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Abstract: Nowadays many advanced control tools are available to improve industrial processes (e. g. virtual analyzers, state 
estimators, predictive and multivariable controllers, etc.). Particularly, state estimation techniques have a long development 
history focused mainly to supply the lack of system measurements. Between the applications enclosed by state estimators we 
can highlight: more detailed process monitoring, mathematical model fitting and update, transient data reconciliation and 
feedback control. Although state estimators have been successfully used in many chemical processes, only few works report the 
application of this tool in bioprocesses. In this paper we evaluate the applications of three state estimation techniques in a 
biorrector: Extended Kalman Filter (EKF), Constrained Extended Kalman Filter (CEKF) and Moving Horizon Estimator 
(MHE). As benchmark case study we have chosen the continuous glucose fermentation with Zymomonas mobilis bacteria to 
produce ethanol. Our results clearly show the relevance of state estimators as a tool to improve the bioprocesses operation.   

Keyword: ethanol, nonlinear dynamic behavior, observability analysis, state estimation, bioreactor control. 

 

1. Introduction 

The biotechnology has an old role in the humanity 
history. Its first known applications were in simple 
empirical fermentations to produce nutritious products as 
wine and bread. Other applications arise during the human 
evolution and close to the end of XIX century end appear 
the industrial fermentation to synthesize ethanol and lactic 
acid (NAJAFPOUR, 2007). Maybe the revolutionary mark 
in biotechnology had been the penicillin discovered by 
Alexander Flemming in the 20’s decade. With the 
penicillin was possible to produce antibiotics to combat 
pathogenic microorganisms. Even so bigger industrial 
motivation with biotechnology comes with the world wars. 
The wars pushed on some countries as England, United 
States and Germany to begin large scale production of 
antibiotics, glycerol, acetone, etc (STANBURY, 1995). 
After this, advances in chemical DNA synthesis and in 
genetic manipulations originate the genetic engineering 
that made possible the molecular hybridization of live 
organisms. Actually the biotechnology is in constant 
development, and this development depends more and 
more of the biological, chemical and engineering 
conjunction (DORAN, 1995).   

According to Alford (2006), improvements to 

bioprocess productivity generally come from two sources: 
cell lines and process control. Historically, the most profit 
way to obtain productive increase, in a bioprocess plant, is 
linked to the fermentative process strain evolution 
(AYNSLEY et al., 1993). However, the last decades 
reveal significant advances in the control process area for 
to reduce production costs, conversion reaction increment, 
and maintains the product quality (RANI & RAO, 1999). 
This alternative comes to possibility that the plant be 
conducted to the optimum conditions for a supervisory 
system, and this system can be viewed as an experience 
operator managing the plant (BAKHTADZE, 2004). This 
mean furnishing the right concentration of nutrients to the 
culture (e.g. nitrogen, oxygen, phosphorous, sulfur), 
removing toxic metabolic products (e.g. CO2), and 
controlling important internal cellular parameters (e.g. 
temperature, pH) (ALFORD, 2006). To reach this goal is 
necessary to feedback information from the process to a 
control system approach in real time. Some variables as 
temperature, pH, pO2, agitation, foam level and flow rate 
are relatively easy to measure in real time. However, some 
essential variables (e.g. substrate, biomass and product 
concentration) that indicate the fermentation state are not 
direct on line measure due to the lack of satisfactory 
measuring devices (GADKAR et al., 2005). A method to 
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solve the real time quantify difficult problem consist in 
estimation techniques (GONZALEZ, 1999).  

Of the nonlinear state estimators, the EKF has 
received the most attention due to its relative simplicity 
and low computational effort, demonstrating effectiveness 
in handling some nonlinear problems. Neverthless, it can 
give unreliable estimates if the system presents a high 
nonlinearity degree and has states subject to hard 
constraints (e.g. nonnegative concentrations or pressures). 
Due to the development of effective solvers for nonlinear 
optimization problems, optimization-based state 
estimators, such as the MHE and the CEKF, simpler and 
computationally less demanding, has become an interesting 
alternative to common approaches such as EKF due to the 
possibility to consider states physical constraints into an 
optimization problem (GESTHUISEN et al., 2001). 
However, due to the higher mathematical complexity 
introduced by nonlinearity and the higher computational 
effort, optimal nonlinear state estimation techniques are 
generally not used in practice. Figure 1 shows a state 
estimator idea, where x, u and y represents the states, inputs 
and outputs, respectively.  

