29	15	9	6	4	3
0+440	37	26	16	10	7	4	3
0+460	41	20	12	8	6	4	3
0+480	46	25	14	8	5	4	3
0+500	28	18	11	7	6	4	3
0+520	37	21	13	8	7	5	3
0+540	62	36	23	15	11	7	5
0+560	40	23	14	8	5	3	2
0+580	39	17	9	6	5	3	3
0+600	46	26	16	10	7	5	3
0+620	47	26	15	9	6	4	3
0+640	46	26	17	11	9	6	4
0+660	58	28	16	10	7	5	3
0+680	43	26	16	10	7	4	3
0+700	52	21	10	5	3	2	1
0+720	43	25	17	9	7	4	3
0+740	60	28	15	9	7	4	3
0+760	57	30	17	10	6	4	3
0+780	47	15	6	2	1	0	1
Dmédia	48	28	18	11	8	5	4
DesvPad	10	8	7	5	4	2	2
Dc	58	36	25	16	12	8	6

Tabela 5.31: Levantamento de deflexão FWD - 2007- segmento 2

E-t		FWD 18/04/2007 (10-2 mm)										
Estaca	D0	D20	D30	D45	D60	D90	D120					
8+340	77	41	23	13	9	6	4					
8+360	44	30	22	15	10	6	5					
8+380	60	34	20	11	7	5	4					
8+400	58	28	17	10	7	5	4					
8+420	71	32	18	10	8	6	6					
8+440	57	27	15	9	6	4	4					
8+460	74	48	25	13	8	5	4					
8+480	82	40	23	15	10	7	5					
8+500	112	62	33	17	11	6	5					
8+520	66	34	20	13	9	6	4					
8+540	94	57	33	17	11	6	4					
8+560	80	34	15	10	8	5	4					
8+580	84	41	20	10	7	5	3					
8+600	81	33	19	12	9	6	4					
8+620	56	34	20	10	7	5	4					
8+640	80	37	18	10	8	5	4					
8+660	79	43	23	12	9	6	4					
8+680	86	42	24	13	9	5	4					
8+700	85	41	18	9	6	4	4					
8+720	75	37	20	11	7	5	3					
8+740	87	42	19	8	6	4	3					
8+760	78	40	24	14	9	5	4					
8+780	71	44	21	11	7	4	3					
8+800	65	35	18	10	7	5	3					
Dmédia	75	39	21	12	8	5	4					
DesvPad	14	8	5	2	1	1	1					
Dc	89	47	26	14	10	6	5					

5.3.6 Caracterização do material

A laterita utilizada na camada de base e sub-base do pavimento em estudo foi caracterizada através de ensaios realizados em laboratório.

Ensaios de granulometria (antes e após a compactação); limite de liquidez; índice de plasticidade; equivalente de areia; compactação e ISC na energia modificada para a base e normal para o subleito de argila (de acordo com a energia utilizada na construção da rodovia)

foram realizados no laboratório de solos do DAER. No laboratório de pavimentação da UFRGS, LAPAV, foram realizados ensaios triaxiais cíclicos.

5.3.6.1 Trincheiras

Em julho de 2007 foi realizada uma trincheira no quilômetro 0+600LD (segmento 1) e uma trincheira no quilômetro 8+460LD (segmento 2) para verificação das espessuras das camadas do pavimento e coleta de amostras para realizar ensaios no laboratório. Em cada uma das estacas foi determinada à densidade de campo da camada de base e subleito e recolhido materiais para caracterização em laboratório. A figura 5.10 mostra um detalhe da trincheira aberta na estaca 0+600LD e a figura 5.11 mostra um detalhe da trincheira aberta na estaca 8+460LD.

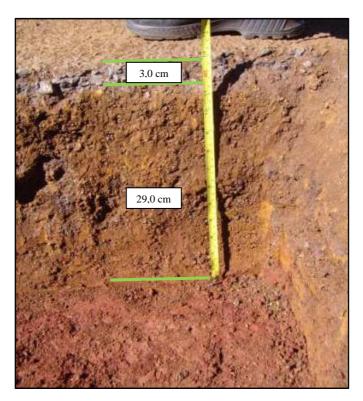


Figura 5.10: Estrutura do pavimento na Estaca 0+600 LD

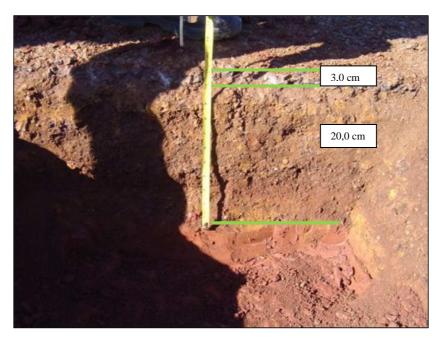


Figura 5.11: Estrutura do pavimento na Estaca 8+460 LD

5.3.6.2 Ensaios de caracterização do material

Na estaca 8+460 foi possível obter três amostras da base de laterita denominadas: L1 (obtida até a profundidade de 8,5 cm); L2 (obtida entre as profundidades de 8,50 cm e 19,50 cm) e L3 (obtida na profundidade entre 3,0 e 22,5 cm). Nesta estaca também foi possível obter duas amostras do material do subleito, classificado como A7-6 pela AASHTO, denominadas de A1 e A2.

Na estaca 0+600 foram obtidas cinco amostras do material da base denominadas: L4 e L7 (obtidas entre as profundidades de 3,00 cm 20,50 cm) e L5, L6 e L8 (obtidas entre a profundidade de 20,50 cm e 32,00 cm).

A Tabela 5.32 apresenta os resultados dos ensaios de granulometria, ensaios físicos, ensaio de equivalente de areia e ISC realizados em laboratório com os materiais obtidos das trincheiras.

Tabela 5.32: Resultado dos ensaios realizados no laboratório

10	LOCAL BY 2" 11/2					GRAN	NULON	ЛЕТБ	RIA					Ensaios físicos		EA	Compactação AASHTO		ISC
LO	LOCAL SHE		2"	1 1/2	1"	3/4"	3/8"	4	10	20	40	60	200	LL	IP	LA	$\gamma_{d m\acute{a}x} (kN/m^3)$	h _{ót} (%)	isc
	_	L1	98	93	91	91	88	71	53	43	38	35	31	33	12	20	21,95	11,9	30
	Laterita		Apó	s compa	actação	o PM	100	91	74	62	54	49	42						
	Lat	L2	99	95	94	94	93	83	63	47	41	38	34	36	14	21	21,80	13,8	
99	Base		Apó	Após compactação PM		100	91	71	56	48	44	37							
8+460	П	L3		86	79	78	70	57	43	31	26	23	19	30	12	-	22,25	12,5	57
	Subleito argila	A1					100	99	97	95	93	91	84	38	16	-	16,95	22,0	9
	Subl	A2					99	99	97	95	93	92	84	40	19	-	16,6	22,5	12
		L4	98	98	98	97	95	83	65	53	47	44	39	36	15	-	21,60	12,6	
	ita		Apó	s compa	actaçã	o PM	99	90	75	58	50	47	42						
009+0	ater	L5	99	95	94	93	88	67	46	32	28	26	22	33	11	22	22,32	11,8	19
0+0	Base Laterita	L6	99	98	95	93	85	65	43	31	27	25	21	32	10	22	22,25	12,0	16
	Ba	L7		97	92	90	81	68	50	38	32	30	25	32	15		22,9	11,0	50
		L8			98	96	90	77	58	44	38	35	29	33	17		22,3	12,8	19

5.3.6.3 Ensajos triaxiais cíclicos

A verificação da rigidez dos materiais da base deste pavimento foi realizada determinando módulos de resiliência através do ensaio padronizado pelo método de ensaio DNER-ME 131/94 utilizando-se o equipamento triaxial do Laboratório de Pavimentação da Universidade Federal do Rio Grande do Sul (LAPAV-UFRGS).

Para estes ensaios foram moldados, em laboratório, corpos de prova com 10,0 cm de diâmetro e com 20,0 cm de altura no peso específico aparente seco máximo encontrado no ensaio de Proctor com energia modificada (mesma energia utilizada na execução do pavimento). A variação da umidade de moldagem permite verificar a influência que a água exerce na rigidez do material.

A tabela 5.33 apresenta os resultados dos ensaios de módulo de resiliência realizados no laboratório com o material do subleito. Neste caso, foi considerada somente a tensão confinante no modelo de cálculo do módulo de resiliência. As tabelas 5.34, 5.35 e 5.36 apresentam os resultados dos ensaios de módulo de resiliência, utilizando respectivamente, o modelo da tensão confinante, o modelo k- θ e o modelo de Uzan, para os ensaios realizados

com os materiais obtidos da base do pavimento em estudo. O anexo 2 desta Tese apresenta os resultados destes ensaios.

Tabela 5.33: Resultado dos ensaios de módulo de resiliência do subleito considerando a tensão desvio

Amostra	$\gamma_d (kN/m^3)$	Umidade (%)	\mathbf{k}_1	\mathbf{k}_2	\mathbb{R}^2
A1	16,95	22,0	34,73	-0,17	0,866
A2	16,73	23,4	32,30	-0,06	0,871

Tabela 5.34: Resultados dos módulos de resiliência – tensão confinante

Estaca	Amostra Laterita	$\gamma_d (kN/m^3)$	Umidade (%)	k ₁	\mathbf{k}_2	\mathbb{R}^2
	L1	21,95	11,9	4,4254	0,6854	0,898
8+460	L2	21,80	13,8	27,0248	0,5225	0,953
	L3	22,30	12,6	9,1539	0,634	0,969
	L5	22,32	11,8	8,5942	0,7664	0,966
0+600	L7	22,30	12,5	17,0725	0,5833	0,956
•	L8	22,90	11,3	4,5425	0,9644	0,947

Tabela 5.35: Resultados dos módulos de resiliência - modelo $k-\theta$

LOCAL	Amostra Laterita	$\gamma_d (kN/m^3)$	Umidade (%)	\mathbf{k}_1	\mathbf{k}_2	\mathbb{R}^2
8+460	L1	21,95	11,9	1,4889	0,6847	0,956
	L2	21,80	13,8	16,3831	0,4637	0,800
	L3	22,30	12,6	3,9267	0,6049	0,941
	L5	22,32	11,8	3,1921	0,7254	0,923
0+600	L7	22,30	12,5	9,0287	0,5314	0,847
	L8	22,90	11,3	1,1141	0,9409	0,962

Amostra $\gamma_d (kN/m^3)$ R^2 LOCAL Umidade (%) \mathbf{k}_1 k_2 k_3 Laterita L1 21,95 11,9 0,3440 0,6232 0,958 0,1654 8 + 460L2 21,80 13,8 1,5035 0,8542 -1,05090,931 L3 22,30 0,8093 -0,5502 0,966 12,6 0,6641 L5 22,32 11,8 0,9312 0,8821 -0,4216 0,9333 0 + 600L7 22,30 12,5 1,0985 0,778 -0,6634 0,889 L8 22,90 11,3 0,8744 1,0841 -0,3853 0,967

Tabela 5.36: Resultados dos módulos de resiliência - modelo Uzan

5.4 LATERITA (392 AM 9100 – ACESSO A SETE DE SETEMBRO)

A base do pavimento da rodovia 392 AM 9100, trecho: Acesso a Sete de Setembro foi executada com lateritas com 50% de volume britado, obtidas nas jazidas localizadas no km 0+260 LD, a 6.600,0 m do eixo da rodovia.

5.4.1 Definição do Estudo

A retomada do estudo da laterita para ser usada como material de base de pavimentos fez com que em março de 2007 o DAER/RS realizasse levantamentos no local para conhecer as condições funcionais e estruturais do pavimento.

Utilizando o equipamento FWD foi realizado levantamento de deflexão ao longo do trecho experimental em estações demarcadas a cada 20 metros, alternadamente, LD e LE, de forma que o espaçamento longitudinal entre duas estações consecutivas localizadas na mesma faixa de tráfego fosse igual a 40 metros. Nesta mesma ocasião foi realizado inventário do estado da superfície do pavimento de acordo com os procedimentos preconizados pela norma DNIT 006/2003 – PRO (DNIT, 2007), nas estações coincidentes com as estações onde foram obtidos os valores de deflexão.

Os dados de deflexão e o inventário de superfície mostraram que a rodovia se apresentava homogênea e foi definido, como trecho experimental, o segmento entre os quilômetros 0+500 e 1+500.

5.4.2 Considerações sobre o Clima

A rodovia em estudo localiza-se na mesma região da rodovia ERS-536, ou seja, possui clima subtropical com temperaturas médias anuais entre 18 e 20°C e com precipitações de chuva que acumulam em média 1900mm por ano. A tabela 5.24, item 5.3.2 desta Tese apresenta os dados, obtidos no Instituto Nacional de Meteorologia (INMET) durante os anos desta pesquisa, da estação mais próxima da rodovia em estudo localizada em São Luiz Gonzaga.

5.4.3 Dados de Tráfego

Além da contagem de tráfego realizada em 1999 quando foi encontrado um VDM igual a 454 veículos, por ocasião da execução do projeto de pavimentação da rodovia; em 2007 foi realizada nova contagem de tráfego por três dias quando foi encontrado um VDM de 415 veículos. A tabela 5.37 apresenta o número N (USACE) acumulado calculado para os anos de 2000 (abertura ao tráfego), 2007, 2008 e 2010, mesma época em que foram realizados levantamentos superficiais e de deflexão no segmento experimental.

Tabela 5.37: Número N(USACE) para 2000 (abertura ao tráfego), 2007, 2008 e 2010

ANO	Número N
2000	4,00E+04
2007	1,80E+05
2008	2,10E+05
2010	2,90E+05

5.4.4 Levantamento da superfície do pavimento

A avaliação superficial do pavimento foi realizada através de levantamentos superficiais de defeitos utilizando o procedimento DNIT 006/2003 – PRO (DNIT, 2003), levantamentos de irregularidades longitudinais (IRI) com o equipamento Merlin e tráfego.

5.4.4.1 Defeitos superficiais

Os levantamentos de defeitos superficiais realizados em 2007, 2008 e 2010 e os respectivos cálculos do IGG estão apresentados no anexo 1 desta Tese. A Tabela 5.38 apresenta a

freqüência relativa dos defeitos encontrados em 2007, 2008 e 2010 com classificação do segmento através do IGG.

ANO 2007 2010 2008 FC-1 12 4 20 Frequência relativa defeitos (DNIT 006/2003 – PRO) FC-2 59 82 96 FC-3 24 AP 0 0 0 O/P 20 6 0 EX 10 10 D 10 6 R 31 24 41 8,9 FLECHAS (mm) 8,0 7,6 **IGG** 156 90 91

RUIM

RUIM

PÉSSIMO

Tabela 5.38: Defeitos superficiais - 2007, 2008 e 2010

5.4.4.2 Irregularidade longitudinal

CONCEITO

Os levantamentos de irregularidade longitudinal (IRI) considerados para este estudo foram realizados em 2000 (item 3.3.2, tabela 3.21 desta Tese), em 2007 e em 2008. A evolução do IRI, principalmente no segmento 2 (tabela 5.39) em 2008, para 3,6m/km já indicava necessidade de manutenção do pavimento.

Tabela 5.39: Evolução do IRI para o segmento experimental

IRI (m/km)	2008	2010
Segmento experimental	3,0	3,6

5.4.5 Análise das deflexões

Os dados dos levantamentos de deflexão realizados com a VB estão apresentados no anexo 1 desta Tese. O resumo dos levantamentos de deflexão realizados com a VB em 2000, início da vida útil do pavimento, e em 2010 é apresentado na tabela 5.40. Após nove anos de tráfego na rodovia, os valores de deflexão não sofreram variações significativas e tornaram-se mais homogêneos. A tabela 5.41 apresenta as bacias de deflexões obtidas com o FWD em 2007.

Tabela 5.40: Levantamentos de deflexão com VB - 2000 e 2010

VB (10 ⁻² mm)	2000	2010
DMédia	46	33
Dpad	18	12
Dc	64	45

Tabela 5.41: Bacias de deflexão levantadas com o FWD - 2007

ECTACA	LADO			FWD (1	0 ⁻² mm) -	19/04/20	07	
ESTACA	LADO	D_0	D_{20}	D ₃₀	D_{45}	D_{60}	D ₉₀	D ₁₂₀
0+500	LD	42	20	9	4	2	1	1
0+520	LE	54	26	13	8	6	3	2
0+540	LD	58	20	9	4	3	2	1
0+560	LE	42	19	11	6	4	2	2
0+580	LD	73	35	20	14	11	8	6
0+600	LE	40	16	9	5	3	2	1
0+620	LD	58	26	14	9	7	4	2
0+640	LE	21	12	6	3	2	1	1
0+660	LD	58	21	10	6	5	3	2
0+680	LE	48	18	10	6	5	3	2
0+700	LD	56	23	13	8	6	4	3
0+720	LE	65	27	16	11	8	6	4
0+740	LD	46	16	9	5	4	2	1
0+760	LE	53	19	9	5	4	2	2
0+780	LD	42	14	6	3	2	1	1
0+800	LE	61	23	13	8	6	3	2
0+820	LD	46	18	10	5	3	1	1
0+840	LE	66	24	13	7	5	3	2
0+860	LD	61	29	16	9	6	4	2
0+880	LE	48	23	11	7	5	2	2
0+900	LD	53	25	13	7	4	2	1
0+920	LE	52	17	9	5	3	2	1
0+940	LD	71	34	19	10	6	3	2
0+960	LE	56	26	14	9	6	3	2
0+980	LD	60	26	14	8	5	2	2
1+000	LE	62	28	17	10	7	4	3
1+020	LD	51	26	12	5	3	1	1
1+040	LE	68	30	19	13	9	6	4
1+060	LD	58	22	12	9	6	4	3

Tabela 5.41(cont.): Bacias de deflexão levantadas com o FWD - 2007

ECTACA	LADO		FWD (10 ⁻² mm) - 19/04/2007						
ESTACA	LADO	D_0	D_{20}	D ₃₀	D ₄₅	D_{60}	D ₉₀	D ₁₂₀	
1+080	LE	52	27	15	9	6	4	2	
1+100	LD	42	20	12	8	7	4	3	
1+120	LE	57	23	10	4	2	1	1	
1+140	LD	67	29	15	9	7	5	4	
1+160	LE	53	25	13	8	5	3	1	
1+180	LD	43	13	7	4	2	1	1	
1+200	LE	47	19	9	5	3	2	1	
1+220	LD	40	13	7	4	3	2	1	
1+240	LE	67	28	16	10	8	6	5	
1+260	LD	45	18	9	4	2	1	1	
1+280	LE	52	26	16	11	9	6	4	
1+300	LD	54	20	10	5	3	1	1	
1+320	LE	32	14	6	4	2	1	1	
1+340	LD	65	27	15	8	5	4	3	
1+360	LE	65	33	19	10	6	3	2	
1+380	LD	66	29	16	10	7	5	4	
1+400	LE	70	26	10	5	3	2	2	
1+420	LD	83	33	19	13	9	5	4	
1+440	LE	67	27	14	7	5	3	2	
1+460	LD	89	30	16	9	6	4	3	
1+480	LE	54	23	12	7	5	3	2	
1+500	LD	49	20	12	6	4	2	2	
D _{média}		55	23	12	7	5	3	2	
DesvPad		12	6	4	3	2	2	1	
Dc		68	29	16	10	7	5	3	

5.4.6 Caracterização do material

A laterita utilizada na camada de base do pavimento em estudo foi caracterizada através de ensaios realizados em laboratório.

Ensaios de granulometria (antes e após a compactação); limite de liquidez; índice de plasticidade; equivalente de areia; compactação e ISC na energia modificada para a base e

normal para o subleito de argila (de acordo com a energia utilizada na construção conforme informações obtidas em campo) foram realizados no laboratório de solos do DAER.

No laboratório de pavimentação da UFRGS, LAPAV, foram realizados ensaios triaxiais estáticos e cíclicos.

5.4.6.1 Trincheira

Os levantamentos superficiais e estruturais mostraram a homogeneidade do segmento, sendo assim, foi escolhido apenas um ponto para reconhecimento da estrutura do pavimento, localizado na estaca 0+900 LD. Neste ponto, a deflexão era próxima à deflexão média do segmento. A abertura da trincheira serviu para verificar as espessuras das camadas, determinação da densidade de campo da camada de base e do reforço do subleito e coleta do material para caracterização no laboratório. A figura 3.12 mostra um detalhe da trincheira realizada para estudo.

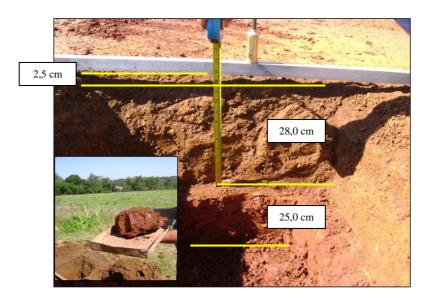


Figura 5.12: Trincheira aberta na estaca 0+900 LD

5.4.6.2 Ensaios de caracterização do material

No laboratório foram realizados: ensaios de granulometria (antes e após a compactação na energia do Proctor intermediário); limite de liquidez; índice de plasticidade; equivalente de areia; compactação e ISC na energia intermediária para a base (de acordo com a energia

utilizada na construção conforme informações obtidas em campo) e normal para o reforço do subleito. Os resultados destes ensaios estão apresentados na tabela 5.42.

As amostras da base de 28 cm de laterita foram divididas em quatro, sendo que as primeiras duas amostras, L1 e L2, foram obtidas entre a profundidade 2,0 cm e 17,0 cm referindo-se aos primeiros 15,0 cm da base de laterita e as amostras denominadas L3 e L4 foram obtidos entre as profundidades de 17,0 cm e 30,0 cm referindo-se aos restantes 13,0 cm da base. As amostras de reforço do subleito caracterizado como argila foram divididas em duas amostras denominadas de A1 e A2 obtidas entre as profundidades de 30,0 cm e 45,0 cm.

Tabela 5.42: Resultado dos ensajos realizados no laboratório

	Amostra		GRANULOMETRIA						Ensaios físicos EA		Compactação AASHTO		ISC	Exp					
	Ame	2"	1 1/2	1"	3/4"	3/8"	4	10	20	40	60	200	LL	IP		$\gamma_{dm\acute{a}x} (kN/m^3)$	h _{ót} (%)	isc	Ехр
		91	87	83	82	78	66	50	36	31	29	26	40	13	16	20,1	17	19	0,8
	L1	Apó	s compa	actaçã	ĭo PM	99	91	73	56	49	46	41							
		Apó	s ensaio	de n	nódulo	99	88	68	53	47	44	39							
rita	L2	-	-	97	96	93	80	61	49	43	40	35	39	17	-	19,9	16,0	10	0,2
Base Laterita		-	-	-	99	97	84	61	45	40	38	34	44	14	18	20,5	15,0	53	0,6
Bas	L3	Apó	s compa	actaçã	ão PM	100	91	71	55	48	45	40							
		Apó	s ensaio	de n	nódulo	100	91	69	55	49	46	40							
	L4	-	-	-	93	83	64	45	34	30	29	26	37	15	-	20,6	13,5	44	0,1
		Apó	s compa	actaçã	ão PM	95	79	59	46	41	38	33							
Subleito	A1	-	-	-	-	-	100	99	97	96	95	92	55	21	-	14,95	28,5	14	0,9
Sub]	A2	-	-	-	-	-	99	98	97	96	95	91	50	23	-	15,10	28,1	14	0,2

Na abertura da trincheira foi realizado ensaio de densidade com o frasco de areia de acordo com o método de ensaio DAER/RS EL 302/99 (DAER, 2001) na base de laterita e densidade com o cilindro cortante através do método do cilindro biselado de acordo com o método de ensaio DAER/RS EL 302/99 (DAER, 2001) no subleito. Os resultados destes ensaios estão apresentados na tabela 5.43.

Tabela 5.43: Resultado dos ensaios realizados no campo

Localização	Ensaios de campo				
Localização	$\gamma_d (kN/m^3)$	h (%)			
Base laterita	19,7	16,7			
Subleito	15,53	26,5			

5.4.6.3 Ensaios triaxiais cíclicos

Utilizando o peso específico aparente seco máximo e a umidade ótima encontradas no ensaio de compactação foram moldados corpos de prova para o ensaio de módulo de resiliência das amostras de base e do reforço de subleito.

A tabela 5.44, apresenta os resultados dos ensaios de módulo de resiliência, considerando a tensão desvio, para os ensaios realizados com os materiais obtidos do reforço do subleito do pavimento em estudo.

Tabela 5.44: Resultado dos ensaios de módulo de resiliência do reforço do subleito considerando a tensão desvio

$\gamma_d (kN/m^3)$	h _{ót} .	\mathbf{k}_1	\mathbf{k}_2	R^2
14,95	28,5	73	-0,16	0.95
15,10	28,1	63	-0,14	0,96

As tabelas 5.45, 5.46 e 5.47 apresentam os resultados dos ensaios de módulo de resiliência utilizando, respectivamente, o modelo da tensão confinante, o modelo k-θ e o modelo de Uzan, para os ensaios realizados com os materiais obtidos da base do pavimento em estudo. Os resultados destes ensaios estão apresentados no anexo 2 desta tese.

Tabela 5.45 Resultados dos módulos de resiliência - tensão confinante

LOCALIZAÇÃO	Amostra	Módulo de Resiliência - k ₁ σ ₃ ^{k2}						
LOCALIZAÇAO	Alliostra	$\gamma_d (kN/m^3)$	h (%)	\mathbf{k}_1	\mathbf{k}_2	\mathbb{R}^2		
	L1	20,1	17,0	35,3496	0,41505	0,825		
Poss Laterita	L2	19,9	16,2	12,1462	0,5685	0,967		
Base Laterita	L3	20,50	15,0	31,9273	0,5390	0,950		
	L4	20,6	13,5	8,7037	0,7913	0,982		

Tabela 5.46: Resultados dos módulos de resiliência – modelo k- θ

LOCALIZAÇÃO	Amostro	Módulo de Resiliência - k-θ						
	Amostra	$\gamma_d (kN/m^3)$	h (%)	\mathbf{k}_1	\mathbf{k}_2	\mathbb{R}^2		
	L1	20,1	17,0	27,1281	0,3449	0,607		
Dogg Latarita	L2	19,9	16,2	6,6945	0,5136	0,842		
Base Laterita	L3	20,50	15,0	17,1895	0,4967	0,860		
	L4	20,6	13,5	3,0673	0,7526	0,948		

Tabela 5.47: Resultados dos módulos de resiliência – modelo Uzan

LOCALIZAÇÃO	Amagtra	Módulo de Resiliência – Uzan						
	Amostra	$\gamma_d (kN/m^3)$	h (%)	\mathbf{k}_1	\mathbf{k}_2	\mathbb{R}^2		
	L1	20,1	17,0	1,4731	0,8426	-1,3393		
Doga Latarita	L2	19,9	16,2	0,767	0,8665	-0,9497		
Base Laterita	L3	20,50	15,0	1,8444	0,9085	-1,1082		
	L4	20,6	13,5	1,0464	1,0601	-0,8275		

6 ANÁLISES

6.1 PLINTOSSOLO DA PLANÍCIE COSTEIRA DO RIO GRANDE DO SUL (ERS-101, TRECHO: BACOPARI-MOSTARDAS)

A análise de desempenho desta rodovia considerou o estudo de tráfego em conjunto com o estudo das deflexões obtidas durante o monitoramento e o estudo da rigidez (módulo de resiliência) e da resistência ao cisalhamento (triaxiais monotônicos) do material alternativo que compõe a base e a sub-base do pavimento. O resultado dos ensaios triaxiais utilizados na análise estão apresentados no item 5.1.6 desta Tese. A determinação das tensões que atuam na base e na sub-base do pavimento com a ajuda de um software de análise mecanística como o EVERSTRESS ou do software de retroanálise EVERCALC, em conjunto com os resultados dos ensaios de resistência ao cisalhamento, permitiu verificar se o material tem condições de suportar as cargas de acordo com o projeto previsto e de acordo com as condições em que o mesmo se encontrava na rodovia.

6.1.1 Análise do Tráfego

A evolução da quantidade de veículos durante a vida útil deste pavimento foi verificada pelos levantamentos de VDM realizados em 1991, 1998, 2001, 2004 e 2010 apresentados no item 5.1.3 desta Tese. A tabela 6.1 apresenta a evolução das quantidades de veículos de acordo com o tipo de veículo. Nesta tabela está apresentada a taxa de crescimento média anual (t_%).

(t%) (t%) (t%) (t%) VEÍCULO 1994 1998 1991 2001 2004 2010 1991-1998 1998-2001 2001-2004 2004-2010 357 364 545 6.23% 695 8,44% -1,12% -0,99% Passeio 672 633 Coletivo 14 37 36 14,44% 52 13,04% 22 -24,93% 61 18,53% Caminhão leve 21 14 27 3,66% 47 20,29% 29 -14,87% 6,37% 42 Caminhão 79 -4,56% 42 57 92 17,30% 77 -5,76% 55 -5,45% médio Caminhão 54 86 90 7,57% 224 35,52% 108 -21,59% 134 3,66% pesado Cam 27 40 31 38 -0,73% -10,77% 53 25,21% 104 11,89% ultrapesado 793 VDM - TOTAL 565 574 4,96% 1137 12,76% 961 1029 -5,45% 1,15%

Tabela 6.1: Evolução da quantidade de veículos

Até 1998 o maior crescimento de VDM ocorreu nos coletivos, as cargas leves e as cargas pesadas apresentaram um pequeno acréscimo. O maior acréscimo de cargas leve, média e pesada ocorreu entre os anos de 1998 e 2001, nesta época o pavimento do trecho experimental já tinha sido restaurado (2,5 cm reperfilagem + 6,0 cm de CBUQ). Os caminhões ultrapesados tiveram um acréscimo significativo entre os anos de 2001 e 2004, após a segunda restauração do pavimento do trecho experimental (4,0 cm CBUQ). Observa-se um decréscimo de cargas leve, média e pesada no período entre 2001 e 2004 provavelmente devido a diferença no mês de levantamento do tráfego. A variação da taxa de crescimento ao longo dos anos por tipo de veículo é mostrada na figura 6.1.

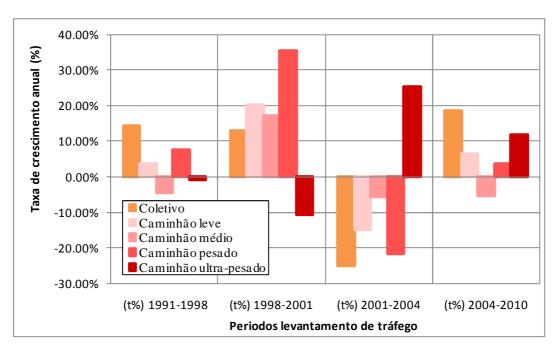


Figura 6.1: Taxa de crescimento anual do tráfego por categoria de veículo

6.1.2 Análise da superfície do pavimento

Os defeitos da superfície do pavimento são sintomas que permitem o diagnóstico das causas de deterioração de um pavimento.

Os resultados obtidos dos levantamentos superficiais apresentados no item 5.1.4 mostram que o lado esquerdo do pavimento apresenta piores condições superficiais, o IGG apresenta conceito REGULAR e o IRI > 4,5 é considerado péssimo. Esta situação é justificada, uma vez que esta rodovia apresenta o tráfego de caminhões carregados com madeira, cebola e arroz,

devido ao escoamento de safras no lado esquerdo, enquanto que no lado direito estes caminhões seguem vazios.

6.1.3 Análise das deflexões

As leituras de deflexão são um importante indicativo do comportamento futuro do pavimento, uma vez que o trincamento por fadiga das camadas asfálticas e cimentadas é função da deformação máxima de tração (ε_t) na sua fibra inferior, a qual está ligada à magnitude das deflexões dos pavimentos.

A tabela 6.2 apresenta um resumo das deflexões características obtidas no trecho experimental em estudo desde a sua construção, conforme apresentado no capítulo 3 e 5 desta Tese, indicando as restaurações realizadas no mesmo.

Tabela 6.2: Resumo das deflexões características no segmento 85+500 até 86+000

PAVIMENTO	DATA	Tempo de abertura ao tráfego	DEFLEXÕES CARACTERÍSTICAS (10 ⁻² mm)				
		traicgo	LE	LD	Equipamento		
Projeto original (1987): Sub-base – 15,0cm Plintossolo Base – 15,0cm Plintossolo+DS Revestimento - 2,5cm TSD	1991	4 anos	53	47	VB		
1ª restauração (1993):	1994	1 ano após a 1ª rest.	70	74	VB		
2,0cm Reperfilagem + 6,0cm CBUQ	1996	3 anos após a 1 ^a rest.	85	85	VB		
28 D (2000)	2005	5 anos após a 2ª rest.	73		FWD		
2ª Restauração (2000): 4,0cm CBUQ	2007	7 anos após a 2ª rest.	72	53	FWD		
4,00m CB0Q	2009	9 anos após a 2ª rest.	105	72	FWD		

Nos primeiros quatro anos o material teve um desempenho razoável, as deflexões de $50x10^{-2}$ mm são perfeitamente aceitáveis para um revestimento com tratamento superficial.

Salienta-se que em 1994, quando foi realizado o recapeamento com 2,0cm de reperfilagem e 4,0 cm de CBUQ, o segmento encontrava-se com oito anos de vida útil, ultrapassando os cinco anos previstos em projeto e seu revestimento original de TSD encontrava-se com 22% de trincas FC-2 de acordo com o item 3.1.5.3 desta Tese, permitindo a entrada de água para as camadas de base e sub-base.

A média das bacias de deflexão obtidas pelo FWD em 2009 em cada um dos lados do segmento em estudo foi analisada em conjunto com as duas bacias levantadas nos pontos escolhidos para abertura das trincheiras, 85+780 LE e 85+800 LD e em conjunto com as bacias de deflexão obtidas também pelo FWD em 2007 e 2005 nos pontos mais próximos aos locais onde foram abertas as trincheiras. Estas bacias estão apresentadas na figura 6.2.

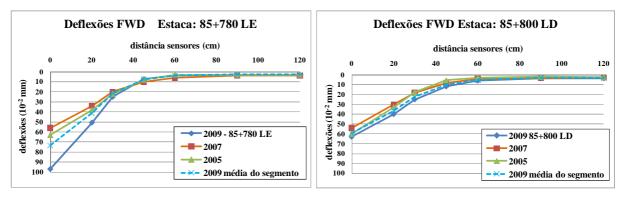


Figura 6.2: Bacias de deflexões - 2005, 2007 e 2009

O lado esquerdo da rodovia sofreu maior aumento da deflexão, pois neste lado da rodovia ocorre o tráfego de caminhões carregados com madeira, cebola e arroz, devido ao escoamento de safras, enquanto que no lado direito estes caminhões seguem vazios. O ponto escolhido, estaca 85+780 LE, representa bem a situação estrutural deste lado da rodovia. O lado direito praticamente não sofreu alterações quanto à deflexão nos últimos quatro anos e o ponto escolhido, estaca 85+800 LD, representa bem esta situação.

O estudo da forma das bacias de deflexão apresentado por Fabrício et al (1988) foi utilizado neste trabalho para ajudar na análise do desempenho da base, sub-base e subleito do pavimento em estudo através do índice de curvatura superficial (ICS) e do índice de curvatura da base (ICB). A tabela 6.3 apresenta o resumo do estudo realizado para as bacias levantadas em 2009 no lado esquerdo e no lado direto do segmento analisado da rodovia.

Tabela 6.3: Resumo do estudo das bacias de deflexão LE e LD - segmento analisado

Segmento	$\begin{aligned} R_c < 100 \\ Problema \\ Revestimento + \\ Base (\%) \end{aligned}$	ICS >25 Pouca resistência Revestimento+Base (%)	ICB baixo indica ISC alto ICB<10 indica ISC>10	
85+600 a 86+000 LE	63	88	ICB médio igual a 2 Subleito em boas condições de resistência	
85+600 a 86+000 LD	48	84	ICB médio igual a 1 Subleito em boas condiçã de resistência	

A forma da bacia de deflexão, neste segmento, mostra que 63% do lado esquerdo da rodovia apresentaram problemas estruturais nas camadas superiores do pavimento (revestimento e base), enquanto que o lado direito apresentou 48%, mas, os dois segmentos apresentavam mais de 80% do segmento com pouca resistência no revestimento+base. O subleito encontrase em boas condições de resistência.

6.1.4 Análise da camada de base de plintossolo

O resultado dos ensaios apresentados no item 5.1.6 desta Tese foram utilizados na análise estrutural da camada de base de laterita utilizada nesta rodovia.

6.1.4.1 Considerações sobre as espessuras

A figura 6.3 mostra as espessuras de base e sub-base previstas no projeto e as espessuras encontradas por ocasião da abertura das trincheiras.

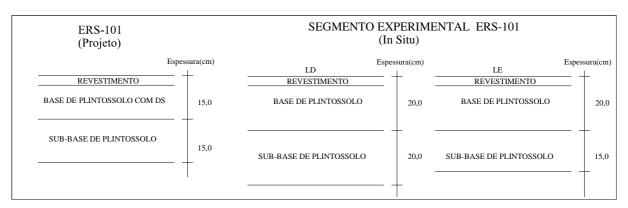
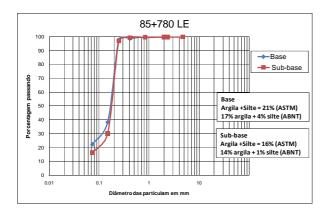



Figura 6.3: Espessuras de base e sub-base previstas no projeto e espessuras encontradas na rodovia

A espessura de base encontrada nos dois lados do segmento experimental era maior que aquela prevista no projeto. A sub-base na estaca do lado esquerdo da rodovia apresentava menor espessura igualando-se àquela prevista no projeto.

6.1.4.2 Considerações sobre a granulometria

Os ensaios de granulometria realizados, apresentados na figura 6.4 mostram que os materiais utilizados na sub-base são homogêneos.

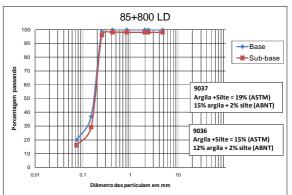


Figura 6.4: Resultado dos ensaios de granulometria – Base e Sub-base, ERS 101

6.1.4.3 Considerações sobre a classificação e ensaios da metodologia MCT

O plintossolo utilizado nesta rodovia foi classificado durante a construção, como LA, areia laterítica, situando-se no limite para NA, areia não laterítica conforme descrito no item 3.1.2 desta Tese. A verificação desta classificação para os materiais obtidos na base e sub-base desta rodovia, em 2009, foi realizada através do critério para diferenciar solos de comportamento lateríticos e não laterítico baseado na relação RIS apresentado no item 2.1.2.5 desta Tese. A tabela 6.4 apresenta os resultados obtidos.

Tabela 6.4: Resultados obtidos através do critério baseado na Relação RIS

ESTACA	LOCALIZAÇÃO	ISCimerso	ISCsem imersão	Relação RIS (%)	Classificação MCT
85+780 LE	Base	54	80	68	Laterítico (L)
	Sub-base	12	24	50	Laterítico (L)
85+800 LD	Base	46	59	78	Laterítico (L)
	Sub-base	46	78	59	Laterítico (L)

Segundo a metodologia MCT foram realizados ensaios de Infiltrabilidade e Perda de massa por imersão. Estes ensaios foram realizados, uma vez que, uma das premissas na execução desta rodovia era que o material utilizado na base e na sub-base deste pavimento apresentasse perda por imersão (PI) igual à zero. A figura 6.5 mostra o ensaio de perda por imersão e a tabela 6.5 apresenta o resultado do ensaio da perda por imersão para o material da base e da sub-base da estaca 85+780 LE.



Figura 6.5: Resultado ensaio de perda por imersão (LE)

 ESTACA
 LOCALIZAÇÃO
 PI(%)

 85+780 LE
 Base
 89

 Sub-base
 245

 Base
 124

 Sub-base
 284

Tabela 6.5: Resultados dos ensaios de PI

O material utilizado na base apresenta PI menor quando comparado com o material da subbase, mas, em qualquer um dos casos a perda por imersão é diferente de zero discordando com a premissa de projeto.

O ensaio de infiltrabilidade (Villibor, 2009) foi realizado para verificar a quantidade de água que infiltra no material estudado em um determinado tempo.

A figura 6.6 apresenta os gráficos de infiltrabilidade realizados com os materiais obtidos da base e sub-base dos dois pontos estudados.

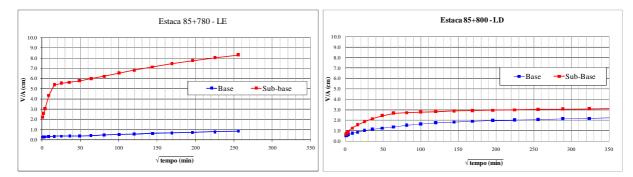


Figura 6.6: Ensaio de infiltrabilidade ou permeabilidade capilar - base e sub-base

A água infiltra com maior facilidade no material obtido da sub-base do lado esquerdo da rodovia (estaca 85+780 LE).

O lado esquerdo da rodovia apresenta a sub-base com menor espessura, o material da subbase com maior facilidade de infiltração de água.

6.1.5 Análise do comportamento elástico

A repetição das cargas das rodas em movimento causa trincamento por fadiga nos pavimentos quando a deformação e/ou o número de deformações repetidas excederem a tolerância de deformação do revestimento betuminoso. Uma parte da deformação que surge no revestimento é devido à rigidez das camadas subjacentes ao revestimento, ou seja, função direta do módulo e/ou espessura da base e sub-base do pavimento. As trincas por fadiga são causadas devido à facilidade com que o pavimento se deforma quando sua estrutura, ou seja, a camada da base, sub-base ou subleito possuem baixo módulo de resiliência e/ou carência de uma espessura estrutural adequada (SAAED et al, 2000). Este mesmo autor lembra que as trincas por fadiga causadas por falta de rigidez na base podem contribuir para o rompimento no revestimento superficial, mas, nem sempre que ocorre rompimento do revestimento ocorre rompimento na base.

6.1.5.1 Estudo das tensões atuantes na estrutura do pavimento

A partir do resultado dos ensaios de módulo de resiliência realizados nas amostras indeformadas obtidas na rodovia, foi possível calcular as tensões que atuavam no centro da camada da base do pavimento, através do software EVERSTRESS. Substituindo estas tensões atuantes na função $Mr = f(\sigma)$ determinada no ensaio de módulo, foi possível encontrar os módulos de resiliência da base do pavimento. Onde não foi possível obter amostras indeformadas, foram realizadas retroanálises com o auxílio do software EVERCALC utilizando-se as espessuras obtidas das trincheiras e dados do FWD levantados em 2007 e em 2009 possibilitando o conhecimento dos módulos de resiliência e das tensões que atuavam no meio da base, meio da sub-base e no topo do subleito do pavimento em 2007 e em 2009.

As espessuras das camadas de pavimento conhecidas com a abertura de trincheiras no segmento e a localização dos pontos estudados estão apresentadas na tabela 6.6.

