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“I do not know what | may appear to the world, but to myself | seem to
have been only like a boy playing on the sea-shore, and diverting myself
in now and then finding a smoother pebble or a prettier shell than ordinary,
whilst the great ocean of truth lay all undiscovered before me.”

— SIR ISAAC NEWTON

“Any intelligent fool can make things bigger, more complex,
and more violent. It takes a touch of genius — and a lot of
courage — to move in the opposite direction.”

“l have no special talent. | am only passionately curious.”
— ALBERT EINSTEIN

“Intelligence is the ability to adapt to change.”
— STEPHEN HAWKING
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ABSTRACT

This work proposes IGMN (standing for Incremental Gaussian Mixture Network), a
new connectionist approach for incremental function approximation and real time tasks.
It is inspired on recent theories about the brain, specially the Memory-Prediction Frame-
work and the Constructivist Artificial Intelligence, which endows it with some unique fea-
tures that are not present in most ANN models such as MLP, RBF and GRNN. Moreover,
IGMN is based on strong statistical principles (Gaussian mixture models) and asymptot-
ically converges to the optimal regression surface as more training data arrive. The main
advantages of IGMN over other ANN models are: (1) IGMN learns incrementally using
a single scan over the training data (each training pattern can be immediately used and
discarded); (ii) it can produce reasonable estimates based on few training data; (iii) the
learning process can proceed perpetually as new training data arrive (there is no separate
phases for leaning and recalling); (iv) IGMN can handle the stability-plasticity dilemma
and does not suffer from catastrophic interference; (v) the neural network topology is
defined automatically and incrementally (new units added whenever is necessary); (vi)
IGMN is not sensible to initialization conditions (in fact there is no random initializa-
tion/decision in IGMN); (vii) the same neural network can be used to solve both forward
and inverse problems (the information flow is bidirectional) even in regions where the
target data are multi-valued; and (viii) IGMN can provide the confidence levels of its
estimates. Another relevant contribution of this thesis is the use of IGMN in some im-
portant state-of-the-art machine learning and robotic tasks such as model identification,
incremental concept formation, reinforcement learning, robotic mapping and time series
prediction. In fact, the efficiency of IGMN and its representational power expand the set
of potential tasks in which the neural networks can be applied, thus opening new research
directions in which important contributions can be made. Through several experiments
using the proposed model it is demonstrated that IGMN is also robust to overfitting, does
not require fine-tunning of its configuration parameters and has a very good computational
performance, thus allowing its use in real time control applications. Therefore, IGMN is
a very useful machine learning tool for incremental function approximation and on-line
prediction.

Keywords: Machine learning, artificial neural networks, incremental learning, Bayesian
methods, Gaussian mixture models, function approximation, regression, clustering, rein-
forcement learning, autonomous mobile robots.






Uma Abordagem Conexionista para a Aproximacao Incremental de funcoes e
Tarefas de Tempo Real

RESUMO

Este trabalho propde uma nova abordagem conexionista, chamada de IGMN (do in-
glés Incremental Gaussian Mixture Network), para aproximacado incremental de funcdes
e tarefas de tempo real. Ela € inspirada em recentes teorias do cérebro, especialmente o
MPF (do inglés Memory-Prediction Framework) e a Inteligéncia Artificial Construtivista,
que fazem com que o modelo proposto possua caracteristicas especiais que nao estao
presentes na maioria dos modelos de redes neurais existentes. Além disso, IGMN € base-
ado em sdlidos principios estatisticos (modelos de mistura gaussianos) e assintoticamente
converge para a superficie de regressdo 6tima a medida que os dados de treinamento che-
gam. As principais vantagens do IGMN em relagdo a outros modelos de redes neurais
sdo: (i) IGMN aprende instantaneamente analisando cada padrdo de treinamento apenas
uma vez (cada dado pode ser imediatamente utilizado e descartado); (ii) o modelo pro-
posto produz estimativas razodveis baseado em poucos dados de treinamento; (iii) IGMN
aprende de forma continua e perpétua a medida que novos dados de treinamento che-
gam (ndo existem fases separadas de treinamento e utiliza¢gdo); (iv) o modelo proposto
resolve o dilema da estabilidade-plasticidade e ndo sofre de interferéncia catastréfica; (v)
a topologia da rede neural € definida automaticamente e de forma incremental (novas uni-
dades sdo adicionadas sempre que necessdrio); (vi) IGMN ndo € sensivel as condi¢des
de inicializacao (de fato IGMN nao utiliza nenhuma decisao e/ou inicializag¢ao aleatoria);
(vil) a mesma rede neural IGMN pode ser utilizada em problemas diretos e inversos (0
fluxo de informacdes € bidirecional) mesmo em regides onde a fungdo alvo tem multi-
plas solugdes; e (viii) IGMN fornece o nivel de confianga de suas estimativas. Outra
contribui¢do relevante desta tese € o uso do IGMN em importantes tarefas nas dreas de
robética e aprendizado de maquina, como por exemplo a identificacao de modelos, a for-
macao incremental de conceitos, o aprendizado por refor¢co, o mapeamento robdtico e
previsdo de séries temporais. De fato, o poder de representagdo e a eficiéncia e do modelo
proposto permitem expandir o conjunto de tarefas nas quais as redes neurais podem ser
utilizadas, abrindo assim novas dire¢des nos quais importantes contribui¢cdes do estado
da arte podem ser feitas. Através de diversos experimentos, realizados utilizando o mo-
delo proposto, € demonstrado que o IGMN € bastante robusto ao problema de overfitting,
ndo requer um ajuste fino dos parametros de configurac@o e possui uma boa performance
computacional que permite o seu uso em aplicacdes de controle em tempo real. Portanto
pode-se afirmar que o IGMN ¢é uma ferramenta de aprendizado de maquina bastante util
em tarefas de aprendizado incremental de fun¢des e predicdo em tempo real.

Palavras-chave: Aprendizado de Maquina, Redes Neurais Artificiais, Aprendizado In-
cremental, Métodos Bayesianos, Modelos de Mistura Gaussianos, Aproximacao de Fun-
coes, Regressdo, Formacao de Agrupamentos, Aprendizado por Refor¢o, Robdos Mdveis
Autdnomos.
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1 INTRODUCTION

Artificial neural networks (ANNs) (HAYKIN, 2008; FREEMAN; SKAPURA, 1991)
are mathematical or computational models inspired by the structure and functional aspects
of biological neural networks. They are composed by several layers of massively inter-
connected processing units, called artificial neurons, which can change their connection
strength (i.e., the synaptic weights values) based on external or internal information that
flows through the network during learning. Modern ANNs are non-linear machine learn-
ing (MITCHELL, 1997) tools frequently used to model complex relationships between
inputs and outputs and/or to find patterns in data. In the past several neural network
models have been proposed. The most well-known model is the Multi-Layer Perceptron
(MLP) (RUMELHART; HINTON; WILLIAMS, 1986), which can be used in function
approximation and classification tasks. The MLP supervised learning algorithm, called
Backpropagation, uses gradient descent to minimize the mean square error between the
desired and actual ANN outputs. Other ANN models, like the Self-Organizing Maps
(SOM) (KOHONEN, 1990, 2001), are trained using unsupervised learning to find re-
lationships among the input patterns themselves and/or to produce a low-dimensional
(typically two-dimensional), discretized representation of the input space of the training
samples.

Although in the last decades neural networks have been successfully used in several
tasks, including signal processing, pattern recognition and robotics, most ANN models
have some disadvantages that difficult their use in incremental function approximation and
prediction tasks. The Backpropagation learning algorithm, for instance, requires several
scans over all training data, which must be complete and available at the beginning of the
learning process, to converge for a good solution. Moreover, after the end of the training
process the synaptic weights are “frozen”, i.e., the network loses its learning capabilities.
These drawbacks, which also occurs in other ANN models like SOM, highly contrast with
the human brain learning capabilities because: (i) we don’t need to perform thousands of
scans over the training data to learn something (in general we are able to learn using few
examples and/or repetitions, the so called aggressive learning); (i1) we are always learning
new concepts as new “training data” arrive, i.e., we are always improving our performance
through experience; and (iii) we don’t have to wait until sufficient information arrives to
make a decision, i.e., we can use partial information as it becomes available. Besides
being not biologically plausible, these drawbacks difficult the use of ANNSs in tasks like
incremental concept formation, reinforcement learning and robotics, because in this kind
of application the training data are just instantaneously available to the learning system,
and in general a decision must be made using the information available at the moment.

There are other problems which difficult the use of ANNSs, like the definition of the
network topology (e.g., number of layers and neurons per layer) and the setting of many
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configuration parameters (e.g., learning rate, momentum and weight decay). In fact, the
main difficulty of using neural networks in practical problems is to adjust these settings
adequately, because they are critical and dependent on the training data and/or current
task (HAYKIN, 2008). To tackle these problems some ANN models have been proposed,
like the Fahlman’s cascade correlation (FAHLMAN; LEBIERE, 1990), which is restricted
to supervised classification tasks, and GTSOM (BASTOS, 2007; MENEGAZ; ENGEL,
2009), a temporal and incremental SOM without separate phases for learning and recall-
ing (but which has many configuration parameters and requires several training epochs
to converge). Therefore, although on the last decades many ANN models have been pro-
posed, most of these models are unsuitable for incremental function approximation and
prediction, i.e., they cannot learn aggressively (i.e., using few training samples) and in-
crementally from continuous and noisy input data.

This thesis proposes a new artificial neural network model, called IGMN (standing
for Incremental Gaussian Mixture Network), which is able to tackle great part of these
problems described above. IGMN is inspired on recent theories about the brain, specially
the Memory-Prediction Framework (MPF) (HAWKINS, 2005) and the constructivist ar-
tificial intelligence (DRESCHER, 1991), which endows it with some unique features that
are not present in other neural network models such as MLP and RBF. The main advan-
tages of IGMN over other connectionist approaches are:

e [t learns instantaneously through just one scan over the training data;

e [t does not require that the complete training data set be available at the beginning of
the learning process (each training pattern can be immediately used and discarded);

e The IGMN learning algorithm is very aggressive, i.e., it is able to create good ap-
proximations using few training data;

e IGMN operates continuously without separate phases for leaning and recalling (the
neural network can always improve its performance as new data arrive);

e It handles the stability-plasticity dilemma and does not suffer from catastrophic
interference;

e The network topology is defined automatically and incrementally (new units added
whenever is necessary);

e It is based on a probabilistic framework (Gaussian mixture models) and approxi-
mates the optimal Bayesian decision using the available training data;

e It uses a multivariate representation with full variance/covariance matrices;

e IGMN can predict both the forward and the inverse mappings even in regions where
the target data are multi-valued;

e It is not sensible to initialization conditions (in fact there is no random initialization
in IGMN);

e The representations created in the cortical regions correspond to natural groupings
(i.e. clusters) of the state space that can be interpreted by a human specialist (i.e.,
IGMN is not a black box);

e [t provides not only an estimate of the target stimulus but can also inform the con-
fidence level of its estimates;

e IGMN has few non critical configuration parameters that are easy to configure;

e IGMN can be used in supervised, unsupervised or reinforcement learning tasks.

IGMN is also particularly useful in on-line robotic tasks, because it can handle large
input data received at high frequencies as the robot explores the environment. Hence,
IGMN fulfills the requirements of the so called Embodied Statistical Learning, a desired
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but still scarce set of statistical methods compatible to the design principles of Embodied
Artificial Intelligence (BURFOOT; LUNGARELLA; KUNIYOSHI, 2008). To the best
of our knowledge, IGMN is the first ANN model based on incremental Gaussian Mixture
Models (GMMs) that can solve the forward and inverse problems even in regions of the
state space where the target function is multi-valued and to inform the confidence of its
estimates. The remaining of this chapter is organized as follows. Section 1.1 describes
some theoretical concepts about function approximation, regression, classification and
clustering. Section 1.2 describes the theoretical and biological inspiration of IGMN. Sec-
tion 1.3 presents the main objectives and contributions of this work. Finally, Section 1.4
presents the outline of this thesis.

1.1 Function approximation

Function approximation consists in finding a mapping R” — R© given a set of train-
ing data vectors, where D and O are the dimensionality of the input and output vec-
tors, respectively. It is assumed that the function to be approximated is smooth in some
sense, because the problem of function approximation is ill-posed and therefore must be
constrained (HAYKIN, 2008). According to Poggio and Girosi (1989) the problem of
learning a mapping between an input and an output space is essentially equivalent to the
problem of synthesizing an associative memory that retrieves the appropriate output when
presented with the input and generalizes when presented with new inputs. It also consists
in identifying the system that transforms inputs into outputs given a set of examples of
input-output pairs (BARRON; BARRON, 1988; OMOHUNDRO, 1987).

A classical framework for this problem is the approximation theory, which deals with
the problem of approximating or interpolating a continuous, multivariate function f(X)
by an approximating function F'(W, X') having a fixed number of parameters W, where
X and W are real vectors X = x1,29,...,2p and W = wy,ws,...,wy. For a choice
of a specific F', the problem is then to find the set of parameters W that provides the
best possible approximation of f on the set of training examples which constitutes the
learning step. Therefore, it is very important to choose an approximating function F'
that can represent f as well as possible. To measure the quality of the approximation, a
distance function p is used to determine the distance p[f(X), F'(W, X)] of an approxi-
mation F'(W, X) from f(X). The approximation problem can then be stated formally as
(POGGIO; GIROSI, 1989):

Approximation problem

If f(X) is a continuous function defined on set X, and F(W, X) is an ap-
proximating function that depends continuously on W € W and X, the ap-
proximation problem is to determine the parameters W* such that

plE(W™, X), f(X)] < plF(W, X), f(X)]
for all W in the set VV.

There are two main kinds of function approximation according to the characteristics
of the output space ). When the target function is continuous, the problem is called
regression. The goal of regression is to learn a mapping from the input space, X, to the
output space, ). This mapping, F’, is called an estimator. In general the function to be
approximated is not known a priori, i.e., it must be approximated using just the input-
output pairs available for training. If the target function is discrete, the problem is called
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classification. It consists in predicting categorical class labels, which can be discrete or
nominal. The goal of classification is to learn a mapping from the feature space, X, to a
label space, ). This mapping, F, is called a classifier.

Function approximation is considered a supervised learning task, because the training
process in general occurs using a dataset containing the desired outputs for each input data
vector. In classification tasks, for instance, the output classes are previously known and
fixed. Therefore, the classifier does not have to create new categories, i.e., it just needs
to assign each training vector to one of the known classes. But in some tasks the desired
outputs are not available to guide the learning process, i.e., the system needs to create the
category labels and to assign the data vectors to them using just the information available
in the input data. This task is called unsupervised classification or clustering, because the
learning system goal is to partition the input space in clusters according to similarities
discovered in the data. Unsupervised classification is a very difficult problem because
multidimensional data can form clusters with different shapes and sizes, demanding a
flexible and powerful modeling tool.

From a theoretical point of view, supervised and unsupervised learning differ only in
the causal structure of the model. In supervised learning, the model defines the effect one
set of observations, called inputs, has on another set of observations, called outputs. In
other words, the inputs are assumed to be at the beginning and outputs at the end of the
causal chain. In unsupervised learning, all the observations are assumed to be caused by
latent variables, that is, the observations are assumed to be at the end of the causal chain
(VALPOLA, 2000).

There are many machine learning tools available for function approximation and clus-
tering (e.g. regression trees (QUINLAN, 1993) and the EM algorithm (DEMPSTER;
LAIRD; RUBIN, 1977)), but in this work we are interested just in connectionist ap-
proaches, i.e., those based on artificial neural networks.

1.2 Theoretical and biological inspiration

Traditional neural network models, such as the Multi-layer Perceptron (MLP) and the
Radial Basis Functions (RBF) network, are based on Cybernetics, a science devoted to
understand the phenomena and natural processes through the study of communication
and control in living organisms, machines and social processes (ASHBY, 1956). Cyber-
netics had its origins and evolution in the second-half of the 20th century, specially after
the development of the McCulloch-Pitts neural model (MCCULLOCH; PITTS, 1943).
According to Cybernetics, the brain can be seen as an information system that receives
information as input, performs some processing over this information and outcomes the
computed results as output. Figure 1.1, reproduced from Pfeifer and Scheier (1994),
illustrates this information system metaphor. Therefore, in traditional connectionist mod-
els the information flow is unidirectional, from the input (e.g., sensory stimulation) to the
hidden layer (processing) and then to the output (e.g., motor action) layer.

However, in the last decades this information processing point of view has been con-
sidered obsolete in face of the new scientific discoveries in the neurosciences, and con-
sequently new theories for explaining how the brain works have been proposed (CRICK,
1994; DAMASIO, 1994; PINKER, 1997; DENNETT, 1996; PFEIFER; SCHEIER, 1999;
RAMACHANDRAN, 2003; HAWKINS, 2005). One of these theories is the embodied
intelligence (PFEIFER; SCHEIER, 1999; PFEIFER; IIDA; BONGARD, 2005), which
has been used in the design of autonomous agents in simulated and real environments
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Figure 1.1: Information flow in traditional connectionist models that follows the informa-
tion system metaphor

(PFEIFER; SCHEIER, 1994, 1997; PFEIFER; LUNGARELLA; IIDA, 2007; NOLFI;
PARISI, 1999; NOLFI; FLOREANO, 2000; KRICHMAR; EDELMAN, 2003, 2005).
According to this theory, instead of a unidirectional flow of information (open loop), there
is a continuous tight interaction (closed loop) between the motor system and the various
sensory systems, i.e, a sensory-motor coordination. Therefore, the sensory perceptions
of an agent influence its actions, and these actions also change the agent’s perception, as
shows Figure 1.2 (reproduced from Pfeifer et al. (2007)). It can be seen in this figure
that it is the environment that closes the loop between perception and action in embodied
systems, and therefore the agent must be complete, i.e.: embodied, autonomous, self-
sufficient and situated (PFEIFER; SCHEIER, 1999).

Another interesting theory about how the brain works, called Memory-Prediction
Framework (MPF), is presented in Hawkins (2005). This theory, which is inspired by
the work of other researchers such as Stephen Grossberg (GROSSBERG, 1976a,b, 2000),
Vernon B. Mountcastle MOUNTCASTLE, 1978) and Gerald M. Edelman (EDELMAN,
1978, 1987; KRICHMAR; EDELMAN, 2002), attempts to provide an overall theoretical
understanding of the neocortex — the part of the human brain responsible for “intelligence”
(HAWKINS, 2005). According to MPF, the brain is a probabilistic machine whose func-
tion is to make continuous predictions about future events. Moreover, it is organized
in a hierarchy of levels (i.e., cortical regions), as shown in Figure 1.3 reproduced from
Hawkins (2005). The lower levels in the hierarchy (near to the sensory areas) learn more
basic (concrete) concepts, and the higher levels (composed by the union of many lower-
level concepts) learn more general (abstract) and invariant concepts (HAWKINS, 2005;
PINTO, 2009).

An important aspect of MPF is that there are two kinds of connections with distinct
roles in the neocortex: the bottom-up (feedforward) connections, which provide predic-
tions from the lower to the higher levels, and the top-down (feedback) connections, which
provide expectations to the lower levels of the hierarchy. Although feedback dominates
most connections throughout the neocortex, in most neural network models (e.g., MLP
and RBF) it is simply ignored. But according to the MPF theory these feedback connec-
tions are very important, because they provide top-down expectations to the lower levels
of the neocortex hierarchy. These expectations interact with the bottom-up signals to both
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Figure 1.2: Information flow in embodied systems: there is a closed loop of information
between perception and action

analyze those inputs and generate predictions of subsequent expected inputs. Higher lev-
els predict future inputs by matching partial sequences and projecting their expectations
to the lower levels, thus helping these lower level to make better predictions (HAWKINS,
2005).

Another particularity of MPF is the kind of relationship that occurs among different
sensory stimuli in the neocortex. As Figure 1.3 shows, in the neocortex each sense is
processed by a cortical region, and these regions are connected to the association areas
(the higher levels in the hierarchy) through bottom-up and top-down connections. Conse-
quently, a stimulus in a sensory modality (e.g., hearing) can help to comprehend another
stimulus in other areas (e.g., vision) and/or to make more accurate predictions about fu-
ture events. If we hear a bark, for instance, we will expect to see a dog in the vicinity
(PINTO, 2009). The relationship between sensory and motor processing is also an impor-
tant aspect of MPF. According to MPF, the motor areas of cortex consist of a behavioral
hierarchy similar to the sensory hierarchy, with the lowest levels consisting of explicit
motor commands to musculature, and the highest levels corresponding to abstract pre-
scriptions (e.g. “catch the ball”). Therefore, sensory and motor hierarchies are tightly
coupled, with behavior giving rise to sensory expectations and sensory perceptions driv-
ing motor processes. Moreover, according to Hawkins (2005), a common function, i.e., a
common algorithm, is performed by all the cortical regions in the neocortex. Thus, vision
is not considered different from hearing, which is not considered different from motor
output. What makes the vision regions different of hearing regions is the kind of stimuli
received, not the brain structure itself MOUNTCASTLE, 1978).

Another theory of intelligence that has been developed in the last few decades is the
Constructivist Artificial Intelligence (DRESCHER, 1991), which comprises all works on
Artificial Intelligence (AI) that refer to the constructivist psychological theory (PIAGET,
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1954). The constructivist conception of intelligence was brought to the field of Al by the
Drescher’s pioneer work (DRESCHER, 1991), and some improvements of this theory are
presented in Chaput (2004), Perotto and Alvares (2006; 2007) and Perotto (2010). The
key concepts of Piaget’s constructivist theory that are applicable for the learning processes
of both humans and artificial agents are (PIAGET, 1952, 1954):

e Assimilation: occurs when the agent perceives new objects or events in terms of
existing schemas or operations. According to Piaget (1954), people tend to apply
any mental structure that is available to assimilate a new event, and actively seek to
use this newly acquired mental structure;

e Accommodation: refers to the process of changing internal mental structures to
provide consistency with the external reality. It occurs when new schemas must be
created to account for a new experience;

e Equilibration: refers to the biological drive to produce an optimal state of equilib-
rium between the agents’s cognitive structures and their environment. It involves
both assimilation and accommodation;

e Schemata: refers to the mental representation of an associated set of perceptions,
ideas, and/or actions.

In a constructivist neural network, for instance, the schemata would correspond to the
knowledge stored in the synaptic weights, the equilibration is the adjustment of the ANN
parameters to reduce the prediction error, the assimilation process is equivalent to make
small adjusts in the synaptic weights to assimilate a new event in terms of the existing
schemas and the accommodation process corresponds to create new neurons to account
for a new experience that is not well explained by the current schemata.

It is important to note that IGMN is just inspired in these theories, i.e., it does not
implement all aspects of these models neither aims to reproduce some functionality of the
human brain. Our main concern in developing IGMN was to create an efficient ANN for
on-line and continuous tasks, and these theories were useful just to provide a theoretical
background and a new way to design connectionist systems.
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1.3 Main objectives and contributions of this thesis

This section summarizes the main contributions of this thesis and also highlights the
innovations resulting from this work. The main objective of this thesis is to develop a new
connectionist approach for incremental function approximation that learns incrementally
from data flows and thus can be used in incremental regression and on-line prediction and
robotic tasks. The first contribution of this thesis is a new neural network model, called
IGMN, which has some similarities (e.g., instantaneous learning capabilities) with the
Specht’s Probabilistic Neural Network (PNN) (SPECHT, 1990) and General Regression
Neural Network (GRNN) (SPECHT, 1991). However, IGMN is fundamentally different
from these models because it is based on parametric probabilistic models (Gaussian mix-
ture models) (MCLACHLAN; PEEL, 2000), rather than nonparametric Parzen’s window
estimators (PARZEN, 1962). Parametric probabilistic models have nice features from the
representational point of view, describing noisy environments in a very parsimonious way,
with parameters that are readily understandable.

IGMN can be seen as a supervised learning extension of the IGMM algorithm, pub-
lished in Engel and Heinen (2010a; 2010b) and presented in Section 2.5, but it has unique
features from the statistical point of view that endow it with the capacity of making on-
line predictions for both forward and inverse problems at same time (the information flux
is not unidirectional). In fact, the same IGMN neural network can be used to solve a
forward problem and its corresponding inverse problem even in regions where the target
data are multi-valued. Moreover, IGMN can inform the confidence of its estimates, thus
allowing better decisions based on a confidence interval. To the best of our knowledge
IGMN is the first neural network model endowed with these capabilities, thus making the
proposed ANN model very suitable for on-line regression and prediction tasks.

The second contribution of this thesis is the use of IGMN in many machine learning
and robotic tasks. In fact, the efficiency of IGMN opens new possibilities and research
directions where relevant developments can be made. One of these directions is in incre-
mental concept formation, which consists in identifying natural groupings in a sequence
of noisy sensory data. Another possibility is in the reinforcement learning (RL) field,
where IGMN can be used to approximate continuous state and action values (V' (s) and
(Q)(s, a) in the RL terminology). Moreover, a new action selection mechanism, based on
statistical principles, is proposed allowing for an efficient exploration of the input space
without requiring ad-hoc parameters.

This thesis also presents a new indoor feature-based mapping algorithm which uses
IGMN to represent the characteristics of the environment, i.e., the features are represented
using multivariate Gaussian mixture models. The main advantages of this approach are:
(i) GMMs can represent the environment using variable size and shape structures, which
is more precise and parsimonious than the usual grid-like maps; (ii) it is inherently proba-
bilistic, which according to Thrun et al. (2006) is required for efficient robotic algorithms;
and (iii) it is computationally efficient even in large environments.

Other applications in which IGMN can be successfully used are time series predic-
tion, robotic control and solving the inverse kinematics problem. Summing up, the main
contributions of this thesis are:

e A new ANN model, called IGMN, that learns incrementally from data flows using
a single scan over the training data, produces valid answers even in regions where
the target data is multi-valued and can inform the confidence of its estimates;

e The use of IGMN in many important machine learning and robotic tasks outper-
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forming some of the existing connectionist approaches;

e A new reinforcement learning algorithm for continuous spaces that allows an effi-
cient exploration mechanism which does not require ad-hoc choices;

e A new feature-based mapping algorithm, based on IGMN, that uses Gaussian mix-
ture models to represent the environment structures.

To the best of our knowledge all these contributions are new and relevant to the
state-of-the-art of their respective research areas. Part of them have been published in
many important national and international events and journals (HEINEN; ENGEL, 2011,
2010a,b,c,d,e,f,g, 2009a,b,c; ENGEL; HEINEN, 2010a,b).

1.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 presents several top-
ics about Gaussian mixture models, which are used in the core of the neural network
model proposed in this thesis. Chapter 3 describes some related work about artificial neu-
ral networks and presents many well-known state-of-the-art ANN models, such as MLP,
RBF, ART and GRNN, their characteristics and limitations in the kind of task that we are
interested, i.e., incremental function approximation and on-line prediction.

Chapter 4 presents the new neural network model proposed in this thesis, called
IGMN, which is the main contribution of this work. Throughout that chapter the IGMN
neural architecture is presented, as well as its mathematical derivation, the incremental
learning algorithm and some other important features that are not available in other ANN
models such as MLP, RBF and GRNN.

Chapter 5 describes several experiments to evaluate the performance of IGMN in
function approximation and prediction tasks and also exploring some basic aspects of
the proposed model such as: the advantage of a multivariate representation; if the order
of presentation of data affects the results; the sensibility of IGMN to its configuration
parameters; how it can be used to solve forward and inverse problems at same time; and
to compute the confidence intervals of its estimates. That chapter also presents some ex-
periments in which IGMN is used to identify a nonlinear plant and to predict the future
values of a cyclic time series.

Chapter 6 presents the second contribution of this thesis, which is the use of IGMN
in many potential applications of neural networks such as incremental concept formation,
on-line robotic control, to solve the inverse kinematics problem, reinforcement learning
and feature-based mapping. Moreover, that chapter demonstrates that IGMN is a very
useful machine learning tool that allows to expand the horizon of tasks in which the arti-
ficial neural networks can be successfully used.

Finally, Chapter 7 concludes this monograph summarizing the main concepts and
contributions of this thesis and suggesting fruitful directions for further work.
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2 GAUSSIAN MIXTURE MODELS

This chapter presents several topics about Gaussian mixture models (GMM), which
are used in the core of the neural network model proposed in this thesis. Initially Sec-
tion 2.1 describes Gaussian mixture models and their main characteristics. Sections 2.2
and 2.3 present, respectively, the K-means clustering algorithm and the Expectation-
Maximization (EM) algorithm, which are commonly used to learn the set of parameters of
a GMM. Section 2.4 presents some state-of-the-art algorithms for learning Gaussian mix-
ture models. Finally, Section 2.5 describes the IGMM algorithm, which was developed by
us (ENGEL; HEINEN, 2010a,b) to learn GMMs in an incremental and continuous way.

2.1 Gaussian mixture models

A Gaussian mixture model (GMM) (MCLACHLAN; BASFORD, 1988; MCLACH-
LAN; PEEL, 2000) is a statistical modeling tool that has been successfully used in a
number of important problems involving both pattern recognition tasks of supervised
classification and unsupervised classification (JAIN; DUIN; MAO, 2000). In supervised
classification, an observed pattern, viewed as a [D-dimensional feature vector, is prob-
abilistic assigned to a set of predefined classes. In this case, the main task is to dis-
criminate the incoming patterns based on the predefined class model. In unsupervised
classification, classes are not predefined but are learned based on the similarity of pat-
terns. In this case, the recognition problem is posed as a categorization task, or clustering,
consisting in finding natural groupings (i.e., clusters) in multidimensional data, based on
measured similarities among the patterns (TAN; STEINBACH; KUMAR, 2006). Unsu-
pervised classification is a very difficult problem because multidimensional data can form
clusters with different shapes and sizes, demanding a flexible and powerful modeling tool
(FUKUNAGA, 1990).

Suppose that we have observed a set of N samples X = {x!,... x",...,x¥} up to
the current time ¢. The problem of modeling samples by a probability density function
can be posed as a problem of Gaussian mixture estimation (BISHOP, 1995). A GMM is
represented as a mixture distribution (TITTERINGTON; SMITH; MAKOV, 1985), i.e., a
linear combination of M Gaussian component densities as given by the equation

p(x) = Zp(j)p(x!j% 2.1)

where x is a D-dimensional continuous-valued data vector, p(x|7) is the component den-
sity function and p(j) is the prior probability that the data point x has been generated
from the jth mixture component (BISHOP, 1995). The priors p(j),Vj € M, are chosen
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to satisfy the constraints:

M
Z p(j) =1 2.2)
7=1

0 <p(j) <1,
Each component density p(x|7) is a D-variate Gaussian function of the form:
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with mean vector p; and covariance matrix C;. The component density functions p(x|j)
are normalized so that

p(x[j) = N(x|n;, C;) =

“+oo
/ p(x|j)dz = 1. 2.4)

The posterior probability that x has been generated from the jth Gaussian Component is
expressed using Bayes’ theorem in the form

: p(x[7)p(J
(i) = bR 23
> g=1 P(x[@)p(q)
and these posterior probabilities must satisfy the constraint:
M
> p(ilx) = 1. (2.6)
j=1

The complete Gaussian mixture model is parameterized by the mean vectors, covari-
ance matrices and priors from all distributions. These parameters are collectively repre-
sented by the 6 notation:

0= (01,...,0;....00)7", (2.7)
where 0; represents the parameters of the jth Gaussian component, i.e.:
0; = {u;, Cs,p(j)}- (2.8)

The covariance matrices, C;, can be full rank or constrained to be diagonal. Addition-
ally, parameters can be shared, or tied, among the Gaussian components, such as having
a common covariance matrix for all components. In general the GMM parameters 6 are
estimated from training data X using the EM algorithm, presented in Section 2.3. Next
section describes the K -means clustering algorithm, which according to Bishop (1995)
“can be seen as a particular limit of the EM optimization of a Gaussian mixture model”.

2.2 K-means clustering algorithm

K-means (MACQUEEN, 1967) is one of the simplest batch-mode, unsupervised learn-
ing algorithms to solve the so called clustering problem (TAN; STEINBACH; KUMAR,
2006). It follows a simple and easy way to classify a given dataset through a number /K
of clusters, where K < N is previously fixed, and each observation belongs to the cluster
with the nearest center. Therefore, K -means aims to partition N observations into K sets
S={S%...,5, ..., SK} minimizing the sum-of-squares criterion

K
T=3"S" x| (2.9)

j=1 nESj
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where x' is a vector representing a data point received at time ¢ and p; is the geometric
centroid of the /V; data points belonging to S;, i.e.:

1
W=+ > X" (2.10)

J ?’LESj

The K-means algorithm begins by assigning the points at random to K sets and then
computing the mean vectors p for all sets. Next, each point is re-assigned to a new set,
according to what is the nearest mean vector, and then means of all sets are recomputed.
This procedure is repeated until there is no further change in the groupings (BISHOP,
1995). In general the algorithm does not achieve the global minimum of J over the
assignments, but it can achieve a local minimum.

The main disadvantage of K -means is that, like other distance based clustering al-
gorithms, its induced model is equivalent to a set of equiprobable spherical distributions
sharing the same variance, what badly fits to a data flow with temporal correlation. To
describe this kind of data is better to use elongated elliptical distributions, like those pro-
duced by the EM algorithm, described in the next section.

2.3 The EM algorithm

The Expectation-Maximization (EM) algorithm (DEMPSTER; LAIRD; RUBIN, 1977;
BISHOP, 1995; MCLACHLAN; KRISHNAN, 1997; FIGUEIREDO; JAIN, 2002) is the
most used method to fit finite mixture models to observed data. It performs an efficient
iterative procedure to compute the Maximum Likelihood (ML) estimation in the presence
of missing or hidden data. The aim of ML estimation is to find the model parameters
which maximize the likelihood of the GMM given the training data, i.e., to find a local
maxima of logp(X|0), where X = {x!,...,x" ...,x"} is a set of n independent and
identically distributed samples. EM assumes the following problem definition: we have
two sample spaces X’ and Z, such that there is a many-one mapping X = f(Z) from an
observation Z in Z to an observation X in X. We define Z(X) = {Z : f(Z) = X},
where Z is the complete data, and X is the observed training data. If the distribution
f(Z|0) is well defined then the probability of X given € is

p(X[0) = /Z )z @.11)

EM is an iterative optimization algorithm which attempts to solve the problem of find-
ing the maximum-likelihood estimate @y, which maximizes £(6) = log p(X|0), given
that a sample from X is observed, but the corresponding Z is unobserved. In general,
log f(Z|6) can be solved analytically, but maximization of £(8) has no analytic solution
(TITTERINGTON, 1984). EM defines a sequence of parameter settings through a map-
ping 8; — 0,1 such that £L(0,,1) > L(6,) with equality holding only at stationary points
of £(@). Thus EM can be considered a hill-climbing algorithm which, at least under
certain conditions, will converge to a stationary point £(6) (COLLINS, 1997). At each
iteration EM produces an estimate 6, by alternatively applying two steps:

1. Expectation (E) step: Calculate the expected value of the log likelihood function,
with respect to the conditional distribution of Z given X under the current estimate
of the parameters 6;:

Q<9,|9t) = Ep(Z|X,9t) [logp(X, Z[O)] (212)
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2. Maximization (M) step: Updates the parameter estimates according to
0,1 = argnba}xQ(B’,Bt). (2.13)
For Gaussian mixtures, the updated set of GMM parameters 8 is computed at each

iteration using the following equations (BISHOP, 1995; TAN; STEINBACH; KUMAR,
2006), where the superscript ‘x” indicates the new (updated) parameter values:

w = ‘ (2.14)
T el
N |1 no__ ok no__ ok T
> 1 P(J]x™)
1 N
() =5 D_pU"). (2.16)
n=1

EM is useful for several reasons: its conceptual simplicity, ease of implementation,
and the fact that each iteration improves £(6) (MCLACHLAN; KRISHNAN, 1997). The
rate of convergence on the first few steps is typically quite good (XU; JORDAN, 1996),
but can become slow as the solution approaches a local optimum. The main drawbacks
of the EM algorithm are (FIGUEIREDO; JAIN, 2002):

e It is sensitive to initialization because the likelihood function of a mixture model is
not unimodal;

e The number of Gaussian distributions must be fixed and known at the beginning of
the learning process;

e [t requires that the complete training set is previously known and fixed, which pre-
vents its use in on-line applications.

In general the K-means clustering algorithm, described in the previous section, is
used to initialize the EM Gaussian distributions, thus alleviating the first problem. Next
section describes several improvements made over the original EM algorithm in order to
tackle the limitations described above.