   

 
Figure 1. Generic state estimator. 

 
In this paper we address the state estimation 

techniques focused on bioprocesses. The second section 
deals with the state estimator applications. The EKF, 
CEKF and MHE formulations are invetigated in Section 3. 
Section 4 is concerned with the computational methods 
required in this work. A motivating case study of a 
Zymomonas mobilis continuous fermentation is presented 
in Section 5. Section 6 shows the results of the state 
estimators applied to our example. Finally the conclusions 
are discussed in Section 7. 

  

2. Applicability of State Estimators 

2.1. Virtual Analyser & Feedback Control 

Process monitoring and control require real-time 
information on the state variables of a process to ensure 
proper operation of the plant (ENGELL, 2006). To 
calculate control actions the controller require to feedback 
key process variables, such as product and biomass 
concentration or indices as growing rate. Measurements of 
these indices are rarely available on-line and are usually 
obtained by laboratory sample analyses. These laboratory 
measurements are available infrequently with substantial 
time delays between sampling times. Thus, these 
measurements must be estimated or inferred to be valid to 
control design. State estimation techniques can be used to 
implement a state-feedback control. This functionality 
enables the robust operation of the control system at 
various sample rates of plant-product quality 
measurements. 

 

2.2. Parameters fitting and update 

A suitable design of state estimators requires a 
representative model for capturing the plant behavior. 
State estimation theory can be use also to estimate 
unknown parameters of a model to improve its fidelity. In 
this case, the state vector must be augmented with the 
constant parameter vector (SIMON, 2006). Differential 
equations for the estimated parameters must be added to 
the model. As it is assumed that parameters are constants, 
the right side of corresponding differential equations is 
zero. Another way to estimate parameters via state 
estimation requires a dynamic model for each of unknown 
parameters to be estimated such as “random walk” and 
“random ramp”. Once appropriate parameter models are 
chosen, a state estimator is used to estimate the process 
parameters that appear as a subset of the state variables of 
the combined process and parameter models. This method 
has been used widely in chemical and biological 
engineering (SOROUSH, 1998). 

2.3. Transient Data Reconciliation 

Poor measurements can lead to estimates that violate 
the conservation laws used to model the system. However, 
states estimators (e.g. EKF) can also be applied as a tool 
for data pre-processing and transient data reconciliation in 
order to reduce the inaccuracy of process data due to 
measurement errors (NARASIMHAN & JORDACHE, 
2000).  

In Rao & Rawlings (2002) we can find a comparison 
between MHE and EKF in the problem of detecting the 
location and magnitude of a leak (gross error) in the 
wastewater treatment process. While MHE is able to 
provide a fairly accurate estimate of the total losses, the 
Kalman filter underestimates the total losses.  

 
The application of state estimation techniques are 

summarized in Figure 2. 
 

 
Figure 2. Application of state estimation techniques. 
 

3. EKF, CEKF and MHE 

Consider the following continuous-time system with 
discrete-time measurements: 

( ) ( ), ,x f x u t tω= +�     (1) 

( ),k k k ky h x t ν= +      (2) 
where x∈R  denotes the state vector, u∈R  the known 
system input vector and y∈R  the measured output. The 
process-noise, ω, and the measurement-noise, νk, are 
assumed to be white Gaussian random process with zero 
mean and covariance Q and Rk, respectively.  
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The system is linearized at each time step to obtain 

the local state-space matrices as below: 

, , ,x u t p

fF
x
∂ =  ∂ 

    (3) 

 
, , ,x u t p

hH
x
∂ =  ∂ 

   (4) 

The discrete version of Eq. 1 can be written as 
follows:  

1 1 1k k k kx xϕ ω− − −= +     (5) 

( ),k k k k ky h x t ν= +     (6) 

where k denotes the discrete-time index and 1kϕ −  is the 
state transition matrix for the state at tk given as  

( )1
1

k k
k

F t teϕ
− −

− =     (7) 
ωk−1 and νk are assumed to be constant over the 

sampling period and both are modeled as random variables 
solely characterized by their PDFs. 

The filter algorithm is initialized by the initially 
expected state and state covariance: 

( )0|0ˆ 0x E x =       (8) 

( )( ) ( )( )0|0 0|0 0|0ˆ ˆ0 0
T

P E x x x x = − −  
  (9) 

 

3.1. Extended Kalman Filter 

We will focus on the discrete-time version of the EKF 
since it is used in most applications. The equations that 
compose the different steps in the EKF are given below. 