Tabela 6.6: Espessuras das camadas da estrutura e localização dos pontos estudados

Estaca	Local	espessura campo (cm)	Espessura Retroanálises (cm)	Ponto de estudo "z" (cm)		
	CBUQ	4				
	AA	1	10	Fibra inferior do revestimento; $z = 10$		
	CBUQ	5				
85+780 LE	TSD	2	22	Meio da base: $z = 21$		
	Base	20	22	Meio da base: $Z = 21$		
	Sub-base	15	15	Meio da sub-base: $z = 39,5$		
	subleito	8	-	Topo do subleito: $z = 47$		
	CBUQ	5				
	AA	1	13	Fibra inferior do revestimento: $z = 13$		
	CBUQ	7				
85+800 LD	TSD	2	22	Meio da base: z = 24		
LD	Base	20	22	Meio da base: $Z = 24$		
	Sub-base	20	20	Meio da sub-base: $z = 45$		
	subleito	8	-	Topo do subleito: $z = 55$		

A variação percentual das tensões e deformações encontradas na base do revestimento, no meio da base, no meio da sub-base e no topo do subleito do pavimento durante os anos de 2007 e 2009 para o lado direito e lado esquerdo da rodovia estão apresentadas na tabela 6.7 e 6.8.

Tabela 6.7: Variação percentual das tensões na estrutura entre 2007 e 2009 - LD do segmento

LD		Tensão vertical (kPa)	Tensão confinante (kPa)	Tensões principais (kPa)	Tensão Desvio (kPa)	Deformação radial (10 ⁻⁶)	Deformação vertical (10 ⁻⁶)
Estrutura	Ano	$\sigma_1 = \sigma_v$	σ_3	$\sigma_1 + \sigma_2 + \sigma_3$	σ_{d}	$\epsilon_{ m h}$	$\epsilon_{ m v}$
Base do revestimento		-201,84	891,06	1580,29	-1092,9	499,95	-450,29
Meio Base	2007	-138,48	-21,71	-181,9	-116,77	357,48	-1282,78
Meio Sub-base	2007	-76,09	-8,72	-93,53	-67,37	92,12	-307.54
Topo Subleito		-58,56	-2,45	-63,45	-56,11	53,03	-159,47
Base do revestimento		-276,81	491,34	705,87	-768,15	730,31	-871,76
Meio Base	2009	-172,58	-16,35	-205,28	-156,23	497,75	-1611,32
Meio Sub-base	2009	-85,08	-8,23	-101,54	-76,85	146,39	-475,33
Topo Subleito		-63,96	-1,34	-66,64	-62,62	70,12	-205,41
Base do revestimento		37,14	-44,86	-55,33	-29,71	46,08	93,60
Meio Base	Δ %	24,62	-24,69	12,85	33,79	39,24	25,61
Meio Sub-base		11,81	-5,62	8,56	14,07	58,91	54,56
Topo Subleito		9,22	-45,31	5,03	11,60	32,23	28,81

Tabela 6.8: Variação percentual das tensões na estrutura entre 2007 e 2009 - LE do segmento

LE		Tensão vertical (kPa)	Tensão confinante (kPa)	Tensões principais (kPa)	Tensão Desvio (kPa)	Deformação radial (10 ⁻⁶)	Deformação vertical (10 ⁻⁶)
Estrutura	Ano	$\sigma_1 = \sigma_v$	σ_3	$\sigma_1 + \sigma_2 + \sigma_3$	$\sigma_{ m d}$	$\epsilon_{ m h}$	$\epsilon_{ m v}$
Base do revestimento		-249,78	1246,75	2243,73	-1496,53	615,34	-538,63
Meio Base	2007	-167,2	-21,82	-210,84	-145,38	498,86	-1709,37
Meio Sub-base	2007	-97,87	-18,68	-135,22	-79,19	168,5	-646,09
Topo Subleito		-80,08	-5,89	-91,87	-74,19	57,29	-179,84
Base do revestimento		-352,63	624,6	896,58	-977,23	1391,53	-1662,33
Meio Base	2009	-233,4	-34,8	-302,99	-198,61	1058,01	-3744,01
Meio Sub-base	2009	-124,47	-12,4	-149,27	-112,07	110,9	-361,67
Topo Subleito		-96,19	-4,36	-104,91	-91,83	78,93	-238,44
Base do revestimento		41,18	-49,90	-60,04	-34,70	126,14	208,62
Meio Base	A 0/	39,59	59,49	43,71	36,61	112,09	119,03
Meio Sub-base	Δ %	27,18	-33,62	10,39	41,52	-34,18	-44,02
Topo Subleito		20,12	-25,98	14,19	23,78	37,77	32,58

A base do pavimento do LE sofreu um acréscimo de 40% na tensão vertical de compressão, ou seja, o revestimento perdeu 40% de sua função enquanto que no LD a perda foi de 25%. A

deformação vertical específica de compressão no meio da base aumentou 119% no LE enquanto que no LD o aumento foi de 25%. No lado direito a deformação vertical foi maior na sub-base enquanto que do lado esquerdo foi na base.

6.1.5.2 Considerações sobre a variação do módulo de resiliência

Conhecendo os valores das tensões atuantes no centro da base e da sub-base da estrutura do pavimento e utilizando as funções $Mr = f(\sigma)$ determinadas em laboratório, variando o teor de umidade, foram calculados os valores de módulo de resiliência para diferentes umidades, apresentados na tabela 6.9.

Tabela 6.9: Valores de módulo de resiliência calculados

Ano	Localização	Estrutura	umidade (%)	Mr (MPa) (confinante)	Mr (MPa) (theta)	Mr (MPa) (UZAN)	Δ Mr (umidade)
			11,5	36	71	57	-34
		Base	9,9 (h _{ót})	67	114	86	
			8,4	76	89	91	6
	85+800 LD	Base indeformada	10,7	88	165	144	-
		Sub-base	11,6 (hót)	44	123	61	
2009			5,4	52	110	71	16
		Base	12,0	46	59	47	-56
			10,5 (hót)	87	103	106	
	85+780 LE		9,0	88	110	121	14
	03+700 LE		11,0	38	74	57	-25
		Sub-base	9,4 (hót)	51	91	76	
			7,8	57	101	92	21

O teor de umidade tem influência no módulo de resiliência da base e da sub-base constituída com este material. Para o material da base deste pavimento o valor do módulo de resiliência decresce 56% com o aumento da umidade de 1,5% acima do teor ótimo na estaca 85+780 LE e 34% na estaca 85+800 LD.

Para o material da sub-base da estaca 85+800, quando o teor de umidade diminuiu em 5%, abaixo do teor ótimo, o valor do módulo aumentou em 16% e para o material da estaca 85+780 LE quando o teor de umidade diminuiu em 1,5% abaixo do teor ótimo o valor do módulo aumentou em 21%. Um acréscimo do teor de umidade após o teor ótimo na sub-base reduziu o valor do módulo em 25%.

As bacias de deflexão obtidas com o FWD foram retroanalisadas com ajuda do software EVERCALC e foram encontrados os valores de módulo de resiliência atuantes nas camadas de base e sub-base do pavimento. A tabela 6.10 apresenta um resumo dos valores de módulo de resiliência e a variação percentual sofrida por estes valores entre os anos de 2007 e 2009.

Tabela 6.10: Valores de módulo de resiliência retroanalisados

Estrutura	Ano	LD	LE
	2007	96	89
Base	2009	100	56
	Δ %	4,2	-37,1
	2007	228	131
Sub-base	2009	167	320
	Δ %	-26,8	144,3

Os valores de módulo de resiliência da base do pavimento no LD da rodovia permaneceram praticamente iguais após dois anos de vida do pavimento enquanto que o LE da rodovia apresentou um decréscimo no valor do módulo de resiliência em 37%. Os módulos da base do LE, retroanalisados, aproximam-se dos resultados dos módulos (modelo k- θ) realizados em laboratório com corpos de prova moldados com umidade maior que a ótima.

A redução do módulo de resiliência da base do lado esquerdo do pavimento pode ter sido a causa das trincas por fadiga no revestimento e aumento da deflexão no pavimento.

Trincas não tratadas permitem a entrada de água que podem desestruturar a camada de base permitindo, assim, a formação de panelas.

6.1.6 Análise das deformações

Os afundamentos na superfície ou o afundamento das trilhas de rodas de um pavimento com revestimento de tratamento superficial são causados por deformações que ocorrem na base, sub-base ou subleito deste pavimento. Estas deformações podem ser previstas através do estudo da resistência ao cisalhamento dos materiais que constituem estas camadas.

A resistência ao cisalhamento da base e sub-base do pavimento em estudo foi verificada através dos ensaios triaxiais estáticos ou monotônicos realizados em laboratório apresentados no item 5.1.6.4 desta Tese.

6.1.6.1 Influência da umidade no material alternativo em estudo

O efeito da umidade no comportamento mecânico do solo em estudo foi analisado variando-se a umidade em corpos de prova com 10 cm de diâmetro e 20 cm de altura, moldados em laboratório com a massa específica aparente seca máxima encontrada no ensaio de Proctor com energia intermediária. Foram testados CPs moldados na umidade ótima e moldados com 1,5% de umidade acima e 1,5% abaixo da umidade ótima. Os resultados destes ensaios estão apresentados na tabela 5.11 desta Tese.

A figura 6.7 e 6.8 apresenta as curvas tensão x deformação obtidas para o material da base do pavimento no km 85+800 LD e no km 85+780 LE respectivamente. A figura 6.9 apresenta as curvas tensão x deformação para o material da sub-base do pavimento.

De acordo com os estudos de laboratório a umidade exerce influência na deformação do material que foi utilizado na base deste pavimento. As amostras ensaiadas com maior teor de umidade apresentaram maior deformação antes de romper. A umidade também tem influência no material utilizado na sub-base do pavimento.

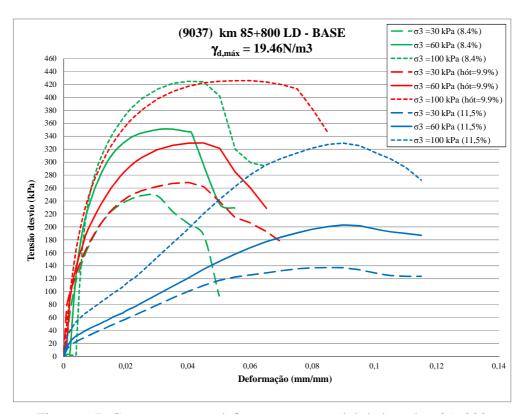


Figura 6.7: Curvas tensão x deformação - material da base km 85+800 LD

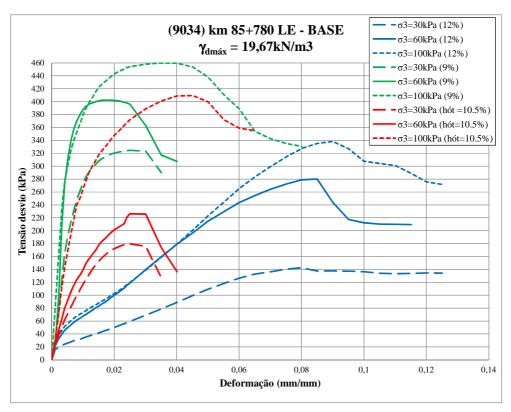


Figura 6.8: Curvas tensão x deformação - material da base - km $85+780~\mathrm{LE}$

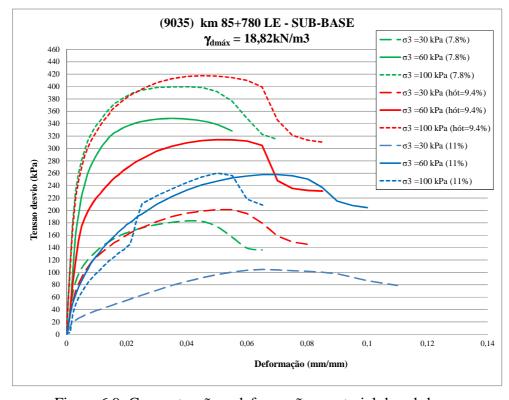


Figura 6.9: Curvas tensão x deformação - material da sub-base

Analisando os resultados dos ensaios triaxiais em conjunto com os ensaios de infiltrabilidade (metodologia MCT, apresentados no item 6.1.4.3), verifica-se que a água passa mais rápido pelo material da sub-base deste pavimento, quando comparado com a base do mesmo. Verifica-se também que o material da base além de apresentar menor infiltrabilidade apresenta maior deformação na presença de água.

As figuras 6.10(a), 6.10(b), 6.10(c) e a figura 6.10(d), 6.10(e), 6.10(f) mostram a influência da umidade na deformação do material obtido da base do lado direito e do lado esquerdo da rodovia com as três situações de tensão confinante. Verifica-se que para as três tensões confinantes, com o aumento da umidade o material se deforma com tensão desvio menor, ou seja, o aumento de umidade no material pode causar maior deformação com menor carga de tráfego.

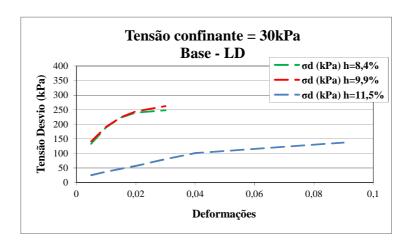


Figura 6.10(a): Influência da umidade - material da base - LD; 30kPa

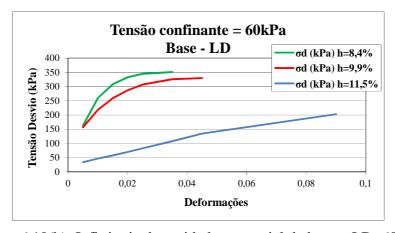


Figura 6.10(b): Influência da umidade - material da base - LD; 60kPa

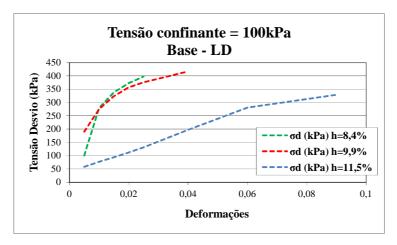


Figura 6.10(c): Influência da umidade - material da base – LD; 100kPa

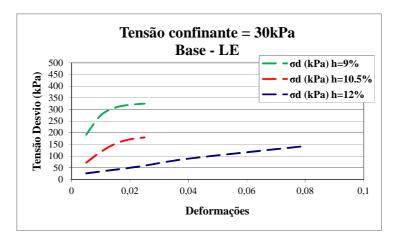


Figura 6.10(d): Influência da umidade - material da base - LE; 30kPa

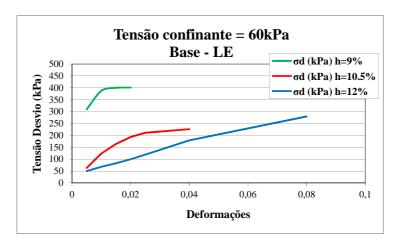


Figura 6.10(e): Influência da umidade - material da base – LE; 60kPa

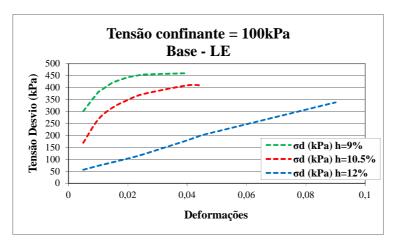


Figura 6.10(f): Influência da umidade - material da base - LE; 100kPa

Também foi estudada a influência da umidade no aumento da tensão de ruptura devido ao aumento da tensão confinante. Aumentando a umidade, a tensão de ruptura é menor, mas continua aumentando com a tensão confinante (figura 6.11).

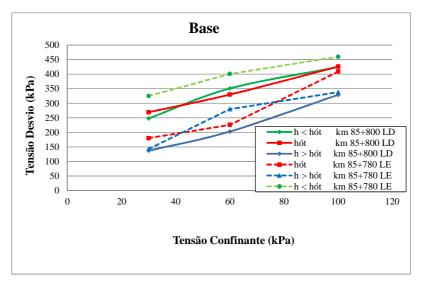
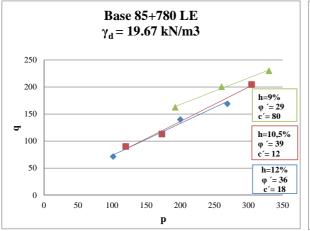


Figura 6.11: Influência da umidade na curva tensão desvio x tensão confinante


6.1.6.2 Intercepto coesivo efetivo (c') e ângulo de atrito interno efetivo (φ')

Com os resultados obtidos com os ensaios triaxiais monotônicos e utilizando as relações apresentadas no item 2.3.5.3 desta Tese foi possível traçar as trajetórias de tensões no espaço q e p para os materiais utilizados na base e sub-base deste pavimento. Foi possível também conhecer os valores de coeficiente de atrito e de coesão para os materiais utilizados.

A tabela 6.12 apresenta os valores do ângulo de atrito interno efetivo (φ´) e intercepto coesivo efetivo (c´) e as figuras 6.12 e 6.13 apresentam as trajetórias de tensões e os valores de coeficiente de atrito e coesão para os materiais da base e sub-base deste pavimento.

Tabela 6.12: Valores de ângulo de atrito interno efetivo e coesão efetiva

Lo	OCALIZAÇÃO	h (%)	φ'	c'
		11,5	36	12
85+800	BASE	9,9	32	55
		8,4	34	49
		12	36	18
	BASE	10,5	39	12
85+780		9	29	80
83+780		11	34	12
	SUB-BASE	9,4	37	28
		7,8	38	25

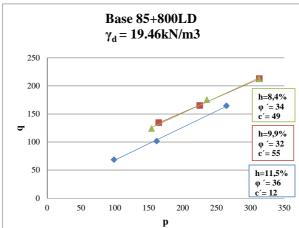


Figura 6.12: Trajetória de tensões no espaço q e p para o material da base

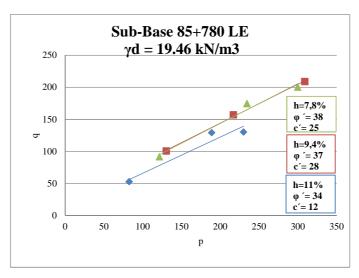


Figura 6.13: Trajetória de tensões no espaço q e p para o material da sub-base

O ângulo de atrito não apresentou variações significativas com o aumento da umidade e o material da base e da sub-base apresentou perda de coesão com a presença de água.

6.1.6.3 Verificação de segurança contra ruptura por cisalhamento

Theyse et al. (1996) propuseram o cálculo de um número N máximo para evitar a ruptura por ciasalhamento da camada granular de uma estrutura de pavimento apresentado no item 2.3.1 desta Tese. Este cálculo prevê o valor de um fator de segurança (F) que pode ser maior ou menor do que a unidade.

- F < 1 indica que as tensões de cisalhamento excedem a resistência ao cisalhamento. Neste caso, considerando cargas estáticas, vai ocorrer um rápido rompimento por cisalhamento na camada estudada. No caso de carregamentos dinâmicos, como em rodovias, as tensões de cisalhamento somente excederão a resistência ao cisalhamento por um tempo pequeno. O rompimento por cisalhamento não ocorrerá por uma única aplicação de carga e as deformações cisalhantes rapidamente vão se acumular sob um número de repetições de carga.
- F > 1 indica que as deformações vão se acumular gradualmente com o aumento de aplicação de cargas.

Em ambos os casos o modo de ruptura será a deformação da camada de material granular, mas, o grau de deformação contra a ruptura por cisalhamento poderá ser controlado pela magnitude do fator de segurança.

Considerando tensões no meio da camada de base e no meio da camada de sub base, de acordo com as Tabelas 6.7 e 6.8, utilizando os coeficientes encontrados para o material aqui estudado apresentados na Tabela 6.12 e considerando a constante k para condição saturada igual a 0,65 e igual a 0,95 para condições normais de umidade apresentadas em Theyse et al. (1996) pode-se obter os fatores de segurança e consequentemente os valores de número N, recomendado de aplicações de carga, que assegurariam contra a ruptura por cisalhamento nestas camadas da estrutura do pavimento.

A tabela 6.13 apresenta os valores de F e N encontrados para a base e sub-base deste pavimento na época da retroanálise (2009).

Estaca	N(AASHTO)	LOCALIZAÇÃO	F	N(USACE)
	1,04E+05	Base saturada	0,4	4,18E+05
85+800	6,67E+07	Base na umidade ótima	1,4	2,67E+08
	2,93E+05	Base saturada	0,6	1,17E+06
	1,38E+06	Base na umidade ótima	0,8	5,52E+06
	1,46E+05	Sub Base saturada	0,4	5,85E+05
85+780	1,32E+07	Sub Base na umidade ótima	1,2	5,27E+07

Tabela 6.13: Valores de F e N para base e sub-base - 2009

Os fatores de segurança para as camadas de base e sub-base quando consideradas saturadas resultaram em valores menores do que a unidade (F<1) indicando que, neste caso, as tensões de cisalhamento excedem a resistência ao cisalhamento.

De acordo com os levantamentos de tráfego fornecidos pelo DAER/RS, esta rodovia em 2009, apresentava um número N acumulado de cargas igual a 4.87 x10⁶.

Nos locais em que as camadas de base e sub-base encontravam-se na umidade ótima de compactação, ou seja, sem infiltrações de água o número N acumulado calculado, que asseguraria contra a ruptura por cisalhamento (2.67x10⁸, 5.52x10⁶, 5.27x10⁷), que em 2009, ainda não havia sido atingido.

Nos locais onde a base ou a sub-base encontravam-se saturadas, as deformações cisalhantes se acumularam rapidamente sob um número de repetições de carga. Na estaca 85+800 a base saturada apresentaria ruptura por cisalhamento com N igual a 4,18x10⁵ e na estaca 85+780 a base saturada apresentaria ruptura com N igual a 1,17x10⁶.

6.1.7 Comentários

O tráfego de uma rodovia, inicialmente projetada para baixo volume de tráfego, deve ser levantado anualmente e servir como alerta para um programa de manutenção mais efetivo. A deterioração do lado esquerdo da rodovia é maior, pois neste lado da rodovia os caminhões trafegam com a carga plena ou com excesso de carga. Observa-se a importância de realizar levantamentos no mesmo mês de cada ano considerando as épocas de safras.

A manutenção nos dispositivos de drenagem e na superfície do pavimento (área trincada) deve ser mais frequente, pois a água se mostrou prejudicial para este material. O clima da região influencia nesta manutenção.

O módulo de resiliência deste material diminui com presença de água sob qualquer tensão de confinamento.

Para qualquer um dos dois pontos estudados da rodovia verifica-se que a deformação aumenta com o aumento da umidade. Comprova-se também que quanto menor a tensão confinante, menor é a tensão de ruptura.

Os ensaios triaxiais estáticos são de grande valia quando se deseja caracterizar um material alternativo, pois, permitem conhecer a resposta tensão-deformação dos solos. Para uma dada tensão confinante, a tensão desvio é incrementada até a ruptura ou deformação excessiva do material. Através de diagramas p-q são conhecidos os parâmetros de resistência do material estudado (coesão e ângulo de atrito).

Os ensaios triaxiais cíclicos nos permitem encontrar um modelo para determinar o módulo de resiliência do material caracterizando o mesmo quanto a sua rigidez e permitindo projetar pavimentos com maior segurança quanto a sua vida útil.

O método mecanístico, da África do Sul, para realizar projetos de pavimentos flexíveis inclui um fator de segurança calculado para as camadas granulares a partir dos parâmetros de resistência ao cisalhamento. Este fator de segurança foi calculado para a rodovia em estudo, verificando-se qual a vida útil das camadas de base e sub-base considerando a ruptura por cisalhamento como critério de fadiga.

6.2 BASALTO ALTERADO (ERS-132, TRECHO: CAMARGO – NOVA ALVORADA)

A análise de desempenho desta rodovia considerou o estudo de tráfego, o estudo do clima da região, a evolução dos defeitos superficiais e da irregularidade longitudinal, a evolução das deflexões e o estudo da capacidade estrutural da camada de basalto alterado.

Conforme descrito no capítulo 3, item 3.2.1 desta Tese, durante a construção da rodovia, foi definido dois segmentos experimentais construídos de acordo com os resultados obtidos na tese de doutorado realizada por Núñez em 1997. Estes segmentos vêm sendo monitorados durante a vida útil do pavimento nas reais condições ambientais e de tráfego. O segmento 1 localiza-se entre os quilômetros 12+680 e 13+140 e o segmento2 entre os quilômetros 13+860 e 14+520.

Este trabalho faz uma análise dos resultados do monitoramento durante os 10 anos de vida útil do pavimento dos dois segmentos experimentais comparando aos resultados obtidos com o desempenho das pistas experimentais testadas no simulador de tráfego UFRGS/DAER.

A análise comparativa entre a pista 07 da APTP, escolhida para este estudo e especificada no item 3.2.4 desta Tese, com os segmentos experimentais da ERS-132 restringiu-se à análise das trilhas de roda e deflexões, pois, o trabalho realizado sob o simulador de tráfego da APTP não avaliou a irregularidade, e, a pista experimental denominada 07 por Núñez (1997), não apresentou trincamentos durante a simulação de tráfego. O trincamento ficou restrito às estruturas mais esbeltas testadas na APTP (pistas 01 e 02 apresentadas nas figuras 3.5 e 3.6).

6.2.1 Análise do tráfego

Os dados de tráfego levantados nos anos de 2003, 2004, 2007 e 2009 foram utilizados para verificar a variação da taxa de crescimento média ao longo dos anos de acordo com o tipo de veículo mostrada na figura 6.14.

A taxa de crescimento anual utilizada pelo DAER (3%) não se mostrou eficiente alertando para a realização de levantamentos de tráfego, no mínimo, anuais.

Tipo de veículo	1992	2003	Taxa de Crescimento Anual 1992-2003	2004	2007	Taxa de Crescimento Anual 2004-2007	2009	Taxa de Crescimento Anual 2007-2009
Automóveis	227	694	10,69%	788	663	-5,59%	634	-2,21%
Coletivos	9	15	4,75%	23	29	8,03%	17	-23,44%
Carga Leve	15	64	14,10%	58	59	0,57%	43	-14,63%
Carga Média	139	120	-1,33%	102	84	-6,27%	90	3,51%
Carga Pesada	15	125	21,26%	152	90	-16,03%	134	22,02%
Carga Ultrapesada	0	14	30,20%	17	11	-13,51%	15	16,77%
Total	405	1032	8,88%	1140	936	-6,36%	933	-0,16%

Tabela 6.14: Evolução do VDM durante a vida útil do pavimento

A carga pesada, item altamente prejudicial ao pavimento, teve o maior crescimento anual após a pavimentação da rodovia. Entre 2004 e 2007 houve um decréscimo na taxa de crescimento anual das cargas médias, pesada e ultrapesada demonstrando que, neste período, as cargas de tráfego pouco influenciaram na deterioração do pavimento. Entre 2007 e 2009 a carga pesada voltou a crescer com a mesma taxa anual de crescimento (22%).

A variação da taxa de crescimento ao longo dos anos por tipo de veículo é mostrada na figura 6.14.

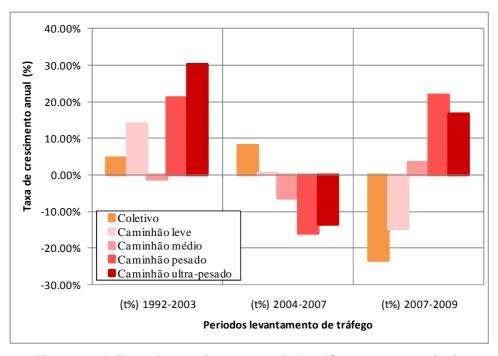
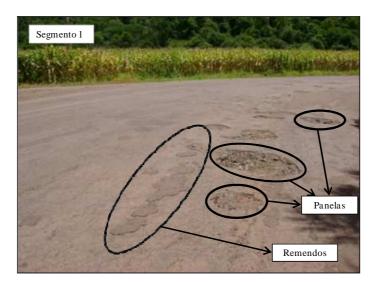



Figura 6.14: Taxa de crescimento anual do tráfego por categoria de veículo

6.2.2 Análise da superfície do pavimento

A figura 6.15 apresenta a situação superficial do pavimento nos dois segmentos experimentais da ERS-132 em fevereiro de 2010.

O segmento 1 encontra-se em um ponto de inflexão de uma curva vertical côncava com dispositivos de drenagem, ou seja, um bueiro. Existe a possibilidade de ter ocorrido pouca compactação das camadas do pavimento onde se localizam os pontos baixos e sobre os dispositivos de drenagem. Estes locais passaram a ser pontos fracos desde o início da vida útil do pavimento, apresentando deflexões elevadas, trincamentos e conseqüente deterioração do pavimento. A falta de manutenção nos dispositivos de drenagem possibilitou o agravamento da situação.

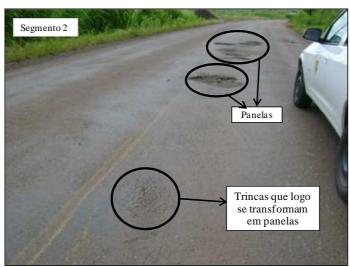


Figura 6.15: Situação da superfície do pavimento nos dois segmentos experimentais da ERS-132 - 2010

No segmento 2 as trincas apareceram em áreas isoladas provavelmente devido à idade do revestimento com consequente desagregação do TSD. Estas trincas evoluíram para panelas devido à infiltração de água da chuva e devido ao tráfego. A falta de manutenção, como a selagem de trincas, agravou a situação.

6.2.2.1 Considerações sobre os defeitos superficiais

A figura 6.16 e a figura 6.17 mostram a evolução da freqüência relativa dos defeitos com maior influência na deterioração do pavimento nos segmentos experimentais 1 e 2.

O trincamento (FC-2; J; TB) foi o defeito de maior incidência no segmento experimental1, seguido pelo desgaste (D).

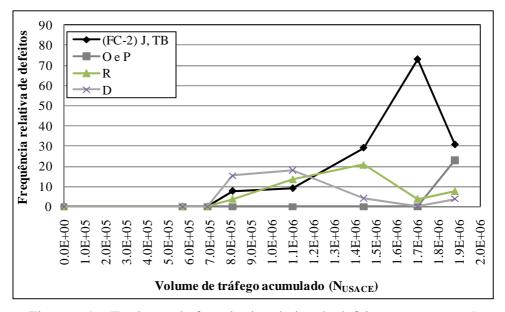


Figura 6.16: Evolução da freqüência relativa de defeitos – segmento 1

O decréscimo na taxa de crescimento anual das cargas média, pesada e ultrapesada durante os anos de 2004 (N=1,01x10⁶) e 2007 (N=1,57x10⁶) justificam o decréscimo do desgaste (D) no pavimento. Entre 2007 e 2009 quando houve acréscimo considerável na taxa de crescimento anual das cargas pesada e ultrapesada o desgaste voltou a aumentar. A importância da manutenção preventiva ficou clara neste segmento, pois no momento em que os trabalhos de manutenção foram suspensos, as trincas (FC-2, J, TB) evoluíram para panelas (P).

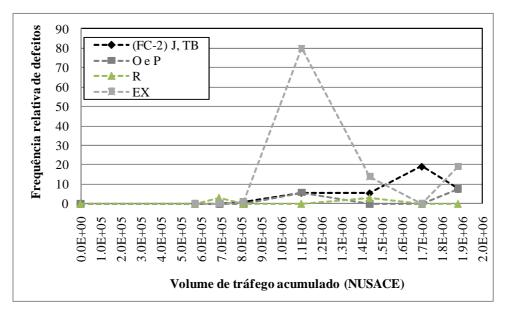


Figura 6.17: Evolução da freqüência relativa de defeitos - segmento 2

Até o ano de 2004 (1,01 x 10⁶), quando houve o maior acréscimo de cargas, o segmento 2 apresentou uma freqüência relativa de exsudação (EX) bastante elevada. O decréscimo na taxa de crescimento anual das cargas médias, pesada e ultrapesada durante os anos de 2004 (N=1,01x10⁶) e 2007 (N=1,57x10⁶) justificam o decréscimo da exsudação no pavimento. O trincamento (FC-2; J, TB), neste segmento, apareceu em áreas isoladas, e quando as manutenções foram suspensas, evoluíram para panelas.

No momento em que houve um acréscimo na carga iniciou o aumento de exsudação, mas as trincas já haviam evoluído para panelas. O trincamento continuou evoluindo por falta de manutenção.

6.2.2.2 Considerações sobre a irregularidade longitudinal (IRI)

A figura 6.18 apresenta a evolução da irregularidade para os dois segmentos experimentais entre 2001 e 2010.

Considerando o conforto ao rolamento um critério de falência para o pavimento em que o valor de IRI deva ser menor ou igual a 3,5 m/km (DNIT, 2006) observa-se na figura 5.23 que para o segmento 1, onde claramente aparece a falta de manutenção nos dispositivos de drenagem, o pavimento teve um desempenho razoável até o ano de 2003 ($N = 8,1 \times 10^5$). Salienta-se que neste ano, de acordo com os levantamentos realizados, começaram a aparecer remendos no segmento 1.

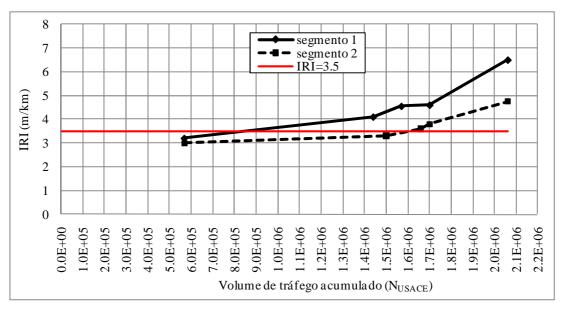


Figura 6.18: Evolução da irregularidade entre 2001 e 2010 nos dois segmentos

O segmento 2, que não apresenta problemas de drenagem, manteve um valor razoável de irregularidade (IRI=3,0 m/km) até o ano de 2007 (N=1,57 x 10⁶).

A partir de 2008 (N=1,70x10⁶) a irregularidade iniciou um processo de crescimento acelerado nos dois segmentos experimentais indicando a falência do pavimento.

6.2.2.3 Considerações sobre o afundamento das trilhas de roda

O afundamento das trilhas de roda não apresentaram evolução significativa em ambos os segmentos experimentais da ERS-132, neste caso, a flecha máxima medida foi 6,0 mm no segmento 1. A figura 6.19 apresenta a evolução do afundamento das trilhas de roda para os dois segmentos experimentais da ERS-132 e para a pista 07 da APTP analisados neste trabalho comparando os comportamentos diferenciados dos dois experimentos.

Substituindo os valores de flechas obtidos durante os 10 anos de monitoramento no modelo apresentado no capítulo 2 item 2.2.3.4 desta Tese verifica-se que houve uma fase de consolidação definida pelo afundamento inicial da trilha de roda (f_0) igual a 2,9 mm e que o fator de afundamento (a) foi igual a 0,002 mm/carga de eixo padrão. Utilizando-se os dados obtidos na pista 07 da APTP o modelo resultou em: f_0 = 4,2mm e a = 0,017. Os segmentos experimentais da ERS-132 apresentaram menor afundamento inicia na trilha de rodas provavelmente devido à compactação adequada das camadas de sub-base e base de macadame de basalto alterado e devido à liberação ao tráfego antes da construção do TSD. A figura 6.20

mostra que o modelo se ajusta ao comportamento plástico da pista 07 e dos segmentos experimentais da ERS-132.

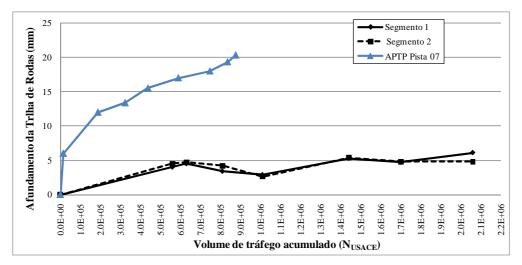


Figura 6.19: Evolução do ATR nos dois segmentos experimentais da ERS-132 e na pista 07 da APTP

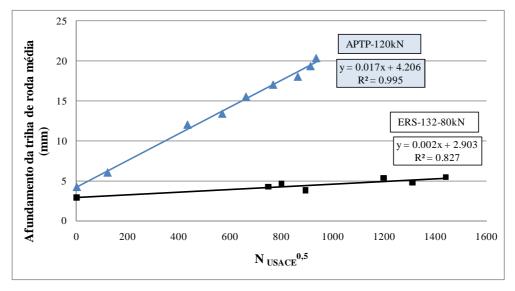


Figura 6.20: Desenvolvimento do ATR para a pista 07 da APTP e segmentos experimentais da ERS-132

Considerando que o nível de carga foi diferente na pista 07 (120 kN) e nos trechos experimentais da ERS-132 (80 kN), os resultados indicam um desenvolvimento de trilha de roda na APTP 8,5 vezes maior do que na ERS-132. Isto pode ser atribuído parcialmente ao nível de carga e parcialmente ao tipo de ensaio realizado, simulador de tráfego e tráfego real.

As trilhas provavelmente foram mais severas na APTP devido ao efeito do tráfego canalizado e da baixa velocidade do simulador de tráfego.

6.2.3 Análise das deflexões

A análise do desempenho do pavimento levou ao estudo da evolução das deflexões monitoradas durante a vida útil do pavimento.

A figura 6.21 apresenta a evolução das deflexões na pista 07 da APTP e nos dois segmentos experimentais da ERS-132 analisados neste trabalho comparando os comportamentos semelhantes dos dois experimentos.

As deflexões tanto na pista 07 como nos segmentos 1 e 2 foram medidas com a viga Benkelman e foi calculado a deflexão característica (média das deflexões + desvio padrão) em cada segmento. A pista 07 apresentou deflexão característica em torno de 45 e $50x10^{-2}$ mm, praticamente constante, durante o período de teste. A evolução da deflexão, devido ao tráfego na ERS-132, também foi medida anualmente com a VB e foram calculadas as deflexões características para cada um dos segmentos experimentais. Neste caso, a deflexão característica resultou entre 69 e $84x10^{-2}$ mm até 2007 quando o número acumulado de volume de tráfego (N_{USACE}) era igual a $1,57x10^6$. Em 2009 quando o volume acumulado de tráfego chegou a $1,88x10^6$ a deflexão medida era 90×10^{-2} mm.

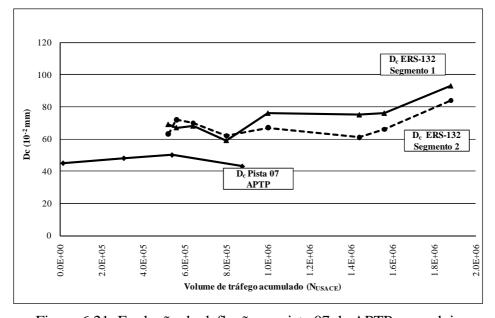


Figura 6.21: Evolução da deflexão na pista 07 da APTP e nos dois segmentos experimentais da ERS-132

No ano de 2006 e no ano de 2009, além das deflexões realizadas com a viga Benkelman, foram obtidas deflexões com o FWD. As bacias de deflexão obtidas com o FWD permitiram o cálculo dos raios de curvatura em cada uma das estacas dos segmentos experimentais 1 e 2. Os valores de número estrutural foram calculados para base+sub-base granular, de acordo com o item 2.5.2.2 desta Tese, para cada estaca do segmento.

A figura 6.22 e a figura 6.23 apresentam um esquema itinerário com valores de deflexão, raio de curvatura e número estrutural para cada um dos segmentos.

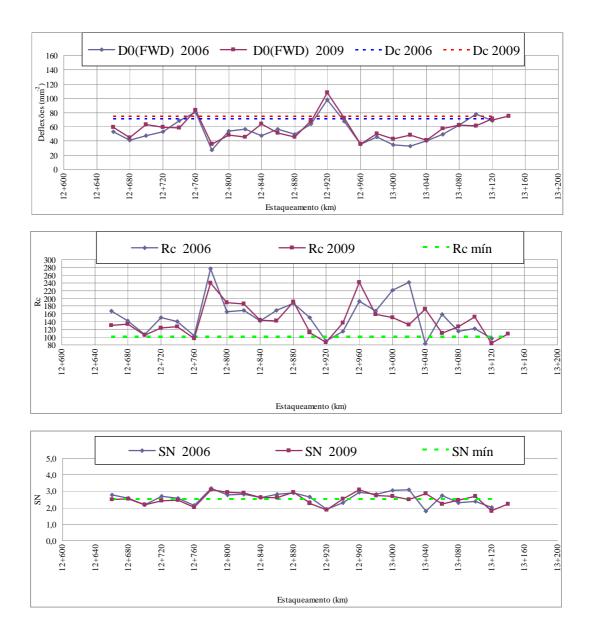


Figura 6.22: Esquema itinerário das deflexões, Rc e SN no segmento 1 - 2006 e 2009

O segmento 1 apresentou maior número de pontos com deflexões altas, provavelmente devido à falta de compactação das camadas de base e sub-base sobre os dispositivos de drenagem. Foi possível verificar que nos locais onde não houve manutenção nos dispositivos de drenagem que acabaram permitindo a entrada de água na estrutura do pavimento, as deflexões eram altas e o número estrutural da camada de base era baixo (SN=2) demonstrando a perda estrutural da camada do pavimento.

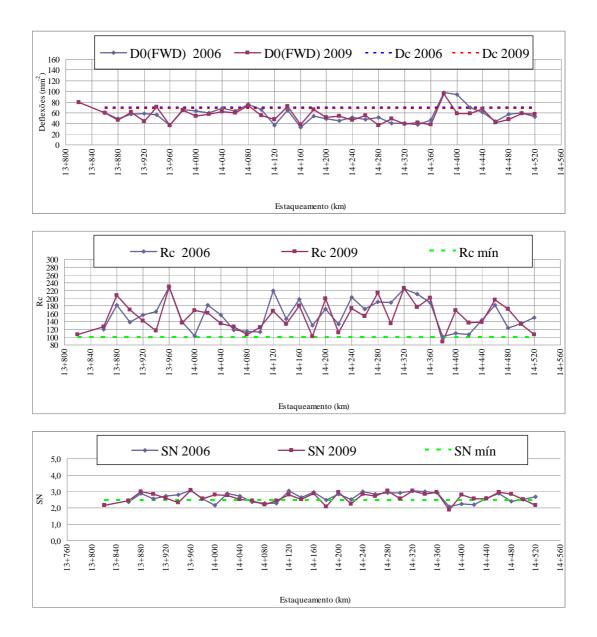


Figura 6.23: Esquema itinerário das deflexões, Rc e SN no segmento 2 - 2006 e 2009

6.2.4 Análise da camada de base de basalto alterado

A camada de base de basalto alterado foi analisada de acordo com as espessuras obtidas por ocasião da abertura das trincheiras, mostradas na figura 6.24, e através dos ensaios de resistência à compressão puntiforme apresentados no item 5.2.6.2 desta Tese.

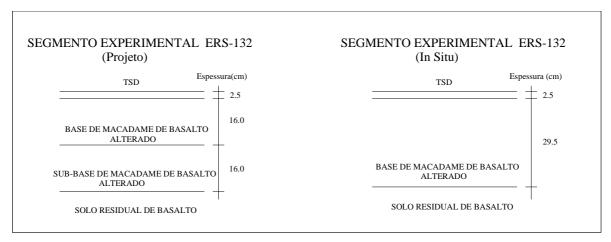


Figura 6.24: Espessura prevista no projeto e espessura encontrada "in situ"

Na abertura da trincheira foi possível verificar que a espessura da base+sub-base era de 29,5 cm ao invés de 32,0 cm previstos no projeto. Este fato não prejudicou o desempenho do pavimento.

A contaminação com argila e a umidade até a altura de 20,0 cm a partir do subleito do macadame de basalto alterado encontrado na estaca 12+880, situada no segmento1, contribuiu com a maior deterioração deste segmento experimental. O equivalente de areia menor do que 50%, exigido pela especificação do DAER, indicou a contaminação de argila na base de basalto alterado, provavelmente devido à infiltração de água, evidenciando a importância da manutenção nos dispositivos de drenagem da rodovia.

