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Um piloto automático em Java para o AR. Drone da Parrot 
criado usando DiaSpec

RESUMO

Este trabalho consiste na descrição de um piloto automático criado para o AR. 
Drone, um quadricóptero (que será chamado daqui em diante apenas de "drone") 
fabricado pela empresa francesa Parrot. O objetivo deste piloto automático é fazer o 
drone cumprir automaticamente um itinerário previamente definido. O itinerário 
consiste em uma sequência de pontos no espaço pelos quais o drone deve passar. O 
drone decola, passa por esses pontos e aterrissa no último ponto da rota.

O piloto automático é um software que é executado em um computador. Esse 
computador se comunica com o drone através de uma conexão Wi-fi. O drone apenas 
envia os dados de seus sensores e câmeras para o computador. O computador processa 
os dados recebidos do drone e após envia o comando que o drone deve executar. Ou 
seja, o drone é controlado remotamente pelo computador.

A linguagem de programação usada neste trabalho foi Java. Esta linguagem foi 
escolhida porque era desejável que o software pudesse ser executado em diferentes 
sistemas operacionais sem que fosse necessário alterar o código ou recompilar.

DiaSpec é uma ferramenta desenvolvida pelo grupo de pesquisa Phoenix dos 
laboratórios do INRIA. Esta ferramenta permite a geração automática de um framework 
de programação através de uma especificação da arquitetura do sistema que se quer 
construir. Um domínio de aplicação do DiaSpec é na criação de softwares aviônicos. O 
DiaSpec é usado neste trabalho para criar o módulo central do sistema.

A criação deste piloto automático envolveu conceitos de arquitetura de software, 
programação orientada a objetos, redes, sistemas de tempo real e processamento de 
imagem, além de muita trigonometria. Um vídeo do drone sendo controlado pelo piloto 
automático foi criado para demonstrar seu funcionamento. Seu endereço na web se 
encontra no capítulo de conclusão deste trabalho.

Uma descrição mais detalhada em português deste trabalho encontra-se no apêndice 
D (“Descrição do Trabalho em Português”).

Palavras-Chave: piloto automático, drone, linguagem Java.
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ABSTRACT

This work consists in the description of an autopilot created for the AR. Drone, a 
quadricopter (that will be called simply “drone” from now on) manufactured by Parrot, 
a french enterprise. The objective of this autopilot is to make the drone accomplish 
automatically a previously defined itinerary. The itinerary consists in a sequence of 
points in the space by which the drone must pass. The drone takes off, passes through 
these points and lands at the last point of the route.

The autopilot is a software that runs in a computer. This computer communicates 
with the drone through a Wi-Fi connection. The drone only sends data from its sensors 
and cameras to the computer. The computer process the data received from the drone 
and after sends the command that the drone must execute. In other words, the drone is 
remotely controlled by the computer.

The programming language used in this work was Java. This language was chosen 
because it was desirable that the software run in several operating systems without it 
being necessary to change the source code or to recompile the code.

DiaSpec is a tool developed by the INRIA Phoenix research group. This tool allows 
the automatic generation of a programming framework through the specification of the 
target system architecture. An application domain of DiaSpec is in the creation of 
software for avionics. DiaSpec is used in this work to create the central module of the 
system.

The creation of this autopilot involved concepts of software architecture, object-
oriented programming, networks, real-time systems and image processing and a lot of 
trigonometry. A video of drone being controlled by the autopilot was created to 
demonstrate its operation. His address in the web is in the chapter of conclusion.

Keywords: autopilot, drone, Java language.



8

1  CONTEXT

1.1  Motivation
The present work was developed during a PFE internship in the INRIA labs in 

Talence, France. In the INRIA labs, the Phoenix research group works in projects 
related to the services composition and orchestration. One of the Phoenix group projects 
is DiaSuite, that is a tool suite that guides the developer through the development of 
applications that interacts with the environment. DiaSpec is the a tool of DiaSuite used 
to design the architecture of the application and to generate code from this architecture. 
A more detailed description of DiaSpec can be found in the section 5.2 of this rapport.

One of the application domains of DiaSpec is in the development of software for 
avionics. The Phoenix group already has created applications using DiaSpec for 
avionics, but only as simulators. It would be interesting to this research group to have an 
application developed using DiaSpec that controls a real avionic device. The INRIA 
labs has some models of the Parrot A.R. Drone, that is a quadricopter controlled using a 
Wi-Fi connection. This quadricopter has a few automatic procedures: it can take off and 
land alone and this make the control by the user a lot easier. The detailed description of 
the drone can be found in the section 1.3 of this rapport.

1.2  Objectives
The objective of the present work is to create an autopilot for the Parrot A.R. Drone 

using the DiaSpec tool. The implementation will be done entirely using the Java 
programming language. The Java language has been chosen because of its compatibility 
and flexibility: the programs described in this language can be easily executed in any 
operation system with the Java Virtual Machine.
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1.3  Drone Overview
It is very important to study the drone features, because this will determine the 

complexity of the autopilot and the auxiliary modules that are necessary. In this section 
we will present the drone features. The description of how the autopilot will be 
constructed will be discussed in the chapter 2.

The AR. Drone is a quad-rotor UAV (unmanned aerial vehicle) that receives 
commands via wireless connection. It can do automated actions like take-off, land and 
stay in the same position while flying (action known as “hover”). It may be used outside 
and inside buildings, with or without the protection structure (that will be named here as 
“indoor hull”). It uses a specific rechargeable lithium battery provided by Parrot. The 
drone sends real-time information about the its current state, current position and 
orientation, and also sends the video stream of a selected camera. It has an embedded 
Linux Operation System that can be accessed via Telnet protocol.

1.3.1  Drone Operation
For indoor use of the drone, the drone must be protected with the indoor hull. For 

outdoor use, there is another hull (the “outdoor hull”). Below are two pictures of the 
drone with there hulls.

Figure 1.1: The indoor hull (on the left side) and the outdoor hull.

To understand how the drone fly, consider the image below.

Figure 1.2: The rotation of the motors

Each pair of opposite rotor turns in the same way: one pair turns clockwise, while 
the other turns anti-clockwise. Consider Ω1, Ω2, Ω3 and Ω4 as the angular speeds of 
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each motor. To stay flying in the same position, the drone must keep all the angular 
speeds equal. To go in the direction of axis XB, YB and ZB, the drone change the 
angular speed of the angular speeds. To understand what the drone do to go in one 
direction, first consider the image below.

Figure 1.3: Throttle, roll, pitch and yaw (on the left side) and the equivalent in a plane.

Consider ΔA and ΔB as positive angular speed values.

To go in front and rear directions, the drone must change the pitch angle. To change 
the pitch angle, is necessary to change the angular speeds of the front and rear motors 
(case “c” of the above picture).

To go in left and right directions, the drone must change the roll angle. To change 
the roll angle, is necessary to change the angular speeds of the left and right motors 
(case “b” of the above picture).

To turn to left and to right, the drone must change the yaw angle. To change the yaw 
angle, is necessary to change the angular speeds of all motors (case “d” of the above 
picture), changing the speeds of each pair of opposite motors by the same amount.

Finally, to go upward and downward, the drone must change all angular speeds of 
the drone by the same amount (case “a” of the above picture).

To better understand what these angles mean, see the roll, pitch and yaw angles in a 
plane (figure 1.3, right side).

The drone uses a lithium battery designed by Parrot. A full charged battery gives 
power for about 12 minutes of continuous fly.

1.3.2  Sensors and Cameras
The A.R. Drone has many motions sensors. These motion sensors provides the 

software with pitch, roll and yaw measurements. These measurements are used for 
automatic pitch, roll and yaw stabilization and for assisted tilting control.

An ultrasound telemeter provides altitude measures that are used for automatic 
altitude stabilization and assisted vertical speed control.

The drone has two cameras: one front camera in horizontal direction, and a vertical 
camera towards the ground. The bottom (vertical) camera is used by the drone to 
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measure the ground speed, that is used for automatic hovering and trimming. The drone 
can send a encoded stream of these cameras: see section 3.2 for further details.

1.3.3  Wireless connection
The wireless connection is used by a client to control the drone. Any client device 

supporting Wifi in ad-hoc mode can connect to the drone. When we turn on the drone, it 
automatically creates a network with an ID called adrone_xxx, where xxx are numbers. 
If the drone detects an already existing network with the ID it intended to use, it joins 
the already-existing Wifi channel.