State Transition Equation: 

( )1 1 1 1
ˆ ˆ ˆ, , ,

k

k k k k k
x x f x u p dτ τ− − − −

= + ∫   (10) 

Kalman Gain Equation: 
1

1 1
T T

k k k k kk k k kK P H H P H R
−

− −
 = +    (11) 

State Covariance Transition Equation: 
1 1 11 1 1

T
k k kk k k kP P Qϕ ϕ− − −− − −= +

 
  (12) 

State Update Equation: 

( )1 1ˆ ˆ ˆ ,k k k kk k k k k kx x K y h x t− −
 = + −   (13) 

State Covariance Update Equation: 
[ ] [ ]1

T T
n k k n k k k k kk k k kP I K H P I K H K R K−= − − +

 
(14) 

where n is the number of states. 
In order to compare the EKF and the optimization-

based estimators (MHE and CEKF), we first need to derive 
yet another form for the EKF. After combining and 
rearranging Eqs. (11), (12) and (14), one obtains an 
alternate form for the one-step state covariance equation as 
follows 

1 1

1

1 1 1 1 1 1

T
k kk k k k

T T T
k k k k k k kk k k k k k

k

P P

P H H P H R H P

Q

ϕ ϕ

ϕ ϕ

− −

−

− − − − − −

=

 − + 
+

(15) 

The equation above is the discrete Riccati equation. 
Details on the derivation of this alternate EKF form are 
found in Simon (2008). 
 

3.2. Moving Horizon Estimator 

Before explaining the CEKF formulation, the basic 
aspects about the MHE (MUSKE & RAWLINGS, 1994; 
ROBERTSON et al., 1996; RAO et al., 2003) is 
presented. The basic idea of MHE is to proceed with state 
estimation by using only the most recent N+1 
measurements, where N is the time horizon size.  

The moving horizon approximation of the objective 
function is given by 

The moving horizon approximation of the objective 
function is given by 

( )
( )

( )

1

1 1 1 1

1
1

1

1
1

ˆ ˆ

ˆ ˆmin

ˆ ˆ

k N 1 k k 1 k

k N k k k

T
k N k k N k k N k

k
T

kj k j k
j k N

k k
T

kj k j k
j k N j k N

P

N Qω , ,ω k
ν , ,ν

R

ω ω

ω ω

ν ν

− − −

−

−

− − − − − − −

−
−

−
= −

−
−

= − = −

 
 
 
 

= + 
 
 
 + +
  

Ψ ∑

∑ ∑

"
"

(16) 

 
subject to the equality constraints 

( )

( )

1 1

1

ˆˆ ˆ

ˆˆ ˆ, , , , , 1

ˆˆ , , ,

k N k k N k k N k

j 1

j k j kj

j j k j k

x x

x f x u d j k N k

y h x j k N k

ω

τ τ ω

ν

− − − − −

+

+

= +

= + = − −

= + = −

∫ "

"

 (17) 

and the inequality constraints 
min max

min max1

min max

ˆ

ˆ ˆ ˆ , , ,

ˆ ˆ ˆ , , ,

j k

j k

j k

x x x

j k N k

j k N k

ω ω ω

ν ν ν
−

≤ ≤

≤ ≤ = −

≤ ≤ = −

"

"

  (18) 

Rao et al.(2003) suggests computing the state covariance 

matrix equation N
k kP  (Eq. 31) recursively using the discrete 

Riccati equation.  

1 1

1

1 1 1 1 1 1

N N T
k kk k k k

N T N T N T
k k k k k k kk k k k k k

k

P P

P H H P H R H P

Q

ϕ ϕ

ϕ ϕ

− −

−

− − − − − −

=

 − + 
+

(19) 

Note that the equation above is the same as for Eq. 15 
applied to each horizon step.   

 

3.3. Constrained Extended Kalman Filter 

CEKF follows from the MHE when the horizon 
length is set to zero (GESTHUISEN ET AL., 2001).  Zero 
length implies that ODEs are not considered into the 
optimization problem, which simplifies the complexity of 
solving a nonlinear dynamic optimization problem. 