O valor do índice de resistência à compressão puntiforme do basalto alterado obtido em 2007 (IS(50)saturada / IS(50)seca = 0,93) mostrou que a material continua com resistência suficiente para ser utilizado como base de pavimento.

6.2.5 Análise do comportamento elástico

De acordo com Núñez (1997), durante os ensaios de carga realizados nas pistas de teste da APTP, as pistas1 e 2, subdimensionadas com apenas 16,0cm de base de macadame de basalto alterado, apresentaram uma redução no valor de módulo de resiliência, o que resultou em trincamento por fadiga aumentando a deflexão característica. A redução do módulo causou um aumento na tensão principal e na deformação específica de compressão no interior do pavimento.

Retroanalisando as bacias obtidas com o FWD nos segmentos experimentais da ERS-132 em 2006 e em 2009 foi possível encontrar os módulos de resiliência e as tensões que atuam no topo do subleito e no meio da camada composta pelo macadame seco de basalto alterado (29,5cm) em conjunto com o revestimento de tratamento superficial (2,5cm).

A figura 6.25 mostra a localização dos pontos da estrutura do pavimento onde foram determinados os módulos de resiliência e as tensões atuantes, através de retroanálise.

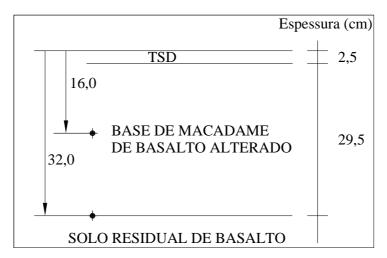


Figura 6.25: Localização dos pontos retroanalisados da estrutura

Nos locais onde não ocorreu manutenção, nos segmentos experimentais da ERS-132, foi detectado o aumento da deflexão e uma redução no módulo de resiliência propiciando o aparecimento de trincas.

A tabela 6.15 apresenta os resultados das retroanálises realizadas em três estacas diferentes para o ano de 2006 ($N_{USACE}=1,44x10^6$) e 2009 ($N_{USACE}=1,88x10^6$): um ponto onde a deflexão foi considerada baixa ($41x10^{-2}$ mm), um ponto onde a deflexão foi considerada alta

(98 x 10⁻²mm) e um ponto que representa a deflexão média para os dois segmentos experimentais (54x10⁻²mm). A figura 6.26 apresenta as bacias de deflexão obtidas com o FWD em 2006 e em 2009 para os três pontos estudados.

				Mr (MPa)		$\varepsilon_{\rm v}~(10^{-6}~{\rm mm})$	
Segmento ERS-132	N _{USACE}	D_0 (10 ⁻² mm)	SN	Meio Basalto Alterado + TSD	Topo do subleito	Meio Basalto Alterado + TSD	Topo do subleito
2	1,44x10 ⁶	41	2,9	419	231	247	223
2	1,88x10 ⁶	49	2,5	321	219	318	247
2	1,44x10 ⁶	54	2,5	319	176	323	292
2	1,88x10 ⁶	66	2,1	229	169	448	328
1	1,44x10 ⁶	98	1,9	147	120	712	478
	1,88x10 ⁶	108	1,9	149	86	668	548

Tabela 6.15: Resultado da retroanálise

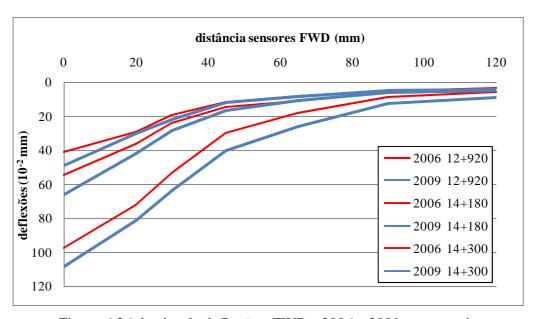


Figura 6.26: bacias de deflexão - FWD - 2006 e 2009 para os três pontos estudados

Nos locais de deflexão baixa não apareceram trincamentos, os módulos de resiliência no meio da base possuem valores entre 300 e 400 MPa e deformações específicas verticais (ε_v) entre 250 x 10^{-6} mm e 320 x 10^{-6} mm. No topo do subleito os módulos variam entre 176 e 231 MPa e as deformações específicas verticais variam entre 223 x 10^{-6} mm e 292 x 10^{-6} mm. Nestes casos a camada de basalto alterado apresenta o número estrutural maior ou igual a 2,5 indicando capacidade estrutural razoável.

Quando a deflexão é elevada, os módulos de resiliência chegam a diminuir pela metade e as deformações aumentam significativamente, o número estrutural chega a baixar para valores menores que 2,0 indicando a perda estrutural do pavimento.

6.2.6 Verificação do modelo proposto por Núñez em 1997

O modelo proposto por Núñez, apresentado no item 2.2.3.4 através da equação 2.5 prevê o número de ciclos de carga que causariam 25,0mm de trilha de roda (nível considerado como final de vida útil para o pavimento) em pavimentos com base de basalto alterado revestidos por TSD. Este modelo foi testado utilizando:

- T = 32,0cm (espessura da camada de basalto alterado + TSD obtida por ocasião da abertura da trincheira na rodovia ERS-132 em 2007),
- Is = 7.0 MPa (resultado de ensaio Tabela 5.22),
- L = 82 kN (carga padrão).

Considerando este modelo, o pavimento da ERS-132 teria uma trilha de rodas com 25,0 mm de profundidade quando o número N_{USACE} fosse igual a 1,44 x 10^6 , ou seja, no ano de 2006.

A tabela 6.16 apresenta a situação superficial e estrutural do pavimento dos segmentos experimentais da ERS-132 após $N_{USACE} = 1,44 \times 10^6$. Com este número de ciclos o pavimento apresentou trilha de rodas no máximo igual a 5,4 mm, não representando seu final de vida útil.

Tabela 6.16: Situação superficial e estrutural dos segmentos experimentais após $N_{USACE} = 1,44 \times 10^6$

DEFEITOS SUPERFICIAIS	SEGMENTO 1	SEGMENTO 2	CONSIDERAÇÕES FINAIS	
Trincamento (%)	30	-	Leve	-
IRI (m/km)	4,0	3,2	Falência IRI > 3,5	Falta de manutenção: Aumento de panelas devido à trincamento = Aumento da irregularidade
D _c (10 ⁻² mm)	75	61	Início de crescimento	Falta de manutenção: Infiltração de água nas panelas = Redução da capacidade estrutural do pavimento
Trilha de rodas (mm)	5,3	5,4	Início de crescimento	-

6.2.7 Análise do desempenho

Os segmentos experimentais de basalto alterado realizados na ERS-132 não apresentaram trilhas de rodas significativas. Sua deterioração foi causada por desgastes ou trincamentos que se transformaram em panelas por falta de manutenção.

Através do método para projeto de restauração de pavimentos flexíveis, denominado método da resiliência - TECNAPAV padronizada por DNER-PRO 269/94 (DNIT, 1994) pode-se calcular a deflexão máxima admissível (10⁻² mm) para um número cumulativo de solicitações de eixo equivalentes ao eixo padrão de 80,12 kN. Esta deflexão máxima admissível é considerada como critério de fadiga do pavimento (equação 2.54 do item 2.6.5.1 desta Tese).

A figura 6.27 apresenta a evolução das deflexões características nos dois segmentos experimentais da ERS-132 comparando com a deflexão máxima admissível para um determinado número cumulativo de solicitações de carga.

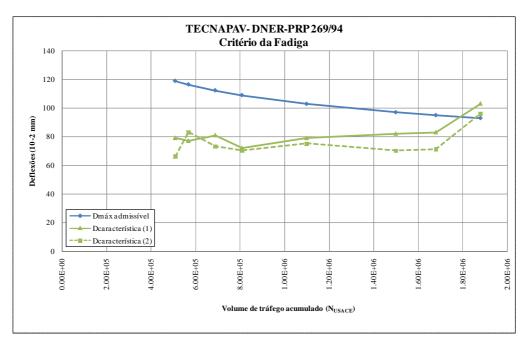


Figura 6.27: Deflexão admissível e evolução das deflexões características - Segmento experimental 1 e 2 – ERS-132

Pelo método TECNAPAV o pavimento de basalto alterado do segmento experimental1 da ERS-132 entrou em colapso quando o número cumulativo de solicitações de eixo equivalentes ao eixo padrão de 80,12 kN chegou em 1,8 x 10⁶ (2009).

6.2.8 Comentários

Os segmentos experimentais monitorados por 10 anos na ERS-132 apresentaram melhor desempenho quando comparados com as pistas da APTP. Considerando o tráfego acumulado 1,44 x 10⁶ (N_{USACE}) equivalente a 0,36 x 10⁶ (N_{AASHTO}) calculado pelo modelo proposto por Núñez o trincamento observado nos segmentos experimentais foi de 30% e a trilha de rodas de 5,4 mm. Estes valores não caracterizam colapso do pavimento.

Os segmentos experimentais da ERS-132 apresentaram menor afundamento inicial da trilha de rodas provavelmente devido à compactação adequada das camadas de sub-base e base de macadame de basalto alterado e, devido, à liberação ao tráfego antes da construção do revestimento (TSD).

Os resultados indicam um desenvolvimento de trilha de roda na APTP 8,5 vezes maior do que na ERS-132. Isto pode ser atribuído parcialmente ao nível de carga e parcialmente ao tipo de ensaio realizado, simulador de tráfego e tráfego real. O afundamento da trilha de rodas provavelmente foi mais severo na APTP devido ao efeito do tráfego canalizado e da baixa velocidade do simulador de tráfego.

Desde o início da liberação ao tráfego, em 1999, até 2008 (N_{USACE} = 1,70x10⁶), os valores de deflexão nos segmentos experimentais da ERS-132 mantiveram-se constantes. Durante os ensaios das pistas da APTP os valores de deflexão também se mantiveram constantes, entretanto, as deflexões nos segmentos experimentais da ERS-132 foram 20% maiores quando comparadas com as deflexões das pistas da APTP, provavelmente devido ao menor módulo de resiliência encontrado no subleito da ERS-132.

Somente em 2009 com N_{USACE} acumulado de 1,88 x 10^6 as deflexões em ambos os segmentos experimentais da ERS-132 apresentaram aumento significativo de deflexão, provavelmente devido à grande incidência de chuvas na região (tabela 5.13 do item 5.2.2 desta Tese) e devido à falta de manutenção que o pavimento exigia. O modelo do TECNAPAV também apresentou falência do pavimento quando o N_{USACE} acumulado chegasse em 1,80 x 10^6 .

Pavimentos alternativos exigem uma atenção especial na manutenção. A falta de manutenção acelera a deterioração do pavimento. As trincas devem ser seladas logo que aparecem para não se transformarem em panelas. As panelas devem ser rapidamente reparadas (remendos) não permitindo, assim, a entrada de água da chuva na base, o que reduz sua resistência.

A evolução da freqüência relativa de defeitos nos dois segmentos experimentais mostra que com N_{USACE} acumulado de 1,44 x 10^6 pode-se sugerir uma manutenção no pavimento. O IRI nos dois segmentos experimentais, com este número N acumulado, estava por volta de 3,5 m/km, também sugerindo uma manutenção no pavimento (DNIT, 2006).

A manutenção realizada no tempo certo não permite a evolução dos defeitos que acarretam aumento na irregularidade trazendo desconforto ao usuário e colapso do pavimento. No caso destes segmentos experimentais, o IRI iniciou a crescer após N_{USACE} acumulado de 1,44 x 10^6 quando as trincas tornaram-se panelas pela falta de manutenção.

Importante reforçar que a manutenção nos dispositivos de drenagem é de vital importância para prolongar a vida do pavimento.

6.3 LATERITA (ERS-536, TRECHO: CAIBATÉ - ENTR. BR-285)

A análise de desempenho desta rodovia foi realizada através da evolução dos defeitos superficiais, irregularidade longitudinal, tráfego e capacidade estrutural da camada de laterita nos dois segmentos homogêneos definidos conforme descrito no capítulo 5 desta Tese. O segmento 1 escolhido entre os quilômetros 0+000 e 0+780 com 780,00m de extensão em local de conceito ÓTIMO e o segmento 2 foi escolhido entre os quilômetros 8+340 e 8+800 com 460,00 m de extensão em local de conceito RUIM.

Após a escolha dos segmentos foram realizadas trincheiras para reconhecimento das espessuras das camadas do pavimento e retirada de amostras para ensaios em laboratório.

Foi possível realizar dois levantamentos para monitorar este pavimento com base e sub-base de laterita. No ano de 2008 a rodovia recebeu uma restauração através de reciclagem e deixou de ser estudada.

6.3.1 Análise do tráfego

Os levantamentos de tráfego foram realizados na época do projeto em 1980 e no ano de 2002.

A evolução do VDM e a taxa de crescimento anual média entre os anos de 1980 e o ano de 2002 são apresentadas na tabela 6.17 e a figura 6.28 mostra o crescimento médio anual do tráfego por categoria de veículo.

Considerando-se os levantamentos de VDM realizados em dois anos foi verificado que a taxa de crescimento média anual desta rodovia não segue o critério de 3% adotado pelo DAER. Os coletivos tiveram um acréscimo médio anual de 11,52% e a carga ultrapesada um acréscimo de 11,74%.

Tabela 6.17: Evolução do tráfego

VDM	1980	2002	(t%) 1980 - 2002
Automóveis	276	304	0,44%
Coletivos	2	22	11,52%
Carga leve	22	30	1,42%
Carga média	34	41	0,85%
Carga pesada	16	16	0,00%
Carga ultrapesada	2	23	11,74%
Total	352	436	0,98%

A evolução do tráfego nesta rodovia após sua pavimentação é significativo quanto ao número de coletivos e ao número de veículos que trafega com carga ultrapesada.

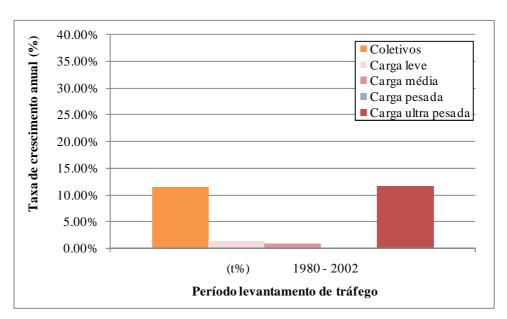


Figura 6.28: Taxa de crescimento anual média do tráfego por categoria de veículo (1980-2002)

6.3.2 Análise da superfície do pavimento

A evolução dos defeitos superficiais e da irregularidade do pavimento foi analisada nos dois segmentos experimentais através dos levantamentos apresentados nos item 5.3.4.1 e 5.3.4.2 desta Tese.

6.3.2.1 Considerações sobre os defeitos superficiais.

A deterioração do pavimento caracterizou-se através do trincamento. No ano de 2005, 30% do pavimento encontrava-se com panelas e 60% com trincamento. Neste ano, segundo informação do Distrito Operacional do DAER, foi realizada uma restauração no pavimento. Após a execução de reparos localizados, onde foi utilizada uma mistura de pré-misturado a frio (PMF), foi aplicado uma nova camada de revestimento com tratamento superficial duplo (TSD) em toda a extensão da rodovia. No ano de 2007, o segmento1, com deflexão característica igual a 69×10^{-2} mm, não apresentava defeitos superficiais e o afundamento da trilha de roda foi medida com 6,0mm de profundidade. O segmento2, com deflexão característica igual a 106×10^{-2} mm, apresentava o revestimento com 35% de trincas FC-2, panelas, afundamentos plásticos e trilha de rodas com flecha de 10,0mm de profundidade.

A figura 6.29 mostra a evolução dos defeitos mais significativos desta rodovia, antes e após a restauração realizada em 2005, mostra também que após a restauração, a evolução do trincamento continua existindo e sofre uma aceleração.

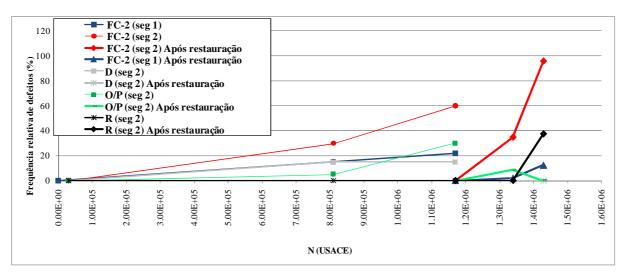


Figura 6.29: Evolução da frequência relativa de defeitos nos dois segmentos experimentais

Após a restauração o desgaste desapareceu, mas, o trincamento apareceu novamente e em seguida evoluiu para panelas.

Para melhor entendimento da evolução do trincamento nesta rodovia, a figura 6.30 mostra esta evolução após a restauração como continuidade da evolução anterior à restauração. Apesar dos remendos realizados nas panelas existentes, o trincamento continuou aparecendo e com o aumento de tráfego evoluiu para novas panelas, provavelmente devido à perda estrutural da base de laterita antes mesmo da restauração.

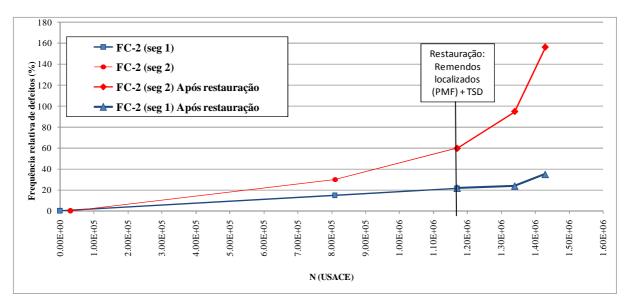


Figura 6.30: Evolução da freqüência relativa de trincamentos nos dois segmentos experimentais antes e após restauração

6.3.2.2 Considerações sobre a irregularidade longitudinal (IRI)

Os levantamentos de IRI considerados para este estudo foram realizados no ano de 2000 ($N_{(USACE)} = 8,10x10^5$), 2007 ($N_{(USACE)} = 1,34x10^6$) e 2008 ($N_{(USACE)} = 1,43x10^6$). Os dados obtidos em 2000 estão apresentados no item 3.3.2, tabela 3.21 desta Tese. Os dados obtidos no ano de 2007 e no ano de 2008 estão apresentados no item 5.3.4.2. A evolução do IRI mostrada na figura 6.31, principalmente no segmento 2 em 2008, para 3,6m/km já indicava necessidade de restauração do pavimento, uma vez que quando o valor de IRI alcança 3,5m/km é indicado realizar uma restauração (DNIT, 2006).

O aumento do IRI ocorreu exatamente no mesmo número equivalente de carga padrão $(N=1,4x10^6)$ em que os remendos começaram a aparecer substituindo as panelas.

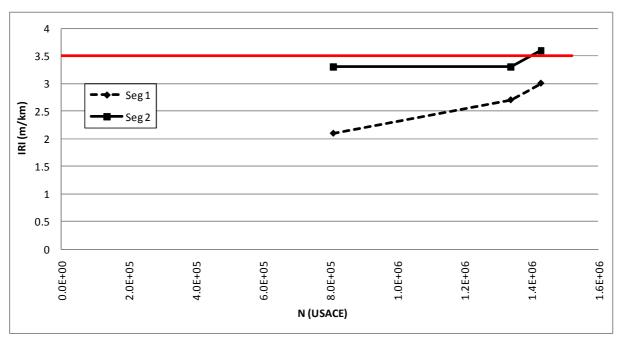


Figura 6.31: Evolução do IRI para os dois segmentos experimentais

6.3.3 Análise das deflexões

A análise das deflexões desta rodovia com base de laterita foi realizada em conjunto com o estudo das bacias de deformação obtidas através dos levantamentos realizados nos segmentos experimentais com o FWD em 2007. Foi possível calcular o raio de curvatura (Rc) da bacia de deformação e conseqüentemente o número estrutural (SN) da camada de base do pavimento, através da equação (2.32) apresentada no item 2.5.2.2 desta Tese, em cada estaca dos dois segmentos experimentais.

O estudo da forma das bacias de deformação apresentado por Fabrício et al (1988) foi utilizado para ajudar na análise do desempenho da camada de laterita e do subleito do pavimento em estudo através do índice de curvatura superficial (ICS) e do índice de curvatura da base (ICB).

A tabela 6.18 apresenta o resumo do estudo realizado para as bacias levantadas em 2007 nos dois segmentos experimentais da rodovia.

De acordo com Fabrício et al (1988) o raio de curvatura da bacia de deformação calculado para o segmento 2 indica que 92% deste segmento em 2007 apresentavam problemas estruturais nas camadas superiores do pavimento (revestimento e base), e que 20% do

segmento 1 já apresentavam problemas estruturais. Os dois segmentos apresentavam mais de 80% do pavimento com pouca resistência no revestimento+base, e, o subleito encontrava-se em boas condições de resistência. A deflexão elevada do segmento 2 em conjunto com valores baixos de raio de curvatura indicam perda estrutural na camada de laterita.

A camada granular do segmento 1 apresentava 38% dos valores de número estrutural maiores ou igual a 2,5 indicando maior resistência estrutural quando comparado ao segmento 2, onde em apenas 4% o número estrutural encontrava-se maior ou igual a 2,5.

Tabela 6.18: Resumo do estudo das bacias de deformação para os dois segmentos experimentais

Segmento	$\begin{aligned} R_c < 100 \\ Problema \\ Revestimento + Base (\%) \end{aligned}$	ICS >25 Pouca resistência Revestimento+Base (%)	ICB baixo indica ISC alto; ICB<10 indica ISC>10
0+000 a 0+780 (1)	20% < 100	81% > 25	ICB médio igual a 3 Subleito em boas condições de resistência
8+340 a 8+800 (2)	92% < 100	95,8% > 25	ICB médio igual a 3 Subleito em boas condições de resistência

A figura 6.32 apresenta as bacias de deformação traçadas com as deflexões características dos dois segmentos experimentais.

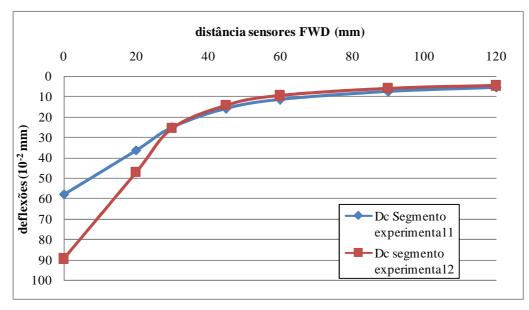


Figura 6.32: Bacias de deflexões características para os dois segmentos

6.3.4 Análise da camada de base de laterita

O resultado dos ensaios apresentados no item 5.3.6 desta Tese foram utilizados na análise estrutural da camada de base de laterita utilizada nesta rodovia.

6.3.4.1 Considerações sobre as espessuras

Por ocasião da abertura das trincheiras nos segmentos experimentais constatou-se a diferença de espessuras da camada granular (laterita) nos dois pontos estudados da rodovia. A carência de espessura estrutural adequada pode ter levado à maior quantidade de defeitos no segmento2. A figura 6.33 mostra que as espessuras da camada de laterita encontradas na rodovia eram diferentes daquelas definidas na época do projeto.

No segmento1, onde havia menor porcentagem de defeitos superficiais, foi encontrado número estrutural mais elevado, neste caso, a espessura da camada de laterita encontrada foi 29,0 cm. No segmento 2 a espessura encontrada foi 20,0 cm e a quantidade de defeitos superficiais chegou a 96% de trincas FC-2.

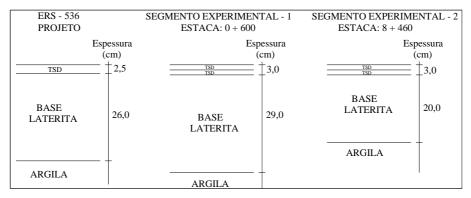


Figura 6.33: Espessura da camada de laterita projeto x rodovia

6.3.4.2 Considerações sobre a granulometria

Os ensaios de granulometria com o material da base de laterita foram realizados antes e após a compactação no Proctor modificado para analisar a quebra da laterita devido à compactação. Foi possível verificar se a curva granulométrica encontrada na base do pavimento se enquadrava na faixa A ou B especificada pela norma DNIT 098/2007 – ES (DNIT, 2007).

A figura 6.34 apresenta a curva granulométrica de duas amostras de laterita obtidas da estaca 0+600. Uma amostra obtida até a profundidade de 20,50cm, denominada L4, e uma amostra

obtida entre as profundidades de 20,50cm e 32,0cm, denominada L6. Após a compactação para a realização do ensaio de Proctor, novamente foi realizado o ensaio de granulometria na amostra L4, confirmando a quebra de partículas após a compactação. A quebra de partículas dificultou a execução de novos ensaios, uma vez que, o material não pode ser reutilizado.

A granulometria da amostra L4 apresentou uma faixa mais fina e não se enquadrou na faixa B especificada pela norma DNIT 098/2007-ES. As amostras L6 e L5 obtidas na estaca 0+600 apresentaram uma granulometria mais grossa enquadrando-se na faixa B especificada pela norma.

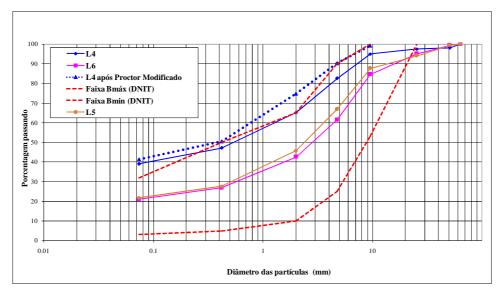


Figura 6.34: Distribuição granulométrica da laterita – estaca 0+600

A figura 6.35 apresenta a distribuição granulométrica da laterita encontrada na estaca 8+460. Nesta estaca as duas amostras, L1 e L2, apresentaram uma granulometria mais fina e de acordo com a especificação do DNIT não se enquadram quanto ao material que passa na peneira 200. Após a compactação para a realização do ensaio de Proctor, foi realizado novamente ensaio de granulometria nas duas amostras (L1 e L2), confirmando a quebra de partículas após a compactação.

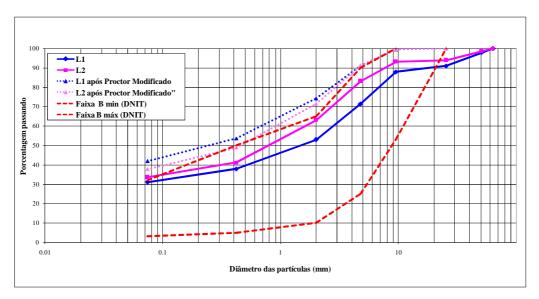


Figura 6.35: Distribuição granulométrica da laterita - estaca 8+460

6.3.4.3 Considerações sobre as características exigidas pela norma DNIT 098/2007 – ES

A norma DNIT 098/2007 – ES (DNIT, 2007) faz algumas exigências para os materiais lateríticos de graduação graúda "in natura" ou beneficiados, quando utilizados na camada de base de pavimentos. A tabela 6.19 apresenta as características das lateritas encontradas no pavimento em estudo.

Características	Exigências da	norma DNIT 098/2007 - ES	0+600	8+460
ISC	$N \le 5 \times 10^6$	≥ 60%	26	44
ISC	$N > 5 \times 10^6$	≥ 80%	-	-
LL	passante # 40 ≤ 40%		33	33
IP	passante # 40	≤ 15%	12,6	13,6
EA	1	> 30%	21	22
% passante # 200	% passante # 200 - ≤ 2/3 % passante # 4		não	não
Faixa Granulométrica	Faixa A ou B	Deve ficar dentro da faixa de tolerância da norma (passa 100% #2")	Foi encontrado Material retido na # 2"	Foi encontrado Material retido na # 2"

Tabela 6.19: Exigências da norma DNIT 098/2007 – ES

O material encontrado em qualquer uma das estacas apresenta-se dentro das exigências da norma do DNIT quanto às características de LL e IP não atendendo às características de ISC, EA e material passante na peneira nº 200.

6.3.5 Análise do comportamento elástico

O alto índice de trincamento do pavimento levou ao estudo do comportamento elástico de sua estrutura, pois, trincas por fadiga podem ser causadas devido à deformabilidade da estrutura com baixo módulo de resiliência e/ou carência de uma espessura estrutural adequada.

6.3.5.1 Estudo das tensões atuantes na estrutura do pavimento

A análise do segmento 2, que em 2007 se apresentava com alto índice de deterioração foi realizada através das tensões que atuavam em dois pontos da base de laterita.

A partir do resultado dos ensaios de módulo de resiliência realizados nas amostras L1 e L2 e utilizando-se os valores de deflexões obtidos com o FWD em 2007, foi possível calcular, com a ajuda do software EVERSTRESS, as tensões que atuam na base do revestimento, em duas profundidades da camada de laterita e no topo do subleito na estaca 8+460. Substituindo estas tensões no modelo resultante do ensaio de módulo de resiliência para as amostras L1 e L2, foi possível determinar os módulos de resiliência da base do pavimento neste ponto.

A tabela 6.20 apresenta os valores destas tensões e deformações e os módulos de resiliência calculados em duas profundidades da base de laterita na estaca 8+460.

Tabela 6.20: Tensões, deformações e módulo de resiliência Estaca 8+460 (2007)

Profundidade de análise "z" (cm)	Tensão vertical $\sigma 1 = \sigma v$	Tensão radial σ3	Tensões principais $\sigma 1 + \sigma 2 + \sigma 3$	Tensão desvio od	Deformção vertical (10^-6)	Deformção radial (10^-6)	Mr - UZAN (MPa)
3.00	-315,45	5147,56	9979,67	-5463,01	-288,92	393,95	-
5.75	-273,58	-76	-425,58	-197,58	-2335,8	491,3	95
14.00	-147,2	-22	-191,2	-125,2	-1120,69	453,45	161
19.50	-97,61	-10,7	-119,01	-86,91	-1337,41	578,26	-

A base de laterita está absorvendo praticamente todas as tensões do tráfego. A camada superior da base perdeu 41% de sua rigidez apresentando deformações 108% maiores.

Os módulos de resiliência e as tensões que atuavam no meio da base e no topo do subleito do pavimento, em 2007, foram conhecidos através de retroanálise realizada com o auxílio do software EVERCALC utilizando-se as espessuras obtidas das trincheiras e dados de deflexões do FWD levantados em 2007. As tabelas 6.21 e 6.22 apresentam os resultados da retroanálise.

Tabela 6.21: Resultado da retroanálise para a estrutura Estaca 8+460 (2007)

Análise "z" (cm)	Posição	Mr (MPa)	Tensão vertical $\sigma_1 = \sigma_v$	Tensão radial σ_3	Tensões principais $\sigma_1 + \sigma_2 + \sigma_3$	$\begin{array}{c} Tens\~{a}o \\ desvio \\ \sigma_d \end{array}$	Deformação vertical (10 ⁻⁶)	Deformção radial (10 ⁻⁶)
3,0	Base Revestimento	5000	-565	2825	5085	-3391	-508	406
13,0	Meio Base laterita	134	-371	-45	-462	-326	-2523	746
23,0	Topo Subleito	212	-229	-20	-270	-209	-1004	374

Tabela 6.22: Resultado da retroanálise para a estrutura Estaca 0+600 (2007)

Análise "z" (cm)	Posição	Mr (MPa)	Tensão vertical $\sigma_1 = \sigma_v$	Tensão radial σ_3	Tensões principais $\sigma_1 + \sigma_2 + \sigma_3$	$\begin{array}{c} Tens\~{a}o \\ desvio \\ \sigma_d \end{array}$	Deformação vertical (10 ⁻⁶)	Deformção radial (10 ⁻⁶)
3,0	Base Revestimento	5000	-580	1041	1500	-1621	-262	175
17,5	Meio Base laterita	285	-281	-8	-299	-273	-969	327
32,0	Topo Subleito	260	-129	-2	-133	-127	-490	194

A estaca 0+600, que representa o segmento em bom estado, apresenta o centro da base de laterita com módulo de resiliência mais elevado (285 MPa), comparado com a base de laterita da estaca 8+460 (134 MPa) absorvendo melhor as tensões e deformações causadas pelo tráfego.

6.3.5.2 Estudo da influência da umidade no módulo de resiliência

Analisando as três amostras de laterita obtidas da estaca 0+600, L5, L7 e L8, pode-se verificar a influência da umidade no módulo de resiliência do material.

A amostra L5 foi moldada com peso específico aparente seco igual a 22,32 kN/m³ e 11,8% de umidade enquanto que a amostra L7 com o mesmo peso específico aparente seco, 22,30 kN/m³ foi moldada com 12,5% de umidade (0,7% maior) e a amostra L8 com peso específico aparente seco 22,90 kN/m³ foi moldada com 11,3% de umidade (0,5% menor).

A tabela 6.23 apresenta os módulos de resiliência calculados utilizando-se as tensões encontradas por retroanálise apresentadas na tabela 5.50.

Tabela 6.23: Módulos de resiliência obtidos em amostras de laterita moldadas com diferentes umidades

Amostra Laterita	$\gamma_{\rm d}~({\rm kN/m}^3)$	Umidade (%)	Mr (MPa)
L5	22,32	11,8	172
L7	22,30	12,5	148
L8	22,90	11,3	208

O acréscimo de 0,7% de umidade causou decréscimo de 14% no módulo de resiliência. O decréscimo de 0,5% de umidade causou um aumento de 21% no módulo de resiliência.

6.3.6 Comentários

O pavimento com base de laterita exige atenção com o trincamento que aparece no seu revestimento, pois com o efeito do tráfego podem evoluir para a formação de panelas exigindo reparos localizados que, quando mal executados, podem refletir no acréscimo da irregularidade longitudinal.

O número estrutural e o raio de curvatura foram parâmetros importantes na avaliação estrutural deste pavimento. O conhecimento da bacia de deflexões facilitou o entendimento do comportamento estrutural da base de laterita.

As espessuras das camadas de laterita encontradas "in situ" justificam, em parte, a diferença da capacidade estrutural de cada um dos pontos estudados.

A espessura da camada de laterita assume importância estrutural, uma vez que, conforme demonstrado no item 6.3.4.2, deste capítulo, o material pode quebrar com a compactação. A camada mais superficial da base de laterita apresentou granulometria mais fina, provavelmente perdeu rigidez apresentando maiores deformações.

A vida útil de um pavimento com base de laterita será afetada se a drenagem não sofrer manutenções periódicas. O módulo de resiliência diminui com o acréscimo de umidade.

A entrada de água por razões de trincamentos favorece a desagregação da laterita desestruturando a base que acaba perdendo resistência. Sendo assim sugere-se, para este tipo de pavimentos, a execução de uma camada de tratamento superficial simples (TSS) sobre a camada de base de laterita possibilitando uma impermeabilização na base e como revestimento uma camada de tratamento superficial duplo (TSD).

6.4 LATERITA (392 AM 9100 – ACESSO A SETE DE SETEMBRO)

A mesma metodologia utilizada na análise de desempenho da rodovia ERS-536 foi utilizada para análise de desempenho do Acesso a Sete de Setembro, considerando, assim, a evolução dos defeitos superficiais, da irregularidade longitudinal e do tráfego, bem como, o estudo da capacidade estrutural da camada de laterita.

6.4.1 Análise do tráfego

Além da contagem de tráfego realizada em 1999 por ocasião da execução do projeto de pavimentação da rodovia, em 2007 foi realizada nova contagem de tráfego por três dias, quando foi encontrado um VDM de 415 veículos. A tabela 6.24 apresenta os cálculos de VDM com os levantamentos de 1999 e 2007 e a evolução da taxa de crescimento anual do tráfego (t%) para cada categoria de veículo entre 1999 e 2007.

Tabela 6.24: Evolução da taxa de crescimento anual do tráfego por categoria de veículo entre 1999 e 2007

VDM	1999	2007	(t%) 1999 - 2007
Automóveis	381	333	-1,67%
Coletivos	16	21	3,46%
Carga leve	25	16	-5,43%
Carga média	21	24	1,68%
Carga pesada	9	15	6,59%
Carga ultrapesada	2	6	14,72%
Total	454	415	-1,12%

Durante o período estudado houve um decréscimo no número de automóveis e de carga leve, crescendo o número de coletivos e cargas média, pesada e ultrapesada. A carga ultrapesada, item altamente prejudicial ao pavimento, teve o maior crescimento anual após a pavimentação da rodovia. A figura 6.36 mostra a taxa de crescimento anual do tráfego por categoria de veículo.

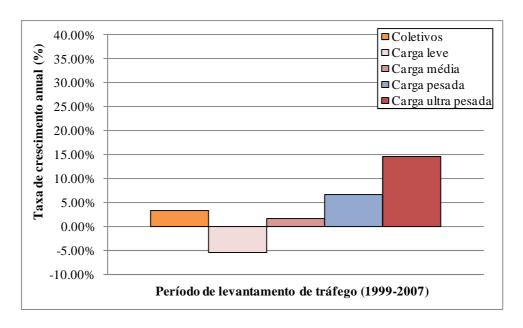


Figura 6.36: Taxa de crescimento anual média do tráfego por categoria de veículo (1999-2007)

6.4.2 Análise da superfície do pavimento

A evolução dos defeitos superficiais e da irregularidade do pavimento foi analisada no segmento experimental através dos levantamentos apresentados nos item 5.4.4 desta Tese.

6.4.2.1 Análise dos defeitos superficiais

A figura 6.37 mostra a evolução da freqüência relativa de defeitos, de acordo com a norma DNIT 006/2003 – PRO, relacionada com o aumento acumulado de cargas devido ao tráfego no trecho experimental.

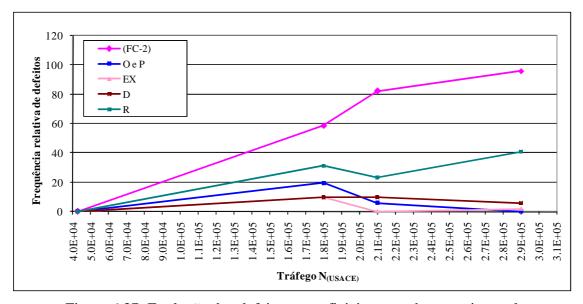


Figura 6.37: Evolução dos defeitos superficiais no trecho experimental

A manutenção realizada com remendos (R) ou reparos localizados a partir do ano de 2007 ($N=1,8\times10^4$) amenizou os problemas com as panelas que apareceram no pavimento. O trincamento foi o defeito que se mostrou mais prejudicial ao pavimento com base de laterita, pois, continuou evoluindo durante toda a vida do pavimento.

6.4.2.2 Análise da irregularidade longitudinal

A irregularidade longitudinal medida através do IRI é um importante parâmetro de conforto ao usuário. O DNIT estabelece 3,5m/km como valor máximo de IRI para determinar a necessidade de uma restauração em pavimentos com baixo volume de tráfego. A figura 6.38 mostra que o trecho experimental do Acesso à Sete de Setembro alcançou um valor de IRI igual a 3,5 m/km quando o número equivalente da carga de tráfego alcançou N=2,8x10⁵, ou seja, no ano de 2009. Pode-se dizer que com um mínimo de manutenção este pavimento teve uma vida útil de 9 anos.

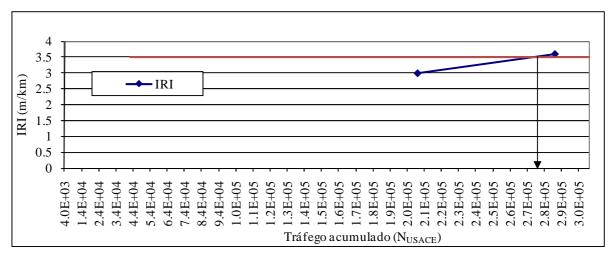


Figura 6.38: Evolução da irregularidade no segmento experimental

6.4.3 Análise das deflexões

A análise das deflexões desta rodovia com base de laterita também foi realizada em conjunto com o estudo das bacias de deformação obtidas através dos levantamentos realizados no segmento experimental com o FWD em 2007. Foi possível calcular o raio de curvatura (Rc) da bacia de deformação e conseqüentemente o número estrutural (SN) da camada de base do pavimento, através da equação (2.32) apresentada no item 2.5.2.2 desta Tese, em cada estaca do segmento experimental.

A figura 6.39 apresenta as bacias de deflexão traçadas com a deflexão média $(D_m=55x10^{-2}mm)$ e característica $(Dc=68x10^{-2}mm)$ para o segmento experimental demonstrando que a bacia de deflexão obtida na estaca 0+900 $(D_0=53x10^{-2}mm)$, escolhida para o estudo apresenta-se semelhante à bacia de deflexão traçada com as deflexões médias do segmento experimental.

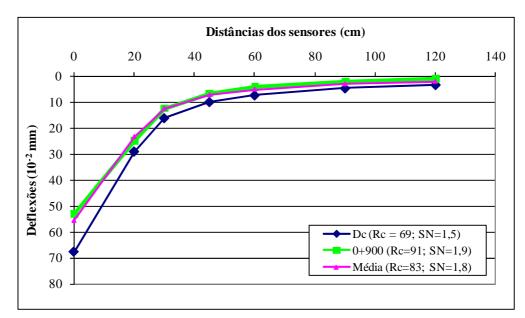


Figura 6.39: Bacias de deflexão com deflexões médias, deflexão característica e deflexões no ponto 0+900

O estudo da forma das bacias de deformação apresentado por Fabrício et al (1988) foi utilizado para ajudar na análise do desempenho da camada de laterita e do subleito do pavimento em estudo através do índice de curvatura superficial (ICS) e do índice de curvatura da base (ICB).

A tabela 6.25 apresenta o resumo do estudo realizado para as bacias levantadas em 2007 no segmento experimental da rodovia.

Tabela 6.25: Resumo do estudo das bacias de deformação para o segmento experimental

$ \begin{array}{c} R_c < 100 \\ Problema \\ Revestimento \\ Base \ (\%) \end{array} $		ICS >25 Pouca resistência Revestimento+Base (%)	ICB baixo indica ISC alto; ICB<10 indica ISC>10
0+500 a 1+500	86%	98%	ICB médio igual a 3 Subleito em boas condições de resistência

Desempenho de Pavimentos com Materiais Alternativos do Estado do Rio Grande do Sul

O raio de curvatura da bacia de deformação calculado para o segmento experimental indica que em 2007, 86% deste segmento, apresentava problema estrutural nas camadas superiores do pavimento (revestimento e base). De acordo com Fabrício et al (1988), 98% do pavimento apresentava pouca resistência no revestimento+base e o subleito encontrava-se em boas condições de resistência.

O número estrutural da camada granular do segmento apresentava 96% de valores menores ou iguais a 2,5 indicando a perda estrutural da camada granular.

6.4.4 Análise da base de laterita

O resultado dos ensaios apresentados no item 5.4.6.2 desta Tese serviram como base da análise estrutural da camada de base de laterita utilizada nesta rodovia.

6.4.4.1 Considerações sobre as espessuras

Por ocasião da abertura da trincheira no segmento experimental constatou-se uma pequena diferença de espessuras da camada granular (laterita) da base e da camada de argila do reforço do subleito. A figura 6.40 mostra que a espessuras da camada de laterita (base) encontrada na rodovia, era um pouco maior que àquela exigida pelo projeto e muito semelhante ao dado fornecido pela obra. A camada de reforço do subleito encontrada na trincheira estava semelhante ao projeto.

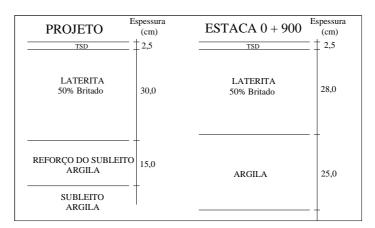


Figura 6.40: Espessuras do pavimento

6.4.4.2 Considerações sobre as granulometrias

A figura 6.41 mostra as curvas granulométricas obtidas das amostras L3 e L4 retiradas da base de laterita do pavimento em estudo.