2.4 State-of-the-art about learning Gaussian mixture models

In the past several attempts have been made to create more efficient algorithms for
learning Gaussian mixture models. In Stauffer and Grimson (1999), for instance, an in-
cremental adaptive mixture model was proposed to be used in real-time tracking appli-
cations. This model is implemented as an on-line K -means approximation, where only
the data which match the model (in the sense of the nearest neighbor) are included in the
estimation. The prior weights p(k) of the K distributions are adjusted as follows

p(k)" = (1 —a)p(k) + a(my), (2.17)

where « is the learning rate and my, is 1 for the nearest model which is matched and O for
the remaining models. The mean p and standard deviation o parameters for unmatched
distributions remain the same. The parameters of the distribution which matches the new
observation are updated as follows

u, = (1= p)me + px" (2.18)
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o = (1= p)oj + p(x" — wp)" (x" — ). (2.19)

The parameter p is computed through the following equation
p=aN(x"|u, o), (2.20)

where N (x"|uy, o) is a Gaussian probability density function with covariance matrix in
the form C;, = (riI, i.e., it is assumed that the observed variables are mutually conditional
independent. The main drawback of this approach is that, as occurs with the batch-mode
K-means algorithm (MACQUEEN, 1967), it cannot represent multivariate distributions
neither account for clusters with different sizes.

In Figueiredo and Jain (2002), an unsupervised algorithm for learning finite mixture
models from multivariate data is proposed. This algorithm is an improvement of the
standard EM algorithm because: (i) it selects the number of components in an automatic
way; (ii) it is less sensible to initialization than EM; and (iii) it avoids the boundary of
the parameter space. The estimation of the number of categories is based on Rissanen’s
Minimum Description Length (MDL) criteria (RISSANEN, 1989):

CMDI, = arg min {— log p(X]6.) + glog N} , (2.21)

whose two-part code interpretation is the following (FIGUEIREDO; JAIN, 2002): the
data code-length is — log p(X|6..), while each of the ¢ components 6, requires a code-
length proportional to 1/2log N. The mean vectors {u!, ..., u? ... u™} are initialized
to randomly chosen data points, and the initial covariances are made proportional to the
identity matrix, i.e., C;,; = 0°I, where o2 is computed as a fraction ¢ (e.g., 1 /5 or 1/10)
of the mean of the variances along each dimension of the data, i.e.:

N

1 1
o = 5—Dtrace (N Z(x” —m)(x" — m)T> : (2.22)

n=1

where trace is defined as the sum of the elements on the main diagonal of a square matrix
andm = 1/N ij:l x" is the global data mean. The main disadvantage of this algorithm
is that it is not incremental, i.e., it learns by processing all training data in batch-mode.
In Jepson et al. (2003) an on-line version of the EM algorithm is proposed and used
in a visual tracking system. This approach considers the data observations under an ex-
ponential envelope located at the current time, thus constituting a temporal window in
which the distribution parameters are assumed approximately constant. The updated set

of GMM parameters 6* is computed in the M-step through:
w1
]w; w_o 2
ol = o (™) (2.23)
p(7)" = ao;(x") + (1-a) p(j) ,

where « is the learning rate, 0;(x") are the membership probabilities for each observation
x" and w; are the membership weighted, ¢th-order data moments approximated by

w! =ax"o,(x")+ (1 —a)w;. (2.24)

The main drawbacks of this algorithm are: (i) the distribution components are modeled
by spherical Gaussian densities, 1.e., just considering the mean u; and a single variance
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o; for each component j; (i) the number of Gaussian components is previously known
and fixed; (iii) it assumes that the distribution parameters are slowly variable; and (iv) it
requires an initial guess for the optimization process and also occasional restart guesses
when the estimator becomes trapped at local extrema.

In Gomes et al. (2008) an algorithm for learning nonparametric Bayesian mixture
models is proposed, in which the current best estimate is computed using Variational
Bayes (VB) (ATTIAS, 2000; BLEI; JORDAN, 2005). In the Variational Bayes approach,
intractable posterior distributions, due to the large number of possible grouping of data,
are approximated with simpler proxy distributions that are chosen so that they are tractable
to compute. Given the data x* observed at time ¢, the VB algorithm optimizes the varia-
tional Free Energy functional:

p(VJ ®7 Zt? Xt’Th V? a)
F(x'q) = /dW q(v,®,z")log (v, ®.2) ; (2.25)

which is a lower bound on the log-evidence log p(x*|n, v, ). In Equation 2.25, z' are the
assignment variables, 77 and v are the natural parameters for the conjugate prior, o > 0 is
the concentration parameter of the Dirichlet Process (FERGUSON, 1973), ® is a set of
component parameter vectors, v is a set of stick breaking random variables (SETHURA-
MAN, 1994) and the proxy distributions

K T
(v, ®,2") = [ ] a(vi; G, G2)a(bn; G Gr2) [ [ a2 (2.26)
k=1 t=1

are products of Beta distributions for the stick breaking variables (with hyper-parameters
&), component distributions (with hyper-parameters (), and assignment variables, respec-
tively. Update equations for each proxy distribution can be cycled in an iterative co-
ordinate ascent and are guaranteed to converge to a local maximum of the free energy
(GOMES; WELLING; PERONA, 2008). The main drawback of this algorithm is that,
accordingly to incremental requirements described in Domingos and Hulten (2003), it is
not really incremental, because it assumes that new data comes in blocks, representable
by GMMs, which are then merged in the current model estimate.

In Arandjelovic and Cipolla (2005), an incremental algorithm for learning tempor-
ally-coherent GMMs which does not assume that new data comes in blocks is proposed.
This algorithm keeps in memory two GMMs, the current GMM estimate and an old esti-
mate called Historical GMM. The algorithm makes the strong assumption that component
likelihoods do not change much with the inclusion of novel information x* in the model,
ie:

p*(jIx") =~ p(j|x"). (2.27)

In the first stage of this algorithm, the current GMM ¥ is updated under the constraint
of fixed model complexity (i.e. fixed number of Gaussian components) through:

E. i<t E. tor( |t
o (Gt kg — st — e i) B+ (x - w) (x - w) (%)
! Ej + p(j]x*) 7

(2.29)
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where the superscript ‘x” indicates the new (updated) parameters, p(j|x") is the probability
of the jth component conditioned on data point x* and E; = SN p(jx").

In the second stage of this algorithm, new Gaussian clusters are postulated based on
the parameters of the current parameter model estimate ¢ and the Historical GMM 4.
Therefore, for each pair of corresponding components (u;, C;) and ( uﬁ»h), Cgh)) it com-
putes the “difference” component, and using the assumption in (2.27) the jth difference
component parameters become:

o™ — E; — Ey('h) u(n) _ b — ”;’h)EJ('h) (2.30)
N —N® E; — E
T T
o _ Cifi— (€ + u"u ) EW + (u el + B — T B
’ E; - EM
ST T S e i
(2.31)

This algorithm also performs merging operations to reduce the model complexity, i.e., to
minimize the expected model description length:

L(B]{x'}) = 5 N Togs(N) — log, P({x'}[6), 232)

where 0 is the set of parameters of the GMM and Ny is the number of free parameters.

The main drawbacks of this algorithm are: (i) it must keep in memory two GMMs,
(the current and historical GMMs); (ii) for creating new distributions, the algorithm first
assumes that the complexity of the model (number of Gaussian mixture components)
is fixed, and afterwards changes the number of components using splitting an merging
techniques; (iii) it fails (produce unsatisfactory results) when newly available data is well
explained by the Historical GMM; and (iv) it requires a strong temporal coherency among
the input data (the temporal patterns cannot abruptly change).

In Kristan et al. (2008) another incremental algorithm for estimating Gaussian mixture
models is proposed. This algorithm does not assume specific forms of the target probabil-
ity density functions (pdf) neither temporal constraints on the observed data. It starts from
a known pdf p;_;(x) from the previous time-step, and in the current time-step observes a
unidimensional sample x;. A Gaussian kernel corresponding to z; is then calculated and
used to update p;_;(x) to yield a new pdf p;(z).

Let x; be the currently observed sample and p;_;(x) be an approximation to the un-
derlying distribution p(x) from the previous time-step. The bandwidth h, of the kernel
Kj (z — x;) corresponding to z; is obtained by approximating the unknown distribution

p(z) = py(x) through:
hi = Cocate[2V/TR(p, (x))N]71/°, (2.33)

where N is the number of training points received until time ¢ and c¢geqe € [1,1.5] is a
configuration parameter used to increase the bandwidth and thus avoid under-smoothing.
The resulting kernel K, (x — ;) is then combined with p; () into an improved estimate
of the unknown distribution

1 1
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Next, the improved estimate p, () from (2.34) is sent back to (2.33) for re-approximating
ﬁt, and equations (2.33) and (2.34) are iterated until convergence. It is important to no-
tice that, for each observed sample, the number of components in the mixture model
increases. Therefore, in order to maintain low complexity, the model is compressed from
time to time into a model with a smaller number of components. According to Kristan
et al. (2008), "the presented approach deals with one-dimensional distributions", i.e., this
algorithm was tested only in situations where C' = o2,

There are other algorithms proposed to incrementally learn Gaussian mixture mod-
els (TITTERINGTON, 1984; NEAL; HINTON, 1998; WANG; ZHAO, 2006; CAPPE;
MOULINES, 2008), but most of them require several data points to the correct estima-
tion of the covariance matrices, assume that the input data come in blocks and/or does
not handle the stability-plasticity dilemma. So, although several attempts have been made
to create unsupervised algorithms to incrementally learn Gaussian mixture models, all of
then have important drawbacks which prevents their use in on-line and robotic tasks. Next
section presents a new GMM learning algorithm proposed by to tackle these limitations.

2.5 Incremental Gaussian Mixture Model

IGMM (standing for Incremental Gaussian Mixture Model) is an incremental algo-
rithm developed by us for estimating the GMM parameters 6 from data flows (ENGEL,;
HEINEN, 2010a,b). IGMM was specially designed for the so called unsupervised in-
cremental learning, which considers building a model, seen as a set of concepts of the
environment describing a data flow, where each data point is just instantaneously avail-
able to the learning system (FISHER, 1987; GENNARI; LANGLEY; FISHER, 1989). In
this case, the learning system needs to take into account these instantaneous data to update
its model of the environment.

As the batch-mode EM algorithm, IGMM follows the mixture distribution modeling.
However, its model can be effectively expanded with new components (i.e. concepts)
as new relevant information is identified in the data flow. Moreover, IGMM adjusts the
parameters of each distribution after the presentation of every single data point according
to recursive equations that are approximate incremental counterparts of the batch-mode
update equations used by the EM algorithm. The main advantages of IGMM over the
existing approaches described above are: (i) it does not need to keep in memory a His-
torical GMM or the previous training data (each pattern can be immediately used and
discarded); (ii) it does not assume strong temporal coherencies among the input data; (iii)
it does not require any kind of special initialization; (iv) the obtained results are similar to
those produced by the batch-mode EM algorithm; and (v) it handles the stability-plasticity
dilemma properly.

IGMM tackles the stability-plasticity dilemma by means of a novelty criterion, based
on the likelihood of the mixture components, and a stability criterion, that assumes a
stable dominant component for the current data, i.e, the data must be locally stable. The
requirement of a stable dominant component means that a new component is added to the
model only if it remains dominant, in the sense of the posterior probabilities, for at least
a user specified minimum sequence length of data. This is equivalent to say that a new
concept is added to the model only if it explains a minimum sequence stretch of the data
flow. This is a reasonable requirement for the kind of task we are interested in, since we
assume that the data flow is explainable by a set of persistent concepts. It is important
to say that IGMM does not assume that p*(j|x') ~ p(j|x"), i.e., unlike the algorithm



41

presented in Arandjelovic and Cipolla (2005) IGMM can properly handle abrupt changes
in the input data. The requirement of a stable dominant component only states that these
changes remain for a specified period of time — otherwise the current input pattern is
considered noise. Next subsection describes how IGMM tackles the stability-plasticity
dilemma in details.

2.5.1 Tackling the Stability-Plasticity Dilemma

An important issue in unsupervised incremental learning is the stability-plasticity
dilemma (GROSSBERG, 2000, 2003; HAYKIN, 2008), i.e., whether a new presented
data point must be assimilated in the current model or cause a structural change in the
model to accommodate the new information that it bears, i.e., a new concept. IGMM
uses a probabilistic approach for modeling the environment, and so, it can rely on solid
arguments to handle this issue.

IGMM assumes that the data stream corresponds to observations of a non-stationary
environment whose dynamics is composed by a number of different local stationary dy-
namics that succeed one another. Each local dynamics is called a mode of the environ-
ment dynamics (CHOI; YAN-YEUNG; ZHANG, 2001) or simply a context (SILVA et al.,
2006; BASSO; ENGEL, 2009). This is a valid assumption in many application domains,
specially in mobile robotics. On the other hand, it also assures that the environment is
local stable in a certain minimum segment of the data sequence, and so, by the succession
of the contexts, the learning system eventually receives a sufficient number of observa-
tions to properly identify each context from the whole data sequence. So, we can now
rely on a stability criterion that, together with a novelty criterion, can help us to overcome
the problem of the model complexity selection, related to the decision whether a new
component should be added to the current model.

This subsection presents the novelty criterion used by IGMM. In Subsection 2.5.2
we derive the recursive equations used to update the model parameters. Based on these
equations we discuss then the stability criterion in Subsection 2.5.3.

The mixture model starts with a single component with unity prior, centered at the
first input data, with a baseline covariance matrix specified by default, i.e., u; = x!,
meaning the value of x for¢t = 1, and C; = O'?MI, where 0,,,; is a user defined fraction &
of the overall variance (e.g., § = 1/100) of the corresponding attributes, estimated from
the range of these values according to

Oini = 0 [max(x) — min(x)]. (2.35)

New components are added by demand. IGMM uses a minimum likelihood criterion to
recognize a vector x as belonging to a mixture component. For each incoming data point
the algorithm verifies whether it minimally fits any mixture component. A data point x
is not recognized as belonging to a mixture component j if its probability p(x|j) is lower
than a previously specified minimum likelihood- (or novelty-) threshold. 1In this case,
p(x|j) is interpreted as a likelihood function of the jth mixture component. If x is rejected
by all density components, meaning that it bears new information, a new component is
added to the model, appropriately adjusting its parameters. The novelty-threshold value
affects the sensibility of the learning process to new concepts, with higher threshold values
generating more concepts. It is more intuitive for the user to specify a minimum value
for the acceptable likelihood, 7, as a fraction of the maximum value of the likelihood
function, making the novelty criterion independent of the covariance matrix. Hence, a new
mixture component is created when the instantaneous data point x = (z1,...,2;,...,Zp)
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matches the novelty criterion written as

TTLO’U

. Vi
p(x|(7)<—(27r)D/2 Nl (2.36)

Before explaining what happens when a new component is created, next subsection
presents how IGMM adjusts the values of the distribution parameters as new data points
are sequentially acquired.

2.5.2 Model update by sequential assimilation of data points

An instantaneous data point that does not match the novelty criterion needs to be as-
similated by the current mixture distribution, causing an update in the values of its param-
eters due to the information it bears. IGMM follows an incremental version for the usual
iterative process to estimate the parameters of a mixture model (i.e., the EM algorithm)
based on two steps: an estimation step (E) and a maximization step (M). The update pro-
cess begins computing the posterior probabilities of component membership for the data
point, p(j|x), the estimation step. These can be obtained through Bayes’ theorem, using
the current component-conditional densities p(x|j) and priors p(j) as follows:

p(x15)p(4)
Sl p(xlg)p(q)

The posterior probabilities can then be used to compute new estimates for the values
of the mean vector p} and covariance matrix C; of each component density p(x|j), and
the priors p(j)* in the maximization step. Next, we derive the recursive equations used by
IGMM to successively estimate these parameters.

The parameters @ = (0y,...,0,)7, corresponding to the means u;, covariances
matrices C; and priors p(j), Vi € M, of a mixture model involving D-dimensional
Gaussian distributions p(x|j), can be estimated from a sequence of ¢ data vectors, X =
{x!,...,x", ..., x'} assumed to be drawn independently from this mixture distribution.
The estimates of the parameters are random vectors whose statistical properties are ob-
tained from their joint density function. Starting from an initial “guess”, each observation
vector is used to update the estimates according to a successive estimation procedure.

IGMM follows the Robbins-Monro stochastic approximation method to derive the
recursive equation used to successively estimate the priors (ROBBINS; MONRO, 1951).
Notice that it is a derivation based on “first principles”, not starting from the EM update
equations, as in Arandjelovic and Cipolla (2005). For this, in the maximization step the
parameters of the current model are updated based on the maximization of the likelihood
of the data. In this case, the likelihood of 0 for the given X, £(8), is the joint probability
density of the whole data stream X, given by

p(jlx) = (2.37)

£(6) =p(X|6) = [[rx"16) =[] [Zp(x"lj)p(j)] (2.38)

The technique of maximum likelihood sets the value of @ by maximizing £(€). From
(2.38), the maximum likelihood value of a specific parameter, 8*, is given by a solution

of
é%,c(e) = a% {1:[1 [;p(xnlj)p(j)] }

=0 (2.39)

0
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If we consider the logarithm of the likelihood function, we can also write

o)

Introducing the factor of 1/t allows us to take the limit £ — oo and hence obtain the
expectation ()

e

=0 (2.40)
]

Thus, the maximum likelihood solution is asymptotically equivalent to finding a solution

" {——M[E:pxb ]} (2.42)

From the Robbins-Monro approximation method, this can be solved using an iterative
scheme of the form

(2.43)

0,1 = Ot—l—at—ln [Zp x|7)p ]

t

The coefficients {a;} represent a sequence of positive numbers of type 1/¢, which satisfy
the following three conditions:

lim a; =0
t—o00

T2 = 00 (2.44)
Doy a; < o0

It can be shown that the sequence of estimates 8, converges to the root 8* with probability
1 (ROBBINS; MONRO, 1951).

To find the desired equation to be used by IGMM to update the priors, we begin
applying the chain rule of the derivatives to the second term of the sum in (2.43) yielding

2 founa] - syt ]

where p(j) refers to the value of the prior at instant ¢, before updating. Using Bayes’
theorem, equation (2.37), we can write

(2.45)

t t

1 p[x")
= — 2.46
S o) pee1pG) (240
Entering with this equation in (2.45) follows that
OIS I S N
— 1 =7 247
n [Zp x|3)p ] ‘ () 96 [;p@mpu)] e
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Considering now the derivative of the summation in (2.47) for the prior § = p(j) we

obtain:
i [fj (x) <'>] (x13) (2.48)
YN P\X|7)P\J =Dp\X|) .
i) |45 t
Entering with (2.48) in (2.47) we can write
9 STV PG PG
Z%U)n[;;mXumui p@%ﬂmﬁpﬁkﬁ 0) (2.49)

Now, to satisfy the conditions described by (2.44), we choose arbitrarily the coefficients

(BISHOP, 1995): .

ay = ZP(J) (2.50)

and we end up with the following expression for updating the prior p(j):

1
p(3) = p()™ + Sp(ikx) (251)

After updating, the priors are adjusted through normalization to satisfy constraints (2.2)
by

R 20)) 5 59
p(j) S o) (2.52)
Although the maximum likelihood technique for estimating the priors is straightfor-
ward, as shown above, it becomes quite complex when applied to estimate the mean
vector and the covariance matrix directly from (2.3). Instead, we follow the natural con-
jugate technique to estimate these parameters (KEEHN, 1965). When pu and C are es-
timated by the sample mean vector and sample covariance matrix, and X is a normally
distributed random vector, the joint density function p(p, C|X) is known to be the repro-
ducible Gauss-Wishart distribution, the natural conjugate density for the model of (2.3)
(KEEHN, 1965). In this case, when we estimate both the expected vector and the covari-
ance matrix of a single distribution, starting with a priori distribution with an expected
vector u’ and covariance matrix C°, these parameters are transformed through n obser-
vations in the following manner (KEEHN, 1965; FUKUNAGA, 1990):

Wr=w+n v'=1"+n

0,,0 X
(2C° + wou(1)") + 0 (X) (X)T — whpt (1)
C! = (2.54)

0 +n
where w” and v° reflect the confidence about the initial estimates of u° and C° respec-
tively, corresponding to the number of samples used to compute these initial estimates.

On the other hand, when the probability density of the input data is a Gaussian mixture
model with M components, an observation x’ is probabilistic assigned to a distribution ;
by the corresponding posterior probability p(j|x"). In this case, the equivalent number of
samples used to compute the parameter estimates of the jth distribution component corre-
sponds to the sum of posterior probabilities that the data presented so far were generated
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from component j, the so called Oth-order moment of p(j|x) over the data, or simply the
Oth-order data moment for j. IGMM stores this summation as the variable sp;, i.e.:

t
spj= > pljlx"). (2.55)
n=1

The instantaneously presented data point x’ contributes to this sum with its posterior
probability to the component j, written as

t t—1
> p(Gx") = p(ix) + > plilx") . (2.56)
n=1 n=1
The left term and the last right term correspond respectively to the new and old values of
the variable sp;,
sp; = p(jIx") + sp; (2.57)
Since IGMM updates the distribution parameters of the M/ components after a single
observation x!, the equivalent number of observations for a specific component j, corre-
sponding to n in (2.53) and (2.54), is given by p(j|x"). In this case, we can rewrite (2.53)
and (2.54) considering:
(X) =x' (2.58)

and

n; = p(jlx") (2.59)
Moreover, from these definitions we recognize that, for a Gaussian mixture model, the
confidence constants for the jth component appearing in (2.53) and (2.54) correspond to:

t—1

w) =v; = Zp(j|x") = sp; (2.60)
n=1
and
wj =vj = sp; (2.61)

Entering with (2.58), (2.59), (2.60) and (2.61) in (2.53) and (2.54) and rearranging the
terms we obtain the desired recursive equations for updating the mean vector and the
covariance matrix of the jth mixture component respectively as

p(j[x)

wi=u;+ T@; (x' — ;) (2.62)

€= €= (=) — )+ 2 - - 0] e
J

Note that the total number of presented data points, equivalent to ¢, can be computed
summing all sp;, and so no extra counter is needed to store ¢, as can be shown by

M
t=> sp; (2.64)
j=1
So, making use of sp;, we can observe that for £ > 1, Equation (2.51) can be replaced by
.* 5P;
() = = (2.65)

M
Zq:l sp;kl
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These equations formalize the maximization step of IGMM.

One important property of the recursive equations (2.62), (2.63) and (2.65) is the fact
that, for non-stationary but locally stable environments, they continuously compute a use-
ful instantaneous approximation of the parameters that represent the mixture distribution.
Next, we show that these recursive expressions are approximate incremental counterparts
of the equations used by the EM algorithm (DEMPSTER; LAIRD; RUBIN, 1977). To
see this, we begin iterating equation (2.51) from n = 1 until £, obtaining

1 t
i) =7 ;pmxn) (2.66)

This expression is the same equation used by the EM algorithm to update the priors
in the step M. As a matter of fact, sp; represents an approximate estimate of the desired
summation, since by each new presented data point the distribution parameters change.
This actualization error is analog to the one made by the EM algorithm when the new pa-
rameter values are computed using posteriors computed by old parameters. In the case of
the EM algorithm, this error is minimized through successive presentations of the whole
data set, while in the case of IGMM the error is minimized through the successive presen-
tation of new data. If the learning task is episodic, meaning that it evolves in cycles from
a starting state to a terminal state, it is very likely that all distribution components of the
IGMM model will be properly updated, equivalently to the repeated presentations of the
whole data set for the EM algorithm. However, as the posteriors of the past observations
are not updated by IGMM, in continuing, non-episodic tasks this approximation may fail
if the model parameters change rapidly. This makes IGMM suitable either for episodic
tasks as well as for infinite horizon tasks in non-stationary but locally stable environments.

Focusing now on the update of the mean vector, we can rewrite equation (2.62) as
L PURX 5 PG

’ > P(Ix™)

Note that the subtraction of p; in the last term of (2.62) makes the summation on the
numerator in (2.67) to run just until n = ¢t — 1. So, we can think of the first term in the
numerator of (2.67) as the contribution to the mean of the instantaneous data point, while
the second term corresponds to the accumulation of the information about the mean of all
past data points. Iterating this summation from n = 1, and making ujl- = x!, we obtain

(2.67)

’ 22:1 p(j|xn>

We recognize now that this is the same equation used by the EM algorithm to update the
means. Similarly, we can rewrite equation (2.63) for updating the covariance matrix as

(2.68)

t—1
Ci= [p(ilx") (x — ) (x' — )"+ p(lx")C;—
n=1 (2.69)

X_:p(jlxn) (W —my) (w5 — uj)T] [ p(j|X”)]

Here too, we recognize the first term in the first brackets as the contribution of the
present data point to the covariance matrix, while the second term corresponds to the

n=1
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accumulation of the information about the covariance matrix of all past data points. The
third term is generated from the new estimates of the mean. When the model is local
stable, this last term is negligible. Finally, iterating backwards this expression from ¢ until
n = 1, and making (C;)' = 07,1, as the initial covariance matrix, and considering the

third term in (2.69) as negligible, we obtain

t ST t_ (* t_* T
o _ =1 PUX ) (= 1) (x = w) (2.70)

! > P 1x)

This is the same expression used by the EM algorithm to update the covariance matrix.
As pointed out above, this derivation is also an approximation, since the distribution pa-
rameters change as new data points are considered. Concluding, we can say that the
recursive equations used by IGMM described by (2.62), (2.63) and (2.65) are indeed ap-
proximate incremental counterparts of the update equations used by the EM algorithm.
Similar equations can be derived from those used by the (batch-mode) EM algorithm, like
in Arandjelovic and Cipolla (2005), but here we decided to derive the incremental for-
mulae to re-estimate @ from basic principles. Next section describes the stability criteria
used by IGMM for creating new components.

2.5.3 Creating a new component based on novelty and stability

To create a new component, IGMM uses the novelty criterion given by (2.36), but also
a stability criterion that tests if there is already a recent created component that should
assimilate the current presented data point. This means that there is a stable dominant
component for the current data, which is equivalent to say that the environment can be
decomposed in stable contexts, the concepts of the environment. To this end, we store
the age of each model component j, v;, consisting of the number of data that have been
presented to the learning system since the component was created. A new component is
created only if there is no model component whose age is less than a specified threshold
Umin,» 1.€., the stability criterion can be defined by

Vj > Umin » VJ .

If the data change too fast, these data points are assimilated by the current model
as noise and no new component is created. As a matter of fact, the stability criterion
avoids the successive creation of components in a noisy environment, but it cannot avoid
the creation of an eventual spurious component. However, a spurious component can be
readily identified if its sp; remains very small, bellow a specified parameter sp;,;,, after
some time steps after its creation, given by the parameter v,,;,. A good choice for sp,,in
is D + 1, because according to Travén (1991), a minimum of more than D samples are
required to obtain a nonsingular estimate of an unconstrained covariance matrix. Based on
the same principle v,,;, can be set to any value large than sp,,,;,, such as v,,,;, = 2D. Once
identified, a spurious component can be deleted from the current model. The condition to
identify and delete a spurious component can be written as

if v; > vy, and sp; <SPy, then

delete the jth component

adjust p(q) for all ¢ € M, q # j, using (2.65)
end if

Whenever a data point x' matches the novelty criterion given by (2.36), and the sta-
bility criterion is fulfilled, a new component & is created, centered at that data vector and
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with the baseline covariance matrix, i. e., y, = x' and C, = o2 ;1. After that, we must

adjust all p(j) to satisfy constraints (2.2) by (2.65). Since sp, is initialized with 1, the
prior for this new component is equivalent to:

1
plk) = —— @71)
E:?i15pj

In Arandjelovic and Cipolla (2005) is affirmed that “Intuitively, if all information that
is available at any time is the current GMM estimate, a single novel point never carries
enough information to cause an increase in the number of Gaussian components”. We
disagree with this affirmation, because in IGMM we allow for an increase in the number
of components, but using the stability criterium, we delete latter on the spurious ones. In
our opinion this is better than maintaining a historical GMM in memory or to use splitting
and merging operations to change the complexity of the GMM.

2.5.4 Incremental learning from unbounded data streams

IGMM was designed to process data streams creating on-line models of eventually
huge amounts of data based on accumulation of information in the sp variables. This
unbounded accumulation may lead to an eventual saturation of the variables that store the
corresponding summations, depending on the specific limitation of the available numeric
representation. To avoid this problem, a discount factor given by a parameter « is applied
to the instantaneous value of the corresponding variable. For the accumulator of the
posteriors in the jth unit we obtain:

sp; = p(j|x") + asp; . (2.72)

Since the instantaneous sum of p(j|x") over all components j is one, if we choose 0 <

a < 1as )
a=1— 7 2.73)

Spmaa:
where sp,,q, 1S a large number within the available numeric representation, the accumu-
lation over the time of all sp; according to the recursive equation (2.72) is bounded to
S$Pmaz»> @S shown by

t M
lim DD sp = 5pmaa (2.74)
—00
n=1 j=1

A large spiq. 1S desirable to keep the overall strategy stable. In some previous exper-
iments, described in Engel (2009), it was observed that sp,,., > 10° produced negligible
effects in the generated models. Moreover, we observe from these long-term equations
that when the model is at a local minimum, its parameters are dependent from the rela-
tion among the values of the accumulators but not on the values themselves. So, to better
explore the available numeric range keeping the system responsive to new components,
whenever long-term mode is reached, identified as a fraction S of sp,,,q.., the accumulators
are restarted to a fraction y of their corresponding value, i.e.:

: M . .
1f(z:j:1 8p;) = B SPmax then spi = v sp;, Vj.

In all experiments good results were obtained using sp,., = 10%, 5 = 0.8 and v = 0.5.
In fact, these parameters are not critical, because the obtained results were practically the
same using several different values for sp,,.., 8 and v (ENGEL, 2009).
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2.5.5 IGMM learning algorithm

Algorithm 1 presents a detailed pseudocode description of the IGMM algorithm,
which works as follows. When the first training data vector arrives, the first Gaussian
mixture component is created centered on this input vector, i.e., the distribution parame-
ters are initialized through

M=1; vi=1; spp=10 p(1) = x;

1;
Ci =02, p(x'[1) = N(x!|u, Ch) = (02,2m) "%,

wme

where p(x!|1) = (02, 27)"/? because as u, = x?, the exponential term in (2.3) reduces

m

to one, and as C; is diagonal, \/|C,| = o

ine*

Algorithm 1 Summary of the IGMM algorithm
for all new training data x* do
{Compute the probability of x! € jth mixture component}
for all mixture component j do
p(x'lj) = N'(x'u;, C))
end for
{Create a new mixture component k if necessary }
if M < 1or (vj > Uy, and p(x*|j) < ™ev/(2mP/2,/iC;], Vj) then
M =M+1;, vp=1; spr=10
W, =x Cp=021
p(x'|k) = N (x'|uy, Cp)
p(7) = spi/ Y_y 5Pg» Vi
end if
{ Compute the posterior probabilities }
for all mixture component ; do
p(x'5)p(5)
Sl p(x!a)p(q)

p(ilx") =

end for
{Incremental estimation step }
for all mixture component j do

spi = asp; + p(j|x")
0

sp;‘.
%t * *

C; = C; = () — () — )"+ B2 (' — ) (%' — )" = CJ]
end for

-\ % * M * -
p(d)* =8P/ > =1 SPys Vi
{Restart the accumulators and delete all spurious components }
. M . .
if (3,2, 5pj) > B Spmas then sp; = vy sp;, Vj
Vj; = Uj + 1, VJ
if v; > v, and sp; <SP, then delete the jth component

end for

When a new training vector arrives, the component densities p(x|j) are computed
using the D-variate Gaussian function (2.3). The algorithm then decides if it is necessary
to create a new component for the current data point x’ based on the minimum likelihood
criterium (2.36). If this criterium returns true, the new input vector x is not considered
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as a member of any existing component. In this case, a new Gaussian component £ is
created centered on x', i.e.:

M =M+1;, v.=1; spr=10; p,=
C.=02.I pxk) =N u,Cy) = (02,27

x!;
)—D/Q
mnm wme
and all prior probabilities p(7), V7, are adjusted to satisfy constraints (2.2) by (2.65).

Otherwise (if Equation 2.36 returns false for at least one mixture component), the
posterior probabilities are computed using the Bayes’ theorem (Equation 2.37), and the
existing mixture model is updated by (2.72), (2.62) and (2.63). At last, the sp accumula-
tors are restarted and the spurious components are deleted if necessary.

IGMM has seven configuration parameters (SPmin, SPmazs Bs V> Umin, 0 and Top).
Three of them, related to restarting of the accumulators (sp,,.., 5 and ), are actually
constants, i.e., they are not critical and can always be set to the default values presented in
Subsection 2.5.4. The configuration parameters related to the stability criterium (v,,,;,, and
SPmin) can be changed under special conditions (such as when the data are not temporarily
correlated or are very noisy), but in general they can be set to sp,,;, = D+1 and v,,;,, =2D
or even to zero (in this case the stability criterium will be ignored).

The ¢ parameter, used to define the initial radius o,; of the covariance matrices Cy,
must be defined more carefully. The main requirement for ¢ is to be large enough to
avoid singularities, but if 0;,; is too large all training points would fall inside the decision
frontier of the cluster, and consequently just a single cluster will be created. In general
good results are achieved using 0.005 < ¢ < 0.05, but this may vary according to the
statistical distribution of the training dataset.

The most critical configuration parameter is 7,,,,, which indicates how distant x must
be from u; to be consider a non-member of j. For instance, 7,,,, = 0.01 indicates that
p(x|7) must be lower than one percent of the Gaussian height (probability at the mean)
for x to be considered a non-member of j. If 7,,,, < 0.01, for instance, few Gaussian
distributions will be created (the GMM will be composed by few large clusters), and if
Tnow > 0.01, more Gaussian distributions will be created and consequently the mixture
model will be composed by many small clusters. In the limit, if 7,,,, = 1 one distri-
bution per training pattern will be created, and using 7,,,, = 0 just the initial Gaussian
distribution is created.

2.5.6 Computational complexity of IGMM

As each training pattern x" is processed just once by IGMM, its computational com-
plexity is linear in V, that is, the execution time does not depend on the number of training
patterns N. However, to compute p(x|j) using the D-variate Gaussian function (2.3) is
necessary to invert the covariance matrix C;, and this requires D'°%27 operations using the
Strassen algorithm (STRASSEN, 1969), which is the fastest implementable algorithm! for
square matrix multiplication (ROBINSON, 2005). Thus, the computational complexity
of IGMM is O(N M D'¢27), where M is the number of Gaussian components.

It can be noticed that, although IGMM is linear in N, the number of operations for
each training pattern increases as new Gaussian components are added. Moreover, if
the number of input features D is large (D > 10), the execution times will be high.

'The asymptotically fastest known algorithm for square matrix multiplication is the Coppersmith-
Winograd algorithm (COPPERSMITH DON; WINOGRAD, 1990), but unlike the Strassen algorithm
(STRASSEN, 1969), it is not used in practice because it only provides an advantage for matrices so large
that they cannot be processed by modern hardware (ROBINSON, 2005).
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A solution for this problem is to use diagonal matrices in C, which corresponds to the
naive hypothesis explored in INBC (ENGEL, 2009). Another solution, presented in Sato
and Ishii (2000), is to compute the inverse matrix Cc! directly, and in this case is not
necessary to invert C. But in this case the recursive equations for updating 6 must be
changed accordingly, and the interpretation of the results may require the inversion of
C~!. A large number of input features D may also result in numeric imprecisions (in
(2.3), for instance, the denominator of the first term will be very small), but this can be
easily solved using a logarithmic formulation, e.g.: a/b = exp(loga — logb).

2.6 Comparative

Table 2.1 summarizes the main characteristics of the algorithms for learning Gaussian
mixture models presented in this chapter. The characteristics required for incremental
function approximation are shown in blue and in uppercase. The first column (Main

Table 2.1: Characteristics of the GMM algorithms described in this chapter

Main Sensitive to Fixed number Batch Merging Data come Slowly Covariance
reference initialization  of distrib.  learning splitting in blocks variable matrix

(MACQUEEN, 1967) NO yes yes NO NO NO -

(DEMPSTER; LAIRD; RUBIN, 1977) yes yes yes NO NO NO FULL C
(FIGUEIREDO; JAIN, 2002) NO NO yes NO NO NO FULL C
(STAUFFER; GRIMSON, 1999) NO yes NO NO NO NO Diagonal
(JEPSON; FLEET; EL-MARAGHI, 2003) yes yes NO NO NO yes Diagonal
(GOMES; WELLING; PERONA, 2008) NO NO NO yes yes NO -

(ARANDJELOVIC; CIPOLLA, 2005) yes NO NO yes NO yes FULL C
(KRISTAN; SKOCAJ; LEONARDIS, 2008) yes NO NO yes NO NO Diagonal
(ENGEL; HEINEN, 2010a,b) NO NO NO NO NO yes FULL C

reference) shows the main reference of the algorithm. The second column (Sensitive to
initialization) informs if the learning algorithm is sensitive to initialization, i.e., if it starts
from an existing GMM and/or requires an initial guess about the Gaussian distributions.
The third column (Fixed number of distributions) indicates if the number of Gaussian
distributions must be previously known and fixed. The fourth column (Batch-mode learn-
ing) informs if the GMM uses a batch-mode learning algorithm, i.e., if it requires several
scans over the complete training dataset to converge. The fifth column (Merging split-
ting) indicates if the learning algorithm uses merging and splitting operations to control
the number of Gaussian components. The sixth column (Data come in blocks) indicates
if the corresponding model assumes that the data come in blocks. The seventh column
(Slowly variable) informs if the algorithm requires temporal coherency among the input
data, and the eighth column (Covariance matrix) indicates the kind of covariance matrix
used in the Gaussian components (the hyphen symbol indicates that the corresponding
model does not use covariance matrices, i.e., it is an distance-based algorithm) according
to following description:

e Diagonal: The covariance matrices are diagonal;
e FULL C: The corresponding model uses full covariance matrices.