Setting (N=0) into the MHE optimization problem 
(Eq. 16), the resulting formulation is exactly the CEKF 
formulation problem 

( )
( )

ˆ ˆ
min

ˆ ˆk-1 k k k

1
T
k 1 k k 1 k 1 k 1 k

1T
kk k k k

P
ω ,ν k

R

ω ω

ν ν

−

− − − −

−

 
 =  
+  

Ψ  (20) 

subject to the equality constraints 
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( )
1 1

ˆˆ ˆ

ˆˆ

k k k k k k

k k k k k

x x

y h x

ω

ν

− −= +

= +
    (21)

 
and inequality constraints 

min max

min max

min max

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

k k

k 1 k

k k

x x x

ω ω ω

ν ν ν
−

≤ ≤

≤ ≤

≤ ≤   

 (22) 

 

4. Computational Methods 

During the last decades many tools to bifurcation 
analysis were developed. The main tools are: AUTO, 
CONTENT, LOCBIF, PITCONT and BIFPACK. In this 
work was used a MatLab toolbox called MATCONT, 
developed based upon CONTENT (DHOOGE et al. 2006).  

The computations for validating the estimation and 
filtering strategies were performed on MatLab. We solve 
Eq. (16) using sequential quadratic programming (SQP) as 
implemented in the medium-scale algorithm of fmincon 
function. For the successive integration of Eq. (15) we use 
the algorithm ode45 that is based on an explicit Runge-
Kutta formula (SHAMPINE & REICHELT, 1997). 

Because the measurement equation of our example is 
linear, the optimization problem of Eq. 20 was solved 
using quadratic programming (QP) as implemented in the 
algorithm of quadprog function. The CEKF algorithm 
implemented in MatLab is shown in the Appendix.   

 

5. Case Study 

The computational case study is based on the ethanol 
production from glucose fermentation by Zymomonas 
mobilis bacteria. This system shows an interesting dynamic 
(continuous oscillations, equilibrium multiplicities, 
unstable regions). Zymomonas mobilis has attracted 
considerable interest over the past decades as a result of its 
unique metabolism and ability to rapidly and efficiently 
produce ethanol from simple sugars. However, despite its 
apparent advantages of higher yields and faster specific 
rates when compared to yeasts, little attention has been 
focused in Zymomonas mobilis for the manufacture of fuel 
ethanol. In addition to ethanol depending on the substrate 
other fermentation products can occur, such as lactic acid, 
acetic acid, formic acid, acetone, and sorbitol. See Rogers 
et al. (2007) for a detailed review. 

Various models have been proposed to describe the 
oscillatory dynamics of continuous Zymomonas mobilis 
cultures (Daugulis et al., 1997; Jarsebski, 1992; Jöbses et 
al., 1986). Since the Jöbses’s model can predict a branch 
with higher ethanol production, which has been 
experimentally confirmed (at least for low dilution rates) 
by Elnashaie et al. (2006), we have decided to use this 
model as our case study. 

Jöbses’s model is given by the following equations: 

( ) ( )maxS S e
S x So S

Sx S S

dC C C
m C D C C

dt Y K C
µ 

= − − + −  + 
 (23) 

( )maxx S e
xo x

S S

dC C C
D C C

dt K C
µ 

= + − +     
(24) 

 

( )( )

( )

1 2
e S e

E P P
S S

eo e

dC C C
K C c C c

dt K C

D C C

 
= − −  + 
+ −   

(25) 

 

( ) ( )max S eP
P x Po P

Px S S

C CdC m C D C C
dt Y K C

µ 
= − + −  +   

(26) 

where CS is the substrate (glucose) concentration, Cx is the 
biomass (Zymomonas mobilis), CP is the product (ethanol) 
concentration, and Ce is an auxiliary variable used to lag 
the effect of the ethanol concentration in the kinetic 
model. The polynomial KE (CP-c1) (CP-c2), experimentally 
adjusted in Ce description, makes possible the model to 
depict the oscillatory behaviors and have output 
multiplicity. The variables CS0, Cx0, Ce0 and CP0 complete 
the mass balance representing the states inputs in the 
reactor, normally only CS0 (substrate inlet) is different to 
zero. The rate dilution (D) meaning the same as the 
residence time inverse. The other variables are listed in 
Table 1 and more detailed description can be found in the 
Jöbses et al. (1986). 
 