1.3.4  Drone Input/Output Streams
The drone sends two UDP output streams: the Navigation Data stream and the Video 

stream. The Navigation Data stream contains information about the current status of the 
drone and is described in the section 3.1. The Video stream contains the encoded data of 
one of the cameras and is described in the section 3.2.

The drone receives one UDP input stream: the stream that contains the commands. 
This stream is described in the section 3.3 and the way that the drone is controlled is 
shown in the subsection 1.3.5.

There is a communication channel that use the protocol TCP and is used to change 
the default configuration of the drone. This channel will not be used in the present work.

1.3.5  Controlling The Drone
To control the drone, a client must send commands in UDP packets using the Wifi 

connection. In this subsection, it's presented the automated procedures that the drone 
has and the PCMD command. This is what is necessary to understand how the drone is 
controlled. For a full description of all commands and their syntax, see the chapter 6 in 
Piskorski (2011).

The commands are formed by a string of 8-bit ASCII characters that always starts 
with “AT*”, followed by the command name, the equal sign, a sequence number, and a 
optional list of parameters. An AT command must be separated of another by newlines if 
they are in the same UDP packet. Example of command:“AT*PCMD=21625,1,0,0,0,0”.

1.3.5.1  Automated Procedures
The drone implement some automated procedures. They are: “take off”, “land” and 

“hover”. To activate these procedures, we just need to send the right command and the 
drone will do the procedure. In the “take off” procedure, the drone will automatically 
start to fly and will stay in a distance of about 1 meter of the ground. In the “land” 
procedure, the drone will automatically start to land and this procedure ends when the 
drone is completely stopped in the ground. In the “hover”, the drone will automatically 
try to stay in the same position in the space, canceling the inertial speed of the drone.
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1.3.5.2  The PCMD commands
The PCMD command is the command used to make the drone translate and rotate. 

PCMD means “progressive commands”. The syntax of this command is: 
“AT*PCMD=<sequence_number>,<flag>,<roll_p>,<pitch_p>,<gaz_p>,<rot_p>”.

The argument sequence_number, as the name says, is the number of sequence of the 
command and depends of how many commands have been sent before.

The argument flag defines if the drone will consider the arguments that follow it. If 
flag is 1, the drone will consider the arguments phi, theta, gaz, rotation. If flag is 0, the 
drone will execute the “hover” procedure (it will try to stay in the same position in the 
space, canceling the inertial speed of the drone).

The argument roll_p is a value in range [-1..1] that represents a percentage of the 
max value of the angle roll that the drone can achieve. This max value is set as default 
in the drone as 12 degrees (this value will not be changed in this work). For example, if 
roll_p is 0.5, the drone will bend 6 degrees in the roll angle, consequently moving to the 
right. If  roll_p is -0.5, the drone will bend -6 degrees in roll angle, consequently 
moving to the left. If  roll_p is 0, the drone will stay at zero degrees in roll angle.

The argument pitch_p is a value in range [-1..1] that represents a percentage of the 
max value of the angle pitch that the drone can achieve. This max value is set as default 
in the drone as 12 degrees (this value will not be changed in this work). For example, if 
pitch_p is 0.5, the drone will bend 6 degrees in the pitch angle, consequently moving 
backward. If  pitch_p is -0.5, the drone will bend -6 degrees in pitch angle, consequently 
moving forward. If  pitch_p is 0, the drone will stay at zero degrees in pitch angle.

The argument gaz_p is a value in range [-1..1] that represents a percentage of the 
max value of the vertical speed that the drone can achieve. This max value is set as 
default in the drone as 0.7 m/s (this value will not be changed in this work). For 
example, if gaz_p is 0.5, the drone will go in the Z axis with a speed of 0.35 m/s, 
consequently moving upward. If gaz_p is -0.5, the drone will go in the Z axis with a 
speed of -0.35 m/s, consequently moving downward. If gaz_p is 0, the drone will stay in 
the Z axis with a speed of 0 m/s, consequently not moving in this axis.

The argument rot_p is a value in range [-1..1] that represents a percentage of the 
max value of the angular speed that the drone can achieve. This max value is set as 
default in the drone as 100 degrees/s (this value will not be changed in this work). For 
example, if rot_p is 0.5, the drone will turn right at 50 degrees/s. If rot_p is -0.5, the 
drone will turn left at 50 degrees/s.  If rot_p is 0, the drone will not rotate.

This interface of the PCMD command makes the drone easy to control: if the client 
wants the drone to stay in the air doing nothing, he just need to send the command with 
all the 4 last arguments equal to zero, and the flag equal to 1. The drone will stay in his 
position, but will slide a little bit because of the inertia. If the client wants the drone to 
stay in his position canceling the inertia, he just need to send the command with the flag 
equal to 1. The drone will use internal algorithms and the image of the bottom camera to 
try to be in the top of the same point (this is the “hover” procedure). The user can make 
complex movements sending values for the 4 last arguments at the same time with the 
flag argument equal to 1. For example, the user can make the drone go forward and 
rightward while rotating to right and going upward, sending the right values of the 4 last 
arguments at the same time.
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2  OUR APPROACH

To construct the autopilot, we need as input a system that can provide real-time 
information about the position and orientation of the drone in the space and its velocity. 
As output, we need a way to send commands to the drone.

The drone sends via Wi-fi connection its information of relative position, orientation 
and velocity. It sends information about the position X, Y and Z of the drone in the 
space, the angles of orientation Yaw, Pitch and Roll (see section 1.3.1 to understand 
these angles) and the current velocity of the drone in the X, Y and Z axis. When we turn 
on the drone (or when we send the “flat trims” command), it stays stopped and take as 
reference the horizontal plane where it is (Pitch and Roll are adjusted, and Yaw is set to 
zero). When we make the drone take off, it starts to send valid values of X, Y and Z, 
considering as the origin of the position system (X,Y,Z = 0, 0, 0) the point where it has 
took off. Also, after it takes off, it starts to send valid information of the velocity of the 
drone in X, Y and Z axis.

However, there are many problems in using the position and the orientation sent by 
the drone:

– First, the position information (values of X, Y and Z) sent by the drone has a 
precision that is not so good. For example, if the drone has gone 1,5 meters in one 
direction, the position system may only register 1,3 meters of displacement;

– Second, as the time passes, the drone slowly lost the reference of Yaw angle. The 
drone slowly increases or decreases the value of Yaw without any physical change of 
orientation of the drone. Consequently, the drone loses the reference of its orientation.

– Finally, in this work, the origin of the position system of the software not always 
correspond to the place where the drone took off. We want to make the drone take off in 
different places and we want that the drone always know his right position.

To resolve these problems, we will need a way to reset, or calibrate, the position and 
orientation system periodically on the fly. The solution found to do this calibration is to 
use the image of the bottom camera of the drone to recognize special markers in the 
floor, that we will refer in present work simply as “tags”. When we find a tag in video of 
the bottom camera, we extract the information of position and orientation coded in this 
tag. Also, to have a precise value of the current position, we will use the information 
about the current drone angle, the information about the current altitude of the drone 
(measured by the drone using the ultrasound telemeter sensor) and the information of 
the position of the tag in the video image to calculate the physical distance from the 
drone to the tag in the X, Y and Z axis.

Our approach to create the drone autopilot is a layered scheme. We will create four 
software layers: the Drone Communication layer, the Real-Time Position layer, the 
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Autopilot layer and the User Interface layer. The Drone Communication layer will be 
responsible to decode the drone incoming streams and to send commands to the drone 
as an output stream. The Real-Time Position layer will calculate in real-time the right 
position and orientation of the drone using the information provided by the Drone 
Communication layer. The  Autopilot will choose the right command to send to the 
drone using the information provided by the Real-Time Position layer. The User 
Interface layer will provide to the user global control and information about the system 
and will interact with all the others layers. This scheme is in the figure 2.1. In this 
figure, the arrows represent the data flow.

Figure 2.1
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3  DRONE COMMUNICATION LAYER

The Drone Communication layer is responsible for all the communication between 
the drone and the Drone Autopilot System. Basically, this layer receives and decodes the 
drone output streams and sends commands to the drone. The drone output streams are 
two: the navigation data stream and the video stream. The navigation data stream 
contains the information of position, orientation, battery level, current drone mode (like 
“landed”, “flying”, “taking off”), velocity, drone altitude (measured by the ultrasound 
telemeter sensor) and others less important information. The video stream contains the 
encoded images captured by one of the two cameras (and can also send a mixture from 
the two cameras).

As the task of this layer is to receive two input streams and send one output stream, 
this layer is divided in 3 modules: the Navigation Data Receiver, the Video Decoder and 
the Drone Controller (that sends commands). Each module is described in the next 
sections.