In can be noticed that all algorithms for learning GMMSs presented in this chapter as-
sume at least one restriction. Three of them (MACQUEEN, 1967, DEMPSTER; LAIRD;
RUBIN, 1977; FIGUEIREDO; JAIN, 2002) are off-line solutions, and thus cannot be used
in incremental function approximation. The algorithm presented in Gomes et al. (2008)
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assumes that the training data come in blocks, which is a strong constraint for many
applications. Other algorithms (STAUFFER; GRIMSON, 1999; JEPSON; FLEET; EL-
MARAGHI, 2003) assume that the number of Gaussian distributions is previously known
and fixed, which prevent them to adapt for environment changes and/or learning new con-
cepts. The GMM learning algorithms proposed in Jepson et al. (2003), Arandjelovic and
Cipolla (2005) and Kiristan et al. (2008) are sensitive to initialization and/or starts from
existing GMMs, i.e., they do not tackle the problem of how to initialize the Gaussian
distributions. Moreover, the algorithms presented in Arandjelovic and Cipolla (2005),
Gomes et al. (2008) and Kristan et al. (2008) use batch-mode operations (e.g., merging
and splitting) to change the number of distributions.

The GMM learning algorithm proposed in this thesis (last row at Table 2.1), on the
other hand, starts from scratch, learns incrementally from data flows, does not assume
that the data come in blocks, is able to create new components on demand and does not
use merging and splitting operations. In fact, the only constraint assumed by IGMM is
that the environment must be locally stable, but this restriction is less severe than that
assumed in Arandjelovic and Cipolla (2005), for instance, because IGMM can deal even
with abrupt changes in the input data.
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3 ARTIFICIAL NEURAL NETWORKS

This chapter presents some state-of-the-art artificial neural network (ANN) models
related to this thesis, their main characteristics and limitations. Initially Section 3.1
describes the Multi-layer Perceptrons (MLP) (RUMELHART; HINTON; WILLIAMS,
1986) architecture, which is the most well known and used neural network model. Then
Section 3.2 presents the radial basis functions (RBF) network (POWELL, 1985, 1987a,b),
which is an important kind of neural network used mainly in non-linear regression. Sec-
tion 3.3 describes the self-organizing map (SOM) (KOHONEN, 1990, 2001), an unsu-
pervised ANN model characterized by the formation of a topological map from the input
patterns. Sections 3.4 and 3.5 describe, respectively, the ART (CARPENTER; GROSS-
BERG, 1987) and ARTMAP (CARPENTER; GROSSBERG; REYNOLDS, 1991) mod-
els, which are ANNs based on the adaptive resonance theory (GROSSBERG, 1976a,b,
2000). Sections 3.6 and 3.7 present, respectively, the PNN (SPECHT, 1988, 1990) and
GRNN (SPECHT, 1991) networks, which are probabilistic models that learn instanta-
neously using a single presentation of each training sample. Section 3.8 shows some
improvements made over PNN and GRNN to tackle their main limitations, specially the
requirement of a separate neuron for each training pattern. Section 3.9 describes other not
well known but interesting ANN models. Finally, Section 3.10 summarizes and compares
the neural network models described in this chapter.

3.1 Multi-layer Perceptrons

Multi-layer Perceptrons (MLP) (RUMELHART; HINTON; WILLIAMS, 1986) rep-
resent the most prominent and well researched class of ANNs for classification and func-
tion approximation, implementing a feed-forward and supervised learning paradigm. It
consists of several layers of neurons, interconnected through weighted acyclic arcs from
each preceding layer to the following, without lateral or feedback connections. Each node
computes a transformed weighted combination of its inputs of the form

y;(n) = @(vj(n)) 3.1

where (-) is the activation function and v;(n) is the induced local field of the neuron j,
defined by

vi(n) = Z wji(n)y;(n) (3.2)

where D is the total number of inputs applied to neuron j, and wj; is the synaptic weight
connecting neuron 7 to neuron j, and y;(n) is the input signal of neuron j or equivalently,
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the function signal appearing at the output of neuron 7. A commonly used activation
function is the logistic function given by:

1

T 1+ exp(—v;(n)) (3-3)

y;(n)

The algorithm used to train MLP networks, called Backpropagation (RUMELHART;
HINTON; WILLIAMS, 1986), is a supervised learning method based on gradient descent
which generalizes the Delta rule proposed by Widrow and Hoff (1960).

MLPs are useful in function approximation because they can approximate any given
continuous function on any compact subset to any degree of accuracy, provided that a
sufficient number of hidden layer neurons is used (POGGIO; GIROSI, 1989). This is
proved by the universal approximation theorem, which asserts that the standard multilayer
feed-forward networks with a single hidden layer that contains finite number of hidden
neurons, and with arbitrary activation function' are universal approximators in C'(R”)
(CSAJTL, 2001). According to Hornik (1991), it is the multilayer feed-forward architecture
itself which gives artificial neural networks the potential of being universal approximators,
and this potential does not depend on a specific choice of the activation function. It is
important to say that although the MLP architecture can represent any continuous function
given a sufficient number of hidden neurons, this function cannot necessarily be learned
by the Backpropagation algorithm, i.e., the convergence in Backpropagation learning is
not guaranteed (HAYKIN, 2008).

MLPs can be used in classification and regression, but generally not in clustering
tasks. The main disadvantages of MLP are: (i) the Backpropagation algorithm requires
several scans (called epochs) over all training data to converge for a good solution, i.e.,
to reduce to an acceptable value the error between the desired and actual outputs; (ii)
it suffers from the so called “catastrophic interference” (FRENCH, 2003), which occurs
when the newly learned patterns suddenly and completely erase the network memory of
the previously learned patterns; (iii) the neural network topology (i.e., number of hidden
layers and the number of neurons in each hidden layer) must be defined a priori and
kept fixed; (iv) the learning algorithm has many critical parameters (e.g., learning rate,
momentum, weight decay) which must be finely tuned for the learning process to properly
occur. The neural network topology and the configuration parameters are usually set in
a trial and error process, which requires several hours of a human specialist, and the
obtained configuration is specific for the current task (there is no default values that work
in most cases). Some of these problems are tackled by incremental ANN models, like the
Fahlman’s Cascade Correlation (FAHLMAN; LEBIERE, 1990), which automatically sets
the neural architecture and the learning parameters. But these models still require several
scans over the entire training dataset to converge.

3.2 Radial basis function networks

Radial basis functions (RBF) networks (POWELL, 1985, 1987a,b) constitute a widely
used and researched tool for nonlinear function approximation. They typically have three
layers: an input layer, a hidden layer with a non-linear RBF activation function and a

¢ is an activation function if and only if ¢ is bounded and lirf o(z) =a, lim @(x)=0b,a#h.
Tr—r+00 Tr—r— 00
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linear output layer. The output, ¢ : RP — R, of the network is thus

M
p(x) = wip(llx — pil]) (3.4)
1=1

where M is the number of neurons in the hidden layer, p; is the center vector of the
neuron ¢, and w; are the weights of the linear output neuron. In its basic form all inputs
are connected to each hidden neuron. The norm is typically the Euclidean distance and
the basis functions are generally Gaussian, i.e.,

p(llx = pll ) = exp [=B lx — pal|] - (3.5)

The Gaussian basis functions are local in the sense that changing parameters of one neuron
has only a small effect for input values that are far away from the center of that neuron,
Le.

lim p(][x = pf]) = 0 (3.6)

||z||—+o0

This local effect is specially useful in tasks like reinforcement learning (SUTTON; BARTO,
1998), because it prevents that the knowledge acquired in a region not recently visited be
destroyed by changes made in other regions of the state space (SMART, 2002).

RBF networks are universal approximators on a compact subset of R” (POWELL,
1987a; SHAHSAVAND, 2009). This means that a RBF network with enough hidden neu-
rons can approximate any continuous function with arbitrary precision. The parameters
w;, 4, and B are determined in a manner that optimizes the fit between ¢ and the data. In
general RBF networks are used just in regression tasks.

3.3 Self-organizing maps

A self-organizing map (SOM), also called a Kohonen map (KOHONEN, 1990, 2001),
is an artificial neural network model that is trained using unsupervised learning to produce
a low-dimensional, discretized representation of the input space. In a self-organizing
map, the neurons are placed at the nodes of a lattice, that is usually one-dimensional
or two-dimensional. Through a competitive learning process, the neurons of the lattice
become ordered with respect to each other in such a way that a meaningful coordinate
system for input features is created over the lattice (KOHONEN, 2001). SOM is therefore
characterized by the formation of a topographic map of the input patterns, in which the
spatial locations of the neurons indicate intrinsic statistical features of the input patterns
(HAYKIN, 2008).

The competitive learning process used by SOM works as follows. Initially the weight
vectors {w; }J]\il are chosen either to small random values or sampled evenly from the
available set of input training vectors {x;}~ ;. Using the latter alternative the learning
process is usually faster because the initial weights are already good approximations of
the SOM weight vectors (KOHONEN, 2001). When a training sample x' is fed to the
network, the neuron with weight vector most similar to the input vector, i.e., the winning
neuron i(x), is computed through

i(x) = argmin ||x' —w;||, j=1,2,...,M. (3.7)
j

After this, the synaptic weight vectors of all neurons are adjusted using the following
update equation:

S =Wyt e (xE— wy), (3.8)

Wi
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where 7); is the learning rate parameter and 5 ;(x) is the neighborhood function centered
around the winning neuron i(x). A common choice for the neighborhood function is the

Gaussian function: ,
a2

hiitx) = — ) 3.9

5i(x) eXP( 202) (3.9

where o is a parameter that controls the size of the topology and d;; is the Euclidean
distance between the lattice positions of neuron j, r;, and the winning neuron i(x), 1y

dji = [[rj — . (3.10)

A requirement of the SOM learning algorithm is that the size of the topological neighbor-
hood shrinks with time, which is achieved using an exponential decay of o

t
0r = 0g €xp <——) , t=0,1,2,... 3.11)

1

where o is the initial value of ¢ and 7 is a time constant set by the user. Another
requirement of the learning algorithm is that the learning rate 1, must decrease gradually
with increasing time ¢, which is also achieved using an exponential decay:

T2

t
My = 7o €XP (——) , t=0,1,2,... (3.12)

where 7y is the initial value of 77 and 7 is another time constant set by the user. The
learning process is repeated for each input vector x for a (usually large) number of epochs
until no noticeable changes in the feature map are observed (KOHONEN, 2001).

SOM is very useful for clustering and visualizing high-dimensional data, because it
describes a mapping from a higher dimensional input space to a lower dimensional, typi-
cally two-dimensional, map space. Its main limitations are: (i) the learning algorithm re-
quires several epochs to converge; (ii) there are separate phases for training and mapping,
i.e., the standard SOM cannot learn continuously; and (iii) the neural network architecture
(number of neurons in the lattice) must be previously configured and kept fixed. Some of
these drawbacks are tackled by variations of the SOM architecture, like GTSOM (BAS-
TOS, 2007; MENEGAZ; ENGEL, 2009), which can automatically set the neural network
architecture during learning in an incremental way. Moreover, GTSOM has no separate
phases for training and mapping, i.e., it can learn continuously and perpetually. However,
GTSOM still requires many training epochs to converge.

3.4 Adaptive Resonance Theory

Adaptive resonance theory (ART) is a theory developed by Grossberg (1976a; 1976b)
on aspects of how the brain processes information (GROSSBERG, 1982). It describes a
number of neural network models (e.g., ART1, Fuzzy ART, ARTMAP), that uses super-
vised and unsupervised learning methods, and addresses problems such as pattern recog-
nition and prediction (GROSSBERG, 2000). A central feature of ART is a pattern match-
ing process, that compares an external input I with the internal memory of an active code.
This matching process leads either to a resonant state, which persists long enough to al-
low learning, or to a parallel memory search. If the search ends at an established code, the
memory representation may either remain the same or incorporate new information from
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matched portions of the current input I. If the search ends at a new code, the memory
representation learns the current input I (CARPENTER; GROSSBERG, 2003).

The simplest ART model is an unsupervised learning network called ART1, which ac-
cepts only binary input data. Figure 3.1, reproduced from Carpenter and Grossberg (1987),
shows its typical architecture, that consists of:

e Two layers of binary neurons: the comparison layer, called F, and the recogni-
tion layer, called F5;

e A vigilance parameter, p, which specifies the minimum fraction of the input that
must remain in the matched pattern for resonance to occur;

e A reset module, that compares the strength of the recognition match to the vigi-
lance parameter p.

COMPETITIVE LEARNING
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Figure 3.1: Typical architecture of ART1

The vigilance parameter p has considerable influence on the system: higher vigilance
produces highly detailed memories (many, fine-grained categories), while lower vigilance
results in more general memories (fewer, more-general categories). By varying p the sys-
tem can recognize both abstract categories, such as faces and cats, and individual exam-
ples of these categories such as my cat (CARPENTER; GROSSBERG, 2003).

There are two sets of synaptic weights connecting F; and F5 in the ART1 model:

e Bottom-up weights: connecting | — Fy;
e Top-down weights: connecting F, — F7.

In the following the basic operation of the ART1 learning algorithm is described. To
simplify our notation, in this section the subscripts ¢ and j will be used exclusively to refer
to the layers F and F5, respectively. Therefore, the neurons on the £ and F5 layers will
be called, respectively, v; and v;, the top-down (F3 — F7) weights will be called w;; and
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the bottom-up (F; — F3) weights w;;. This notation follows that presented in Freeman
and Skapura (1991).

Before the learning process starts, it is necessary to initialize the weights and the
neural activities of F7 and F5. The weights of the top-down connections (vj — Vi), Wi,
are initialized according to
B1 —1

D,
where By and D; are configuration parameters chosen according to the following con-
straints:

w;i(0) > , (3.13)

D1 >0
l’IlaX{Dl, 1} <Bi<D;+1.
Other configuration parameters are A; > 0, C; > 0 and the vigilance parameter p, which

must be chosen in the interval 0 < p < 1. The bottom-up weights, connecting F; — F5,
are initialized according to

(3.14)

L
L—1+M"’
where L > 1 is an ART1 constant and M is the number of units on F}. The activities on
F3 are then initialized to zero, and the activities on F} are initialized in the following way:
— _Bl
1+ 0

21;(0) (3.16)

When a new binary input vector I € {0, 1} is applied to F}, the activities on F are
computed according to

I;
Ty = : 3.17
YTl AL+ B)+C G.17)
and the output vector for 1, S = {s1,...,;,...,Sn}, is computed through

This output vector S is propagated to I, and the activities T}, Vj € M, are computed:

M
i=1

These T activities are used to compute the outputs on F5:

{ 1 T; = maxp{T}}, Vk
Y0

J otherwise (3:20)

It is important to notice that only the “winning” node of F5, v;, has a nonzero output. The
output from F5 is propagated back to F}i, and the net inputs from F5 to the Fi units, V,
are given by:

N
V, = Zujwji , (3.21)
j=1

the new activities on Fj are recomputed through

. I; + D\V; — By
1+ AL+ D V) + Oy

(3.22)

T4
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and the new output vector S is recomputed using (3.18). After this, it is necessary to
determine the degree of match between the input pattern I and the top-down template,
Le. o
Bl 2 (3.23)
|I‘ Ez’:l I;
If |S|/|I] < p, then v; is marked as inactive, the outputs of [, are set to zero and the
algorithm returns to the first step using the original input pattern I. Otherwise, the learning
process continues updating the bottom-up weights on v; (the “winning” node) only:

L=1+1] (3.24)

—L _ if v; is active
Wi = e
" 0 if v; is inactive,

and the top-down weights coming from v; only to all F units are updated through:

w0 — { 1 if v; is active (3.25)

0 1if v; 1s inactive.

Finally, the input pattern is removed, all inactive units on F5 are restored and the algorithm
proceeds from the beginning using a new input pattern (FREEMAN; SKAPURA, 1991).

As mentioned above, the basic ART1 architecture deals only with binary input pat-
terns. But an improved ART architecture, called Fuzzy ART (CARPENTER; GROSS-
BERG; ROSEN, 1991), generalizes ART1 for learning stable recognition categories in
response to both analog and binary input patterns. This improvement is achieved by in-
corporating computations from fuzzy set theory (ZADEH, 1965) into the ART1 neural
network. In Fuzzy ART, the crispy intersection operator (M) is replaced by the fuzzy MIN
operator (A), and the crispy union operator (U) is replaced by the fuzzy MAX operator
(V). The fast learning operation, for instance, which in ART1 is given by an intersection
between I and w: w* = I N'w, in Fuzzy ART is computed using w* = I A w, where the
MIN operator (/) of fuzzy set theory replaces the intersection operator (M) used in ART1.

To prevent category proliferation, Fuzzy ART uses a normalization procedure called
complement coding, which actually doubles the number of input components, presenting
to the network both the original feature vector and its complement. According to Car-
penter et al. (1991), “complement coding leads to a symmetric theory in which the MIN
operator (A) and the MAX operator (V) of fuzzy set theory play complementary roles”.
Moreover, it is generally necessary to normalize the input vectors at a preprocessing stage
to prevent category proliferation.

The main advantages of the ART1 and Fuzzy ART are (CARPENTER; GROSS-
BERG, 2003): (i) they can learn incrementally and continuously, what make them well
suited for on-line learning of large and evolving databases; (ii) the adaptive resonance
theory tackles the stability-plasticity dilemma and does not suffer from catastrophic inter-
ference; (ii1) the learning process can be fast, thus enabling a system to adapt quickly to
inputs that rarely occur but that may require immediate accurate recall. The main draw-
backs of these unsupervised ART models are (SARLE, 1995): (i) they depend critically
upon the order in which the training data are processed; and (ii) the estimates produced
by them do not possess the statistical property of consistency.

3.5 ARTMAP

The ARTMAP model, also called predictive ART (CARPENTER; GROSSBERG;
REYNOLDS, 1991), is a neural network classifier that combines two ART modules into
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a supervised learning structure, where the first module (ART,) takes the input data a
and the second module (ART}) takes the correct output data b. ARTMAP uses these
modules to make the minimum possible adjustment of the vigilance parameter of the first
module (p,) in order to make the correct classification or prediction. The main elements
of the ARTMAP architecture are shown in Figure 3.2 (reproduced from Carpenter et
al. (CARPENTER; GROSSBERG; REYNOLDS, 1991)).

b (TRAINING)

MAP FIELD

AN MAP FIELD

CONTROL MAP FIELD ORIENTING
SUBSYSTEM

MATCH
— TRACKING

Figure 3.2: ARTMAP architecture

ART, and ART;, modules are connected by an inter-ART module, which is in many
aspects similar to an ART1 network (e.g., it receives only binary data). This inter-ART
module includes a so called map field F'®°, that controls the learning of an associative
map from ART, to ART), recognition categories. The map field also controls the match
tracking of the ART, vigilance parameter p,. A mismatch at the map field between the
ART, category activated by a and the ART, category activated by b increases p, by the
minimum amount needed for the system to search for and, if necessary, learn a new ART,,
category whose prediction matches the ART, category (CARPENTER; GROSSBERG;
REYNOLDS, 1991).

The match tracking process of ARTMAP works as follows. Assume that x is the
output vector of the map field F%, p is the vigilance parameter of F%°, y® is the output
vector of F? (the second layer of ART}), x* is the output vector of I (the first layer of
ART,), z¢ is the top-down input of F and w; is a weight vector that links the jth node
of F¢ to the nodes in F**, When a new data sample {a, b} is presented to ARTMAP, the
vigilance parameter of the ART, module, p,, is set to be equal a baseline vigilance p,. If
x| < ply®|, then p, is increased until it is slightly larger than |a N z¢||a|~'. Then

x?| = lanzi| < palal, (3.26)
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where a is the current ART,, input vector and j is the index of the active Fy' node. When
this occurs, ART, search leads either to activation of a new ' node j with

x| = |anzj| > pal (3.27)
and

x| = Iy nw;l = ply’l, (3.28)

or, if this node does not exist, to the shut-down of 3 for the remainder of the input pre-
sentation. ARTMAP can be seen as a self-organizing system that calibrates the selectivity
of its hypotheses based upon predictive success. As a result, rare but important events can
be distinguished even if they are similar to frequent events with different consequences
(CARPENTER; GROSSBERG; REYNOLDS, 1991).

To prevent category proliferation, ARTMAP employs the same complement coding
procedure introduced in the Fuzzy ART model described above (CARPENTER; GROSS-
BERG; ROSEN, 1991). ARTMAP has also a fuzzy version, called Fuzzy ARTMAP
(CARPENTER et al., 1992), which accepts both analog and binary input patterns (the
standard ARTMAP accepts only binary data). The main advantages of ARTMAP are
the same of ART1 and Fuzzy ART, i.e., it can learn fast and continuously, solves the
stability-plasticity dilemma and does not suffer from catastrophic interference. The main
drawbacks of ARTMAP and Fuzzy ARTMAP are: (i) they are restricted to supervised
classification and prediction using discrete categories; (ii) their estimates are not statis-
tically consistent (SARLE, 1995); and (iii) the error-driven learning used in the match
tracking process can result in a catastrophic allocation of new nodes, specially in overlap-
ping decision regions (HAMKER, 2001).

3.6 Probabilistic neural networks

The probabilistic neural network (PNN) model (SPECHT, 1988, 1990) is a feed-
forward ANN based on nonparametric Parzen’s window estimators (PARZEN, 1962) of
conditional probability density functions (pdf). It is used to classify patterns in order
to minimize the “expected risk” according to the Bayes’ strategy for decision making
(BERGER, 1980; TAN; STEINBACH; KUMAR, 2006). Consider the situation in which
the state of the environment S is known to be either S4 or Sg, and we must decide whether
S = 84 or§ = Sp based on a set of measurements represented by a D-dimensional input
vector x. In this case, the Bayes’ decision rule becomes:

d(X) = SA if hA lA fA(X) > hB lB fB(X)
d(X) = SB if hA lA fA(X) < hB lB fB(X)

where h, is the a priori probability of occurrence of patterns from category A, hp =
1 — hy is the a priori probability of occurrence of patterns from category B, fa(x) is
the probability density function (pdf) for class A, fz(x) is the pdf for class B, [4 is the
loss function associated with the decision d(x) = Sp when S = Sy, and [ is the loss
associated with the decision d(x) = S, when S = Sp. The losses associated with correct
decisions are taken to be equal to zero (SPECHT, 1990).

Figure 3.3, reproduced from Specht (1992), shows a neural network organization for
classification of the input pattern x into two categories, A and B. The typical PNN ar-
chitecture is composed of many interconnected processing units, i.e., artificial neurons,
organized in four successive layers. As occurs in other ANN models, the input layer unit
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Figure 3.3: PNN for classification of patterns in two categories

does not perform any computation — it is composed merely by distribution units that sup-
ply the same input values to all units of the pattern layer. Each pattern unit j performs
a dot product of the input vector x with a weight vector wj, i.e., z = x - w;, and then
perform the nonlinear operation exp|(z; — 1)/0?] before sending its output to the next
layer. Assuming that both x and w; are normalized to unit length, which is necessary
because the pattern units have the same variance o in each direction, the output of the
jth unit becomes

ey e w)] 529)
207

where the standard deviation o is the so called “smoothing parameter”. Equation 3.29

falls into the class of consistent estimators proposed by Parzen (1962) and extended to the

multidimensional case by Cacoullos (1966). The summation units simply sum the inputs

from the pattern units corresponding to the category from which the training pattern was

selected, i.e.:

p(x[j) = exp {—

N;
fi(x) =Y p(x19), (3.30)
j=1

where V; denotes the total number of samples in category i € { A, B}. The decision units
produce a binary network output. They have only a single variable weight, C', computed
through
_hplg Ny
 hala Np’
where N4 and Ng are the number of training patterns from categories A and B, respec-
tively. If N4 and Np are obtained in proportion to their a priori probabilities, then this
equation can be simplified to C' = [/l 4, i.e., C' is determined only from the significance
of the decision. Moreover, if the losses associated with making an incorrect decision are
the same for both classes, then C' can be simplified to —1 (an inverter).
The most important advantage of the probabilistic neural network is that training is
easy and instantaneous. In fact, it is accomplished by just setting each training pattern x

(3.31)
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equal to the w; weight vector in one of the pattern units, and then connecting the output
of the pattern unit to the appropriate summation unit. Another advantage of PNN is that
it is guaranteed to asymptotically approach the Bayes’ optimal decision surface provided
that the class pdfs are smooth and continuous (RUTKOWSKI, 2004a).

The main drawback of PNN is that a separate neuron (pattern unit) is required for
every training pattern, so in large databases an enormous amount of storage memory may
be required (BHATTACHARY YA et al., 2008). Moreover, the amount of computation
necessary to classify an unknown pattern x is proportional to the size of the training set.
Another limitation of PNN is that all pattern units are “isotropic Gaussians”, i.e., they
have the same width o in each dimension, which makes PNN not robust with respect to
affine transformations of feature space (MONTANA, 1992). Moreover, the smoothing
parameter o is critical and must be properly configured to obtain good results. Specht
suggests to use the holdout method (FUKUNAGA, 1990; TAN; STEINBACH; KUMAR,
2006) for setting the o parameter, but this method requires repeating the training process
N times using the entire dataset.

3.7 General regression neural network

The general regression neural network (GRNN), proposed by Specht (1991), falls into
the category of probabilistic neural networks described above. It is a memory-based net-
work based on the theory of nonlinear kernel regression (BISHOP, 1995), which provides
estimates of continuous variables and converges to the underlying regression surface. The
mathematical formulation of GRNN is given as follows. Assume that f(X,Y") represents
the known joint continuous pdf of a vector random variable, X, and a scalar random vari-
able, Y. Let x be a particular measured value of X. The conditional mean of Y given x,
also called the regression of Y on x, is given by

/ YY)
X / gy

When the density f(X,Y") is not known, it must be usually estimated from the obser-
vations x and y. GRNN uses the class of consistent estimators proposed by Parzen (1962)
and extended to the multidimensional case by Cacoullos (1966) for a nonparametric esti-
mate of f(X,Y"). Using these nonparametric estimators, the conditional mean y becomes:

Y= —x : (3.33)

3 (- x0)

i=1

E[Y|x] (3.32)

where N is the number of sample observations and x is the ith observation of the vector
random variable X.

The architecture of a typical GRNN consists of four successive layers of processing
units, as shows Figure 3.4 reproduced from Specht (1991). The input layer is composed
merely by distribution units, but it is usually necessary to scale all input variables such
that they have approximately the same ranges or variances. This is necessary because
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Summation
Units

Figure 3.4: Architecture of the GRNN model

the underlying pdf is estimated with a kernel that has the same width in each dimension
(SPECHT, 1991). A pattern neuron j receives the data vector x from the input layer
and computes an output p(x|7) using (3.29), i.e., PNN and GRNN have the same kind of
pattern neurons. The standard GRNN model also uses a separate neuron for each training
data in the pattern layer.

The summation units perform a dot product between a weight vector and a vector com-
posed of the signals from the pattern units. There are two types of summations performed
in this layer: simple arithmetic summations s(x) and weighted summations s(x, y), which
are computed, respectively, by the following equations:

M

s(x) = p(x]j) (3.34)
j=1
M

s(x,y) = Y Cip(xj) (3.35)
j=1

where C; is a weight connecting the jth pattern neuron to the weighted summation unit.
The sums calculated by the summation neurons are sent to the fourth layer, i.e., the output
neuron, which merely divides s(x, y) by s(x) to yield the desired estimate .

The learning process is accomplished by just setting each training pattern x equal to
the w; weight vector in one of the pattern units, connecting the pattern unit’s output to
the summation units and setting the weight C; equal to the desired response y* of the
corresponding training pattern x* (SPECHT, 1991).

The main advantages of GRNN are: (i) the neural network learns instantaneously us-
ing a single pass over the training data; (ii) the estimate asymptotically converges to the
optimal regression surface as more training data arrive; and (iii) it needs only a fraction of
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the training samples a MLP neural network would need to converge. The main disadvan-
tage of the standard GRNN is the amount of computation required to evaluate new points,
which is proportional to the size of the training dataset.

To overcome this problem, Specht (1991) suggest to use clustering algorithms, like K-
means averaging (TOU; GONZALEZ, 1974) or adaptive K-means (MOODY; DARKEN,
1989), to group samples so that the group can be represented by a single pattern unit.
In this case, each weight vector w; represents the center of a cluster and (3.33) can be

rewritten as
M
S A exp (_ (x — Wj)TgX - Wj))
= 20

S Blexp <_<x—wj£§x—wj>> |

where M < N is the number of clusters, A’ is the sum of the y values and B’ is the
number of samples assigned to cluster j. A7 and B’ are incremented each time a training
observation 3 for the jth cluster is encountered, i.e.:

(3.36)

Al = AT+
B* =Bl 4+ 1. (3.37)

In Specht (1991) other cluster techniques to set the pattern units are suggested, but
those techniques: (i) are restricted to distance-based algorithms (e.g., the /-means and its
variations); (i1) require that the number of clusters be previously known and fixed; and/or
(i11) are based in ad-hoc choices like the definition of a radius of influence r. Another
problem of the GRNN model is the configuration of the smoothing parameter o, which as
in PNN must be done off-line using iterative techniques like the holdout method (TAN;
STEINBACH; KUMAR, 2006).

3.8 Improvements made over PNN and GRNN

As mentioned above, the standard PNN and GRNN architectures have several limita-
tions which makes the computation very slow for large databases and/or prevents their use
in on-line and continuous tasks. This section describes some state-of-the-art approaches
to tackle these limitations. Most part of these approaches use some kind of clustering
algorithm to group the input patterns, so that the group can be represented by a single unit
in the pattern layer.

In Travén (1991), a Gaussian clustering (GC) algorithm is proposed for substantially
reducing the amount of information necessary to consider during classification. This al-
gorithm uses radially symmetric Gaussian components whose parameters are estimated
by a stochastic gradient descent procedure (WOLFE, 1970). In this procedure, the mean
of each Gaussian distribution (i.e., cluster) j is updated through:

W=+ (xt— ), (3.38)

where x’ is the current input pattern and 7); is given by:

_ p(ix")
Np(j)’

Wi (3.39)



66

where p(j|x") is the posterior probability of j given x!, N is the number of training
patterns received until the current time ¢ (i.e., N = t) and p(j) is the a priori probability
of j. GC assumes that the prior probabilities of all clusters are the same, i.e., p(j) = 1/M,
where M is the number of Gaussian distributions. It also assumes that the covariance
matrices are in the form of a constant times the identity matrix, i.e., C = o?1. The update
equation for the variance o2 is:

T - an
where the superscript ‘1" denotes the transpose and D is the dimensionality of x. A
peculiarity of this algorithm is that the parameters of the pattern units depend only on the
input densities, which according to Travén (1991) “in some cases may result in somewhat
less efficient solutions compared with methods where the placement of the hidden units
can be supervised”. The main limitations of this algorithm are: (i) it uses only radially
symmetric pdf’s; (ii) it assumes that all prior probabilities are equal; (ii1) the number of
clusters must be previously defined and fixed; and (iv) there are separate phases from
training and recalling, that prevents its use in on-line and continuous tasks.

In Cwik and Koronacki (1996), the Travén’s GC algorithm is extended so that no
constraints are imposed on the covariance matrices, i.e., the updated covariance matrix
Cj of the jth Gaussian distribution is computed through:

C;=C;+n [(x' —m)x' —m)" = Cyl. (3.41)

where 7); is computed using (3.39) above. Unfortunately this algorithm still requires that
the number of clusters must be previously known and fixed. Moreover, The Gaussian
components are initialized using the off-line K -means algorithm (MACQUEEN, 1967).

In Montana (1992) a genetic algorithm (GOLDBERG, 1989; MITCHELL, 1996) is
used to optimize the covariance matrices of the pattern units, thus allowing anisotropic
Gaussians units, i.e. Gaussians whose covariance is not a multiple of the identity ma-
trix, in the pattern layer. This optimization method, called weighted probabilistic neural
network (WPNN), works as follows. For ith exemplar of class j, x{ , let £; (x{ ), for
j =1,..., M, denote the class likelihoods obtained upon withholding this exemplar and
applying NV (x|u;, C;), and let P;(x!) be the probabilities obtained from these likelihoods
through:

Pixl) = L;(x])) > Lq(x7) (3.42)

Then, the fitness of the GA is defined as

E=> ) ((1=FE))+ ) (P (3.43)

=1 i=1 g

where [V; is the number of training samples of class j. In Mao et al. (2000) another GA-
based algorithm to determine the structure of a PNN network is proposed. This algorithm
consists of two parts and runs in an iterative way. The first part identifies an appropriate
smoothing parameter using a genetic algorithm, while the second part determines suitable
pattern layer neurons using a forward regression orthogonal algorithm (CHEN; COWAN;
GRANT, 1991). The main disadvantage of these GA-based methods is that they require
a large number of generations to evolve a good solution.
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In Streit and Luginbuhl (1994), a maximum likelihood method for training probabilis-
tic networks is proposed. This training method, called Generalized Fisher (GF) training,
is an iterative procedure that computes stationary points of the posterior likelihood func-
tion £ without taking gradients or derivatives. It begins with an initial guess, 0, for the
optimum parameters, and each iteration gives a new parameter estimate, 0", that is guar-
anteed to increase the value of the posterior likelihood function £ unless 6 is a stationary
value of L. By restarting the GF training algorithm with different initial guesses 0, and
choosing the best of the local maxima so obtained, a satisfactory maximum likelihood
estimate for # can be found. GF is based on the premise that all classes are multivari-
ate Gaussian random variables with a common covariance matrix C, but different mean
vectors u;. Initially the labeled training set X is partitioned into the disjoint subsets
X =X'UT?U---UXM, where M is the number of classes and X7 comprises those
samples in X with class label j. The sample means of the jth class are estimated through

Nj
B=—> x (3.44)

J =1

where x" is the ith training pattern of class j and N, is the number of training samples in
j. The common covariance matrix C is estimated by Fisher’s within-class scatter matrix:

M N;
.1 o
j=1 i=1

where /N denotes the total number of samples of the training dataset. The estimation error
for C is reduced by pooling the sample data, i.e., by using all samples in the training set X.
The a priori probabilities are computed without iteration using p(j) = N,;/N. The main
limitations of this method are: (i) all pattern units share the same covariance matrix, which
works well only when “samples from different classes have broadly similar correlational
structure” (STREIT; LUGINBUHL, 1994); (ii) it is an iterative procedure whose results
depend strongly on the initial guess 0; (iii) the number of Gaussian units must be specified
before the actual training can take place; and (iv) it is somewhat restricted to classification,
because the training dataset must be partitioned into the disjoint subsets.

In Berthold and Diamond (1998), a learning algorithm that constructs the topology
of a probabilistic neural network during training is proposed. This algorithm, called dy-
namic decay adjustment (DDA), has two configuration parameters, the thresholds 6 and
6~. 6 determines the minimum correct-classification probability for training patterns of
the correct class, and 6~ is used to avoid misclassifications. The operation requires two
distinct phases: training and classification. The training phase works as follows. Initially
all prototype weights A are set to zero, i.e., A¥ = 0, VpF, where p¥ is the ith prototype
(candidate) neuron of the output class k. Next all training patterns are presented to the
neural network. If a pattern (x, k) is classified correctly, i.e., IpF : N'(x, uF, oF) > 61),
the weight of the prototype with the largest variance, A¥, is increased (A = A¥ + 1.0).
Otherwise a new prototype is introduced (M* = MP* + 1) having the new pattern as its
center (u% . = x), a prototype weight A% . equal to 1 (A% , = 1), and its initial radius
aﬁﬂ is set as large as possible without misclassifying an already existing prototype of
conflicting class, i.e.:

Lk ]2
ok = min \/ —W : (3.46)
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After this all the prototypes 1 < j < M of the conflicting classes [ # k are shrunk if
their activations are too high for this specific pattern, i.e.:

x — ulbll2
Uézmin aé-, —% V5 € M*, (3.47)

The learning process is repeated for some epochs until the network architecture settles,
thus indicating the completion of the training phase. After training is complete, the nor-
malized output weights w}“ are computed for each class k& from the prototype weights A;?

through:
k
k

Wy = ZMkJ Ak
The main limitations of this algorithm are: (i) it is a batch-mode algorithm which requires
that the entire training dataset must be previously known and fixed; (ii) there are distinct
phases for training and classification; (iii) it uses just radially symmetric Gaussian kernels;
and (iv) the center p of a pattern unit never changes after its introduction, i.e., just the
standard deviation o of each distribution is adjusted during learning.