Os ensaios de granulometria com o material da base de laterita foram realizados antes e após a compactação no Proctor Intermediário (utilizado na compactação da base nesta rodovia) para analisar a quebra da laterita devido à compactação.

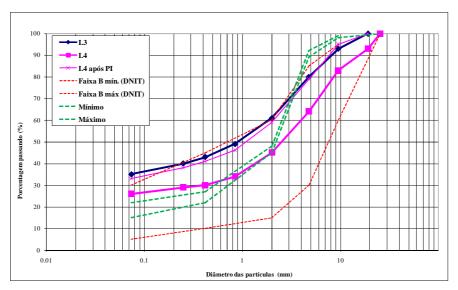


Figura 6.41: Granulometria material da base de laterita estaca 0+900

A amostra L4 retirada de um local mais profundo da base mostra que com o acúmulo de tráfego sobre o pavimento as partículas podem se quebrar aumentando o material fino e diminuindo o material grosso da base de laterita. Esta amostra só continuava dentro da faixa de trabalho do projeto nas peneiras intermediárias. A curva granulométrica obtida da amostra L3, mais próxima da superfície, apresentava-se totalmente fora da faixa de projeto, semelhante à curva granulométrica obtida com a amostra L4 após a compactação no Proctor intermediário.

6.4.4.3 Considerações sobre as características exigidas pela norma

A laterita utilizada na camada de base desta rodovia apresenta-se dentro das exigências da norma DNIT 098/2007 – ES (DNIT, 2007) quanto às características de LL e IP não atendendo às características de ISC e material passante na peneira nº 200. A tabela 6.26 apresenta as características das lateritas encontradas no pavimento em estudo.

Tabela 6.26: Exigências da norma DNIT 098/2007 – ES

Características	Exigências da	norma DNIT 098/2007 - ES	Profundidade 2,5 a 17,0cm	Profundidade 17,0 a 30,0cm
ISC	$N \le 5 \times 10^6$	≥ 60%	48	15
150	$N > 5 \times 10^6$	≥ 80%	-	-
LL	passante # 40	≤ 40%	40	40
IP	passante # 40	≤ 15%	15	15
EA	-	> 30%	21	
% passante # 200 - ≤ 2/3 % pa		≤ 2/3 % passante # 40	não	
Faixa Granulométrica	Faixa A ou B	Deve ficar dentro da faixa de tolerância da norma (passa 100% #2")	Foi encontrado Material retido na # 2"	ok

6.4.5 Análise do comportamento elástico

Nesta rodovia também o alto índice de trincamento do pavimento levou ao estudo do comportamento elástico de sua estrutura.

6.4.5.1 Estudo das tensões atuantes na estrutura do pavimento

A análise do segmento experimental foi realizada com o conhecimento das tensões que atuavam em dois pontos da base de laterita. A partir do resultado de retroanálises realizadas com o auxílio do software EVERCALC utilizando-se as espessuras obtidas da trincheira e dados de deflexões obtidos com o FWD foi possível conhecer, as tensões que atuavam no meio de cada uma das camadas de base, no meio do reforço do subleito e no topo do subleito do pavimento no ano de 2007, apresentadas na tabela 6.27.

Tabela 6.27: Resultado da retroanálise para a estrutura da estaca 0+900 - 2007

Análise "z" (cm)	Posição	Mr (MPa)	Tensão vertical $\sigma_1 = \sigma_v$ (kPa)	Tensão radial σ ₃ (kPa)	Tensões principais $\sigma_1 + \sigma_2 + \sigma_3$ (kPa)	Tensão desvio σ_d (kPa)	Def.ver tical (10 ⁻⁶ mm)	Def. radial (10 ⁻⁶ mm)
8,8	Meio da Base com L1 ou L3+TSD	269	-527	-140	-807	-386	-1592	345
23,5	Meio da Base com L2 ou L4	262	-244	-6	-256	-238	-915	311
42,5	Meio Reforço subleito	301	-104	-7	-119	-97	-323	142
55,0	Topo Subleito	327	-67	-2	-72	-65	-198	88

A retroanálise realizada em 2007 demonstrou que na estaca 0+900, a base de laterita apresentava módulo de resiliência adequado, absorvia a maioria das tensões e apresentava maior deformação vertical.

6.4.5.2 Estudo do módulo de resiliência

Considerando as tensões obtidas por retroanálise, no modelo de UZAN obtido no ensaio de módulo de resiliência no laboratório, obtiveram-se os valores de módulo de resiliência da laterita na base da rodovia em 2007 apresentados na tabela 6.28.

Tabela 6.28: Módulos de resiliência para as amostras de laterita da estaça 0+900

			Mr - UZAN
Amostra Laterita	$\gamma_{\rm d}~({\rm kN/m}^3)$	Umidade (%)	(MPa)
L1	20,1	17,0	214
L3	23,1	16,5	175
L2	24,81	15,0	188
L4	23,47	13,5	152

No ano de 2007 os valores de módulo de resiliência das quatro amostras da base de laterita apresentaram-se semelhantes variando de 152 a 214 MPa sendo que as duas amostras da camada superior da base de laterita L1 e L3 apresentaram módulos de resiliência maiores quando comparados com os módulos de resiliência das amostras mais profundas L2 e L4. O material localizado em maior profundidade possui módulo de resiliência um pouco menor. De acordo com as informações obtidas durante a obra o módulo de resiliência médio era igual a 134 MPa. Neste caso, confirma-se a informação de que durante a obra os locais com baixo módulo sofreram as devidas correções.

6.4.6 Comentários

O comportamento desta rodovia foi semelhante ao da rodovia ERS-536 ficando válidos os comentários apresentados no item 6.3.6. O pavimento exige manutenções periódicas evitando a formação de panelas, reparos localizados e possíveis acréscimos no valor de IRI. Cuidados especiais devem ser tomados quanto à manutenção nos dispositivos de drenagem, pois a água favorece a desagregação da laterita causando perda de resistência da base. A camada superficial da base de laterita deste pavimento também apresentou granulometria mais fina confirmando que este material pode fraturar com a compactação.

7 SUGESTÃO PARA PROGRAMA DE MANUTENÇÃO DE PAVIMENTOS COM MATERIAIS ALTERNATIVOS

O nível de desempenho para qualquer pavimento é assegurado pelas manutenções realizadas durante a sua vida útil.

7.1 INTRODUÇÃO

Os recursos para conservação ou manutenção de rodovias são escassos, tornando imprescindível um estudo detalhado e objetivo de cada caso para que se faça um investimento justificável. A maneira mais indicada para realizar intervenções nas rodovias é através de um programa de manutenção que considere custos para o usuário preocupando-se com o retorno do investimento para a sociedade.

Baseado nas análises de desempenho realizadas para os trechos estudados e nos conhecimentos obtidos durante um período de estudos no Centro de Engenharia de Transportes da Universidade de Nottingham (NTEC), onde foi possível conhecer sistemas de gerência de manutenção utilizados por agências e órgãos responsáveis por malhas rodoviárias de outros países, o presente capítulo sugere um programa de manutenção para os pavimentos alternativos estudados nesta Tese.

Materiais alternativos, normalmente, são utilizados em rodovias com baixo volume de tráfego. Nestes casos o retorno dos investimentos em manutenção na rodovia deve considerar a acessibilidade e a fragilidade dos municípios envolvidos.

Os materiais alternativos utilizados na pavimentação destas rodovias exigem maior atenção na manutenção por serem desconhecidos quanto ao seu desempenho. Apresentam custos iniciais menores, mas necessitam de manutenções periódicas adequadas.

De acordo com os estudos realizados no NTEC a implantação de um programa de manutenção nos pavimentos deve considerar cinco passos fundamentais:

a) Levantamentos periódicos,

- b) Identificação de modelos de deterioração,
- c) Avaliação econômica,
- d) Gatilhos de manutenção e
- e) Tipos de intervenção.

As análises de desempenho realizadas nos pavimentos alternativos mencionados demonstraram que sua manutenção é mais efetiva quando se conhece os materiais constituintes da estrutura do pavimento. Sendo assim, sugere-se que o programa de manutenção considere seis passos fundamentais, incluindo como primeiro passo, a caracterização do material alternativo.

7.2 PLINTOSSOLO (ERS-101; BACOPARI-MOSTARDAS)

O trecho experimental desta rodovia pavimentado em 1987 com duas camadas de 15,0 cm de plintossolo e revestimento em TSD apresentou o desempenho esperado estimado no projeto, no caso, vida útil de cinco anos.

A solução de reforço executada no trecho experimental, em 1994 (2,5cm reperfilagem + 6,0cm de CBUQ), sete anos após sua execução, ou seja, dois anos após sua previsão de vida útil, resolveu o problema de trincas e trilha de rodas. Nesta ocasião o tráfego acumulado apresentava um número N(USACE) acumulado igual a 7,9x10⁵ e as deflexões medidas com a viga Benkelman eram elevadas (Dc=70x10⁻² mm) mostrando a perda estrutural do pavimento.

A partir de 1996 a rodovia já apresentava N(USACE) acumulado igual a 1,2 x 10⁶.

Entre os anos de 1993 até 1999 o trecho experimental não recebeu manutenções, período em que o houve o maior acréscimo de cargas leve, média e pesada. Em 2000 recebeu um reforço de 4,0cm de CBUQ. Na retomada dos levantamentos em 2007 o trecho experimental apresentava defeitos diferenciados nos dois lados da rodovia com deflexões características medidas com FWD entre $72x10^{-2}$ no lado esquerdo e $52x10^{-2}$ no lado direito. Em 2009 as deflexões características no lado esquerdo igual a $105x10^{-2}$ mm e no lado direito igual a $72x10^{-2}$ mm confirmaram a perda estrutural do pavimento.

Desempenho de Pavimentos com Materiais Alternativos do Estado do Rio Grande do Sul

A redução do módulo de resiliência da base do lado esquerdo do pavimento, conforme apresentado no item 6.1.5, desta Tese, pode ter resultado em trincas por fadiga e aumento da deflexão.

A solução para problemas inesperados que possam surgir em um pavimento alternativo sugere um acompanhamento constante a partir do primeiro ano de vida útil do mesmo. Esta rodovia recebeu alguns ajustes, no início de sua vida útil, como a sugestão da utilização de rampa máxima de 5% nos acessos criados por ocasião de sua pavimentação para que a sua estrutura não recebesse esforços diferenciados quando os veículos entravam ou saiam da pista. A manutenção no sistema de drenagem como a retirada das banquetas de areia que se formavam devido ao forte vento da região, foi outra solução diferenciada para preservar o pavimento.

7.2.1 Caracterização do material alternativo

A caracterização deste material demonstrou a influência da umidade na sua deformação. Neste caso, a preocupação com a drenagem e a selagem de trincas no revestimento passa a ser fundamental quando o plintossolo for utilizado na estrutura do pavimento.

Os dispositivos de drenagem devem ser limpos e mantidos em perfeitas condições para impedir infiltrações de água na estrutura do pavimento.

7.2.2 Levantamentos

Sugere-se a realização dos seguintes levantamentos:

- a) Levantamentos superficiais anuais a fim de identificar o início de trincamentos que devem ser selados para não permitir a infiltração de água da chuva.
- b) Levantamento semestral da condição dos dispositivos de drenagem a fim de identificar a necessidade de limpeza ou manutenções não permitindo o acúmulo de água de chuva na pista de rolamento, acostamentos ou nas laterais do pavimento.
- c) Levantamento anual de tráfego para verificação do tipo de carga que solicita o pavimento. O aumento de carga pode exigir um reforço estrutural no pavimento. Considerar levantamentos semestrais, quando houver variação do tráfego devido a safras.

d) Levantamento de deflexões a cada dois anos que permitam o estudo do comportamento estrutural da base e sub-base do pavimento. Identificado qualquer comprometimento da camada de base ou sub-base constituída por este material alternativo sugere-se um reforço na estrutura para que não ocorra a perda total do pavimento.

7.2.3 Modelos de deterioração

Os modelos de deterioração só poderão ser criados após, no mínimo, dois levantamentos.

Os levantamentos resgatados nesta pesquisa mostram que os dados de tráfego em conjunto com os defeitos superficiais e de deflexão são importantes na elaboração de um modelo de deterioração. Conhecer o tipo de carga que o pavimento deve suportar pode levar a um reforço da estrutura.

7.2.4 Avaliação econômica

A avaliação econômica deve ser realizada para provar o bom uso dos recursos públicos.

Esta rodovia permitiu o desenvolvimento de uma região praticamente sem acesso. Deve-se considerar a acessibilidade e a fragilidade dos municípios beneficiados pela pavimentação da rodovia.

A possibilidade de pavimentar uma rodovia mesmo que tenha sido previsto um reforço estrutural em cinco anos deve ter diminuido a fragilidade das regiões servidas pela rodovia permitindo a acessibilidade.

Entre os anos de 2001 e 2004 a rodovia recebeu aumento das cargas ultrapesadas, justamente aquelas que mais danificam o pavimento. A falta de manutenção pode ter refletido no tráfego dos outros tipos de veículos. O apelo social poderia ter sido utilizado para a implantação de um programa de manutenção.

7.2.5 Gatilhos para manutenção

As análises apresentadas nos itens 6.1.5 e 6.1.6 desta tese concluíram que este tipo de material não tem bom desempenho estrutural na presença de água. O engenheiro avaliador deste tipo de pavimento deve estar atento ao desenvolvimento das trincas que vão surgir no

revestimento. Antes que as trincas evoluam para panelas deve ser identificado o gatilho para a manutenção.

7.2.6 Tipos de manutenção

Esta rodovia inicialmente desenvolveu panelas isoladas que poderiam ter sido evitadas com a selagem de trincas. No momento em que a água penetrou nas panelas desestruturou a base de plintossolo fazendo com que o pavimento perdesse a capacidade estrutural. Neste caso, a intervenção de manutenção exige reparos localizados utilizando maior mão de obra, substituição de material e consequentemente custo mais elevado.

Sugere-se como manutenção a selagem de trincas, a cada dois anos.

A execução de CBUQ após cinco anos com espessura adequada, após a confecção de reparos localizados necessários deveria ter conferido à estrutura capacidade para suportar o tráfego previsto por um determinado período pré-fixado, evidentemente sob conservação rotineira permanente, exigência própria para qualquer pavimento.

7.3 BASALTO ALTERADO (ERS-132; CAMARGO-NOVA ALVORADA)

A importância da manutenção preventiva ficou clara nos dois segmentos experimentais desta rodovia, uma vez que, a manutenção realizada, no momento ideal, não permitiria a evolução dos defeitos que acarretaram aumento na irregularidade trazendo desconforto ao usuário e colapso do pavimento em alguns pontos de estudo. No caso destes segmentos experimentais, o valor do IRI aumentou depois que o número N(USACE) acumulado alcançou 1,44 x 10⁶, quando as trincas evoluíram para panelas pela falta de manutenção. Importante reforçar que a manutenção nos dispositivos de drenagem é de vital importância para prolongar a vida do pavimento.

7.3.1 Caracterização do material alternativo

O basalto alterado pode ser caracterizado através do ensaio de resistência à compressão puntiforme apresentado no item 5.2.6.2 desta Tese. A execução da base de macadame de basalto alterado deve seguir as exigências das especificações existentes e o controle tecnológico durante a compactação deve ser rígido. A contaminação da base de basalto

alterado com argila e a presença de umidade contribuíram com a degradação do segmento experimental analisado.

O estudo apresentado no item 6.2.5 desta Tese, mostra que nos pontos onde a deflexão é elevada os módulos de resiliência chegam a diminuir pela metade e as deformações aumentam significativamente, o número estrutural chega a baixar para valores menores que 2,0 indicando a perda estrutural do pavimento.

As retroanálises realizadas com os dados levantados em 2006 e 2009 mostraram a influência da rigidez da camada de base do pavimento com basalto alterado no desempenho do pavimento alertando para a preocupação com a manutenção nos dispositivos de drenagem e selagem de trincas no pavimento.

A análise dos dados obtidos durante o monitoramento dos dois segmentos experimentais da ERS-132 permitiu sugerir um programa de manutenção para este tipo de rodovia.

7.3.2 Levantamentos

Os levantamentos de superfície, IRI e deflexão, realizados anualmente possibilitaram a identificação dos defeitos de maior influência na deterioração do pavimento.

O trincamento foi o defeito que apresentou maior frequência relativa calculada através do levantamento de superfície realizado de acordo com a metodologia do procedimento do DNIT 006/2003 PRO.

7.3.3 Modelos de deterioração

A figura 7.1 mostra a linha de tendência encontrada para o trincamento no segmento1 e no segmento 2 considerando a falta de manutenção no pavimento e nos dispositivos de drenagem.

De acordo com a figura 7.1 o início das intervenções de manutenção deveria ter ocorrido quando o número acumulado de eixo padrão N(USACE) alcançasse $1,10x10^6$ (2004) no segmento 1 e $1,5x10^6$ (2007) no segmento 2, ou seja, com 10% de frequência relativa de trincas, deveria ter sido executado a primeira campanha de manutenções. Após este ponto as curvas aumentam a inflexão mostrando a aceleração do trincamento. Por se tratar de um material alternativo, o ideal seria iniciar as intervenções de manutenção antes que o trincamento começasse a acelerar.

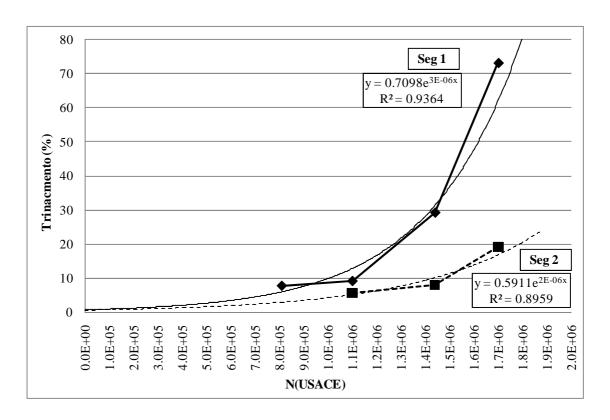


Figura 7.1: Tendência do trincamento nos dois segmentos experimentais da ERS-132

7.3.4 Avaliação econômica

A necessidade de comprovar a utilização dos recursos em manutenção leva a realização da avaliação econômica. A pavimentação desta rodovia permitiu acessibilidade e evitou a fragilidade de várias cidades da região facilitando a comprovação do bom uso dos recursos públicos.

7.3.5 Gatilhos para manutenção

Neste caso, o gatilho de manutenção ficou determinado sempre que a frequência relativa de trincas FC-2 apresentasse 10% de trincamento.

A limpeza e manutenção dos dispositivos de drenagem devem ser rotineiras exigindo intervenções a cada seis meses.

7.3.6 Tipos de manutenção

A intervenção sugerida para prevenir que o trincamento de um revestimento de TSD não evolua para a formação de panelas é uma selagem de trincas.

Para aumentar a vida útil de um pavimento de TSD envelhecido apresentando desgastes sugere-se a utilização de uma lama asfáltica ou microrrevestimento asfáltico, técnica utilizada em vários países para preencher os vazios dos agregados de um tratamento superficial possibilitando alto grau de fechamento e coesão do revestimento, ou seja, possibilita a impermeabilização do revestimento.

A irregularidade longitudinal poderá ser evitada quando os reparos localizados forem executados de acordo com as especificações de serviço DAER ES-CON 010.0/07- Remendo Superficial (Recomposição localizada de revestimento betuminoso), DAER ES-CON 011.0/07 – Remendo Subsuperficial (Recomposição localizada de revestimento betuminoso + base granular) e DAER ES-CON 013.0/07 – Remendo profundo para reconstituição do subleito.

7.4 LATERITA

O presente trabalho apresentou a análise da laterita utilizada em duas rodovias, ERS-536 e 392AM9100. As duas rodovias não tiveram monitoramento no início de suas vidas úteis.

A ERS-536 pavimentada em 1980 sofreu uma restauração em 2005, quinze anos após a liberação ao tráfego, quando se encontrava com 30% da frequência relativa de defeitos em forma de panelas e 60% como trincamentos (valores muito elevados de defeitos superficiais). Esta restauração não resolveu o problema do trincamento no segmento 2, escolhido em 2007, pois o levantamento realizado, nesta ocasião, mostrou que o revestimento se apresentava com 35% de trincas FC-2. Este trincamento provavelmente continuou ocorrendo devido à perda estrutural da base de laterita, pois de acordo com a análise apresentada no item 6.3.5.1 desta Tese o módulo de resiliência era baixo com consequente deflexão mais elevada quando comparado com a base de laterita do segmento 1.

O acesso a Sete de Setembro pavimentado em 2000, não sofreu restaurações durante os dez anos de vida útil. Foram realizadas algumas intervenções com remendos ou reparos localizados a partir do ano de 2007 (N=1,8x10⁴) amenizando os problemas devido às panelas que apareceram no pavimento.

O trincamento foi o defeito que se mostrou mais prejudicial ao pavimento com base de laterita, pois, continuou aumentando durante toda a vida do pavimento.

7.4.1 Caracterização do material alternativo

O alto índice de trincamento do pavimento exige o estudo do comportamento elástico deste material. Resultados obtidos através de retroanálise indicaram que a camada de base absorve maiores tensões e apresenta maiores deformações.

Deve ser realizado um estudo detalhado da granulometria e um controle rigoroso na execução da base de laterita, pois a análise apresentada nos itens 6.3.4 e 6.4.4 desta Tese demonstraram que este material pode ser fraturado com a compactação modificando a curva granulométrica da base do pavimento prejudicando seu desempenho estrutural.

7.4.2 Levantamentos

Os levantamentos de superfície, irregularidade (IRI), deflexão, e tráfego realizados anualmente podem possibilitar a identificação do defeito de maior influência na deterioração do pavimento.

7.4.3 Modelos de deterioração

Os levantamentos realizados nas duas rodovias com base de laterita, estudadas nesta pesquisa, identificaram o trincamento em conjunto com a evolução de tráfego como o defeito característico de deterioração das rodovias com base de laterita. A figura 7.2 mostra a evolução do trincamento para as duas rodovias.

De acordo com a figura 7.2, a evolução do trincamento na rodovia de acesso a Sete de Setembro foi mais acelerada. As análises apresentadas no item 6.4.5 desta Tese mostraram que em 2007 (N=1,8x10⁵), quando foi possível retroanalisar os dados de deflexão medidos com o FWD, foi encontrado um valor de módulo de resiliência de 260 MPa para a base de laterita. Por outro lado, a tabela 6.24 desta Tese mostra um acréscimo de 6,59% para carga pesada e 14,7% para ultrapesada. Em 2007, a base de laterita desta rodovia apresentava maior rigidez quando comparada com a base de laterita da rodovia ERS-536, mas recebeu maior acréscimo de carga de tráfego.

O estudo realizado no item 6.3.5, desta Tese, apresenta o valor dos módulos de resiliência para as bases de laterita da rodovia ERS-536 em 2007 (1,34x10⁶). O segmento com muitos defeitos superficiais encontrava-se com módulo de resiliência igual a 134 MPa, neste caso, a

curva mostrada na figura 7.2 apresenta um aumento de inflexão quando o revestimento encontrava-se com 30% da frequência relativa de trincamento.

De acordo com o que preconiza a norma DNER-PRO 159/85, como restrição de desempenho, o revestimento das rodovias com base de laterita deveriam ter recebido uma intervenção de manutenção quando apresentassem entre 15% e 40% de área trincada. Neste caso a evolução do trincamento poderia ter sido amenizada.

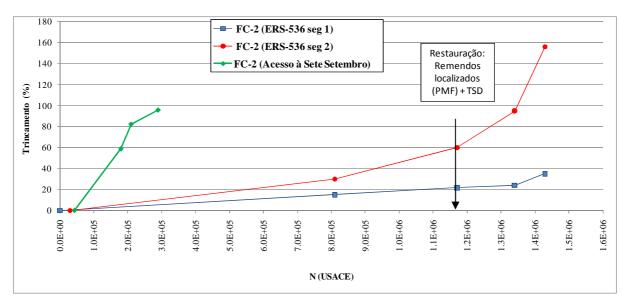


Figura 7.2: Tendência do trincamento nos dois segmentos experimentais da ERS-536 e do segmento experimental do acesso a Sete de Setembro

7.4.4 Avaliação econômica

Seguindo os exemplos anteriores a avaliação econômica torna-se necessária para comprovar a utilização dos recursos na manutenção das rodovias de baixo volume de tráfego. A pavimentação desta rodovia permitiu acessibilidade e evitou a fragilidade de cidades da região o que poderia ter facilitado a comprovação do bom uso dos recursos públicos.

7.4.5 Gatilhos para manutenção

O gatilho de manutenção no caso da laterita deve considerar o trincamento entre 15% e 40%, conforme a norma DNER-PRO 159/85.

7.4.6 Tipos de manutenção

Os tipos de manutenção utilizados em pavimentos com base de laterita e revestimento de tratamento superficial podem ser: (i) Selagem de trincas a cada dois anos; (ii) Lama asfáltica ou Microrrevestimento asfáltico para rejuvenecimento do TSD sempre que o trincamento alcançar 35% e (iii) Limpeza nos dispositivos de drenagem a cada seis meses.

A irregularidade longitudinal poderá ser evitada quando os reparos localizados forem executados de acordo com as especificações de serviço DAER ES-CON 010.0/07- Remendo Superficial (Recomposição localizada de revestimento betuminoso), DAER ES-CON 011.0/07 – Remendo Subsuperficial (Recomposição localizada de revestimento betuminoso + base granular) e DAER ES-CON 013.0/07 – Remendo profundo para reconstituição do subleito.

7.5 CONSIDERAÇÕES FINAIS

Considerando que os materiais alternativos são utilizados na estrutura de pavimentos com revestimento de tratamento superficial pode-se sugerir um programa de manutenção para rodovias que venham a utilizá-los apresentado na tabela 7.1.

Tabela 7.1: Resumo do programa de manutenção para pavimentos com materiais alternativos

PROGRAMA DE MANUTENÇÃO	PLINTOSSOLO BASALTO ALTERADO LATER					
Caracterização	Ensaios de laboratório					
]	Defeitos Superficiais (anual)			
Levantamentos		Deflexão (acada dois anos)				
Levantamentos		IRI (anual)				
		Tráfego (anual)				
Modelos de Deterioração	Trincamento + Tráfego					
Avaliação Econômica	Acessibilidade e Fragilidade					
Gatilhos de Manutenção	Antes da evolução de trincas para panelas	Antes do início da aceleração do trincamento - frequência relativa de FC-2 = 10%	Entre 15% e 40% de frequência relativa de FC-2			
	Sel	agem de trincas (a cada 2 ar	nos)			
	Limpeza dis	spositivos de drenagem (a c	ada 6 mese)			
Tipos de Manutenção	Lama asfáltica ou Microrrevestimento asfáltico (gatilho) Base com boa condição estrutural					
	CE	BUQ 5 cm - Base sem estrut	ura			

8 CONCLUSÕES E SUGESTÕES PARA NOVAS PESQUISAS

O desempenho dos pavimentos alternativos depende do projeto, da execução, do monitoramento e da manutenção realizada durante sua vida útil.

Rodovias pavimentadas com materiais alternativos exigem atenção especial do engenheiro responsável pela obra, pois quando encontrados próximo ao local de execução do pavimento, facilitam sua utilização, mas podem apresentar características desconhecidas dos técnicos que vão utilizá-los.

Este trabalho resgatou dados de projeto e dados da execução de quatro rodovias do interior do Estado do RS que utilizaram materiais alternativos nas camadas de base e/ou sub-base de seus pavimentos. Estes materiais foram caracterizados e analisados através de ensaios de laboratório e os pavimentos foram monitorados e retroanalisados para o estudo do comportamento estrutural de suas camadas. O monitoramento dos pavimentos analisados permitiu sugerir propostas de manutenção para estes pavimentos.

O presente capítulo apresenta as conclusões gerais para pavimentos alternativos, conclusões individuais para cada material estudado e sugere futuros trabalhos que possam complementar esta Tese.

8.1 CONCLUSÕES GERAIS - PAVIMENTOS ALTERNATIVOS

Pavimentos alternativos exigem uma atenção especial na manutenção. A falta de manutenção acelera a deterioração do pavimento. As trincas devem ser seladas logo que aparecem para não se transformarem em panelas que também devem ser rapidamente reparadas (remendos localizados) não permitindo, assim, a entrada de água da chuva na base do pavimento, o que reduz sua resistência. A manutenção realizada na superfície do pavimento não permite a evolução dos defeitos.

Remendos mal executados resultam na evolução indesejada do IRI trazendo desconforto ao usuário e colapso do pavimento.

Os levantamentos de tráfego devem ser realizados anualmente, preferencialmente no mesmo mês, e a taxa de crescimento média de tráfego anual deve ser calculada individualmente para cada tipo de veículo.

A retroanálise pode ser utilizada como ferramenta para conhecer as tensões e deformações atuantes na estrutura.

A caracterização do material deve contemplar ensaios de módulo de resiliência e triaxiais monotônicos verificando a influência da umidade na deformação do material.

O estudo da bacia de deflexões, o Rc e o SN são parâmetros importantes na avaliação estrutural.

8.2 PLINTOSSOLO DA PLANÍCIE COSTEIRA DO RS

O desempenho da rodovia ERS-101, que possui a base e a sub-base com o material alternativo denominado plintossolo atendeu ao projeto original de 5 anos.

De acordo com os ensaios de PI, diferentes de zero, realizados nos materiais da base e da subbase do pavimento obtidos por ocasião de trincheira aberta no local, verificou-se uma dificuldade na classificação dos materiais utilizados na execução do pavimento, provavelmente devido à variabilidade das jazidas que se localizavam ao longo da extensão da rodovia.

O estudo das deflexões e das bacias de deflexões permitiu verificar que o lado esquerdo desta rodovia sofreu maior perda estrutural, durante a vida útil do pavimento, devido às cargas de tráfego diferenciadas para os dois lados da rodovia.

As análises realizadas em 2009 mostraram que o meio da base do pavimento do lado esquerdo sofreu acréscimo maior do que 100% na deformação vertical específica de compressão enquanto que no lado direito o acréscimo foi de 25%. No lado direito a deformação vertical foi maior na sub-base enquanto que do lado esquerdo a maior deformação ocorreu na base.

Os estudos realizados neste trabalho demonstraram que o teor de umidade tem influência no módulo de resiliência da base e da sub-base constituída com este material. O aumento de umidade provocou decréscimo no valor do módulo de resiliência na base do lado esquerdo do pavimento. Os módulos de resiliência da base do LE, retroanalisados, aproximam-se dos

resultados dos módulos de resiliência (modelo k- θ) realizados em laboratório com corpos de prova moldados com umidade maior que a ótima.

A redução do módulo de resiliência da base do LE do pavimento, demonstrado durante o estudo, pode ter sido a causa das trincas por fadiga no revestimento e do aumento da deflexão no pavimento.

De acordo com os estudos de laboratório realizados, a umidade exerce influência na deformação do material que foi utilizado na base do pavimento. O material da base, além de apresentar menor infiltrabilidade, apresenta maior deformação na presença de água.

Os resultados dos ensaios triaxiais monotônicos mostraram que aumentando a umidade, para qualquer uma das três diferentes tensões confinantes (30, 60 e 90 kPa), o material se deforma com tensão desvio menor. Pode-se concluir que aumentando a umidade, a camada de base ou de sub-base constituída por este material, pode se deformar com menor carga de tráfego.

O material da base apresentou perda de coesão com a presença de água enquanto que o ângulo de atrito não apresentou variações significativas.

A análise do número N recomendado de aplicações de carga que asseguram contra a ruptura por cisalhamento nas camadas da estrutura do pavimento, de acordo com Theyse et al (1996), demonstrou que, na condição saturada, a base do lado direito do pavimento apresentaria ruptura quando o número N alcançasse 4,18x10⁵ (1993) e a base do lado esquerdo apresentaria ruptura quando o número N alcançasse 1,17x10⁶ (1997). Em condições normais de umidade as camadas de base e de sub-base não apresentariam ruptura até o ano de 2009 (N=4,87x10⁶).

A determinação das tensões que atuam na camada de base e na camada de sub-base do pavimento permitiu em conjunto com os resultados dos ensaios triaxiais monotônicos verificar até que nível de tráfego acumulado o pavimento tem condições de suportar as cargas de tráfego de acordo com o projeto previsto.

Desempenho de Pavimentos com Materiais Alternativos do Estado do Rio Grande do Sul

8.3 BASALTO ALTERADO

O desempenho, de dois segmentos experimentais localizados na rodovia ERS-132 que possui a base e a sub-base com macadame de basalto alterado atendeu ao projeto original de 10 anos de vida útil, ou seja, $N_{(USACE)} = 5.8 \times 10^5$ (2002).

Locais com dispositivos de drenagem, no segmento 1, que possivelmente não apresentaram boa compactação durante a obra, tornaram-se pontos frágeis no pavimento desde o início da sua vida útil, apresentando deflexões elevadas, trincamentos e consequente deterioração do pavimento. A falta de manutenção nos dispositivos de drenagem resultou no agravamento desta situação.

O envelhecimento do revestimento e consequente desagregação do TSD, provavelmente, foi a causa do aparecimento de trincas isoladas no segmento 2. Estas trincas tornaram-se panelas devido à infiltração de água da chuva em conjunto com o tráfego. A falta de manutenção, como a selagem de trincas, agravou a situação.

O desgaste do revestimento no segmento 1 e a exsudação no segmento 2 se apresentaram com maior intensidade quando houve um acréscimo na carga de tráfego pesado.

O estudo da evolução dos defeitos superficiais mostrou a importância da manutenção permanente neste tipo de pavimento, pois no momento em que os trabalhos de recuperação através de remendos foram suspensos, as trincas que não haviam sido tratadas evoluíram para novas panelas.

A irregularidade mostrou ser dependente das intervenções realizadas na superfície do pavimento. Um reparo mal executado pode interferir no valor da irregularidade longitudinal, abreviando intervenções de manutenção.

A evolução da frequência relativa de defeitos nos dois segmentos experimentais mostra que com N_{USACE} acumulado de $1,44x10^6$ pode-se sugerir uma manutenção no pavimento, pois o valor de IRI nos dois segmentos experimentais, com este número N acumulado, encontrava-se próximo de 3,5 m/km sugerindo uma manutenção no pavimento (DNIT, 2006).

No caso destes segmentos experimentais, o IRI iniciou seu crescimento após N_{USACE} acumulado de 1,44x10⁶ quando as trincas tornaram-se panelas pela falta de manutenção.

A contaminação com argila e a umidade até a altura de 20,0 cm a partir do subleito do macadame de basalto alterado encontrado, por ocasião da abertura da trincheira, na estaca 12+880, situada no segmento 1 da ERS-132, contribuiu para a deterioração deste segmento experimental. O equivalente de areia menor do que 50%, mínimo exigido pela especificação do DAER, indicou a contaminação com argila na base de basalto alterado, provavelmente devido à infiltração de água, evidenciando a importância da manutenção nos dispositivos de drenagem da rodovia.

O valor do índice de resistência à compressão puntiforme (IS) do basalto alterado obtido em 2007 (IS(50)saturada / IS(50)seca = 0,93) mostrou que após sete anos o material continuava com resistência suficiente para ser utilizado como base de pavimento.

O segmento1 da ERS-132 apresentou maior número de pontos com deflexões altas, provavelmente, devido à falta de compactação das camadas de base e sub-base sobre os dispositivos de drenagem.

Os dispositivos de drenagem que não receberam manutenção permitiram a entrada de água na estrutura do pavimento. Nestes locais as deflexões eram altas e o número estrutural da camada de base era baixo (SN=2) demonstrando a perda de estrutura desta camada do pavimento.

Nos locais onde não ocorreu manutenção nos segmentos experimentais da ERS-132 foi detectado o aumento da deflexão e uma redução no módulo de resiliência propiciando o aparecimento de trincas.

Nos locais de deflexão baixa não apareceram trincamentos, os módulos de resiliência no meio da base apresentaram valores entre 300 e 400 MPa e deformações específicas verticais entre 250x10⁻⁶mm e 320x10⁻⁶mm. No topo do subleito os módulos variaram entre 176 e 231 MPa e as deformações específicas verticais variaram entre 223x10⁻⁶mm e 292x10⁻⁶mm. Nestes casos a camada de basalto alterado apresentou o número estrutural maior ou igual a 2,5 indicando boa capacidade estrutural. Onde a deflexão era elevada, os módulos de resiliência chegaram a reduzir em 50% e as deformações aumentaram significativamente, o número estrutural chegou a valores menores que 2,0 indicando a perda estrutural do pavimento.

Pelo método TECNAPAV o pavimento de basalto alterado do segmento experimental 1 da ERS-132 entrou em colapso quando o número cumulativo de solicitações de eixo equivalentes ao eixo padrão de 80,12 kN chegou em 1,8x10⁶ (2009).

Somente em 2009 com N_{USACE} acumulado de 1.8×10^6 as deflexões em ambos os segmentos experimentais da ERS-132 apresentaram aumento significativo, provavelmente devido à grande incidência de chuvas na região (tabela 5.13 do item 5.2.2 deste trabalho) e devido à falta de manutenção que o pavimento exigia.

8.4 BASALTO ALTERADO: ERS-132 X PISTA 07 APTP

Os segmentos experimentais monitorados por 10 anos na ERS-132 apresentaram desempenho diferenciado quando comparados com as pistas da APTP:

- O trincamento n\u00e3o apareceu na pista 07 da APTP enquanto que na ERS-132 foi o defeito com maior frequência.
- As trilhas de roda na APTP desenvolveram-se 8,5 vezes mais, devido aos diferentes níveis de carga e ao tipo de ensaio; simulador x tráfego real.
- O modelo desenvolvido por Núñez (1997) não caracterizou colapso do pavimento da ERS-132.
- As deflexões mantiveram-se constantes nos dois experimentos sendo que os segmentos experimentais da ERS-132 apresentaram valores 20% maiores, provavelmente, devido ao menor módulo de resiliência encontrado no subleito da ERS-132.

8.5 LATERITA

O desempenho analisado pelo índice de irregularidade, IRI<3,5, para a rodovia ERS-536 e para o acesso 392 AM 9100 que possuem os pavimentos constituídos por lateritas na base de sua estrutura atenderam ao projeto.

A vida útil de um pavimento com base de laterita será afetada se a drenagem não sofrer manutenções periódicas. O módulo de resistência diminui com o acréscimo de umidade.

O trincamento foi o defeito que se mostrou mais prejudicial ao pavimento com base de laterita, pois continuou aumentando durante toda a vida do pavimento.

A entrada de água por razões de trincamentos favorece a desagregação da laterita desestruturando a base e perdendo a resistência. Sugere-se a execução de uma camada de

tratamento superficial simples (TSS) sobre a camada da base de laterita possibilitando uma impermeabilização na base, e, como revestimento uma camada de TSD.

A espessura da camada de laterita assume importância uma vez que os grãos podem ser fraturados com a compactação. A camada mais superficial da base de laterita apresentou granulometria mais fina.

O número estrutural e o raio de curvatura foram parâmetros importantes na avaliação estrutural deste pavimento. O conhecimento da bacia de deflexões facilitou o entendimento do comportamento estrutural da base de laterita.

8.5.1 ERS-536

A ERS-536 pavimentada em 1983 apresentou IRI>3,5 em 2007, com 24 anos de vida útil

Apesar da análise de tráfego nesta rodovia ter sido realizada com apenas dois levantamentos, o aumento na taxa de crescimento média anual não segue o critério de 3% adotado pelo DAER. Os coletivos tiveram um acréscimo médio anual de 11,52% e a carga ultrapesada um acréscimo de 11,74%.

A deterioração do pavimento caracterizou-se através do trincamento. Após a restauração realizada quando o revestimento encontrava-se com 18% de desgaste, 30% de panelas e 60% de trincamento, o desgaste desapareceu, mas, o trincamento apareceu novamente e em seguida evoluiu para panelas. Apesar dos remendos realizados nas panelas existentes, o trincamento continuou aparecendo, provavelmente devido à perda estrutural da base de laterita.

O crescimento do IRI ocorreu exatamente no momento em que o pavimento encontrava-se com o número equivalente de carga padrão N igual a 1,4x10⁶. Neste período foram executados os reparos localizados (remendos) nas panelas do pavimento.

Em 2007 a camada granular do segmento 1 apresentava 38% dos valores de número estrutural maiores ou iguais a 2,5 indicando maior resistência estrutural quando comparado ao segmento 2, que apresentava 4% dos valores do número estrutural maior ou igual a 2,5.

O segmento 2 apresentou, por ocasião da abertura da trincheira, a espessura da camada de base de laterita menor que aquela prevista no projeto original. Este fato pode ter sido uma das

causas da falta de estrutura da base que pode ter causado a maior quantidade de defeitos superficiais.

A análise do segmento 2, que em 2007 se apresentava com alto índice de degradação, foi realizada através das tensões que atuavam em dois pontos da base de laterita. A base de laterita absorvia praticamente todas as tensões do tráfego. A camada superior da base havia perdido 41% de sua rigidez apresentando deformações 108% maiores que a camada inferior da base.

Em 2007, a estaca 0+600, que representa o segmento 1, em bom estado, apresentava o centro da base de laterita com módulo de resiliência igual a 285 MPa. A base de laterita da estaca 8+460, que representa o segmento 2, em mau estado, apresentava o meio da base de laterita com módulo de resiliência igual a 134 MPa. A camada de laterita com módulo de resiliência mais elevado absorvia melhor as tensões e deformações causadas pelo tráfego.

8.5.2 Acesso a Sete de Setembro (392AM9100)

O Acesso a Sete de Setembro pavimentada em 1998 apresentou IRI>3,5 em 2009, 1 ano após a previsão de vida útil de projeto.

Durante o período estudado houve um decréscimo no número de automóveis e de carga leve, crescendo o número de coletivos e cargas média, pesada e ultrapesada. A carga ultrapesada, item altamente prejudicial ao pavimento, teve o maior crescimento da taxa de crescimento anual do tráfego (t%) após a pavimentação da rodovia.

Considerando 3,5 m/km o valor máximo de IRI para determinar a necessidade de uma restauração em pavimentos com baixo volume de tráfego, pode-se dizer que, com um mínimo de manutenção, este pavimento teria necessidade de restauração após nove anos de abertura ao tráfego.

Apesar de apresentar deflexão média ($D_m=55x10^{-2}mm$) e característica ($Dc=68x10^{-2}mm$), valores aceitáveis para pavimentos com TSD, o número estrutural da camada granular do segmento apresentava 96% de valores menores ou iguais a 2,5 indicando a perda estrutural da camada granular.

8.6 PROPOSIÇÕES SOBRE PROJETO DE PAVIMENTOS ALTERNATIVOS

A seguir são apresentadas algumas sugestões para o projeto de pavimentos com base e ou subbase de materiais alternativos com revestimentos delgados:

- Incluir o estudo da deformação de tração horizontal na base da camada do revestimento asfáltico limitando os trincamentos no revestimento superficial.
- Incluir o estudo do estado de tensões e deformações no meio da camada de base, ou em profundidades variadas, para conhecer a resistência da camada, de acordo com a espessura adotada, prevendo assim, possíveis trilhas de rodas ou variações nos módulos de resiliência que possam causar trincamentos superficiais.
- Incluir a análise de tensões e deformações no topo do subleito prevendo possíveis trilhas de rodas.

