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Abstract: This work presents a computational framework for automatically generating flexible Heat Exchanger Networks 
(HEN) over a specified range of expected variations in the inlet temperatures and flowrates of the process streams, such that 
the Total Annual Cost (TAC) as a result of the utility consumption, heat exchanger areas and selection of matches are 
optimized simultaneously.  The proposed framework includes: (i) a multiperiod simultaneous MINLP model to synthesize a 
flexible HEN configuration, which may be solved using a decomposition technique. This problem is formulated over a discrete 
set of operating points; (ii) a flexibility analysis to test the feasibility of operation of the given design over the specified range 
of the uncertain parameters. In this step critical conditions, i.e. points of maximum constraint violation, are identified, which 
are to be updated in the current set of points in order to resolve the multiperiod design. This computational framework yields a 
HEN design, which is guaranteed to operate under varying conditions ensuring stream temperature targets and optimal energy 
integration. The proposed strategy has been successively applied and two numerical examples are used to illustrate the 
proposed integrated framework. 
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1. Introduction 

During the past decades there has been growing 
awareness both in academia and industry that operability 
issues need to be considered explicitly at the early stages of 
process design. It is even more important for heat 
integrated process, since the economic performance of a 
process is greatly affected by process variations and the 
ability of the system to satisfy its operational specifications 
under external disturbances or inherent modeling 
uncertainty. 

Plant flexibility has been recognized to represent one 
of the important components in the operability of the 
production process, since it is related to the capability of a 
process to achieve feasible operation over a given range of 
uncertain conditions (Grossmann and Floudas, 1987). 
Uncertainty is an inherent characteristic of any chemical 
processes. They may have different sources such as: (i) 
unknown disturbances like uncertainty in the process 
parameters (operating conditions); (ii) uncertain model 
parameters (kinetic parameters, heat transfer coefficients, 
etc); (iii) Discrete uncertainty (failures, equipment 
availability, etc).  

The incorporation of uncertainty into design may be 
possible through a deterministic approach using 
multiperiod optimization problem. In that case the design 
must be tested to ensure feasibility over the operational 

range. In this work1, a computational framework based on 
a two stage strategy is used in order to develop flexible 
heat exchangers networks. 

In the next section, a deterministic approach for a 
general process design/synthesis under uncertainty is 
presented. In Section 3, the mathematical formulation is 
derived for the specific case of Heat Exchanger Network 
Synthesis (HENS) and then in section 4 two numerical 
examples are presented in order to illustrate the whole 
procedure and some analysis and discussions are made. 
Finally, some conclusions and final remarks are drawn in 
section 5. 

2. Process Design under uncertainty 

An important question is how systematically 
determine designs that can accomplish a desired degree of 
flexibility? In a conventional design optimization 
problem, the design variables must be selected so as to 
minimize the total cost at some nominal values of the 
uncertain parameters. When the goal of flexibility is also 
to be accomplished, there are basically two options: Either 
(i) ensure the flexibility for a fixed parameter range; or (ii) 
maximize the flexibility measure, while at the same time 
minimizing cost. The latter problem gives rise to a multi-
objective optimization problem, which in fact would 
                                                           
1 Abstract accepted for submission in ESCAPE 2011. 
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normally be solved by optimizing the cost at different fixed 
values of the flexibility range (Biegler et al., 1997). 

A general representation of a process design under 
uncertainty is of the following form: 
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where ݀,  are the vectors of design, control and ݖ and ,ݔ
state variables, respectively; ߠ is the vector of uncertain 
parameters; ܧሾܥሺ݀, ,ݔ ,ݖ  ሻሿ is the expected cost functionߠ
for ߠ א ܶ; ݄ሺ݀, ,ݔ ,ݖ ,ሻ and ݃ሺ݀ߠ ,ݔ ,ݖ  ሻ are the vectors ofߠ
model equality and inequality constraints describing the 
process model and specifications. 

Most of the previous works use the termed two stage 
strategy. The first stage is prior to the operation (design 
phase) where the design variables are chosen. At the 
second stage the control variables ݖ are adjusted during 
operation on the realizations of ߠ א ܶ. It is made the 
implicit assumption of “perfect control”. It means that the 
control can be immediately adjusted depending on the 
realization of ߠ. No delays in the measurements or 
adjustments in the control are considered.  

If a finite number of points in ܶ is replaced by a 
discrete set of points, which are somehow specified. The 
original design problem ܲ can be reformulated as a 
multiperiod optimization problem (ܲ’) that is used to 
approximate the solution of the optimal design under 
uncertainty 
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ሺܲᇱሻ (2) 

The two stage strategy is depicted in Fig. 1. For the 
selected ܰ periods the multiperiod optimization problem 
ܲᇱ is solved. The flexibility/feasibility of the multiperiod 
design must be tested over the space ܶ. If the design is 
feasible, the procedure terminates; otherwise, the critical 
point obtained from the flexibility evaluation is included in 
the current set of ߠ points, and a new multiperiod 
formulation is performed. Computational experience has 
shown that commonly few major iteration must be 
performed to achieve the feasibility with this method 
(Biegler et al., 1997). 

 
Fig. 1. Two stage strategy for optimal design under uncertainty. 

3. Mathematical Formulation for HENS 
3.1 Problem Statement 

The problem to be addressed in this work can be 
stated as follows: 

Given are: (i) Stream Integration data; (ii) A 
specified range for disturbances, inlet temperatures and 
flowrates, addressed as uncertain parameters, where the 
flexibility of the network is desired (flexibility target); and 
(iii) A minimum temperature approach (∆ ௠ܶ௜௡);  

The objective is then the following:  synthesize a 
heat exchanger network with minimum Total Annual Cost 
(operating and capital investment cost) able to operate 
feasibly under the specified disturbance range. 