3.1  The Navigation Data Receiver Module
The drone sends the stream called “Navigation Data” via wireless using the UDP 

protocol in the port 5554. This is the stream that contains information like the drone 
position, orientation, velocity and battery. The task of this module is simple: it receives 
the Navigation Data stream and unpack the necessary variables.

Not all the values of the Navigation Data stream are read by this module. See below 
a list of the values of the stream that are read:

– The current battery level;

– The angles Theta, Phi and Psi, that inform the current drone orientation (see 
subsection 1.3.1);

– The value of the current altitude measured by the ultrasound telemeter sensor of 
the drone;

– The values of the current position of the drone in the space, as values in the X, Y 
and Z axis;

– The values of the current velocity of the drone in the X, Y and Z axis;

As already said in the section 2, the position information (values of X, Y and Z) sent 
by the drone has a precision that is not so good and the Yaw angle reference is lost as 
the time passes. This motivates the creation of the Real-Time Position layer. See section 
2 (“Our Approach”) for full details.
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3.2  The Video Decoder Module
The drone sends the video stream via wireless using the UDP protocol in the port 

5555. The video stream is encoded in a simplified H.263 UVLC (Universal Variable 
Length Code). This means that the drone video stream is just a set of complete images 
sent one by one by the drone. To create a decoder to the video stream, it's not very 
complicated: it's necessary to create a decoder for one image and call this decoder each 
time that a new image comes. The video stream sends 15 images by second, and the 
resolution is QCIF (176x144 pixels) for the bottom camera and QVGA (320x240 
pixels) for the front camera. A brief description of the structure of these images and the 
algorithm to decode them are presented in the next subsections.

3.2.1  The Image Structure
The images sent by the drone are split in Group of Blocks (GOBs). A GOB is just a 

horizontal slice of the image. The image below show an image divided in GOBs.

Figure 3.1: An image split in GOBs

Each GOB is split in Macroblocks, which represents a 16x16 image. The image 
below show a GOB split in Macroblocks.

Figure 3.2: A GOB split in Macroblocks

Each Macroblock contains information of a 16x16 image, in YCBCR format, type 
4:2:0. To understand this format, consider the image below.
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Figure 3.3: The Macroblock

As shown in the figure 3.3, the 16x16 pixels Macroblock is composed of six 8x8 
blocks: four luminance blocks (Y0, Y1, Y2, Y3) and two down-sampled color blocks (CB 

and CR). This format, known as YCBCR 4:2:0, maintains the full information of the 
luminance of the 16x16 pixels image, while loses information about the color. The 8x8 
color blocks cover an area of 16x16 pixels. In other words, each pixel of the color 
blocks will be used to generate four pixels of the final 16x16 image.

Each of the six 8x8 blocks of the Macroblock is encoded using the first steps of the 
JPEG encoding: DCT (discrete cosine transform), Quantization and Zig-Zag Ordering. 
After these steps, the zig-zag list of values are coded using an specific Entropy 
Encoding. The whole process is shown in the figure 3.4.

Figure 3.4: The process of codification of the 8x8 blocks of a Macroblock

The Entropy Encoding process is based on a mixture of Run-Length Encoding and 
Huffman Coding. This process will not be described in detail in this document. More 
information about the Entropy Encoding can be found in the chapter 7 in Piskorski 
(2011).
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3.2.2  The Video Decoder Algorithm
The algorithm used to decode the stream of the video is shown below. It is described 

here in pseudo-code and in a high-level way.

For each new image that arrives {
For each GOB {

For each Macroblock {
For each of the six 8x8 blocks {

Undo the Entropy Encoding;
Undo the Zig-Zag Ordering;
Revert the Quantization;
Apply the Inverse DCT;

}
Convert from YCbCr to RGB

}
Combine the Macroblocks in one GOB

}
Combine the GOBs in one image

}

Figure 3.5: The algorithm of the video decoder

3.3  The Drone Controller Module
The drone receives commands via wireless using the UDP protocol in the port 5556. 

The AR Drone Developer Guide recommends to send commands every 30ms (or less) 
for a satisfying control of the drone. This is what this module does: it implements a 
queue of commands and sends a new command every 20ms. If there isn't any new 
commands, it sends the last command sent. See section 1.3.5 to understand the 
commands and how the drone is controlled.

The other responsibility of this module is to initialize the communication with the 
drone. This means to make the drone initiate the transmission of Navigation Data and 
Video streams.
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4  REAL-TIME POSITION LAYER

In this chapter is presented the system that is used to detect the position of the drone 
in the space. This system is implemented in the second layer of the software. To know 
the position and the right orientation of the drone, we will need to extract information 
from the environment. This is necessary because, as already discussed in the chapter 2, 
the drone loses the reference of its orientation and has a internal position system that is 
relative and imprecise. To extract information of the environment where the drone is, 
the only reliable way is to use the the image of the cameras. As the drone will always 
have a nearly constant distant of the ground, the most suitable camera is the bottom 
camera, that captures images of the ground.

To create this system, we will use “tags”, that are special markers. These markers are 
recognizable in the image of the bottom camera. When we find a tag in the image of the 
camera, we will use the position and orientation of the tag to calculate the position and 
orientation of the drone in the space. To find the tags, we will use some image 
processing algorithms.

The position system of the autopilot software in the environment will be fixed and 
will have two axis: X and Y. When we find a tag, we will extract the absolute position of 
the tag in the environment. That means that if one tag is placed in the position X=100 
and Y=200 in the environment, we need to extract from the tag the pair X=100, Y=200. 
Also, the unit of the system will be millimeters, because all measures of length sent by 
the drone are in millimeters.

The tasks of this layer are: locate tags and extract the information of them in the 
image streamed from the drone, calculate the position and the orientation of the drone 
using the extracted information and merge the calculated data with the other navigation 
data sent by the drone, providing a single source of flying information about the drone. 
Moreover, as a separated task, this layer will stock the flight plan that will be used after 
by the autopilot.

The task of localize and extract information from tags in an image will be discussed 
in the section 4.1, “The Tag Detector Module”. The task of calculate the drone position 
and orientation using the extracted information will be discussed in the section 4.2, 
“The Position Calculator Module”. The task of merge the calculated data with other 
navigation data sent by the drone will be discussed in the section 4.3, “The Drone 
Current Data Module”. The task of stock the flight plan will be discussed in the section 
4.4, “The Flight Plan Module”.

4.1  The Tag Detector Module
This module will detect tags (special markers) in the image of the bottom camera 



20

sent by the drone. In the next subsections, will be presented the research of available 
libraries found to do this task, the design of the tags and the procedure used to find the 
tags in an image.

4.1.1  Research of Available Libraries
Many libraries that could do the task of find a marker in an image were found in the 

Internet. In this section, we will talk about these libraries.

The library Zxing (2011) is an open-source project of image processing of 1D/2D 
barcodes. The idea was to use the barcodes as tags and process the images of the bottom 
camera using this library. Many tests have been done using this library, and the 
conclusion was that it could not be used, because of the low quality of the bottom 
camera (the resolution of the video is 176x144 pixels). To recognize any type of barcode 
at 1 meter of distance from the bottom camera, the barcode would need to be very big.

The libraries GOCR (2010), Tesseract-OCR (2010) and Asprise (2007) can do 
recognition of texts in images. The tags could be some letters in the ground that we 
could extract some information. The main problems are: the libraries cannot 
automatically detect a rotated text and, one more time, the low quality of the bottom 
camera, because these software need a good resolution in the input image. Moreover, 
Asprise is not free of cost and GOCR and Tesseract-OCR are not written in Java (see 
section 1.2, “Objectives”: this work will be written entirely in Java). 

The libraries Camellia (2008), OpenCV (2010) and OpenSurf (2010) are well-
known open-source projects of computer vision. But all of them are written in C/C++ 
and have their own formats of image. It was verified that do the interface between Java 
and C/C++ and do the conversion between the image formats would take a lot of time. 
Moreover, there is always the risk that the library not work with a such a low resolution 
camera.

The library ImageJ of Rasband (2011) and the library JavaVis (2005) are open-
source projects of image processing and are written in Java. They can find artifacts of 
images and apply various filters. In particular, a very interesting feature of ImageJ is 
that it can find circles in a thresholded image, extract information like the position of the 
center of these circles in the image and their size. Also, it does this very fast. This 
feature has motivated the creation of a custom design of tags that uses some circles in its 
design. For more information about ImageJ, see Abramoff (2004). For more information 
about JavaVis, see Perez (2007).

