
Federal University of Rio Grande do Sul 

Institute of Informatics 
 

 

 

 
 

 

Pedro Egidio Menegaz Paganela 
 

 

 

 
 

 

  

Study and Development  

of a Network Based  

Intrusion Detection System 
 

 

 
 

 

 

 

 

 

Computer Engineering Graduation Work 

Prof. Dr. Alexandre Carissimi 

University Advisor 
 

 
 

 

 

 

 

 

 

 

 

 

 

Porto Alegre, December 2011. 



2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FEDERAL UNIVERSITY OF RIO GRANDE DO SUL 

Reitor: Prof. Carlos Alexandre Netto 

Vice-Reitor: Prof. Rui Vicente Oppermann 

Pró-Reitoria de Graduação: Prof. Valquíria Link Bassani 

Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb 

Coordenador da ECP: Prof. Sérgio Cechin 

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro 



3 

 

ACKNOWLEDGMENTS 

 

I would like to thank my advisor Alexandre Carissimi, for all support and patience in 

this project, Michael Rigoni that guided me in the development over the Mancala 

Network Controller and Sérgio Cechin for being always helpful when needed. 

Finally, I would like to thank all the people from UFRGS that, directly or indirectly, 

helped me to arrive where I am now. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

SUMMARY 

 
ACKNOWLEDGMENTS ............................................................................................ 3 

SUMMARY .................................................................................................................. 4 

ABSTRACT .................................................................................................................. 6 

RESUMO ...................................................................................................................... 7 

1. INTRODUCTION .................................................................................................... 8 

1.1 Objectives ............................................................................................................ 8 

1.2 Organization ........................................................................................................ 8 

2. STATE OF THE ART .............................................................................................. 9 

2.1 Snort .................................................................................................................... 9 

2.2.1 Snort Detection Capabilities ....................................................................... 11 

2.2 Suricata .............................................................................................................. 13 

2.3 SourceFire IPSx .............................................................................................. 13 

2.4 SourceFire NGIPS .......................................................................................... 13 

2.5 Cisco IPS ........................................................................................................... 14 

2.6 IBM Proventia IPS ............................................................................................ 14 

2.7 CheckPoint IPS-1 ............................................................................................ 14 

2.8 NIDS Solutions Comparison ............................................................................. 15 

2.9 Final Considerations.......................................................................................... 15 

3. DEVELOPED THREAT DETECTIONS .............................................................. 17 

3.1 Internal Network Threats ................................................................................ 17 

3.1.1 ARP Spoofing ............................................................................................. 17 

3.1.2 DNS Rebinding ......................................................................................... 18 

3.1.3 DNS Tunneling ......................................................................................... 18 

3.1.4 DNS Internal IPs Leakage ....................................................................... 19 

3.1.5 DNS Cache Poisoning ............................................................................... 19 

3.1.6 DHCP Exhaustion ...................................................................................... 20 

3.1.7 Rogue DHCP Server ................................................................................. 21 

3.1.8 Port Scanning ........................................................................................... 21 

3.2 SIP VoIP Threats............................................................................................... 22 

3.2.1 SIP Register Credentials Guessing Flood ............................................ 22 



5 

 

3.2.2 MD5 Hashes Eavesdropping ................................................................ 23 

3.2.3 SIP VoIP Fuzzing ..................................................................................... 23 

3.2.4 SIP Invite Flood ....................................................................................... 24 

3.2.5 Eavesdropping Call Sessions ...................................................................... 24 

3.2.6 Information Leak from Configuration files ............................................ 24 

3.2.7 Redirection Attacks ................................................................................. 24 

3.2.8 SIP Devices Scanning ............................................................................ 25 

3.2.9 SIP Enumeration Scanning ..................................................................... 25 

3.3 Policy Based Threats ......................................................................................... 25 

3.3.1 Chat ............................................................................................................ 25 

3.3.2 P2P ............................................................................................................. 26 

3.3.3 Online Games ........................................................................................... 27 

3.3.4 Inappropriate Content ............................................................................... 27 

3.3.5 TOR Network ............................................................................................ 27 

3.3.6 NAT ............................................................................................................ 27 