 ݁ݎݑݐ݈ܽܿ݊݁݉݋ܰ
 

  ݏݐ݁ܵ
ܲܥ set of cold process stream j 
 set of cold utility ܷܥ
ܲܪ set of hot process stream i 
 set of hot utility ܷܪ
ܵܶ set of stages in the superstructure 
ܫ set of equality constraints 
ܬ set of inequality constraints 
ܸ set of vertices k 

 

  ݏݎ݁ݐ݁݉ܽݎܽܲ
  scalar factor  ߜ
௞ߜ  scalar factor at vertex k or active set k  
ߠ  vector of uncertain parameters 

 ௅  vector of lower bounds for uncertainߠ
parameters 

 ே  vector of nominal values for uncertainߠ
parameters 

 ௎  vector of upper bounds for uncertainߠ
parameters 

Δߠା  vector of positive expected deviation for 
uncertain parameters 

Δିߠ  vector of negative expected deviation for 
uncertain parameters 

Δߠ௞  vector of values for uncertain parameters at 
vertex k 

 ௝ݓ/௜ݓ
ሾܹ݇
ሿܭ/ flow capacity of hot stream i / cold stream j 

்ܰ - number of stages 

௜ܶ
௜௡ ሾܭሿ inlet temperature of hot stream i  

௝ܶ
௜௡ ሾܭሿ inlet temperature of cold stream j  

௜ܶ
௢௨௧ ሾܭሿ outlet temperature of hot stream i  

௝ܶ
௢௨௧ ሾܭሿ outlet temperature of cold stream j 

ܷ  upper bound for slack variables 
௝ݏ  slack variable for inequality j 
݊௭  number of control variables 

௣ܰ  number of uncertain parameters 

    
݈ܾ݁ܽ݅ݎܸܽ   

݀, ,ݔ  vector of design, state and control variables  ݖ
respectively 

ݑ  auxiliary variable for parametric function 
߯ሺ݀ሻ  feasibility measure for given design variable 

߰ሺ݀, ሻߠ  Parametric function for a given design and 
realization of uncertain parameters 
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௝  Lagrangean multiplier for inequality constraint  jߣ
 ௜  Lagrangean multiplier for equality  constrain iߤ

 ሿ temperature approach between hot stream i, coldܭ௜௝௞ ሾݐ݀
stream j, at location k 

 ሿ temperature approach between hot stream i, andܭ௖௨௜ ሾݐ݀
cold utility 

 ,ሿ temperature approach between cold stream jܭ௛௨௝ ሾݐ݀
and hot utility 

௜௝௞ ሾܹ݇ሿݍ heat load between hot stream i and cold stream j 
at stage k 

௖௨௜ ሾܹ݇ሿݍ heat load between hot stream i and cold utility 
௛௨௝ ሾܹ݇ሿݍ heat load between cold stream j and hot utility 
 ሿ temperature of hot stream i at hot end of stage kܭ௜௞ ሾݐ
 ሿ temperature of cold stream j at hot end of stage kܭ௝௞ ሾݐ

 

 ݏ݈ܾ݁ܽ݅ݎܸܽ ݕݎܽ݊݅ܤ
   - ௝ݕ
 ௜,௝,௞ -  match between hot stream i, cold stream j, atݖ

t kݖ௖௨௜ - match between hot stream i, and cold utility 
 ௛௨௝ - match between cold stream j, and hot utilityݖ

 
3.2 Multiperiod Optimization Problem 
 

In this work, the design stage is based on the stage-
wise superstructure proposed by Yee and Grossmann 
(1991). The objective of the model is to find a network that 
minimizes the total annualized cost, i.e. the investment cost 
in units and the operating cost in terms of utility 
consumptions. The superstructure is depicted in Figure. 2, 
for the case with two hot streams and two cold streams. 

Each hot stream is split into each potential match with 
all cold streams and vice versa. The outlet flows from the 
heat exchangers are mixed isothermically, which then 
defines the stream for the next stage. At the end, utility 
exchangers are allocated in order to ensure the 
specifications. The number of stages ்ܰ, is normally set to 
ሼݔܽ݉ ுܰ, ஼ܰሽ, where ுܰ and ஼ܰ are the number of hot 
streams and the number of cold streams respectively. The 
main advantage of this model is that the feasible space of 
the problem is defined by a set of linear constraints. It 
generates a model robust to solve. 

For the selected ܰ periods the multiperiod 
optimization problem must be formulated. Different 
formulations are proposed in the literature. The extension 
of the Synheat Model for the multiperiod representation is 
very straightforward. The main issue is that the design 
variables are invariant over the periods.  

 
Figure 2. Superstructure for two hot and two cold streams. 