The decided approach was to create a custom design of tag and a custom algorithm 
to detect this tag, using in this algorithm the data of circles found by ImageJ after it has 
processed the image captured in the bottom camera. Doing this, we can have an design 
of tag as simply as necessary to be detected in a low resolution image.

4.1.2  The Tag Design
The constraints for the design of tags are: the resolution of the bottom camera (only 

176x144), the usual distance from the tag to the camera (environ 1 meter) and the size 
of the tag itself (that must not be too big and must be printable in an ordinary printer). 
After some tests, the size of the tag was defined as a square of environ 20x20 cm.

A positive feature of the bottom camera is that it has very good detection of 
brightness and reasonable detection of colors. We can use use this feature to encode 
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information in the tags.

Thinking in the available resources and in the constraints, the model of the tag 
created was this: a set of 4 circles, arranged as geometrically as a square, using 5 colors 
(black, red, green, blue and gray). The figure 4.1 shows a sample of a tag.

Figure 4.1: The tag model

The tag is the set of four circles. The top-left circle is always black. It has two 
purposes: determine the tag orientation and be the reference of darkest color. The other 
3 circles may have any of these four colors: red, green, blue and gray. They have the 
purpose of encode the tag value. In the center of the set of four circles, there is a white 
area that has the size of a circle. The purpose of this area is to be the reference of the 
lightest color.

The tag value is encoded using 3 circles: the top-right, the bottom-left and the 
bottom-right ones. Each of these 3 circles can have one of the 4 colors: red, green, blue 
and gray. Because of this, each of these 3 circles carry 2 bits of information (log2 4 = 2). 
Consequently, we have 6 bits of information using these 3 circles (3 times 2 bits). As 
result, the tag value can be 64 different values (2  = 64⁶ ). To decode the tag value, we 
decode the bits of the top-right circle, the bits of the bottom-left circle and the bits of the 
bottom-right circle, in this order, and after we concatenate all bits. The value in binary 
of each color is: “00” for blue, “01” for red, “10” for green and “11” for gray. 
Considering the tag of the figure 4.1, we have: “00” (top-right circle), “01” (bottom-left 
circle) and “11” (bottom-right circle). Concatenating these values, the result is:

“00” + “01” + “11” = 000111 = 7,

as said in the image (“Tag Value = 7”).

The tag value is an integer value in range [0 .. 63]. It cannot inform directly the 
position of the tag. Because of this, the tag value will be used as index in a table of 
positions, that is stored in the software. For example, if the tag value is 7, we use this 
value as input in the table and we have: tag.x = table.x[7] and tag.y=table.y[7].

The colors of the tag haven't been chosen randomly. As said before in this section, 
the bottom camera has very good detection of brightness and will not have problems 
detecting black, gray and white. The detection of colors is not so good, and many colors 
has been tested. As result of these tests, we have that the blue and the red colors have 
been very well detected (probably because of the original YCBCR codification of the 
video). The green color also have been well detected (but not as well as the red and the 
blue). The other argument to use the red, blue and green colors is because of the output 
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format of the decoded image of the video, that is RGB. These three colors are easy to 
detect in this format.

The tag may be detected in any position by the drone (rotated 180 degrees, for 
example). But the tag will be placed in the ground always with the correct orientation: 
the X and Y axis printed in the tag will be always aligned with the X and Y axis of the 
position system of the autopilot (the X and Y axis of the environment). In other words, 
if the drone finds a tag rotated 60 degrees in the image of the camera, that means that 
the drone is rotated -60 degrees compared to the axis of the environment. This is the 
other information that we will extract from the tag: the angle of rotation of the drone 
compared to the position system implemented. This is easy to be done, because there is 
only one the black circle in the tag and it must always be considered as the top-left one. 
To find the black circle in a tag using a computer, we just need to compare the colors of 
all the four circles: the darkest one will be the black circle. In short: we will discover the 
current angle of rotation of the drone analyzing the angle of rotation of the tag in the 
image captured by the camera. Doing this, we can correct the loss of reference of the 
rotation angle (this is discussed in the chapter 2).

When we print a tag and see it in a decoded image of the bottom camera, we can 
notice that the black color isn't exactly black and the white color isn't exactly white, 
because the light in the environment vary. That is also a reason to always have present 
in a tag a black circle and a white area: the color of the black circle will be considered 
the reference of max black value and the color of the white area will be considered the 
reference of max white value.

As this model of tag allow the indirect storage of his position and the calculation of 
the current drone rotation angle, it satisfies the needs as spatial source of information.

4.1.3  The Procedure to Find Tags
The task of find a tag in an image will be split in three steps. First, we will extract 

information of circles presents in the image using ImageJ. After, we will process this 
extracted data and determine if there is one or more tags in the image. Finally, if there is 
at least one tag present, we will extract the values of the tags. 

4.1.3.1  Processing the Image with ImageJ
To find the circles in an image, the Particle Analyzer of ImageJ will be configured to 

find circles. As it can only find particles in a thresholded image, we first need to 
threshold the image. For further information of how the Particle Analyzer of ImageJ 
works, see the chapter 27 in Ferreira (2011).

To better understand the whole process, consider the figure 4.2 below.

Figure 4.2: ImageJ analyze process



23

The original image (4.2a) is thresholded (4.2b) using another function of ImageJ.

The output of the processing of the thresholded image is shown in the case 4.2c . It 
informs the area and the X and Y position of the center of each circle found.

4.1.3.2  Processing The Extracted Data From The Image
The available data about the circles in the image is a table that contains the area, the 

X position of the center and the Y position of the center of each circle. Now, it's 
necessary to determine if in this set of circles there is one or more tags.

A tag is four circles with the same size that are arranged as a square. To find a tag in 
a set of circles, we need first to verify if there is any combination of 4 circles that forms 
a square. To each combination found that forms a square, we need to verify if the four 
circles have approximately the same size.

To verify if any combination of 4 circles forms a square, it's only necessary to 
consider the position of the central point of each circle. In short, we will verify if any 
combination of 4 points in the Cartesian space forms a square. The optimized algorithm 
created to do this is presented in the Appendix B, named “The Square Finder 
Algorithm”.

If any combination of 4 circles passes through the two tests (they forms a square and 
the size of the 4 circles are approximately the same), it goes to the final step: the tag 
value extraction.

4.1.3.3  Extracting The Tag Value
A tag has been found in the picture and the position of the four circles is available. 

Now, the value of the tag will be extracted. This will be done in two steps: the first step 
is collect the colors of the circles and the second step is to determine which circle is the 
“top-left” (the black circle), which circle is the “top-right” (that carries the most 
significant bits of the tag value), which circle is the “bottom-left” and which circle is the 
“bottom-right” (that carries the less significant bits of the tag value). This second step 
will be called the ordering of the circles. Remember: the tag may be found in the image 
in any orientation (like upside-down, for example), and this is why it's necessary to do 
the ordering. With the information of the ordering and of the colors, it's easy to 
determine the tag value (see section 4.1.2).

To collect the color of a circle, it's necessary to take some pixels inside the circle as 
samples and calculate the average color value of these pixels. As we know the area of 
the circle, we can calculate the radius of the circle. With the value of the radius  and the 
Xc,Yc position of the center of circle, we can determine the position of the pixels that 
are inside of the circle. For example, the pixel with the position X=Xc, Y=Yc+(radius/2) 
will surely be inside of the circle.

To put the circles in the right order to extract tag value, we will use the position of 
the black circle. In short, what must be done is to name the three other circles (as “top-
right”, “bottom-left” and “bottom-right”) taking as reference the black circle (the “top-
left” circle). To do this, the only information available is the positions of the central 
point of the circles. The algorithm that does this is presented in the Appendix C, “The 
Points Ordering Algorithm”. Doing the ordering, we know what information each circle 
carries and the value of the tag can be determined as was explained in the section 4.1.2.
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4.2  The Position Calculator Module
This module will calculate the drone position in real-time. When one tag is found 

(by the Tag Detector Module), this module receives the value extracted and the center 
position of the tag in the image and calculates the exact position of the drone in the 
space. This procedure is discussed in the section 4.2.1. When there is no tag in the 
video, this module uses the real-time data sent by the drone and the data collected in the 
last time that one tag was found. This procedure is discussed in the section 4.2.2.

4.2.1  Calculating The Position Using A Tag
When one or more tags are found in the video, the Position Calculator module 

receives a list. This list contains data about all the tags found. What the Position 
Calculator does is: it chooses one of this tags (usually the tag closest to the center of the 
image, but any tag can be used), calculates the distance from the drone to the tag and 
adds this distance to the position coded in the tag (that is referenced by its value).