3.3.7 General ....................................................................................................... 28 

3.4 Profile Based Threats ........................................................................................ 28 

3.4.1 SIP VoIP Phones Profile ......................................................................... 29 

3.4.2 Another Profiles ....................................................................................... 29 

3.5 Final Considerations.......................................................................................... 29 

4. NIDS MODULE DEVELOPMENT AND INTEGRATION ................................. 32 

4.1 NIDS Module Overview ................................................................................... 32 

4.2 Traffic from the Corporation Network .............................................................. 35 

5. NIDS EVALUATION ............................................................................................ 36 

5.1 Unit Tests .......................................................................................................... 36 

5.2 Integration Tests ................................................................................................ 36 

5.3 Virtualized Lab Environment ............................................................................ 37 

5.4 Facebook DNS Resolution Test ........................................................................ 38 

5.5 ARP Spoofing Detection Test ........................................................................... 39 

5.6 SIP Register Credentials Guessing Flood Test ................................................. 39 

5.7 SIP VoIP Phone Profile Detection Test ............................................................ 40 

6. CONCLUSION ....................................................................................................... 41 

 



6 

 

ABSTRACT 
 

In the 90’s the majority of threats performed against computer systems were made by 

teenagers influenced by their curiosity. They had as objective just to show their 

capabilities exploiting computer systems. As good example from this time, we can 

take the famous Hacker Kevin Mitnick [KEVIN BIO, 1996]. However, in the last 

years, computer systems are facing a new type of threats, where in general they are 

more organized, sophisticated and with devastating consequences [REUTERS, 2007] 

[MARKOFF, 2009][STUXNET, 2011] .  

Since that the threats in the last years are becoming more complex, simple Firewalls 

are not enough to secure a computer network system. For this reason, Intrusion 

Detection Systems [SCARFONE ET AL., 2007] are becoming more and more used 

by corporations, as an extra protection against these threats.  

In this paper we will present a study about a new Network Based Intrusion Detection 

System (NIDS) solution that improves the detecting capabilities of the principal 

NIDS solution in the market [SNORT, 2011]. This solution uses known and new 

detection methodologies developed in this work. Finally, the developed NIDS will be 

integrated to the Mancala Network Controller Framework [MANCALA, 2011], to be 

used as a security module to network corporations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Keywords: Network Security, System Security, NIDS, IDS, threat, vulnerability, 

Mancala Network Controller 



7 

 

RESUMO 
 

Na década de 90, a maioria das ameaças contra sistemas de informação eram 

executadas por jovens influenciados por sua curiosidade. Esses jovens tinham como 

objetivo somente mostrar suas capacidades frente a os sistemas de computação de sua 

época. Como um exemplo deste tempo, podemos pegar o livro que conta a história do 

famoso hacker Kevin Mitnick [KEVIN BIO, 1996]. Todavia, nos últimos anos os 

sistemas de informação estão se tornando alvo de ameaças mais sofisticadas, 

organizadas e normalmente com consequências devastadoras [REUTERS, 2007] 

[MARKOFF, 2009][STUXNET, 2011] . 

Desde que essas novas ameaças estão se tornando mais complexas, simples firewalls 

não são suficientes para proteger os sistemas de informação hoje em dia. Por essa 

razão, Sistemas de Detecção de Intrusão [SCARFONE ET AL., 2007] estão se 

tornando cada vez mais usados em sistemas de corporações, sendo uma proteção 

extra contra essas ameaças. 

Neste artigo será apresentado o estudo e o desenvolvimento de uma nova solução de 

Sistema de Detecção de Intrusão baseada no tráfico da rede (NIDS). O NIDS 

desenvolvido aumenta a capacidade de detecção do principal NIDS do mercado 

[SNORT, 2011], usando métodos de detecção conhecidos e também novos, 

desenvolvidos nesse trabalho. Finalmente, o NIDS desenvolvido será integrado com o 

framework Mancala Network Controller [MANCALA, 2011], sendo usado como um 

módulo de segurança para redes de empresas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Palavras-chave: Segurança de Redes, Segurança de Sistemas, NIDS, IDS, 

vulnerabilidades, Mancala Network Controller 



8 

 

1. INTRODUCTION 
 

Twenty years ago, few companies operated with an internal computer network. 

Today, in the Internet age, these structures are necessaries to the majority of 

corporations. While these networks are a need, networks grow in complexity, attacks 

are also getting more specialized [STUXNET, 2011][ZEUS, 2011]. For these reasons, 

the corporation system security should not be linked only to a simple solution, like a 

firewall [NETFILTER, 2011], but it should also use other security methods, as 

detection systems. 