8.7 PROPOSIÇÕES SOBRE A MANUTENÇÃO DE PAVIMENTOS ALTERNATIVOS

O desempenho dos pavimentos alternativos analisados nesta tese foi prejudicado pela falta de manutenção dos mesmos. Sendo assim, este trabalho tem como objetivo secundário a apresentação de uma sugestão para um programa de manutenção (capítulo 7 desta Tese) para pavimentos alternativos.

Durante um período de estudos na Universidade de Nottingham foi possível conhecer os sistemas de manutenção utilizados na rede de rodovias com alto volume de tráfego da Inglaterra, na rede de rodovias de baixo volume de tráfego da Escócia e de alto e baixo volume de tráfego da Suécia.

O Reino Unido e a Suécia, como outros países, utilizam um programa de manutenção para gerenciar a conservação de suas rodovias, pois estão conscientes de que medidas preventivas têm o intuito de prolongar a vida útil dos pavimentos e reduzir os gastos decorrentes de restaurações mais dispendiosas.

As atividades de conservação preventiva, como a execução de capa selante e de lama asfáltica ou do microrrevestimento asfáltico não podem ser consideradas como melhorias estruturais,

porém contribuem indiretamente com a integridade estrutural do pavimento preservando contra a infiltração de água na sua estrutura.

Os pavimentos constituídos de materiais alternativos não devem ter seu uso descartado por exigirem maior atenção na manutenção. Estes pavimentos devem ser incentivados, pois sua utilização é mais econômica e menos agressiva ao meio ambiente.

A implantação de um programa de manutenção nos pavimentos alternativos deve considerar os seguintes passos:

- Caracterização do material alternativo identificando as causas de mudança no seu comportamento estrutural que possam ocorrer durante a vida útil do pavimento e acompanhamento constante a partir do primeiro ano de vida útil do mesmo.
- Levantamentos anuais de superfície, IRI e tráfego e, a cada dois anos levantamentos de deflexão, possibilitando a identificação dos defeitos de maior influência na deterioração do pavimento; Levantamento semestral da condição dos dispositivos de drenagem, uma vez que a manutenção e a limpeza nos dispositivos de drenagem são de vital importância para prolongar a vida do pavimento.
- Identificar o defeito de maior influência na deterioração do pavimento e se possível criar modelos de deterioração.
- Avaliação econômica realizada para provar o bom uso dos recursos públicos através de estudo da fragilidade e acessibilidade das cidades envolvidas.
- Identificação e criação dos gatilhos de manutenção.
- Especificar tipos e periodicidade das intervenções.

8.8 SUGESTÕES PARA NOVAS PESQUISAS

O presente trabalho chamou a atenção para alguns itens que podem ser aprofundados por outras pesquisas e que poderão complementar esta tese.

- a) Aprofundar o estudo da avaliação econômica de cidades servidas por rodovias de baixo volume de tráfego pavimentadas justificando o uso do orçamento do Estado em um programa de manutenção.
- b) Pesquisar outras rodovias que utilizaram estes materiais alternativos para estabelecer modelos de previsão de desempenho.
- c) Aplicar o conceito de sustentabilidade para rodovias de baixo volume de tráfego comprovando que uma construção sustentável está ligada com o desenvolvimento social, o desenvolvimento econômico e a preservação do meio ambiente.

REFERÊNCIAS BIBLIOGRÁFICAS

- AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS AASHTO (1986), **Guide for Design of Pavement Structures**. Washington D.C., 410 p.
- AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS AASHTO (1993), **Guide for Design of Pavement Structures**. Washington D.C.,chapter 2 Design Requirements p. II-5 II-67.
- AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS AASHTO ME-PDG (2004), **Mechanistic-Empirical Pavement Design Guide**. Washington D.C.
- AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS AASHTO TP46-97 (1996), **Standard Test Method for Determining the Resilient Modulus of Soils and Aggregate Materials.** Edition 1B. Washington D.C.
- ALBERNAZ, C. (1994), **Retroanálise do Módulo de Resiliência de Pavimentos Flexíveis e de Subleitos Para Fins de Anteprojeto, Análise Estrutural e Gerência de Pavimentos**. 28^a. Reunião Anual de Pavimentação ABPv B. Horizonte MG p. 626 657.
- ALBERNAZ, C. MOTTA, L., MEDINA, J. (1995), **Retroanálise: Uma útil Ferramenta na avaliação estrutural de pavimentos.** 29^a. Reunião Anual de Pavimentação –ABPv Cuiabá GO.
- ALBERNAZ, C.A.V., CALDAS, J. E. F., OLIVEIRA, S. E. (1996), **Avaliação Simplificada de Pavimentos através de Retroanálise.** 30ª. Reunião Anual de Pavimentação ABPv Salvador Bahia V.II p. 749 773.
- AMARAL, S. C. (2004), **Estudo de Misturas Laterita-Asfalto da Região Metropolitana de Belém- PA para Revestimentos de Pavimentos**. Tese de Doutorado em Engenharia de Transportes, Departamento de Engenharia Civil, Escola Politécnica da USP/SP.
- ANAND J. P. WATTANASANTICHAROEN, E., and HOYOS, L. R., (2003), Ranking of Four Chemical and Mchanical Stabilization Methodos to Treat Low-Volume Roads Subgrades in Texas. Eighth International Conference on Low-Volume Roads. Transportation Research Record 1819 Paper No. LVR8-1062.
- ANDRADE, M. H. F.(1998), **Introdução ao HDM e a Avaliação Econômica.** Curso de HDM, Volume 1 DAER/AMODAL Serviços de engenharia Ltda.
- ARNOLD, G. P. A. (1993), **Estudo do comportamento mecânico de basaltos alterados do Rio Grande do Sul para emprego em pavimentos rodoviários.** Dissertação de Mestrado em Engenharia (Geotecnia) Curso de Pós –Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul.

- ARNOLD, G. (2000), **Performance Based Specifications for Road Construction and Materials.**Unbound Aggregates in Road Construction, UNBAR 5. Dawson (ed.) Balkema, Rotterdam. pp. 183 a 191.
- ARNOLD, G. ALABASTER, D. STEVEN, B. (2001). **Prediction of pavement performance from repeat load triaxial tests on granular materials.** Transfund New Zealand Research Report.
- ARNOLD, G. (2004), **Rutting of Granular Pavements.** Doctor of Philosophy Thesis, University of Nottingham, Nottingham, 440 p.
- ARNOLD, G.; DAWSON, A. (2004), **Rut Depth Prediction of Thin Bituminous Surfaced Granular Pavements**. 10th International Conference on Asphalt Pavements. Quebec.
- ARNOLD, G., WERKEMEISTER, S., ALABASTER, D. (2008), **Performance tests for road aggregates and alternative materials**. Land Transport New Zealand Research Report 335. 102 pp.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS ABNT (1982), **Terminologia e Classificação de Pavimentação: NBR 7207**. Rio de Janeiro. 3 p., Origem: TB-7/69.
- AZAMBUJA, M. A., (1966), **Formação e Composição Mineralógica dos Solos**. Porto Alegre. Boletim do DAER/RS nº 84/85. pp. 59-101.
- AYRES, M. (1997), **Development of a Rational Probabilistic Approach for Flexible Pavement Analysis**. PhD. Dissertation, University of Maryland, College Park, MD.
- BARKSDALE, R. D. & ITANI, S. Y. (1989), **Influence of aggregate shape on base behaviour** Transp. Res. Rec. 1227, Transportation Research Board, Washington, D.C., 173–182.
- BARKSDALE, R. D. (1972), **Laboratory evaluation of rutting in base course materials**. Proc., 3rd Int. Conf. on the Struct. Design of Asphalt Pavements, London, 161-174.
- BASTOS, C. A. B. (1999), **Elementos de Pedologia.** Notas de Aula, Pedologia Aplicada, Geotecnia. PPGEC/UFRGS.
- BASTOS, C.A.B. (2004), **Estudos recentes conduzidos na FURG sobre solos alternativos para pavimentação econômica e obras de terra na Planície Costeira Sul**. Teoria e Prática na Engenharia Civil, n.4, p.31-42.
- BERNUCCI, L. L. B. (1995), Considerações sobre o dimensionamento de pavimentos utilizando solos lateríticos para rodovias de baixo volume de tráfego. Tese de Doutorado em Engenharia de Transportes, Departamento de Engenharia Civil, Escola Politécnica da USP/SP.
- BERNUCCI, L. L. B., MOTTA, L. G., CERATTI, J. A. P., SOARES, J. B. (2007), **Pavimentação Asfáltica Formação básica para Engenheiros**. PETROBRAS; ABEDA. Rio de Janeiro.

Desempenho de Pavimentos com Materiais Alternativos do Estado do Rio Grande do Sul

- BROWN, S. F., and PELL, P. S. (1967), **An experimental investigation of the stresses, strains and deflections in a layered pavement structure subjected to dynamic loads**. Proc., 2nd Int. Conf. Struct. Des. of Asphalt Pavements, pp 487–504.
- BROWN, S. F., and HYDE, A. F. L. (1975), **Significance of cyclic confining stress in repeated-load triaxial testing of granular material**. Transp Res. Rec. 537, Transportation Research Board, Washington, D.C., 49–58.
- BOYCE, J. R. (1976), **The Behaviour of Granular Material Under Repeated Loading.** Thesis of Doctor Philosophy. Department of Civil Engineering, University of Nottingham, UK.
- BROWN, S. F. (1996). 36th Rankine Lecture: **Soil Mechanics in Pavement Engineering.** Géotechnique, Vol. 46, No. 3, 1996, pp 383-426.
- BOYCE, J. R. (1980). A non-linear model for the elastic behaviour of granular materials under repeated loading. Proc., Int. Symp. on Soils under Cyclic and Transient Loading, Swansea, UK. 285–294.
- DE BEER, M. FISHER, C. JOOSTE, F. J. (2002), **Evaluation of non-uniform tyre contact stresses on thin asphalt pavements.** Ninth International Conference on Asphalt Pavements, August 17 22, Copenhagen, Denmark.
- BOTTIN FILHO, I.A. (1997), **Estudo de misturas areia-asfalto pré misturada a quente**. Dissertação Mestrado Universidade federal do rio Grande do Sul, Porto alegre.
- CASSANINGA, J. C. e MACHADO FILHO, P. R.(2002), **Utilização do Merlin no Controle da Condição de Conforto de Pavimentos**. 16º Encontro do Asfalto, Instituto Brasileiro de Petróleo e Gás IBP. Rio de Janeiro.
- CERATTI, J. A. P., NÚÑEZ, W. P., GEHLING, W.Y.Y., & Oliveira, J.A. (2000), **A full-sacale study of rutting of thin pavements,** In Proceedings of the 79th TRB Annual Meeting, Washington, DC.
- COMMITTEE ON TROPICAL SOILS OF ISSMFE (1982-1985), **Peculiarities of Geothecnical Behaviour of Tropical Lateritic and Saprolitic Soils.** Progress Report, ABMS. São Paulo.
- COSTA, M. (1991), **Aspectos Geológicos dos Lateritos da Amazônia**. Revista Brasileira de Geociências, volume 21, pp146-160.
- DAWSON, A., KOLISOJA, P. (2004), **Permanent Deformation**. ROADEX Northern Periphery II. Nottingham University & Tampere University of Technology.
- DIAS, I. M. (2007), **Estudo de solos tropicais para uso em pavimentação a partir de ensaios triaxiais estáticos**. Dissertação de Mestrado. Escola de Engenharia de São Carlos, Universidade de São Paulo. São Carlos.
- DEPARTAMENTO AUTÔNOMO DE ESTRADAS DE RODAGENS DAER (1996) UNP **Relatório Técnico das Condições da RST/101 trecho Bacopari-Mostardas** Unidade de Normas e Pesquisas Laboratório Central, dezembro.

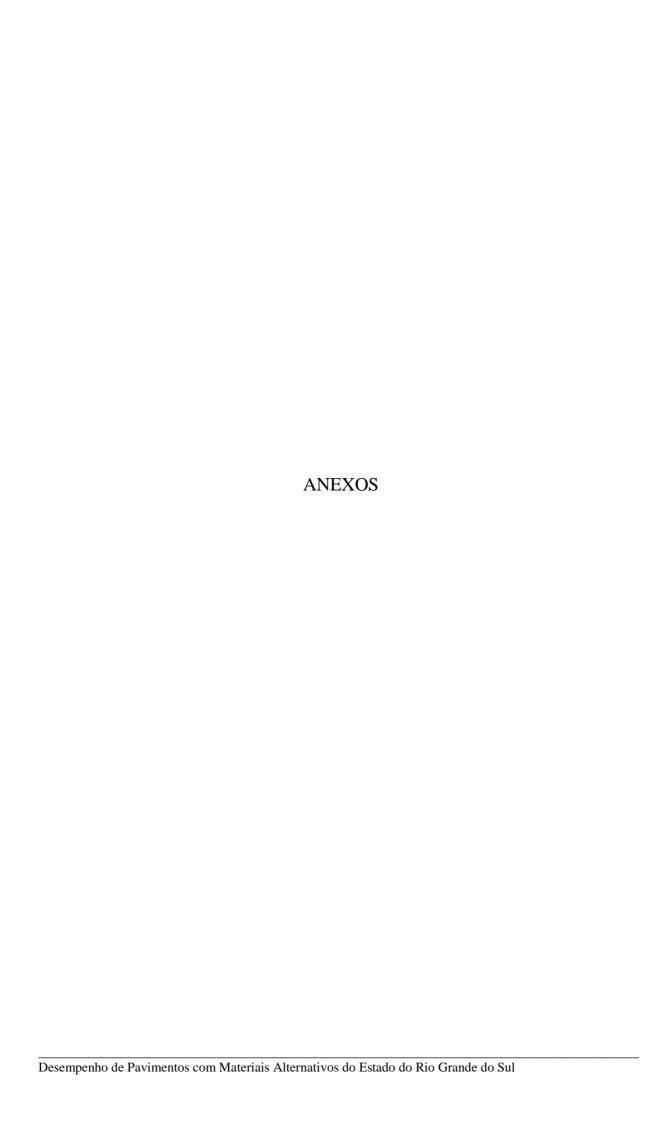
- DEPARTAMENTO AUTÔNOMO DE ESTRADAS DE RODAGENS DAER (2007) DAER ES-CON 010.0/07- **Remendo Superficial (Recomposição localizada de revestimento betuminoso).** Porto Alegre, RS.
- DEPARTAMENTO AUTÔNOMO DE ESTRADAS DE RODAGENS DAER (2007) DAER ES-CON 011.0/07 - Remendo Subsuperficial (Recomposição localizada de revestimento betuminoso + base granular). Porto Alegre, RS.
- DEPARTAMENTO AUTÔNOMO DE ESTRADAS DE RODAGENS DAER (2007) DAER ES-CON 013.0/07- **Remendo profundo para reconstituição do subleito**. Porto Alegre, RS.
- DEPARTAMENTO NACIONAL DE INFRA-ESTRUTURA TERRESTRE DNIT (2003) DNIT 006/2003 PRO **Avaliação Objetiva da Superfície de Pavimentos Flexíveis e Semi Rígidos** Rio de Janeiro RJ.
- DEPARTAMENTO NACIONAL DE INFRA-ESTRUTURA TERRESTRE DNIT (2003) DNIT 007/2003 PRO Levantamento para avaliação da condição de superfície de subtrecho homogêneo de rodovias de pavimentos flexíveis e semi-rígidos para gerência de pavimentos e estudos e projetos—Rio de Janeiro—RJ.
- DEPARTAMENTO NACIONAL DE INFRA-ESTRUTURA TERRESTRE DNIT (2003) DNIT 008/2003 PRO Levantamento visual contínuo para avaliação da superfície de pavimentos flexíveis e semi-rígidos Rio de Janeiro RJ.
- DEPARTAMENTO NACIONAL DE INFRA-ESTRUTURA TERRESTRE DNIT (2003) DNIT 009/2003 PRO **Avaliação subjetiva da Serventia** Rio de Janeiro RJ.
- DEPARTAMENTO NACIONAL DE INFRA-ESTRUTURA TERRESTRE DNIT (2006). **Manual de Estudos de Tráfego**—Publicação IPR 723; Rio de Janeiro RJ.
- DEPARTAMENTO NACIONAL DE INFRA-ESTRUTURA TERRESTRE-DNIT (2007) DNIT 098/2007 ES **Pavimentação-base estabilizada granulométricamente com utilização de solo laterítico** Especificação de serviço Rio de Janeiro RJ.
- DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM DNER (1981) **Método de Projeto de Pavimentos Flexíveis**. 3a edição. IPR publicação 667. Rio de Janeiro.
- DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM DNER (1986), **Método de Nível e Mira para Calibração de Sistemas Medidores de Irregularidade Tipo Resposta** –
 DNER-PRO 173/86 Rio de Janeiro RJ 13 p.
- DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM DNER (1985), **Calibração e controle de Sistemas Medidores de Irregularidade Tipo Resposta** DNER-PRO 164/85 Rio de Janeiro RJ 19 p.
- DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM DNER (1985), **Projeto de Restauração de Pavimentos Flexíveis e Semi-Rígidos** DNER-PRO 159/85 Rio de Janeiro RJ 34 p.

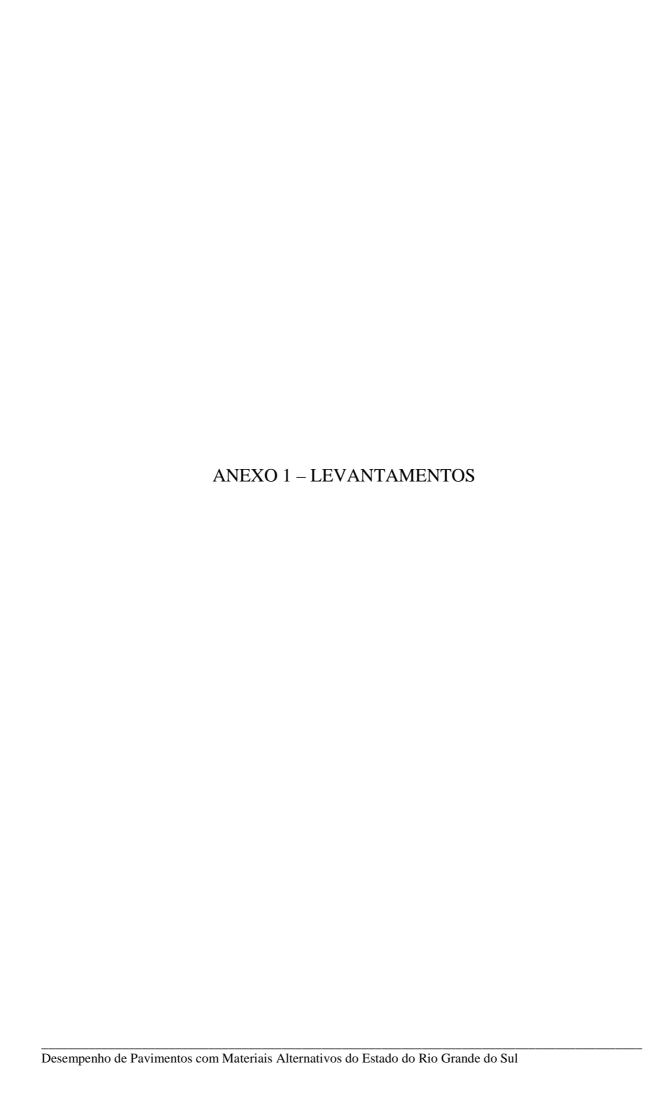
- DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM DNER (1990), **Medição da** Irregularidade de Superfície de Pavimentos com sistemas integradores IPR/USP e Maymaster DNER-PRO 182/90 –Rio de Janeiro RJ.
- DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM DNER (1994), **Projeto de Restauração de Pavimentos Flexíveis** TECNAPAV DNER-PRO 269/94 Brasília DF 17 p.
- DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM DNER (1998), **Manual de Reabilitação de Pavimentos Asfálticos**, Rio de Janeiro RJ 243 p.
- DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM DNER ME 131 (1994). Solos Determinação do Módulo de Resiliência. Método de Ensaio. Rio de Janeiro.
- DICIONÁRIO LIVRE DE GEOCIÊNCIAS, (2007) no endereço: WWW.dicionário.pro.br/dicionário/index.php/Laterita.
- DUFFELL R. (1999), **United Kingdom study of minor road deterioration and the development of maintenance strategies.** Seventh International Conference on Low-Volume Roads, Baton Rouge, Louisiana, USA (23/05/1999), no 1652 (13 ref.), pp. 158-170.
- DUNLAP, W. A. (1963), **A report on a mathematical model describing the deformation characteristics of granular materials**. Tech. Rep. No. 1, Proj. 2-8-62-27, Texas Transp. Inst., Texas A&M University, College Station, Texas.
- EVERSERIES (2005). User's Guide **Pavement Analysis Computer Software and Case Studies.** Washington State Department of Transportation. Disponível no endereço"www.wsdot.wa.gov/biz/mats/pavement" em 10 de março de 2009.
- FABRÍCIO J.M., FABRÍCIO O. F., GONÇALVES E. A. (1988), **Metodologia Não Destrutiva para Avaliação Estrutural dos Pavimentos Flexíveis através da Interpretação das Bacias de Deformação**. 23a. Reunião Anual de Pavimentação Florianópolis SC 28 p.
- FABRÍCIO J.M., VASCONCELOS J.F., SILVA M.D. (1995), Estudo comparativo entre ICPF, IGG e QI 29a. Reunião Anual de Pavimentação Cuiabá GO.
- FRANCO, F. A. (2000), **Um sistema para análise mecanística de pavimentos asfálticos**. Tese M.Sc. Engenharia Civil Universidade Federal do Rio de Janeiro, COPPE
- GUIMARÃES, A. C. R.; MOTTA, L. M. G. da; MEDINA, J. de (2004). Estudo da Deformação Permanente em Solos Tropicais Sob Carga Repetida para a Previsão do Afundamento de Trilha de Roda em Rodovias. III Congresso Luso-Brasileiro de Geotecnia. Curitiba/PR.
- HICKS, G. R. (1970), **Factors Influencing the Resilient Properties of Granular Materials**. Doctor of Philosophy Dissertation. Institute of Transportation and Traffic Engineering. University of California. Berkeley. P. 502.

- HICKS, R. G., and MONISMITH, C. L. (1971). Factors influencing the resilient properties of granular materials. Highway Research Record 345, 15-31. Highway Research Board. Washington, DC.
- HUANG, Y.H., (1993), **Pavement Analysis and Design.** Prentice-Hall, Inc. pp.805 Englewood Cliffs, New Jersey.
- INTERIM ADVICE NOTE 42/05 IAN 42/05(2005), **Traffic-Speed Conditions Surveys (TRACS): Revised Assessment Criteria.** Highways Agency (HA). UK.
- INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA IBGE (1986), **Levantamento de Recursos Naturais**, vol. 33.
- INSTITUTO DE PESQUISAS RODOVIÁRIAS IPR (1981), **Pesquisa de influência de carga por eixo nas rodovias.** DNER, Divisão de Pesquisas, Boletim Técnico n°85.
- INTERNATIONAL SOCIETY FOR ROCK MECHANICS ISRM (1985), Comission on Testing Methods. Suggested method for determining point load strength (revised version). International Journal of Rock Mechanics and Mining Science and Geomechanics Abstract, Oxford, v.22, p.51-60.
- JOHANSSON, S. (2004), Socio-Economic Impacts of Road Condition on Low Volume Roads Results of Literature Studies, Interviews and Calculations with a Model. ROADEX Northern Periphery II Project.
- JOHANSSON S., KOSONEN S., MATHISEN E., McCULLOCH F., SAARENKETO T. (2005), **Road Management Policies for low volume roads Some proposals**. ROADEX Northern Periphery II Project.
- JOHANSSON, S., JOHANSSON, K., EKEDAHL, F.(2007), **Policies for Forest Roads Some Proposals.** ROADEX Northern Periphery III Project.
- JOHANSSON, S. (2006), Socio-Economic Impacts of Road Conditions on Low Volume Roads Results of literature studies, interviews and calculations with a model and some proposals for road management policies. Executive Summary. ROADEX Northern Periphery III Project.
- JOHNSTON, M.G., (2001). **Estudo de obtenção de número estrutural em pavimentos flexíveis**. Dissertação de Mestrado. Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Rio Grande do Sul PPGEC/UFRGS. Porto Alegre.
- JONES, D. (2003), Toward Fit-for-Purpose Certification of Road Additives. Eighth International Conference on Low-Volume Roads 2003. Transportation Research Record 1819 - Paper No. LVR8-1138.
- KANCHERLA, A. (2004), **Resilient modulus and permanent deformation testing of unbound granular materials.** Master of Science Texas A&M University.

- KARASAHIN, M., & DAWSON, A., (2000), **Anisotropic characteristics of granular material**. The Proceedings of the UNBAR5 Symposium, June 21-23, 2000. Department of Civil Engineering, University of Nottingham, UK.
- KOLISOJA, P. (1997), **Resilient Deformation Characteristics of Granular Materials**. Ph.D. dissertation. Tampere University of Technology, Publication No 223, Tampere, Finland.
- LASHINE, A.K., BROWN, S.F., AND PELL, P.S. (1971), **Dynamic properties of soils**. Report No. 2 Submitted to Koninklijke/Shell Laboratorium, Department of Civil Engineering, University of Nottingham, UK.
- LAMBE, T. W.; WHITMAN, R. V. (1969), Soil Mechanics. New York: John Wiley. 553p.
- LÉGÈR, G. e TREMBLAY, H. (2003), Laboratory and Field Evaluation of Cement Kiln Dust and Lime for Stabilizing Clayey Silt on Low-Volume Unpaved Roads. Eighth International Conference on Low-Volume Roads 2003. Transportation Research Record 1819 Paper No. LVR8-1007, 2003.
- LEKARP, F. (1997). **Permanent deformation behaviour of unbound granular materials**; Licentiate Thesis, Kungl Tekniska Högskolan, Sweden.
- LEKARP, F., AND DAWSON, A. (1998). **Modelling permanent deformation behaviour of unbound granular materials.** Construction and Building Materials., 12(1), 9-18.
- LEKARP, F., U., ISACSSON and DAWSON A. R. (2000), State of the Art. I: **Resilient Response of Unbound Aggregates**. Journal of Transportation Engineering, Vol. 126, No.1, pp. 66-75. January/February 2000.
- LITTLE, P. H. (1993), **The design of unsurfaced roads using geosynthetics**. Dept. of Civil Engineering, University of Nottingham.
- MALYSZ, R. (2004), **Comportamento Mecânico de Britas Empregadas em Pavimentação**.

 Dissertação de Mestrado. Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Rio Grande do Sul PPGEC/UFRGS. Porto Alegre, 166 p.
- MALYSZ, R. (2008), **Desenvolvimento de um equipamento triaxial de grande porte para avaliação de agregados utilizados como camada de pavimentos**. Tese de Doutorado. Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Rio Grande do Sul PPGEC/UFRGS. Porto Alegre.
- MARCON A. F., (1998), **Processo e Estratégias de Avaliação de Rodovias** Curso de HDM Volume II AMODAL Serviço de Engenharia ltda Departamento Autônomo de Estradas de Rodagem Porto Alegre RS 40 p.
- MARCON, A. F. (1996), **Contribuição ao Desenvolvimento de um Sistema de Gerência de Pavimentos para a Malha Rodoviária Estadual de Santa Catarina** ITA São Paulo SP- 384 p.
- MEDINA J. (1997), **Mecânica dos Pavimentos** Editora UFRJ Rio de Janeiro RJ 380 p.


- MEDINA, J., PREUSSLER, E. S. (1980), Características Resilientes de Solos em Estudo de Pavimentos. Solos e Rochas, pp.03-26.
- MEDINA, J., MOTTA, L. M. G. (2005), **Mecânica dos Pavimentos. Rio de Janeiro**, 2ª. Edição, 574 p.
- MEDINA, J. (2006), **Mecânica dos Pavimentos: Aspectos Geotécnicos.** Solos e Rochas, São Paulo, 29, (2): 137-158, Maio-Agosto, 2006.
- MONISMITH, C.L., ASCE F., FINN F.N., EPPS J.A. (1986), **Solutions for Pavement Rehabilitation Problems.** Atlanta, Georgia, May 19-21 Proceedings of a Conference Update of Asphalt Concrete Pavement Design and Rehabilitation, pp. 51-96.
- MONISMITH C. L., OGAWA, N., FREEME, C.R. (1975), **Permanent deformation characteristics of subgrade soils due to repeated load**. Transportation Research Record, Washington, n.537, p 1-17.
- MOREIRA, M., R.P. (1977), **Um método de Avaliação de Pavimentos Flexíveis com base no Raio de Curvatura da Linha Elástica de Deflexões** 13º Reunião Anual de Pavimentação ABPv Curitiba pp. 319-336.
- MOTTA, L. M. G. da (1991), **Método de Dimensionamento de Pavimentos Flexíveis; Critério de Confiabilidade e Ensaios de Carga Repetida**. Tese de Doutorado, Coordenação dos Programas de Pós-Graduação da Universidade Federal do Rio de Janeiro COPPE/UFRJ, Rio de Janeiro, 386 p.
- NOGAMI, J.S.; VILLIBOR, D.F. (1980), Caracterização e Classificação Geral de Solos para Pavimentação: Limitação dos métodos Tradicionais Apresentação de uma Nova Sistemática. 15a Reunião Anual de Pavimentação, Belo Horizonte, MG.
- NOGAMI, J.S. e VILLIBOR, D.F. (1995), **Pavimentação de Baixo Custo com Solos Lateríticos**. Editora Vilibor São Paulo Brasil.
- MUNDY, M. B. E. (2002), **Unbound Pavement Materials and Analytical Design**. Thesis of Doctor of Philosophy, University of Nottingham, UK.
- NUNES, M.C.M. (1997), **Enable the use of Alternative Materials in Road Constrution.** Chartered Civil Engineer, MSc, PhD, Departament of Civil Engineering, University of Nottingham.
- NÚÑEZ, W. P. (1997), **Análise Experimental de Pavimentos Rodoviários Delgados com Basaltos Alterados.** Tese de Doutorado em Engenharia. CPGEC/UFRGS. Porto Alegre.
- NÚÑEZ, W. P., CERATTI, J. A. P., GEHLING, W.Y.Y., & Oliveira, J.A., (1999), **Full-sacale load tests in Southern Brazil**, Proceedings of the International. Conference on Accelerated Pavement Testing, Reno, Nevada.
- NÚÑEZ, W. P.; CERATTI, J. A.; ARNOLD, G. P.; OLIVEIRA, J. A.; SILVEIRA, J., (2003), **Paving low-volume roads with weathered basalts; from APT to practice.** In: 21st ARRB


- Transport Research and 11th Road Engineering Association of Asia and Australasia Conference, 2003, Cairns, Australia. Proceedings.
- NÚÑEZ, W. P.; CERATTI, J. A. P.; GEHLING, W. Y. Y.; OLIVEIRA, J. A.(2008), **Twelve years of accelerated pavement testing in Southern Brazil; challenges, achievements and lessons lerned.** In: 3rd International Conference on Accelerated Pavement Testing, 2008, Madrid, España. Proceedings.
- OCEE Organization de Coopération et de Développement Economique (1991), **Essais en vraie** grandeur des superstructures routières. Paris:OCDE, 276p.
- OLIVEIRA, J.A. SOMACAL, L., PASSOS, M.C.(1992), Estrada do Inferno: Uma Solução de Baixo Custo. Departamento Autônomo de Estradas de Rodagens UNP Laboratório Central.
- OLIVEIRA J. A (2000), **Materiais Alternativos de Pavimentação a Necessidade de Praticá-los.**Departamento Autônomo de Estradas de Rodagens UNP Laboratório Central.
- OLIVEIRA, J. A. (2001), **Materiais Alternativos de Pavimentação a Necessidade de Praticá-los.** Seminário de Engenharia Geotécnica. Santa Maria.
- OLIVEIRA, J. A., DAVI, D., CERATTI, J.A. (2004), Estudo comparativo entre os revestimentos delgados TSD e Cape Seal. IBP 2004, Rio de Janeiro.
- PARSONS, A.W., (1976), **The Rapid Measurement of the Moisture Condition of Earthwork Material**. LVR 750. Transport and Road Research Laboratory. Crowthorne, UK.
- PASSOS, M. C. F., OLIVEIRA, J.A., SOMACAL, L., (1993), **Projeto Barrinho Uso de Plintossolo como Base de Pavimento de Baixo Custo na RST/101**. 27a Reunião Anual de Pavimentação.
- PASSOS, M. C. F. (2001), **Metodologia MCT aplicada aos solos arenosos finos lateríticos do Rio Grande do Sul visando pavimentação.** Dissertação de Mestrado. Programa de PósGraduação em Engenharia Civil da Universidade Federal do Rio Grande do Sul –
 PPGEC/UFRGS. Porto Alegre.
- PERAÇA, V. (2007), **Qualificando Solos para Revestimentos Primários de Rodovias: uma Abordagem Baseada nas Mecânicas dos Solos e dos Pavimentos**. Dissertação de Mestrado. Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Rio Grande do Sul- PPGEC/UFRGS. Porto Alegre, 152 p.
- PERAÇA, V., NÚÑES, W.P., BRESSANI, J.A., CERATTI, J.A. (2008), **Qualifying soils for low volume roads based on soil and pavement mechanics.** Advances in Transportation Geotechnics. Proceedings of the 1st international conference on transportation geotechnics, Nottingham, UK, 25-27.
- PINTO, S. (1991), Estudo do Comportamento à Fadiga de Misturas Betuminosas e Aplicação na Avaliação Estrutural de Pavimentos. Tese de D.Sc, COPPE/UFRJ.

- PINTO, S., PREUSSLER, E. S.(1998), **Avaliação de Pavimentos Rodoviários** Departamento Nacional de Estradas de Rodagem Brasília DF- 40 p.
- PINTO, S., PREUSSLER, E. S.(2002), **Pavimentação Rodoviária** Conceitos Fundamentais sobre pavimentos flexíveis. Rio de Janeiro, 269p.
- PREUSSLER, E. S. Ensaios triaxiais dinâmicos de um solo Arenoso Dissertação de mestrado (UFRJ), Rio de Janeiro RJ, 1978.
- PLAISTOW, L. & DAWSON, A.R. (1995), **Non-linear aggregate behaviour in flexible pavements**. UNBAR4, Department of Civil Engineering, University of Nottingham.Nottingham, UK.
- PUPPALA, A. J., WATTANASANTICHAROEN, E., HOYOS, L. R., Ranking of Four Chemical and Mechanical Stabilization Methods to Treat Low-Volume Road Subgrades in Texas. Transportation Research Record, Issue 1819, p. 63-71.
- QUEIRÓZ C. (1984), **Modelos de Previsão de Desempenho para a Gerência de Pavimentos no Brasil** GEIPOT- Brasília DF 366 p.
- RADA G.R., WITCZAK M.W., & RABINOW S.D.(1980), Comparison Of Aashto Structural Evaluation Techniques Using Nondestructive Deflection Testing Transportation Research Record 1207.
- REVISTA ESTRADAS N°7 (2004), **Missões, Patrimônio Cultural do Brasil**. Publicação SUDAER/SECDAER, Porto Alegre, RS, Brasil.
- REVISTA ESTRADAS Nº12 (2007), **Trechos experimentais do CPR-DAER: Novas tecnologias** para as rodovias do RS. Publicação SUDAER/SECDAER, Porto Alegre, RS, Brasil.
- REZENDE, L. R. (2003), **Estudo do Comportamento de materiais alternativos utilizados em estruturas de pavimentos flexíveis.** Tese de Doutorado em Geotecnia, Departamento de Engenharia Civil e Ambiental, Faculdade de Tecnologia, UNB/DF.
- ROCHA FILHO, N.R. (1996), Estudo de Técnicas para avaliação Estrutural de Pavimentos por meio de Levantamentos deflectométricos. Tese de Mestrado, ITA São Paulo SP.
- RODRIGUES R. M. (1991), **Estudo do Trincamento dos Pavimentos** -Tese D.Sc COPPE/UFRJ, Rio de Janeiro RJ 170 p.
- RODRIGUES, M. R.(1997), Influência da Sucção no Módulo de Resiliência de Solos Típicos de subleito de Pavimentos do Rio Grande do sul. Dissertação de mestrado UFRGS, Rio Grande do Sul.
- RODRIGUES, R. M.(2003), Engenharia de Pavimentos Parte II- Gerência de Pavimentos Instituto Tecnológico de Aeronáutica. 154 p.
- SAARENKETO, T. (2006), **Monitoring Low Volume Roads Executive Summary.** ROADEX Northern Periphery III.

- SANTOS, J. G. (1998), Contribuição ao estudo dos solos lateríticos granulares como camada de pavimento. Tese de Doutorado, COPPE/UFRJ, Rio de Janeiro, 353 p.
- SAAED, A.; HALL SR, J. W.; BARKER, W.(2001), **Performance Related Tests of Aggregates for Use in Unbound Pavement Layer**, NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM, report 453, 55p.
- SECRETARIA DE ENERGIA MINAS E COMUNICAÇÃO SEMC, (2002), Atlas Eólico do RS, SCP/DEPLAN-2004.
- SENÇO, W. (1997), Manual de Técnicas de Pavimentação PINI, São Paulo SP 745 p.
- SILVEIRA, J. (2000), Metodologia para projetos de Pavimentos Flexíveis em vias Urbanas da Região Metropolitana de Porto Alegre Tese de Mestrado, UFRS Porto Alegre RS.
- STEVEN B. D. (2005), **The development and verification of a pavement response and performance model for unbound granular pavements**. Thesis, Doctor of Philosophy, University of Canterbury. UK.
- SWEERE, G. T. H. (1990), **Unbound granular bases for roads**. PhD thesis, University of Delft at Delft, the Netherlands.
- SOARES, J.B.,MORENO, A.M. E MOTTA,L.M.G.da (2009), Aspectos gerais de métodos de dimensionamento de pavimentos asfálticos de vários países e a relação com um novo método brasileiro. Artigo técnico, Revista Pavimentação nº14, jul/ago/set de 2009. Associação Brasileira de Pavimentação, ABPv.
- TAKEDA, M. C. (2006), **A Influência da Variação da umidade pós compactação no comportamento mecânico de solos de rodovias do interior paulista**. Tese de Doutorado, Escola de Engenharia de São Carlos, Universidade de São Paulo. Brasil.
- THEYSE, H. L.; BEER, M. DE; RUST, F. C. (1996), **Overview of South African Mechanistic Pavements Design Method.** Transportation Research Record n° 1539, pp. 6 a 17.
- THOM, N.H. (1988) **Design of road foundations**. PhD thesis, University of Nottingham, UK.
- THOM and BROWN, S.F. (1989), **The mechanical properties of unbound aggregates from various sources.** Unbound Aggregates in Roads (eds R.H. Jones and A.R. Dawson). Butterworths, Savenoaks, pp.130-147.
- THOM, N. H., CHOI, Y-K., and COLLOP, A.C. (2002), **Top-down cracking, damage and hardening in practical flexible pavement design**. International Society for Asphalt Pavements, Ninth International Conference on Asphalt Pavements, Volume 1: 10-1. Copenhagen, Denmark, August 17-22.
- THOM, N.H. (2008), Priciples of pavement engineering. Thomas Telford Publishing Ltd.
- UZAN, J. (1985), **Granular Material Characterization**. In Transportation Research Record 1022. Transportation Research Board. National Research Council, pp. 52-59, Washington D.C.

- ULLIDTZ, P.(1987), **Pavement Analysys** Developments in Civil Engineering,19 Amsterdam: Elservier 318 p.
- ULLIDTZ, P. (1998), **Modelling Flexible Paviment Response and Performance** Technical University of Denmark Narayana Press, Gylling pp. 120-123.
- VARGAS, M.(1978), **Introdução à Mecânica dos Solos**. São Paulo, MCgraw-Hill do Brasil, Ed. Da Universidade de São Paulo.
- VILLIBOR, D. F. e NOGAMI, J. S.(2009), **Pavimentos Econômicos: tecnologia do uso dos solos finos lateríticos.** Arte & Ciência, p.291. São Paulo.
- WITCZAK, M.W. (1989), **Uses and Misuses of Pavement Deflection Data** Conference Presentes at Second International Symposium on Pavement Evaluation and Overlay Design Rio de Janeiro RJ 53 p.
- WERKMEISTER, S.; DAWSON, A.; WELLNER, F. (2001), **Permanent Deformation Behaviour of Granular Materials and the Shakedown Concept**. Transportation Research Record n°1757, pp. 75 a 81.
- WERKMEISTER, S (2003). **Permanent Deformation Behaviour of Unbound Granular Materials in Pavement Constructions**. Dr-Ing Thesis. Technischen Universität Dresden, Dresden, 189 p.
- YODER, E.J., WITCZAK, M.W. (1975), **Principles of Pavement Design** John Wiley & Sons, Inc. Second Edition USA 711 p.