To calculate the distance from the drone to the tag we will use the camera angles, the 
drone angles and the altitude of the drone. The bottom camera of the drone has an 
diagonal aperture of 64°. Doing some trigonometric calculation, we discover that this 
camera has 51.62° of horizontal aperture and 43.18° of vertical aperture. The figure 
4.3.a shows the capture area of the camera, the figure 4.3.b shows the image captured by 
the camera and the figures 4.3.c, 4.3.d and 4.3.e show the aperture angles of the camera.

Figure 4.3

The image captured has a resolution of 176x144 pixels. In other words, it has 176 
horizontal points and 144 vertical points. The central position of the tag is px, py. The 
value px is the horizontal position of the tag in the image and is measured in pixels. The 
value py is the vertical position of the tag in the image and is also measured in pixels. 
Each point in the image has two angles associated with it: alfa and beta, related to the 
horizontal and the vertical apertures of the camera. These points and angles are shown 
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in the figure 4.4.

Figure 4.4

The figure 4.4 shows the case when the drone is in a plane parallel to the ground, but 
this is not always valid. The drone changes the pitch and the roll angles to move in the Y 
and X axis (see section 1.3.1). This will incline the camera also. The pitch rotate the 
vertical aperture of the camera and the roll rotate the horizontal aperture of the camera. 
This effect is shown in the figure 4.5.

Figure 4.5

Now, to determine the distance from the drone to the tag, we use the equations 
below. In the equations, Hd represents the horizontal distance (in the drone horizontal 
axis), Vd represents the vertical distance (in the drone north-south axis) and c is the 
altitude of the drone (in the drone Z axis). They are all measured in millimeters.

Hd = c.tan( α+roll )
Vd = c.tan( β+pitch )

The tag is always aligned to the position system of the autopilot. As said in the 
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section 4.1.2, the tag will be placed in the ground always with the correct orientation: 
the X and Y axis printed in the tag will be always aligned with the X and Y axis of the 
position system of the autopilot (the X and Y axis of the environment). This means that 
if the drone finds a tag rotated 60 degrees in the image of the camera, that means that 
the drone is rotated -60 degrees compared to the axis of the environment. The distances 
Hd and Vd were calculated using the horizontal and vertical axis of the drone as 
reference. If this reference is not aligned with the position system of the autopilot, we 
need to rotate Hd and Vd in the plane XY. The rotated value of Hd will be called DeltaX 
and the rotated value of Vd will be called DeltaY.

To do the rotation, it's necessary to find the rotation angle of the tag in the image. 
This is easy to be done, it's only necessary to know the position of the “top-left” circle 
(the black circle) and the “top-right” circle. With their positions, we calculate the angle 
between the drone horizontal axis and the line formed by the two points. This angle will 
be called μ and is shown in the figure 4.6.

Figure 4.6: In this case,  μ ≈ -40 degrees

The drone is rotated  -μ compared to the position system of the autopilot (that is 
implemented using the tags). The distance from the drone to the tag in the position 
system of the autopilot is defined by:

Angle=arctan (Vd /Hd )+μ

DeltaX =√Hd 2+Vd 2 . cos(Angle )

DeltaY=√Hd 2+Vd 2 .sin (Angle)

The position of the drone in the position system of the autopilot is:
X =TagX −DeltaX
Y =TagY−DeltaY

The variables TagX and TagY are the values X and Y decoded from the tag value.

The variable -μ is the true drone Yaw angle in the position system of the autopilot. 
Its value will be used correct the loss of reference problem discussed in the chapter 2. 

4.2.2  Calculating The Position Without A Tag
The values of position and orientation can be calculated when there is no tag in the 

video, using the navigation data sent from the drone. But to do this, it's necessary that 
the drone has seen one tag at least once before, because the values calculated using the 
tag will be used.

The value of Yaw received now from the drone is compared to the value of Yaw 
received from the drone during the last time that one tag was found. The difference of 
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them is added to the value of Yaw deducted from the tag in the last time it was found.

The value of the position X and Y received now from the drone is compared to the 
value of the position X and Y received during the last time that one tag was found. The 
difference of them will be called dX and dY. But the axis X and Y of the drone are not 
the same X and Y axis of the position system of the autopilot, because the variable Yaw 
received from the drone is not the same variable Yaw of the drone in position system of 
the autopilot (that was deducted from the tag), so the axis of the drone and axis of the 
position system have some difference. The values of dX and dY must be rotated in the 
plan XY by the difference in degrees between the two XY planes. This angle difference 
is the difference between the Yaw deducted from the last time that one tag was found 
(the value is -μ, as said in the section 4.2.1) and the value of Yaw received from the 
drone in the last time that one tag was found. This difference will be called here 
AxisDifference. Finally, the rotated values of dX and dY are called dXrot and dYrot and 
are defined by:

Angle=arctan (dY /dX )−AxisDifference

dXrot=√dX 2+dY 2. cos (Angle)

dYrot=√dX 2+dY 2. sin (Angle )

The position of the drone in the position system of the autopilot is:
X =TagX +dXrot
Y =TagY+dYrot

The variables TagX and TagY are values X and Y decoded from the tag value in the 
last time that the tag was found.

4.3  The Drone Current Data Module
This module has a single purpose: be the only source of information about the drone 

to all the layers of the system that are above of the second layer. What this module does 
is: it receives the output of the Navigation Data Receiver module (see section 3.1) and 
overwrites the variables that were recalculated by the Position Calculator module (see 
section 4.2). These variable are: the X position of the drone in the position system of the 
autopilot, the Y position of the drone in the position system of the autopilot and Yaw 
angle of the drone in the position system of the autopilot.

4.4  The Flight Plan Module 

This module contains the flight plan of the autopilot and provides this plan to the 
other modules. The flight plan is simply an queue of point in the XY plane. The first 
point in the queue is the first destination, the second point is the second destination, and 
so on. This module encapsulates this queue and control the addition and the removal of 
destinations in the flight plan. Also, it can inform the other modules when the flight plan 
changes.
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5  AUTOPILOT WITH DIASPEC

In this chapter, the autopilot is presented. The control system is presented in the 
section 5.1. The DiaSpec, that is the tool used to design the autopilot system, is 
presented in the section 5.2. The architecture of the autopilot system (created using 
DiaSpec) and its implementation is presented in the section 5.3.

5.1  Autopilot Control System
In this section, it's described the control system used to create the autopilot. In the 

subsection 5.1.1, it's described the state machine and the monitor that control the drone. 
In the subsection 5.1.2, it's presented how the drone acceleration and inertial velocity 
are controlled.

The drone itself can move in any direction and never need to rotate to move to 
another location. But the created autopilot works like an autopilot of an helicopter: it 
rotates towards the right direction before of move. The reason to this is that making the 
autopilot this way it's more stable to operate in small places, like rooms in buildings.

5.1.1  The Autopilot State Machine and The Autopilot Monitor
The drone, while it is flying, is controlled using a state machine. It has only 5 states. 

These states and the events that make the changing from one state to another is 
illustrated in the figure 5.1.

Figure 5.1
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The autopilot control system has a autopilot monitor that will be always monitoring 
the flight plan and the drone state. This autopilot monitor controls globally the state 
machine. If the flight plan is empty and the drone state is “flying”, it automatically 
sends the command “land” and turn off the state machine from the figure 5.1. If the 
flight plan is not empty and the drone state is “landed”, it automatically sends the 
command “take off” and turn on the state machine from the figure 5.1. In other words, 
as already said, this state machine only is turned on while the drone is flying. The 
commands “take off” and “land” are sent by the autopilot monitor, that can turn on and 
off the state machine of the figure 5.1. This separation makes easy the manipulation of 
the autopilot by the user interface: the user interface sends a message to the monitor if it 
wants the autopilot to be turned on or be turned off, and the monitor will take care of all 
the necessary procedures. Another task of the autopilot monitor is to send periodically 
to the user interface some information about the autopilot, like what it's doing.

The only task of the state machine illustrated in the figure 5.1 is to achieve the 
current destination in the flight plan and after delete this destination. It will do this and 
enter in the “Waiting” state. The autopilot monitor will be reported by the flight plan 
that it has changed (the current destination was deleted). If there is any remaining 
destinations in the flight plan, the autopilot monitor will send a “wake-up” message to 
the state machine, causing the state machine to change from the state “Waiting” to the 
state “Normal” (this causes the state machine to restart). If the flight plan is empty, the 
autopilot monitor sends a “land” command to the drone and will turn off the state 
machine, that was in the “Waiting” state.