Tabela 1. Jöbses’s model parameters. 
Parameters Values Parameters Values 

6

3 2.
mk

kg h
 
 
 

 0.00383 
.S

kgm
kg h
 
 
 

 2.160 

1 3

kgc
m
 
  

 59.2085 
.P

kgm
kg h
 
 
 

 1.100 

2 3

kgc
m
 
  

 70.5565 ,SX PX
kgY Y
kg
 
 
 

 (0.02445,
0.05263) 

3S
kgK
m
 
  

 0.500 max
1
h

µ  
  

 1.0 

 
The Figure 3 shows the dynamic simulation (with 

CS0 = 200 kg/m³ and D = 2.0 h-1) of the product to 
different initial conditions: IC1 (CS = 10 kg/m³, Ce = 3 
kg/m³, Cx = 0.1 kg/m³ e CP = 20 kg/m³) e IC2 (CS = 10 
kg/m³, Ce = 3 kg/m³, Cx = 0.1 kg/m³ e CP = 100 kg/m³). A 
perturbation in the initial condition of CP leads the system 
to converge to a different steady state, indicating the 
occurrence of bistability. Such behavior characterizes the 
existence of multiple solutions.     

 

0 1 2 3 4 5 6
20

40

60

80

100

Time (h)

C
p 

(k
g/

m
³)

 
Figure 3. Jöbses’s model dynamic simulation (Jöbses et al., 

1986). 
 

 

CI2 

CI1 
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6. Results and Analyses 

6.1. Virtual Analyser & Feedback Control 

A multivariable control strategy for Zymomonas 
mobilis bioreactor is proposed in Diehl & Trierweiler, 
(2009), where CS0 and D are manipulated variables and CP 
and CS are controlled variables. This structure provides 
flexibility to the system permitting to maximize the 
substrate to product conversion. The frequency domain PI 
(proportional-integral) controller is shown in (Eq. 27), 
where the considerate pairing is (D, CS0) → (CP, CS) and 
the control sampling time of 1 minute. 

1 10.016 1 0.7077 1
0.565 0.015

1 16.133 1 3.2102 1
0.8076  0.4393

s s
PI

s s

    − × + × +    
    =

    × + × +         

 (27) 

 
The design of a state estimator assumes system 

observability, i.e., a set of measurements must provide 
enough information to estimate all the system states. Thus, 
a system observability analysis is necessary before 
applying the state estimation techniques.  

According to the Popov-Bevelic-Hautus (PBH) 
criterion, the system (F, H) (cf. Eqs.3 and 4) is state 
observable if and only if 

( ) ( ) ( );
i I F

M i rank M i n
H

λ − 
= =    
 

 (28) 

has rank n (full column rank) for all eigenvalues 
( )1,2, ,i i nλ = …

 
of  matrix F (Sontag, 1998). 

As result, the Zymomonas mobilis bioreactor system 
is observable if CS is measured.  

The CEKF works as a virtual analyzer in this section, 
filtering CS (assumed to be a measured variable with 
random noise) and estimating the other states, enclosing 
CP.  Afterwards, the information on CS and CP will be used 
to feedback the PI controller.    

We consider state estimation with the following 
initial guesses and parameters: 

[ ]0 1.24 4.74 13.31 92.56x =   (29) 
2

0 4 40.05 xP I=     (30) 

1 0.0167k kt t t −∆ = − =    (31) 
1R =      (32) 

2
4 40.01 xQ I=     (33) 

[ ]min 0.01 0.01 0.01 80x =    (34) 

[ ]max 10 20 50 110x =    (35) 
Typically in bioprocesses the concentrations are 

measured by techniques with inherent time delay. For 
instance, it is common to use high performance liquid 
chromatography (HPLC) (DAVIS et al., 2006), infrared 
(MAZAREVICA et al., 2004) or Raman (SHAW & 
KELL, 1999) spectroscopy. However some new methods, 
as two-dimensional fluorescence spectroscopy 
(HALTELMANN et al., 2006) can reduce this pure time 
delay considerably. In our example we consider hence 
online measurements available each 20 minutes and 
without pure time delay.  

The control system with the CEKF feedback is shown 
in Figure 4. As the control and state estimation have 

different sample times (1 and 20 minutes, respectively), 
the CEKF simulation model is called every 1 minute and 
the CEKF update step (with the new measurement) is 
called only each 20 minutes.  

According to the results of Figure 4, the state 
estimation with CEKF guarantees a suitable performance 
of the PI controller. 

 

 
 

 
 

 
Figure 4. CEKF performance for feedback control: (a) 

manipulated variables, (b) filtered measured states and (c) 
estimated states. 