The mathematical formulation considered here was 

presented by Verheyen and Zhang (2006). This multi-
period MINLP model simultaneously minimizes the TAC. 
The costs included are capital costs for heat exchanger 
area and unit and the average operating costs for utility 
consumption. The optimization problem consist of: 
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and the feasible space is defined by the following set 
of constraints: 
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Since the area of the heat exchangers are design 
variables they must be invariant over the periods. In order 
to ensure feasible operation for the worst case the installed 
area used to compute the investment cost must be the 
maximum area. Verheyen and Zhang (2006) proposed to 
add nonlinear inequalities in order to ensure the variable 
 ௜௝௞ is the maximum area. Due to the direction of theܣ
objective function, the constraints (3) are forced to be 
active at least for the worst case, where the maximum area 
occurs. 
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(3) 

The resulting model is a MINLP where the 
nonlinearities are presented in the objective function and 
in the equations (3).  
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3.3 Feasibility Test/ Flexibility Index 
 

The design problem can be described by a set of 
equality constraints ܫ and inequality constraints ܬ, 
representing the plant operation and design specifications: 

 ݄௜ሺ݀, ,ݖ ,ݔ ሻߠ ൌ 0,   ݅ א (4) ܫ

 ݃௝ሺ݀, ,ݖ ,ݔ ሻߠ ൑ 0,   ݆ א (5) ܬ

As has been shown by Swaney and Grossmann 
(1985), for a specific design, ݀, given this set of 
constraints, the design feasibility test problem can be 
formulated as the max-min-max problem: 

 ߯ሺ݀ሻ ൌ ݔܽ݉
ఏ்א
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where the function ߯ሺ݀ሻ represents a feasibility measure 
for design ݀. If ߯ሺ݀ሻ ൑ 0, design ݀ is feasible for all ߠ א
ܶ, whereas if ߯ሺ݀ሻ ൐ 0, the design cannot operate for at 
least some values of ߠ א ܶ. The above max-min-max 
problem defines a nondifferentiable global optimization 
problem which however can be reformulated as the 
following two-level optimization problem: 
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where the function ߰ሺ݀,  ሻ defines the boundary of theߠ
feasible region in the space of the uncertain parameters ߠ. 

The plant feasibility can be quantified by the 
determining the flexibility index of the design. Following 
the definition of the flexibility index proposed by Swaney 
and Grossmann (1985), this metric expresses the largest 
scaled deviation ࢾ of any expected deviation ߠ߂ା, ିߠ߂, 
that the design can handle. The mathematical formulation 
for the evaluation of design’s flexibility is the following: 
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(8)

The design flexibility index problem can be 
reformulated to represent the determination of the largest 
hyperrectangle that can be inscribed within the feasible 
region. Following this idea the mathematical formulation 
of the flexibility problem has the following form: 
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3.3.1 Vertex Enumeration Method 

For the case where the constraints are jointly 1-D 
quasi-convex in ߠ and quasi-convex in z it was proven 
(Swaney and Grossmann, 1985) that the point ߠ௖ that 
defines the solution to (8) lies at one of the vertices of the 
parameter set ܶ. Based on this assumption, the critical 
uncertain parameter points correspond to the vertices and 
the feasibility test problem is reformulated in the 
following manner: 

 ߯ሺ݀ሻ ൌ ݔܽ݉
௞א௏

߰ሺ݀, ௞ሻ (10)ߠ

where ߰ሺ݀,  ௞ሻ is the evaluation of the functionߠ
߰ሺ݀,  ௞ and ܸ is the index setߠ  ሻ at the parameter vertexߠ
for the 2ே೛ vertices for the ௣ܰ uncertain parameters ߠ. In 
similar fashion for the flexibility index, problem (9) is 
reformulated in the following way: 

ܨ  ൌ ݉݅݊
௞א௏

 ௞ (11)ߜ

where ߜ௞ is the maximum deviation along each vertex 
direction ߠ߂௞, ݇ א ܸ, and is determined by the following 
problem: 

 

ە
ۖ
۔

ۖ
ۓ ௞ߜ ൌ ݔܽ݉

ఋ,௭
                               ߜ

.ݏ .ݐ ݄௜ሺ݀, ,ݖ ,ݔ ሻߠ ൌ 0          
  ݃௝ሺ݀, ,ݖ ,ݔ ሻߠ ൑ 0

ߠ ൌ ேߠ ൅ ௞ߠΔߜ

ߜ ൒ 0                    

 (12)

Based on the above formulations, a direct search 
method proposed (Halemane and Grossmann, 1983) that 
explicitly enumerate all the parameters set vertices. To 
avoid explicit vertex enumeration, two algorithms were 
proposed (Swaney and Grossmann, 1985) a heuristic 
vertex search and an implicit enumeration scheme. 

3.3.1 Active Set Strategy 

The algorithms presented in previous section rely on 
the assumption that the critical points correspond to the 
vertices of the parameter set ܶ which is valid only for the 
type of constraints assumed above. To circumvent this 
limitation, a solution approach was proposed based on the 
following ideas: 

(a) Replace the inner optimization problem 

 
ቐ

߰ሺ݀, ሻߠ ൌ ݉݅݊
௭

           ݑ
.ݏ .ݐ ݄௜ሺ݀, ,ݖ ,ݔ ሻߠ ൌ 0

݃௝ሺ݀, ,ݖ ,ݔ ሻߠ ൑   ݑ
         (13) 

by the Karush-Kuhn-Tucker optimality conditions 
(KKT): 

 

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
෍ۓ ௝ߣ

௝א௃

ൌ 1                                    

෍ ௝ߣ
௝א௃

߲݃௝

ݖ߲ ൅ ෍ ௜ߤ
௜אூ

߲݄௜

ݖ߲ ൌ 0                       

෍ ௝ߣ
௝א௃

߲݃௝

ݔ߲ ൅ ෍ ௜ߤ
௜אூ

߲݄௜

ݔ߲ ൌ 0                       

௝ݏ௝ߣ ൌ 0,   ݆ א                                             ܬ
௝ݏ ൌ ݑ െ ݃௝ሺ݀, ,ݖ ,ݔ ݆   ,ሻߠ א         ܬ
,௝ߣ ௝ݏ ൒ 0, ݆ א                                          ܬ

 (14) 
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where ݏ௝ are slack variables of constraints ݆, ߣ௝, ߤ௜, are the 
Lagrange multipliers for inequality and equality 
constraints, respectively. 