Delgosha and Menhaj (2001) propose a modified PNN learning algorithm, called
Fuzzy PNN (FPNN), which aims to improve the reliability of classification when the out-
put classes overlap. This is accomplished by making a soft decision in the training phase
instead of the traditional hard decision made by traditional classifiers. In the soft decision,
the effect of overlapping portions is lessened, because “the classifier is intentionally made
blind with respect to overlapping sections” (DELGOSHA; MENHAJ, 2001). The soft
decision is performed by the following smooth penalty function:

, Vje M. (3.48)

0, m <0

p(m; b; 5) = { 1/(1 + 6_(m_b)/s), m >0 (349)

where b is a bias introduced for more robustness, s is the softness parameter and m =
l; — [, is the difference between the losses of a class j (I;) and the class ¢ # j with the
minimum risk /, among all classes. The training steps of FPNN are completely similar
to those of PNN except the last step: FPNN counts the total number of misclassified
sample vectors and repeats the training procedure until all the sample vectors are correctly
classified.

There are other improvements made over probabilistic networks to adapt them to
specific situations. Rutkowski, for instance, derives a new mathematical formulation
for GRNN (RUTKOWSKI, 2004b) and PNN (RUTKOWSKI, 2004a) in time-varying
environments, but his formulation has the same drawbacks of the Specht’s models de-
scribed above (e.g., a separate neuron is required for every training pattern). Polat and
Yildirim (2010) describe a hardware implementation of a general regression neural net-
work using field programmable gate array (FPGA) circuits. Chang et al. (2009) present a
PNN model which has data imputation capabilities for machine-fault classification. This
model uses the standard EM algorithm to train the neural network and a global k-means
algorithm is used prior to EM to find the number of clusters based on minimizing the
clustering error.

We can conclude that, although many algorithms have been proposed to tackle the
main restrictions of PNN and GRNN, most of them have at least one of the following
limitations: (1) they are restricted to classification tasks; (i1) they require that the complete
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training dataset is previously known and fixed; (iii) the learning process requires several
scans over the entire dataset; (iv) they impose limitations on the form of the pattern units;
(v) they have separate phases for training and recalling; or (vi) the neural network topol-
ogy must be defined a priori and kept fixed. Therefore, these algorithms are not useful for
applications such as incremental function approximation, on-line prediction and mobile
robotics.

3.9 Other neural network models

This section presents other neural network models which are less known and used than
the traditional models (e.g., MLP, RBE, SOM) described in the previous sections. In Lin et
al. (1997), an ANN model called probabilistic decision-based neural network (PDBNN) is
proposed. PDBNN has a modular architecture composed by several subnets connected to
a decision unit. Learning in PDBNN is divided into two phases: locally unsupervised and
globally supervised. In the locally unsupervised learning phase, PDBNN adopts the EM
algorithm (DEMPSTER; LAIRD; RUBIN, 1977) to maximize the likelihood function

N M
LX) = log | > p(k) p(x'[k, ej)] (3.50)
t=1 j=1
where £ is the output class, X = {x!,x? ... x"} denotes the set of N independent and

identically distributed training patterns, 8; = {u;, C;, p(k)} represents the parameters of
the jth mixture component, M is the number of mixture components and p(x’|k, 6;) is the
class likelihood function computed using a D-variate Gaussian distribution. In the glob-
ally supervised training phase, target values are used to fine-tune the decision boundaries.
Specifically, when a training pattern is misclassified to the jth class, reinforced and/or
anti-reinforced learning (SUTTON; BARTO, 1998) are applied to update the mean vec-
tors and covariance matrices of subnet j. The main drawbacks of this algorithm are the
same of great part of the ANN models, i.e.: (i) the learning process requires several scans
over the entire dataset; and (ii) there are separate phases for training and recalling.

In Williamson (1997) a probabilistic version of Fuzzy ARTMAP, called Gaussian
ARTMAP, is proposed for mixture modeling and classification. Gaussian ARTMAP dif-
fers from Fuzzy ARTMAP significantly in a few respects. First, it represents category j as
a Gaussian density function, defined by two vectors: its mean p; = {1, ftjo, . .., i}
and its standard deviation o; = {0,1,0;2,...,0jm}, Which together replace prototype
vector w;. Second, a scalar, n;, accumulates the amount of relative activation obtained by
F5 node j on training set patterns. During training, the number of committed F5 nodes,
N,, is initially set to 0. Newly-committed F5 nodes increment N, and undergo the ini-

tialization step:
ab

wy=A; o5=7 wij=1 n;=1,
where A represents the input pattern, w%; is the F'° prototype vector connecting nodes J
and K (the inter-ART module still has a prototype vector w) and + is the initial standard
deviation assigned to newly-committed F> nodes. Committed F, nodes that pass the
following vigilance test for pattern a:

)2
Gj(A):eXp{—EZM} >0, (3.51)
1
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where p are the choice is the baseline vigilance parameter, are allowed to activate, and
distribute a pattern of activity y, i.e.:

9;
0.01+ 37 g

Match tracking and learning are performed according to the relative activation over the
“ensemble” Fy of I, nodes linked to the predicted F'®’ node K, i.e.:

p = exp {—— Z Y; Z 'LLJZ } +ec. (3.53)

jeEEK =1

y; = (3.52)

The relative activation over Ey is defined by the distributed pattern y*, where y; =
Yi/ Y iep, Y only if j € Ek, and y; = 0 otherwise. The prototype update is computed
through the following equations:

W, =n;+y (3.54)
u;.i = (1 — Z—]) i + Z—]AZ (3.55)
J J

ji = \/(1 - n_j) ofi + (A= ) (3.56)

J J

Although the Gaussian ARTMAP can achieve better results than Fuzzy ARTMAP in
incremental classification tasks (GRANGER; CONNOLLY; SABOURIN, 2008), it has
many critical parameters (the “standard” Fuzzy ARTMAP parameters plus ¢, p, ), which
must be properly configured before the learning process starts. Moreover, it uses diagonal
covariance matrices in the Gaussian units, i.e., just the variance o2 is computed.

Other interesting neural network models are: (i) the recurrent log-linearized Gaus-
sian mixture network (R-LLGMN), proposed by Tsuji et al. (2003), which uses Gaussian
mixtures and hidden Markov models (HMM) for classifying temporal series. But unfor-
tunately this model is not on-line nor incremental, just recurrent; and (ii) the resource
allocating network (RAN), proposed by Platt (1991), which adds new neurons incremen-
tally by choosing what training vectors it must store. RAN is based on a distance based
algorithm, and like K -means the induced model is equivalent to a set of equiprobable
spherical distributions sharing the same variance. Moreover, the training algorithm uses
the same (slow) least mean squares (LMS) algorithm (WIDROW; HOFF, 1960) used by
Backpropagation (RUMELHART; HINTON; WILLIAMS, 1986).

3.10 Comparison among the described ANN models

Table 3.1 summarizes the main characteristics of the neural network models presented
in this chapter. These characteristics refer to the standard architectures described in the
corresponding papers, but of course some of these models have variations which improves
some of these characteristics and/or extends them for using in other tasks.

The first (neural network) and second (main reference) columns of Table 3.1 present,
respectively, the acronyms of the neural network models and the corresponding refer-
ences. The third column (main tasks) describes the tasks in which the ANN model ca be
used (classification, regression or clustering). The fourth column (incr. arch.) indicates
if the ANN model has an incremental architecture: “YES” means that the neural network
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Table 3.1: Characteristics of the described neural network models

Neural Main Main Incr. Cont. Inst. Init. Prob. Covar. Many Many
network reference tasks arch. learn learn dep. mod. matrix units conf.
MLP (RUMELHART et al., 1986)  Class.,regr. no no no yes no - NO  yes
Cascade Correlat. (FAHLMAN; LEBIERE, 1990) Class. YES YES no NO no - NO NO
RBF (POWELL, 1985) Regr. no no no yes no Unigueo NO  vyes
SOM (KOHONEN, 1990) Clust. no no no yes no - NO  yes
GTSOM (BASTOS, 2007) Clust. YES YES no NO no - NO yes
ART (CARPENTER et al., 1987) Clust. YES YES YES yes no - NO yes
ARTMAP (CARPENTER et al., 1991) Regr.clust. YES YES YES yes no - NO yes
PNN (SPECHT, 1988, 1990) Class. YES YES YES NO YES Uniquec vyes NO
GRNN (SPECHT, 1991) Regr. YES YES YES NO YES Uniquec yes NO
Traven's GC (TRAVEN, 1991) Class.,regr. no no no yes YES Radialy NO NO
Cwik's GC (CWIK; KORONACKI, 1996) Class.,regr. no no no yes YES FULLC NO NO
WPNN (MONTANA, 1992) Class. YES no no yes YES FULLC NO NO
Mao's PNN (MAO; TAN; SER, 2000) Class. no no no NO YES Uniquec NO NO
GF (STREIT; LUGINBUHL, 1994) Class. YES no no yes  YES UniqueC NO NO
DDA (BERTHOLD;DIAMOND,1998) Class. no no no NO YES Radially NO NO
FPNN (DELGOSHA;MENHAJ, 2001) Class. YES no no NO YES UniqueC NO NO
Rutkowski's GRNN (RUTKOWSKI, 2004a) Regr. YES YES YES NO YES Uniqueg vyes NO
Rutkowski's PNN  (RUTKOWSKI, 2004b) Class. YES YES YES NO YES Uniquea yes NO
FPGA GRNN (POLAT; YILDIRIM, 2010) Regr. YES YES YES NO YES Uniquec vyes NO
Chang's PNN (CHANG; LOO; RAC, 2009) Class. no no no NO YES FULLC NO NO
PDBNN (LIN; KUNG; LIN, 1997) Class. YES no no yes YES FULLC NO yes
Gaussian ARTMAP (WILLIAMSON, 1997) Regr.,clust. YES YES YES NO YES Diagonal NO vyes
R-LLGMN (TSUJI et al., 2003) Class. YES no no yes YES FULLC NO vyes
RAN (PLATT, 1991) Regr. YES YES YES NO no - NO  vyes
IGMN (THIS THESIS) Regr.clust. YES YES YES NO YES FULLC NO NO

incrementally adds neurons whenever necessary and “no” means that it uses a predefined
and fixed architecture. The fifth column (cont. learn.) indicates if the neural network
can learn continuously without separate phases for training and using. The sixth column
(inst. learn.) indicates if the model can learn instantaneously with a single presentation of
each training pattern (“'YES”) or it requires several scans over the entire training database
(i.e., epochs) to converge (“no”). The seventh column (init. dep.) indicates if the results
obtained using the corresponding model varies according to the initial conditions, e.g., if
the random initialization of the model parameters affects significantly the obtained results
(which occurs, for instance, when the ANN is sensible to local minima). The eighth col-
umn informs if the neural network follows a probabilistic framework or not. In this thesis
we are mainly interested in probabilistic models, because they allow better results in some
kind of tasks likes robotics (THRUN; BURGARD; FOX, 2006). The Ninth column (co-
var. matrix) indicates the kind of covariance matrix used by each probabilistic model (the
hyphen symbol indicates that the corresponding model does not use covariance matrices)
according to following description:

e Unique o: all Gaussian units are radially symmetric and share the same standard
deviation o;

e Radially: each Gaussian unit j has its own standard deviation parameter o;, but
these units are still radially symmetric;

e Diagonal: the covariance matrices are diagonal, i.e., the input features are consid-
ered conditionally independent (that corresponds to the naive Bayes hypothesis);

e Unique C: all Gaussian units share the same (full) covariance matrix C;

e FULL C: each Gaussian unit j has its own (full) covariance matrix C;; i.e., no
restrictions are imposed to the shape of the Gaussian distributions.

The tenth column (many units) indicates if the neural network requires a separate neuron
for every training pattern, such as in Specht’s PNN and GRNN. The last column (many
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conf.) indicates if the ANN has many (critical) configuration parameters which must be
properly configure before learning.

Observing Table 3.1 it can be noticed that neither of these previous approaches satisfy
all requirements (written in uppercase in the respective columns) for using them success-
fully in incremental function approximation and on-line tasks. The neural network model
proposed in this thesis (last row in Table 3.1), on the other hand, satisfies all these re-
quirements, and thus is a suitable tool to be used in this kind of application. Next chapter
describes the proposed neural network model, called IGMN, in details.
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4 INCREMENTAL GAUSSIAN MIXTURE NETWORK

This chapter presents the neural network model proposed in this thesis, called IGMN!
(standing for Incremental Gaussian Mixture Network) (HEINEN; ENGEL, 2010a,b), that
is the main contribution of this thesis. It is based on parametric probabilistic models
(Gaussian mixture models), that have nice features from the representational point of
view, describing noisy environments in a very parsimonious way, with parameters that
are readily understandable. IGMN can be seen as a supervised learning extension of the
IGMM algorithm, presented in Section 2.5, but it has unique features from the statistical
point of view that endow it with the ability to make on-line predictions for forward and
inverse problems and also to compute the confidence estimates of its predictions, as will
be shown throughout this thesis.

This chapter is structured as follows. Section 4.1 provides the mathematical deriva-
tion of the regression algorithm used by IGMN to approximate functions and make pre-
dictions. Section 4.2 presents the neural network architecture of IGMN. Section 4.3 de-
scribes the operation of IGMN during learning and recalling. Section 4.4 extends the
proposed ANN model for multi-valued inverse problems which are not characterized by
a functional (i.e. single-valued) mapping. Section 4.5 discusses the IGMN configuration
parameters and how they can be set. Finally, Section 4.6 concludes this chapter summa-
rizing the main characteristics and limitations of IGMN.

4.1 General regression using Gaussian mixture models

This section describes the statistical basis of IGMN and the mathematical derivation of
the general regression algorithm which enables IGMN to approximate functions and make
predictions. Suppose that we have a noisy training data set z composed by two data vec-
tors, a € A and b € B, that correspond to the observed (i.e., the independent variables)
and missing (i.e., the target values) stimuli, respectively. According to Bishop (1995), the
goal of learning is to find a smooth mapping from a to b which captures the underlying
systematic aspects of the data, without fitting the noise on the data. In Bishop (1995) it
is shown that, under many circumstances, the optimal mapping is given by forming the
regression, or conditional average (b|a), of the target data b, conditioned on the input
variables. This can be expressed in terms of the conditional density p(b|a), and hence in
terms of the joint density p(a, b), as follows:

b = (bla)

'Initially IGMN was called IPNN (standing for Incremental Probabilistic Neural Network), but the name
was changed to avoid misunderstandings with the Specht’s PNN model, which is based on nonparametric
Parzen’s window estimators (PARZEN, 1962) rather than Gaussian mixture models.
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= /bp(bya)db

/bp(a, b)db
S A— (4.1)

/p(a, b)db

The probability density p(a, b) can be modeled using Parzen kernel estimators (PARZEN,
1962), for instance, as occurs in GRNN (SPECHT, 1991). In this case, the density p(a, b)
is modeled using a Gaussian kernel function in the form:

N 2 2
1 [a—a"|" |[[b—Db"]
b= 3> e { LA LR )

where D? and D? are the dimensions of a and b, respectively. Substituting (4.2) into
(4.1) we obtain the following expression for the regression of b (BISHOP, 1995):

b Sa bresp{—]la—a" [?/20%) ws)

SV exp{—| a—ar ||*/202}

which is known as the Nadaraya-Watson estimator (NADARAYA, 1964; WATSON, 1964),
used by GRNN (SPECHT, 1991). If we replace the kernel estimator by a Gaussian mix-
ture model with diagonal matrices, the joint density function becomes:

2 2
1 la—pl " [[b—uf|
Zp 2 2 eXpq§ — 2 - 2 )
(2mo")PY2 (2 07)P"/2 207 207

J J
“4.4)
is the variance of

where uf and uf are the mean vectors of a and b, respectively, o’

a and 0'?2 is the variance of b. Replacing (4.4) into (4.1) and performing the indicated
integrations, we obtain the following expression for the regression:

S p() uf exp{—| a— pu? ||*/207"}
S p(i) exp{—| a— u? |*/207°}

which can be viewed as a normalized GRNN expansion in which the pattern units are no
longer constrained to be symmetrically circular nor to coincide with the data points and
in which the number of pattern units is typically smaller than the number of data points.
Moreover, we can recognize the terms exp{—|| a — p} 1%/ 2(7]32} in (4.5) as univariate
Gaussian distributions:

. 1 |a—p?|?
p(alj) = ——=-exp ——ﬂé ; (4.6)
2rg? 203

J

b=

, 4.5)

but without the normalizing terms (27r0'f2)*1/ 2, which are unnecessary because the de-

nominator in (4.5) already normalizes this expression. Replacing (4.6) into (4.5) we ob-

tain:
S up()p (a!j)

b= M
Zj:l p(j) p(aly)

4.7)
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Using some algebraic manipulation we can rewrite this expression as:

_ Z [ p(al;) ] u?, (4.8)

> gmr P(a)p(alq)

where we identify the term between brackets as the a posteriori probability p(j|a) com-
puted using the Bayes’ rule (2.37). Hence (4.8) can be rewritten as

R M
=> plila)n?, (4.9)
j=1

where b is estimated using the a posteriori probabilities p(j|a) computed over a only and
the mean vector of b, p?. This equation results in a soft interpolation procedure among
the Gaussian centers weighted by the corresponding a posteriori probabilities. Extending
this result to multivariate Gaussian mixture models, (4.9) becomes (GHAHRAMANI;
JORDAN, 1994a,b):

M
b=> "p(jla)u] + CH'C}*" Ha—ud)], (4.10)
7j=1

where C77 is a submatrix containing just the rows and columns corresponding to A in
C; and C?ﬂ is a submatrix containing the rows corresponding to 3 and the columns
corresponding to A in Cj, i.e.:

cH | s u? )
C, = and = —5 .
J (Gfﬂ Cff) H <u?

If the covariance matrices are constrained to be diagonal, then (4.10) simplifies to (4.9).
It is important to notice that the approximation level obtained using (4.10) is higher than
that obtained using (4.9), and as will be shown in the next chapter this is one of the main
reasons why IGMN has a superior performance than other ANN models (e.g., GRNN)
that use (4.9). In a previous version of IGMN, presented in Heinen and Engel (2010a;
2010b), just (4.9) has been used to estimate b, which resulted in a rougher approximation
than that obtained using (4.10). To avoid confusion, in this thesis we will call this previous
IGMN version as standard IGMN, and the new IGMN version proposed in this thesis will
be called multivariate IGMN.

Following the same line of argument as before, we can likewise evaluate the variance
of b using the following expression (BISHOP, 1995):

= (I'b = (bla)|*|a)
—Zp(j\a){oerHuf—BHQ}. (4.11)

Extending this result to the multivariate case, we can estimate the covariance matrix C?
using the following expression :

M
=3 pljla) {Cf’ﬂ —crer e 4% BH?} , (4.12)

J=1
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where the term CfﬂCfﬂfleﬂT is added to (4.11) to extend it to general covariance
matrices (GHAHRAMANI; JORDAN, 1994a,b) and if corresponds to the term between
brackets in (4.10), i.e.:

%! = u? + CHCH ' (a—uf). (4.13)

If the covariance matrices are constrained to be diagonal, then (4.12) simplifies to (4.11).
Next sections describe how these equations are used by IGMN for approximating func-
tions and make predictions.

4.2 IGMN architecture

This section describes the general architecture and topology of IGMN. As said before
in Section 1.2, most neural network models (e.g. MLP, RBF and GRNN) are based on the
Cybernetic paradigm, and therefore the information flow is unidirectional from the input
to the output layer?>. In some ANN models (JORDAN, 1986; ELMAN, 1990) there are
recurrent connections, i.e., the activations at time ¢ are sent back to the hidden layer at
time ¢ + 1. But these recurrent models still follow the information processing metaphor,
because the input is received in the first layer, it is processed in the hidden layer(s) and
the results are obtained in the output layer (i.e., the information flow is unidirectional and
the loop is still open) (PFEIFER; SCHEIER, 1994).

The neural network model proposed in this thesis, on the other hand, is based on
IGMM (Section 2.5) and inspired on more recent theories about the brain (Section 1.2),
specially the Memory-Prediction Framework (MPF) (HAWKINS, 2005) and the construc-
tivist Al (DRESCHER, 1991). Therefore, in IGMN it is not quite correct to use the words
input and output to represent the data features of a training sample such as z = {a, b}, for
instance. Instead, we consider that the data vectors a and b are different sensory and/or
motor modalities with distinct domains, and one modality (e.g. a) can be used to estimate
another (e.g. b). Example: a can be a sensor reading received at time ¢ and used to esti-
mate the best action b at time ¢+ 1. An important feature of IGMN is that the information
flow is not unidirectional, i.e., a can be used to estimate 15, b can be used to estimate a
and both can be used to compute the joint a posteriori probability p(j|z).

Figure 4.1 shows the IGMN architecture. It is composed by an association region
P (in the top of this figure) and many cortical regions, N3, N2, ..., N¥. All regions
have the same number of neurons, M. Initially there is a single neuron in each region
(i.e., M = 1), but more neurons are incrementally added when necessary using an error
driven mechanism. Each cortical region N receives signals from the kth sensory/motor
modality, k (in IGMN there is no difference between sensory and motor modalities), and
hence there is a cortical region for each sensory/motor modality.

Another important feature of IGMN is that all cortical regions A/ execute a common
function, i.e., they have the same kind of neurons and use the same learning algorithm.
Moreover, all cortical regions can run in parallel, which improves the performance spe-
cially in parallel architectures. Each neuron j of region N'* performs the following oper-
ation:

. 1 1 _
plklj) = N0, ) = e {—Jk—wpyer - w |
errnflef] L

(4.14)

’Important exceptions are the ART models (Sections 3.4 and 3.5), which are based on the Grossberg’s
adaptive resonance theory (GROSSBERG, 1976a,b) instead of the Cybernetic paradigm.
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Figure 4.1: IGMN architecture

i.e., a multivariate Gaussian distribution, where D* is the dimensionality of k (different
sensory/motor modalities k can have different dimensions D*). Each neuron j maintains
a mean vector u and a covariance matrix C .

In IGMN the regions are not fully connected, i.e., the neuron j of A% is connected
just to the jth neuron of P, but this connection is bidirectional. It is important to notice
that there are no synaptic weights in these connections, i.e., all IGMN parameters are
stored in the neurons themselves. A bottom-up connection between N’ and P provides
the component density function p(k|j) to the jth neuron in P. Therefore, a neuron j in
the association region P is connected with the jth neuron of all cortical regions N via
bottom-up connections and computes the a posteriori probability of j using the Bayes’
rule:

p(alj) p(blj) ... p(slj) p(j)
> oty p(alg) p(blg) ... p(slq) plg)’

where it is considered that the neural network has an arbitrary number, s, of cortical
regions and z = {a,b,...,s}. The dotted lines in Figure 4.1 above indicate the lateral
interaction among the association units in order to compute the denominator in (4.15).

Each neuron j of the association region P maintains its own age, v;, the a priori
probability, p(j), an accumulator of the a posteriori probabilities, sp;, and an association
matrix to store the correlations among each sensory/motor modality. If a neural network
has two cortical regions, N* and N2, for instance, then the association matrix C}’f”’ will
have two dimensions and size D* x D®. Note that it is not necessary to maintain C7*
because C7* = Cf‘gT.

The top-down connections between P and A/, on the other hand, returns expectations
to VX which are used to estimate k when k is missing. Actually this expectations are the
a posteriori probabilities computed using all sensory/motor modalities except k, and an
estimate k is computed using Equation (4.10) above.

The IGMN architecture shown in Figure 4.1 is based on the supposition of conditional
independence among domains, which works as follows. Let A, B and C denote three sets
of random variables. The variables in A are said to be conditionally independent of B,

pjlz) = (4.15)
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given C, if the following condition holds (TAN; STEINBACH; KUMAR, 2006):
P(A|B,C) = P(A[C). (4.16)
This condition also implies that
P(A,B|C) = P(A|C) x P(B|C), (4.17)

i.e., the joint posterior probability P(.A, B|C) can be obtained by the product of the indi-
vidual posterior probabilities P(.A|C) and P(B|C) (PEREIRA; RAO, 2009). Therefore,
IGMN adopts the strategy of using distinct covariance matrices to represent each modal-
ity, which is a reasonable constraint because in fact different sensory/motor modalities
(e.g., a and b) have distinct domains. However, in IGMN the cortical regions are not
fully independent, because as described above the correlations among cortical regions are
kept on the association region P.

This architecture is inspired on the memory-prediction framework (MPF) (HAWKINS,
2005), which states that different cortical regions are not fully connected in the neocortex.
Instead, they are linked to the association areas P through bottom-up and top-down con-
nections, thus providing predictions and expectations, respectively, to all cortical regions
N, The main advantage of this strategy is to speed up IGMN and make it more suitable
to real-time and critical applications, because it is much faster to invert two covariance
matrices of size M than a single covariance matrix of size 2M . Moreover, a large number
of samples is required to obtain good estimates from a large covariance matrix, and there-
fore using this strategy IGMN becomes more aggressive, i.e., it is able to provide good
estimates using few training samples.

Another advantage of this strategy is that it does not degrade the function approxima-
tion performed by IGMN, because in fact Equation 4.10 does not require a full covariance
matrix C; to compute its estimates — but just the submatrices C*, C7” and C7* are re-
quired, and these submatrices correspond to the covariance matrices of the cortical regions
plus the association matrix Cj-m = CfﬂT. Therefore using this strategy we can speed up
the IGMN performance without reducing its representational power and regression qual-
ity. Next section describes the IGMN operation in details.

4.3 IGMN operation

This section describes the basic operation of IGMN, i.e., how the information flows
through the bottom-up and top-down connections as the data are processed. Like other
supervised ANN models, IGMN has two operation modes, called learning and recalling.
But unlike most ANN models, in IGMN these operations don’t need to occur separately,
1.e., the learning and recalling modes can be intercalated. In fact, even after the presen-
tation of a single training pattern the neural network can already be used in the recalling
mode (i.e., IGMN can immediately use the acquired knowledge), and the produced esti-
mates become more precise as more training data are presented. Moreover, the learning
process can proceed perpetually, i.e., the neural network parameters can always be up-
dated as new training data arrive.

As described in Subsection 2.5.1, the incremental Gaussian mixture model (IGMM)
uses a minimum likelihood criterion (Equation 2.36) to decide if it is necessary to add a
new Gaussian distribution to the mixture model. Although this criterion works fine in an
unsupervised clustering algorithm, in supervised function approximation it may be dif-
ficult to adjust the approximation level using the 7,,, parameter, because 7, actually
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controls the granularity of the model (i.e., the number of neurons in each region), which
just indirectly changes the approximation error €. Therefore, using the minimum like-
lihood criterion in IGMN may require to fine tune the 7,,,, parameter for achieving the
required approximation level.

To prevent this problem, IGMN adopts an error-driven mechanism to decide if it is
necessary to add a neuron in each region for explaining a new data vector z’. This error-
driven mechanism is inspired on the Constructivist IA (DRESCHER, 1991; CHAPUT,
2004; PEROTTO, 2010), described in Section 1.2, where the accommodation process oc-
curs when it is necessary to change the neural network structure (i.e. to add a neuron
in each region) to account for a new experience which is not explained for the current
schemata (i.e., the current ANN structure), and the assimilation process occurs when the
new experience is well explained in terms of the existing schemata (PIAGET, 1954). In
mathematical terms, the neural network structure is changed if the instantaneous approx-
imation error ¢ is larger than a user specified threshold ¢,,,,. Hence, the most critical
IGMM parameter, 7,,,,, 1s replaced in IGMN by another parameter, €,,,., €qually impor-
tant (it still controls the granularity of the model) but easier to adjust, because in general
we know the maximum error allowed in a given task, specially if this error is normalized.

The following subsections describe the IGMN operation during learning and recall-
ing. To simplify our explanation, we will consider that the neural network has just two
cortical regions, N and N'%, that receive the stimuli a and b, respectively. It will be
also considered that we are estimating b from a in the recalling mode. But it is important
to remember that: (i) IGMN can have more than two cortical regions (one for each sen-
sory/motor stimulus k); and (ii) after training it can be used to estimate either a or b Ge.,
there is no difference between inputs and outputs in IGMN).

4.3.1 Learning mode

The learning algorithm used by IGMN is based on IGMM, presented in Subsec-
tion 2.5.5, but it has many modifications which adapt it to supervised tasks such as in-
cremental function approximation and prediction. Figure 4.2 shows how the information
flows through IGMN during learning. Before learning starts the neural network is empty,
i.e., all regions have M = 0 neurons. When the first training pattern z' = {a', b'} arrives
(the superscript ‘1’ indicates the time ¢ = 1), a neuron in each region is created centered

on z! and the neural network parameters are initialized as follows:
M=1, sp;=10; wv;=0; p(l)=10, C¥=0;
pi=al wpi=bi Ci=0l'L Cf=0lL

where the subscript ‘1’ indicates the neuron 7 = 1 in each region, M is the number of
neurons in each region (all regions have the same size M), sp is the accumulator of pos-
terior probabilities maintained in the association region P, v; the age of the first neuron,
0 is a zero matrix of size D* x D?, ¢}, and o7,; are diagonal matrices that define the ini-
tial radius of the covariance matrices (the pdf is initially circular but it changes to reflect
the actual data distribution as new training data arrive) and I denotes the identity matrix.
As in IGMM, o7, and o7, are initialized in IGMN using a user defined fraction § of

the overall variance (e.g., & = 1/100) of the corresponding attributes, estimated from the
range of these values according to:

o, = § [max(k) — min(k)] , (4.18)

where [min(k), max(k)| defines the domain of a sensory/motor modality k (throughout
this chapter the symbol k£ will be used to indicate any sensory/motor modality, i.e., either a
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or b in this case). It is important to say that it is not necessary to know the exact minimum
and maximum values along each dimension to compute o, (which would require that
the entire training database be available before leaning), but instead just the approximate
domain of each feature. In a Pioneer 3-DX mobile robot platform, for instance, the sonar
readings are limited to the interval (0, 5000), and therefore we can set min(k) = 0 and
max(k) = 5000 in this case.

Figure 4.2: Information flow through the neural network during learning

When a new training pattern z* arrives, all cortical regions are activated, i.e., p(k|j) is
computed using Equation 4.14 above, and the probabilities p(z'|j) are sent to the associ-
ation region P, which computes the joint posterior probabilities p(j|z") using the Bayes’
rule in (4.15). After this, the posterior probabilities p(j|z") are sent back to all cortical
regions, i.e., N and N'?, which compute their estimates as follows:

M

b= p(jlz)[u? + CHCI (a' - u)], (4.19)
j=1
M
a=> p(jlz")[ul + C*CI (b — n?), (4.20)
7j=1

where C7? is the jth association matrix maintained in association region P and C}* is its
transpose. Note that as the covariance matrices C7 and C} were already inverted when
N% and N'* were activated in the bottom-up direction, we don’t need to invert them again,
i.e., we can temporarily store the corresponding inverse matrices to speed up the IGMN
learning algorithm.

Equations 4.19 and 4.20 are similar to (4.10), but the joint a posteriori probability
p(j]z'), rather than p(j|b) and p(j|a), is used to compute the estimates. Although the
joint probability is not required to compute the estimates, if p(j|z') is available it is better
to use it because it prevents some problems which occur if the association a <+ b is not
a mathematical function in both directions, as will be described in Section 4.4. Using the
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estimates a and b the normalized approximation error ¢ is given by:

I — Kl
= L 4.21
£ REY {?elg}]g [max(kz-) — min(k;) 2D

where [min(k;), max(k;)] defines the domain of the sensory/motor feature k;. Again
min(k;) and max(k;) do not need to be the exact minimum and maximum values of k
— they may be just approximations of the domain of each k; feature (in fact min(k;) and
max(k;) are used just to make IGMN more independent from the range of the data fea-
tures). If ¢ is larger than a user specified threshold, &,,,., than z’ is not considered as
represented by any existing cortical neuron in N'X. In this case, a new unit j is created in
each region and centered on z', i.e.:

M*=M+1; wv;=0; sp;=10; C*=0;
wi=a’s wf=b: Cl=o0i’L CJ=o}L

7 ni ) 7

and all priors of the association region P are adjusted to satisfy constraints (2.2) by:

-\ % SP;
() = —7— (4.22)
Zq:l Spq
Otherwise (if z is well explained by any of the existing Gaussian units), the a posteriori
probabilities p(j|z') are added to the current value of the sp(j) on the association region:

sp; = spj + p(jlz'), 'V, (4.23)

and the priors p(j) are recomputed using (4.22). Then w; = p(j|z')/sp; is sent back to
all cortical regions (as shown by the dashed lines in Figure 4.2), and the parameters of
all neurons in N are updated using the IGMM recursive equations (Subsection 2.5.2)
reproduced here (with an adapted notation) for convenience:

=t w (2 - ) (4.24)
CH =Cf = (" ) — )+ [z - u )z - w) - CF]  (4.25)

where the superscript ‘x’ refers to the new (updated) values. Finally the association matrix
ij is updated using the following recursive equation:

CH =CF — (0" — )] — 1) +wl@ - u )b - uf)" - C), 4.26)

which is derived using the same principles described in Subsection 2.5.2. This equation is
another important contribution of this thesis, because it allows computing the covariances
among distinct cortical regions incrementally, and thus estimating a missing stimulus k
by (4.10) without having to maintain and invert a complete variance/covariance matrix.
In fact, using (4.26) the complete variance/covariance matrix is broken down in separate
submatrices that can be efficiently computed and/or inverted.

Algorithm 2 presents a detailed pseudocode of the learning algorithm used by IGMN.
This algorithm can proceed perpetually as new training data arrive, i.e., IGMN can learn
continuously and indefinitely without suffering from catastrophic interference. Algo-
rithm 2 also shows that IGMN uses the same mechanism described in Subsection 2.5.4
to prevent an eventual saturation of the sp accumulators and the mechanism presented
in Subsection 2.5.3 to identify and delete spurious components. However, the stability
criterion is not used by IGMN to control the creation of new units (just the error driven
mechanism described above is enough). Next subsection describes the IGMN operation
during recalling.
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Algorithm 2 Summary of the IGMN learning algorithm
for all training data z = {a, b} do

{ Activate all cortical regions N'* via bottom-up connections }
p(klj) = N (k|u, CX), vj, A%

{ Activate the association region P}

for all neuron j do

p(alj) p(blj) p(j)

S-oly plalg) p(blg) p(g)

p(jlz) =

end for
{Reactivate all cortical regions via top-down connections and compute € }
b =300 p(jlz) k] + CPCH (a' — )]
a =00 p(jlz") [k + CF*Cy (bt — uf)]
£ = maxye,{max;ep[||k! — k;||/(max(k;) — min(k;))]}
{Create a new neuron j in each region if necessary }
if M <1ore > e, then
M*=M+1; v;=0; sp;=10; p(j)=sp;/ >, P
C*=0; pi=k CX=0k"T VN
end if
{ Adjust the neural network parameters of all regions}
for all neuron j do
spt=asp;+p(ilz); p(j)* = spi/ oL, sphy w; = p(jlz)/sp;
Ci" = CF — (" — u)) (" — )" +wjl(a—pi)(b—uf)" = C]
for all cortical region N'* do
=0+ (k- )
C" = Cf — (" — ) ()" — )"+ wif(k — ui) (k — pi)" — CJ
end for
end for
{Restart the accumulators and delete all spurious components }
if (Z]]\il p;) = B SPmax then spi =y sp;, Vj
vj=wv;+1, Vj
if v; > v, and sp; < sp,,, then delete the jth component in all regions
end for

4.3.2 Recalling mode

In the recalling mode, a stimulus (e.g., a) is presented to a partially trained neural
network (as the learning process proceeds perpetually, in IGMN we never consider that the
training process is over), which computes an estimate for another stimulus (e.g., b). As
said before, IGMN can be used to estimate either a (Figure 4.3(b)) or b (Figure 4.3(a)) —
the training process is unique for both estimations — but to simplify our explanation in this
and the following sections we will consider that we are estimating b from a. Figure 4.3
shows how the information flows through IGMN during recalling.