One of the most popular approaches related with threat detection in computer 

networks is the Network Intrusion Detection Systems (NIDS) [SCARFONE ET AL., 

2007]. The general functionality of an NIDS is, based in the information collected 

from the networks' traffic, detect if a possible threat is happening.  

1.1 Objectives 
 

The objective of this final project is, based in the Mancala Network Controller 

Framework [MANCALA, 2011], to develop a more powerful NIDS solution that 

using new approaches, it detects threats that were not detected before by the principal 

NIDS solution in the market, Snort [SNORT, 2011]. 

1.2 Organization 
 

This work is divided in 6 chapters, including this one. The next chapter (chapter 2), 

we will present the NIDS solutions state of the art, including a brief study in 

commercial NIDS solutions and what can be improved. In the chapter 3, we will 

present the threats detected by our IDS solution. In the chapter 4, we will present a 

brief explanation about the NIDS architecture and how it was integrated with the 

Mancala Network Controller Framework. In the chapter 5, we will present the 

evaluation method used and how we proven that our solution works. Finally, in the 

chapter 6, we will finish with a small conclusion about this work and possible future 

improvements to the solution. 

 

 
 

 

 
 

 



9 

 

2. STATE OF THE ART 
 

The majority of threats that we find in the wild use as vector computer networks 

[SHNEIER, 2011][MARKOFF, 2009][LULZSEC, 2011]. For this reason, an 

approach that is being more and more used is the Network Intrusion Detection 

System (NIDS). Exist many solutions in the wild and to understand which one is the 

state of the art, we will analyze the principal ones. The analysis will be divided in 2 

groups, the open source solutions and the commercial solutions.  

There are not many known open source NIDS solutions, but it does not mean that 

they are not good solutions. The open sources solutions studied here are Snort 

[SNORT, 2011] in the chapter 2.1 and Suricata [OISF, 2011] in the chapter 2.2. 

However, There are numerous commercial solutions presented by different vendors, 

as for example: Cisco [CISCO, 2011], IBM [IBM, 2011], McAffe [MCAFEE, 

2011], SourceFire [SOURCEFIRE, 2011], CheckPoint [CHECKPOINT, 2011], etc.  

In the study of the commercial solutions, since that the student does not have access 

to the full NIDS commercial frameworks, a basic analysis based in manuals, demos 

and  even marketing videos was performed by the student over solutions of important 

vendors of the security area. Also, it is important to highlight that all the studied 

solutions supports IPS (Intrusion Prevention System), for this reason they are called 

exclusively IPS. 

2.1 Snort 
 

Snort [SNORT, 2011] is the baseline when we talk about NIDS. The snort 

architecture, in a simplified point of view, can be resumed in the figure 2.1.  As can 

be seen in the figure 2.1, the first step in the packet analysis is the capture of it. This 

action is performed mainly by PCAP and NFQ modules.  

The snort architecture, in a simplified point of view, can be resumed in the figure 2.1.  

As can be seen in the figure 2.1, the first step in the packet analysis is the capture of 

it. This action is performed mainly by PCAP and NFQ modules. 

PCAP is a API for capturing network traffic developed by the Tcpdump Team 

[TCPDUMP, 2011] to linux. This is the default mode when we are working in NIDS 

mode.  

 NFQ is a framework that provides packet manipulation in real time in the kernel 

level at Linux systems. Netfilter Queue [NETFILTER, 2011] is a Netfilter module 

that captures packets in real time in the kernel level and sends to the user level to 

be analyzed and judged. This is the most used mode to analyze packets in Intrusion 

Prevention System mode at a Linux System. 

After the packet capture, the packet will pass through the preprocessor engine to 

prepare it for the rule engine (like gathering fragmented packets, organizing them by 

sessions, etc). 

 

 



10 

 

This engine is formed, as the name indicates, by a group of different preprocessors. 