To understand how the autopilot state machine works, consider the following 
scenario: the flight plan has two destinations, the first is A and the second is B. The user 
interface turns on the autopilot. The autopilot monitor verifies that the flight plan is not 
empty and does two actions: send the “take-off” command to the drone and turns on the 
autopilot state machine. The state machine starts in the state Normal. This state only 
does something after the end of the “take-off” procedure.

The procedure “take off” ended and the drone is flying. In the Normal state, the 
drone will verify if its north direction is aligned with the direction of the current 
destination (the current destination is A). The difference between the north direction and 
the direction of the current destination is bigger than 30 degrees (|angleDifference| > 
30º) and the distance from the drone to the current destination is bigger than 0.5 meters 
(isNearDestination == false). This causes the event E1 and the state machine changes to 
the state Normal_Rotation. In this state, the drone will rotate until its north direction and 
the current destination direction be aligned (angleDifference == 0º). When this occurs, it 
causes the event E2 and the state machine switches to the Normal state.

In the Normal state, the north direction of the drone and direction of the current 
destination are aligned, or nearly aligned. The drone only needs to go forward to 
achieve its destination, and eventually a little to the left or to the right. While in Normal 
state, the state machine sends commands to the drone to make it move in the north-south 
axis and to the left-right axis. The direction of the movement in each axis is defined by 
the distance from the drone to the destination in each axis. For example, if the distance 
from the drone to the destination in the north-south axis is positive, the drone must 
move forward. If the distance from the drone to the destination in the left-right axis is 
negative, the drone must move to the left. It is important to notice that the drone make 
movements in both axis at the same time (going forward and leftward at the same time, 
for example). The acceleration and the velocity in each of these axis is also defined by 
the distance in each axis and this will be discussed in the section 5.1.2.
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The drone is moving toward the current destination (that is A) and the state machine 
continues in the state Normal. At some moment, the distance from the drone to the 
current destination is lower than 0.5 meters (isNearDestination == true) and the current 
destination is not the final destination of the flight plan, because there is B 
(validNextDestination == true). This causes the event E3 and the state machine switches 
to the state Intermediate_Rotation.

As the current destination is just an intermediary point in the flight plan, it's not 
necessary to go in the exact position of the current position. The state 
Intermediary_Rotation means “drone rotation in an intermediary destination of the 
flight plan”. In this state, the drone will rotate to align its north direction with the 
direction of the next destination (the point B), while will still moving to the current 
destination (the point A). In other words, the drone will rotate toward the next 
destination while it stay near to the current destination of the flight plan. When the north 
direction is aligned (angleDifference2 == 0), this causes the event E4 and the drone 
state machine switches to state In_Destination.

The state In_Destination is a transitory state. It sends a message to the flight plan 
module to delete the current destination. When this is done (currentDestinationDeleted 
== true), this causes the event E5 and the state machine switches to the state Waiting.

In the state Waiting, the state machine will wait a “wake-up” message from autopilot 
monitor. As the flight plan was changed, the autopilot monitor will verify the flight plan. 
As the flight plan is not empty, it sends a “wake-up” message to the state machine. 
When this occurs (wakeUp == true), this cause the event E6 and the state machine 
swiches to the Normal state.

In the Normal, the state will verify its north direction is aligned with direction of the 
current destination (that now is B), and may change to the state Normal_Rotation, as 
already explained before. Continuing in the Normal state, the drone will move toward 
the current destination. This time the event E3 will not occur, because there is no next 
destination after the current (validNextDestination == false). The drone will stay in the 
Normal state moving toward the current destination. When the distance from the current 
destination is lower than 0.25 meters (isInDestinationRange == true) and the velocity of 
the drone is low enough to consider the drone stopped in the air (lowVelocity == true), 
these causes the event E7. Then the state machine will switch to the In_Destination 
state, will delete the current destination, and the state machine will switch to the state 
Waiting. As the flight plan has changed, the autopilot monitor will verify the flight plan. 
The flight plan will be empty and the drone monitor will send the command “land” to 
the drone and will turn off the state machine, that is in the Waiting state.

5.1.2  The Autopilot Acceleration Calculator
In this section is presented a little module used by the autopilot state machine to 

calculate the acceleration of the movements of the drone, the autopilot velocity 
calculator.

Before talking about the velocity calculator, its necessary to talk about the objectives 
of the present work. Make an high-performance and fast autopilot for the drone is a 
complex task and is not the objective of the autopilot presented here. It may involve 
measuring the time response of the sensors of the drone, study in detail the quality of 
the inertial unit present in the drone, create complex control loops based in differential 
equations, among other things. It may consume a lot of time and may ever not be 
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possible to do: as already said before, the drone sensors do not have a high quality. 
Instead of this, the objective of the autopilot described in the current work is to create a 
stable and simple autopilot, that demonstrates a implementation created using DiaSpec 
working in a real device and that works well. To achieve this objective, we will not 
permit the drone to have high inertial velocities and to do fast movements.

Through several tests with the drove, it was verified that with a inertial speed limit 
of 700 mm/s the drone can cancel the inertial velocity accumulated without causing too 
much oscillations, that could make the flight unstable. With an acceleration limit of 300 
mm/s² the drone can move in any direction without acquiring significant inertial 
velocity too fast, that could cause also oscillations. These values were taken as limit 
values for the autopilot velocity calculator.

To move in the left-right axis and in the north-south axis, the drone changes the 
values of the roll and pitch angles. When the drone incline itself, it accelerates toward a 
direction. It is very important to understand this: to make the drone move, we are 
passing a parameter (the angle of inclination) that means an acceleration. The 
commands go up / go down and rotate are different, as they works with a parameter that 
means velocity. For more information, see section 1.3.5.2, “The PCMD Commands”.

The equations of acceleration used to control the drone velocity are shown in the 
figure below. The transformation between acceleration in millimeters by seconds and 
inclination angles of the drone won't be demonstrated here. This transformation is not 
necessary to understand how the acceleration calculator works. It is important to notice 
that the drone moves in both left-right and north-south axis at the same time and that's 
why there are X and Y accelerations.

// First step of the calculation
nearDistance = 500;     // measured in millimeters
maxAcceleration = 300;  // in mm/s²
maxVelocity = 700;      // in mm/s

baseAccelerationX = maxAcceleration;
baseAccelerationY = maxAcceleration;

if (distanceX < nearDistance) {
baseAccelerationX = maxAcceleration*(distanceX/nearDistance);

}
if (distanceY < nearDistance) {

baseAccelerationY = maxAcceleration*(distanceY/nearDistance);
}

// Second step of calculation
velocityDecrementX = maxAcceleration*(velocityX/maxVelocity);
velocityDecrementY = maxAcceleration*(velocityY/maxVelocity);

accelerationX = baseAccelerationX - velocityDecrementX;
accelerationY = baseAccelerationY - velocityDecrementY;

Figure 5.2

To explain the calculation of the acceleration, we will split it in two steps. In the first 
step, the base value of the acceleration is calculated. In the second step, the final 
acceleration is calculated.

In the first step, the value of the base acceleration is always equal to max value. But 
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if the drone is near of the destination (“distance < nearDistance”) the drone must reduce 
the acceleration. Near of the destination, the acceleration will be reduce linearly (it will 
be a fraction of the max value, as the value of “distance/nearDistance” will always be 
between 0 and 1).

In the second step, the acceleration of the drone must be reduced or augmented if the 
drone already has an inertial velocity. For example, if the base acceleration is rightward 
at the max acceleration but the drone already is moving to the right at the max velocity, 
the resulting acceleration must be zero. In other case,  if the base acceleration is 
rightward at the max acceleration but the drone is moving to the left at the max velocity, 
the final acceleration will be two times the max velocity rightward. Accelerations above 
the max value are only permitted to stop the drone inertial velocity.

There is also a special case. When the autopilot state machine is in the state 
Normal_Rotation, the drone must rotate in the air while stopped in the left-right and 
north-south axis. When the state machine is in this state, it sends a flag to the 
acceleration calculator. This flag makes the acceleration calculator output values to try 
to stop completely the inertial velocity of the drone. The equations to do this are shown 
in the figure 5.3.

maxAcceleration = 300;  // in mm/s²
maxVelocity = 700;      // in mm/s

accelerationX = (-velocityX / maxVelocity) * maxAcceleration;
accelerationY = (-velocityY / maxVelocity) * maxAcceleration;

Figure 5.3

The values of acceleration calculated in the figure 5.3 are always against the linear 
velocity of the drone.