Initially the stimulus a is received in the cortical region N?, where each neuron j
computes p(a|j) using (4.14). These predictions are sent to the association region P
through the bottom-up connections, which is activated using just p(a|j):

p(alj)p()
S oty plalq) plq)

p(jla) = (4.27)
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p(aly) p(la) p(j|b) p(bly)

b

(a) Estimating b from a (b) Estimating a4 from b
Figure 4.3: Information flow in IGMN during recalling
After this, p(j|a) is sent to the cortical region N'* via the top-down connections, and N'*

computes the estimated stimulus b using (4.10), here reproduced with an adapted notation
for convenience:

_ —1
X = u? + CPCY (a — ud), (4.28)
M
b=> "p(jla) %7, (4.29)
j=1

A useful particularity of IGMN is that it allows to estimate not just the expected value
of b (i.e., a punctual prediction) but also the variance/covariance matrix C®. This is pos-
sible because IGMN maintains in A/ not just the mean vector u?, but also the covariance

matrix Cf. Hence, we can estimate the covariance matrix C? at b using Equation 4.12,
here also reproduced for convenience:

M
C”=> p(jla) {C? —crciier 4 |k - B||2} , (4.30)

j=1

where i? is computed using (4.28). If b is an unidimensional vector then C? is reduced

to the sample variance o2. Using C?% we can also compute other statistical estimators such
as the confidence intervals and the hypothesis test. To estimate the confidence interval a,
for instance, we can use the following equation (COX; HINKLEY, 1974):
B
P S (4.31)
"
where ?,,,,—1 1s Student’s ¢-distribution with n — 1 degrees of freedom and n can be es-
timated from the sp accumulators. Hence, IGMN not only provides an estimate of the
target stimulus but it can also inform the confidence of their estimates, and this func-
tionality is not found in most existing ANN models. Moreover, the confidence estimates
computed by IGMN are very useful to make decisions, for instance, because they allow
us to plan the actions using not just an estimate of b but also the confidence levels of its
estimates. Algorithm 3 summarizes this recalling procedure described above, that we will
call special IGMN recalling algorithm to differentiate it from the general IGMN recalling
algorithm presented in the next section.



84

Algorithm 3 Summary of the special IGMN recalling algorithm
for all data a do
{Activate the cortical region N/'*}
for all neuron j do

N 1 A\ _ 1 (g _ Tea g - y?

plali) = Nk} €)= ot ep { 4@ - ) O/ @ - )
end for
{ Activate the association region P}
for all neuron j do

. alj)p
(i) - P@P0)
> Plale) pla)

end for

{Activate the cortical region N'® to compute the estimates b and C?}
for all neuron j do

Pa— _1

Xf =i+ C?ﬂCf1 (a—ui)
end for
‘N M . —
b = ZJ g p(jla) X;

—1 T — »
>, p(ila) { - crerien! 4 = - b

end for

The special IGMN recalling algorithm described above can be used to predict either
aor b if both f(-) and f(-)~! are mathematical functions (EVES, 1990), i.e., the rela-
tionship b <+ a is single-valued in both directions. However, if this relationship is not a
function in one of these directions (or both) then the approximation computed by (4.29)
will be poor in those parts of the domain where the target data are multi-valued. Next
section presents an extension of this algorithm, called general IGMN recalling algorithm,
which produces valid answers even in those parts of the state space where either f(-)
or f (-)_1 (or both) does not represent mathematical functions (i.e., the target data are
multi-valued).

4.4 Dealing with multi-valued target data

As said before, one of the main advantages of IGMN is that we can use the same
partially trained neural network for estimating either & and b provided that both f(-) and
f(-)~! are mathematical functions (EVES, 1990). However, in many potential applica-
tions of neural networks there is a well-defined forward problem which is characterized
by a functional (i.e. single-valued) mapping, but the corresponding inverse problem is
multi-valued (BISHOP, 1995). A typical application that falls into this category is robot
kinematics (SCIAVICCO; SICILIANO, 1996), where the forward problem consists in
computing the position of a robot manipulator from the angles of its joints, and the in-
verse problem consists in computing the angles required to place the manipulator in a
given position. In this application the forward problem is single-valued, but frequently
the inverse problem has multiple valid answers, i.e., there are many combinations of joint
angles that place the manipulator into the required position (DUDEK; JENKIN, 2000;
HEINEN; OSORIO, 2007a, 2006a).

If a traditional ANN model such as MLP, RBF and GRNN is used to solve an inverse
problem, the least squares approach (HAYKIN, 2008) will approximate the conditional
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average of the target data, and this will frequently lead to a poor performance since the
average of many solutions is not necessarily itself a solution (BISHOP, 1995). The same
result is obtained using the special IGMN recalling algorithm described above (Algo-
rithm 3), as illustrates Figure 4.4(a). In this figure the regression is shown using a gray
line, the Gaussian components are represented by ellipses whose width is equivalent to a
Mahalanobis distance of two and the mean of each distribution is shown by solid circles
in the center of the respective ellipses. It can be noted in this figure that the function
b = sin(a)~! has two valid answers in the intervals [—1.0, —0.58] and [0.58, 1] of its do-
main, and the approximation is poor in these intervals because the estimates lie between
the valid answers and don’t belong to the target function.

According to Bishop (1995), this problem cannot be solved by modifying the network
architecture or the training algorithm, since it is a fundamental consequence of using a
sum-of-squares error function. Hence, if we are using a traditional neural network model
such as MLP and RBF the only solution is to restrict the domain in which this problem is
evaluated. However, in many problems of high dimensionality, where the visualization of
the data is not straightforward, it can be very difficult to identify those regions of the state
space where the target data are multi-valued (BISHOP, 1995).

Using IGMN, on the other hand, this problem can be easily identified and tackled
because IGMN goes beyond the Gaussian description of the distribution of the target
data, thus adopting a more general model for the conditional density. More specifically,
IGMN can tackle this problem using one of the following approaches:

1. Do not provide an answer in those regions of the state space where the target data
are multi-valued (i.e., to return an “I don’t know” flag);

2. To return the most likely hypothesis when the problem has multiple answers;

3. To return all possible answers and their corresponding probabilities.

Although the third solution is more general, it requires a change in the neural network
structure in order to provide a vector containing all possible answers rather than a single
scalar value as output. However, in many problems such as control applications and robot
kinematics we are interested in finding just one valid answer, and therefore the second
solution is better suitable.

The strategy used by IGMN to solve the problem described above consists in discard-
ing those distributions that are very far (e.g., a Mahalanobis distance > 5) from the center
of the maximum likelihood (ML) hypothesis ¢ (the Gaussian distribution with the largest
a posteriori probability) before estimating b. As a matter of fact, if a distribution is farther
than a Mahalanobis distance of five then its influence is negligible. Hence, in regions of
the state space where the target data are single-valued only distributions with a posteri-
ori probabilities close to zero will be discarded and the resulting approximation will be
practically identical to that computed by the special recalling algorithm.

On the other hand, if very distant distributions have considerable a posteriori proba-
bilities, then they necessarily belong to different branches of the mapping and the target
data are multi-valued in that region of the state space. In this case we can discard those
distributions that don’t belong to the ML branch, and hence IGMN will return the valid
answer which has the largest “probability mass”, i.e., it will compute a valid solution us-
ing a soft interpolation among those hypothesis of the ML branch. Figure 4.4(b) shows
the resulting approximation computed using this method.

In mathematical terms this strategy is implemented as follows. Suppose that we are
estimating a sensory/motor modality b from a and the mapping a — b is multi-valued.
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(a) Regression computed using Equation 4.29 (b) Regression computed using Equation 4.36

Figure 4.4: A typical inverse problem in which the target data are multi-valued

Initially a is propagated through N/** as usual, and the corresponding p(a|j) are sent to
the association region P, which computes p(j|a) using the Bayes’ rule (4.27). Then the
ML hypothesis ¢ is computed using the following equation:

¢ = arg maxfp(jla)]. (4.32)
J

and the Mahalanobis distances among the center of the ML hypothesis and the remaining
distributions, Dy, (17, u7), are computed through:

Do (U7, 17) = \/(uf — u?)TC? ! (uf — u?). (4.33)

If Dy (uy, 17) is larger than a user-specified Mahalanobis distance €2, then the distribution

j is discarded, i.e., it is not used to compute b. Hence, a new vector p(alj, £) is created
using just the pdfs of the non-discarded components, i.e.:

. p(alj) if Dy ()}, u?) > Q
p(alj, 0) :{ (Om othei{v&(/isee ]) ) (4.34)

After this the a posteriori probabilities of the ML branch are computed using the Bayes’

rule:
p(alj, O)p(j)

M Y
> =1 P(alg, O)p(q)
and the estimate of the most likely hypothesis is computed using the following equation:

p(jla,f) = (4.35)

M
b= p(jla, O)[u] + CJC (a — u)]. (4.36)
7j=1

Finally, the corresponding probability of the hypothesis / is given by:

S p(als, 0)p(h)
Sl plalg)p(e)

Note that if the mapping a — b is single-valued, then the prediction b, will be very
similar to that produced by (4.10) provided that (2 is sufficient large. A good choice is

p(tla) = (4.37)
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2 = b5, because the probability that a point belonging to a distribution j falls outside a
Mabhalanobis distance of five is ~ 5.7 x 10~7, and hence the influence of j over the current
hypothesis ¢ is negligible. In fact, a Mahalanobis distance of five is a common choice in
visual applications that use Gaussian kernels as filters (HEINEN; ENGEL, 2009d,e). In
our experiments, described in the next chapters, we have set {2 = 6 to guarantee that the
mechanism described above does not influence the estimates computed in those regions
where the target function is single-valued.

If we are estimating a sensory/motor modality & from b the procedure described above
will be exactly the same — only the roles of a and b will be interchanged. Moreover, if
we need to find out all possible answers for a given inverse problem, on the other hand,
then the procedure above can be iterated using as the current (i.e., ML) hypothesis the dis-
carded distribution with the largest a posteriori probability p(j|b). It is important to note
that this mechanism does not need to be used during learning because as p(j|z) is com-
puted using both p(a|7) and p(b|j) then just the Gaussian units of the current branch have
significant a posteriori probabilities, i.e., if we are informing all sensory/motor stimuli it
is not possible to have multiple valid solutions.

Algorithm 4 presents the IGMN recalling algorithm that uses the mechanism de-
scribed above, that is called general IGMN recalling algorithm to differentiate it from
the special IGMN recalling algorithm presented in Algorithm 3. This algorithm returns
almost the same predictions computed by the Algorithm 3 in single-valued regions (pro-
vided that €2 > 5), and in multi-valued regions the general algorithm will provide the
most likely prediction instead of the average of all valid answers.

Algorithm 4 Summary of the general IGMN recalling algorithm
for all data a do
{Activate the cortical region N/'*}
for all neuron j do

plali) = Malu?, €)= e { —3a = ) O] a— )
end for ’
{ Activate the association region P}
for all neuron j do
p(alj) p(j)
> plalg) plg)
end for

{ Compute the a posteriori probabilities for branch of the ML hypothesis ¢ only}
{ = arg max;[p(jla)]
Dac(wf 1) = \/ (7 = )" C " (uf — u)
p(alj, 0)p(j)
Sol plalg, O)p(q) ) )
{Activate the cortical region N/* to compute the estimates b, and C7'}

for all neuron j do
— g g -1
Xj = pj + CCT (a—uf)
end for
b, = Z;V; p(jla,?) if
7 = Y pjla,0) {7 - ces ot 4 w2 - b))
end for

p(jla) =

p(jla,f) =
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Using the general recalling algorithm IGMN can solve the forward and inverse prob-
lems using the same partially trained neural network even in regions where the target
function is multi-valued. To the best of our knowledge, IGMN is the first ANN model
endowed with this capability, although some possibilities have been pointed out in the
context of Gaussian mixture models (BISHOP, 1995). Next section presents a detailed
description of all configuration parameters used by IGMN and how to set them.

4.5 IGMN configuration parameters

IGMN has a total of eight configuration parameters. Three of them are related to
restarting of the accumulators sp; and can be configured as follows: sp;,q, = 10%,3=0.8
and v = 0.5. These parameters are actually constants that have no influence in the IGMN
performance: they only prevent an eventual saturation of the corresponding accumulators.

The configuration parameters Sp;,;, and v,,;, are inherited from the IGMM stability
criterion. In IGMM they control the addition of new components and remove the spurious
ones. In IGMN, on the other hand, they are used only to remove spurious components.
As described in Subsection 2.5.3, a natural choice for sp,,;, is D + 1, because according
to Travén (1991) a minimum D + 1 samples are required to obtain a nonsingular estimate
of an unconstrained covariance matrix. The v,,;, parameter, on the other hand, can be set
to any value larger than D + 1 such as 100 or 1000. Actually the only result of deleting
spurious components is to speed up a little bit the ANN performance, because as the
spurious components have low prior probabilities they don’t have any influence in the
approximation computed by IGMN.

The configuration parameter €2, used to discard distributions of other branches (Sub-
section 4.4), can always be set to {2 = 6. This parameter is actually a constant, because
it can be kept fixed even in problems where the target function is single-valued. Another
configuration parameter of IGMN is J, used to set the initial radius of the covariance
matrices, 07;. This parameter is not critical and can be set to any value in the interval
0.005 < § < 0.05 (its default value is 0.01). The only critical parameter of IGMN is the
maximum approximation error ,,,., that controls the level of generalization of the neural
network. This parameter must be adjusted according to the maximum allowed error in a
given task. However, as the approximation error ¢ is normalized, €,,,,, is usually set in the
interval 0.01 < g,,,4, < 0.1.

Summing up, unless otherwise noted in all experiments described in this thesis the
IGMN configuration parameters were set to sppe, = 108, 8 = 0.8, v = 0.5, $pmin =
D+ 1, vpin = 100, Q = 6, 6 = 0.01 and £,,,,, = 0.05. We conclude that, although
IGMN has many configuration parameters, just one of them must really be adjusted by
the user: the maximum approximation error &,,,,. Moreover, this parameter is easier to
adjust, because in general the user knows the normalized approximation error accepted
in a given task. Next section concludes this chapter presenting a summary of the main
characteristics and limitations of IGMN.

4.6 Final remarks

This chapter described the neural network model proposed in thesis, called IGMN, its
main characteristics, mathematical basis, topology and learning algorithm. As described
before, IGMN extends the incremental Gaussian mixture model (IGMM), described in
Section 2.5, in the following aspects:
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e IGMN can be used in supervised function approximation rather than only in unsu-
pervised clustering tasks;

e [t uses an error driven mechanism rather than the minimum likelihood criterion to
add new units;

e IGMN can provide the confidence levels of its estimates;

e The same partially trained neural network can be used to estimate either & and b
even when the target data are multi-valued;

e The computational complexity is broken down by using separate covariance matri-
ces for distinct sensory/motor stimuli;

e Equations 4.10 and 4.26 allow a multivariate representation without having to main-
tain and/or invert full variance/covariance matrices.

Moreover, most of these characteristics are not present in other neural network models
such as MLP, RBF and GRNN, which makes IGMN an useful tool for incremental func-
tion approximation and on-line prediction tasks.

The main drawback of IGMN is that it is necessary to invert the covariance matrices
C;C for each training sample (a, b, ..., k), and therefore its computational complexity is
O(NM(DAD?® ... D%)°%27), Subsection 2.5.6 presents some ways to reduce this com-
plexity, such as to compute the inverse matrix C~! directly using the method proposed by
Sato and Ishii (2000). Another way to reduce the computational complexity is to separate
the data features in more sensory/motor areas, thus dividing a big covariance matrix in
many matrices of smaller size. Although this may degrade the computed approximation
(specially when all features are highly correlated), it is still a better solution than to con-
sider all features as conditionally independent. Next chapter presents some experiments
performed to evaluate IGMN in function approximation and prediction tasks.
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5 FUNCTION APPROXIMATION USING IGMN

This chapter describes several experiments to evaluate the performance of IGMN in
function approximation and prediction tasks. The first set of experiments, described in
Section 5.1, uses a sinusoidal data set to explore some basic aspects of the proposed
model such as the advantages of the multivariate representation over the conditional in-
dependence hypothesis, how the order of presentation of data affects the results and the
sensibility of the proposed model to its configuration parameters. Section 5.2 describes
some experiments in which the performance of IGMN is evaluated using a more complex,
three-dimensional “Mexican hat” function. Section 5.3 describes how IGMN can be used
to predict both & and b from the same trained neural network, i.e., how IGMN can be used
to solve the forward and inverse problems at the same time. Section 5.4 presents some
experiments in which IGMN is used to identify a nonlinear plant originally proposed by
Narendra and Parthasarathy (1990). Section 5.5 demonstrates how IGMN can be used
for predicting the future values of a cyclic time series. Finally, Section 5.6 presents some
final remarks about these experiments.

In practically all experiments presented in this chapter the performance of IGMN is
compared against other ANN models, such as MLP and GRNN, available in the MAT-
LAB Neural Network (NN) Toolbox software. The IGMN prototype was implemented
in the C ANSI computer programming language. It uses POSIX threads to allow a par-
allel execution in multi-processed platforms. The inverse matrices and determinants are
computed using the LU decomposition algorithm presented in Press et al. (1992) whose
computational complexity is D227, The computer platform used in all experiments is a
Dell Optiplex 755, equipped with an Intel(R) Core(TM)2 Duo CPU 2.33GHz processor,
64 bits architecture, 1.95GB of RAM memory, GPU Intel and operating system Ubuntu
Linux 10.04 LTS of 64 bits.

5.1 Sinusoidal data set

This section describes a set of experiments to evaluate the performance of IGMN using
a simply and easy to visualize two-dimensional function. More specifically, the data set
used in this set of experiments is composed by N = 1000 data samples generated using
the following function:

b =sin(a) + €, (5.1

where a is drawn from a uniform distribution in the interval [—7, 7] and € is an inde-
pendent Gaussian noise vector with mean . = 0 and standard deviation o, = 0.05.
Figure 5.1 shows this data set, where the black dots represent the (a, b) sample pairs and
the gray line represents the farget function, i.e., b = sin(a) without noise.
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Figure 5.1: Sinusoidal data set of size N = 1000 corrupted with Gaussian noise

Next subsections describe some experiments using this sinusoidal data set to evaluate
many aspects of the IGMN architecture such as: the advantages of a multivariate repre-
sentation, how the order of presentation of data affects the results and the sensibility of
IGMN to its configuration parameters ¢,,,, and 6. Moreover, IGMN is compared with
other connectionist approaches such as MLP, RBF and GRNN.

5.1.1 Standard x multivariate representation

The first experiment of this chapter is devised to compare the performance of IGMN
using a complete multivariate representation (Equation 4.10) against the assumption of
conditional independence among domains (4.9) used in the previous IGMN version pre-
sented in Heinen and Engel (2010a; 2010b). To perform this experiment we have imple-
mented two distinct versions of IGMN:

e Standard: assumes that the cortical regions are conditionally independent (i.e., the
cortical regions are not correlated) and estimates the missing stimuli using (4.9);

e Multivariate: assumes a full multivariate hypothesis and estimates the missing
stimuli using (4.10).

Therefore we have used both IGMN versions for learning the sinusoidal data set
shown in Figure 5.1 using different settings of the ¢,,,, parameter. Table 5.1 shows the
results obtained in this experiment. In this experiment the 6 parameter was setto o = 0.01
(its default value) and the training data were presented to the neural network in ascending
order of a. As IGMN does not have any random initialization and/or decision, it is not
necessary to repeat each experiment many times (the results are always identical for the
same data set and configuration).

Each row on Table 5.1 represents a pair of experiments performed using a specific
setting of the ,,,, parameter. The first column indicates the ¢,,,, setting used in the cor-
responding pair of experiments. The following columns show, respectively, the NRMS
error, the number of neurons (M) added to each region during training and the time re-
quired for learning the sinusoidal data set using the corresponding €,,,,, setting. Columns
2, 3, and 4 correspond to the standard IGMN version and columns 5, 6 and 7 correspond
to the multivariate version of IGMN.

Observing Table 5.1 many important conclusions can be drawn from this experiment.
First, the performance of the standard and multivariate versions of IGMN is quite good,
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Table 5.1: Comparison between the standard and multivariate versions of IGMN
Standard version Multivariate version
Emaz NRMS M | Time NRMS M | Time
0.2500 | 0.105653 | 12 | 0.010s | 0.079194 | 3 | 0.000s
0.1000 | 0.032439 | 18 | 0.015s | 0.040956 | 8 | 0.005s
0.0750 | 0.026288 | 24 | 0.020s | 0.028581 | 7 | 0.010s
0.0500 | 0.023269 | 30 | 0.030s | 0.023555 | 29 | 0.050s
0.0250 | 0.022063 | 57 | 0.075s | 0.022111 | 57 | 0.080s
0.0100 | 0.022004 | 134 | 0.355s | 0.022203 | 140 | 0.430s
0.0075 | 0.022024 | 173 | 0.630s | 0.022099 | 173 | 0.800s

because using the original function b = sin(a) to compute d (the desired value) the NRMS
error is 0.024596. In fact, as the NRMS error is computed using the following equation:
RMS

NRMS = =
max(d) — min(b)

and the root mean square (RMS) error is given by the square root of the mean square error

(MSE):
RMS =vVMSE
1
— 7\2
MSE—N E (d; — b;)?,

n=1

then the expected NRMS error will be ~ 0.025 because the noise vector has a standard
deviation 0. = 0.05 and max(b) — min(b) ~ 2. Therefore we can suppose that the
best setting of €,,,,, is about 0.05 because it is supposed that the instantaneous normalized
error € will be bellow RM .S x 2 ~ 0.05 for 98% of the training samples (this supposition
is based on the fact that a Mahalanobis distance of two defines a contour encompassing
approximately 98% of the training samples). Of course if the noise level is not known it
is not possible to configure ¢,,,,, using this heuristic.

Observing Table 5.1 it can be noticed that in fact the best value of ¢,,,, is ~ 0.05,
because using lower values the neural network tries without success to reduce the error
adding more neurons to each region. Nevertheless, it can be noticed that even using 173
neurons the proposed model does not suffer from overfitting (HAYKIN, 2008; PEREIRA;
RAO, 2009), because (4.10) computes b as a soft interpolation among the Gaussian centers
weighted by the posterior probabilities. Hence the Gaussian neurons added exclusively
to model the noise will have low a posteriori probabilities and will not affect significantly
the predictions (it is supposed that the noise is Gaussian, has zero mean and the extreme
values are infrequent).

Another interesting conclusion drawn from this experiment is that both IGMN ver-
sions achieve the global optimum using €,,,, = 0.05 and approximately 30 neurons in
each region, but using high ¢,,,,, values (e.g., 0.075) the multivariate version requires less
neurons to achieve the same performance of the standard version. To understand why this
occurs Figures 5.2 and 5.3 show the regression curves of the standard and multivariate
versions of IGMN using €,,,,, = 0.075 and €,,,,,, = 0.025, respectively. In this figure, the
Gaussian components are represented by ellipses whose width is equivalent to a Maha-
lanobis distance of two, and the mean of each distribution is shown by solid circles in the
center of the respective ellipses. It can be noticed that IGMN creates some Gaussian units
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with low variances (i.e., small ellipses) to model the noise in the data set, but as these
units have low a priory probabilities (i.e., they represent few data samples) they do not
influence significantly the approximation curves. As described in Chapter 4, these spuri-
ous components can be easily identified and deleted, but in these figures we rather kept
all Gaussian units added by IGMN to better understand how the learning process occurs.

(a) Standard IGMN (b) Multivariate IGMN
Figure 5.2: Experiments performed over the sinusoidal data set using €,,,4, = 0.075

It can be noticed in Figure 5.2(b) that the multivariate algorithm can learn the target
function using less neurons because the Gaussian units are aligned with the actual distri-
bution of the training data set. However, if we want a more precise approximation IGMN
will add more units to change the shape of the approximation curve. Hence if the €4,
is too small the benefit of having a multivariate representation is lost and consequently
the number of Gaussian units will be similar for both IGMN versions. Nevertheless, a
multivariate representation is still very useful in state spaces of more dimensions because
it allows the representation of the target function using few units. Moreover, using the
multivariate algorithm the predictions are not bounded by the minimum and maximum
values of the training data set, as we will be described below in Section 5.5.

(a) Standard IGMN (b) Multivariate IGMN

Figure 5.3: Experiments performed over the sinusoidal data set using €4, = 0.025

In relation to the time required for learning (columns time in Table 5.1) it can be
noticed that both IGMN versions are very fast. In fact the multivariate version of IGMN
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has learned the sinusoidal data set composed by N = 1000 data samples in less than a
second even using €,,,,, = 0.0075, i.e., using 173 multivariate neurons in each region. Of
course in problems of higher dimensionality the multivariate version will require more
time to invert the larger covariance matrices.

Although these results are very impressive, the NRMS error computed over the train-
ing data set is not a good estimator of the approximation error because it can be influenced
by overfitting. Hence, this experiment was repeated using the 10-fold cross validation
method (HAYKIN, 2008), in which the learning data set is randomly divided into 10 sub-
sets. The learning process is repeated 10 times using a different subset for testing (i.e., to
compute the generalization error) and the remaining 9 subsets for learning. The boxplot
graphs' of Figure 5.4 show the results computed using the 10-fold cross validation proce-
dure. The configuration parameters used in this experiment are 6 = 0.01 and €,,,,, = 0.05.
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Figure 5.4: Comparison between standard and multivariate regression

It can be noticed in Figure 5.4(a) that the confidence intervals are overlapped, and
therefore it is considered that both algorithms have the same generalization performance.
The average NRMS error is 0.028379 for the standard algorithm and 0.028501 for the
multivariate algorithm. Observing Figure 5.4(b), on the other hand, it can be noticed
that the multivariate algorithm is really more parsimonious than the standard algorithm:
the average number of neurons added during learning is 32.9 for the standard algorithm
and 26.3 for the multivariate algorithm. Throughout this section we will still evaluate
the performance of both versions of IGMN, but in the next sections we will use just the
multivariate version of IGMN because its representational power is superior than that of
the standard algorithm.

Another interesting conclusion that can be drawn from the experiment above is the
fact that different implementations of IGMN (standard and multivariate) can approximate
the target function with almost the same precision, using the same configuration param-
eters but different number of neurons in each region. This occurs due to the error-driven
mechanism used by IGMN that simply adds so many neurons as necessary to achieve
the specified approximation level, no matter what kind of neuron is used. This a strong
point of the current version of IGMN, because using the 7,,,, parameter to control the ap-

! A boxplot is a convenient way statistical tool for graphically depicting groups of numerical data through
their five-number summaries: the smallest observation (sample minimum), lower quartile, median, upper
quartile, largest observation (sample maximum) and outliers (MASSART et al., 2005).
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proximation level each IGMN version would be carefully adjusted to achieve the desired
performance. In fact the 7,,,, parameter is related to the shape and size of the Gaussian
units, not to the approximation level of the target function. Of course in clustering tasks
the number and the shape of the Gaussian distributions is essential, but in regression the
goal is to achieve the required precision no matter how many neurons are used.

5.1.2 Assessing the sensibility of the § parameter

In the previous experiments we have changed the ¢,,,, parameter to see how IGMN
is affected by this configuration parameter, but we have set 6 = 0.01. In this section we
present some experiments in which the g,,,, is set to 0.05 (its best configuration according
to Table 5.1) and the ¢ parameter is varied in order to assess its sensibility. Table 5.2 shows
the results obtained in this experiment using both versions of IGMN and the 10-fold cross
validation procedure.

Table 5.2: Assessing the sensibility of the § parameter
Standard Multivariate
1) NRMS M NRMS M

0.0010 | 0.042843 | 41.0 | 0.031196 | 70.7
0.0025 | 0.033888 | 65.8 | 0.028613 | 51.4
0.0050 | 0.028703 | 46.4 | 0.028325 | 34.7
0.0075 | 0.029878 | 34.4 | 0.027900 | 32.0
0.0100 | 0.026773 | 29.7 | 0.026554 | 27.0
0.0250 | 0.026055 | 29.7 | 0.025388 | 24.9
0.0500 | 0.027096 | 38.0 | 0.027186 | 43.7
0.0750 | 0.045344 | 170.2 | 0.039672 | 94.6

For better understanding these results, Figures 5.5 and 5.6 show the boxplot graphs
computed over this experiment using the standard and multivariate versions of IGMN,
respectively. It can be noticed that although extreme values of § can degrade the approxi-
mation and/or require many Gaussian units, using 0.005 < ¢ < 0.05 the results are prac-
tically the same using both the standard and multivariate algorithms, and this indicates
that IGMN is not sensible to this parameter. Moreover, as o;,; is computed using o and
the minimum and maximum values of each feature (Equation 2.35), then the ) parameter
is not affected by resizing and normalization procedures.

Actually the 0 parameter can always be set to 0.01 without problems, as will be
demonstrated throughout this thesis. In the remaining experiments of this section ¢ will
be kept fixed at 0.01, but in Section 5.4 we will again vary ¢ to demonstrate that it is
really uncritical. Next section describes an experiment performed to verify if the order of
presentation of data affects the results produced by IGMN.

5.1.3 Ordered x shuffled data sets

In the previous experiments the training data were always presented in ascending or-
der of a, i.e., the training data set was ordered. The next experiment is devised to verify
if the order of presentation of data significantly affects the approximation computed by
IGMN. Hence, we will perform two experiments using both versions of IGMN each, the
first experiment presenting the training data in ascending order of a (as in the previous
experiments) and the second presenting the data in a random order. To simplify our ex-
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Figure 5.6: Assessing the sensibility of o — Multivariate IGMN algorithm

planation, we will use the term ordered data set to refer to the presentation of data in
ascending order of a and shuffled data set to refer to the presentation of data in a random
order, although the data samples themselves are the same in both data sets. Figures 5.7
and 5.8 show the results obtained in these experiments computed using the 10-fold cross
validation procedure. The IGMN configuration parameters were set in these experiments
t0 €1z = 0.05 and 6 = 0.01.

It can be noticed in Figure 5.7 that the order of presentation of data affects strongly
the standard algorithm. In fact the NRMS error computed over the shuffled data set is
almost twice the error computed over the ordered data set. Moreover, the number of
Gaussian units added during learning is significantly larger when the shuffled data set is
used. Observing the boxplot graphs shown in Figure 5.8, on the other hand, we can notice
that the multivariate algorithm is not strongly affected by the order of presentation of data,
i.e., the differences between the results computed over each data set are not statistically
significant (the confidence intervals overlap).

Based on the boxplot graphs of Figure 5.8 we can affirm that the multivariate algo-
rithm is not affected by the order of presentation of data when ¢,,,,, = 0.05, but we don’t
know if this robustness stands using other settings of ¢,,,,,. To answer this question this
experiment was repeated using other ¢,,,, settings, and the results computed using the
10-fold cross validation procedure are shown in Table 5.3. Based on these results we can
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Figure 5.8: Ordered x shuffled data sets — Multivariate algorithm

now affirm that the multivariate algorithm is really robust to the order of presentation of
data, because as can be noticed in Table 5.3 the results (number of units added during
learning and NRMS error) computed over both data sets are similar. But the standard
IGMN algorithm, on the other hand, is really affected by the order of presentation of data,
but the differences are reduced as the ¢,,,, parameter is lowered.

The explanation why just the standard algorithm is affected by the order of presenta-
tion of data is the following. When the multivariate algorithm is used the Gaussian units
rapidly assume the shape and size of the training data, and thus the state space is rapidly
covered and clustered according to the actual distribution of these training data. Hence,
after the presentation of some training patterns each data vector falls into the most likely
cluster (i.e., a Gaussian distribution that is close to the actual distribution of data in that
region of the state space) no matter in which order these training vectors are presented.
Figure 5.9 illustrates this situation, where the Gaussian units obtained using the ordered
and shuffled data sets are shown (in this experiment ¢,,,,, was set to 0.05). Observing this
figure we notice that the Gaussian units added during learning are not exactly the same for
both data sets, but the resulting approximation and the number of neurons are practically
the same in both experiments.
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Table 5.3: Comparison between ordered shuffled data sets
Standard Multivariate
Emaz | Data set | NRMS M NRMS M
0.075 | Ordered | 0.029947 | 22.6 | 0.031741 | 7.4
0.075 | Shuffled | 0.059026 | 27.6 | 0.029370 | 12.5
0.050 | Ordered | 0.026773 | 29.7 | 0.026554 | 27.0
0.050 | Shuffled | 0.048697 | 37.0 | 0.028602 | 27.7
0.025 | Ordered | 0.025927 | 54.9 | 0.025516 | 57.5
0.025 | Shuffled | 0.036486 | 59.5 | 0.025882 | 58.5

(a) Ordered data set (b) Shuffled data set

Figure 5.9: Gaussian units added during learning — Multivariate algorithm

Using the standard algorithm, on the other hand, many small clusters are created to
model the regions of the state space where the target function is not parallel to the coor-
dinate axis, as can be noticed in Figure 5.2(a) above. If the training data are presented
in order the Gaussian units will be added evenly to cover the state space, as shows Fig-
ure 5.10(a). But if the training data is presented in a random order then many Gaussian
units will be created irregularly, as shows Figure 5.10(b). We can notice in this figure
that some units assume shapes and sizes that are not similar to the distribution of the
training data. Moreover, many spurious components are created to model the noise and
some distributions become very large, as is clearly seen in Figure 5.10(b). These ir-
regular distributions created by the standard algorithm difficult the approximation of the
target function, and therefore the results are worse when the training data is presented
in a random order. Nevertheless, for the kind of application we are interested in (incre-
mental function approximation) the training data generally arrive in a specific order (e.g.,
when the data consist on sensory readings of a mobile robot navigating through an envi-
ronment), and therefore the standard IGMN algorithm can be used in these applications
without problems.

Based on these experiments we conclude that the standard algorithm is significantly
affected by the order or presentation of data, but this does not occur when we are using
the multivariate algorithm, i.e., the multivariate algorithm is relatively robust to the order
of presentation of data. As described in Chapter 4 the main drawback of the multivariate
representation is that it has a higher computational cost which is bearable only if this rep-
resentation provides a real benefit to the learning algorithm. But based on the experiments
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(a) Ordered data set (b) Shuffled data set

Figure 5.10: Gaussian units added during learning — Standard algorithm

described above we can affirm that the multivariate representation is really worthwhile.
Hence, in the remaining of this thesis just the multivariate version of IGMN will be used.

5.1.4 Estimating the confidence intervals

An advantage of IGMN over other connectionist approaches is that it can estimate not
only the expected value of a sensory/motor modality (e.g., b) but also the variance/covari-
ance structures at that point. This is illustrated in Figure 5.11(a), that shows the standard
deviation computed by IGMN over the sinusoidal data set. The solid gray line in this fig-
ure represents the estimate of b computed over the interval [—, 7], and the dashed lines
show a standard deviation above and below B, i.e., the dashed lines are given by b+ 0%,
where 02 is computed using (4.12). It can be noticed in Figure 5.11(a) that the standard
deviation is larger in those points far from the center of the Gaussian distributions. There-
fore using (4.12) we do not risk to underestimate the variance in the regions of the state
space that are not well covered by the Gaussian units.
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Figure 5.11: Confidence estimates computed by IGMN over the sinusoidal data set

Using ¢ it is also possible to compute the confidence intervals of the estimates, and
thus IGMN can outcome not just a scalar b but also the confidence levels of its estimates.
In the example above, if we want to know the region in which 99% of the sample data
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will fall, for instance, we can plot contours with a Mahalanobis distance of 2.57, i.e,
b+ 2.570%2, as shows Figure 5.11(b). The confidence estimates computed by IGMN are
very useful to make decisions, for instance, because they allow us to plan the actions using
not just an estimate of b but also the confidence intervals. These confidence estimates are
very useful in real time applications operating in hazardous environments, because in this
kind of task we cannot take the risk of making a wrong decision. Next subsection presents
a comparison among IGMN and other ANN models.

5.1.5 Comparison with other ANN models

This section presents some experiments performed to compare IGMN with other ex-
isting connectionist approaches. To perform a comparison using the sinusoidal data set
we have selected the following ANN models:

e Multi-layer Perceptron (MLP) trained using the Resilient Propagation (RPROP)
algorithm (RIEDMILLER; BRAUN, 1993);

e MLP trained by the Levenberg-Marquardt (LM) algorithm (HAGAN; MENHAJ,
1994), which is a second order method that learns faster than the standard back-
propagation algorithm and RPROP;

e Radial basis functions (RBF) network (POWELL, 1985, 1987a,b) created using the
‘newrb’ method of the MATLAB Neural Network Toolbox (this method incremen-
tally adds neurons until an specified goal is achieved);

e General regression neural network (GRNN) (SPECHT, 1991).