Anexo 1.1: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - Trecho experimental ERS-101

Rodovia: E Segmento I		al LD	Trecl	no: Ba	copar	i-Mos	tardas					Reve	stim	ento:	CB	UQ	Ope	erado	r: O	lênio	,		Data	10/02	2/09
Estaca	Seção Terrapl.				FC-1					C-2	FC		ALP	J.			u			ALC	ATC			chas	
	Terrapi.	ok	FI	TTC	TTL	TLC	TLL	TRR	J	TB	JE	TBE	ΑI	ATP	0	Ы	EX	Q	~	Ψ	Ψ	×	IKI	TRE	Obs.
85+600	A	X																							LD
85+620	A		X			X	X												X						LD
85+640	A	X																							LD
85+660	A	X																							LD
85+680	A		X																						LD
85+700	A	X																							LD
85+720	A		X		X	X													X						LD
85+740	A		X		X	X																			LD
85+760	A		X		X		X		X																LD
85+780	A		X			X	X		X																LD
85+800	A	X																							LD
85+820	A		X	X					X																LD
85+840	A	X																							LD
85+860	A		X				X		X																LD
85+880	A		X																						LD
85+900	A		X	X			X		X																LD
85+920	A		X			X																			LD
85+940	A		X	X			X		X																LD
85+960	A	X																							LD
85+980	A		X	X			X		X																LD
86+000	A	X																							LD

		ÍNDICE DE	GRAVIDAD	E GLOBAL - IGG		
ITEM	NATUREZA DO DEFEITO	NÚMERO DE OCORRÊNCIAS	FREQUENCIA RELATIVA	FATOR DE PONDERAÇÃO	ÍNDICE DE GRAVIDADE INDIVIDUAL(IGI)	OBSERVAÇÕES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	6	29	0.2	6	
2	(FC-2) J, TB	7	33	0.5	17	
3	(FC-3) JE, TBE	0	0	0.8	0	
4	ALP,ATP	0	0	0.9	0	
5	O e P	0	0	1.0	0	
6	EX	0	0	0.5	0	
7	D	0	0	0.3	0	
8	R	2	10	0.6	6	
9	Média da flechas TRE e TRI (mm)	4.02	19.16	4/3*Média>30 IGI=40	5.37	
10	Variância da flechas TRE e TRI (mm)	5.79	27.57	1*Variância>50 IGI=50	5.79	
N° TOTA	AL DE ESTAÇÕES INVENTARIADAS =	21		IGG (Somatório dos IGI) =	39	CONCEITO: BOM

Anexo 1.2: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - Trecho experimental ERS-101

Rodovia: ERS-101 Trecho: Bacopari-Mostardas Revestimento: CBUQ Operador: Olênio Data: 10/02/09 Segmento experimental LE FC-2 FC-3 Flechas Seção Estaca \TC ₹T. TRI TRE Terrapl FI TTC TTL TLC TLL TRR J TB JE TBE Obs. ok 85+600 X LE A X X X X X 5 LE 85+620 X 4 Α 85+640 A X 2 3 LE X X X X X X X 15 10 LE (arrancamento 85+660 Α X X X X X 2 85+680 A 3 LE 85+700 Α X X X X 2 LE X X 2 85+720 X 2 LE Α X X X X X X 85+740 A 6 10 LE 85+760 Α X 5 5 LE X X X X X X 85+780 4 5 LE A 85+800 A X 2 2 LE 5 7 LE 85+820 X X X Α X X 2 85+840 A 2 LE 85+860 Α X X X X 10 10 LE (arrancamento) 85+880 X X X X 2 2 LE Α X X X X 5 4 85+900 A LE 85+920 X 2 2 Α LE X X X 85+940 A X X 8 9 LE 85+960 A X X X 2 2 LE X X X X 10 LE (arrancamento) 85+980 X X 3 Α 1 86+000 Α 3 LE

		ÍNDICE D	E GRAVIDA	DE GLOBAL - IGG		
ITEM	NATIDEZA DO DEFEITO	NÚMERO DE	FREQUENCIA	FATOR DE	ÍNDICE DE GRAVIDADE	OBSERVAÇÕES
ITEM	NATUREZA DO DEFEITO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVAÇÕES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	1	5	0.2	1	
2	(FC-2) J, TB	15	71	0.5	36	
3	(FC-3) JE, TBE	0	0	0.8	0	
4	ALP,ATP	0	0	0.9	0	
5	O e P	1	5	1.0	5	
6	EX	0	0	0.5	0	
7	D	0	0	0.3	0	
8	R	6	29	0.6	17	
9	Média da flechas TRE e TRI (mm)	4.48	21.32	4/3*Média>30 IGI=40	5.97	
10	Variância da flechas TRE e TRI (mm)	10.65	50.69	1*Variância>50 IGI=50	10.65	
N° TOTA	AL DE ESTAÇÕES INVENTARIADAS =	21		IGG (Somatório dos IGI) =	75	CONCEITO : REGULAR

Anexo 1.3: Deflexões medidas durante a vida útil do pavimento - Trecho experimental ERS-101

	ANO				set			Média				set					Equip
Projeto original	: 15 cm Sul	b-bas	se Pli	ntoss	olo +	15 cm	Plintos	solo con	esta	biliza	inte d	luím	ico D	S-32	8 + T	SD (198	7)
85+000 ao 86+000	1991 4 anos abertura ao tráfego					5	i3	53						47		47	VB
	Tre	cho e	exper	imen	tal: I	Reperfil	agem (2.0 cm)	+ 4 cı	m CE	BUO	(199	3)				
85+500				60				60				(
85+520											64					64	
85+540				67				67									
85+560	1			-							64			61		63	
85+580	1			65		5	9	62			<u> </u>			01		00	
85+600	1			- 00			_	02			81			68		75	
85+620	1			71		7	'9	75			- 01					,,,	
85+640	1			,,		 	_	7.5			77			61		69	
85+660	1			61		5	1	56			, ,			01		0)	
85+680				01			'1	30			58			61		60	
85+700				61		5	1	56			50			01		00	
85+700 85+720	1994			01			'1	50			54			51		53	
85+740	1 ano			62		6	51	62			54			51		33	
85+760	abertura			02		10)1	02			73			61		67	VB
85+780	ao tráfego			74			55	65			13			01		07	
85+800				/4		3	13	0.5			80			71		76	
85+820				60			57	64			80			/1		70	
				60		0	0 /	04			71			71		71	
85+840				71				71			71			71		71	
85+860				71		1	1	71			70			1			
85+880	4										70			61		66	
85+900	1			61		1	1	66									
85+920											71			71		71	
85+940				72		7	4	73									
85+960							_				61			91		76	
85+980				58			1	55					L		Ļ		
0.7. 7.00							lia LE:						N	lédia	LD:	67	
85+500						8	31	81									
														76		76	
85+520				_		.	-									7.0	
85+540						8	88	88									
85+540 85+560														61		61	
85+540 85+560 85+580							58	68								61	
85+540 85+560 85+580 85+600						6	58	68						61			
85+540 85+560 85+580 85+600 85+620						6								68		61	
85+540 85+560 85+580 85+600						6	58	68								61	
85+540 85+560 85+580 85+600 85+620 85+640 85+660						8	58	68						68		61 68 68	
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+680						8	58 33 56	68 83 66						68		61	
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+680 85+700	1996					8	33	68						68 68 83		61 68 68 83	
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+660 85+700 85+720	1996 3 ano					8	58 33 56	68 83 66						68		61 68 68	
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+6700 85+720 85+740	3 ano					8	58 33 56	68 83 66						68 68 83		61 68 68 83 53	VR
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+660 85+700 85+720 85+740 85+760	3 ano abertura					8	58 33 56 58	68 83 66 58						68 68 83		61 68 68 83	VB
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+680 85+700 85+720 85+740 85+760 85+780	3 ano					66 88 66 55	58 33 56 58	68 83 66 58						68 68 83		61 68 68 83 53	VB
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+680 85+700 85+720 85+740 85+760 85+780	3 ano abertura					66 88 66 55	66	68 83 66 58						68 68 83		61 68 68 83 53	VB
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+680 85+700 85+720 85+740 85+760 85+780 85+800 85+820	3 ano abertura					66	66	68 83 66 58						68 68 83 53		61 68 68 83 53	VB
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+680 85+700 85+720 85+740 85+760 85+780	3 ano abertura					66	58 33 56 58 59	68 83 66 58 61						68 68 83 53		61 68 68 83 53	VB
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+680 85+700 85+720 85+740 85+760 85+780 85+800 85+820	3 ano abertura					6 6 6	58 56 58 51 59	68 83 66 58 61						68 83 53 77		61 68 68 83 53 77 76	VB
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+680 85+700 85+720 85+740 85+760 85+780 85+800 85+820 85+840	3 ano abertura					66 88 66 55 66	58 56 58 51 59	68 83 66 58 61 69						68 83 53 77		61 68 68 83 53 77 76	VB
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+680 85+700 85+720 85+740 85+740 85+780 85+800 85+800 85+840 85+860 85+880	3 ano abertura					66 88 66 55 66	66 66 66 67 67 67 67 67 67 67 67 67 67 6	68 83 66 58 61 69						68 83 53 77 76 88		61 68 68 83 53 77 76	VB
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+680 85+700 85+720 85+740 85+740 85+780 85+800 85+800 85+840 85+860 85+880 85+880	3 ano abertura					66 66 77 88	66 66 66 67 67 67 67 67 67 67 67 67 67 6	68 83 66 58 61 69 77						68 83 53 77 76 88		61 68 68 83 53 77 76 88	VB
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+680 85+700 85+720 85+740 85+740 85+780 85+800 85+800 85+820 85+840 85+860 85+880 85+890 85+900	3 ano abertura					66 66 77 88	66 66 66 66 66 66 66 66 66 66 66 66 66	68 83 66 58 61 69 77 81						68 83 53 77 76 88		61 68 68 83 53 77 76	VB
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+660 85+700 85+720 85+740 85+740 85+780 85+800 85+800 85+820 85+840 85+860 85+880 85+900 85+920 85+940	3 ano abertura					66 66 77 88	66 66 66 67 67 67 67 67 67 67 67 67 67 6	68 83 66 58 61 69 77						68 68 83 77 76 88 71		61 68 68 83 53 77 76 88 71	VB
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+680 85+700 85+720 85+740 85+740 85+780 85+800 85+800 85+820 85+840 85+860 85+890 85+900 85+920 85+940 85+960	3 ano abertura					66 66 77 88 99 77	68	68 83 66 58 61 69 77 81						68 83 53 77 76 88		61 68 68 83 53 77 76 88	VB
85+540 85+560 85+580 85+600 85+620 85+640 85+660 85+660 85+700 85+720 85+740 85+740 85+780 85+800 85+800 85+820 85+840 85+860 85+880 85+900 85+920 85+940	3 ano abertura					66 88 66 66 77 88 99	66 66 66 66 66 66 66 66 66 66 66 66 66	68 83 66 58 61 69 77 81 93						68 68 83 77 76 88 71	LD:	61 68 68 83 53 77 76 88 71	VB

Anexo 1.3(cont.): Deflexões medidas durante a vida útil do pavimento - Trecho experimental ERS-101

LOCALIZAÇÃO	Deflexõe ANO					LE			1					LD				Equip
LUCALIZAÇAU	ANO	jan f	fev a						Média		fev	ago	set	out	nov	dez	Média	Equip
				Re	esta	uraçâ	io 20	00 -	4cm CE	BUQ								
85+200									74									
85+600	2005								61									FWD
86+000	2003								55									LWL
						N.	Iédia	LE:	63					N.	Iédia	LD:		
85+000											38						38	
85+250		1	70						70									
85+500											54						54	
85+750	2007	:	56						56									FWD
86+000											35						35	
86+250		(68						68									
						N.	Iédia	LE:	65					N.	Iédia	LD:	45	
85+600		4	43						43		67						67	
85+620		1	63						163		66						66	
85+640			70						70		67						67	
85+660		1	35						135		74						74	
85+680		9	92						92		64						64	
85+700		(60						60		75						75	
85+720											62						62	1
85+740		1	18						118		62						62	
85+760		1	76						76		74						74	
85+780		9	97						97		69						69	1
85+790		4	46						46		49						49	1
85+800		4	41						41		51						51	1
85+800											63						63	
85+810	2000	4	49						49		57						57	
85+820	2009		83						83		45						45	FWD
85+840			56						56		37						37	1
85+860		9	91						91		47						47	1
85+880			54						54		59						59	1
85+900			84						84		78						78	
85+920			57						57		49						49	1
85+940			81						81		71						71	
85+960	1		47						47		46						46	1
85+980	1		39						39		52						52	1
85+980	1		80						80		77						77	1
85+980	1		Ť	1							79						79	1
85+990	1		45	1					45		52						52	1
85+990	1		_						_		52			1	1		52	1
86+000	1		62	1					62		38						38	1
	1	 				N	Iédia	LE:	74					N	Iédia	LE:	60	1

Anexo 1.4: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-132

Rodovia: Segmento l	ERS/132 Experiment	al 1	Trecl	no:	Cama	argo -	N. Alv	orada				Reve	stime	ento:	TSI)	Ope	erado	r:Ze	rferi	no		Data:	12/07/	2001
.	Seção				FC-1				FC	C-2	FC	C-3											Fle	chas	
Estaca	Terrapl.	ok	FI	TTC	TTL	TLC	TLL	TRR	J	ТВ	JE	тве	ALP	ATP	0	Ь	EX	Q	R	ALC	ATC	区	TRI	TRE	Obs.
12+700	SMA	X																					4	4	LE
12+720	SMC	X																					7	4	LD
12+740	A	X																					3	6	LE
12+760	A	X																					6	6	LD
12+780	A	X																					2	5	LE
12+800	PP	X																					7	5	LD
12+820	A	X																					3	3	LE
12+840	A			X																			4	10	LD(bueiro
12+860	A	X																					2	2	LE
12+880	A	X																					3	5	LD
12+900	A	X																					3	3	LE
12+920	A	X																					2	3	LD
12+940	A	X																					3	3	LE
12+960	A	X																					8	0	LD
12+980	A	X																					4	3	LE
13+000	PP	X	X																				4	3	LD
13+020	PP			X																			10	3	LE
13+040	SMC	X																					3	4	LD
13+060	С	X																					2	4	LE
13+080	С	X																					2	2	LD
13+100	С	X																					4	5	LE
13+120	SMC	X																					5	2	LD

		ÍNDICE DE GR	AVIDADE G	LOBAL - IGG		
ITEM	NATUREZA DO DEFEITO	NÚMERO DE OCORRÊNCIAS	FREQUENCIA RELATIVA	COEFICIENTE DE PONDERAÇÃO	ÍNDICE DE GRAVIDADE INDIVIDUAL(IGI)	OBSERVAÇÕES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	3	14	0,2	3	
2	(FC-2) J, TB	0	0	0,5	0	
3	(FC-3) JE, TBE	0	0	0,8	0	
4	ALP,ATP	0	0	0,9	0	
5	O e P	0	0	1,0	0	
6	EX	0	0	0,5	0	
7	D	0	0	0,3	0	
8	R	0	0	0,6	0	
9	Média da flechas TRE e TRI (mm)	4,00	-	4/3*Média>30 IGI=40	5,33	
10	Variância da flechas TRE e TRI (mm)	4,28	-	1*Variância>50 IGI=50	4,28	
N° TO	TAL DE ESTAÇÕES INVENTARIADAS =	22	IGG (Somatón	rio dos IGI) =	12	CONCEITO : ÓTIMO

Anexo 1.5: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-132

Rodovia: Segmento E	ERS-132 Experimenta		Trech	10:	Cama	argo - :	N. Alv	orada				Reves	stim	ento): 		Оре	erad	or:Z	Zerfe	erino	0	Data:	12/07/	2001
	Seção				FC-1				FC	C-2	FC												Fle	chas	
Estaca	Terrapl.	ok	FI	TTC	TTL	TLC	TLL	TRR	J	ТВ	JE	тве	ALP	ATP	0	Ь	$\mathbf{E}\mathbf{X}$	D	R	ALC	ATC	H	TRI	TRE	Obs.
13+860	A	X																					5	5	LE
13+880	SMC	X																					4	5	LD
13+900	SMA	X																					4	6	LE
13+920	SMC	X																					8	3	LD
13+940	SMA	X																					4	4	LE
13+960	SMC	X																					10	4	LD
13+980	SMA	X																					4	3	LE
14+000	SMC	X																					4	4	LD
14+020	SMA	X																					9	10	LE
14+040	SMC	X																					5	6	LD
14+060	SMA	X																					8	6	LE
14+080	SMC	X																					6	4	LD
14+100	SMA	X																					4	6	LE
14+120	SMC	X																					5	3	LD
14+140	SMA	X																					4	6	LE
14+160	SMC	X																					2	4	LD
14+180	SMA	X																					6	7	LE
14+200	SMC	X																					6	4	LD
14+220	SMA	X																					2	5	LE
14+240	A	X																					5	2	LD
14+260	A	X																					3	2	LE
14+280	A	X																					6	5	LD
14+300	A	X																					3	3	LE
14+320	SMC	X																					5	4	LD
14+340	SMA	X																					7	5	LE
14+360	SMC	X																					5	3	LD

		ÍNDICE DE G	RAVIDADE GLO	BAL - IGG			
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	COEFICIENTE DE	ÍNDICE DE GRAVIDADE	OBSERVA	CÕES
111201	NATUREZA DO DEFEITO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVA	ÇOES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	0	0	0,2	0		
2	(FC-2) J, TB	0	0	0,5	0		
3	(FC-3) JE, TBE	0	0	0,8	0		
4	ALP,ATP	0	0	0,9	0		
5	O e P	0	0	1,0	0		
6	EX	0	0	0,5	0		
7	D	0	0	0,3	0		
8	R	0	0	0,6	0		
9	Média da flechas TRE e TRI (mm)	4,54	-	4/3*Média>30 IGI=40	6,05		
10	Variância da flechas TRE e TRI (mm)	3,06	-	1*Variância>50 IGI=50	3,06		
N° TO	OTAL DE ESTAÇÕES INVENTARIADAS =	35	IGG (Somatório do	os IGI) =	9	CONCEITO:	óтімо

Anexo 1.6: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-132

Rodovia: Segmento I	ERS-132 Experiment	al 1	Trech	io:	Cama	argo -	N. Alv	vorada				Reve	stim	ento	o:TS	SD	Op	erad	lor:1	Mar	cos		Data:	31/10/	2002
	Seção				FC-1				FC	C-2	FC	:-3											Fle	chas	
Estaca	Terrapl.	ok	FI	TTC	TTL	TLC	TLL	TRR	J	ТВ	JE	ТВЕ	ALP	ATP	0	Ь	EX	D	R	ALC	ATC	E	TRI	TRE	Obs.
12+700	A	X																					7	8	LE
12+720	A	X																					5	4	LD
12+740	PP	X																					4	5	LE
12+760	CR	X																					5	8	LD
12+780	PP	X																					4	4	LE
12+800	C	X																					4	3	LD
12+820	PP	X																					4	4	LE
12+840	С		X	X	X	X																	9	10	LD (CBUQ)
12+860	PP	X																					3	2	LE
12+880	PP	X																					4	4	LD
12+900	PP	X																					4	2	LE
12+920	PP		X	X	X	X																	3	4	LD
12+940	PP	X																					5	4	LE
12+960	PP	X																					8	2	LD
12+980	PP						X																7	3	LE (CBUQ)
13+000	PP		X	X		X	X																5	4	LD (CBUQ)
13+020	PP	X																					4	3	LE (CBUQ)
13+040	С	X																					3	5	LD
13+060	С	X																					4	4	LE
13+080	С	X																					6	4	LD
13+100	PP	X																					3	3	LE
13+120	С	X																					3	4	LD

		ÍNDICE DE GI	RAVIDADE GLO	BAL - IGG		
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	COEFICIENTE DE	ÍNDICE DE GRAVIDADE	OBSERVAÇÕES
TTEM	NATUREZA DO DEPETO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVAÇÕES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	13	59	0,2	12	
2	(FC-2) J, TB	0	0	0,5	0	
3	(FC-3) JE, TBE	0	0	0,8	0	
4	ALP,ATP	0	0	0,9	0	
5	O e P	0	0	1,0	0	
6	EX	0	0	0,5	0	
7	D	0	0	0,3	0	
8	R	0	0	0,6	0	
9	Média da flechas TRE e TRI (mm)	4,50	-	4/3*Média>30 IGI=40	6,00	
10	Variância da flechas TRE e TRI (mm)	3,57	-	1*Variância>50 IGI=50	3,57	
N° TC	OTAL DE ESTAÇÕES INVENTARIADAS =	22	IGG (Somatório do	os IGI) =	21	CONCEITO: BOM

Anexo 1.7: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-132

	ERS-132 Experiment		Trecl				11. AI	vorada				Reve	Juii	.C1110	J. 1 C	עי	Opc	ı aul	/1.1V	·aic	vs.			31/10/	2002
.	Seção			ı	FC-1				FC	2-2	FC												Fle	chas	
Estaca	Terrapl.	ok	FI	TTC	TTL	TLC	TLL	TRR	J	тв	JE	ТВЕ	ALP	ATP	0	Ь	ΕX	Q	~	ALC	ATC	E	TRI	TRE	Obs.
13+860	A	X																					5	3	LE
13+880	SMC	X																					2	6	LD
13+900	SMA	X																					6	3	LE
13+920	SMC		X	X																			5	4	LD
13+940	SMA	X																					5	3	LE
13+960	SMC	X																					7	3	LD
13+980	SMA	X																					4	4	LE
14+000	SMC	X																					3	4	LD
14+020	SMA	X																					4	6	LE
14+040	SMC	X																					6	6	LD
14+060	SMA	X																					3	4	LE
14+080	SMC		X																X				7	9	LD
14+100	SMA	X																					8	8	LE
14+120	SMC	X																					4	4	LD
14+140	SMA	X																					4	5	LE
14+160	SMC	X																					5	4	LD
14+180	SMA	X																					2	4	LE
14+200	SMC	X																					4	4	LD
14+220	SMA	X																					4	2	LE
14+240	A	X																					6	3	LD
14+260	A	X																					6	4	LE
14+280	A	X																					8	6	LD
14+300	A	X																					7	6	LE
14+320	SMC	X																					2	5	LD
14+340	SMA	X																					9	7	LE
14+360	SMC	X																					7	3	LD
14+380	SMA	X																					2	4	LE
14+400	SMC	X																					7	4	LD
14+420	SMA	X																					4	4	LE
14+440	SMC	X																					3	4	LD
14+460	SMA	X																		_]			4	3	LE
14+480	SMC	X																					4	4	LD
14+500	SMA	X																					4	7	LE
14+520	SMC	X																					4	4	LD

		ÍNDICE DE C	RAVIDADE GLO	OBAL - IGG		
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	COEFICIENTE DE	ÍNDICE DE GRAVIDADE	OBSERVAÇÕES
I I EIVI	NATUREZA DO DEFEITO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVAÇÕES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	3	9	0,2	2	
2	(FC-2) J, TB	0	0	0,5	0	
3	(FC-3) JE, TBE	0	0	0,8	0	
4	ALP,ATP	0	0	0,9	0	
5	O e P	0	0	1,0	0	
6	EX	0	0	0,5	0	
7	D	0	0	0,3	0	
8	R	1	3	0,6	2	
9	Média da flechas TRE e TRI (mm)	4,69	-	4/3*Média>30 IGI=40	6,25	
10	Variância da flechas TRE e TRI (mm)	2,91	-	1*Variância>50 IGI=50	2,91	
N° TC	OTAL DE ESTAÇÕES INVENTARIADAS =	35	IGG (Somatório do	os IGI) =	13	CONCEITO: ÓTIMO

Anexo 1.8: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-132

Rodovia: Segmento I	ERS-132 Experiment	al 1	Trecl	no:	Cam	argo -	N. Al	vorada	1			Reve	stim	ent	o:TS	SD	Ope	rad	or:N	Mar	cos		Data:	01/07/	/2003
	Seção				FC-1				F(C-2	FC	C-3											Fle	chas	
Estaca	Terrapl.	ok	FI	ттс	TTL	TLC	TLL	TRR	J	ТВ	JE	ТВЕ	ALP	ATP	0	J	EX	Q	R	ALC	ATC	Э	TRI	TRE	Obs.
12+680	SMA	X																					2	2	LD
12+700	SMC	X																					4	6	LE
12+720	A	X																					3	4	LD
12+740	A	X																					5	3	LE
12+760	A		X																				6	7	LD
12+780	PP																	X					3	2	LE
12+800	A	X																					4	5	LD
12+820	A	X																					3	2	LE
12+840	A																		X				4	3	LD
12+860	A	X																					2	3	LE
12+880	A	X																					3	4	LD
12+900	A	X																					3	2	LE
12+920	A		X	X		X			X														4	4	LD
12+940	A	X																					3	3	LE
12+960	A	X																					6	3	LD
12+980	PP		X			X	X											X					3	2	LE
13+000	PP		X	X	X	X	X		X														4	4	LD
13+020	PP																	X					2	1	LE
13+040	C	X																					3	5	LD
13+060	C	X																					3	4	LE
13+080	C																	X					6	3	LD
13+100	PP	X																					2	2	LE
13+120	SMC	X										<u></u>											3	3	LD

		ÍNDICE DE GR	RAVIDADE GLO	BAL - IGG		
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	COEFICIENTE DE	ÍNDICE DE GRAVIDADE	OBSERVAÇÕES
I I EWI	NATUREZA DO DEFEITO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVAÇÕES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	2	8	0,2	2	
2	(FC-2) J, TB	2	8	0,5	4	
3	(FC-3) JE, TBE	0	0	0,8	0	
4	ALP,ATP	0	0	0,9	0	
5	O e P	0	0	1,0	0	
6	EX	0	0	0,5	0	
7	D	4	15	0,3	5	
8	R	1	4	0,6	2	
9	Média da flechas TRE e TRI (mm)	3,43	-	4/3*Média>30 IGI=40	4,58	
10	Variância da flechas TRE e TRI (mm)	1,79	-	1*Variância>50 IGI=50	1,79	
N° TC	OTAL DE ESTAÇÕES INVENTARIADAS =	26	IGG (Somatório do	os IGI) =	20	CONCEITO: BOM

Anexo 1.9: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-132

Rodovia: Segmento I	ERS-132 Experiment	al 2	Trech	10:	Cama	argo -	N. Alv	orada/				Reve	stim	ento	o:TS	D	Оре	erad	or:N	Aaro	cos		Data:	01/07/	2003
	Seção				FC-1	,	,		FC	2-2	FC	-3											Fle	chas	
Estaca	Terrapl.	ok	FI	TTC	TTL	TLC	TLL	TRR	J	ТВ	JE	ТВЕ	ALP	ATP	0	Ь	ΕX	Q	×	ALC	ATC	Ħ	TRI		Obs.
13+800	A	X																					6	3	LD
13+820	A	X																					3	3	LE
13+840	A	X																					3	4	LD
13+860	A	X																					3	2	LE
13+880	SMC	X																					5	6	LD
13+900	SMA	X																					5	3	LE
13+920	SMC										X												4	2	LD
13+940	SMA	X																					4	3	LE
13+960	SMC	X																					5	4	LD
13+980	SMA	X																					4	3	LE
14+000	SMC	X																					2	3	LD
14+020	SMA	X																					5	2	LE
14+040	SMC	X																					5	5	LD
14+060	SMA	X																					4	4	LE
14+080	SMC		X						X		X												6	8	LD
14+100	SMA	X																					5	5	LE
14+120	SMC	X																					5	3	LD
14+140	SMA	X																					5	5	LE
14+160	SMC	X																					4	3	LD
14+180	SMA	X																					5	5	LE
14+200	SMC	X																					3	3	LD
14+220	SMA	X																					3	2	LE
14+240	A	X																					3	4	LD
14+260	A	X																					2	3	LE
14+280	A	X																					5	5	LD
14+300	A	X																					3	2	LE
14+320	SMC	X							-														5	6	LD
14+340	SMA	X																					5	5	LE
14+360	SMC	X																					5	2	LD
14+380	SMA	X																					5	11	LE
14+400	SMC	X																					5	4	LD
14+420	SMA	X																					3	3	LE
14+440	SMC	X																					5	6	LD
14+460	SMA	X																					9	2	LE
14+480	SMC	X																					4	3	LD
14+500	SMA	X																					4	5	LE
14+520	SMC	X																					4	4	LD
14+540	PP	X																					6	7	LE

		ÍNDICE DE G	RAVIDADE GLO	DBAL - IGG		
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	COEFICIENTE DE	ÍNDICE DE GRAVIDADE	OBSERVAÇÕES
I I Eavi	NATUREZA DO DEFEITO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVAÇÕES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	0	0	0,2	0	
2	(FC-2) J, TB	0	0	0,5	0	
3	(FC-3) JE, TBE	2	6	0,8	5	
4	ALP,ATP	0	0	0,9	0	
5	O e P	0	0	1,0	0	
6	EX	1	3	0,5	1	
7	D	1	3	0,3	1	
8	R	0	0	0,6	0	
9	Média da flechas TRE e TRI (mm)	4,20	-	4/3*Média>30 IGI=40	5,60	
10	Variância da flechas TRE e TRI (mm)	2,60	-	1*Variância>50 IGI=50	2,60	
N° TO	TAL DE ESTAÇÕES INVENTARIADAS =	35	IGG (Somatório de	os IGI) =	15	CONCEITO: ÓTIMO

Anexo 1.10: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-132

egmento l	эхренинен	ai i			F.O. 4					~ _						- 1				_				. 1	
Estaca	Seção				FC-1				F(C-2	FC)-3		_					ı.	٠.	- \		Fle	chas	
Estaca	Terrapl.	ok	FI	TTC	TTL	TLC	TLL	TRR	J	ТВ	JE	ТВЕ	ALP	ATP	0	Ь	ΕX	ام	≃	ALC	ATC	H	TRI	TRE	Obs.
12+680	SMA	X																					5	4	LD
12+700	SMC	X																					2	5	LE
12+720	A		X																				3	1	LD
12+740	A		X																				1	3	LE
12+760	A		X																				2	1	LD
12+780	PP		X															X					2	3	LE
12+800	A	X																					2	3	LD
12+820	A		X																				2	1	LE
12+840	A	X																					12	3	LD
12+860	A			X	X																		1	3	LE
12+880	A	X																					1	4	LD
12+900	A		X																				2	2	LE
12+920	A		X	X	X	X	X		X														3	1	LD
12+940	PP	X																					1	2	LE
12+960	PP		X	X	X		X		X														2	1	LD
12+980	PP		X														X						4	3	LE
13+000	PP																_	_	X				9	5	LD
13+020	PP																_	_	X				2	2	LE
13+040	SMC																	X	X				9	5	LD
13+060	C	X																					2	3	LE
13+080	C		X	X																			2	1	LD
13+100	SMC		X	X																			2	3	LE
13+120	SMC		X	X												X							3	2	LD
13+140	SMA		X								1							Т	X	П			2	1	LE

		ÍNDICE DE GR	AVIDADE GLO	BAL - IGG		
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	COEFICIENTE DE	ÍNDICE DE GRAVIDADE	OBSERVAÇÕES
TTEAVI	NATUREZA DO DEFEITO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVAÇÕES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	11	50	0,2	10	
2	(FC-2) J, TB	2	9	0,5	5	
3	(FC-3) JE, TBE	0	0	0,8	0	
4	ALP,ATP	0	0	0,9	0	
5	O e P	0	0	1,0	0	
6	EX	1	5	0,5	2	
7	D	4	18	0,3	5	
8	R	3	14	0,6	8	
9	Média da flechas TRE e TRI (mm)	2,88	-	4/3*Média>30 IGI=40	3,83	
10	Variância da flechas TRE e TRI (mm)	4,92	-	1*Variância>50 IGI=50	4,92	
N° TC	OTAL DE ESTAÇÕES INVENTARIADAS =	22	IGG (Somatório do	os IGI) =	39	CONCEITO: BOM

Anexo 1.11: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-132

Rodovia: Segmento E	ERS-132 Experiment	al 2	Trech	no:	Cam	argo -	N. Alv	vorada				Reve	stim	ento	o:TS	D	Ope	erado	or:C	Clóvi	is		Data:	03/12/	2004
	Seção				FC-1				FC	C-2	FC	C-3											Fle	chas	
Estaca	Terrapl.	ok	FI	ттс	TTL	TLC	TLL	TRR	J	ТВ	JE	ТВЕ	ALP	ATP	0	Ь	EX	Q	2	ALC	ATC	E	TRI	TRE	Obs.
13+800	A																X						4	2	LD
13+820	A		X																			X	2	3	LE
13+840	A															X	X						3	2	LD
13+860	A		X														X						1	1	LE
13+880	SMC		X														X						2	2	LD
13+900	SMA		X																				4	1	LE
13+920	SMC		X	X		X			X								X						2	1	LD
13+940	SMA																X						1	1	LE
13+960	SMC		X														X						3	2	LD
13+980	SMA	X															X						2	2	LE
14+000	SMC																						2	1	LD
14+020	SMA		X																				4	2	LE
14+040	SMC		X																				2	4	LD
14+060	SMA	X															X						4	4	LE
14+080	SMC		X	X		X			X							X	X						4	5	LD
14+100	SMA		X														X						3	2	LE
14+120	SMC																X						2	2	LD
14+140	SMA		X														X						4	5	LE
14+160	SMC																X						2	1	LD
14+180	SMA																X						3	1	LE
14+200	SMC		X														X						3	2	LD
14+220	SMA																X						2	2	LE
14+240	A																X						2	1	LD
14+260	A																X						1	3	LE
14+280	A		X														X						7	3	LD
14+300	A		X														X						1	1	LE
14+320	SMC																X						5	2	LD
14+340	SMA		X														X						5	2	LE
14+360	SMC																X						9	1	LD
14+380	SMA																X						2	9	LE
14+400	SMC			1	1	1									ļ		X						3	1	LD
14+420	SMA				1												X						2	4	LE
14+440	SMC																X						1	4	LD
14+460	SMA																X						4	4	LE
14+480	SMC			1	1	1											X						1	1	LD
14+500	SMA	1															X						3	1	LE
14+520	SMC																X						1	1	LD
14+540	SMA	1		1	1	1											X						4	1	LE

		ÍNDICE DE (GRAVIDADE GL	OBAL - IGG		
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	COEFICIENTE DE	ÍNDICE DE GRAVIDADE	OBSERVAÇÕES
TTEM	NATUREZA DO DEFEITO	OCORRËNCIA S	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVAÇÕES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	13	37	0,2	7	
2	(FC-2) J, TB	2	6	0,5	3	
3	(FC-3) JE, TBE	0	0	0,8	0	
4	ALP,ATP	0	0	0,9	0	
5	O e P	2	6	1,0	6	
6	EX	28	80	0,5	40	
7	D	0	0	0,3	0	
8	R	0	0	0,6	0	
9	Média da flechas TRE e TRI (mm)	2,59	-	4/3*Média>30 IGI=40	3,46	
10	Variância da flechas TRE e TRI (mm)	2,89	-	1*Variância>50 IGI=50	2,89	
N° TC	OTAL DE ESTAÇÕES INVENTARIADAS =	35	IGG (Somatório de	os IGI) =	62	CONCEITO: REGULAI

Anexo 1.12: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-132

Rodovia: E Segmento I		al 1	Trecl	no:	Cama	argo -	N. Al	vorada	l			Reve	stim	ent	o: T	SD	Op	erad	lor:l	Bati	sta		Data:	out/06	
	Seção				FC-1				F(C-2	FC	C-3											Fle	chas	
Estaca	Terrapl.	ok	FI	ттс	TTL	TLC	TLL	TRR	J	ТВ	JE	ТВЕ	ALP	ATP	0	Ь	EX	D	R	ALC	ATC	田	TRI	TRE	Obs.
12+680	SMA			X													X						3	7	LD
12+700	SMC								X														5	11	LE
12+720	A								X								X						4	4	LD
12+740	A								X														3	7	LE
12+760	A			X													X						6	5	LD
12+780	PP								X									X					5	7	LE
12+800	A																X						9	6	LD
12+820	A	X																					4	5	LE
12+840	A				X				X										X				5	4	BUEIRO
12+860	PP		X																				5	5	LE
12+880	A								X														2	5	LD
12+900	A	X																					5	5	LE
12+920	A										X			X									7	10	LD
12+940	PP	X																					3	3	LE
12+960	A	X																					5	2	LD
12+980	PP				X														X				4	5	LE
13+000	PP										X								X				8	5	LD
13+020	SMC								X										X				11	6	LE
13+040	C						X												X				8	5	LD
13+060	C	X																					2	4	LE
13+080	C		X																				5	3	LD
13+100	SMC					X											X						5	8	LE
13+120	SMC	X																					9	3	LD
13+140	SMA	X																					4	3	LE

		ÍNDICE DE (GRAVIDADE GL	OBAL - IGG			
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	COEFICIENTE DE	ÍNDICE DE GRA VIDADE	OBSERVAÇÕI	Ec
11 Eavi	NATUREZA DO DEFEITO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSEKVAÇOI	ES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	7	29	0,2	6		
2	(FC-2) J, TB	7	29	0,5	15		
3	(FC-3) JE, TBE	2	8	0,8	7		
4	ALP,ATP	1	4	0,9	4		
5	O e P	0	0	1,0	0		
6	EX	5	21	0,5	10		
7	D	1	4	0,3	1		
8	R	5	21	0,6	13		
9	Média da flechas TRE e TRI (mm)	5,30	-	4/3*Média>30 IGI=40	7,07		
10	Variância da flechas TRE e TRI (mm)	5,04	-	1*Variância>50 IGI=50	5,04		
N° TC	OTAL DE ESTAÇÕES INVENTARIADAS =	24	IGG (Somatório do	os IGI) =	67	CONCEITO: REG	JULAR

Anexo 1.13: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-132

Rodovia: El Segmento E		al 2	Trech	no:	Cama	argo -	N. Al	vorada				Reves	stim	ento	o: TS	SD	Ope	erad	or:C	Olen	io		Data:	out/0	5
	Seção				FC-1				FC	C-2	FC	-3											Fle	chas	
Estaca	Terrapl.	ok	FI	ттс	TTL	TLC	TLL	TRR	J	ТВ	JE	TBE	ALP	ATP	0	Ь	$\mathbf{E}\mathbf{X}$	Q	ĸ	ALC	ATC	H	TRI	TRE	Obs.
13+800	A	X																					7	4	LD
13+820	A		X																				5	3	LE
13+840	A	X																					4	1	LD
13+860	A	X																					1	2	LE
13+880	SMC	X																					3	1	LD
13+900	SMA	X																					1	1	LE
13+920	SMC		X						X														4	1	LD
13+940	SMA	X																					1	1	LE
13+960	SMC	X																					4	1	LD
13+980	SMA	X																					2	2	LE
14+000	SMC	X																					1	1	LD
14+020	SMA	X																					1	2	LE
14+040	SMC	X																					2	5	LD
14+060	SMA																X						3	7	LE
14+080	SMC		X						X										X				4	8	LD
14+100	SMA																X						2	3	LE
14+120	SMC	X																					3	1	LD
14+140	SMA																X						8	9	LE
14+160	SMC	X																					4	1	LD
14+180	SMA	X																					2	2	LE
14+200	SMC	X																					3	4	LD
14+220	SMA	X																					2	1	LE
14+240	A	X																					4	2	LD
14+260	A	X																					1	7	LE
14+280	A	X																					4	2	LD
14+300	A	X																					1	2	LE
14+320	SMC	X																					3	1	LD
14+340	SMA	X																					3	5	LE
14+360	SMC																X						9	1	LD
14+380	SMA	X																					5	10	LE
14+400	SMC	X																					2	2	LD
14+420	SMA	X																					0	2	LE
14+440	SMC																X						5	6	LD
14+460	SMA	X																					3	2	LE
14+480	SMC	X																					1	1	LD
14+500	SMA	X																					2	2	LE
14+520	SMC	X																					1	0	LD
14+540	SMC	X																					1	1	LE

		INDICE DE GR	AVIDADE GLO	BAL - IGG		
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	COEFICIENTE DE	ÍNDICE DE GRAVIDADE	OBSERVAÇÕES
111241	NATOREZA BO BEFEITO	OCORRÊNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVAÇÕES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	2	6	0,2	1	
2	(FC-2) J, TB	2	6	0,5	3	
3	(FC-3) JE, TBE	0	0	0,8	0	
4	ALP,ATP	0	0	0,9	0	
5	O e P	0	0	1,0	0	
6	EX	5	14	0,5	7	
7	D	0	0	0,3	0	
8	R	1	3	0,6	2	
9	Média da flechas TRE e TRI (mm)	2,83	-	4/3*Média>30 IGI=40	3,77	
10	Variância da flechas TRE e TRI (mm)	5,26	-	1*Variância>50 IGI=50	5,26	
N° T(OTAL DE ESTAÇÕES INVENTARIADAS -	36	IGG (Somatório de	os ICD =	22	CONCEITO : BOM

Anexo 1.14: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-132

Rodovia: E Segmento I			Trecl	ho:	Cama	argo -	N. Al	vorada	ı			Reve	stim	nent	o: T	SD	Op	erad	or:	Olê	nio		Data:	11/11	/2008
	Seção				FC-1				F(C-2	FC	C-3											Fle	chas	
Estaca	Terrapl.	ok	FI	TTC	TTL	TLC	TLL	TRR	J	ТВ	JE	ТВЕ	ALP	ATP	0	Ь	EX	Q	ĸ	ALC	ATC	E	TRI	TRE	Obs.
12+680	SMA	X																					2	6	LD
12+700	SMC		X	X					X														3	10	LE
12+720	A		X	X		X			X														2	6	LD
12+740	A		X	X	X		X		X														7	11	LE
12+760	A		X	X					X														3	5	LD
12+780	PP		X	X					X														3	7	LE
12+800	A		X			X																	12	6	LD
12+820	A		X	X					X														2	4	LE
12+840	A		X		X	X			X														3	5	LD
12+860	A		X		X				X														3	3	LE
12+880	A		X	X					X														2	3	LD
12+900	A		X	X		X			X														3	2	LE
12+920	A		X	X			X		X														8	13	LD
12+940	A		X																				1	4	LE
12+960	A		X		X	X			X														5	2	LD
12+980	PP		X				X		X														4	3	LE
13+000	PP		X	X		X			X										X				4	2	LD
13+020	SMC		X	X			X		X														10	12	LE
13+040	С		X	X			X		X														6	5	LD
13+060	С		X	X																			2	2	LE
13+080	C		X	X					X														3	3	LD
13+100	SMC		X	X			X		X														3	3	LE
13+120	SMC		X	X			X		X														4	8	LD
13+140	SMA		X	X					X														3	4	LE

		ÍNDICE DE C	GRAVIDADE GL	OBAL - IGG			
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	COEFICIENTE DE	ÍNDICE DE GRAVIDADE	OBSERV	A CÕES
TTEM	NATUREZA DO DEFEITO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERV	AÇOES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	4	15	0,2	3		
2	(FC-2) J, TB	19	73	0,5	37		
3	(FC-3) JE, TBE	0	0	0,8	0		
4	ALP,ATP	0	0	0,9	0		
5	O e P	0	0	1,0	0		
6	EX	0	0	0,5	0		
7	D	0	0	0,3	0		
8	R	1	4	0,6	2		
9	Média da flechas TRE e TRI (mm)	4,73	-	4/3*Média>30 IGI=40	6,31		
10	Variância da flechas TRE e TRI (mm)	8,99	-	1*Variância>50 IGI=50	8,99		
N° TC	OTAL DE ESTAÇÕES INVENTARIADAS =	26	IGG (Somatório do	os IGI) =	57	CONCEITO:	REGULAR

Anexo 1.15: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-132

Rodovia: El Segmento E		al 2	Trech	no:	Cama	argo -	N. Alv	orada/				Reve	stim	ento	o: T:	SD	Оре	erado	or: (Olên	io		Data:	11/11	/2008
	Seção				FC-1				FC	-2	FC	2-3											Fle	chas	
Estaca	Terrapl.	ok	FI	ттс	TTL	TLC	TLL	TRR	J	ТВ	JE	тве	ALP	ATP	0	Ы	EX	Q	~	ALC	ATC	凶	TRI	TRE	Obs.
13+800	A		X	X																			7	7	
13+820	A		X	X					X														3	2	
13+840	A	X																					8	2	
13+860	A		X																				3	3	
13+880	SMC		X																				2	3	
13+900	SMA	X																					2	2	
13+920	SMC		X	X					X														7	1	
13+940	SMA	X																					1	1	
13+960	SMC	X																					2	2	
13+980	SMA	X																					3	3	
14+000	SMC	X																					2	3	
14+020	SMA	X																					4	3	
14+040	SMC	X																					3	2	
14+060	SMA	X																					3	3	
14+080	SMC		X	X					X														3	8	
14+100	SMA	X																					3	2	
14+120	SMC	X																					3	3	
14+140	SMA		X	X					X														8	11	
14+160	SMC		X																				4	2	
14+180	SMA	X																					2	4	
14+200	SMC		X	X					X														7	4	
14+220	SMA	X																					2	3	
14+240	A	X																					2	2	
14+260	A	X																					6	2	
14+280	A	X																					5	4	
14+300	A	X																					2	3	
14+320	SMC	X																					6	4	
14+340	SMA	X																					4	3	
14+360	SMC	X																					10	2	
14+380	SMA	X																					9	3	
14+400	SMC		X	X					X											Ī			3	9	
14+420	SMA	X																		j			1	2	
14+440	SMC	X																İ		f			6	4	
14+460	SMA	X																İ		ı			2	2	
14+480	SMC	X																	T	T			2	2	
14+500	SMA	X																İ		ı			2	3	
14+520	SMC	X																İ		T			2	2	