(b) For the inner problem the following property 
holds that if each square submatrix of dimension 
ሺ݊௭ ൈ ݊௭ሻ where ݊௭ is the number of control 
variables, of the partial derivatives of the 
constraints ݃௝, ݆׊ א  with respect to the control ܬ
variables z is of full rank, then the number of the 
active constraints is equal to ݊௭ ൅ 1; 

(c) Utilize the discrete nature of the selection of the 
active constraints by introducing a set of binary 
variables ݕ௝ to express if the constrain ݃௝ is 
active. In particular: 

 

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

௝ݕ௝െߣ ൑ 0,   ݆ א                             ܬ
௝ݏ െ ܷ൫1 െ ௝൯ݕ ൑ 0,   ݆ א                  ܬ

෍ ௝ݕ
௝א௃

ൌ ݊௭ ൅ 1                                    

ߜ ൒ 0                                                 
௝ݕ ൌ ሼ0,1ሽ,   ߣ௝, ௝ݏ ൒ 0, ݆ א            ܬ

  

           (15) 

Where ܷ represents an upper bound to the slack 
variables ݏ௝. It should be noted that: 

 For active constraints: 

௝ݕ  ൌ 1
௬௜௘௟ௗ௦
ሱۛ ۛሮ ௝ߣ  ൒ 0, ௝ݏ   ൌ 0 (16) 

 For inactive constraints:  
 

௝ݕ ൌ 0
௬௜௘௟ௗ௦
ሱۛ ۛሮ ௝ߣ  ൌ 0, 0 ൑ ௝ݏ ൑ ܷ (17) 

Based on these ideas, the feasibility test and the 
flexibility test problem can be reformulated in the 
following way: 

ሺ ݈ܾ݉݁݋ݎܲ ݔ݁݀݊ܫ ݕݐ݈ܾ݅݅݅ݔ݈݁ܨ ଶܲሻ: 

ܨ ൌ ݉݅݊                                            ߜ
.ݏ ,௜ሺ݄݀    .ݐ ,ݖ ,ݔ ሻߠ ൌ 0                        

   ݃௝ሺ݀, ,ݖ ,ݔ ሻߠ ൅ ௝ݏ െ ݑ ൌ 0
ݑ ൌ 0                                  
෍ ௝ߣ
௝א௃

ൌ 1                          

    ෍ ௝ߣ
௝א௃

߲݃௝

ݖ߲ ൅ ෍ ௜ߤ
௜אூ

߲݄௜

ݖ߲ ൌ 0

   ෍ ௝ߣ
௝א௃

߲݃௝

ݔ߲ ൅ ෍ ௜ߤ
௜אூ

߲݄௜

ݔ߲ ൌ 0

௝ݕ௝െߣ ൑ 0,   ݆ א             ܬ
௝ݏ     െ ܷ൫1 െ ௝൯ݕ ൑ 0,   ݆ א ܬ

෍ ௝ݕ
௝א௃

ൌ ݊௭ ൅ 1                

௅ߠ ൑ ߠ ൑                   ௎ߠ
ߜ ൒ 0                            

௝ݕ             ൌ ሼ0,1ሽ,   ߣ௝, ௝ݏ ൒ 0,   ݆ א  ܬ

 

Which corresponds to a mixed integer optimization 
problem either linear or nonlinear depending on the nature 

of the constraints.  

The formulation described above can be used for 
flexibility index evaluation of any design. For the specific 
case of Heat Exchangers Networks based on the Synheat 
Model (Yee and Grossmann, 1991) the following 
formulation was proposed in this work. In order to carry 
out the flexibility analysis of HENs, all relevant equality 
and inequality for the HEN model, can be reorganized as 
described below. The equality constraints ݄ሺ݀, ,ݖ ,ݔ  :ሻ areߠ

 

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ ෍ ௜௝௞ݍ

஼௉א௝׊

െ ൫ݐ௜௞ െ ௜ݓ௜,௞ାଵ൯ݐ

෍ ௜௝௞ݍ
ு௉א௜׊

െ ൫ݐ௝௞ െ ௝ݓ௝௞ାଵ൯ݐ

௖௨௜ݍ െ ൫ݐ௜,ே೅ାଵ െ ௜ܶ
௢௨௧൯ݓ௜

௛௨௝ݍ െ ൫ ௝ܶ
௢௨௧ െ ௝ݓ௝ଵ൯ݐ

௜ܶ
௜௡ െ ௜ଵݐ

௝ܶ
௜௡ െ ௝,ே೅ାଵݐ ۙ

ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۗ

ൌ 0 (18) 

and the specifications  ݃ሺ݀, ,ݖ ,ݔ  :ሻߠ

 