These neural network models were chosen because they are well known and avail-
able in the MATLAB Neural Network Toolbox software. Moreover, they are good rep-
resentatives of the class of connectionist methods used for function approximation and
prediction. Another possibility would be some of the improved GRNN models presented
in Section 3.8, but as most part of these models just reduces the number of pattern units
(i.e., the generalization level is not improved) we decided to use only the standard GRNN
in these experiments. To make the comparison fair, we performed an exhaustive trial and
error search to find out the best configuration of each ANN model listed below:

MLP: a single hidden layer with 8 hidden neurons;

RBF: goal (minimum MSE) = 0.0025 and spread (o) = 0.25;
GRNN: spread (o) = 0.05;

IGMN: €4, = 0.05 and o = 0.01.

The stop criterion used in these experiments for the MLP and RBF models was the
early stopping criterion based on the best generalization epoch. Table 5.4 shows the re-
sults obtained in these experiments. The first column presents the ANN model. The
following columns show, respectively, the number of hidden/pattern units, the NRMS er-
ror computed using the 10-fold cross validation procedure, the average number of training
epochs and the time required to perform each replication, i.e. 1/10 of the time required by
the entire 10-fold cross validation procedure. To facilitate our comparison, the last rows
on Table 5.4 show the results obtained using both IGMN versions.

It is important to notice that the number of hidden/pattern units (the second column on
Table 5.4) is just informative, because the ANN models are based on different principles
(MLP is a global model, RBF has local receptive fields, GRNN is non-parametric, etc.)
and therefore it is not possible to evaluate the model complexity (number of free parame-
ters) based on this information. Similarly, the time required for learning (last column on
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Table 5.4) is not a fair measure of the computational complexity because it depends on
the implementation details of each architecture. Nevertheless, we can notice that IGMN
is very fast, because even using full covariance matrices it performed each replication in
less than 50 milliseconds.

Table 5.4: Comparative among ANN models using the sinusoidal data set

ANN model Units | NRMS | Epochs | Time
MLP - RPROP 8.0 |0.031384 | 107.1 | 5.444s
MLP - LM 8.0 ]0.024866 | 20.3 | 3.196s
RBF 245 |0.025631 | 245 | 6.673s
GRNN 1000.0 | 0.025569 1.0 0.481s
IGMN - Standard 29.7 | 0.026773 1.0 0.028s
IGMN - Multivariate | 27.0 | 0.026554 1.0 0.041s

Figure 5.12 shows a boxplot graph comparing the NRMS error obtained in each exper-
iment. Observing this figure and Table 5.4 we can notice that all ANN models (excepting
MLP — RPROP) have a similar performance (the confidence intervals overlap). There-
fore, we can affirm that IGMN is a very good regression tool because it achieves a similar
level of generalization using an incremental architecture and a single scan over the train-
ing data. Moreover, using IGMN we don’t need to inform the number of hidden neurons
neither to fine-tune many configuration parameters (actually it is much easier to configure
IGMN that the other ANN models).
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Figure 5.12: Comparative of the NRMS error among ANNSs — sinusoidal data set

5.2 Approximating the “Mexican hat” function

In the previous experiments we have used a training data set composed by just two
data features, a and b. The next experiment uses a three-dimensional data set composed
by N = 5000 data samples given by:

b =sin(a1)/a; sin(as)/as, (5.2)

were a; and ay are randomly chosen in the interval [—10, 10]. Figure 5.13(a) shows the
target surface, also known as “Mexican hat”. The IGMN net used to learn this data set has
two cortical regions: N7, composed by two data features (a; and as), and N'%, composed
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by a single feature (b). This data set was randomly divided into two subsets, called train-
ing and testing data sets, each of them composed by 2500 data samples. Moreover, the
training data was presented to IGMN in a random order (i.e., the data set was shuffled).

(a) Target surface (b) ez = 0.1 (©) €maz = 0.075

(d) €maz = 0.05 (€) €maz = 0.025

(f) €maa = 0.01

Figure 5.13: Approximating the “Mexican hat” function using IGMN

To assess the sensibility of IGMN to ¢,,,, over this data set we have repeated this
experiment using different configurations of £,,,,,, and the results obtained in this experi-
ment are shown in Table 5.5. The first row shows the configuration of the ¢,,,, parameter.
The following rows show, respectively, the NRMS error, number of neurons added during
learning (M) and the learning time. The J parameter was kept fixed at 0.01, but the results
are practically the same using ¢ in the interval 0.005 < § < 0.05.

Table 5.5: Approximating the “Mexican hat” function using IGMN

Emaz 0.1 0.075 0.05 0.025 0.01
NRMS | 0.071302 | 0.067699 | 0.065824 | 0.051815 | 0.014288
M 19 25 37 83 184
Time 0.088s 0.104s 0.188s 0.656s 2.292s

Table 5.5 shows that the NRMS error is reduced as the ¢,,,, parameter is decreased,
whilst the number of neurons added during learning is increased. Using €,,,, = 0.01, for
instance, the NRMS error is just 0.014288, but 184 neurons are added to each region dur-
ing learning. If €,,,,, =~ O then the approximation error will be almost zero (remember that
this data set is noise-free), but a huge number of neurons will be added during learning.
Just for illustration purposes, Figures 5.13(b) to 5.13(f) show the surface approximated by
IGMN using each ¢,,,,, setting. We can notice in these figures that using just 21 neurons
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(Figure 5.13(b)) the proposed model is able to learn the general structure of the target
surface, and using 184 neurons (Figure 5.13(f)) the approximated surface is quite good.

Using a MLP neural network trained with the Levenberg-Marquardt (LM) algorithm
and 20 hidden neurons, the average NRMS error computed over the testing data set was
0.015265 (we needed to repeat this experiment 10 times due to the random initialization
of the synaptic weights in a MLP network), and the time required for learning was 20.633
seconds. However, using MLP we had to perform an exhaustive search to find out the best
number of hidden neurons. Using GRNN with ¢ = 1.0, on the other hand, the NRMS
error was (0.017395 and the learning time was 0.189 seconds. As said before, the number
of neurons added by GRNN is equal to the number of pattern neurons, i.e., 2500 pattern
neurons in this case.

Based on this experiment we conclude that IGMN can learn a three-dimensional sur-
face with arbitrary precision, and the number of neurons added during learning is propor-
tional to the required approximation level. Next section describes how IGMN can be use
to estimate both a and b using the same neural network.

5.3 Estimating both a and b

In the previous experiments we have always used a specific sensory/motor signal (e.g.,
a) to predict another (e.g., b), i.e., IGMN has learned and predicted just the forward
function. However, we can use the same partially trained IGMN network (as IGMN can
learn continuously we never consider that the training process has finished) to predict both
the forward and the inverse function, i.e., to predict both b from a and & from b as well.
To demonstrate this IGMN capability, initially we describe an experiment using a data set
of size N = 1000 generated by the following function:

b = tanh(a) + €, (5.3)

where tanh(-) is the hyperbolic tangent function, € is an independent Gaussian noise
vector with mean g = 0 and standard deviation o, = 0.025 and a is drawn from a
uniform distribution in the interval [—e, e], where e = 2.718281828 is the Euler number.
Figure 5.14(a) shows this data set, where the gray line represents the farget function, i.e.,
b = tanh(a) without noise. An interesting point about this function is that both f(-) and
f(-)~! are mathematical functions in the interval [—e, €].

This data set was learned by IGMN as usual: ) was set to 6, £,,4, to 0.05, § to
0.01, and 6 Gaussian units were added during learning, as shows Figure 5.14(b). After
learning this neural network was used to estimate b from a, as shows the solid gray line
on Figure 5.15(a). The estimates of b were computed by propagating a into the cortical
region A/*, computing p(j|a) in the association region P and estimating b on region N'%.

We can notice in Figure 5.15(a) that the approximation performed by IGMN is quite
good: the NRMS error computed over b is 0.013664, which is almost o, /[maz(b) —
min(b)], i.e., the expected NRMS error. Moreover, this same neural network can be used
to estimate & from b without retraining, as shows the gray line in Figure 5.15(b). We can
notice in this figure that the approximation of the inverse function performed by IGMN is
also good: the NRMS error computed over a is 0.033378. The main difference occurs at
the top-right extremum, because in that region the distribution is almost parallel to the a
axis.
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Figure 5.14: Hyperbolic tangent data set corrupted with noise
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Figure 5.15: Estimating both & and bina hyperbolic tangent data set

This experiment has demonstrated that IGMN can approximate both & and b if f@)
and f(-)~! are functions in R, but this constraint is not really necessary. If f(-)~!is a
function in a more limited domain, for instance, IGMN can also predict a in the regions
where f(-)~! is a mathematical function. To demonstrate this functionality we have used
a data set composed by N = 500 data samples generated using the following cubic func-
tion: , ,

a 3a

b—€+7—3a—2 (54)
where a is randomly chosen in the interval [—8, 6]. Figure 5.16(a) shows this data set and
the Gaussian units added by IGMN during learning. For estimating the forward function
a — b in the domain R, we can use any connectionist approach such as MLP, RBF,
GRNN and IGMN, of course. Figure 5.16(b) shows the regression of f(-) in the interval
[—8, 6] performed by IGMN. The NRMS error computed over b is 0.009131, and the
configuration parameters were set to €,,,, = 0.025, 6 = 0.01 and 2 = 6 (actually in all
experiments of this thesis {2 was set to 6).

However, if we need to estimate the inverse function f(-)~' using a connectionist
approach the procedure is more complicated, because f(-)~! leads to many solutions in

1
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(a) Cubic data set and the corresponding neurons (b) Estimating the forward function using IGMN

Figure 5.16: Experiments performed over the cubic data set

the interval [—4.2,9.25]. If we use a connectionist approach such as MLP or GRNN to
estimate the inverse function, the result will be similar to that presented in Figure 5.17(a),
where the approximation is very poor in the interval [—4.2,9.25], i.e., the predictions
are far from the target function in that region. Nevertheless, outside this interval the
approximation of f(-)~! using a MLP is quite good, as can be seen in Figure 5.17(a).
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(a) Regression performed by MLP (b) ML regression performed by IGMN

Figure 5.17: Estimating both & from b in the cubic data set

Using a traditional ANN model such as MLP and GRNN this can be tackled only by
restricting the domain in which the inverse function is evaluated, but using a more com-
plex, high-dimensional data set, sometimes it is difficult to identify the regions where
f (-)_1 is a mathematical function. Using IGMN, on the other hand, the solution is
straightforward: we use the approach described in Section 4.4 to identify this situation
and tackle it appropriately. As described in Section 4.4, the solution for this problem can
be: (i) to predict & only in those regions where f(-)~! is a function; (ii) to return the
most likely hypothesis in the conflict points and (iii) to return all possible hypotheses and
the corresponding a posteriori probabilities. Figure 5.17(b) shows the approximation per-
formed by IGMN using the second alternative, i.e., returning the most likely hypothesis
of 4. According to Bishop (1995), the most likely hypothesis is a good solution in many
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tasks such as control applications, where the forward function is easy to compute but the
inverse function has multiple solutions.

It is important to notice that in IGMN there is no distinction between a and b, and
therefore the solutions pointed out above can be used where either f(-), f(-)~! or both are
not mathematical functions. To illustrate this situation, Figure 5.18(a) shows a circular
data set, where both f(-) and f(-)! lead to many solutions in the entire domain. This
data set is composed by N = 500 samples generated using the following equations:

a =>50sin(2rn/N) + €

b=>50cos(2rn/N) + € (5.5)

where n is uniformly taken in the interval [1, 500] and € is a independent Gaussian noise
vector with mean ;. = 0 and standard deviation o, = 0.25. Figure 5.18(b) shows the
Gaussian units added by IGMN during learning (28 Gaussian units were added). We
can notice that more units are added in those regions where the target function is almost
parallel to a coordinate axis, because in those regions it is more difficult to predict the
target function (they lead to infinite solutions).

ol . e wol
20t .\'"“_.___ a0t
10 10
0 of
10 -10
B ol
ol ol
-S50F ) ) 'I ‘ | S0p )
-60 -40 -20 i} 20 40 11} -E0 B0
(a) Training points (b) Gaussian units added during learning

Figure 5.18: Circular data set used to evaluate IGMN using multiple hypothesis

Using the most likely hypothesis we can predict both & and b using IGMN, as show
Figures 5.19(a) and 5.19(b), respectively. The IGMN configuration parameters used in
this experiment are ¢,,,, = 0.025, 6 = 0.01 and 2 = 6. An interesting characteristic
of this data set is that each training point has two possible solutions in both f(-), f(-)71,
and consequently the a posteriori probabilities are almost the same (=~ 50%) for each
hypothesis. Hence the ML hypothesis is chosen almost arbitrarily in this experiment (if
they are equal the less recent hypothesis is chosen, but due to the numerical imprecisions
a draw seldom occurs). However, if the training data set has different densities (number of
training points) for each solution, then the hypothesis that represents more training points
will be the most likely.

Another possibility pointed out above is to return all possible solutions, as show Fig-
ures 5.20(a) and 5.20(b), where the first solution is shown in dark tones and the second
solution in light tones. It can be noticed in these figures that returning all possible solu-
tions (just two in this case) practically all state space is covered. In fact, just those regions
where the Gaussian distributions are almost parallel to the coordinate axis are not cov-
ered, which occurs because in those regions there are infinite solutions. When this occurs
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Figure 5.19: Estimating both & and b on the circular data set

IGMN returns the solution that is nearest to the center of the ML hypothesis, which is
generally the best solution because it represent an “average answer’”.
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Figure 5.20: Returning multiple solutions for the circular data set

Of course if we need to take an action, for instance, we must decide what hypothesis
is the most suitable for a given situation. As said before, in the circular data set both
hypotheses are equiprobable, and hence the a posteriori probabilities do not help us to
take a decision. But if we are using the data set shown in Figure 5.16(a), on the other
hand, the ML hypothesis will be that associated with the highest “probability mass”, and
therefore we will tend to choose the ML hypothesis because it represents the most common
answer among the valid ones, i.e., the hypothesis that is more supported by the training
data.

Based on these experiments we conclude that IGMN can be used to predict both the
forward and the inverse functions even when they are not functions in the mathematical
sense. Moreover, these predictions can be made using the same partially trained neural
network, i.e., it is not necessary to have distinct neural networks for the forward and the in-
verse models. To the best of our knowledge IGMN is the first neural network model which
has this capability, although in the context of Gaussian mixture models some possibili-
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ties have been pointed out before by Bishop (1995) and Ghahramani and Jordan (1994a;
1994b) (but not using an incremental Gaussian mixture model).

5.4 Estimating the outputs of a nonlinear plant

The next experiment consists in identifying a nonlinear plant originally proposed by
Narendra and Parthasarathy (1990) for the control of nonlinear dynamical systems using
MLP neural networks. This plant is assumed to be of the form:

Yp(k+1) = f[yp(k>a Yp(k — 1), yp(k —2),u(k),u(k — 1)], (5.6)

where y,(k + 1) is the next time sample of the plant output, y,(k) is the current output,
Yp(k — 1) and y,(k — 2) are delayed time samples of the output, u(k) is the current input,
u(k — 1) is the previous input, and the unknown function f(-) has the form:

X1X2X3X5(X3 — 1) + Xy

5.7
14 x3 + x3 S

f[X17 X9, X3, X4, X5] -

In Narendra and Parthasarathy (1990) this plant was identified using a MLP neural
network composed by five neurons in the input layer, 20 neurons in the first hidden layer,
10 neurons on the second hidden layer and a single neuron in the output layer. This
neural network was trained using the standard backpropagation algorithm for 100000
steps using a random input signal uniformly distributed in the interval [—1, 1] and a step
size of 7 = 0.25. During the identification procedure (i.e., the learning process) a series-
parallel model was used (Figure 5.21(b) (NARENDRA; PARTHASARATHY, 1990)), in
which the output of the plant values (i.e., the desired answers) were used in the delay units
yp(k — 1) and y,(k — 2). After identification the performance of the model was assessed
using a parallel model (Figure 5.21(a) (NARENDRA; PARTHASARATHY, 1990)), in
which the actual neural network outputs are fed into the delay units. The identified plant
(i.e., the trained neural network) was tested using the following function as input:

(k) = sin(27k/250) it £ <500 (5.8)
Y= 0.8sin(2mk/250) + 0.2sin(27k/25) if k > 500 '
vl +1) i_— ;@ - | wlk+1)
l L . =i
u(k) T _@P_‘c(lc+l) (k) —| | Q‘H l o
+ +
I
p(k +1) I ik +1)

(a) Parallel identification model (b) Series-parallel identification model

Figure 5.21: Identification models

Figure 5.22(a), reproduced from Narendra and Parthasarathy (1990), shows the results
obtained in that experiment. It can be noticed that the Narendra’s model was able to
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identify this plant and to predict the next output y,(k + 1) even using a random input
signal (rather than Equation 5.8) during learning, which shows that the neural network
was able to learn the input/out behavior of the given plant after 100,000 learning steps.

1.0 T T T 1 |
r
0.5
-0.5
-1
_loh ! ) , '1 l‘rllllvlillrv'r T 1T &Ir
"o 200 400 800 800 0 200 400 600 800
(a) Identification using the Narendra’s model (b) Identification using GRNN

Figure 5.22: Identification of the nonlinear plant using some previous approaches

In Specht (1991) a GRNN network is used to approximate the function f(-) above.
In that experiment the identification procedure was carried out for 1000 time steps using
a random input signal uniformly distributed in the interval [—1, 1], and the spreading
parameter was set to 0 = 0.315. Figure 5.22(b), reproduced from Specht (1991), shows
the results obtained in that experiment. Using GRNN 1000 pattern units were used to
represent this plant (one for each random input signal used to identify the plant).

Unfortunately in Specht (1991) the approximation error computed using the testing
function (5.8) is not informed, and thus we reproduced that experiment 10 times using
the original conditions (a standard GRNN network with ¢ = 0.315) and different ran-
dom input signals in each replication. Figure 5.23(a) shows the best identification (i.e.,
the replication in which the NRMS error is the smaller) performed by GRNN. The aver-
aged NRMS error computed over 10 replications was 0.053267, and 0.213 seconds were
necessary to perform each replication.

To compare the performance of IGMN against the ANN models described above, we
have repeated this experiment using the same conditions described above, i.e.:

e A series-parallel model (Figure 5.21(b)) for training and a parallel model (Fig-
ure 5.21(a)) for testing;

e The identification procedure was carried out for 1000 time steps using a random
input signal uniformly distributed in the interval [—1, 1];

e The training data was presented in a random order (the training data set is shuffled);

e After learning the identified model was tested using inputs given by Equation 5.8;

e The whole experiment was repeated 10 times using different random input signals
in each replication.

Figure 5.23(b) shows the identification performed by IGMN using default parameters,
i.e., €maz = 0.05 and 6 = 0.01. Observing Figure 5.23(b) we can notice that the identifi-
cation performed by IGMN is superior than those performed by MLP and GRNN (Figures
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Figure 5.23: Identification of a nonlinear plant using 1000 training samples

5.22(a) and 5.22(b), respectively). The average NRMS error computed over 10 replica-
tions was 0.037, 19 neurons were added by IGMN during learning and 0.089 seconds
were spent in each replication.

Table 5.6: Assessing the sensibility of IGMN to the ¢,,,, parameter
Setting of €44 0.1 0.075 | 0.050 | 0.025 | 0.010
NRMS error 0.0474 | 0.0399 | 0.0370 | 0.0394 | 0.0304
Neurons (M) 8.30 12.60 | 19.10 | 38.10 | 80.40
Learning time | 0.055s | 0.089s | 0.095s | 0.125s | 0.285s

To assess the sensibility of IGMN to the ¢,,,, parameter, this experiment was re-
peated using § = 0.01 and varying the value of the ,,,, in the interval [0.01,0.1]. Ta-
ble 5.6 shows the results obtained in this experiment (averaged over 10 replications), and
Figures 5.24(a) and 5.24(b) show the boxplot graphs of the NRMS error and the num-
ber of units added during learning, respectively. It can be noticed in these figures that
Emaz = 0.05 1s a good choice, because it allows a good compromise between the model
complexity (number of neurons) and the approximation level (NRMS error).
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Figure 5.24: Assessing the sensibility of IGMN to the €,,,, parameter
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The next experiment aims to assess the sensibility of IGMN to ¢ using this plant,
where &,,,, was kept fixed at 0.05 and § was varied in the interval [0.0025,0.075]. Ta-
ble 5.7 shows the average results obtained in this experiment, and Figures 5.25(a) and
5.25(b) show the boxplot graphs of the NRMS error and the number of units added dur-
ing learning, respectively. It can be noticed that the IGMN performance is practically
the same using any value of ¢ in the interval [0.005, 0.05], although using § = 0.025 the
NRMS error is slightly lower. Therefore we can affirm that IGMN is not sensible to the
0 parameter, and as we have noticed before (in Subsection 5.1.2) just extreme values of §
degrade the IGMN performance and/or require many Gaussian units.

Table 5.7: Assessing the sensibility of IGMN to the ) parameter
Setting of § 0.0025 | 0.005 | 0.0075 | 0.01 | 0.025 | 0.05 | 0.075
NRMS error | 0.0415 | 0.0372 | 0.0373 | 0.0370 | 0.0320 | 0.0399 | 0.0373
Neurons (M) | 18.60 | 20.20 | 19.20 | 19.10 | 24.70 | 24.40 | 38.80
Learning time | 0.088s | 0.091s | 0.090s | 0.089s | 0.106s | 0.105s | 0.125s

In Specht (1991) it is also pointed out that results similar to those presented in Fig-
ure 5.22(b) can be obtained using just 100 training samples. To validate this affirmation,
we repeated this experiment using N = 100 training samples randomly chosen in the in-
terval [—1, 1]. Using GRNN the NRMS error averaged over 10 replications was 0.090904,
and using IGMN it was just 0.067239. Moreover, using IGMN the average number of
neurons added during learning was just 3.6, whilst GRNN had used 100 pattern units in
each replication. Based on these experiments we conclude that IGMN is a good tool for
approximating nonlinear plants, because it allows a good generalization level using few
Gaussian units and a single scan over the training data. Next section describes how IGMN
can be used to predict future values in a time series.
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Figure 5.25: Assessing the sensibility of IGMN to the J parameter

5.5 Predicting future values of a time series

This section describes an experiment that consists in predicting the future values of
a cyclic time series. More specifically, this experiment was performed using a known
database of the number of airline passengers in the USA, originally published in Box
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et al. (1976). The data consist of the monthly quantity of passengers measured over 12
consecutive years, between 1949 and 1960, summing up 144 samples. The goal of this
experiment is the prediction of the number of passengers for the subsequent four years,
1.e, the next 48 data records. This database has been focus of a competition for time series
prediction in the 25th International Symposium on Forecasting?, held in 2005.

A critical decision in this experiment is the choice of the number of entries, D, to be
used in the neural network. This decision is critical due to the reduced number of samples
in the sample data set. As D increases, the number of training/testing samples decreases.
The relationship between the number of samples and entries is given as follows:

Q:N_D7

where () is the is the number of samples available for training. If D = 12, for instance,
the records of the previous year, X = {z,_p+1,ZTn_pi2,--.,Tn_1,Tn}, are used to pre-
dict the next record z,,; and () = 132 samples are available for learning and testing.
In Camargo and Engel (2005) it is pointed out that using a MLP network the best pos-
sible configuration is given by using two hidden neurons and DD = 48 entries (i.e., the
prediction is based on the previous four years), which results in 96 samples available
for learning and testing. We have also performed several preliminary experiments using
different configurations in a MLP network, and these experiments confirmed that the con-
figuration pointed out above is the best possible for a MLP neural network trained using
the Levenberg-Marquardt (LM) algorithm.

Using the best configuration pointed out above, i.e., a MLP network with 48 inputs,
two hidden neurons and a single output, we have repeated this experiment 10 times using
different random initializations, and the best replication is shown in Figure 5.26(a). It can
be noticed in this figure that the MLP neural network does not learn correctly the growing
tendency in the time series. Moreover, this is the only really good result obtained in the 10
replications. The most common results are similar to that shown in Figure 5.26(b), where
the prediction of the next 48 values is poor. Besides, in some replications the results are
similar to that present in Figure 5.26(c), where the neural network did not learn even the
training data set. The time required for learning is about 2 seconds using the MATLAB
NN Toolbox.

This experiment points out two well-known problems of the backpropagation algo-
rithm and its variants (e.g., RPROP and LM): (i) the obtained results depend on the ini-
tialization of the random weights; and (ii) the learning algorithm is susceptible to local
minima. Using less entries in the neural network, e.g., D = 18, the results are even worse,
as can be seen in Figure 5.26(d), that is the best replication using this configuration.

In Camargo (2010) a progressive enhancement neural model is used to select the most
relevant features and to retrain the neural network using just these features. Figure 5.27,
reproduced from Camargo (2010), shows the results obtained by Camargo using this tech-
nique. The results shown in Figure 5.27 were sent to the competition for time series pre-
diction in the 5th International Symposium on Forecasting, and was awarded among the
three best works in this competition (CAMARGO; ENGEL, 2005). Unfortunately the
Camargo’s technique is not on-line nor incremental: it needs to retrain the neural network
many times using a batch-mode algorithm.

In the next experiment IGMN was used to predict the subsequent 48 values of this time
series. In this experiment we have used the number of entries pointed out above (D = 48),

225th IFS, San Antonio, USA — http://www.upcomillas.es/presim/documentos/recu_09.pdf
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Figure 5.26: Predicting a time series using MLP

and hence the cortical region N'* has D? = 48 entries and A/? has just one entry. The
IGMN configuration parameters were set to €,,,, = 0.1, = 0.01. Figure 5.28(a) shows
the results obtained in this experiment. The time required for learning is 0.05 seconds and
two neurons were added in each region. If we use a lower setting on €,,,,,, the predictions
will be almost the same presented in Figure 5.28(a), but more neurons will be added to
each region during learning. Using €,,,, = 0.01, for instance, 23 neurons are added in
each region by IGMN.

Although it is not possible to say what is the best prediction (the number of passengers
for the subsequent four years is not available), we can notice in Figure 5.28(a) that IGMN
has learned correctly the growing tendency of the time series. Moreover, IGMN learns
incrementally using a single scan over the training data, does not require a fine-tunning of
its configuration parameters, does not depend on the initial conditions and is not suscep-
tible to local minima. In fact, the results produced by IGMN are always the same using
the configuration pointed out above, which is a strong advantage over MLP networks.

In the next experiment we have changed the number of entries in the neural network
to verify if IGMN is able to predict the time series using less entries, i.e., based on a short
period of time. This experiment indicated that using just 18 entries IGMN is able to make
good predictions, as shows Figure 5.28(b). In this experiment just one multidimensional
neuron was added to each region, and the learning time was just 0.01 seconds. Observing
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Figure 5.27: Predicting the time series using Camargo’s model

Figure 5.28(b) we can notice that IGMN correctly predicts the time series based on the
last 18 months with an accuracy higher than that provided by MLP (Figure 5.26(d)).

After this we have used GRNN to learn this time series and to compare its perfor-
mance against IGMN. After an exhaustive search for the best adjusting of the spreading
parameter o, we have found out that the best setting is given using ¢ = 0.075. The train-
ing data were also normalized in the interval [—1, 1], which is an requirement of GRNN
because the Parzen kernels have the same width in each direction (SPECHT, 1991). Fig-
ures 5.29(a) and 5.29(b) shows the results obtained using a GRNN net with 48 and 18
entries, respectively.

We notice in Figure 5.29 that even using the best possible configuration GRNN can-
not learn the growing tendency of the time series, and using other configurations and/or
without normalizing the training data the results are even worse. This occurs because
according to Specht (1991) in GRNN “the estimate is bounded by the minimum and max-
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Figure 5.28: Predicting the time series using IGMN
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Figure 5.29: Predicting the time series using GRNN (o = 0.075)

imum of the observations”, which prevents it of learning the growing tendency in the time
series. Similarly, if we use IGMN with the standard algorithm, a result similar to that
presented in Figure 5.29(a) is obtained, no matter how long time we spend trying to ad-
just the configuration parameters. This experiment points out that only using multivariate
Gaussian units we can predict correctly this time series. Therefore, we conclude that the
representational power of the multivariate algorithm really provides a real benefit to the
neural network, and as we have pointed out before in Section 5.1 the higher computational
cost of the multivariate representation is worthwhile because it allow us to predict a cyclic
time series with growing tendency better than other ANN models.

Another important aspect about predicting time series is that sometimes the predic-
tion itself is not enough. In fact, as the behavior of many systems is chaotic, it is very
useful to compute the confidence limits of the forecasts, because they may allow us to
make a better decision based on the confidence intervals, for instance. As described be-
fore, predicting the confidence limits using IGMN is straightforward — we just need to
compute the variance at b using (4.12) and use this variance to compute other estimators
such as the confidence intervals. Figures 5.30(a) and 5.30(b) show the 95% confidence
intervals computed by IGMN over the time series described above using 48 and 18 en-
tries, respectively. We can notice that both experiments lead to similar results, but using
48 entries the confidence interval is narrow, what indicates that the confidence is higher
when more information is used (i.e., the past experience is more deeply exploited by the
neural network) to predict the time series.

Based on these experiments we can conclude that IGMN is a very good tool for learn-
ing time series, because it allow us to predict a cyclic time series in a robust and efficient
manner. Moreover, it captures correctly the growing tendency of the time series and is
not susceptible to local minima. Next section presents some final conclusions about the
experiments described in this chapter.

5.6 Final remarks

This chapter has presented several experiments performed using the proposed neural
network model in function approximation and prediction tasks. These experiments have
exemplified the main characteristics of IGMN, hence showing that it is a very suitable ma-
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Figure 5.30: 95% confidence intervals computed by IGMN

chine learning tool for on-line prediction and regression tasks. In fact, the results obtained
in these experiments have demonstrated that: (i) IGMN learns very fast using a single
scan over training data; (ii) it does not depend on the initial conditions nor is susceptible
to local minima (the results are always identical for the same data set and configuration);
(111) the neural network architecture is incrementally defined; (iv) it is not necessary to
fine-tune the configuration parameters to obtain good results; (v) the multivariate repre-
sentation is robust to the order or presentation of data; (vi) the predictions are not bounded
by the minimum and maximum values of the training data set; (vii) IGMN can provide
the confidence levels of its estimates; (viii) the same neural network can be used to esti-
mate both the forward and the inverse functions; (ix) IGMN can provide good estimates
even when either f(-) or f(-)~! are not mathematical functions; (x) its performance in the
experiments described above is equivalent or even superior than those presented by other
connectionist solutions such as MLP and GRNN; (xi) the learning algorithm is relatively
robust to the overfitting problem; and (xii) IGMN can be successfully used in many prob-
lems such as estimating the outputs of a nonlinear plant or predicting the future values of
a time series with growing tendency. Next chapter presents some experiments in which
IGMN is used in more complex machine learning tasks such as reinforcement learning
and robotic control.



118



119

6 ROBOTICS AN OTHER RELATED TASKS

Last chapter has described many experiments, using artificial (synthetic) datasets, that
demonstrated the representational power and learning performance of IGMN. This chap-
ter describes the second contribution of this thesis, which is the use of IGMN in practical
applications such as reinforcement learning and robotics. The main goal of these exper-
iments is to validate the proposed model in real applications and/or using real data and
also to demonstrate its suitability in many potential applications that require incremental
learning and real time performance. This chapter is structured as follows. Section 6.1 dis-
cusses the use of IGMN for incremental concept formation (ENGEL; HEINEN, 2010a,b;
HEINEN; ENGEL, 2010e,f), which is an important task in machine learning and robotics.
Section 6.2 shows how IGMN can be used to compute the control actions for a mobile
robot performing a wall following behavior (HEINEN; ENGEL, 2010a,b,d). Section 6.3
demonstrates the suitability of IGMN for computing the inverse kinematics in a gait con-
trol task using a simulated legged robot (HEINEN; OSORIO, 2009, 2008, 2007b). Sec-
tion 6.4 presents the use of IGMN as a function approximator in reinforcement learning
(RL) algorithms (HEINEN; ENGEL, 2010g,a, 2009a,c). Finally, Section 6.5 describes
a new feature-based mapping algorithm (HEINEN; ENGEL, 2011, 2010c,f), based on
IGMN, which represents the environment using multivariate GMMs rather than grid cells
or line segments. Great part of these experiments has been published in the corresponding
papers cited above using a previous (i.e., the standard) IGMN version, but in this chapter
we have performed these experiments again using the most recent (i.e, the multivariate)
IGMN algorithm, which leads to better results than those presented in the papers men-
tioned above.

6.1 Incremental concept formation

One of our primary motivations in developing IGMN was to tackle problems like those
encountered in autonomous robotics. To be more specific, let us consider the so called
perceptual learning, which allows an embodied agent to understand the world (BUR-
FOOT; LUNGARELLA; KUNIYOSHI, 2008). Here an important task is the detection
of concepts such as “corners”, “walls” and “corridors” from the sequence of noisy sensor
readings (e.g., sonar data) of a mobile robot. The detection of these regularities in data
flow allows the robot to localize its position and to detect changes in the environment
(THRUN; BURGARD:; FOX, 2006).

Although concept formation has a long tradition in machine learning literature, in the
field of unsupervised learning, most methods assume some restrictions in the probabilis-
tic modeling (GENNARI; LANGLEY; FISHER, 1989) which prevent their use in on-line
tasks. The well known k-means algorithm (MACQUEEN, 1967; TAN; STEINBACH;
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KUMAR, 2006) (Section 2.2), for instance, represents a concept as a mean of a subset
or cluster of data. In this case, each data point must deterministically belong to one con-
cept. The membership of a data point to a concept is decided by the minimum distance
to the means of the concepts. To compute the means, all data points belonging to every
concept are averaged using a fixed number of concepts along all the learning process.
For learning probabilistic models, a very used approach is the batch-mode EM algorithm
(DEMPSTER; LAIRD; RUBIN, 1977) (Section 2.3), which follows a mixture distribu-
tion approach for probabilistic modeling. Like k-means, this algorithm requires that the
number of concepts be fixed and known at the start of the learning process. Moreover, the
parameters of each distribution are computed through the usual statistical point estima-
tors, a batch-mode approach which considers that the complete training set is previously
known and fixed (TAN; STEINBACH; KUMAR, 2006).

These restrictions make the k-means and EM algorithms not suitable for on-line con-
cept formation, because in this kind of task usually each data point is just instantaneously
available, i.e., the learning system needs to build a model, seen as a set of concepts of the
environment, incrementally from data flows. The neural network model proposed in this
thesis, on the other hand, is able to learn from data flows in an incremental (new concepts
can be added by demand) and on-line (it does not require that the complete training set be
previously known and fixed) way, which makes it a good solution for concept formation
in on-line robotic tasks. Moreover, unlike the traditional neural network models (e.g.,
MLP and GRNN), the IGMN hidden neurons are not “black boxes”, and thus the Gaus-
sian units can be interpreted as representations of the input space, i.e., high level concepts
(HEINEN; ENGEL, 2010e). The remaining of this section is organized as follows: Sub-
section 6.1.1 presents some related work about concept formation, and Subsection 6.1.2
describes how IGMN can be used to build high-level concepts incrementally from data
flows.

6.1.1 Related work

In the past different approaches were presented to create high level concepts from
sonar data in robotic tasks. As a typical example of these approaches, Nolfi and Tani (1999)
proposed a hierarchical architecture to extract regularities from time series, in which
higher layers are trained to predict the internal state of lower layers when such states
significantly change. In this approach, the segmentation was cast as a traditional error
minimization problem (HAYKIN, 2008), which favors the most frequent inputs, filtering
out less frequent input patterns as being “noise”. The result is that the system recognizes
slightly differing walls, that represent frequent input patterns, as distinct concepts, but
is unable to detect corridors or corners that are occasionally (infrequently) encountered.
Moreover, this algorithm has scarce means to handle the stability-plasticity dilemma and
to appropriately model the data.