		ÍNDICE DE GF	RAVIDADE GLO	BAL - IGG		
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	COEFICIENTE DE	ÍNDICE DE GRAVIDADE	OBSERVAÇÕES
I I EWI	NATUREZA DO DEFEITO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVAÇÕES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	4	15	0,2	3	
2	(FC-2) J, TB	5	19	0,5	10	
3	(FC-3) JE, TBE	0	0	0,8	0	
4	ALP,ATP	0	0	0,9	0	
5	O e P	0	0	1,0	0	
6	EX	0	0	0,5	0	
7	D	0	0	0,3	0	
8	R	0	0	0,6	0	
9	Média da flechas TRE e TRI (mm)	3,58	-	4/3*Média>30 IGI=40	4,77	
10	Variância da flechas TRE e TRI (mm)	5,18	-	1*Variância>50 IGI=50	5,18	
N° T(OTAL DE ESTAÇÕES INVENTARIADAS =	26	IGG (Somatório de	os IGI) =	23	CONCEITO: BON

Anexo 1.16: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-132

Rodovia:RS Segmento I		al 1	Trecl	no:	Cama	argo -	N. Al	vorada	ı			Reve	stim	ent	o: T	SD	Оре	erad	lor:	Rob	erto)	Data	24/02	2/2010
	Seção				FC-1	-			F(C-2	FC	2-3											Fle	chas	
Estaca	Terrapl.	ok	FI	ттс	TTL	TLC	TLL	TRR	J	ТВ	JE	ТВЕ	ALP	ATP	0	J	EX	Q	R	ALC	ATC	E	TRI	TRE	Obs.
12+680	SMA		X																				1	6	LD
12+700	SMC		X	X	X	X			X														1	14	LE
12+720	A		X	X	X	X										X							1	5	LD
12+740	A		X	X	X	X																	6	10	LE
12+760	A		X	X	X																		5	9	LD
12+780	PP		X	X					X														2	11	LE
12+800	A		X	X																			12	7	LD
12+820	A		X																				3	6	LE
12+840	BUEIR	O	X	X	X	X			X							X		X		X			15	8	LD
12+860	A		X	X																			1	2	LE
12+880	A		X	X	X				X														3	7	LD
12+900	A		X	X	X																		3	6	LE
12+920	A		X	X	X				X							X							10	16	LD
12+940	A		X	X	X																		2	7	LE
12+960	A		X	X	X	X	X		X														1	6	LD
12+980	PP		X	X	X	X	X																11	2	LE
13+000	PP				X				X							X			X				2	3	LD
13+020	SMC		X	X	X		X									X			X				16	2	LE
13+040	C		X	X	X				X														3	12	LD
13+060	C		X	X	X																		2	3	LE
13+080	C		X	X	X																		1	3	LD
13+100	SMC		X	X	X																		12	10	LE
13+120	SMC		X	X	X																		7	11	LD
13+140	SMC		X	X	X				X							X							2	4	LE

		ÍNDICE DE GI	RAVIDADE GLO	BAL - IGG		
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	COEFICIENTE DE	ÍNDICE DE GRAVIDADE	OBSERVAÇÕES
TTEAT	NATUREZA DO DEPETO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVAÇÕES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	15	58	0,2	12	
2	(FC-2) J, TB	9	35	0,5	17	
3	(FC-3) JE, TBE	0	0	0,8	0	
4	ALP,ATP	0	0	0,9	0	
5	O e P	6	23	1,0	23	
6	EX	0	0	0,5	0	
7	D	1	4	0,3	1	
8	R	2	8	0,6	5	
9	Média da flechas TRE e TRI (mm)	6,08	-	4/3*Média>30 IGI=40	8,11	
10	Variância da flechas TRE e TRI (mm)	19,99	-	1*Variância>50 IGI=50	19,99	
N° TC	OTAL DE ESTAÇÕES INVENTARIADAS =	26	IGG (Somatório do	os IGI) =	86	CONCEITO: RUIM

Anexo 1.17: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-132

Rodovia: El Segmento E		al 2	Trech	no:	Cama	argo -	N. Alv	orada/				Reve	stim	ento	o: T	SD	Оре	erado	or:F	ROB	ER	то	Data:	24/02	/2010
	Seção				FC-1				FC	-2	FC	-3											Fle	chas	
Estaca	Terrapl.	ok	FI	ттс	TTL	TLC	TLL	TRR	J	ТВ	JE	тве	ALP	ATA	0	Ь	EΧ	Q	2	ALC	ATC	Ή	TRI	TRE	Obs.
13+800	A		X		X																		4	5	LD
13+820	A		X	X	X				X														3	3	LE
13+840	A		X	X																			3	2	LD
13+860	A		X	X																			1	2	LE
13+880	SMC		X	X																			2	3	LD
13+900	SMA		X																				3	1	LE
13+920	SMC		X													X							2	1	LD
13+940	SMA		X																				1	1	LE
13+960	SMC	X																					1	2	LD
13+980	SMA	X																			_		2	4	LE
14+000	SMC	X																			_		2	2	LD
14+020	SMA		X																				3	2	LE
14+040	SMC	X																					4	4	LD
14+060	SMA	X																					6	7	LE
14+080	SMC		X	X					X							X							3	6	LD
14+100	SMA	X																					6	5	LE
14+120	SMC	X																					7	1	LD
14+140	SMA		X	X		X																	11	11	LE
14+160	SMC	X																					5	1	LD
14+180	SMA	X																					2	6	LE
14+200	SMC		X																				3	2	LD
14+220	SMA		X	X																			2	4	LE
14+240	A	X																					2	1	LD
14+260	A		X																				1	7	LE
14+280	A	X																					3	5	LD
14+300	A	X																					1	3	LE
14+320	SMC	X]			3	3	LD
14+340	SMA	X																					9	7	LE
14+360	SMC	X																T					11	1	LD
14+380	SMA	X																					3	8	LE
14+400	SMC		X	X	X																		5	7	LD
14+420	SMA		X																				1	4	LE
14+440	SMC	X																					3	6	LD
14+460	SMA	X																					5	3	LE
14+480	SMC	X																					2	1	LD
14+500	SMA	X																					3	4	LE
14+520	SMC	X																					1	1	LD

		ÍNDICE DE O	GRAVIDADE GL	OBAL - IGG		
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	COEFICIENTE DE	ÍNDICE DE GRAVIDADE	OBSERVAÇÕES
I I EWI	NATUREZA DO DEFEITO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVAÇÕES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	14	54	0,2	11	
2	(FC-2) J, TB	2	8	0,5	4	
3	(FC-3) JE, TBE	0	0	0,8	0	
4	ALP,ATP	0	0	0,9	0	
5	O e P	2	8	1,0	8	
6	EX	5	19	0,5	10	
7	D	0	0	0,3	0	
8	R	0	0	0,6	0	
9	Média da flechas TRE e TRI (mm)	3,58	-	4/3*Média>30 IGI=40		
10	Variância da flechas TRE e TRI (mm)	6,40	-	1*Variância>50 IGI=50	6,40	
N° TO	OTAL DE ESTAÇÕES INVENTARIADAS =	26	IGG (Somatório d	os IGI) =	43	CONCEITO: REGULAI

Anexo 1.18: Deflexões (mm⁻²) - Viga Benkelman - ERS-132 (Segmento experimental 1)

ESTACA					DA	TA				
ESTACA	4/7/2000	07/10/2001	30/10/2002	2/7/2003	11/03/2003	12/03/2004	4/10/2006	08/04/2007	24/03/2009	23/02/2010
12+680				40	42	31	44	46	46	54
12+700	60	56	58	43	33		31	55	84	62
12+720	42	60	68	51	43	49	53	48	48	66
12+740	90	93	91	83	30	86	72	34	93	110
12+760	90	85	93	80	46	89	91	86	100	112
12+780	49	40	61	70	19	35	33	86	35	45
12+800	68	89	64	49	54	71	64	65	45	74
12+820	83	62	71	67	24	61	62	35	84	89
12+840									77	77
12+860	72	59	63	51	20	52	44	76	89	67
12+880	56	52	54	53	53	42	53	49	49	73
12+900	76	48	70	65	29	68	88	63	122	108
12+920	84	88	102	93	46	20	100	121	134	134
12+940	71	71	77	70	23	80	75	77	110	107
12+960	75	48	44	30	21	41	39	33	38	45
12+980	66	43	49	25	34	51	39	46	84	65
13+000	52	41	41	41	41	31	33	102	33	56
13+020	43	36	50	61	25		41	53	86	78
13+040	53	47	34	31	36	89	95	61	99	123
13+060	54	58	60	48	26		44	47	51	73
13+080	50	70	71	48	54	68	62	44	61	89
13+100	65	63	70	50	40		86	68	86	107
13+120	51	41	53	51	60	91	79	61	95	103
13+140							61	58	77	89
13+160									62	75

Anexo 1.19: Deflexões (mm⁻²) - Viga Benkelman - ERS-132 (Segmento experimental 2)

ECTACA		, , , -8 – .		-	DA	TA				
ESTACA -	4/7/2000	07/10/2001	30/10/2002	2/7/2003	11/03/2003	12/03/2004	4/10/2006	08/04/2007	24/03/2009	23/02/2010
13+860	50	66	70	51	45	62	54	80	58	73
13+880	53	51	64	52	47	34	74	51	95	67
13+900	61	50	61	51	28	61	30	51	65	71
13+920	82	81	68	51	60	56	65	62	84	56
13+940	41	71	71	61	27	78	60	55	69	77
13+960	46	51	45	37	33	43	41	51	70	35
13+980	60	70	71	52	19	54	35	64	59	78
14+000	62	59	61	61	54	60	50	53	80	73
14+020	69	60	67	61	51	81	33	55	66	66
14+040	81	90	74	70	60	42	57	59	95	74
14+060	51	80	67	69	28	61	75	58	32	68
14+080	68	90	83	91	81	90	78	76	117	90
14+100	46	70	67	48	18	71	60	69	57	59
14+120	52	50	54	30	37	30	27	34	56	56
14+140	56	68	80	61	56	54	57	61	79	113
14+160	53	51	45	42	30	36	31	34	61	55
14+180	40	49	49	49	18	53	52	75	60	96
14+200	53	60	54	61	49	53	49	55	57	65
14+220	47	47	60	41	15	51	22	64	55	71
14+240	52	77	61	51	49	53	52	55	87	78
14+260	50	51	63	42	22	43	28	56	59	93
14+280	62	69	69	52	53	66	66	64	102	77
14+300	41	48	50	40	29	53	47	46	58	70
14+320	51	50	53	44	31	42	47	44	77	51
14+340	41	48	66	41	42	81	37	57	55	59
14+360	71	70	64	61	53	45	55	55	78	68
14+380	94	112	107	100	30	71	85	48	79	81
14+400	58	72	83	113	99	102	101	120	135	113
14+420	60	68	62	68	74	49	70	26	81	71
14+440	72	112	71	80	80	80	80	78	123	112
14+460	51	60	54	31	20	51	48	64	57	66
14+480	50	51	53	48	44	41	42	53	77	55
14+500	47	51	61	60	22	25	33	50	51	70
14+520	51	60	59	51	49	33	45	45	80	67

Anexo 1.20: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-536

Rodovia: E Segmento e								R-285				Reve						erado)		Data	21/03	3/07
- ŭ	Seção				FC-1				FC	2-2	FC	:-3											Fle	chas	
Estaca	Terrapl.	ok	FI	TTC		TLC	TLL	TRR	J	ТВ		TBE	ΑL	ΑT	0	<u>_</u>	EX	۵	~	ΑL	AT	田	TRI	TRE	Obs.
0+000	PP		X										7	7	Ť		_			7	7		9	16	LD
0+020	A						X		X														3	7	LE
0+040	A	X																					3	4	LD
0+060	A	X																					7	3	LE
0+080	A	X																					4	2	LD
0+100	A	X																					3	4	LE
0+120	A	X																					3	3	LD
0+140	A	X																					3	4	LE
0+160	A	X																					5	3	LD
0+180	A	X																					6	6	LE
0+200	A	X																					4	4	LD
0+220	A	X																					7	6	LE
0+240	A	X																					5	6	LD
0+260	A	X																					6	7	LE
0+280	A	X																					5	5	LD
0+300	A	X																					4	8	LE
0+320	A	X																					6	4	LD
0+340	A	X																					4	8	LE
0+360	A	X																					6	3	LD
0+380	A	X																					4	4	LE
0+400	A	X																					6	4	LD
0+420	A	X																					10	3	LE
0+440	A	X																					3	3	LD
0+460	A	X																					9	4	LE
0+480	SMA	X																					4	4	LD
0+500	SMC	X																					7	5	LE
0+520	SMA	X																					10	4	LD
0+540	SMC	X																					7	7	LE
0+560	SMA	X																					7	7	LD
0+580	A	X																					12	3	LE
0+600	A	X																					6	4	LD
0+620	A	X																					9	7	LE
0+640	A	X																					8	5	LD
0+660	A	X																					9	11	LE
0+680	A	X																					9	4	LD
0+700	A	X																					11	6	LE
0+720	SMA	X																					4	5	LD
0+740	SMC	X																					12	3	LE
0+760	SMA	X																					5	2	LD
0+780	SMC	X																					5	3	LE

ÍNDICE DE GRAVIDADE GLOBAL - IGG						
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	COEFICIENTE DE	ÍNDICE DE GRAVIDADE	OBSERVAÇÕES
		OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	2	5	0,2	1	
2	(FC-2) J, TB	1	2	0,5	1	
3	(FC-3) JE, TBE	0	0	0,8	0	
4	ALP,ATP	0	0	0,9	0	
5	O e P	0	0	1,0	0	
6	EX	0	0	0,5	0	
7	D	0	0	0,3	0	
8	R	0	0	0,6	0	
9	Média da flechas TRE e TRI (mm)	5,77	=	4/3*Média>30 IGI=40	7,69	
10	Variância da flechas TRE e TRI (mm)	8,25	=	1*Variância>50 IGI=50	8,25	
N° TOTAL DE ESTAÇÕES INVENTARIADAS =		41	IGG (Somatório dos IGI) =		18	CONCEITO: ÓTIMO

Anexo 1.21: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-536

Rodovia: E Segmento e	RS-536 experimenta		Trecl	no: Ca	ibaté -	Entro	nc. B	R-285				Reve	stime	ento:	TSD)	Ope	rado	r: Ol	ênio			Data:	21/03	3/07
E-4	Seção				FC-1				FC	C-2	FC	:-3											Fle	chas	
Estaca	Terrapl.	ok	FI	TTC	TTL	TLC	TLL	TRR	J	TB	JE	TBE	ΑL	ΑT	0	Ь	EX	Q	R	ΑL	AT	Ξ	TRI	TRE	Obs.
8+340	A	X																					8	9	LE
8+360	A		X				X		X														4	3	LD
8+380	C	X																					12	5	LE
8+400	C	X																					4	3	LD
8+420	A	X																					6	11	LE
8+440	A		X										X										8	11	LD
8+460	A		X																				14	21	LE
8+480	A		X						X														7	10	LD
8+500	A		X																				10	18	LE
8+520	A		X				X		X														6	10	LD
8+540	A		X				X		X														9	19	LE
8+560	A		X						X														3	8	LD
8+580	A		X				X		X														3	6	LE
8+600	A		X										X										7	20	LD
8+620	A		X				X				X					X							3	24	LE
8+640	A		X				X																8	15	LD
8+660	A		X																				9	9	LE
8+680	A		X				X						X										9	18	LD
8+700	A		X																				9	12	LE
8+720	A		X						X														8	9	LD
8+740	A	X																					10	8	LE
8+760	A								X														3	6	LD
8+780	A		X										X										13	12	LE
8+800	A										X		X			X							6	45	LD

		ÍNDICE D	E GRAVIDADE	GLOBAL - IGG			
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	COEFICIENTE DE	ÍNDICE DE GRAVIDADE	OBSERVAC	ŶĨĘĊ
111241	NATOREZA DO DEFETO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVA	,OLD
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	9	39	0.2	8		
2	(FC-2) J, TB	8	35	0.5	17		
3	(FC-3) JE, TBE	2	9	0.8	7		
4	ALP,ATP	5	22	0.9	20		
5	O e P	2	9	1.0	9		
6	EX	0	0	0.5	0		
7	D	0	0	0.3	0		
8	R	0	0	0.6	0		
9	Média da flechas TRE e TRI (mm)	10.30	-	4/3*Média>30 IGI=40	13.73		
10	Variância da flechas TRE e TRI (mm)	53.91	-	1*Variância>50 IGI=50	50.00		
N° TOTAI	L DE ESTAÇÕES INVENTARIADAS =	23	IGG (Somatório do	os IGI) =	124	CONCEITO:	RUIM

Anexo 1.22: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-536

Rodovia: E Segmento e						- Entr.						Reves						erado)		Data	20/11	1/2008
	Seção				FC-1				FC	C-2	FC	:-3											Fle	chas	
Estaca	Terrapl.	ok	FI	TTC		TLC	TLL	TRR	J	TB		TBE	ΑL	ΑT	0	<u>_</u>	EX	۵	~	ΑL	AT	豆	TRI	TRE	Obs.
0+000	A	X											7	7						7	7		1	3	LD
0+020	A	X																					4	2	LE
0+040	A	X																					2	4	LD
0+060	A	X																					2	4	LE
0+080	A	X																					1	2	LD
0+100	A	X																					3	3	LE
0+120	A	X																					2	5	LD
0+140	A	X																					5	4	LE
0+160	A	X																					3	2	LD
0+180	A	X																					2	7	LE
0+200	A	X																					3	5	LD
0+220	A																	X					2	5	LE
0+240	A	X																					2	3	LD
0+260	A	X																					2	2	LE
0+280	A	X																					4	8	LD
0+300	A																						3	5	LE
0+320	A																	X					3	12	LD
0+340	A	X																					3	5	LE
0+360	A		X				X																7	7	LD
0+380	A		X				X																4	3	LE
0+400	A																	X					4	11	LD
0+420	A		X				X																2	3	LE
0+440	A																	X					3	3	LD
0+460	SMC	X																					4	3	LE
0+480	SMA	X																					5	4	LD
0+500	SMC	X																					2	2	LE
0+520	SMA	X																					4	2	LD
0+540	SMC	X																					7	2	LE
0+560	SMA	X																					4	8	LD
0+580	SMC	X																					4	2	LE
0+600	SMA		X																				10	4	LD
0+620	SMC		X	X					X														8	9	LE
0+640	SMA	X																					5	10	LD
0+660	SMC		X	X					X														10	13	LE
0+680	SMA	X																					8	3	LD
0+700	SMC																	X					12	7	LE
0+720	SMA	X																					4	8	LD
0+740	SMC		X	X					X									X					4	4	LE
0+760	С		X	X			X		X														8	15	LD
0+780	SMC		X	X			X		X										X				13	4	LE

		ÍNDICE D	E GRAVIDADE	GLOBAL - IGG			
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	FATOR DE	ÍNDICE DE GRAVIDADE	OBSERVAC	Ϋ́ES
11121	NATORIZA DO DEL EITO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVAÇ	OLS
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	4	10	0,2	2		
2	(FC-2) J, TB	5	13	0,5	6		
3	(FC-3) JE, TBE	0	0	0,8	0		
4	ALP,ATP	0	0	0,9	0		
5	O e P	0	0	1,0	0		
6	EX	0	0	0,5	0		
7	D	6	15	0,3	5		
8	R	1	3	0,6	2		
9	Média da flechas TRE e TRI (mm)	4,84	-	4/3*Média>30 IGI=40	6,45		
10	Variância da flechas TRE e TRI (mm)	9,95	-	1*Variância>50 IGI=50	9,95		
N° TOTA	L DE ESTAÇÕES INVENTARIADAS =	40	IGG (Somatório do	os IGI) =	31	CONCEITO:	вом

Anexo 1.23: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - ERS-536

Rodovia: E Segmento e		վ 2	Trech	no: Ca	ibaté -	Entr.	BR-2	85				Reve	stime	ento:	TSE)	Ope	rado	r: Ol	ênio			Data:	20/1	1/2008
Estaca	Seção				FC-1				FO	C-2	FC	C-3											Fle	chas	
Estaca	Terrapl.	ok	FI	TTC	TTL	TLC	TLL	TRR	J	TB	JE	TBE	ΑL	$\mathbf{A}\mathbf{T}$	0	Ы	ΕX	q	R	\mathbf{AL}	$\mathbf{A}\mathbf{T}$	区	TRI	TRE	Obs.
8+340	A	X																					9	9	LE
8+360	SMA		X	X			X		X														2	5	LD
8+380	C		X	X			X		X														8	5	LE
8+400	C		X	X			X		X														2	8	LD
8+420	A		X				X		X														3	10	LE
8+440	A		X	X			X		X										X				5	8	LD
8+460	A		X	X			X		X										X				10	15	LE arranc.
8+480	A		X	X			X		X										X				11	4	LD
8+500	A		X	X		X	X		X														8	21	LE
8+520	A		X	X			X		X														4	12	LD
8+540	A		X	X		X	X		X										X				8	17	LE
8+560	A		X	X			X		X										X				4	12	LD
8+580	A		X	X			X		X														10	4	LE arranc.
8+600	A		X	X			X		X										X				10	12	LD
8+620	A		X	X			X		X														8	8	LE
8+640	A		X				X		X														4	15	LD
8+660	A		X				X		X														6	20	LE
8+680	A		X	X			X		X										X				7	16	LD
8+700	A			X			X		X														8	18	LE
8+720	A		X	X			X		X										X				4	6	LD
8+740	A			X			X		X														9	18	LE
8+760	A		X	X			X		X														6	8	LD
8+780	A			X			X		X														3	16	LE
8+480	A		X	X			X		X										X				9	2	LD

		ÍNDICE DE	GRAVIDADE G	LOBAL - IGG			
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	FATOR DE	ÍNDICE DE GRA VIDA DE	OBSERVAC	YÕES.
111201	NATUREZA DO DEFEITO	OCORRËNCIA S	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVAÇ	OLS
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	0	0	0,2	0		
2	(FC-2) J, TB	23	96	0,5	48		
3	(FC-3) JE, TBE	0	0	0,8	0		
4	ALP,ATP	0	0	0,9	0		
5	O e P	0	0	1,0	0		
6	EX	0	0	0,5	0		
7	D	0	0	0,3	0		
8	R	9	38	0,6	23		
9	Média da flechas TRE e TRI (mm)	8,90	-	4/3*Média>30 IGI=40	11,86		
10	Variância da flechas TRE e TRI (mm)	19,47		1*Variância>50 IGI=50	19,47		
N° TOTA	L DE ESTAÇÕES INVENTARIADAS =	24	IGG (Somatório do	os IGI) =	102	CONCEITO:	RUIM

Anexo 1.24: Deflexões - Viga Benkelman - ERS-536

Segmento ex	: Deflexões - Viga Benkelman - El perimental 1	
Estaca	janeiro/2005 (mm ⁻²)	15/02/2007 (mm ⁻²)
0+000	Janeno/2005 (mm)	49
0+020		86
0+040		40
0+060		24
0+080		135
0+100	80	25
0+120		78
0+140 0+160		26 115
0+180		25
0+200	95	77
0+220		66
0+240		42
0+260		37
0+280		48
0+300	60	26
0+320		34 21
0+340 0+360		55
0+380		25
0+400	88	41
0+420		21
0+440		41
0+460		19
0+480		41
0+500	40	22
0+520		47
0+540 0+560		22 31
0+580		21
0+600	60	40
0+620		46
0+640		31
0+660		55
0+680	00	39
0+700 0+720	80	37 40
0+720		46
0+760		44
0+780		30
Segmento ex	perimental 2	•
Estaca		15/02/2007 (mm ⁻²)
8+340		30
8+360		29
8+380		54
8+400		41
8+420		30
8+440		47
8+460		51
8+480		57
8+500 8+520		42 69
8+540		124
8+560		54
8+580		128
8+600		44
8+620		137
8+640		37
8+660		43
8+680		43 91
Q 1 700		
8+700 8+720		50
8+720		50 128
8+720 8+740		128
8+720		

Anexo 1.25: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - 392AM9100 Ac.Sete de Set.

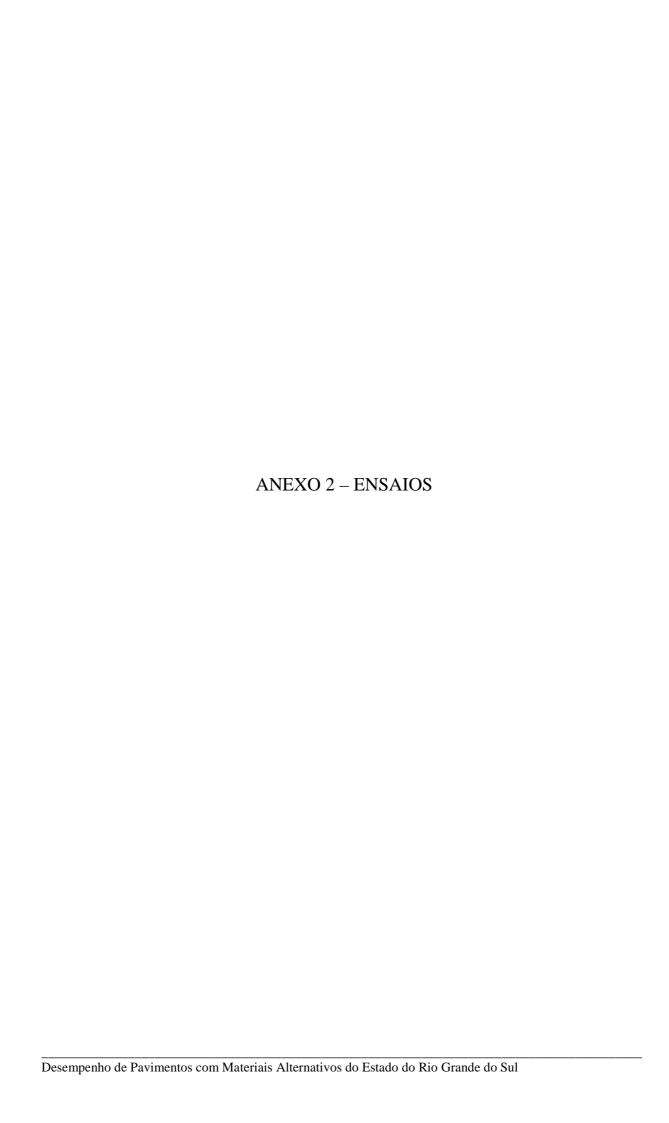
Rodovia: 392 AM 9100 Trecho: Sete de Setembro - Entronc. BR-392 Revestimento: TSD Data: 04/05/2007 FC-2 FC-3 Flechas Secão Estaca FI TTC TTL TLC TLL TRR J TB JE TBE TRI TRE Obs. Terrapl 0+500 SMA X 5 11 LD X X X 9 0+520 SMC X X 6 LE X 7 LD X X X X 3 0+540SMA 0+560 SMC X X X X X 7 7 LE 0+580 SMA X X X X 4 11 LD X 10 22 LE 0+600PP X 7 X 0+620A X 7 LD 0+640 Α X X X 10 9 LE 0+660 X X X X 9 12 LD Α X X 0+680 X 6 8 LE Α 0+700A X X 13 16 LD 0+720 X X X X 8 LE A X 6 0+740 X X 5 13 LD Α X X 9 0+760A X X 15 LE 0+780 X X X X 7 8 LD SMC X X X 0+800 X X 6 LE 0+820SMA X X X X 6 12 LD 0+840C X \mathbf{X} X X 9 10 LE 0+860 X X X X 13 LD 6 X LE X X 9 12 0+880X Α X 0+900A X 6 4 LD 0+920 Α X X X X 3 7 LE 0+940 X X X X 5 8 LD Α X X 0+960C X X X 5 8 LE 0+980C \mathbf{X} X 4 12 LD 1+000 SMC X X 10 13 LE X X X 1+020SMA 5 10 LD 1+040 SMC X X X 10 12 LE 1+060 X X 11 LD Α 1+080Α X X X X 7 4 LE 9 1+100A X X X X 10 LD 1+120 A X X X 7 15 LE 1+140 X X 4 13 LD Α X 4 15 1+160 Α X X X LE 1+180 X X X X 4 17 LD 1+200 Α X X 4 15 LE X LD 1+220 PP X 3 7 1+240C X X \mathbf{X} X 6 4 LE 1+260 С X X X X 9 16 LD X 7 1+280 С X X X X X 10 LE X X 9 1+300 C X X 14 LD 1+320 C X X X X 4 8 LE 1+340 SMC X X X X 8 7 LD X X X X 1+360SMA 10 13 LE 1+380SMC X X X X X X 9 15 LD 1+400 X X 7 4 LE A X X X X 1+420 SMC X X 12 15 LD 10 X 7 LE 1+440 C X 1+460 SMC X X 10 14 LD 1+480 16 LE SMA X 8 SMC 4 12 1+500

		ÍNDICE DE G	RAVIDADE GLO	BAL - IGG			
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	FATOR DE	ÍNDICE DE GRAVID	OBSERVA	CÕEC
11 Eavi	NATUREZA DO DEFEITO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVA	ÇOES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	6	12	0,2	2		
2	(FC-2) J, TB	30	59	0,5	29		
3	(FC-3) JE, TBE	12	24	0,8	19		
4	ALP,ATP	0	0	0,9	0		
5	O e P	10	20	1,0	20		
6	EX lev 15	5	10	0,5	5		
7	D lev 45	5	10	0,3	3		
8	R	16	31	0,6	19		
9	Média da flechas TRE e TRI (mm)	8,90	-	4/3*Média>30 IGI=40	11,87		
10	Variância da flechas TRE e TRI (mm)	14,40	-	1*Variância>50 IGI=50	14,40		
N° TOTA	L DE ESTAÇÕES INVENTARIADAS =	51	IGG (Somatório do	os IGI) =	123	CONCEITO :	RUIM

Anexo 1.26: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - 392AM9100 Ac. Sete de Set.

	Seção				FC-1				FC	1-2	FC	-3											Flo	chas	
Estaca	Terrapl.	ok	FI	TTC		TLC	TLL	TRR	J	TB	JE	TBE	Ψ	Υ			EX	_		ΥΓ	ΥL			TRE	Obs
0+500	SMA	OIL		110	112	ILC	1111	TICK		12	0.L	TDL	٧	٧	0	I	Ŧ	X	K	٧	٧	H	2	10	LE
0+520	SMC		X	X			X		X									X					5	8	LD
0+540	SMA		- 1				- 1		21									X					2	8	LE
0+560	SMC		X	X			X		X							X			X				7	12	LD
0+580	SMA		X			X			X							X			X				3	5	LE
0+600	PP		X	X		21	X		X							71			71				8	11	LD
0+620	A	X																					5	8	LE
0+640	A	X																					2	2	LD
0+660	A		X	X			X		X														5	12	LE
0+680	A		X	X			X		X														11	11	LD
0+700	A		X	X			X		X														7	7	LE
0+720	A		X		X		X		X														5	13	LD
0+740	A		X		X		X		X														9	14	LE
0+760	A		X		X		X		X									X					5	9	LD
0+780	A		X		X		X		X									<u> </u>					7	7	LE
0+800	SMC		X		X		X		X														2	8	LD
0+820	SMA		X	1			X		X														2	7	LE
0+840	C		X	X			X		X														12	10	LD
0+860	C		X	X					21									X	X				4	10	LE
0+880	A		X	- 21	X		Х		X									21	- 11				8	9	LD
0+900	A		X	X			X		X														11	15	LE
0+920	A		Λ	Λ			Λ.		Λ.							X			X				4	7	LD
0+940	A		X		X		X		X							Λ			Λ				3	10	LE
0+960	C		X	X			X		X										X				4	9	LD
0+980	C		X	X			X		X										21				4	8	LE
1+000	SMC		X		X		X		X														5	13	LD
1+020	SMA		X	X			X		X														9	10	LE
1+040	SMC		X	X			X		X														5	8	LD
1+060	A		X		X		X		X														6	7	LE
1+080	A		X		X		X		X														2	5	LD
1+100	A		X	X			X		X														5	8	LE
1+120	A		X	X															X				2	4	LD
1+140	A		X		X		X		X										X				4	11	LE
1+160	A		X		X		X		X										X				5	13	LD
1+180	A		X	Х			X		X														4	15	LE
1+200	A		X	- · ·	X		X		X														3	4	LD
1+220	PP		X		X		X		X														4	13	LE
1+240	A		X	X			X		X										X				9	9	LD
1+240	A		X		X	1	X		X										X				8	13	LE
1+280	A		X	Х	71		X		X														4	17	LD
1+300	A		X	X			X		X										X				10	25	LE
1+320	A		X	X		1	X		X														5	15	LD
1+340	SMC		X	X			X		X														3	10	LE
1+360	SMA		X		X		X		X										X				7	17	LD
1+380	SMC		X		X		X		X														9	14	LE
1+400	A		X	X			X		X														5	17	LD
1+420	SMC		X	X		1	X		X														12	3	LE
1+440	C		X	X		1	X		X														7	17	LD
1+460	SMC	X				1			21														7	2	LE
1+480	SMA	Λ	X	X			X		X														8	14	LD
1+480	SMC	X	Λ	Λ		-	Λ		Λ	-													10	2	LE

		ÍNDICE DE G	RAVIDADE GLO	OBAL - IGG			
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	FATOR DE	ÍNDICE DE GRAVII	OBSERVAC	ÕES
111201	NATUREZA DO DEFEITO	OCORRÊNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVAÇ	,013
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	2	4	0,2	1		
2	(FC-2) J, TB	42	82	0,5	41		
3	(FC-3) JE, TBE	0	0	0,8	0		
4	ALP,ATP	0	0	0,9	0		
5	OeP	3	6	1,0	6		
6	EX	0	0	0,5	0		
7	D	5	10	0,3	3		
8	R	12	24	0,6	14		
9	Média da flechas TRE e TRI (mm)	7,95	-	4/3*Média>30 IGI=40	10,60		
10	Variância da flechas TRE e TRI (mm)	14,40	-	1*Variância>50 IGI=50	14,40		
N° TOTAI	L DE ESTAÇÕES INVENTARIADAS =	51	IGG (Somatório do	os IGI) =	90	CONCEITO:	RUIM


Anexo 1.27: LEVANTAMENTO SUPERFICIAL DE DEFEITOS - DNIT 006/2003-PRO - 392AM9100 Ac. Sete de Set.

	Seção				FC-1				FC	-2	FC	-3											Fle	chas	
Estaca	Terrapl.	ok	FI	TTC	TTL	TLC	TLL	TRR	J	TB	JE	TBE	ΑL	ΑT	0	<u> </u>	EΧ	۵	×	ΑL	ΑT	<u></u>	TRI	TRE	o
+500	SMA		X	X			X		X														2	9	I
+520	SMC		X		X		X		X														2	12	1
+540	SMA		X		X		X		X														1	6]
+560	SMC		X		X		X		X														7	7	
+580	SMA		X	X			X		X														3	11]
+600	PP		X				X		X														13	24	
+620	A		X	X					X														3	5	1
+640	A		X		X		X		X										X				4	8	
+660	A		X				X		X										X				6	9	
+680	A		X				X		X														5	7	
+700	A		X	X			X		X														5	11	
+720	A		X						X									X	X				9	9	
+740	A		X	X			X		X														2	11	
+760	A		X	X			X		X														10	18	
+780	A		X	X			X		X														3	6	
+800	SMC		X		X		X		X														5	12	
+820	SMA		X	X			X		X									X					3	9	
+840	С		X	X			X		X										X				10	8	L
+860	C		X	X			X		X														2	11	
+880	A		X		X		X		X										X				10	9	
+900	A		X	X		X			X										X				2	3	
+920	A		X	X					X										X				3	8	
+940	A		X	X		X	X		X										X				1	8	
+960	C		X		X		X		X														11	7	
+980	C	X																					2	11	L
+000	SMC		X	X			X		X														9	13	
+020	SMA		X	X			X		X														4	10	
+040	SMC		X		X		X		X										X				7	13	
+060	A		X		X	X			X										X				7	11	L
+080	A		X			X			X														4	5	L
+100	A		X	**		X	**		X										**				2	7	L
+120	A		X	X			X		X										X				4	11	
+140	A		X	X	X		X		X										X				5	17	ŀ
+160	A																		A					14	-
+180	A A		X	-	X		X		X			-					-						3	18 16	
+200	PP		X		X		X		X														1	9	t
+240	A A		X	X	Λ		X		X										X				5	4	F
+240	A		X	X			X		X	1									X				5	13	
+280	A		X	Α	X		X		X	1									X				3	16	F
+300	A		X	X	Λ		X		X										X				4	12	
+320	A	-	X	Α		X	X		X			1							X				2	8	Ħ
+340	SMC	-	X	-		Λ.	X		X			1							21				2	9	h
+360	SMA	-	X	X			X		X			1											7	15	H
+380	SMC		X				X		X	l									X				7	14	l.
+400	A	-	X	X			X					1						X	X				3	3	H
+420	SMC		X			X	X		X								-	Λ.	X			 	7	16	h
+440	C		X	X		- 11	X		X			-							21				5	7	F
+460	SMC	-	X	X		X			X			1											7	14	t
+480	SMA		X			Λ			X										X				3	8	r
+500	SMC		X	-	—	X			X	1	 	 	-	-	-	-	1	├		!	-	1	2	12	H

		ÍNDICE DE G	RAVIDADE GLC	BAL - IGG			
ITEM	NATUREZA DO DEFEITO	NÚMERO DE	FREQUENCIA	FATOR DE	ÍNDICE DE GRA VII	OBSERVA	CÕES
I I EWI	NATUREZA DO DEFEITO	OCORRËNCIAS	RELATIVA	PONDERAÇÃO	INDIVIDUAL(IGI)	OBSERVA	ÇOES
1	(FC-1) FI,TTC, TTL,TLC,TLL,TRR	10	20	0,2	4		
2	(FC-2) J, TB	49	96	0,5	48		
3	(FC-3) JE, TBE	0	0	0,8	0		
4	ALP,ATP	0	0	0,9	0		
5	O e P	0	0	1,0	0		
6	EX	0	0	0,5	0		
7	D	3	6	0,3	2		
8	R	21	41	0,6	25		
9	Média da flechas TRE e TRI (mm)	7,6	-	4/3*Média>30 IGI=40			
10	Variância da flechas TRE e TRI (mm)	13,01	-	1*Variância>50 IGI=50	13,01		
N° TOTA	L DE ESTAÇÕES INVENTARIADAS =	51	IGG (Somatório do	os IGI) =	91	CONCEITO:	RUIM

Anexo 1.28: Deflexões - Viga Benkelman - Acesso a Sete de Setembro - 392AM91

		Acesso a Sete de Setembro - 392AM9
Estaca	julho/2000	março/2010
0+500	43	56
0+520	11	18
0+540	102	49
0+560	43	40
0+580	91	60
0+600	63	38
0+620	53	39
0+640	33	27
0+660	53	49
0+680	61	26
0+700	64	60
0+720	30	17
0+740	30	56
0+760	30	27
0+780	43	51
0+800	34	18
0+820	52	23
0+840	53	35
0+860	71	35
0+880	41	35
0+900	52	36
0+920	30	36
0+940	41	20
0+960	30	48
0+980	41	27
1+000	30	23
1+020	61	27
1+040	34	46
1+060	33	28
1+080	49	35
1+100	41	22
1+120	39	16
1+140	31	39
1+160	43	47
1+180	23	22
1+200	33	23
1+220	29	27
1+240	51	19
1+260	49	25
1+280	44	30
1+300	30	31
1+300	51	35
1+340	34	22
1+340	41	40
1+300	50	26
1+380	34	26
1+400	52	30
1+420	91	39
	60	
1+460	44	37
1+480	76	27
1+500	/0	17

Anexo 2.1: Resultados dos ensaios triaxiais cíclicos - Cálculo dos módulos de resiliência utilizando três modelos - ERS-101 (PLINTOSSOLO) - Base Relação entre os módulos de resiliência calculados com os valores de módulo de resiliência encontrados nos ensaios

00000	alon one color and color	o of others	Medula de medita	Medulo	- 3	Coloniados	Dasc. II-12,070	_	OT HIS INS - OIN SINE SE
Kesultados	Resultados dos ensaios triaxiais ciclicos	s ciclicos	,	Modulo	Modulo de resiliencia Calculados	alculados		Relação entre Resultados dos Modulos de Resiliência - ENSAIO x CALCULADOS	cia - ENSAIO x CALCULADO
Tensão confinante (kPa)	Tensão desvio (kPa)	Módulo de resiliência (Mpa)	Mode $M\mathbf{r} = k_1 \mathbf{p}_a(\boldsymbol{\theta}/\mathbf{p}_a)^{k2}$	Modelo de Uzan $= k_1 p_a(\theta/p_a)^{k_2} ((\mathfrak{T}_{\infty e} p_a) + 1)^{k_3}$ M	Modelo k-theta $ = k_1(\theta/p_a)^{k2} \text{ (MPa)} $	Modelo k-theta Modelo utilizando a tensão confinante $Mr = k_I(\theta/\rho_a)^{k2} \ (MPa)$ $Mr = k_I\sigma_3^{k2} \ (MPa)$	onfinante (MPa)	(9037) ERS-101	L10 K7 LN/m3
21	19	34	34		33	36		160	
21	37	34	36		37	36			4,46 y = 0,97x + 1,40
21	56	38	38		40	36		$\mathbf{R}^2 = 0, 97$	
35	31	47	45		42	46		nladd 120	
35	79	44	77		40	46		3alcu 100	
69	62	90	÷ 2		28	40		S siz	
69	124	59	09		63	62			noz
-								of Section 1	ozam
									——Linear (Uzan) ——Linear (k-theta) ——Linear (Série3)
								2 0 40 60 80 100 Módulo de Resiliência ensaio (MPa)	100 120 140 160
			ERS-101 E	S-101 Bacopari-Mostardas		Estaca 85+780	Base: h=10,5%	5% γ_{i} =19,67kN/m ³	
Resultados	Resultados dos ensaios triaxiais cíclicos	s cíclicos		Módulo	nci	Calculados			cia - ENSAIO x CALCULADO
Tensão confinante	Tensão desvio	Módulo de resiliência	$Mode$ $Mr = k_1 p_a(\theta/p_a)^{k2}$	g g	Modelo k-theta	Modelo utilizando a tensão confinante	onfinante	(9034) ERS-101	
(M. d)	(AT d)	(141pa) 75	(MPa)		TA TENENTS			85+780 BASE h=10,5% ?	=19,67 kN/m ³
21	37	73	1 82		+ ×	2/8/2		y = 0.954x + 4.510	y = 0.9122x + 8.7228
21	56	77	82		81	78		$R^2 = 0.937$	$\mathbf{R}^2 = 0.874$
35	31	06	84		84	68) obs	
35	62	88	68		68	68			
33	93	96	94		94	68	T	oin c	100
69	124	104	108	~	108	105		silière de la constant de la constan	□ Uzan
69	186	120	113	3	113	105		06 ay	◇ K-tneta A Tensão confinante
103	62	108	110		111	115		08	—Linear (Uzan)
103	186	119	120		120	115			——Linear (K-theta)
138	93	117	120		121	124		011 001 00 08 02 09	021 021 021 021
138	124	119	123	8	123	124		Módulo de Resili	001 001
			ERS-101 F	ERS-101 Bacopari-Mostardas		Estaca 85+780	Base: h= 9,0%	$1\% \gamma_{d} = 19,67 \text{kN/m}^{3}$	
Resultados	Resultados dos ensaios triaxiais cíclicos	s cíclicos		Módulo	Módulo de resiliência Calculados	Calculados		Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS	cia - ENSAIO x CALCULADO
Tensão confinante	Tensão desvio	Módulo de resiliência	$Mode$ $Mr = k_1 p_a(\theta/p_a)^{k2}$	Modelo de Uzan $= k_1 p_a(\theta/p_a)^{k2} ((\tau_{ce}(p_a)+1)^{k3})$ M	Modelo k-theta	Modelo utilizando a tensão confinante $Mr = k \cdot \sigma_s^{k2}$ (MPa)	onfinante (MPa)	9034)	
(KF4)	(KF4)	(Mpa)	(MP		- h(U/Pa) (ME d)	mi – klo3	(mra)	5+780 BASE h=9%	h=9% yd=19,67 kN/m3
21	42	74	77		± =	27		y = 0.904x + 9.460 $y = 0.8841x + 11,494$	y = 0.7534x + 24.396
21	42	85	2/		77	72		$R^2 = 0.914$ $R^2 = 0.9195$	$R^2 = 0.7869$
35	35	72	78		08	88) obs	•
35	70	88	88		68	88			>
35	105	100	86		96	88		021 si si c	•
53	53	83	92		96	104		onŝili S	T
53	159	103	311	. ~	115	104		Kesz S	
70	70	103	103		109	116		esp of	▲ Tensão confinante ——Linear (Uzan)
70	140	115	120		120	116		Modulu S	— Linear (k-theta)
70.	210	136	130	10.0	129	116		D 22	(amain mana)
105	210	145	123	~ 15	129	137		60 70 80 90 100 110 120	20 130 140 150 160
201	21	717	-						