ە
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۓ ௜,௞ାଵݐ െ ௜௞ݐ , ෍ ௜௝௞ݖ

௝א஼௉

൒ 1

௝,௞ାଵݐ െ ,௝௞ݐ ෍ ௜௝௞ݖ
௜אு௉

൒ 1

௜ܶ
௢௨௧ െ ,௜,ே೅ାଵݐ ௖௨௜ݖ   ൌ 1
௝ଵݐ െ ௝ܶ

௢௨௧, ௛௨௝ݖ    ൌ 1
߂ ୫ܶ୧୬ ൅ ௝௞ݐ െ ,௜௞ݐ ௜௝௞ݖ    ൌ 1 

߂ ୫ܶ୧୬ ൅ ௝,௞ାଵݐ െ ,௜,௞ାଵݐ ௜௝௞ݖ    ൌ 1
߂ ୫ܶ୧୬ ൅ ௖ܶ௨

௢௨௧ െ ,௜,ே೅ାଵݐ ௖௨௜ݖ    ൌ 1
߂ ୫ܶ୧୬ ൅ ௝ଵݐ െ ௛ܶ௨

௢௨௧, ௛௨௝ݖ    ൌ 1 ۙ
ۖ
ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۖ
ۗ

൑ 0 (19) 

where ݅ א ݆ ,ܲܪ א ݇ and ,ܲܥ א ܵܶ. Substituting the 
equations (18) and (19) in the formulation described in 
this section, e.g. problem ଶܲ it is possible to solve the 
feasibility and flexibility test. These equations are based 
on the constraints of Synheat Model, and the overall heat 
balances are not included because they can be obtained by 
combining other independent equalities. It ensures the full 
rank of the partial derivatives of the constraints with 
respect to the control variables ݖ, which is a premise of the 
active set strategy. The control variables are chosen as the 
degrees of freedom during operation, determined by the 
number of equations minus the number of unknown 
variables, and they are preferable the utility loads. 

4. Numerical Examples 
4.1 Numerical Example 01 

The problem data and the uncertainty description for 
this numerical example are presented in Table 1. It was 
assumed only inlet temperatures as uncertain parameters. 
For this particular case the set of equations (18) and (19) 
are linear. Therefore the critical operation conditions are 
explored on the basis of the vertices of the polyhedral 
region of uncertainty trough a scalar ்ߜ (flexibility target).  
Considering ܰ uncertain parameters, the total number of 
vertex directions is 2ே, i. e. combinations of the ± 
directed deviations from the nominal values of the 
uncertain parameters. Considering the inlet temperatures 
as uncertain parameters, the total number of vertices ܸ is 
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equal to 2ሺேுାே஼ሻ ൌ 16. 
Table 1. Problem data for Ex.1 (Floudas and Grossmann, 1987). 

 ௜ܶ௡ ௢ܶ௨௧  ݓ ݄ 
Stream (K)   (K)   (kWK-1) (kW m2 K-1) 

 0.16 1.4 323 10±583 1ܪ
 0.16 2.0 553 10±723 2ܪ
 0.16 3.0 393 10±313 1ܥ
 0.16 2.0 553 10±388 2ܥ
 0.16  323 303 ܷܥ
 0.16  573 573 ܷܪ

Cost of Heat Exchangers ($y-1)  = 5500+4333[Area (m2)]0.60

Cost of Cooling Utility  = 60.576 ($kW-1y-1)   
Cost of Heating Utility  = 172.428 ($kW-1y-1)   

For the nominal conditions presented in Table 1 using 
the Synheat Model it was generated the Heat Exchanger 
Network depicted in Figure 4. The MINLP model was 
solved using the solver DICOPT with a CPU time of 0.184 
seconds. The resulting configuration has a Total Annual 
Cost (TAC) of 92.210,14 $/year and the utility 
consumption as the minimum possible.   

 
Figure 3. Heat Exchanger Network for Example 1. 

The inlet temperatures, for each vertex ݇, and for 
target flexibility ሺ்ߜ ൌ  ሻ are assigned to the inletܭ10
temperatures of the HEN configuration through the 
equations (20) and (21) as dependent on the vertices of the 
polyhedral uncertainty region, the size of the size of which 
is defined by the scalar target flexibility, ߜ, that acts as a 
scale factor. The parameters ݎ௜,௞,  ௝,௞ are the vertexݎ
identifier and take the values of ܸ combinations of the ± 
directed deviations from the nominal values of the 
uncertain parameters according illustrated in Table 2. 

 ௜ܶ,௞
௜௡ ൌ ௜ܶ,௞

௜௡,଴ ൅ Δߜ ௜ܶ,௞
௜௡  ݅ ߳ ܲܪ, ݇ ൌ 1, … , ܸ (20) 

 ௝ܶ,௞
௜௡ ൌ ௝ܶ,௞

௜௡,଴ ൅ Δߜ ௝ܶ,௞
௜௡    ݆ ߳ ܲܥ, ݇ ൌ 1, … , ܸ (21) 

where 

  Δ ௜ܶ,௞
௜௡ ൌ ,ܲܪ ߳ ݅   ்ߜ௜,௞ݎ ݇ ൌ 1, … , ܸ (22) 

 Δ ௝ܶ,௞
௜௡ ൌ ,ܲܥ ߳ ݆   ்ߜ௝,௞ݎ ݇ ൌ 1, … , ܸ (23) 

It was solved 16 LPs subproblems by using CPLEX 
in order to evaluate the flexibility along each vertex 
direction. The general results are presented in Table 2. The 
minimum value was identified in the vertices 6, 8, 14, and 
16 with the correspondent value of 0.250, which represents 
the Flexibility Index of the configuration. In other words, 
for the given design, the configuration can remain feasible 

only for 25 % of the desired target of 10 K. The total CPU 
time spent was 0.221 seconds. 

Table 2. Flexibility Evaluation for each vertex k for Example 1. 