 

6.3. Parameters fitting and update 

Here, we have chosen the c1 to be estimated with the 
states and, thereby, the state vector x is augmented with 
this parameter to obtain an augmented state vector x', i.e.  

1

x
x

c
 ′ =  
 

     (36) 

As the parameter is constant then the augmented 
system model of Eqs. (1) and (2) can be rewritten as 

( ) ( )1, , ,
0

f x u t c
x tω

 
′ = + 

 
�    (37) 

( ), 0 k
k k k k

1

x
y h x t

c
ν

 
= +    

 
  (38) 

(a) 

(b) 

(c) 



  VIII Oktoberforum – PPGEQ  6 

www.enq.ufrgs.br/oktoberforum 

 
The common praxis of Eq. 36 to augment the state 

vector definition to make possible a simultaneous state and 
parameter estimation is in general not recommended, since 
the additional differential equation produces a local-state 
matrix F (cf. Eq. 3) with corresponding row elements equal 
to zero. It makes more difficult to find a set of 
measurements for system observability, being usually 
necessary to include additional measurements.  

As result of the new observability analisys (Eq. 28), 
not only Cs but also Cp must be measured to make the 
augmented system (Eqs. 37 and 38) observable. 

For our analyses, the dilution rate is increased from 
2h-1 to 2.5h-1 at 5h to lead the system to converge to a 
different steady-state.   

Now we consider state estimation with the following 
initial guesses and parameters: 

[ ]0 8.78 4.55 9.63 89.05 56.25x =   (39) 
2

0 5 50.05 xP I=     (40) 

1 0.25k kt t t −∆ = − =     (41) 
2

2 20.1 xR I=      (42) 
2

5 50.5 xQ I=      (43) 
[ ]min 0.15 1.2 1.8 30 53.28x =   (44) 

[ ]max 150 5 41 121 65.13x =   (45)  
In this section, we have enlarged the MHE estimation 

window to N=2 and compared its performance with the 
CEKF and EKF in Figure 5.  

 

 
 

 
Figure 5. Comparison between EKF, CEKF and MHE (N=2) 
performances for parameter estimation: (a) filtered measured 

states and (b) estimated states. 
 

As in the EKF constraints are not taken into account, 
its performance for parameter estimation is not as good as 
the optimization based approaches performance, as shown 
in Figure 5b. 

 
 

 

6.4. Transient Data Reconciliation 

We can also augment the state vector x with new 
artificial parameters corresponding to the error in the 
variables to be reconciliated. Afterwards, one can apply 
the same procedure as for the parameter estimation of the 
previous secction, taking appropriate noise variances into 
account.  

Supposing a leak in the process, it was considered an 
error of 2h-1 in the manipulated dilution rate (∆D) and no 
error in the manipulated inlet substrate concentration 
(∆CS0).  

The augmented state vector is now given by: 

S0

x
x D

C

 
 ′ = ∆ 
 ∆     

 (46) 

The augmented system model originated by the 
augmented state vector above is also observable with a set 
of measurements composed by Cs and Cp.  

Again the dilution rate is increased from 2h-1 to 2.5h1 
at 5h to lead the system to converge to a different steady-
state.   

Here we consider state estimation with the following 
poor state initial guesses 0x  and parameters: 

[ ]0 111.34 2.11 4.24 41.29 0 0x =  (47) 
2

0 6 60.75 xP I=     (48) 

1 0.25k kt t t −∆ = − =     (49) 
2

2 20.1 xR I=      (50) 

( )2 2 2 2 2 20.05 0.05 0.05 0.05 0.1 0.1Q diag=  (51) 

[ ]min 0.15 1.2 1.8 30 -5 0x =  
 (52) 

[ ]max 150 5 41 121 0 0x =  
 (53)  

As the location of the leak is unknown to the 
estimator, we design the estimator with a process-noise 
covariance for ∆D and ∆CS0 equal to the measurement-
noise covariance. We have also enlarged the MHE 
estimation window to N=2 and compared its performance 
with the CEKF and EKF in Figure 6. 

According to the results of Figure 6b, MHE and 
CEKF provide a good estimate of the total losses for the 
leak, can identify the error in ∆D, and that there is no error 
in ∆CS0. Otherwise, EKF cannot provide such good 
estimates.  

MHE presents the best performance and swifter 
converge to actual states because over the horizon length 
no information about the nonlinear system is lost. Further, 
MHE provides improved state estimation and greater 
robustness to poor guesses of the initial state. 