Anexo 2.2: Resultados dos ensaios triaxiais cíclicos - Cálculo dos módulos de resiliência utilizando três modelos - ERS-101 (PLINTOSSOLO) - Sub-base Relação entre os módulos de resiliência calculados com os valores de módulo de resiliência encontrados nos ensaios

Sub-Base: h=11,0%	Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS	(9035)ERS-101 85+780 SUB-BASE h=11,0% Y ₂ =18,822 kN/m ³	300 $x = 1.002x - 0.202$	(A 260 R ² = 0.986 R ² = 0.90 R ² = 0.989	240	Cult 120	8 28	8 2	120	b 6 60 Communication of the co	Modul 40 —Linear (Uzun) —Linear (kebu)	0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300	Módulo de Resiliència ensaio (MPa)	Sub-Base: h=9,4% γ_{i} =18,82kN/m ³	Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS	35) ERS	300 83+/80 3 UB-BASE n=9,4% 7 _d =18,82	y = 0.9879x + 1.2876 $y = 0.9879x + 1.2876$	$R^2 = 0.9548$ $R^2 = 0.9511$	So So So So So So So So So So So So So S	180	66 6 5	120	♦ 4 001 001	09	Mod 40 — Linear (Tensio confinante)	0 20 40 60 80 100 120 140 160 180 200 220 240 260 300 Modulo de Resiliència ensaio (MPa)	Sub-Base: h=7,8% γ_d =18,82kN/m ³	Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS	101 363 (55,00)	85+780 SUB-BAS	280 - y =	$260 - \mathbf{R}^2 = 0.986$				041	001	08	98	Model Continuante	0 20 40 60 80	Módulo de Resiliência ensaio (MPa)	
Estaca 85+780 Sub-Base:	Calculados	Modelo utilizando a tensão confinante $Mr = k_1 \sigma_3^{12} \eqno(MPa)$	57	57	57	84	84	84	141					Estaca 85+780 Sub-Bas	Calculados	Modelo utilizando a tensão confinante $Mr = k_1 \sigma_3^{12}$		73	73	103	103	103	137	137	166	100		Estaca 85+780 Sub-Bas	Calculados	Modelo utilizando a tensão confinante $Mr = k \cdot \sigma_s^{k2}$		82	82	115	115	511	152	152	184	184	241	241	241	292
31	Módulo de resiliência Calculados	Modelo k-theta $Mr = k_1(\theta/p_a)^{k2}$ (MPa)	50	58	99	73	98	86	123						Módulo de resiliência Calculados	Modelo k-theta $Mr = k_1(\theta/p_3)^{k2}$	(MPa)	90	98	92	106	119	138	155	143	601			Módulo de resiliência Calculados	Modelo k-theta $Mr = k.(\theta/n.)^{k2}$	(MPa)	85	95	102	118	133	155	174	160	185	208	241	271	251
ERS-101 Bacopari-Mostardas	Módulo	Modelo de Uzan $ \text{Modelo de Uzan} \\ \text{Mr} = k_1 p_a(\theta/p_u)^{k_2} ((\tau_{cor}/p_u) + 1)^{k_2} \\ (MPa)$	52	57	61	84	86	80	14/					ERS-101 Bacopari-Mostardas	Módulo	Modelo de Uzan $Mr = k_1 p_a(\theta/p_a)^{k2} ((\tau_{cor}/p_a)+1)^{k3}$	(MPa)	90	62	101	106	109	137	135	169	100		ERS-101 Bacopari-Mostardas	Módulo	Modelo de Uzan $Mr = k.n.(\theta/n.)^{k2}((r_{\perp}./n.)+1)^{k3}$	(MPa)	82	06	108	118	12/	155	161	179	183	234	227	224	250
	is cíclicos	Módulo de resiliência (Mpa)	52	55	61	68	84	85	136						is cíclicos	Módulo de resiliência	(MIPA)	00	69	110	103	110	142	139	153	139			is cíclicos	Módulo de resiliência	(Mpa)	78	87	116	113	122	157	160	177	177	236	241	226	6C7
Clayao Cili	Resultados dos ensaios triaxiais cíclicos	Tensão desvio (kPa)	19	37	56	31	62	93	124						Resultados dos ensaios triaxiais cíclicos	Tensão desvio	(NF4)	42	63	35	70	105	106	159	70	140			Resultados dos ensaios triaxiais cíclicos	Tensão desvio	(kPa)	42	63	35	70	105	106	159	70	210	105	210	315	280
4	Resultados do	Tensão confinante (kPa)	21	21	21	35	35	35	69	=					Resultados do	Tensão confinante	(NF d)	21	21	35	35	35	53	53	70	0/			Resultados do	Tensão confinante	(kPa)	21	21	35	35	લ	53	53	70	02	105	105	105	140

Anexo 2.3: Resultados dos ensaios triaxiais cíclicos - Cálculo dos módulos de resiliência utilizando três modelos - ERS-101 (PLINTOSSOLO) - Base Relação entre os módulos de resiliência calculados com os valores de módulo de resiliência encontrados nos ensaios

1 ensao continante (kPa) 21 21 21 35 21 35 22 35 25 25 25 25 25 25 25 25 25 25 25 25 25			Módulo Modelo de Uzan	-	lados		Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS	dulos de Resiliência - EN	SAIO x CALCULADOS
	Tensão desvio (kPa)	Módulo de resiliência (Mpa)	$Mr = k_1 p_a (\theta/p_a)^{2/3} (\tau_{cot}/p_a) + 1)^{k3}$ (MPa)	3/p _a) ^{k2}	Mr = k ₁ \(\sigma_3\) (MPa)		85+800 BASE	$\begin{array}{ll} (9037) \; ERS-101 \\ \Xi & \; h{=}11,\!5\% \gamma_d{=} \; 19,\!46 \; kN/m^3 \end{array}$	ın,
	19 37	35,847 41,747	38	37	42	(Pa)	y = 0.924x + 3.6211 $y = 0.924x + 3.6211$	y = 0.867x + 6.3557 $y = 0.9161$	y = 0.7589x + 11.46 y = 0.7589x + 11.46
	56	49,426 59,329	46	48	42	f) obs			N = 0,1423
	62	56,055	61	61	58	csjenj	05-		
	0	0,000	0	0	0	siliência e	000		u Uzan
						nlo de Res	50		 ⋄ k-theta ▲ Tensão confinante — Linear (Uzan) — Linear (k-theta)
						ъbòМ	0 0 50 M6d	100 150 Módulo de Resiliência ensaio (MPa)	—Linear (Tensão confinante) 200 250
			ERS-101 Baconari-Mostardas		Estaca 85+800 Base:	Base: h=9.9% v=	v=19.46kN/m³		
sesultados d	Resultados dos ensaios triaxiais cíclicos	is cíclicos		cia		~	Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS	dulos de Resiliência - ENS	SAIO x CALCULADOS
Tensão confinante	Tensão desvio	Módulo de resiliência	Modelo de Uzan $Mr = k_1 p_a(\theta/p_a)^{k/2} ((r_{ocs}/p_a) + 1)^{k/3}$	$(p_a)+1)^{k2}$ Modelo k-theta Modelo utilizz $(p_a)+1)^{k2}$ Mr = $k_1(\theta/p_a)^{k2}$ N	Modelo utilizando a tensão confinante $Mr = k_l \sigma_3^{\ k2}$		(9037) 85+800	(9037) 85+800 BASE hót=9,9% γ _d =19,46 N/m ³	m ³
(Krd)	(Kra)	(Mpa) 75.895	(MPa) 71	(MPa) 69	(MPa) 76				50x + 6.420
21	37	74,120	76	77	76	(Pa)	$R^2 = 0.989$	$R^2 = 0.8586$ $R^2 = 0.8586$	$R^2 = 0.972$
	56	80,067	80	85	76	(f) of	200	♦-	*
	51	93.652	102	102	66	cnjac	140	*	\ \ \
	93	98,683	103	112	66	я сяр	001		
	62	148,299	147	133	142	ŝionŝ	8		Ilzan
	124	131,383	138	149	142	ilisə		O -	◇ k-theta
	62	187,151	189	158	175	de R	50		Linear (Uzan)
	93	172,692	621	165	175	oIub		<u> </u>	— Linear (k-theta) — Linear (Tensão confinante)
	93	218 611	156	183	204	9M	0 50	100	200 250
	124	206,175	201	194	204			Módulo de Resiliência ensaio (MPa)	
			ERS-101 Bacopari-Mostardas		Estaca 85+800 Base:	Base: h=8,4% γ _d -	$\gamma_{d}=19,46 {\rm kN/m}^{3}$		
Resultados a	Resultados dos ensaios triaxiais cíclicos	is cíclicos	Módulo	C	lados	1	Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS	dulos de Resiliência - EN	SAIO x CALCULADOS
Tensão confinante	Tensão desvio (kPa)	Módulo de resiliência (Mpa)	Modelo de Uzan Modelo $(P_{\alpha})^{k2} (\Gamma_{\alpha \alpha}/p_{\alpha}) + 1)^{k3}$	c-theta p _a) ^{k2}	Modelo utilizando a tensão confinante $Mr = k_i \sigma_3^{k2}$			(903	ę
	19	79.755	(MPa) 77	(MPa) 77	(MPa) 79				/m²
	37	78,171	79	62	62		y = 0.859x + 12.00	y = 0.855x + 12.34	y = 0.7692x + 19.712
	56	80,384	82	81	79		$R^2 = 0.870$	$R^2 = 0.867$	$\mathbf{R}^2 = 0, 7721$
	31	81,192	800	83	98				
35	93	92.974	68	00 68	98		150		
	62	94,445	92	93	95	incia			
	124	96,176	97	96	95		001	•	 ◇ k-theta ▲ tensão confinante — Linear (Hzan)
						ob olubòl	50		— Linear (k-theta) — Linear (tensão confinante)
						M	0 50	100 150	200 250

Anexo 2.4: Resultados dos ensaios triaxiais cíclicos - Cálculo dos módulos de resiliência utilizando três modelos - ERS-101 (PLINTOSSOLO) - Sub-base Relação entre os módulos de resiliência calculados com os valores de módulo de resiliência encontrados nos ensaios

Sub-Base: h=11,6% \(\gamma = 18,84kN/m^3 \)	Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS	(9036) ERS-101 85+800 SUB-BASE bot =11,6% '½ =18,94 kN/m ³))	y = 0.93.6x + 4.5242 $y = 0.0133x + 34.202$	V = 0.9203 $V = 0.0003$	in in the second second second second second second second second second second second second second second se	000		DSI DA		10 50 ——————————————————————————————————	0 50 100 150 200 250 300	Módulo de Resiliência ensaio (MPa)
	Calculados	Modelo utilizando a tensão confinante $Mr = k_1 \sigma_3^{k2} \eqno(MPa)$	81	81	81	112	112	112	145	145			
ostardas Est	Módulo de resiliência Calculados	Modelo k-theta $Mr = k_1(\theta/\rho_a)^{k2}$ (MPa)	92	98	94	100	113	125	126	142			
ERS-101 Bacopari-Mostardas Estaca 85+800	Módulc	Modelo de Uzan $Mr = k_1 p_a(\theta/p_a)^{k2} ((\tau_{\infty r}/p_a) + 1)^{k3}$ (MPa)	77	82	84	116	112	107	155	135			
	s cíclicos	Módulo de resiliência (Mpa)	28	29	87	119	117	108	149	137			
	Resultados dos ensaios triaxiais cíclicos	Tensão desvio (kPa)	21	42	63	35	70	105	53	106			
	Resultados d	Tensão confinante (kPa)	21	21	21	35	35	35	53	53			

_														
	S			57	_				T			(e)	300	
	Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS	5 LN/m3		y = 0.871x + 12,357	$R^2 = 0.8738$						 Uzan k-theta ▲ Tensão confinante 	— Linear (Uzan) — Linear (k-theta) — Linear (Tensão confinante)	250	
	de Resiliência - ENS	(9036) ERS-101 h = 5.40c v = 18.05 EN/m ³	campo = 2,770	y = 0.8731x + 12,199	$R^2 = 0.8684$								150 200	Módulo de Resiliência ensaio (MPa)
	tados dos Módulo	06)	700000		7					4			100	Módulo de
,05kN/m ³	io entre Resu	58	6	y = 0.9308x + 6.6447	$R^2 = 0.9387$								50	
% γ _d =18	Relaçê		300		Z20 (MI	орт	200	csp	150	uən	ge Kesıl	olubòM S c	0	
h=5,4						_	_	_	_					
85+800 Sub-Base: h=5,4% γ_d =18,05kN/m ²	lados	$\begin{array}{lll} \text{Modelo k-theta} & \text{Modelo utilizando a tensão confinante} \\ \text{Mr} = k_1 (\theta/p_a)^{k2} & \text{Mr} = k_1 \sigma_3^{k2} \\ \text{Ann.} & \text{Ann.} \end{array}$	(MFa) 79	79	79	100	100	100	121	121				
101 Bacopari-Mostardas Estaca 85+800	Módulo de resiliência Calculados	Modelo k-theta Mode $Mr = k_1(\theta/p_a)^{k_2}$	(MPa) 72	08	87	92	102	111	111	124				
ERS-101 Bacopari-N	Módulo	Modelo de Uzan $\operatorname{Mr} = k_1 p_a(\theta/p_a)^{k2} ((\tau_{\infty}/p_a) + 1)^{k3}$	(MPa) 73	62	84	96	101	105	119	121				
_					l .	l				l	ı			
	s cíclicos	Tensão desvio Módulo de resiliência (KPa) (Mpa)	74	74	92	92	100	103	125	120				
	Resultados dos ensaios triaxiais cíclicos	Tensão desvio (kPa)	21	42	63	35	70	105	53	106				
	Resultados	Tensão confinante (kPa)	21	21	21	35	35	35	53	53				

Anexo 2.5: Resultados dos ensaios triaxiais monotônicos - Resistência ao Cisalhamento-ERS-101 Base

85+780 B	Base (γ _{dmá}	_{ix.} = 19,67	7 kN/m ³)	85+78	30 Base (γ _d	_{náx.} = 19,67	kN/m ³)	85+780 I	Base (γ _{dmá}	_{ix.} = 19,67	kN/m ³)
			σ3=100kP	Deformação	σ3=30kPa	σ3=60kPa	σ3=100kPa	Deformação	σ3=30kPa	σ3=60kPa	σ3=100kPa
(mm/mm)	(9%)	(9%)	a (9%)	(mm/mm)	(h _{ót} =10.5%)	(h _{ót} =10.5%)	(h _{ót} =10.5%)	(mm/mm)	(12%)	(12%)	(12%)
0,000	0	0	1	0.000	1	1	4	0,000	3	2	2
0,001	25	14	76	0,001	21	23	28	0,001	16	20	26
0,002	73	99	162	0,002	39	47	72	0,002	19	33	38
0,003	123	207	234	0,003	51	63	113	0,003	22	40	45
0,004	165	272	276	0,004	62	80	142	0,004	24	45	51
0,005	192	311	301	0,005	72	92	169	0,005	26	50	56
0,006	214	339	324	0,006	82	105	194	0,006	28	54	60
0,007	230	357	339	0,007	91	115	216	0,007	29	58	64
0,008	248	370	353	0,008	99	124	240	0,008	31	61	67
0,009	263	381	367	0,009	110	132	252	0,009	32	65	71
0,010	275	388	381	0,010	118	140	266	0,010	34	68	73
0,011	284	393	390	0,011	125	150	278	0,011	35	70	76
0,012	292	396	399	0,012	133	157	291	0,012	37	74	79
0,013	298	398	407	0,013	141	164	301	0,013	39	77	82
0,014	303	400	416	0.014	147	170	309	0,014	40	81	85
0,015	308	401	422	0,015	153	178	317	0,015	42	83	88
0,016	312	402	427	0,016	158	183	324	0,016	43	86	91
0,017	314	403	432	0,017	163	188	330	0,017	45	90	94
0,018	317	402	436	0,018	167	193	336	0,018	47	93	97
0,019	319	402	440	0,019	170	198	343	0,019	49	97	100
0,020	320	402	443	0,020	172	202	348	0,020	50	100	103
0,021	322	401	446	0,021	175	205	353	0,021	52	104	106
0,022	323	400	449	0,022	177	208	358	0,022	54	108	109
0,023	324	399	451	0,023	178	211	363	0,023	56	111	113
0,024	324	398	453	0,024	179	221	367	0,024	57	115	116
0,025	325	396	454	0,025	180	226	372	0,025	59	119	120
0,030	323	363	458	0,030	176	226	389	0,030	69	140	139
0,035	290	317	460	0,035	127	174	401	0,035	79	160	159
0,040	233	307	460	0,040		136	409	0,040	89	179	179
0,045		305	454	0,045			409	0,045	100	197	201
0,050		303	438	0,050			400	0,050	109	215	223
0,055		299	411	0,055			372	0,055	118	230	244
0,060			389	0,060			359	0,060	127	244	265
0,065			354	0,065			355	0,065	133	255	283
0,070			342					0,070	136	264	300
0,075			335					0,075	141	272	315
0,080			331					0,080	143	279	328
								0,085	138	280	335
								0,090	138	244	338
								0,095	137	217	327
								0,100	136	212	308
								0,105	134	210	304
								0,110	133	210	301
								0,115	134	209	289
								0,120	135		276
								0,125	134		272

Anexo 2.6: Resultados dos ensaios triaxiais monotônicos Resistência ao Cisalhamento ERS-101 Sub-base

85+780 \$	Sub-Base ($\gamma_{\rm dm\acute{a}x.}=18$	3,82 kN/m ³)	85+780	Sub-Base	$(\gamma_{\rm dm\acute{a}x.}=18.8$	2 kN/m
			σ3 =100 kPa	Deformação	σ3 =30 kPa	σ3 =60 kPa	σ3 =10
(mm/mm)	(7.8%)	(7.8%)	(7.8%)	(mm/mm)	(hót=9.4%)	(hót=9.4%)	(hót=9
0	0	1	3	0	1	0	8
0,001	28	28	98	0,001	28	26	9:
0,002	64	96	180	0,002	51	80	17
0,003	84	160	232	0,003	70	118	22
0,004	97	193	260	0,004	82	152	24
0,005	107	223	281	0,005	92	174	26
0,006	114	241	297	0,006	101	187	28
0,007	120	259	312	0,007	108	198	30
0,008	125	271	322	0,008	115	206	31
0,009	130	281	330	0,009	121	214	32
0,010	135	290	338	0,010	125	221	32
0,011	140	299	345	0,011	130	227	33
0,012	143	306	351	0,012	134	233	34
0,013	147	312	358	0,013	138	238	34
0,014	149	318	363	0,014	141	243	35.
0,015	152	322	368	0,015	145	248	36
0,016	155	326	373	0,016	149	253	36
0,017	158	329	376	0,017	151	257	37
0,018	160	332	379	0,018	155	261	37.
0,019	162	334	382	0,019	158	265	37
0,020	164	336	385	0,020	160	268	38
0,021	166	338	387	0,021	163	272	38
0,0221	167	340	390	0,0221	166	275	38
0,0231	169	341	391	0,0231	168	278	39
0,0241	171	343	393	0,0241	170	281	39:
0,0252	172	344	394	0,0252	172	284	39
0,03	177	347	398	0,03	182	296	40
0,0351	181	349	399	0,0351	190	304	41:
0,04	183	347	400	0,04	196	309	41
0,0451	182	344	398	0,0451	199	313	41
0,050	174	339	392	0,050	201	314	41
0,055	157	328	376	0,055	201	314	41
0,060	139	291	349	0,060	195	312	410
0,065	136	264	323	0,065	180	305	39
0,070		262	315	0,070	159	248	34
0,075			310	0,075	149	235	32
				0,080	145	232	31
				0,085		231	31

Anexo 2.7: Resultados dos ensaios triaxiais monotônicos - Resistência ao Cisalhamento ERS101 Base

85+800 B	Base (γ _{dma}	$_{ m áx.} = 19.46$	kN/m ³)	85+800	Base (γ _{dm}	_{áx.} = 19.46	kN/m ³)	85+800	Base (γ _{dm}	_{áx.} = 19.46	kN/m^3)
Deformação σ ₃	$s_3 = 30 \text{ kPa}$	σ ₃ =60 kPa	$\sigma_3 = 100 \text{ kPa}$	Deformação			$\sigma_3 = 100 \text{ kPa}$	Deformação	$\sigma_3 = 30 \text{ kPa}$	σ ₃ =60 kPa	$\sigma_3 = 100 \text{ kPa}$
	(8.4%)	(8.4%)	(8.4%)	(mm/mm)	(h _{ót} =9.9%)	$(h_{\delta t} = 9.9\%)$	$(h_{6t}=9.9\%)$	(mm/mm)	(11,5%)	(11,5%)	(11,5%)
0	1	1	0	0	0	0	0	0,000	0	0	0
0,001	30	3	2	0,001	78	16	49	0.001	12	15	32
0,0022	66	5	2	0,0021	99	86	101	0,002	17	24	41
0,0032	97	69	2	0,0031	112	118	136	0,003	20	28	48
0,004	118	130	2	0,0041	127	138	168	0.004	23	32	53
0,005	133	163	101	0,005	141	157	190	0,005	25	34	58
0,006	146	194	166	0,0061	153	171	214	0,006	27	37	62
0,007	160	214	210	0,0072	163	186	234	0,007	30	40	67
0,0081	171	231	243	0,0081	173	198	248	0,008	32	42	70
0,009	180	248	264	0,0092	182	208	264	0,009	34	45	74
0.01	189	260	280	0,0101	191	218	275	0,010	37	47	77
0,0111	199	271	297	0,0111	199	227	286	0,011	39	49	81
0,0121	206	282	308	0,0122	206	236	298	0,012	41	51	84
0,0131	212	293	319	0,0132	213	243	307	0,013	43	54	87
0,0141	218	301	329	0,0141	219	251	316	0,014	45	56	91
0,0151	223	308	338	0,0151	224	259	324	0,015	47	58	94
0,0161	227	315	347	0,0161	229	265	331	0,016	50	61	98
0,0172	231	320	354	0,0171	233	271	338	0,017	52	63	101
0,0182	234	325	362	0,0181	237	277	345	0,018	54	65	104
0,0192	237	329	368	0,0191	241	282	351	0,019	56	68	108
0,02	240	333	373	0,0201	244	287	357	0,020	57	70	112
0,021	242	336	379	0,0211	247	292	363	0,021	60	73	116
0,022	244	339	385	0,0221	250	296	367	0,022	62	75	120
0,0231	246	341	389	0,0231	252	301	372	0,023	64	77	123
0,0241	247	344	394	0,0241	254	304	376	0,024	66	80	127
0,0251	248	345	398	0,0251	256	307	380	0,025	69	83	131
0,0302	248	351	413	0,0301	262	319	397	0,030	80	96	153
0,0351	223	351	422	0,0352	267	326	409	0,035	90	108	175
0,0401	205	347	425	0,0401	269	329	417	0,040	101	121	197
0,045	187	346	424	0,0452	262	330	423	0,045	110	135	221
0,0502	94	236	402	0,0501	239	321	425	0,050	117	147	242
0,0552		229	320	0,0551	215	285	426	0,055	123	158	263
0,0601			299	0,06	206	260	426	0,060	126	168	281
0,065			294	0,065	193	229	424	0,065	129	177	295
				0,07	176		420	0,070	132	184	306
				0,0751			413	0,075	135	191	314
				0,0802			381	0,080	137	196	322
				0,0851			345	0,085	137	201	327
								0,090	137	203	329
								0,095	134	202	325
								0,102	127	195	311
								0,105	125	193	305
								0,110	124	190	292
								0,115	124	187	272
								0,120		180	260
								0,125		175	

Anexo 2.8: Resultados dos ensaios triaxiais cíclicos - Cálculo dos módulos de resiliência utilizando três modelos - ERS-536 (LATERITA)- Base Relação entre os resultados dos módulos de resiliência encontrados nos ensaios e os calculados.

kN/m ³ Dolong a course Describing of the MARinles de Dacillânnis ENEATO y CALCITI A POS	Neidago citte Nestitados dos aroutios de Nestiteitoa - Existado y Calados (001) ERS-536	8+460 LD BASE h=11,9% yd=21,95 kN/m3	v = 0.9073x + 6.7491 $v = 0.8921x + 7.8673$	$R^2 = 0.964$ $R^2 = 0.9707$ $R^2 = 0.925$	350	conja	CS)	SC	200	Residual Application of the Communication of the Co	001	001	50	0	0 50 100 150 200 250 300 350 400 450	MOUITO DE RESTREIREM CINSTO (MFA)		\kN/m ³	Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS		8+460 LD BASE h=13,8% yd=21,80 kN/m3		$R^2 = 0.9555$ $R^2 = 0.7479$		calla	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	sion:	silië 200					0 50 100 150 200 250 300 350 400 450	Médulo de Resiliência ensaio (MPa)		NKN/m³	Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCIII.ADOS		(7040) Carbate 8+460 BASE h=12.6% vd=22.30 kN/m3		y = 0.9086x + 11,198 $y = 0.9028x + 11,991$ $y = 0.9419x + 7,1017$	750 K' = 0,9063 K' = 0,89/2	Second	39cn	cia c250	200	Resistant Parameters Arthera	001			0 50 100	Módulo de Resiliência ensaio (MPa)		
ERS-536 - 8+460 LD - Base h=11.9% %=21.95kN/m	Modelo utilizando a tensão confinante	$Mr = k_1\sigma_3^{\infty}$ (MPa)	36	36	51	51	51	/9	/9	81	8	81	107	107	107	131	131	ERS-536 - 8+460 LD - Base h=13,8% γ_d =21.80kN/m		Modelo utilizando a tensão confinante	$M\Gamma \equiv K_1G_3$ (MPa)	133	133	173	173	173	215	215	249	249	249	307	307	357	357	ERS-536 - 8+460 LD - Base h=12.6% v ₁ =22.30kN/m	alculados — 12,000 Id—22,000	Models sellineed a tenedic confinement	$Mr = k_1 \sigma_3^{12}$ (MPa)	63	63	63	87	87	113	113	113	135	135	175	175	210	210	210
-536 - 8+460 L	Uzan Modelo k-theta Modelo utilis	$Mr = k_1(\theta/p_a)^{}$ (MPa) 3.1	36	41	4	51	80.00	88	89.	71	82	93	93	108	123	113	150	-536 - 8+460 L	Módulo de resiliência Calculados	Modelo k-theta	$M\Gamma \equiv K_1(\Phi/p_a)$ (MPa)	128	154	162	180	195	196	237	223	248	270	270	325	308	342	536 - 8+460 L	Módulo de resiliência Calculados	Models I: theta	$Mr = k_1(\theta/p_a)^{k_2}$ (MPa)	57	99	7.3	0/ 08	100	100	114	119	136	152	152	194	180	207	231
ERS	Modelo de Uzan $Mr = k_1 p_1(\theta) p_2)^{k/2} ((r_{co}(p_2) + 1)^{k/3}$		37	41	44	51	58	5/	/9	69	82	94	06	108	126	109	155		Módulc	Modelo de Uzan $Mr = k_1 p_1(\theta/p_1)^{k/2} ((r_{cos}/p_n)+1)^{k/3}$	(MPa)	130	130	171	180	186	276	224	268	257	249	336	278	384	327		Módulo	Modelo de Uzan	$Mr = k_1 p_a(\theta/p_a)^{k/2} ((\tau_{cor}/p_a)+1)^{k/3}$ (MPa)	55	63	69	06	26	108	117	131	139	145	170	179	203	202	204
، مزرازیمه	Módulo de resiliência	(Mpa) 36	930	47	39	48	56	30	90	0/	76	88	100	112	123	146	156		s cíclicos	Módulo de resiliência	(Mpa)	130	127	177	168	161	229	209	279	240	232	344	288	410	352	272	s cíclicos	Módulo de reciliência	(Mpa)	- 67	64	69	2 8	91	102	108	122	133	147	180	184	219	221	188
Damlinder der energier Hirwinie ofellen	Tensão desvio	(kPa)	42	63	35	70	105	23	150	651	140	210	105	210	315	280	420		Resultados dos ensaios triaxiais cíclicos	Tensão desvio	(KPa)	21	63	35	70	105	55	159	70	140	210	210	315	140	280	420	Resultados dos ensaios triaxiais cíclicos	Taneão daestio	(kPa)	21	42	35	202	105	53	105	70	140	210	210	315	140	280	420
Domlfodo	Tensão confinante	(kPa)	21	21	35	35	35	53	53	70	70	70	105	105	105	140	140		Resultados	Tensão confinante	(KPa)	21	21	35	35	35	53	53	70	70	70	105	105	140	140	140	Resultados	Toneão confinante	(kPa)	21	21	35	35	35	53	53	70	70	70	105	105	140	140	140

Anexo 2.9: Resultados dos ensaios triaxiais cíclicos - Cálculo dos módulos de resiliência utilizando três modelos - ERS-536 (LATERITA) - Base Relação entre os módulos de resiliência calculados com os valores de módulo de resiliência encontrados nos ensaios

ERS-536 Estaca 0+600 Base: h=11.8% ½/a=22.32kN/m³

		;	CO-COO ESTACA O+C	00 Base: h=11.8% γ _d =22,32kN/m	:2.2,32KN/m
os dos ensaios triaxia	is cíclicos		Módulo de resiliência	Calculados	Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS
Tensão desvio (kPa)	Módulo de resiliência (Mpa)	Modelo d $Mr = k_1 p_a(\theta/p_a)^{k^2}((\tau_{co})$ (MPa)		Modelo utilizando a tensão confinante $Mr = k_1\sigma_3^{12} \qquad (MPa)$	(006) Caibaté 0+600 BASE h=11,8% yd=22,32 kN/m3
21	106	77	62	68	A DE COMO CO COMO COMO COMO CO CO CO CO CO CO CO CO CO CO CO CO CO
42	26	06	93	68	y = 0.8499x + 29.536 $y = 0.8647x + 26.584$ $y = 0.8979x + 20.21$
63	95	102	107	68	$K^{-} \equiv 0.9014$ $K^{-} \equiv 0.9292$
35	126	117	115	131	oce obel
105	125	151	154	131	
53	155	164	155	180	
106	160	185	183	180	40 40
159	174	204	209	180	R 150
0/1	206	727	224	223	
210	232	247	255	223	♥#
105	306	279	255	304	
210	320	301	300	304	(
315	334	322	343	304	0 50 100 150 200 250 500 550 400 450 Modulo de Resiliência ensaio (MPa)
280	411	363	370	379	
420	407	384	422	379	
					:22.30kN/m ³
os dos ensaios triaxiai	is cíclicos		Módulo de resiliência	Calculados	Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS
Tensão desvio	Módulo de resiliência	Modelo d $Mr = k_1 p_u(\theta/p_u)^{k^2} (\tau_{co}$			(70%)
21 21	(ndrer) 122	(MPa) 00			0+600 BASE n=12,5% 7d=24,50KN/m3
42	103	101	107	101	y = 0.8285x + 31.524 $y = 0.8109x + 34.782$
63	100	111	118	101	$\mathbb{R}^2 = 0.931$ $\mathbb{R}^2 = 0.8546$ $\mathbb{R}^2 = 0.9712$
35	141	129	125	136	
0/	124	141	141	136	
53	170	170	156	173	a ca
105	154	179	175	173	¢ ¢
158	160	186	193	173	4
0/1	206	203	180	203	de Ribeta
210	861	213	202	203	eta
105	265	257	224	258	
210	258	253	252	258	(Authoriting Agency) Paring
315	264	251	278	258	0 50 100 150 200 250 300 380 400 450 Méchilo de Decillôncia (MDa)
140	336	300	197	303	MODULO DE NESTRETICIA ELISAD (PIFA)
420	302	279	323	305	
					2001111
a doc ancaios friaviai	ie ofoliooe	<u>-</u>	(S-536 Estaca 0+6 Módulo de resiliência	ase: n=11,3%	7d=24,90KN/m Release name Resultedae dae Mádulae de Resiliêncie - ENSAIO y CALCIII ADOS
Os dos cusados utaxia	is cicilcos	Modelod	Modulo de resiliericia	Calculados	Neigyao enue Nesunados dos Modulos de Nesinencia - Erosaro A Calecolados
Tensão desvio (kPa)	Módulo de resiliência (Mpa)	$Mr = k_1 p_n(\theta/p_n)^{k_2}((t_{co}$ (MP_n)			(7046) Caibaté (7046) Caibaté (7046) CSIR-BASE h=11 3% w=22 90N/m3
21	88	70	72	86	
42	92	98	68	98	y = 0.9189x + 18.912 $y = 0.9366x + 14.838$ $y = 0.9242x + 17.2$
63	86	102	105	86	$R^2 = 0.9736$ $R^2 = 0.938$ $R^2 = 0.9723$
35	135	119	116	140	(S) op
105	157	167	171	140	o «
53	128	181	172	209	> 400
105	209	215	212	209	ência §
158	236	246	251	209	W.
20	237	239	224	273	de R
140	281	280	276	273	d
210	387	355	327	404	001
210	424	405	404	404	——Linear(Tens
315	446	453	480	404	0 100 200 300 400 500 600
140	549	466	429	533	Módulo de Resiliência ensaio (MPa)
280	564	521	530	533	
420	548	577	629	533	
	20 dos ensaios triaxia Tensalo desvio (kPa) (106 (106 (106 (106 (106 (106 (106 (106	is cíclicos Módulo de resil 100 119 125 126 126 127 128 128 129 129 120 120 120 120 120 120	de resiliència Ma-h,0% p.º. Mpu) Numbre de resiliència 995 110 915 100 95 110 119 115 119 115 119 115 119 115 110 111 124 120 110 121 222 224 234 341 334 342 334 343 334 341 334 341 334 341 334 341 334 341 334 341 334 342 3411 344 1141 119 1141 120 1141 130 1141 130 1141 130 1141 141 1141 141 1144 141 1144 14	de resiliència Messible de resiliènci	de resiliència Modulo de resiliència Calculad de resiliència Modulo de resiliència Calculad de resiliència Anode de resiliència Calculad de resiliència Anode de resiliència Anode de resiliència Calculad de resiliència Anode de resiliència

Anexo 2.10: Resultados dos ensaios triaxiais cíclicos - Cálculo dos módulos de resiliência utilizando três modelos-Acesso a Sete de Setembro (LATERITA)-Ba Relação entre os módulos de resiliência calculados com os valores de módulo de resiliência encontrados nos ensaios.

Base: h=17,0% γ_d =20,10kN/m ³	Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS	(001) Sete de Setembro 0-900 la camada (L1) h=17% yd=20,10 kN/m3	- 1	y = 0.8677x + 25.31 $y = 0.5325x + 89.914$ $y =$	$R^2 = 0.9318$ $R^2 = 0.5289$ $R^2 = 0.7701$	o op	ह है	्रे इ	\$ size	On out of		R 200			MG — Linear (K-inear) — I inear (K-inear)	Communication is represented to the communication of the communication o	0 100 200 300 400 500 600	Módulo de Resiliência ensaio (MPa)		
9100-Acesso a Sete de Setembro Estaca 0+600 Ba	alculados	Modelo utilizando a tensão confinante $k_i(\theta/\rho_a)^{12}~(MPa) \qquad Mr = k_i\sigma_s^{5} \qquad (MPa)$	125	125	125	155	155	155	184	184	184	206	206	206	244	244	244	275	275	275
ete de Setembr	Módulo de resiliência Calculados	$\label{eq:modelok-theta} Modelok-theta$ $\label{eq:modelok} Mr = k_f(\theta/p_a)^{k2} \ (MPa)$	125	135	144	149	191	172	172	186	198	189	205	218	218	235	250	241	260	277
392AM9100-Acesso a S	Módulc	Modelo de Uzan $\operatorname{Modelo} \left(\operatorname{de} \operatorname{Uzan}_{3}(\Theta_{t_{0}})^{k_{2}}((\tau_{c_{0}}(p_{a})+1)^{k_{3}}\right)$ (MPa)	112	121	126	159	161	161	206	195	185	239	215	196	288	237	205	319	246	205
	s cíclicos	Módulo de resiliência (Mpa)	142	123	118	167	152	138	209	178	160	249	198	180	296	237	215	339	271	224
	Resultados dos ensaios triaxiais cíclicos	Tensão desvio (kPa)	21	42	63	35	20	105	53	106	159	20	140	210	105	210	315	140	280	420
	Resultados	Tensão confinante (kPa)	21	21	21	35	35	35	53	53	53	70	70	70	105	105	105	140	140	140

Particular Configuration			1																						
According triaxials of clicos According to the continuous and	$^{\circ}$ γ_d =20,50kN/m ³	Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS	de S	OFFICE LA CAMBACA(LE)		$R^2 = 0.9962$ $R^2 = 0.7806$) or	्र										200 300 400 500 Módulo de Resiliência ensaio (MPa)							
According the contraction of t	Base: h=15,0																								
According the contraction of t	Estaca 0+600	Iculados	Modelo utilizan do a tensão con finan te $Mr = k_1\sigma_3^{k2} \hspace{1cm} (MPa)$	165	165	165	217	217	217	272	272	272	316	316	316	393	393	393	459	459	459				
Section	ete de Setembro	de resiliência Ca	Modelo k-theta $Mr = k_1(\theta/\rho_a)^{k2} \text{ (MPa)}$	155	173	190	200	224	245	246	274	300	282	315	345	345	386	422	398	445	487				
De dos ensaios triaxiais c/clicos Tensão desvio Módulo de resiliência (RPa) (Mpa) 21 142 42 155 42 164 63 164 63 164 70 229 105 229 105 293 105 280 106 293 107 349 108 349 109 349 105 423 210 313 210 315 315 361 420 385		Módulc	Modelo de Uzan $M\mathbf{r} = k_1 p_a (\theta/p_a)^{k2} ((\tau_{ocr}/p_a) + 1)^{k3}$	142	158	171	211	224	232	285	285	284	343	328	317	435	388	358	503	425	380				
21 CRA CRA CRA CRA CRA CRA CRA CRA CRA CRA	36																								
Resultados dos ensaios triaxiais Tensão confinante (kPa) Tensão desvio (kPa) (kPa) 21 21 21 42 21 42 35 35 35 35 35 105 53 53 53 105 53 105 53 105 70 70 70 105 105 105 105 110 105 210 105 140 140 280 140 420		s cíclicos		142	155	164	218	229	233	291	293	280	349	329	313	423	382	361	491	431	385				
Resultado: (kPa) (kPa) (kPa) 21 21 21 21 35 35 35 35 35 37 70 70 70 70 105 105 1140		dos ensaios triaxiais	Tensão desvio (kPa)	21	42	63	35	70	105	53	105	158	70	140	210	105	210	315	140	280	420				
		Resultados	Tensão confinante (kPa)	21	21	21	35	35	35	53	53	53	70	70	70	105	105	105	140	140	140				

Anexo 2.11: Resultados dos ensaios triaxiais cíclicos - Cálculo dos módulos de resiliência utilizando três modelos - Acesso a Sete de Setembro (LATERITA) Relação entre os módulos de resiliência calculados com os valores de módulo de resiliência encontrados nos ensaios

Base: h=16,2% y _d =19,90kN/m³ Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS	Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS (7042) Sete de Setembro (7042) Setembro (7											Compared Compared									Relação entre Resultados dos Módulos de Resiliência - ENSAIO x CALCULADOS	(7043) Sete de Setembro (900 LD - BASE (L4) h=13.5% yd=20,60 kN/m3 (600 N m m m m m m m m m m m m m m m m m m										0 100 200 300 400 500 600 M6dulo de Resiliència ersaio (MPa)									
Estaca 0+600	lculados	Modelo utilizando a tensão confinante $Mr = k_1\sigma_3^{k2} \eqno(MPa)$	69	69	69	92	92	92	116	116	116	136	136	136	171	171	171	202	202	202	Estaca 0+600 Base: h=13,5% γ_d =20,60kN/m	alculados	Modelo utilizando a tensão confinante $Mr = k_1 \sigma_3^{k2} \eqno(MPa)$	76	26	76	145	145	145	201	201	201	251	251	251	346	346	346	435	435	435
M9100-Acesso a Sete de Setembro	Módulo de resiliência Calculados	$\label{eq:Modelok-theta} \operatorname{Modelok-theta} \operatorname{Mr} = k_{\rm J}(\theta/\rho_a)^{\rm k2} \ \ (\mathrm{MPa})$	99	73	80	82	95	104	105	118	129	121	136	149	149	167	183	173	194	213	M9100-Acesso a Sete de Setembro	Módulo de resiliência Calculados	$\label{eq:modelok-theta} Modelok-theta$ $Mr = k_f(\theta/\rho_a)^{k2} \ (MPa)$	98	102	117	126	150	172	173	204	234	213	252	289	289	342	392	329	425	487
AM9100-Acesso a		$\begin{aligned} Modelo\ de\ Uzan \\ Mr &= k_1p_a(\theta/p_a)^{k2}((\tau_{cer}(p_a)+1)^{k3} \\ (MPa) \end{aligned}$	09	29	73	68	95	100	119	121	123	143	140	138	182	168	159	211	186	172	M9100-Aces	Mód	Modelo de Uzan $ \text{Modelo de Uzan} $ $ Mr = k_i p_a(\theta/p_a)^{k2} ((\tau_{cc}/p_a)+1)^{k3} $ $ (MPa) $	08	95	108	132	150	165	193	210	224	246	260	271	343	343	347	427	410	405
397 A																					392A											l					l				
	cíclicos	Módulo de resiliência (Mpa)	72	69	89	104	92	88	117	106	105	139	128	128	194	174	168	222	205	185	;	cíclicos	Módulo de resiliência (Mpa)	96	86	108	120	136	152	186	206	215	248	255	264	357	351	353	458	431	401
ń	Resultados dos ensaios triaxiais cíclicos	Tensão desvio (kPa)	21	42	63	35	70	105	53	106	159	70	140	210	105	210	315	140	280	420		Resultados dos ensaios triaxiais cíclicos	Tensão desvio (kPa)	21	42	63	35	70	105	53	105	158	70	140	210	105	210	315	140	280	420
	Resultados d	Tensão confinante (kPa)	21	21	21	35	35	35	53	53	53	70	70	70	105	105	105	140	140	140		Resultados d	Tensão confinante (kPa)	21	21	21	35	35	35	53	53	53	70	70	70	105	105	105	140	140	140