ݔ݁ݐݎܸ݁ ݔ݁ݐݎܸ݁ ݔ݁݀݊ܫ ݕݐ݈ܾ݅݅݅ݔ݈݁ܨ ݊݋݅ݐܿ݁ݎ݅ܦ
ሻݏሺܷܲܥ ݁ݐܽ݀݅݀݊ܽܥ 

௜ୀଵ,௞ݎ ݇ ௜ୀଶ,௞ݎ ௝ୀଵ,௞ݎ  ௞ߜ ௝ୀଶ,௞ݎ

1 ൅ ൅ ൅ ൅ 3.286 0.013 

2 ൅ ൅ ൅ െ 7.667 0.011 

3 ൅ ൅ െ ൅ 15.500 0.012 

4 ൅ െ ൅ ൅ 7.667 0.012 

5 ൅ ൅ െ െ 7.762 0.012 

6 ൅ െ ൅ െ 0.250 0.013 

7 ൅ െ െ ൅ 7.762 0.012 

8 ൅ െ െ െ 0.250 0.013 

9 െ ൅ ൅ ൅ 3.286 0.012 

10 െ ൅ ൅ െ 7.667 0.012 

11 െ ൅ െ ൅ 15.500 0.013 

12 െ ൅ െ െ 2.823 0.013 

13 െ െ ൅ ൅ 7.667 0.023 

14 െ െ ൅ െ 0.250 0.011 

15 െ െ െ ൅ 2.823 0.027 

16 െ െ െ െ 0.250 0.011 

For the structure presented in Figure 3 the number of 
control variables (degrees of freedom) is equal to 0, and 
hence only one of the 13 constraints described by the 
equation (20) will be active. It was solved 13 LPs 
subproblems by using the solver CPLEX in order to 
evaluate the flexibility considering each inequality as 
active. The total CPU time was 0.20 seconds, and as 
expected the same solution was found. 

Instead of explicit enumeration of the active set, it is 
possible to use binary variables to perform this discrete 
decision. The resulting problem can be solved using one 
MILP instead of 13 LPs in order to obtain the same result. 
The general comparison for the Flexibility Index 
evaluation by these different methods is presented in 
Table 3. It is clear that the MILP formulation for the 
active set strategy had the best computational 
performance. 

Table 3. General comparison for Flexibility Evaluation by 
different methods for Example 1. 

݀݋݄ݐ݁ܯ   ݕݐ݈ܾ݅݅݅ݔ݈݁ܨ ݏ݈ܾ݉݁݋ݎ݌ܾݑܵ
ሻݏሺܷܲܥ ሻܫܨሺ ݔ݁݀݊ܫ

ܯܧܸ 16 LPs 0.25 0.221 

ܵܵܣ 13 LPs 0.25 0.200 

 MILP 0.25 0.054 1 ܵܵܣ

Once the Flexibility Index is lower than 1, the critical 
point identified is identified and the current set (only the 
nominal conditions) is updated with this new point and a 
second iteration is performed. The new multiperiod is 
solved and the configuration depicted in Figure 4 is found. 
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Figure 4. Heat Exchanger Network for Example 1 at iteration 2. 

The evaluation of the Flexibility Index for the 
configuration obtained was again solved using the Vertex 
Enumeration Method (VEM). It was solved 16 LPs 
subproblems by using CPLEX in order to evaluate the 
flexibility along each vertex direction. The minimum value 
was identified in the vertex 16, with the correspondent 
value of 1.479, which represents the Flexibility Index of 
the configuration. In Table 4 is presented the general 
comparison for the flexibility index evaluation using active 
set strategy, where 1 MILP was solved with better 
computational performance. 

Table 4. General comparison for Flexibility Evaluation by 
different methods for Example 1. 

  ݕݐ݈ܾ݅݅݅ݔ݈݁ܨ ݏ݈ܾ݉݁݋ݎ݌ܾݑܵ ݀݋݄ݐ݁ܯ
ሻݏሺܷܲܥ ሻܫܨሺ ݔ݁݀݊ܫ

 LPs 1.479 0.211 16 ܯܧܸ

 MILP 1.479 0.071 1 ܵܵܣ

The general results are presented in Table 5 and the 
cumulative critical points considered at iteration k is 
presented in Table 6.  

Table 5. General Results for TSS applied to Example 01. 

 .ݎ݁ݐܫ
  ݃݊݅ݐܽݎ݁݌ܱ

  ݐݏ݋ܥ
ሺ$/ݕሻ 

  ݐ݊݁݉ݐݏ݁ݒ݊ܫ
 ሻݕ/$ሺݐݏ݋ܥ

  ݈ܽݑ݊݊ܣ ݈ܽݐ݋ܶ
 ሻݕ/$ሺ ݐݏ݋ܥ

ݕݐ݈ܾ݅݅݅ݔ݈݁ܨ
 ݔ݁݀݊ܫ

1 8117 84093 92210 0.250 

2 5573 124901 130474 1.429 

Once the Flexibility Index is greater than one, the 
design is sufficient flexible according to the flexibility 
target, i.e. this configuration is capable to operate feasibly 
under the expected uncertainty region. 

Table 6. Points considered for the TSS for Example 01. 

 .ݎ݁ݐܫ ௜ܶ௡
ுଵሺܭሻ  ௜ܶ௡

ுଶሺܭሻ  ௜ܶ௡
஼ଵሺܭሻ  ௜ܶ௡

஼ଶሺܭሻ 
1 583 723 313 388 

2 573 713 303 378 

It should be noted that the final configuration 
supports variations in the inlet tempartures of 14.79 K. The 
total CPU time for the generation of this flexible design 
was 0.553 seconds. 