 
 
 
 
 
 
 
 
 
 
 
 

(a) 

(b) 
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Figure 6. Comparison between EKF, CEKF and MHE (N=2) 

performances for transient data reconciliation: (a) filtered 
measured states and (b) estimated states. 

 

7. Conclusions 

In this paper we have shown the advantages of using 
state estimators as a tool for better operation of a 
Zymomonas mobilis bioreactor. Based on this illustrative 
example and on many other case studies presented 
elsewhere, the following conclusions can be formulate: 

• State estimators can be successfully applied for 
process monitoring and feedback control because 
they provide information on unmeasured state 
which is essencial to ensure proper operation of 
any plant.  

• This tool can also be used to fit and update 
parameters and to reconciliate the transient data. 
However, the strategy of augmenting the state 
vector with new variables may become more 
difficult to find a set of measurements to garantee 
the system observability, being usually necessary 
to include additional measurements. 

• In general the EKF formulation has worse 
performance when compared with CEKF and 
MHE strategies;  

• MHE can improve state estimation and provide 
better robustness to poor guesses of the initial 
state. However, afterwards converge towards the 
actual states, both MHE and CEKF perform 
equally accurately and, therefore, the use of MHE 
becomes needless. 

• The better relationship between performance and 
practical application is obtained with the CEKF 
formulation, because it requires small 
computational effort than MHE with comparable 
performance. Therefore, we recommend using 
CEKF as first choice. The Appendix illustrates 
how a CEKF can be easily implemented. 

 

8. Appendix: CEKF algorithm implemented in a 

MatLab –like language. 

The CEKF algorithm for state estimation can be 
carried out by the steps below: 

1. Simulate the model from tk-1 to tk  (∆t) to obtain 
1ˆk kx −  (Eq. 1). 

[tk,xkk_1]=ode45(Model,[0 delta_t], xk_1k_1); 
2. Compute the linear models F (Eq.3) and H (Eq.4) 

at tk. 
n= length(xkk_1); 
ny=length(y); 
for i=1:n, 
    for j=1:n, 
        if i~=j, 
            F(i,j)= diff(dxdt(i), 'x(j)') 
                else 
                    F(i,i)= diff(dxdt(i), 'x(i)') 
end 
 
for i=1:ny, 
    for j=1:n, 
        H(i,j)= diff(y(i), 'x(j)'); 
end 
 
3.  Calculate the state transition matrix φk-1 for the 

state at tk (Eq. 7). 
phi=expm(F*delta_t); 
 
4.  Compute the state covariance matrix k kP (Eq. 13). 
Pkk= phi* Pk_1k_1*(phi')-phi*Pk_1k_1*(H')*... 
    inv(H*Pk_1k_1*(H')+R)*H*Pk_1k_1*(phi')... 
    +Q; 
 
6. In case of linear measurement equation, solve the 

optimization problem of Eq. 20 using a quadratic 
programming to obtain 1k kω −

 

and k kv .   

 

1ˆ ˆ ˆmin T T
k k k k k k k k k

k k
S d−

Θ
= Θ Θ + ΘΨ

 
where 

1 1 1 0ˆ 0
0

k k k k
k k

k k k

P
S d

v R

ω − − −
   
 Θ = = = 
       subject to the equality constraints (cf. Eq. 21)  

 
( )1

ˆ ˆkny k k k kH I y h x −
 Θ = −   

and to the inequality contraints of Eq. 22. 
T=[inv(Pk_1k_1) zeros(n,ny);zeros(ny,n) inv(R)]; 
T=T+T'/2; 
wmin=xmin-xkk_1; 
wmax=xmax- xkk_1; 
vmin=H*xmin-H*xkk_1; 
vmax= H*xmax-H*xkk_1; 
opt=optimset('LargeScale', 'off'); 
w_v=quadprog(T,zeros(n+ny,1),[],[],[H eye(ny)],...      

    [y(:)-H*xkk_1],[wmin vmin],... 
         [wmax vmax], w_v0,opt); 
  

(a) 

(b) 
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7. Finally, compute the update state ˆk kx

 
and 

measurement ky  (Eq. 19). 
w=w_v (1:n); 
v=w_v (n+1:n+ny); 
xkk= xkk_1+w(:); 
yk= H*xkk_1+v(:);  
  
8. Repeat this procedure until the final time. 
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