5.2  DiaSpec Description
DiaSpec is a tool developed by the INRIA Phoenix research group affiliated with the 

University of Bordeaux I, LaBRI. This tool allows the automatic generation of a 
programming framework through the specification of the target system architecture. The 
specification of the system architecture is done using the DiaSpec description language.

The DiaSpec tool contains a compiler that takes as input a specification described in 
the DiaSpec description language and generates a set of code source files that contain 
the abstraction of each module from the specification and the implementation of the 
relationship between the modules described in the specification. The programmer of the 
system need to code the behavior of each module, but not the relationship between the 
modules, because DiaSpec already has generated it.

The modules of the architecture described in the specification are divided in three 
types: devices, contexts and controllers. Each device may make available sources of 
data. Also, each device has actions that it can do.

The contexts are like functions: it takes some data as input, do some calculation and 
output a result. The controllers are the only modules that can active actions in the 
devices. The figure 5.4 shows the interactions between devices, contexts and 
controllers.
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Figure 5.4

To illustrate the description of an architecture using DiaSpec, consider the system 
shown in the figure 5.5.

Figure 5.5

The figure 5.5 shows the architecture of a fire management system. The devices 
Smoke Detector and Temperature Sensor make available sources of data about the 
smoke and the temperature in the place. The contexts Smoke Detected and Average 
Temperature process the data from the sources and output a conclusion to the context 
Fire State. The context Fire State activates the controller Fire Controller. The controller 
Fire Controller do the right action in the devices Door, Alarm and Sprinkler.

Some application domains of DiaSpec are: multimedia communication services, 
home/building automation and avionics (e.g., flight management). A complete 
description of DiaSpec can be found in Cassou (2009).

5.3  Autopilot Architecture
The figure 5.6 shows the architecture of the drone autopilot described using DiaSpec 

language.
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Figure 5.6

This architecture is data-flow oriented. The diagram shows all the used data and 
where it is used. There is three devices: Flight Route, Drone and User Interface.

The Flight Route device has four sources: NextDest (the destination after the current 
destination), CurrDest (current destination), ValidND (boolean variable that says if 
NextDest is valid) and ValidCD (boolean variable that says if CurrDest is valid). These 
sources come from the Flight Plan module (see section 4.4). The Drone device has five 
sources: XYZ (the position of the drone in the space), Psi (the value of the Yaw angle of 
the drone), VelXYZ (the current velocity of the drone), DroneMode (the current mode 
of the drone, like “taking off”, “landing” or “flying”) and Battery (the battery level). 
These sources come from the Drone Current Data module (see section 4.3). The module 
User Interface has only one source: ON/OFF (the switch that turn the autopilot on and 
off).

The context Drone Monitor contains the implementation of the autopilot monitor 
discussed in the section 5.1.1. It monitors the current state of the drone, checks if the 
flight plan is empty, if the battery low and if the user interface turned on or off the 
autopilot. As output, this context sends the commands “take off” and “land” (that passes 
through the context Command), it turns on and off the autopilot state machine (that is in 
the context Command), it send “wake up” massages to the autopilot state machine, it 
stops and land the drone when the battery level is low and it sends some information to 
the user interface about what the autopilot is doing. The context Status Verifier just 
verifies if the battery level is low and outputs a conclusion to the context Drone 
Monitor.

The contexts Cartesian Difference, To Polar Coordinates and Angle Difference only 
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do calculations. The context Cartesian Difference calculates the difference vector 
between the position of the drone and the current destination of the flight route and the 
difference vector between the position of the drone and the next destination (the 
destination after the current). The context To Polar Coordinates transform the vectors of 
Cartesian Difference from the cartesian coordinates system to the polar coordinates 
system. Each vector is represented in the polar coordinates system by a module and an 
angle. The Angle Difference calculates the current angle difference between north 
direction of the drone and the current destination direction. It calculates also the current 
angle difference between north direction of the drone and the next destination direction. 
To do this, the Angle Difference context takes as input the angles outputted by the To 
Polar Coordinates context and the source Psi of the drone (that is the Yaw angle).

The context Command contains the implementation of the state machine discussed 
in the section 5.1.1. This is why it needs as input the information about if the next 
destination is valid (the source ValidND), the module of the distance between the drone 
and the current and next destinations (outputted by the context To Polar Coordinates), 
the angle difference between the drone and the current and next destinations (outputted 
by the context Angle Difference), the current velocity of the drone (source VelXYZ) and 
the output of the context Drone Monitor (that controls globally the state machine). As 
output, this chooses the right command to send to the drone and sends to the context 
Translation Speed the current distance from the drone to the current destination in the 
drone horizontal and north-south axis (that rarely correspond to the X and Y axis of the 
position system).

The context Translation Speed contains the implementation of the autopilot 
acceleration calculator discussed in the section 5.1.2. This is why it takes as input the 
current drone velocity (the source VelXYZ) and the distance from the drone to the 
destination outputted by the context Command. As output, it sends the values of the 
forward-backward acceleration and leftward-rightward acceleration.

The context Rotation Speed defines the rotation speed of the drone. To do this, it 
takes as input the two values of angle outputted by the context Angle Difference. The 
drone only rotates when the autopilot needs to align its north direction with the direction 
of the current or next destinations. So, for example, if angle difference between the 
north direction and the current destination is positive, the drone needs to turn right. If it 
is negative, the drone need to turn left. Moreover, the drone accepts as parameter of 
rotation a value of angular speed. This makes the control much easier: to make the 
drone rotate right, the parameter must be positive; to make the drone rotate left, the 
parameter must be negative; to make the drone stop rotating, we send the value zero as 
parameter. If the absolute value of the parameter is high, the drone rotates fast. If it is 
low, the drone rotates slowly. There is no “inertial angular velocity” to control, as in the 
case of the forward-backward and leftward-rightward movements. The context Rotation 
Speed context output two values of velocity: one if the drone need to rotate toward the 
current destination, and another if the drone needs to rotate toward the next destination.

The context Complete Command takes as input the values outputted by the contexts 
Rotation Speed and Translation Speed and the type of command chosen by the context 
command. As output, it sends to the Drone Controller the complete specification of the 
command that must be executed by the drone.

This autopilot architecture works in a completely reactive way: the actions are 
activated by the sources. The contexts are activated every time that they receive a new 
value of input. As new values for the sources of the device Drone are published every 
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30ms, the autopilot system will output a new command to the drone every 30ms. This is 
the recommended frequency of new commands for the Parrot A.R. Drone.
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6  CONCLUSION

The creation of the drone autopilot involved many challenges. The first major one 
was the creation of the decoder for the video stream sent by the drone. The 
implementation of a decoder must be done very carefully, because any little error will 
ruin the result. Moreover, the entropy encoding and the DCT steps in the video image 
decoding are not easily understandable. The second major challenge was to create a way 
of extract the position of the drone in the space using the image from a camera and 
special markers. The calculation of the distance between the drone and the special 
marker involved a lot of trigonometric calculations. The detection of the special marker 
involved the creation of customized image processing algorithms. Finally, the third 
major challenge was to create control loops for the autopilot itself.

The system described in this work was successfully implemented in Java. The 
implementation is completely object oriented and permitted the author of this work to 
improve his programming skills.

During the stage period, many tests and demonstration of the autopilot system have 
been done. The first major demonstration was after the implementation of the first and 
second layers of the system. It was demonstrated to the internship tutor the drone flying 
(manually controlled) while sending its position in real-time, using also the special 
markers (the tags) for this. The second major demonstration was after the complete 
implementation of the system. It was demonstrated to the internship tutor and to the 
research director of INRIA the drone flying in a predefined route while being entirely 
controlled by the autopilot.

The drone autopilot system developed shows also power of the DiaSpec tool. A 
architecture described in DiaSpec is easily understandable and flexible. The 
implementation of the autopilot was faster because the DiaSpec tool generated a lot of 
code automatically.