4.2 Numerical Example 02 

For the second numerical example it was considered 
the same nominal conditions as in the example 01. 
However, three different cases with different uncertainty 
description were created. The general data for the cases 
(A,B, and C) are showed in Table 7. 

Table 7. Problem data for Ex.2 (Floudas and Grossmann, 1987). 

  ௜ܶ௡ ௢ܶ௨௧  ݓ ݄

Case Stream (K)   (K)   (kWK-1) (kW m2 K-

1) 
1ܪ  583±10 323 1.4±5% 0.16 
2ܪ  723±10 553 2.0±5% 0.16 

A 1ܥ 313±10 393 3.0±5% 0.16 
2ܥ  388±10 553 2.0±5% 0.16 
ܷܥ  320 323  0.16 
ܷܪ  573 573  0.16 
1ܪ  583±10 323 1.4±0.4 0.16 
2ܪ  723 553 2.0 0.16 

B 1ܥ 313 393 3.0 0.16 
2ܥ  388±5 553 2.0±0.4 0.16 
ܷܥ  320 323  0.16 
ܷܪ  573 573  0.16 
ܷܪ  573 573  0.16 
1ܪ  583 323 1.4±10% 0.16 
2ܪ  723 553 2.0±10% 0.16 

C 1ܥ 313 393 3.0±10% 0.16 
2ܥ  388 553 2.0±10% 0.16 
ܷܥ  320 323  0.16 
ܷܪ  573 573  0.16 

Cost of Heat Exchangers ($y-1)  = 5500+4333[Area (m2)]0.60 
Cost of Cooling Utility  = 60.576 ($kW-1y-1)   
Cost of Heating Utility  = 172.428 ($kW-1y-1)   

For these cases, the uncertainties are presented at 
also in the heat capacity flowrates. The vertex search 
method cannot be used, since there is no guarantee that the 
critical point rely on a vertex. The equations (18) are 
nonlinear due to the product of temperatures and flowrates 
generating a set of bilinear constraints that are nonconvex. 
Using the implicit active set strategy requires the solution 
of a nonconvex MINLP. Once an important decision is 
made based on this value, it is very important that this 
problem be solved to global optimality. 

The bilinear terms can be replaced by a convex 
relaxation, e.g. McCormick's envelopes and and a spatial 
branch and bound algorithm can be used to solve this 
problem.  

Furthermore, for process synthesis applications, 
where approximate solutions would be suitable for 
screening purposes, a quicker way to solve the nonlinear 
versions of the flexibility index by active set strategy is to 
linearize the constraint functions around nominal 
conditions. For example: 

݄ሺ݀, ,ݖ ,ݔ ሻߠ ؆ ݄ሺ݀, ,ேݖ ,ேݖ ேሻߠ ൅ ൬
߲݄௜

ߠ߲ ൰
்

ሺߠ െ ேሻߠ

൅ ൬
߲݄௜

ݖ߲ ൰
்

ሺݖ െ ேሻݖ ൅ ൅ ൬
߲݄௜

ݔ߲ ൰
்

ሺݔ െ ேሻݔ
 (24) 

where (ݔே, ݖே, ߠே) corresponds to the nominal 
point. In this way the problem is reduced to a MILP. As 
discussed by Grossmann and Floudas (1987), these 



  IX Oktoberfórum – PPGEQ  8 
www.enq.ufrgs.br/oktoberforum 

 
linearizations often yield good approximations. 

The heat exchanger network for the nominal 
conditions has already been generated in the previous 
numerical example and the network obtained can be seen 
in Figure 3. Based on this configuaration the flexibility 
index was evaluated for the three cases using active set 
strategy. The resulting problem was solved with global 
optimization (BARON) and by convexification through 
linearization. The general results are presented in Table 8.  

Table 8. General Comparison for Flexibility Evaluation by 
different methods for Example 2. 

 ݁ݏܽܥ ݕݐ݈ܾ݅݅݅ݔ݈݁ܨ ݏ݈ܾ݉݁݋ݎ݌ܾݑܵ ݀݋݄ݐ݁ܯ
ሻܫܨሺ ݔ݁݀݊ܫ ሻݏሺܷܲܥ

A 

 ܵܵܣ
 ݀݁ݖ݅ݎܽ݁݊݅ܮ

1 MILP 0.134 0.071 

 ܵܵܣ
 ݊݋݅ݐܽݖ݅݉݅ݐ݌ܱ ݈ܾܽ݋݈ܩ

1 MNILP 0.136 0.367 

B 

 ܵܵܣ
 ݀݁ݖ݅ݎܽ݁݊݅ܮ

1 MILP 0.132 0.069 

 ܵܵܣ
 ݊݋݅ݐܽݖ݅݉݅ݐ݌ܱ ݈ܾܽ݋݈ܩ

1 MNILP 0.131 0.390 

C 

 ܵܵܣ
 ݀݁ݖ݅ݎܽ݁݊݅ܮ

1 MILP 0.149 0.078 

 ܵܵܣ
 ݊݋݅ݐܽݖ݅݉݅ݐ݌ܱ ݈ܾܽ݋݈ܩ

1 MNILP 0.149 0.410 

It is clear that the linearized version equation provides 
a quite good approximation for the nonlinear model. An 
important evidence is that the approximate solutions were 
obtained with much less computational effort. 

The two stage strategy was applied for the Case B and 
the results are summarized in Table 9. The procedure 
converged after 4 iterations for a design with a TAC of 
148515 $/ year and a flexibility Index of 1.71.  

Table 9. Results for TSS applied to Example 02 Case B. 