Figure 6.1(a) shows the environment used by Nolfi and Tani (1999) to validate their
approach, where it is considered the case of a mobile robot that performs a wall following
behavior in an environment composed by two rooms joined by a short corridor. In this
figure the straight lines represent the walls and the full circle represents a cylindrical
object. The circle on the left-bottom side represents the robot and the trace on the terrain
represents the trajectory of the robot during a few laps in the environment. The robotic
platform used in this experiment is a simulated Khepera robot. This robot has a circular
shape with a diameter of 55mm, a height of 30mm, and a weight of 70g. It is supported
by two wheels and two small Teflon balls. The wheels are controlled by two DC motors
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with an incremental encoder. The robot is provided with eight infrared proximity sensors
that can detect obstacles within a range of about 3cm.
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(a) Training environment and data acquisition (b) Segmentations performed during one lap

Figure 6.1: Results obtained using the Nolfi and Tani’s model in an environment com-
posed by two rooms joined by a short corridor

Figure 6.1(a), reproduced from Nolfi and Tani (1999), shows the segmentation per-
formed by the Nolfi and Tani’s model during one lap in the environment. The full circle,
empty circle, and full square indicate, respectively, which of the three segmentation units
is active in a given cycle. The state of the segmentation units is displayed only when a new
segmentation occurs (i.e. when the state changes). The arrows indicate the direction of
the robot when the corresponding segmentation occurs. This experiment was performed
using an Elman’s network (ELMAN, 1990) with 10 input units (which encode the state
of the eight infrared sensors of the robot and the speed of the two motors), 3 hidden units
(which detect the states of the environment), and 8 output units (which encode the state
of the infrared sensors at time t+1). The main drawbacks of this approach are: (i) it re-
quires that the number of concepts (i.e., hidden units) be fixed and known at the start of
the learning process; and (ii) the learning algorithm is off-line and requires several scans
over the training data to converge (in fact the neural network using in this experiment was
trained for 100000 epochs).

Focusing in change detection, Linaker and Niklasson (2000a; 2000b) proposed an
adaptive resource allocating vector quantization (ARAVQ) network, which stores mov-
ing averages of segments of the data sequence as vectors allocated to output nodes of
the network. New model vectors are incorporated to the model if a mismatch between
the moving average of the input signal and the existing model vectors is greater than a
specified threshold, and a minimum stability criterion for the input signal is fulfilled. Fig-
ure 6.2, reproduced from Linaker (2003), shows the results obtained using the ARAVQ
network and the Khepera robot simulator (MICHEL, 1996), in the same environment
shown in Figure 6.1(a). The main advantage of this approach over the Nolfi and Tany’s
model is that the ARAVQ network requires a single scan over the training data to con-
verge. Moreover, it can add hidden neurons (i.e., to create new concepts) incrementally
from data flows.

Although the ARAVQ network has been used in some robotic tasks (LINAKER;
JACOBSSON, 2001; BAKKER; LINAKER; SCHMIDHUBER, 2002; BAKKER et al.,
2003; LINAKER, 2003; HOLLAND; GOODMAN, 2003; STENING; JACOBSSON;
ZIEMKE, 2005), like other distance-based clustering algorithms its induced model is
equivalent to a set of equiprobable spherical distributions sharing the same variance, what
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Figure 6.2: Results obtained using ARAVQ in an environment composed by two rooms
joined by a short corridor

badly fits to a data flow with temporal correlation, better described by elongated ellipti-
cal distributions. Next subsection describes some experiments in which IGMN is used to
learn high-level concepts in an incremental and efficient way.

6.1.2 Concept formation experiments

This section describes some experiments in concept formation tasks. In these exper-
iments the data consist of 10 continuous values provided by the Pioneer 3-DX simulator
software ARCOS (Advanced Robot Control & Operations Software). A Pioneer 3-DX
robot has 8 sonar sensors, disposed in front of the robot at regular intervals, and a two-
wheel differential, reversible drive system with a rear caster for balance. Figure 6.3 shows
a Pioneer 3-DX robot and the disposition of its sonar sensors.

f— 90°

Caurtesy of AstinMedia Robaties, LLC

(a) Front view (b) Array of sonar sensors (c) Side view
Figure 6.3: Pioneer 3-DX robot with eight sonars and a differential steering drive

The IGMN network used in these experiments has two cortical regions, N¥ and N'”.
The cortical region N tackles the values of the sonar readings, i.e., s = {sy, S2,..., Ss},
and the cortical region A/” receives the speeds applied at the robot wheels at time ¢, i.e.,
v = {v1,v2}. To decide what is the most active concept at time ¢, the maximum likeli-
hood (ML) hypothesis ¢ = arg max;[p(j|z)], where z = {s, v}, is used. It is important to
note that IGMN computes and maintains the a posteriori probabilities of all concepts at
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each time, and hence it can be used in applications such as the so called multi-hypothesis
tracking problem in robotic localization domains (FILLIAT; MEYER, 2003; THRUN;
BURGARD; FOX, 2006). The configuration parameters used in the following experi-
ments are 9 = 0.1 and 7,,,, = 0.01 (as the main goal in concept formation is to identify
natural groupings in the input space, we have decided to use in this experiment the 7,,,,
parameter to adjust the model complexity rather than the ¢,,,, parameter). It is important
to say that no exhaustive search was performed to optimize the configuration parameters.

The first experiment was accomplished in an environment composed of six corridors
(four external and two internal), and the robot performed a complete cycle in the external
corridors. Figure 6.4 shows the segmentation of the trajectory obtained by IGMN when
the robot follows the corridors of this environment. IGMN created four probabilistic
units, corresponding to the concepts “corridor” (1: plus sign), “wall at right” (2: circle),
“corridor / obstacle front” (3: asterisk) and “curve at left” (4: cross). The symbols in
the trajectory of Figure 6.4 represent the ML hypothesis in each robot position, and the
black arrow represents the robot starting position and direction. More details about this
experiment can be found at Engel and Heinen (2010a).
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Figure 6.4: Segmentation obtained by IGMN in six corridors experiment

The next experiment was performed in a more complex environment, composed by
two different sized rooms connected by a short corridor. This environment was inspired
in those used by Linaker and Niklasson (2000a; 2000b) (Figure 6.1(a) above). Figure 6.5
shows the segmentation performed by IGMN in this experiment. IGMN has created seven
clusters, corresponding to the concepts “wall at right” (1: plus sign), "corridor” (2: circle),
“wall at right / obstacle front” (3: asterisk), “curve at left” (4: cross), ’bifurcation /
obstacle front” (5: square), “’bifurcation / curve at right” (6: five-pointed star) and “wall
at left / curve at right” (7: hexagram).

Comparing these experiments, it can be noticed that some similar concepts, like “curve
at left” and “obstacle front”, were discovered in both experiments, although these envi-
ronments are different (the environment shown in Figure 6.4 has many corridors whilst
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Figure 6.5: Segmentation obtained by IGMN in the two rooms experiment

that one shown in Figure 6.5 has two large rooms and just one short corridor). This points
out that concepts extracted from a data flow corresponding to a specific sensed environ-
ment are not restricted to this environment, but they form an alphabet that can be reused
in other contexts. This is a useful aspect, that can improve the learning process in more
complex environments.

As described above, the main goal in concept formation is to identify natural group-
ings in the input space, which are represented by IGMN using its Gaussian units. There-
fore, in this kind of task the estimation/prediction capabilities of IGMN are not necessary
(in fact, this experiment can be performed using IGMM as well). Nevertheless, these
estimation/prediction capabilities can be used to compute the motor actions for a robot
performing a wall following behavior, for instance, as is shown in the next subsection.

6.2 Estimating the desired speeds in a mobile robotics application

In the experiments described in the previous section the main goal was to identify
natural groupings in the input space, which were represented by the IGMN Gaussian units,
and therefore the IGMN estimation/prediction capabilities were not used. In this section
we will use these estimation/prediction capabilities to compute the desired actions (i.e.,
the wheel speeds) for a mobile robot performing a wall following behavior in a simulated
environment. These experiments are relevant because in robotic control tasks usually it
is not possible to predict all situations that occur in the real world, and hence the robot
needs to learn from experience while interacting with the environment.

In a previous experiment, presented in Heinen and Engel (2010a), Equation 4.9 was
used to estimate the desired speeds in the same environment described above (Figure 6.5)
and using a IGMN neural network with two cortical regions, A* and N'” and seven
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Gaussian units added by the minimum likelihood criterion. Figure 6.6(a) shows the results
obtained in this previous experiment, where the x axis corresponds to the time index of the
sensor readings (the training database is composed by 2070 data samples) and the y axis
corresponds to the difference between the right and left motor speeds, i.e., y4(t) = v —vs.
A positive value in y4(t) corresponds to a left turn in the robot trajectory and a negative
value corresponds to a right turn. The solid gray line in Figure 6.6(a) represents the
desired y,4(t) values and the dashed black line represents the difference between the actual
IGMN outcomes, i.e.: 4,(t) = 0y - 0. It is important to say that the region N'* has size
DV = 2, i.e., the difference 1,(t) was computed just to improve the visualization in
Figure 6.6(a).
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(a) Using a previous (standard) IGMN version (b) Using the current (multivariate) IGMN version

Figure 6.6: Difference between the speeds of the right and left motors of the robot while
it is fallowing the trajectory shown in Figure 6.5.

Observing Figure 6.6(a) we can notice that the standard IGMN version was able to ap-
proximate the desired output with a reasonable accuracy (the NRMS error was 0.050373),
using few Gaussian units (just seven) and no memory of past perceptions and actions (e.g.,
no recurrent connections nor delay units). The main differences between y4(t) and y,(t)
are in the extremes, i.e., the approximation performed by IGMN is smoother than the
target function. Although these results are reasonable, if we use this neural network to
control the robot it will hit the wall in the first curve of the environment, i.e., it cannot
control the robot correctly. This occurs because in this experiment the minimum like-
lihood criterion was used to add new Gaussian units, which does not necessarily leads
to a good generalization level. In fact, to obtain a better approximation the error-driven
mechanism, introduced in Section 4.3, is more suitable because it is directly related to the
approximation error rather than the model complexity.

Therefore, this experiment was repeated using the multivariate IGMN version pre-
sented in Chapter 4, and the results obtained in this experiment are show in Figure 6.6(b).
The configuration parameters used in this experiment are 6 = 0.01, €,,,, = 0.01 and
{2 = 6. We can notice in this figure that using the current IGMN version the approxima-
tion error is much lower than using the previous IGMN version: the NRMS error is just
0.034598. The time required for learning was 0.351 seconds, and 40 Gaussian units were
added in each region. Moreover, if we use this trained network to control the robot, it
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will follow the trajectory shown in Figure 6.7, where we can notice that the robot follows
the “target trajectory” very well. These results are still more impressive because the robot
does not receive any information about its position (just the readings of the sonar sensors
are provided at each 100 milliseconds) and the neural network has no memory of past
perceptions and actions, i.e., an action must be taken using just the current perception.
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Figure 6.7: Trajectory obtained using IGMN to choose the robot actions

Table 6.1 shows a comparison among the results obtained using IGMN and other
neural approaches. The first column presents the ANN model. The following columns
show, respectively, the number of hidden/pattern units, the NRMS error computed using
the 10-fold cross validation procedure, the average number of training epochs and the
time required to perform each replication, i.e. 1/10 of the time required by the entire 10-
fold cross validation procedure. To facilitate our comparison, the last row on Table 6.1
shows the results obtained using IGMN. Figure 6.8 shows a boxplot graph comparing the
NRMS errors in these experiments. To allow a fair comparison, an exhaustive search was
performed to find out the best configuration parameters of each neural network model.

Table 6.1: Comparative among ANNSs in follow the trajectory of Figure 6.5

ANN model Units | NRMS | Epochs | Time
MLP — RPROP 10 | 0.043192 | 2364 | 5.367s
MLP - LM 10 | 0.034778 | 53.7 | 4.897s
GRNN (o = 90) 2070 | 0.033172 1.0 0.498s
IGMN — Multivariate | 40 | 0.034598 1.0 0.351s

We can notice in Table 6.1 that the IGMN performance is comparable to other ANN
models. In fact, just the GRNN model has a better performance, but observing the boxplot
graphs in Figure 6.8 we can notice that the differences are not statistically significant, i.e.,
the confidence intervals overlap. Moreover, IGMN can learn the target function very fast
using a single scan over the training data and does not require an exhaustive search to find
out the best configuration parameters (actually just the ¢,,,, parameter must be reduced
until the desired approximation level is achieved).
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Figure 6.8: Comparing the approximation errors in the trajectory of Figure 6.5

The next experiment was performed in a more complex and irregular environment,
shown in Figure 6.9, where the robot was preprogrammed to follow the external walls of
the simulated environment. IGMN was trained using the data corresponding to one lap
in the environment (1631 samples), and was tested using another independent lap (1551
samples). This experiment is more difficult than the previous one (Figure 6.5) because
the control algorithm is more complex. In fact, in the previous experiment the robot was
manually controlled to perform a fixed trajectory in the regular environment, whilst in this
experiment the robot is automatically controlled using the noisy sonar data to perform a
wall following behavior, and therefore the robot’s trajectory changes slightly at each lap
according to the noisy readings received at each instant.

Figure 6.9: Wall following behavior in a more complex environment. The solid gray line
shows the trajectory followed by the robot in the learning mode and the dashed black line
shows the trajectory followed by the robot using IGMN to control its actions.
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The solid gray line in Figure 6.9 shows the trajectory followed by the robot during
the learning phase, and the dashed black line shows the trajectory followed by the robot
using the trained IGMN network to control its actions. We can notice in this figure that
the robot have not simply repeated the “target trajectory” after training. On the contrary,
it follows a softer trajectory through the environment, which demonstrates that the neural
network has really learned the wall-following behavior rather than just reproducing the
target trajectory.

The configuration parameters used in this experiment are 6 = 0.01, €,,,4, = 0.75 and
(2 = 6, and just two Gaussian units were added during learning. Actually using lower
values in €,,4, (€.8., €mae = 0.1) the robot’s trajectory will be more similar to the target
one (and more neurons will be added to each region, of course), but from a practical point
of view this is not interesting. As a matter of fact, it is much better learning a control
behavior (a wall following behavior, in this case) than just reproducing a target trajectory,
because the control behavior is much more robust against changes in the environment.

Table 6.2 shows a comparison among the results obtained in this experiment using
IGMN and other ANN approaches. We can notice in this table that the IGMN perfor-
mance is comparable to other models even using just two Gaussian units and without
fine-tunning its configuration parameters.

Table 6.2: Comparative among ANNS in learning the wall-following behavior

ANN model Units | NRMS | Epochs | Time
MLP — RPROP 6 0.168697 | 78.2 | 4.224s
MLP - LM 6 0.157162 | 27.9 | 7.146s

GRNN (o = 210) 1631 | 0.142121 1.0 0.229s
IGMN — Multivariate 2 0.140875 1.0 0.045s

These experiments show that IGMN is a very suitable tool for robotic control tasks,
because it can learn a control behavior very fast, incrementally and using few Gaussian
units. Next section describes how IGMN can solve the inverse kinematics problem.

6.3 Computing the inverse kinematics in a legged robot task

The experiments described above were performed using a “wheeled” robot, i.e. a sim-
ulated robot which uses wheels for locomotion. The next experiment, on the other hand is
performed using a simulated legged robot, and the role of IGMN in this experiment is to
compute the inverse kinematics of the robot legs. This experiment was performed using
the LegGen simulator (HEINEN; OSORIO, 2009, 2008, 2007a,b, 20064a,b,c), which is
devised to evolve gait control strategies using a physically realistic simulation environ-
ment.

According to Osorio et al. (2006), for a simulation of legged robots be realistic, it
is necessary to model several elements of the real world, such as gravity and friction, in
order that the simulated bodies to behave in a way similar to their equivalents in the real
world (BEKEY, 2005). In the LegGen simulator this is achieved by using Open Dynamics
Engine (ODE'"), which is a C++ software library that allows the simulation of rigid bodies
with great physical realism. LegGen also uses genetic algorithms (GA) (GOLDBERG,
1989), implemented using the GAlib? software library, to evolve the control strategies.

'Open Dynamics Engine (ODE) — http://openode.sourcefourge.net
2GAlib software library — http://www. lancet .mit .edu/ga/
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Figure 6.10 shows the simulated robot used in this experiment. Its dimensions are
approximately those of a medium sized dog. The joint restrictions used in the simulated
robot are similar to its biological equivalent, with the following values: Hip=[-60°;15°];
Knee=[0°;120°]; Ankle=[-90°;30°]. To simplify the control strategy all robot legs have
the same joint restrictions. More details about LegGen and the simulated robot are found
at Heinen and Osoério (2009; 2008; 2007a; 2007b).

Dimensions

Part X y Z

Body |45.0cm|15.0cm|25.0cm
Thigh| 5.0cm |{15.0cm| 5.0cm
Shin | 5.0cm [15.0cm| 5.0cm
Paw | 8.0cm | 5.0cm | 9.0cm

Figure 6.10: Modeled robot

In some previous experiments, presented in Heinen (2007) and Heinen and Osorio (2007a;
2006a), the inverse kinematics was computed using the Powell’s direction set method
(BRENT, 1973; PRESS et al., 1992), which works well but requires an initial guess of the
joint angles to approximate a valid answer. Moreover, the Powell’s method requires sev-
eral iterations to converge, which can prevent its use in real time, and can become trapped
into local minima. In this section we propose to use IGMN for computing the inverse
kinematics of the robot legs, hence preventing these restrictions of the Powell’s method
described above. More specifically, IGMN was used to learn the forward kinematic model
and afterwards to compute the inverse model in real time. This is only possible because
the same partially trained IGMN network can approximate both f(-) and f(-)~! even in
regions were the the target function is multivalued. The training dataset used in this ex-
periment is composed by 1000 data samples generated using the forward model given

by:
¢ = ZZZ\; @
e=S"N (& > i Cos(aj)> (6.1)
y=>0 (L Siﬂ(%‘))

where [; is the length of ith leg part, o; is the angle of the 7 leg joint, N is the number
of leg parts in each robot’s leg (three in this case) and (z, y, ¢) is the pose of the actuator
(the robot’s paw). For generating this training dataset the joint angles «; were randomly
chosen using a uniform distribution in the interval of the maximum and minimum angles
(i.e., the joint restrictions) of each joint in the robot legs. The neural network used to
learn this dataset has two cortical regions, N’ and N'*, where the region N? receives the
angles of each joint at each instant ¢, i.e.: a' = {1, a9, a3}, and the cortical region N'*
receives the corresponding pose of the robot’s paw computed by (6.1), i.e., b" = {z,y, ¢}.
The IGMN configuration parameters were set to 6 = 0.01, €,,,4. = 0.1 and 2 = 6.
IGMN has learned this training dataset very well: the NRMS error was 0.006414, the
time required for learning was just 0.18 seconds and 45 Gaussian units were added during
learning. After training, this neural network was used to compute the inverse kinematics
of the robot legs, i.e., it receives a desired paw position and computes the joint angles
to achieve that position. Figure 6.11 shows the robot’s walking produced by LegGen
after the evolving of the control strategy. More details about the evolution of the control
strategies using LegGen can be found at Heinen and Osoério (2009; 2008) (here we will
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not deep into details of LegGen because the evolution of the legged robot gaits is outside
the scope of this thesis — our interest here is just computing the inverse kinematics in a
robust and efficient way).

n 0D & 5
7 3 o 7

Figure 6.11: Robot walking using IGMN to compute the inverse kinematics

Actually the results shown in Figure 6.11 are similar to those presented in Heinen and
Osério (2007a), because both the Powell’s method and the IGMN model can compute
the inverse kinematics in a very precise way. The main advantage of IGMN in this task
is that it does not require an initial guess of the joint angles to compute a valid solution
nor become trapped into local minima (the produced solution is always a valid one).
Moreover, after training the neural network computes the inverse kinematics very fast — it
requires less than 10~* seconds — thus allowing the use of IGMN in real time. The main
drawback of IGMN is that in some cases it may outcome a valid answer that is not the
best one in a given moment (e.g., IGMN can chose a combination of joint angles that is
far from the current angles but that still leads to the desired robot’s paw pose), but in this
experiment this problem was not observed. Actually this situation can be prevented by
using a temporal context in the neural network (e.g., the current position of each joint) in
order to induce a solution near from the current joints position, for instance.

This experiment demonstrates that IGMN is a good tool for solving the inverse kine-
matics problem even in real time robotic control applications. Other ANN models such
as MLP, RBF and GRNN cannot be used to solve this problem, because as described in
Section 4.4, these models use a sum-of-squares error function and hence may not pro-
duce valid answers in regions of the state space where the target function is multivalued
(BISHOP, 1995). Next section describes how IGMN can be used as a function approxi-
mator in reinforcement learning tasks.

6.4 Reinforcement Learning using IGMN

This section presents a couple of experiments, published in Heinen and Engel (2010a;
2009a), in which IGMN is used as a function approximator in reinforcement learning (RL)
algorithms. Traditional reinforcement learning techniques (e.g., Q-learning and Sarsa)
(SUTTON; BARTO, 1998) generally assume that states and actions are discrete, which
seldom occurs in real mobile robot applications. To allow continuous states and actions
directly in RL (i.e., without discretization) it is necessary to use function approximators
like MLP (UTSUNOMIYA; SHIBATA, 2009) or RBF (DOYA, 2000; BASSO; ENGEL,
2009) neural networks. According to Smart (2002), for a function approximator be suc-
cessfully used in reinforcement learning tasks (i.e., for converging to a good solution) it
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must be: (i) incremental (it should not have to wait until a large batch of data points arrives
to start the learning process); (ii) aggressive (it should be capable of producing reason-
able predictions based on just a few training points); (iii) non-destructive (it should not
be subject to destructive interference or “forgetting” past values); and (iv) must provide
confidence estimates of its own predictions. Thus, according to these principles IGMN
is very suitable for reinforcement tasks, i.e., it satisfies all the requirements described
above. The remainder of this section is organized as follows. Subsection 6.4.1 presents
some related work in the field of reinforcement learning using continuous states and ac-
tions. Subsection 6.4.2 describes how IGMN can be used as a function approximator in a
RL algorithm. Finally, Subsections 6.4.3 and 6.4.4 describe some experiments performed
to evaluate the proposed model in reinforcement learning tasks.

6.4.1 Related work

In the past several approaches were proposed to allow continuous states and actions
in RL algorithms. As an example of these approaches, in Doya (1996; 2000) a contin-
uous formulation of the temporal difference 7"D()\) algorithm is presented (SUTTON,
1988). This formulation uses normalized radial basis function (RBF) networks to ap-
proximate the continuous state values and to learn the continuous actions. According to
Doya (2000), RBF networks are more suitable for reinforcement learning tasks than MLP
(RUMELHART; HINTON; WILLIAMS, 1986; HAYKIN, 2008) because they perform a
local encoding of the input receptive fields, which avoids the catastrophic interference,
i.e., the knowledge acquired in a region of the input space does not destroy the knowl-
edge acquired previously in another region of the input space (BASSO; ENGEL, 2009).
However, in the algorithm described in Doya (1996; 2000) the radial basis functions are
simply uniformly distributed among the input space and kept fixed during all the learning
process, i.e., just the (linear) output layer is adjusted by the learning algorithm. There-
fore, this algorithm does not adjust the network parameters of the hidden layers, which
is a complex and nonlinear task. Moreover, it requires a priory knowledge to setup the
neural units and in general wastes computational resources in unimportant regions of the
input space.

Another interesting approach to allow continuous states and actions in RL is the Lo-
cally Weighted Regression (LWR) algorithm proposed by Smart and Kaelbling (2000).
Although at a first glance LWR seems very promising, it has a strong drawback: it re-
quires that all data points received so far be stored and analyzed at each decision making
(i.e., it is a “lazy learning” algorithm). Thus, this algorithm is not suitable for on-line
robotic tasks, because in this kind of task the sensory data are very abundant, which
makes the algorithm very slow and requires large amount of memory to store all previous
data points. The neural network model proposed in this thesis, on the other hand, does
not require that any previous data be stored or revisited, i.e., each training data can be im-
mediately used and discarded. This makes the proposed model more suitable to be used
in on-line robotic tasks, specially when the learning process must occur perpetually (i.e.,
when there are no separate phases for learning and use). Next subsection describes how
IGMN can be used to select continuous actions in a RL algorithm.

6.4.2 Selecting the robot actions using IGMN

Implementing a reinforcement learning algorithm using IGMN can be straightforward
— we just need to use three cortical regions, V¥, N and N'Q, to represent the states, s,
actions, a, and the )(s, a) values, respectively. If the actions are discrete, then it is very
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easy to select the best action at each time — we just need to propagate the current state and
all possible actions in the corresponding cortical regions and select the action which has
the highest () value, i.e.:

a" = argmax|[Q(s, a)]. (6.2)

Moreover, the exploration x exploitation dilemma can be tackled using an action selection
mechanism such as softmax and e-greedy (SUTTON; BARTO, 1998). On the other hand,
if the actions are continuous, the action selection process becomes a general optimization
problem far from trivial (SMART, 2002).

In this thesis we propose a new strategy for selecting continuous actions in reinforce-
ment learning algorithms. This strategy consists in first propagating through the IGMN
network the current state, s, and the maximum value, ()., currently stored in the corre-
sponding Gaussian units, i.e.:

Qmax = IJ%?}\}((H]Q) (63)
Then the Q,,,. value is propagated through the cortical region N, the associative region
P is activated and the greedy action & is computed in the cortical region N'* using (4.10).

To tackle the exploration x exploitation dilemma, instead of simply choosing the
greedy action a at each moment we can randomly select the actions using the estimated
covariance matrix (A]ﬂ‘, 1.e., the actions can be randomly selected using a Gaussian dis-
tribution of mean & and covariance matrix C?. In the beginning of the learning process,
when M = 0, the initial action can be randomly chosen. The main advantage of this
action selection mechanism is that it enables high exploration rates in the beginning of
the learning process, when the Gaussian distributions are larger, and this exploration is
reduced as the confidence estimates become stronger. Moreover this mechanism does
not require any optimization technique (just the IGMN itself), which makes the proposed
RL algorithm very fast. Hence, this mechanism allows an exploration strategy based on
statistical principles which does not require ad-hoc parameters.

The following subsections describe two experiments performed to evaluate the pro-
posed model in reinforcement learning tasks using continuous states and actions: a pen-
dulum with limited torque and a robot soccer task in a simulated environment. The con-
figuration parameters used in these experiments are 6 =0.01 and &,,,,, =0.1. More details
about these experiments are found at Heinen and Engel (2010a; 2009a; 2009c).

6.4.3 Pendulum with limited torque

This experiment, also performed by Doya (1996; 2000) to evaluate the Doya’s contin-
uous actor-critic, consists in learning the control policy of a pendulum with limited torque
using reinforcement learning (Figure 6.12). The dynamics of the pendulum are given by
0 = wand mi2w = — pw + mglsin 6 + p (DOYA, 2000), where @ is the pendulum angle
and 6 is the angular velocity.

The physical parameters are mass m = 1, pendulum length [ = 1, gravity constant
g = 9.81, time step At = 0.02 and maximum torque 7},,,, = 5.0. The reward is given by
the height of the tip of the pendulum, R(x) = cosf, and the discount factor is v = 0.9.
Each episode starts from an initial state z(0) = (6(0), 0), where 6(0) is selected randomly
in [—m, 7]. An episode lasted for 20 seconds unless the pendulum is over-rotated (|0| >
57). These parameters are the same used by Doya (2000) in the continuous actor-critic.
Due to the stochastic nature of RL, this experiment was repeated 50 times using different
random seeds, and the average of the obtained results is shown in Figure 6.13(a).
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mg
Figure 6.12: Pendulum swing up task

In Figure 6.13(a) the x axis represents the learning episode, and the y axis represents
the time in which the pendulum stayed up (t,,)i.e., when |#| < m/4 (this is the same
evaluation criteria used by Doya (2000)). The thick line in Figure 6.13(a) represents the
mean and the thin lines represent the 95% confidence interval of the obtained results.
Comparing these results with those presented in Doya (2000), reproduced here in Fig-
ure 6.13(b), we can notice that the proposed model has a superior performance compared
to the Doya’s continuous actor-critic (specially in the first episodes), is more stable and
does not require any previous configuration of the Gaussian units. The average number
of probabilistic units added during learning is IGMN was 109.41.

I z,mlﬁ”l'lr‘l, Fu’m
| j l '- ]1 .

0 50 100 150 200 0 50 1.00 150 200
episode trials
(a) RL algorithm proposed in this thesis (b) Doya’s continuous actor-critic

Figure 6.13: Results obtained by IGMN in the pendulum swing up task

6.4.4 Robot soccer task

The next experiment, originally proposed in Asada et al. (1996; 2003), consists in
learning to shoot a ball into the goal of a simulated robot soccer environment. To perform
this experiment a robot soccer simulator was developed using the Open Dynamics Engine
(ODE)? physics simulation library. A previous version of this simulator, described in
Heinen and Osério (2007a; 2006b; 2006c), was used to evolve gaits of legged robots. The
simulated environment follows the rules of the RoboCup* Soccer Middle Size League.
The soccer field has 18 meters of length by 12 meters of width, the goal has 1 meter

30DE - http://www.ode.org
“RoboCup — http://www.robocup.org/
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of height and 2 meters of width, the goal posts have 12.5cm of diameter, and the ball
has 70cm of circumference and 450 grams of weight. Moreover, walls of 1 meter of
height were installed 1 meter apart from the field limits allowing the robot to perceive the
environment using sonar sensors.

The simulated robot is similar to the Pioneer 3-DX robot used in the previous exper-
iments. It has a box shape of 44.5cm of length, 39.3cm of width and 23.7cm of height.
Its weight is 9kg and it has two wheels with 19.53cm of diameter and differential kine-
matics. The time interval At used in the simulations is 0.05 seconds. More details about
this simulated environment can be found at Heinen and Engel (2009a; 2009c). The IGMN
network used in this experiment has two cortical regions, A’* and N The cortical region
N7 receives the values of the sonar readings, i.e., s = {s1, $2,..., Sg}, and the cortical
region " receives the speeds applied at the robot wheels at time ¢, i.e., v = {v;,v5}.
The reward function 7(¢) used in this experiment is:

r(t) = a(—dp(t)) + b(—dpy(t)) if dpy(t) >0
r(t) = 10 if dyy () < 0 (6.4)
r(t) = —10 if the ball exits the field

where d,(t) is the distance from the robot to the ball, and d,(¢) is the distance from the
ball to the goal in the time ¢. The parameters a = 1/4L and b = 2/L (where L is the
field length) are used to modulate the influence of the terms in the reward function. If the
ball hits the goal the episode ends with a reward r(¢) = 10 for a second, and if the ball
exits the field the episode ends with a reward r(t) = —10 for a second. Moreover, if the
simulation time exceeds t,,,, = 300 seconds the episode ends without any reward.

The learning process occurs in 1000 episodes. The robot starts an episode always in
the same position, but the ball is randomly positioned (but in the range view of the sonar
sensors). Thus, to obtain success in this task the robot needs: (i) to identify the ball using
just sensory information; (i1) to move in the direction of the ball; and (iii) to “shoot” (or to
lead) the ball into the goal without losing it. To evaluate the results two estimators were
used: (i) the distance of the ball to the goal at the end of the episode (zero when the ball
hits the goal) and (ii) the time required to the ball hit the goal (%,,,, in case of failing).
Due to the stochastic nature of the task the whole experiment was repeated 30 times using
different random numbers. Figure 6.14 shows the mean of the results obtained in these 30
replications of the experiment.
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Figure 6.14: Results obtained in the robot soccer experiment
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Observing the graph of Figure 6.14(a) it can be noticed that in the first episodes the
robot was not able to reach the ball (the variations are due to the random initial ball
position), but after the 100th episode the distances are strongly reduced. After the 750th
episode the mean distances had stabilized near 0.6 meters, which indicates that the robot
was able to lead the ball into the goal in great part of the episodes.

The graph of Figure 6.14(b), on the other hand, shows that the simulation time was
practically constant (near ¢,,,.) until the 80th episode, where it starts to reduce strongly
until the 200th episode. Beyond this point the time reduces more slowly and stabilizes
near 65 seconds after the 600th episode. These results show that the robot was able to
accomplish the task at the end of the training process, because 60 seconds is the minimum
time required to perform this task (i.e., to shoot a ball into the goal) using the simulation
conditions described above.

Figure 6.15 shows an example of robot trajectory during the task (a circle marks the
ball position in the first image of this figure). The number of probabilistic neurons added
by IGMN during the learning process was 138.32 in average, and the time required to
execute each experiment (i.e., to perform 1000 episodes) was approximately 2.5 hours.

Figure 6.15: Example of robot trajectory during the task

6.5 Feature-based mapping using IGMN

Map building is a fundamental problem in mobile robotics, in which a robot must
memorize the perceived objects and features, merging corresponding objects in consecu-
tive scans of the local environment (THRUN, 2002). There are several approaches to solve
the map building problem. Among those are occupancy grid and feature-based maps. The
occupancy grid maps are generated from stochastic estimates of the occupancy state of
an object in a given grid cell (THRUN; BURGARD; FOX, 2006). They are relatively
easy to construct and maintain, but in large environments the discretization errors, stor-
age space and time requirements become matters of concern. Feature-based maps, on the
other hand, model the environment by a set of geometric primitives such as lines, points
and arcs (MEYER; FILLIAT, 2003). Segment-based maps, which are the most common
type of feature-based maps, have been advocated as a way to reduce the dimensions of
the data structures storing the representation of the environment (AMIGONI; FONTANA;
GARIGIOLA, 2006). Its main advantage over occupancy grid maps is that line segments
can be represented with few variables, thus requiring less storage space. Moreover, line
segments are also easy to extract automatically from range data.
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However, segment-based maps are not able to give closed and connected regions like
occupancy grid maps because some objects do not provide line segments. Moreover, the
number of extracted line segments is very high if the environment is irregular (not com-
posed only by straight walls) and/or the range data is quite noisy. Another disadvantage of
segment-based maps is the absence of probabilistic information in the generated map (al-
though some researchers (GAS()S; MARTIN, 1997; IP et al., 2002) have used fuzzy sets
to deal with uncertainty in the mapping process). In fact, according to Thrun (2006), prob-
abilistic approaches are typically more robust in face of sensor limitations, sensor noise,
environment dynamics, and so on. Other localization and mapping techniques, such as
particle filters and potential fields, generally use grid maps to represent the environment,
and therefore have the same restrictions pointed out above.

This section presents a new feature-based mapping algorithm, published in Heinen
and Engel (2011; 2010c), which uses the IGMN probabilistic units to represent the fea-
tures perceived in the environment. This kind of representation, which is inherently prob-
abilistic, is more effective than segment-based maps because it has an arbitrary accuracy
(it does not require discretization) and can even model objects that do not provide line
segments. Moreover, the proposed mapping algorithm does not require an exclusive kind
of sensor (it can be used either with laser scanners or sonar sensors), requires low storage
space and is very fast, which allows it to be used in real time. The remainder of this
section is organized as follows: Subsection 6.5.1 describes some previous feature-based
mapping techniques; Subsection 6.5.2 describes how IGMN can be used to create feature-
based maps; and Subsection 6.5.3 describes some experiments performed to evaluate the
proposed mapping algorithm using sonar and laser range data.

6.5.1 Related work

In the last decade several feature-based mapping algorithms have been proposed to
solve the map building problem. In Zhang and Ghosh (2000) a segment-based mapping
algorithm is proposed that describes a line segment using the center of gravity of its points
and the direction 6 of its supporting line. This algorithm groups laser points in clusters,
and for each cluster, a line segment is generated. In Lee et al. (2005) a feature based
mapping algorithm is presented which uses an association model to extract lines, points
and arc features from sparse sonar data. In Puente et al. (2009) a mapping algorithm is
presented which uses a segmentation algorithm derived from computer vision techniques
to extract geometrical features from laser range data. In Latecki et al. (2004) a mapping
algorithm is proposed which represents the environment by polygonal curves (polylines).

In Amigoni, Fontana and Garigiola (2006) a method derived from the Lu and Milos’
algorithm (LU; MILIOS, 1998) is presented for building segment-based maps that contain
a small number of line segments. In Amigoni, Gasparini and Gini (2006) an algorithm
is proposed to build a global geometric map by integrating scans collected by laser range
scanners. This method, which considers scans as collections of line segments, works
without any knowledge about the robot pose. In Luo et al. (2008) an indoor localization
method based on segment-based maps is proposed. It works in four steps: clustering scan
data; feature extraction from laser data; line-based matching; and pose prediction. But
this method assumes that the environment map already exists, i.e., it neither creates nor
updates the map.

In Lorenzo et al. (2004) a method is proposed to solve the SLAM (Simultaneous Lo-
calization and Map Building) problem based on segments extracted from local occupancy
maps, in which line segments are categorized as new obstacle boundaries of a simultane-
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ously built global segment-based map or as prolongations of previously extracted bound-
aries. In Meyer-Delius and Burgard (2010) a point-based representation is described, in
which the data points gathered by the robot are directly used as a non-parametric repre-
sentation. To reduce the large memory requirements necessary to store all data points, an
off-line algorithm based on the fuzzy k-means is used to select the maximum-likelihood
subsets of data points.