A video has been created to demonstrate the autopilot working. It can be found in 
the link: http://www.youtube.com/watch?v=9l8tRbya4vU .

http://www.youtube.com/watch?v=9l8tRbya4vU
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APPENDIX A  DRONE TECHNICAL SPECIFICATIONS

The specifications of the A.R. Drone from Parrot:

Embedded Computer System 
* ARM9 468 MHz 
* DDR 128 MB at 200MHz 
* Wifi b/g 
* USB high speed 
* Linux OS

Inertial Guidance Systems 
* 3 axis accelerometer 
* 2 axis gyrometer
* 1 axis yaw precision gyrometer

Physical Features 
* Max running speed: 5 m/s; 18 km/h 
* Weight: 

- 380 g with outdoor hull 
- 420 g with indoor hull

 

Safety System 
* EPP hull for indoor flight 
* Automatic locking of propellers in the event of contact 
* Control interface with emergency button to stop the motors

Aeronautic Structure 
* High-efficiency propellers
* Carbon-fiber tube structure

Motors and Energy 
* 4 brushless motors, (35,000 rpm, power: 15W) 
* Lithium polymer battery (3 cells, 11,1V, 1000 mAh) 
* Discharge capacity: 10C 
* Battery charging time: 90 minutes 
* Max flying time (battery capacity): about 12 minutes
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Front Camera: Wide Angle Camera 
* 93° wide-angle diagonal lens camera, CMOS sensor 
* Camera resolution 640x480 pixels (VGA) 

Ultrasound Altimeter 
* Emission frequency: 40kHz 
* Range 6 meters vertical stabilization

 
Vertical Camera: High Speed Camera 

* 64° diagonal lens, CMOS sensor 
* Video frequency: 60 fps 
* Allows stabilization even with a light wind
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APPENDIX B  THE SQUARE FINDER ALGORITHM

This appendix shows a way to determine, in a set of points in the Cartesian space, 
how many combinations of four points forms a square. To find a square, we will use the 
following rule:

Consider four points in a bi-dimensional space: A, B, C and D. Consider the  
following distances: AB (from A to B), BC (from B to C), CD (from C to D), DA (from D 
to A), AC (from A to C) and BD (from B to D). The points A, B, C and D are in different  
positions in the space (AB, BC, CD, DA, AC and BD have non-zero positive values). If  
AB=BC=CD=DA and AC=BD, these points are arranged as a square in this space.  
Moreover, in this case, the condition AC=BD>AB=BC=CD=DA is always true.

The two conditions  AB=BC=CD=DA and AC=BD and the supposition that the 
points are in different positions are enough to determine a square in a ideal case, but we 
will accept approximations of this (AB≈BC≈CD≈DA and AC≈BD). The use of 
approximations may introduce some bizarre cases. The figure B.1 shows one of these 
cases.

Figure B.1: AB≈BC≈CD≈DA and AC≈BD, but it's not arranged as a square

The avoid them, we will use the condition AC=BD>AB=BC=CD=DA. The 
algorithm that implement this logic is shown below.

Compute the distances between all points
Compute all the combination of 4 points
For each combination {

// Consider A, B, C and D the points of the combination
if ((AC≈BD) and (AB≈BC≈CD≈DA)) and
    (average_value(AC,BD) > average_value(AB,BC,CD,DA)) {

Add the combination to the list of squares
}

}

Figure B.2: The algorithm to find squares
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APPENDIX C  THE POINTS ORDERING ALGORITHM

This appendix shows a way to determine, in a set of four points arranged as a square, 
what is the relative position of three points when we take one point as reference. To 
better understand the problem, consider the image C.1.

Figure C.1

The point A is the reference point. The point D will always be the point more distant 
of A. The point B will be the first point found when we search from A to D in a 
clockwise way. The point C is the first point found when we search from A to D in a 
anti-clockwise way. For a person, it's very easy to determine visually which is the point 
B, C and D when the point A is known, even when the figure is rotated. But how a 
computer do the same thing only knowing the position of A and the position of the other 
three unnamed points? Also, the computer must do this in a way as simple as possible. 
The algorithm that solves the problem is presented in the figure C.2. It is very optimized 
and avoid problematic singularities. It will be used to aid the decoding of a tag (see 
sections 4.1.2 and 4.1.3).
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Compute the distances between A and the three points
Consider D the point with the biggest distance
Calculate deltaX = │xD – xA│ and deltaY = │yD – yA│
If (deltaX > deltaY) {

If (xD > xA) {
Consider B the remaining point with the higher y

}
Else {

Consider B the remaining point with the lower y
}

}
Else {

If (yD > yA) {
Consider B the remaining point with the lower x

}
Else {

Consider B the remaining point with the higher x
}

}
Consider C the remaining point

Figure C.2: The points ordering algorithm
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APPENDIX D  DESCRIPTION OF THE WORK IN 
PORTUGUESE

Este trabalho consiste em um piloto automático implementado em Java para o A.R. 
Drone da fabricante Parrot. Este piloto automático foi desenvolvido no laboratório 
INRIA de Talence (França). Na implementação, foi usado o DiaSpec, que é uma 
ferramenta de geração automática de código a partir de um diagrama. O DiaSpec foi 
desenvolvido pela equipe Phoenix do laboratório INRIA de Talence.

O drone utilizado foi o A.R.Drone, que é um quadricóptero. Este quadricóptero é 
controlado remotamente através de uma conexão Wi-Fi em modo ad-hoc. Ele pode 
executar três procedimentos automáticos: decolar, aterrissar e pairar (o drone toma um 
ponto do solo como referência e tenta permanecer na mesma posição no espaço). O 
drone possui sensores que informam a orientação espacial do drone (através dos ângulos 
Pitch, Roll e Yaw) e a distância entre o drone e o chão. Há duas câmeras no drone: uma 
horizontal e uma vertical voltada para o chão.

A abordagem adotada para construir este piloto automático foi a de uma modelo de 
software em camadas. Este software, denominado “Drone Autopilot System”, será 
executado em um computador (que daqui para diante será chamado dispositivo 
controlador) que possui uma máquina virtual java. A figura D.1 ilustra este modelo.

Figura D.1: Modelo em camadas

A primeira camada é a camada de comunicação, que recebe os dados enviados pelo 
drone e envia comandos. A segunda camada é a camada que calcula continuamente a 
posição do drone no espaço. A terceira e última camada é o piloto automático em si, que 
utiliza os recursos disponibilizados pelas outras duas camadas. Nos próximos, 
parágrafos as camadas deste modelo serão apresentadas com mais detalhes.

A camada “Drone Communication” trata três fluxos de dados: dados de navegação, 
dados de vídeo e dados de controle. Os dados de navegação são informações enviadas 
do drone para o dispositivo controlador e compreende o seguinte conjunto de dados: 
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nível de bateria, orientação do drone no espaço, distância do drone até o solo, posição 
XYZ do drone no espaço e a velocidade do drone no espaço. Os dados de vídeo são as 
imagens capturadas por uma das câmeras (o dispositivo controlador pode escolher qual 
câmera) e é, portanto, um fluxo enviado do drone para o dispositivo controlador. Os 
dados de controle são os comandos enviados pelo dispositivo controlador para o drone a 
fim de controlá-lo remotamente. A fim de executar suas funções, a camada “Drone 
Communication” foi dividida em três módulos: o módulo que recebe os dados de 
navegação (“Navigation Data Receiver”), um módulo que recebe e decodifica os dados 
de vídeo (“Video Decoder”) e um módulo que envia os comandos para o drone (“Drone 
Controller”).

A camada “Real-Time Position” é a camada que trata de calcular a posição do drone 
no espaço usando as informações disponibilizadas pela camada de comunicação. Como 
os sensores do drone têm baixa precisão e com o passar do tempo acumulam erros de 
medida, foi necessário fazer a recalibragem da posição do drone de tempos em tempos. 
A solução encontrada foi a recalibragem através de marcadores (“tags”) colocados no 
solo. Estes marcadores aparecem nas imagens capturadas pela câmera vertical do drone 
e são detectadas no dispositivo controlador através de processamento de imagem. A fim 
de executar suas funções, a camada “Real-Time Position” foi dividida em quatro 
módulos: um módulo que detecta tags (“Tag Detector”), um módulo que calcula a 
posição do drone usando a saída do módulo detector de tags e os dados de navegação 
(“Position Calculator”), um módulo que contém o plano de vôo (“Flight Plan”) e um 
módulo que contém todas as informações obtidas pela primeira e segunda camadas 
(Drone Current Data).

A camada “Autopilot” contém o piloto automático e a interface com o usuário. O 
piloto automático foi construído usando o DiaSpec, que é uma ferramenta que permite 
que uma descrição de software na forma de diagrama possa ser compilada para gerar 
código para os componentes do diagrama e para a interação entre os componentes. O 
piloto automático realiza o plano de vôo (que nada mais é do que uma série de pontos 
no espaço a serem percorridos) através de uma máquina de estados que decide o 
comando certo a ser enviado para o drone. A fim de executar suas funções, a camada 
“Autopilot” é dividida em dois módulos: um módulo de interface com o usuário (“User 
Interface”) e um módulo que é o piloto automático em si (também chamado de 
“Autopilot”).

A figura abaixo mostra os componentes do sistema e suas interações.

Figura D.2: Módulos do sistema