 .ݐܫ
 ݃݊݅ݐܽݎ݁݌ܱ

  ݐݏ݋ܥ
ሺ$/ݕሻ 

 ݐ݊݁݉ݐݏ݁ݒ݊ܫ
 ݐݏ݋ܥ
ሺ$/ݕሻ 

݈ܽݑ݊݊ܣ ݈ܽݐ݋ܶ
 ሻݕ/$ሺ ݐݏ݋ܥ

 ݕݐ݈ܾ݅݅݅ݔ݈݁ܨ
 ݔ݁݀݊ܫ

ݕݐ݈ܾ݅݅݅ݔ݈݁ܨ
ݔ݁݀݊ܫ ሺ݈݅݊. ሻ

1 24758 67452 92210 0.1311 0.1316 

2 28823 96083 124905 0.1847 0.2190 

3 39540 92563 132194 0.6358 0.6060 

4 41749 106765 148515 1.7134 1.9800 

This example showed that despite the linearization 
around nominal conditions generate a problem that can be 
solved with much less computational effort, it must be 
applied carefully. For some iterations the linearization 
provided an error about 20 %. The final configuration 
obtained is depicted in Figure 5.  

The total CPU time for the whole procedure was 
11.468 seconds for the global optimization and 1.744 for 
the linearized version.  Only a total one second was spent 
at the design phase (multiperiod problem). In order to 
speed up the algorithm a good heuristic would be use the 

linear version and after convergence check using a global 
optimization technique. 

Table 10. Results for TSS applied to Example 02 Case B. 

 .ݎ݁ݐܫ ௜ܶ௡
ுଵ 

ሺܭሻ
ு݂ଵ 

ሺܹ݇/ܭሻ 
௜ܶ௡
஼ଶ 

ሺܭሻ
஼݂ଶ 

ሺܹ݇/ܭሻ 
1 583 1.4 388 2.0 
2 593 1.8 383 2.4 
3 593 1.8 393 1.6 
4 573 1.0 383 2.4 

 

 
Figure 5. Final Configuration for Example 2. 

 

5. Conclusions and Final Remarks 

It has been developed a computational framework for 
synthesis of flexible and controllable Heat Exchanger 
Networks; The framework is based on the Two Stage 
Strategy proposed by Halemane and Grossmann (1983) 
for design process under uncertainty and oriented to the 
Synheat Model (Yee and Grossmann, 1991) using 
Multiperiod Formulations in order to approximate; For the 
design stage a multiperiod formulation  proposed by 
Verheyen and Zhang (2006); while The Flexibility 
Analysis is performed using the Active Set Strategy 
(Grossmann and Floudas, 1987) for the general case.  

When the uncertain parameters are only in the inlet 
temperatures the assumption of the critical point relying 
on a vertex of the uncertainty region is appropriate. We 
can also use the Active Set Strategy in order to solve for 
the general case (nonvertex critical point). In that case the 
problem is nonlinear and a global optimization technique 
must be used. It is also possible to obtain a good 
approximation linearizing the problem around the nominal 
conditions. 

In this particular work the main contribution was the 
integration of different models available in the literature in 
order to generate an automatic procedure for designing 
flexible heat exchanger networks.  

The framework was implemented in GAMS 23.3. 
Some tricky points during the implementation were 
overcome, such as, the automatic calculation of the 
number of degrees of freedom after each design stage and 
the automatic derivation of the KKT conditions. Despite 
the numerical examples presented here were in fact small 
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scale problems, the whole procedure was implemented in 
such way that it can be directly applied for large scale 
problems. The main limitation would be the dimension of 
the multiperiod problem. To circumvent this problem, we 
propose an algorithm based on Lagrangean Decomposition 
coupled with a heuristic technique in order to generate a 
sequence of upper and lower bounds. A brief idea is 
presented in Appendix A. 

The application of the proposed HEN synthesis 
strategy and its computational efficiency were illustrated 
with two numerical examples. This computational 
framework yields a HEN design which is guaranteed to 
operate under varying conditions ensuring stream 
temperature targets and optimal energy integration.  
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 Appendix A: Decomposition Technique2 

The multiperiod models such as (P’) grow quickly in 
size with the number of periods, making it very difficult to 
solve them to global optimality without the help of 
specialized techniques. However, Multiperiod design 
problems present an interesting structure that can be 
exploited. Generally, a subset of constraints holds for each 
period and a subset of constraints links all periods. 
Regarding this linking constraints as complicating 
constraints in the sense that removing these constraints 
from the feasible space though Lagrangean Relaxation 
allows a straightforward decomposition into periods. The 
subproblems for each period can be solved independently 

                                                           
2 This proposed approach was presented in CAPD Annual Meeting 2010 
in Carnegie Mellon University, USA. 

and the solutions combined to generate a lower bound for 
the minimization problem. From the subproblems a 
feasible solution is postulated for the original problem and 
an upper bound is generated. The Lagrangean multipliers 
are updated using the subgradient method. The procedure 
terminates when the upper and lower bounds converges to 
the same value within a specified tolerance. A general 
overview can be seen in Figure 6. The proposed algorithm 
has performed well for large scale problems. 

 
Figure 6. Lagrangean Heuristic Approach for solving 

Multiperiod Synheat model. 
 

Appendix B: SynFlex Toolbox 

A concern during the implementation was the 
automatization of the whole procedure. This 
computational framework. The problems are solved using 
GAMS but the procedure is managed by Matlab. In Figure 
7 is depicted the initial interface of the SynFlex toolbox 
that has been developed. 

 
Figure 7. SynFlex Toolbox Interface. 
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