As described above, the main limitation of all these feature-based mapping techniques
is the absence of probabilistic information in the generated map. To avoid this limitation,
Gasés et al. use fuzzy-segments to represent uncertainty in the feature positions (GASOS;
MARTIN, 1997; GASOS; ROSSETI, 1999). This model extracts segments from points
provided by sonar sensors, which are modeled on the map using fuzzy-sets. In the model
proposed by Ip et al. (2002), on the other hand, an adaptive fuzzy clustering algorithm is
used to extract and classify line segments in order to build a complete map for an unknown
environment.

Although these mapping techniques are able to create good representations in simple
environments composed by straight walls, most of them are not able to build the map in
real-time while the robot navigates in the environment (i.e., they are off-line solutions).
The mapping algorithm proposed in this subsection, on the other hand, is able to build
environment representations in real time and incrementally. Moreover, it is inherently
probabilistic and does not assume a specific environment structure. The next subsection
describes how IGMN can be used in a feature-based mapping algorithm.

6.5.2 Incremental feature-based mapping using IGMN

This subsection describes a geometric-based mapping algorithm which uses the IGMN
units (also called mixture model components) to represent the features (objects, walls, etc)
of the environment. Figure 6.16 shows the general architecture of the mapping algorithm.
It consists mainly of two IGMN’s, the local model, which represents the local perception
of the robot, and the global model, which represents the global environment map. Each
IGMN has two cortical regions, N* and N2, The cortical region N? tackles the val-
ues of the sensor readings and the cortical region N'? receives the odometric information
provided by the Pioneer 3-DX simulator.

Initially both models are empty. When a sensor reading arrives (which can be a laser
scan or a sonar reading) it is transformed into object locations on a global coordinate
system based on the robot position estimated by the dead reckoning system. These object
locations are grouped in clusters using the IGMN algorithm, thus composing the local
model. When a specified number N of sensor readings arrives (e.g., 10 laser scans or 100
sonar readings), the local model is matched against the global model. If the global model
is still empty, all local units are added to it and deleted from the local model. Otherwise the
robot pose is adjusted to minimize the differences between the local and global models
using the component matching process described in the next subsection. Both IGMN
models are then merged into the global model and the local model is emptied. When a
new sensor reading arrives, all these steps are repeated, and so the global model is updated
at each NV readings.

All this process occurs in real time at normal sensor arriving speeds (e.g., one laser
scan at each 100 milliseconds) even with more than 500 Gaussian units in the IGMN
models. In fact, the prototype was able to perform all these operations (including the
matching and merging processes) in less than 30 milliseconds on the same typical com-
puter described before. In relation to memory requirements, the proposed mapping algo-
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Figure 6.16: General architecture of the proposed mapping algorithm

rithm is very parsimonious, requiring just eight floating point numbers to store each two-
dimensional Gaussian distribution (D? + D + 2 floating-point variables, where D = 2 is
the dimension of the map).

6.5.2.1 Component matching

In the proposed mapping algorithm, the robot maintains knowledge about its pose
using data coming from odometry, which is an unreliable source of information (THRUN;
BURGARD:; FOX, 2006). In order to refine the estimated robot poses, the local model,
which represents the robot current view, is matched against the global model, and the
differences are used to adjust the estimated pose of the robot and the local units.

The matching process used here is inspired in the Lu and Milos’ algorithm (LU; MIL-
I10S, 1998) and works in the following way. Initially, all spurious components (i.e., those
units which represent few data points and/or noise) of the local model are excluded. A
unit 5 is considered spurious if its density is lower than a minimum value p,,;,. The den-
sity p; of a cluster j is computed using the following equation adapted from Gath and

Geva (1989): s
J

p. e A—
" (@emPry/IC]

where D is the dimensionality of the data points (2 for a two-dimensional map), C is the
variance/covariance matrix of the j unit, and sp; is the accumulator of the a posteriori
probabilities.

A low cluster density p; indicates that the cluster j represents few data points com-
pared to its size, which in our case may represent that j was generated by few and sparse
(possibly noisy) sensor readings. Moreover, if a cluster is almost parallel to the sensor
beam, i.e., the angles of the cluster main axis (computed using its eigenvectors) and the
sensor beam (the line segment linking the sensor to the center of the cluster) differ by less
than a user-specified parameter «,,;,, this cluster is also considered spurious because the
readings are not reliable.

(6.5)
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The next step in the proposed algorithm is to find equivalent components in both
models, i.e., those clusters corresponding to the same environment features. Two clusters
are considered equivalent if: (i) the difference between the cluster orientations is lower
than a user-specified parameter ,.,; (i1) the Mahalanobis distance between the center
p of each unit (computed using the covariance matrix C of the global model) is lower
than a user-specified parameter 7,,,,. Those global units invisible from the current robot
viewpoint (i.e., the orientation of the segment(s) linking the sensor(s) to the cluster is out
of range) are not considered here. The output of this process is a list containing the pairs
of equivalent Gaussian components in both models.

The new robot pose is computed using the Powell’s direction set method (POWELL,
1964; PRESS et al., 1992), in order to minimize the discrepancies £, among the equiva-
lent global g and local [ units, i.e.:

M
1
By = M Z(agi —ap)? + Do (tagiy pus) 6.6)
i=1

where M is the number of matching pairs and Dy, (-) is the Mahalanobis distance com-
puted using the covariance matrix of the global unit C,. The robot pose derived from the
odometry is used as an initial guess in the minimization process. In general the Powell’s
method converges fast if this initial guess is reasonable, which is the case here because
odometric information is reliable in short distances.

6.5.2.2 Component merging

In this procedure, the local components which are not spurious are inserted into the
global model, thus expanding it to reflect the new perceived environment features. This
insertion procedure occurs in two different steps. Initially the global clusters which have
equivalents in the local model (i.e., those that are present in the list of matching pairs
described previously) are updated using the following equations (DECLERCQ); PIATER,

2008):
* _ Spgug + Splul

6.7

g Spg + spy @7

o — spgCy + spiCy n SpgugugT + Py T Th (6.8)
g spg + sy Spg + spi o

Sp, = Spg + Spi 6.9)

where p, is the old mean vector of the global unit g and pj is the new mean vector
computed by (6.7) at time ¢. The local clusters that have no counterparts in the global
model (i.e., those that represent new environment features) are simply inserted into the
global model without modification. This also occurs in the beginning of the mapping
process (when the global model is empty).

After merging, all local units are removed from the local model and the prior proba-
bilities p of all global units are updated by:

5Dg
M
Zj:l SPj
where M is the current number of global units. This global model represents the en-
vironment using occupancy probabilities, i.e., for each (x,y) coordinate it is possible
to compute the probability that an obstacle (e.g., wall) is present in that location. Next

subsection describes several experiments performed to evaluate the performance of the
proposed mapping algorithm in robot mapping tasks.

L= (6.10)
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6.5.3 Experiments

This subsection describes some experiments performed to evaluate the proposed map-
ping algorithm using two kinds of sensory information: (i) data provided by a simulated
laser scanner; and (ii) data provided by sonar sensors. The robot used in these experiments
is a Pioneer 3-DX, shown in Figure 6.3 above. This robot has a Sick LMS-200 laser scan-
ner installed on it, which in ideal conditions is capable of measuring out to 80m over a
180°arc. Figure 6.17 shows the real environment used in the simulation. It is composed
by two long corridors of 2.3 x 30 meters linked by two short corridors of 2.3 x 10 meters,
as shown in the schematic map presented in Figure 6.17(c). This environment has several
irregularities (e.g. doors, saliences and printers) which difficult the mapping process.

o -

o — | ’
l -

(a) Long corridor (b) Short corridor
1 T '_I_I_I—l—,_l_l_l_Ll_l_l—
1 I_,_|_,—l_|_|_,_|_,_|_,_l_

(c) Schematic map of the environment

Figure 6.17: Environment used in the feature-based mapping experiments

The configuration parameters used in all experiments are: § = 0.1; ppin, = 107°;
Umin = 10°% ez = 10° and 7p,q, = 2 (the proposed algorithm is not sensible to
these parameters). The only configuration parameter that needs to be adjusted to each
experiment is the 7,,, € (0, 1] parameter, which in this case defines the granularity of
the model, i.e., small values (<< 0.01) produce few larger clusters, and larger values
(> 0.01) produce several little clusters. As in Section 6.1, here we decided to use the
Tnov Parameter instead of ¢,,,, because in these experiments the goal is to find natural
groupings (i.e., clusters) rather than function approximation. In the next subsections we
describe experiments performed using data provided by a simulated laser scanner and a
sonar range data.
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6.5.3.1 Experiments using simulated laser scanner data

This subsection describes two experiments performed using sensor data provided by
a simulated laser scanner that is equivalent to the Sick LMS-200 installed on the real
Pioneer 3-DX robot. In these experiments, the robot was manually controlled to perform
one loop in the simulated environment shown in Figure 6.17(c). A complete laser scan is
received at each 100 milliseconds, and the mapping process is performed at each second
(i.e., using 10 complete scans). The first experiment was conducted using 7,0, = 1078,
and this small value produced 9 large clusters, as can be seen in Figure 6.18.

Figure 6.18: Gaussian distributions generated using laser data (7,,,, = 10~%)

Figure 6.19: Occupancy probabilities of Figure 6.18 model

In this figure, each cluster is represented by an ellipse whose width is equivalent to a
Mahalanobis distance of two. The occupancy probabilities of this map are graphically
shown in Figure 6.19, where darker regions represent higher occupancy probabilities
(close to 1) and lighter regions correspond to probabilities close to 0. It is important
to highlight that the proposed mapping algorithm does not have any random initialization
and/or decision, and thus the obtained results are always identical for the same dataset
and configuration parameters.

The next experiment was performed using the same conditions described above, but
using a larger 7,,,, = 1072 value which makes the system more sensible to small variations
in the laser data. The results obtained in this experiment are shown in Figures 6.20 and
6.21. It can be noticed from Figure 6.20 that much more clusters were generated in this
experiment (76 Gaussian components were generated). Nevertheless, these clusters fit
very well the environment features, existing almost one cluster for each feature (doors
entrances, saliences in the walls, etc.). Moreover, each wall is modeled by a thin, long
cluster which closely represents the center of the wall.
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Figure 6.21: Occupancy probabilities of Figure 6.20 model

These experiments show that the proposed mapping algorithm is able to create useful
representations of the environment, and these representations can be coarse (Figure 6.18)
or fine (Figure 6.20) depending on the 7,,,, configuration value. Although these experi-
ments were performed using high quality simulated laser range data, the proposed map-
ping algorithm is not restricted to this kind of sensory data. In the next subsection we
describe an experiment performed using this same environment, but with data provided
by real sonar sensors, which are less accurate and noisier than laser scanners.

6.5.3.2 Experiments using real sonar data

In these experiments, the proposed mapping algorithm is evaluated using data pro-
vided by the sonar sensor array of the real Pioneer 3-DX robot. The time interval of each
scan is 100 milliseconds, and the local model is generated using 100 complete scans (i.e.,
at each 10 seconds). Figure 6.22 shows the global model generated after one loop in the
environment, and Figure 6.23 illustrates the occupancy probabilities of this map, where
darker regions represents higher probabilities. The configuration parameters used in this
experiment are the same of the previous one (i.e., Tpo, = 1072).

We can notice that even with many noise sources present in the environment, the
proposed mapping algorithm was able to create a reasonable map of the environment
using these very noisy sensory data. The results obtained in Figure 6.22 show that the
proposed mapping algorithm does not require just laser scanner sensors, but of course the
quality of the maps is superior when high quality sensor data is used.

Although in this experiment more Gaussian distributions were generated (216), this is
yet a small number compared to the number of cells necessary to map this environment
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Figure 6.22: Distributions generated using sonar sensors (7,,,, = 1072)
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Figure 6.23: Occupancy probabilities of Figure 6.22 model

using grid-based mapping techniques. In fact, to obtain a similar performance using a
occupancy grid maps it would be necessary a large number of cells. To demonstrate
this, Figure 6.24 shows a grid map generated using the same real data that generated the
map presented in Figure 6.23, i.e., the real sensor readings adjusted using the matching
technique proposed in this paper. Each cell in Figure 6.24 represent an area of 20 x 20
centimeters, and 200 x 80 = 16000 were necessary to represent this map. It can be
noticed in Figure 6.24 that even using 16000 cells the map resolution is inferior than

that presented in Figure 6.23. Moreover, the number and size of the grid cells must be
previously informed and kept fixed.

Figure 6.24: Grid map generated using the same data of Figure 6.24
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A interesting characteristic of the mapping algorithm proposed here is that the occu-
pancy probabilities of the unvisited regions are near zero, whilst using a grid-based map
these regions will have occupancy probabilities near to 50%. This characteristic is a natu-
ral consequence of representing just the occupied regions in the environment map, and is
also shared by other kinds of feature-based maps such as segment-based maps. However,
this characteristic is very useful because it encourage the exploration of unvisited regions.
In fact, if a region has an occupancy probability near zero the robot will try to navigate
through this region, and then it finds out the actual structure of this region and the map will
be improved and/or expanded. Hence, this characteristic allows an exploration strategy
that follows the Autotelic principle (STEELS, 2004), which states that an agent must be
self-motivated for learning and improving its skills. Moreover, this strategy is not based
on ad-hoc choices nor configuration parameters.

6.5.3.3 Complex simulated environments

The next experiment was performed using the Pioneer 3-DX simulator software AR-
COS (Advanced Robot Control & Operations Software) and the “AMROffice.map” envi-
ronment (Figure 6.25), a complex map generated using real data and distributed with the
robot simulator. The time interval of each scan is 100 milliseconds, and the local mixture
model is generated using 100 complete scans.

Figure 6.25: AMROffice environment

Figure 6.26(a) shows the map generated in the first experiment. The number of Gaus-
sian mixtures generated in the global model was 364, which is a small value compared
to the number of cells necessary to map this environment using grid-based mapping tech-
niques. The occupancy probabilities of this map are graphically shown in Figure 6.26(b),
where darker regions represent higher occupancy probabilities (close to 1) and lighter
regions correspond to probabilities close to 0.
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(a) Generated map (b) Occupancy probabilities

Figure 6.26: Results obtained in the AMROffice environment

The proposed model has also obtained good results in the irregular environment pre-
sented in Figure 6.9, as shows Figure 6.27. We can notice in Figure 6.27 that the Gaussian
distributions are perfectly aligned with the external wall of the environment. In this figure
we have represented the map using rectangles rather than ellipses to better visualize the
alignment of the Gaussian units with the modeled structures. Moreover, we can see in

Figure 6.27: Map generated in an irregular environment

Figure 6.28, which shows the occupancy probabilities by ellipses, that the internal objects
were modeled using larger distributions. This occurs because the perception of the robot
is occluded in some parts of the environment, which prevents the mapping algorithm to
accurately represent the internal faces of some objects (the trajectory followed by the
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robot is that shown by the solid gray line in Figure 6.9). Nevertheless, we can notice that
the generated map is quite good, because it represents the irregular environment in a very
parsimonious and effective way.
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Figure 6.28: Occupancy probabilities of the irregular environment

This chapter has presented several experiments in which IGMN was used in real time
robotic applications and related tasks. Through these experiments we can notice that
IGMN is very suitable for those tasks, and its efficient learning algorithm and representa-
tional power can expand the set of potential applications of neural networks. Next section
presents the final conclusions of this thesis.
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7 CONCLUSION AND FUTURE WORK

This monograph has presented IGMN, a new connectionist approach for incremen-
tal function approximation and on-line prediction, that is the main contribution of this
thesis. IGMN is inspired on recent theories about the brain, specially the Memory-Pre-
diction Framework (MPF) (HAWKINS, 2005) and the constructivist artificial intelligence
(DRESCHER, 1991), which endows it with some unique features that are not present in
other ANN models such as MLP, RBF and GRNN. More specifically in IGMN we don’t
use the words input and output to represent the data features of a training sample such as
z = {a, b}, for instance. Instead, we consider that the data vectors a and b are different
sensory and/or motor modalities with distinct domains, and one modality (e.g. a) can be
used to estimate another (e.g. b). Moreover, IGMN is based on strong statistical princi-
ples (Gaussian mixture models) and asymptotically converges to the optimal regression
surface as more training data arrive.

To validate the proposed model, several experiments were performed using synthetic
data (e.g., sinusoid datasets) and these experiments have demonstrated that: (i) IGMN
learns incrementally using a single scan over the training data; (ii) It does not require to
fine tune its configuration parameters (in fact just a single and easy to adjust configuration
parameter must be set); (ii1) IGMN is relatively robust to the order of presentation of
data; (iv) the proposed model can provide the confidence levels of its estimates; and (v)
the IGMN performance is comparable to those of other ANN models (e.g., MLP, RBE,
GRNN) but without requiring that the training data set be complete and available at the
beginning of the learning process.

IGMN was also tested in practical applications such as: (i) the identification of a
nonlinear plant; (ii) time series prediction; (iii) concept formation; (iv) reinforcement
learning; and (iv) robotic mapping and control, and these experiments have shown that
IGMN can be used successfully in applications that require incremental learning and/or
real time performance. More specifically, the performed experiments have demonstrated
that IGMN has the following advantages over the existing connectionist approaches:

The IGMN learning algorithm is very aggressive. As said before, IGMN learns in-
crementally using a single scan over the training data, i.e., each training pattern can be
immediately used and discarded. Moreover, IGMN can produce reasonable estimates
based on few training data, and these estimates are improved as new training data arrive.

The learning process can proceed perpetually. Unlike other ANN models, IGMN does
not require separate phases for learning and recalling, i.e., the learning process can pro-
ceed perpetually without suffering from catastrophic interference. Hence, the proposed
model can always improve its performance as new data arrive and consequently the neural
network can adapt itself to changes in the environment.
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IGMN is relatively robust to overfitting. As occurs in GRNN, the equations used to
compute the estimates are relatively robust to overfitting. In fact, even if a Gaussian unit
is added for each training pattern the computed approximation will not be significantly
affected by the noise (specially if we consider a white noise), because the estimate will
be a soft interpolation weighted by the a posteriori probabilities. Moreover the estimates
are not affected by infrequent extreme values because these values have low a posteriori
probabilities.

It is not required to fine-tune the configuration parameters. In IGMN just the maxi-
mum instantaneous approximation error €,,,,, must be adjusted for each training data set,
but this configuration parameter is easy to set because in general we know the maximum
error allowed in a given task, specially if this error is normalized.

The proposed model does not depend on the initial conditions. Unlike other ANN
models such as MLP and SOM, IGMN does not use any random initialization and/or
decision, and hence the obtained results are always identical for the same data set and
configuration. Thus, using IGMN we do not repeat an experiment several times using
different random initializations.

IGMN is not is susceptible to local minima. The IGMN learning algorithm is not based
on error minimization nor gradient descent, and thus it does not seek for a minimum in
the error surface. Instead, the IGMN learning algorithm finds out correlations among
different stimuli and uses these correlations to compute the estimate of a sensory/motor
stimulus.

The neural network topology is defined automatically and incrementally. IGMN
starts with a single neuron in each region and more neurons are added whenever nec-
essary based on an error driven mechanism. Thus, in the proposed model the user does
not have to manually configure the neural network topology and this topology does not
have to be fixed.

IGMN can handle the stability-plasticity dilemma. As described before, in IGMN an
error driven mechanism is used to decide if a new unit must be added to accommodate a
new information or if we just need to adjust the existing units. Therefore IGMN is stable
because it preserves the acquired knowledge in the existing units and is plastic because
it creates new units to accommodate new information without forgetting the previous
experience.

It does not suffer from catastrophic interference. IGMN does not suffer from catas-
trophic interference because the acquired knowledge is local, i.e., the changes in the ANN
parameters are restricted to a specific region of the state-space.

The proposed neural network model is robust to the order of presentation of data.
As demonstrated in Section 5.1, IGMN can produce good estimates if the training data
is presented both in order or shuffled. Thus, the proposed model can be used in on-line
systems, where the training data is received in a specific order, or in systems where the
data is received completely shuffled (e.g., off-line systems) as well.

IGMN uses a probabilistic framework. IGMN is based on a probabilistic framework
(Gaussian mixture models), and as occurs in GRNN, it approximates the optimal Bayesian
decision using the available training data. In other words, IGMN produces the maximum
a posteriori hypothesis computed over the data received to the moment, and thus its esti-
mates can be consider as statistically optima.
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The proposed model creates useful internal representations. The representations cre-
ated in the cortical regions of IGMN correspond to natural groupings (i.e. clusters) of the
state space that can be interpreted by a human specialist. Hence, IGMN is not a black box,
1.e., we can interpret and justify the decisions taken by the neural network by analyzing
the posterior probabilities computed at each node of the neural network.

IGMN can provide the confidence level of its estimates. IGMN can inform not just
a punctual estimate (i.e., the expected value) of a sensory/motor stimulus but also the
variance/covariance of this estimate. Therefore IGMN can inform the confidence levels
of its estimates, thus allowing us to take better decisions based on the confidence intervals
rather than on a single punctual estimate.

The proposed model can be used in supervised, unsupervised or reinforcement learn-
ing tasks. As demonstrated through several experiments, IGMN can be used in both su-
pervised and unsupervised learning tasks. Moreover, IGMN can also be used as a function
approximator in reinforcement learning tasks.

Bidirectional information flow. Unlike most ANN models, in IGMN the information
flow is not unidirectional from input to output, i.e., the same partially trained neural net-
work (as IGMN can learn continuously we never consider that the training process has
finished) can be used to estimate the values of a function f(-) and its corresponding in-
verse f(-)7L.

IGMN can solve forward and inverse problems. As said in Section 4.4, in many po-
tential applications of neural networks there is a well-defined forward problem which is
characterized by a functional (i.e. single-valued) mapping, but the corresponding inverse
problem is multi-valued (BISHOP, 1995). Although traditional ANN models (e.g., MLP,
RBF and GRNN) cannot be used in multi-valued problems, IGMN can provide valid an-
swers even in regions of the state-space where the target data are multi-valued.

The proposed model has good computational performance. Although IGMN requires
inverting many covariance matrices at each time, we can reduce the computational com-
plexity of the neural network by using separate cortical regions for each sensory/motor
modality. Thus IGMN can have good computational performance, which allows its use in
real time and critical control applications.

Based on the advantages described above we can note that the main objectives of this
thesis were achieved, i.e., we were able to develop a new connectionist approach for in-
cremental function approximation that learns from data flows. In fact the proposed model
can be used successfully in many potential applications such as incremental regression,
on-line prediction, system identification, time series prediction, concept formation and
robotic tasks. Moreover, the performed experiments have shown that the efficiency of
IGMN and its representational power can expand the set of potential tasks in which the
neural networks can be applied, thus opening new research directions in which important
contributions can be made, as will be described in the next section.

7.1 Future work

There are many research directions in which this work can be continued and/or used to
improve the results obtained by other connectionist approaches. Some of these research
directions in which it is possible to obtain important contributions are:
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e Hierarchic representation: The proposed model can be expanded to create hierar-
chies of Gaussian units in a similar way to those proposed in the memory prediction
framework (MPF) (HAWKINS, 2005; HAWKINS; DILEEP, 2006; PINTO, 2009);

e Hierarchical reinforcement learning: The RL algorithm proposed in Section 6.4
can be modified into a hierarchical RL algorithm (BARTO; MAHADEVAN, 2003;
MOERMAN, 2009), thus improving the learning performance by dividing the com-
plete state space in subregions;

o Time series prediction: IGMN can be used to predict more complex, chaotic and
cyclic time series;

o The inverse kinematics problem: to use IGMN for computing the inverse kinematics
of more complex robotic arms composed by many joints and with six degrees of
freedom;

o Simultaneous localization and mapping (SLAM): The feature-based mapping algo-
rithm presented in Section 6.5 can be expanded to a SLAM solution by using IGMN
to predict the robot’s position as it navigates through the environment;

e Multi-hypothesis tracking: IGMN can implement a global localization mechanism
(FILLIAT; MEYER, 2003) that allows the robot to recover its position even from
the kidnapped robot problem (THRUN; BURGARD; FOX, 2006).

e Autotelic exploration: to implement an exploration algorithm based on the Au-
totelic principle (STEELS, 2004) that self-motivates the robot to explore new re-
gions and/or to develop new skills;

o Attentional mode neural network: IGMN can be combined with the attentional
mode neural network (AMNN) (ENGEL, 1996) in order to improve both models
and to obtain more stable results in control tasks (currently AMNN learns faster
than RL (SUTTON; BARTO, 1998), but it suffers from catastrophic interference);

e Classification: although in this thesis we are interested just in regression, IGMN
can be easily adapted to be used in supervised classification tasks.

Hence we can notice that there are many improvements that can be made over the
work presented in this thesis, and hence we can affirm that IGMN is a very useful machine
learning tool that expands the horizon of tasks in which the artificial neural networks can
be used successfully and efficiently.
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APPENDIX — PRINCIPAIS CONTRIBUICOES DA TESE

Esta monografia apresenta o IGMN, uma nova abordagem conexionista para aproxi-
macao incremental de funcdes e previsdo em tempo real. O IGMN € inspirado em teorias
recentes do cérebro, especialmente o MPF (do inglés Memory-Prediction Framework)
(HAWKINS, 2005) e a Inteligéncia Artificial Construtivista (DRESCHER, 1991), e es-
tas teorias conferem ao IGMN algumas caracteristicas especiais que ndo estao presentes
na maioria dos modelos de redes neurais existentes. Além disso, o IGMN é baseado
em fortes principios estatisticos (modelos de mistura gaussianos) e assintoticamente con-
verge para a superficie de regressao 6tima a medida que os dados de treinamento chegam.
Através de diversos experimentos, realizados utilizando dados reais e sintéticos, € de-
monstrado nesta tese que o IGMN pode ser utilizado com sucesso em diversas aplicagdes
potenciais que requerem aprendizado incremental e/ou desempenho em tempo real. Além
disso, esses experimentos demonstraram que o IGMN possui diversas vantagens em rela-
cdo a maioria das abordagens conexionistas existentes, como por exemplo:

O IGMN aprende de forma bastante agressiva. A rede neural proposta nesta tese
aprende incrementalmente utilizando apenas uma passada (€poca) sobre os dados de trei-
namento, ou seja, cada dado pode ser imediatamente utilizado e descartado. Além disso,
O IGMN produz estimativas razoaveis baseadas em poucos dados de treinamento, e estas
estimativas sdo aprimoradas a medida que novos dados chegam.

O processo de aprendizagem prossegue continuamente. Diferentemente de outros mo-
delos neurais, o IGMN nio requer fases distintas para o aprendizado e a utilizagdo, ou
seja, o aprendizado pode prosseguir de forma continua e perpétua. Em outras palavras, o
IGMN pode sempre melhorar seu desempenho a medida que novos dados chegam, o que
permite a rede neural se adaptar as mudancas do ambiente.

O modelo proposto é relativamente robusto ao overfitting. Diferentemente do que
ocorre a maioria dos modelos de redes neurais, no IGMN as equacdes utilizadas no
calculo das estimativas sdo relativamente robustas ao problema de overfitting. De fato,
mesmo se um neurdnio for adicionado para cada dado de treinamento (como ocorre no
GRNN (SPECHT, 1991)) a aproximag¢ao da funcdo alvo ndo serd afetada de forma sig-
nificativa pelo ruido presente nos dados (principalmente se o ruido for branco) ou por
valores extremos e infrequentes. Isto ocorre porque as estimativas calculadas pelo IGMN
correspondem a uma interpolacdo suave, isto €, a resposta produzida pela rede neural
¢ equivalente a média das ativacdes de cada um dos neurdnios ponderada pelas proba-
bilidades a posteriori, o que faz com que o ruido branco (que possui média zero) e os
valores raros e infrequentes (que possuem baixas probabilidades a posteriori) nao afetem
os resultados de forma significativa.
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Nao € necessario ajustar os parametros de configuracao de forma fina. Apesar do
IGMN ter diversos parametros de configuragdo, apenas um Unico parametro, o erro ma-
ximo de aproximag¢do normalizado (&,,,,), precisa ser realmente ajustado de acordo com
as caracteristicas do dados e do problema em questdo. Além disso, este pardmetro € re-
lativamente f4cil de configurar porque em geral o erro maximo permitido em uma dada
tarefa é geralmente conhecido, principalmente se este erro for normalizado.

O modelo proposto nao depende das condicoes de inicializacdo. Diferentemente de
outros modelos neurais, o IGMN nio possui nenhuma inicializa¢ao e/ou decisdo aleatoria,
e consequentemente os resultados produzidos serdo sempre idénticos para uma mesma
mesma base de dados e configuracdo. Assim para se obter resultados estatisticamente
validos ndo € necessario que o mesmo experimento seja repetido diversas vezes utilizando
diferentes nimeros aleatorios.

O IGMN nao é suscetivel a minimos locais. O algoritmo de aprendizado utilizado pelo
IGMN nao € baseado na minimizagdo iterativa do erro de predicdo nem na descida do
gradiente, e assim este algoritmo ndo realiza uma busca por um minimo na superficie de
erro. Ao invés disso, o IGMN aprende instantaneamente as correlagdes entre diferentes
estimulos sensoriais e motores, e estas correlacdes sdo utilizadas para a estimacdo de um
determinado estimulo baseado nos demais estimulos.

A topologia da rede é definida de forma automatica e incremental. No inicio do
aprendizado o IGMN possui apenas um neurdnio em cada regido cortical e associativa,
e outros neurdnios sdo adicionados quando necessdrio de acordo com o erro instantaneo
maximo de predi¢do. Portanto o usudrio nao precisa configurar manualmente a topologia
do IGMN. Além disso, esta topologia ndo precisa ser mantida fixa durante processo de
aprendizado.

O IGMN resolve o dilema da estabilidade-plasticidade. O IGMN possui um meca-
nismo, inspirado na teoria da Inteligéncia Artificial Construtivista (DRESCHER, 1991),
que decide se novos neurdnios precisam ser adicionados para acomodar uma nova infor-
magdo ou se apenas uma pequena mudanca nos neurdnios existentes € suficiente para que
a rede neural assimile uma nova informag¢do. Assim o IGMN ¢ estavel porque consegue
preservar os conhecimentos adquiridos nas unidades existentes, e € plastico porque aloca
sempre que necessario novas unidades para acomodar as informag¢des que nao podem ser
explicadas de forma satisfatdria pelos esquemas existentes.

O modelo proposto nao sofre de interferéncia catastréfica. No IGMN o conhecimento
¢ adquirido de forma local, e assim novas informagdes afetam somente poucos neurdnios,
ou seja, apenas as unidades responsdveis pelo conhecimento de uma determinada regidao
do espaco de estados s@o afetas pelos dados correntes. Além disso, a assimilagdo dos
dados correntes é limitada porque se estes diferirem de forma significativa dos esquemas
existentes novas unidades serdo criadas para acomodar um novo “contexto”.

A ordem de apresentacio dos dados nao afeta de forma significativa os resultados.
Através de diversos experimentos realizados utilizando o modelo proposto (Secao 5.1)
¢ demonstrado que o IGMN produz estimativas razodveis da fun¢do alvo independente
da ordem em que os dados sdo apresentados. Ou seja, o IGMN pode ser utilizado tanto
em sistemas on-line, onde os dados geralmente chegam de forma ordenada, quanto em
sistemas off-line, onde os dados podem chegar de forma nio ordenada e randomica.

O modelo proposto é inerentemente probabilistico. Como foi dito anteriormente, o
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IGMN ¢ baseado em um framework probabilistico (modelos de mistura gaussianos) e
aproxima assintoticamente a superficie de decisao bayesiana 6tima. Em outras palavras,
o IGMN fornece a hipétese de maxima verossimilhanca em fun¢ao dos dados recebidos
até o momento, e essa hipdtese € melhorada a medida que novos dados chegam. Assim
as estimativas fornecidas pelo IGMN podem ser consideradas 6timas do ponto de vista
estatistico, pois refletem a melhor “decisao” que se pode tomar baseada nos dados dispo-
niveis.

As representacoes internas criadas pelo IGMN sao bastante tteis. Diferente do que
acontece com outros modelos neurais (especialmente as redes MLP), as representagdes in-
ternas, criadas nas regides associativa e corticais, correspondem a agrupamentos naturais
(clusters) do espacgo de estados que podem ser facilmente interpretadas por um especia-
lista da drea. Assim o IGMN ndo € uma ‘“caixa preta”, ou seja, as respostas produzidas
pela rede neural podem ser interpretadas e justificadas através da andlise das probabilida-
des calculadas em cada nodo da rede neural.

O IGMN fornece o nivel de confianca de suas estimativas. O IGMN fornece nio apenas
uma estimativa pontual (o valor esperado) de um determinado estimulo sensdrio-motor,
mas também a distribuicdo probabilistica (varincia e covariancia) desta estimativa. Em
outras palavras, o IGMN fornece o nivel de confianga de suas estimativas, 0 que per-
mite que melhores decisdes baseadas no nivel o de confianca dessas estimativas, sejam
tomadas.

O modelo proposto pode ser utilizado em tarefas de aprendizado supervisionado,
nao-supervisionado e por reforco. Através de diversos experimentos, descritos nos
Capitulos 5 e 6, é demonstrado que o IGMN ¢ bastante util em tarefas de aprendizado
supervisionado (aproximacdo de fung¢des, identificacdo de sistemas e predicao de séries
temporais) e ndo supervisionado (categorizacdo, formagdo incremental de conceitos e
mapeamento robdtico). Além disso, o IGMN também pode ser utilizado como um apro-
ximador de funcdes em tarefas de aprendizado por reforco.

O fluxo de informacoes é bidirecional. Diferentemente da maioria dos modelos neurais
existentes, no IGMN o fluxo de informacdes nao € unidirecional da camada de entrada até
a camada de saida. Ao invés disso o IGMN possui diversas regides corticais, € 0 estimulo
recebido em determinadas regides corticais pode ser utilizado para estimar os valores dos
demais estimulos. Desta forma uma mesma rede neural parcialmente treinada (como o
IGMN aprende continuamente nunca se considera que a rede neural estd completamente
treinada) pode ser utilizada para estimar os valores de uma determinada funcéo alvo, f(+),
bem como os valores de sua respectiva inversa, f(-) !

O modelo proposto pode ser utilizado para resolver problemas diretos e inversos. De
acordo com Bishop (1995), em muitas aplicacdes potenciais de redes neurais existe um
problema direto (forward) bem definido que € caracterizado por um mapeamento funci-
onal (uni-valorado), mas o problema inverso correspondente possuiu multiplas solucdes
validas. Embora a maioria das redes neurais existentes (MLP, RBF, GRNN e ARTMAP,
por exemplo) ndo fornega boas estimativas em regides do espago de estados onde a fun-
¢do alvo possui multiplas solugdes (ou seja, a fungdo alvo ndo é uma funcio), o IGMN
¢ capaz de produzir respostas vélidas mesmo nas regides do espago de estados que pos-
suem multiplas solucdes. Neste caso as estimativas fornecidas pelo IGMN correspondem
a hipdtese de maxima verossimilhanga, ou seja, as respostas fornecidas se encontram no
ramo (branch) associado com a maior probabilidade de massa.
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O IGMN possui uma boa performance computacional. Embora o célculo da fun¢do de
densidade de probabilidade (pdf) requeira a inversdo de diversas matrizes de covariancia
a cada interacdo, a performance computacional do IGMN ¢é melhor do que a de um mo-
delo de mistura gaussiano equivalente porque diferentes estimulos sensério/motores sao
processados em regides corticais distintas, e assim as matrizes de covariancia C sdo que-
bradas em matrizes de covaridncia menores associadas a cada estimulo sensério/motor.
Além disso, em problemas de grande dimensionalidade o nimero de regides corticais
pode ser aumentado de forma a reduzir ainda mais o tamanho das respectivas matrizes, o
que torna possivel estabelecer um compromisso entre precisao e performance computaci-
onal, o que € bastante util em aplicacdes de tempo real.

Baseado nos resultados descritos acima é possivel afirmar que os objetivos desta tese
foram atingidos, ou seja, foi possivel propor, implementar e validar uma nova abordagem
conexionista para a aproximag¢do incremental de fungdes e predi¢do em tempo real. De
fato, o modelo proposto pode ser utilizado com sucesso em diversas aplicagdes potenciais,
como por exemplo regressao on-line, identificacao de sistemas, predi¢dao de séries tempo-
rais, formacgdo de conceitos, controle inteligente € mapeamento robdtico. Além disso, os
experimentos realizados demonstram que o poder de representacdo do IGMN, aliado ao
seu algoritmo de aprendizado eficiente, permite que se expanda o horizonte de aplicacdes
nas quais as redes neurais podem ser utilizadas com sucesso, abrindo assim novas dire-
coes de pesquisa nas quais importantes contribui¢des do estado da arte podem vir a ser
feitas.