Each preprocessor have a specific functionality, many times related with the 

organization/classification of a packet (e.g. sessions, fragmented packets), or even 

features related with stateful analysis (e.g. port scans). Below we can see a list with 

the main preprocessors presented in the Snort 2.9.0.4 analyzed in this study: 

 Frag3: treat fragmented packets (avoid evasion attacks) 

 Stream5: organize the packets by sessions (including UDP “sessions”) [RFC 

768, 1980] 

 sfPortScan: detect TCP port/sweep scans and badly UDP scans [RFC 793, 

1981] 

 HTTP inspect: detect some invalid/malicious HTTP traffic 

 ARP spoof preprocessor: a bad ARP spoof detector [RFC 826, 1982] 

 Sensitive Data preprocessor 
 

 
 

 

Figure 2.1 – Simplified Snort architecture. 

 

Finally, in the last part of the packet processor, we have the Rule Engine, that is the 

main module inside the architecture. This engine triggers actions based on 

conditions. A rule is formed by the follow structure: 

<action> <ip(s) source> <port(s) source> -> <ip(s) destination> 
<port(s) destination> (<rule options> ; sid :<unique ID from this 
rule>;) 
 

IP and port fields are self-explanatory. Action field is where the action trigged by 

the rule is defined. The possible actions in NIDS mode is Alert, log and pass. Since 

the scope of this work is the detection, not the prevention, we will not detail the IPS 

action modes. 

The rule options can be as variable as possible and many times we use Detection 

Plugins in the rule options to detect more complex, and sometimes stateful events. 

A list of the main supported detection plugin options: 



11 

 

 Raw Content modifiers: search for a bytes’ pattern in the packet. 

 HTTP Content Modifiers: search for patterns in HTTP fields [RFC 2616, 

1999]. 

 PCRE: content modifier to support regular expressions. 
 
Also, there are some options not direct related with payloads that can be considered 

metadata. A list of them can be found below: 

 msg: defines the message related with an alert action. 

 sid: unique ID of a rule. 

 rev: revision number. 

 flow: flow direction (e.g. to server). 

 reference: a reference to the threat/detection. 

 threshold: see below. 

 

Threshold is a special option. It gives a stateful capability to the rule. In this 

condition you need to pass 4 fields: type (limit, threshold or both), track (by source 

or destination) count and seconds. This option will be satisfied when the number of 

times that this alert (based in a track) is satisfied is equal or bigger to count in an 

interval define by seconds. Also, type defined is the alerts will be triggered until 

the threshold is satisfied or if it will only be alerted when the threshold is satisfied. 

In the figure 2.2 we can see a good example of rule. 

 

 

Figure 2.2: Rule to detect DNS Internal IP Leak 
 

In this example, if a DNS packet that comes from the internal network is not 

resolving a DNS query to an internal network IP in the range 10.0.0.0/8. This alert 

added with other 2 similar alerts related  with  internal  network  IPs  (192.168/16  

and  172.16/14)  are  able  to  detect  DNS  Internal  IP Leakage. 

2.2.1 Snort Detection Capabilities 
 

The company Source Fire [SOURCEFIRE, 2011], that founded Snort and is the main 

signatures supporter, giving a big rules set that is frequently refreshed. These rules 

can be divided in groups of detection threats, as for example: FTP rules, Exploit 

rules, P2P rules, C&C Botnet rules, etc. Also, there is the open source group called 

Emerging Threats [EMERGING THREATS, 2011], also known as ET, that has a big 

set of rules available for free, with a big support from the Snort enthusiastic 

community. Snort focuses its detection capability in the follow topics: remote 

application exploitation detection, malicious software and address detection. 

“An application exploit is a piece of software, a chunk of data, or sequence of 

commands that takes advantage  of  a  vulnerability  in  order  to  cause  unintended  



12 

 

or  unanticipated  behavior  to  occur  on computer software” This sentence was taken 

informally from the Wikipedia [WIKIPEDIA, 2011] exploit page and resumes the 

meaning of remote application exploitation.  

There are numerous methods that can be used to exploit an application; some 

classical examples are listed below: 

 Buffer Overflow 

o Stack based 

o Heap based 

 angling pointers 

 Uncontrolled format string 

 Integer Overflow 

The detection of remote application exploitation is the strongest characteristic of 

Snort that is able to detect numerous threats of this genre. Also, their signatures have 

a constant refresh, making possible to detect new known vulnerabilities. 

Another point that looked relatively strong in Snort is the detection of malicious 

software and malicious address (mainly by rules from ET). Malicious software is 

detected by the traffic that it generates. Malicious software is a program with a harmful 

and undesired behavior. Normally the victim that is running this software does not 

know of its existence and/or does not want to run this software. This kind of 

software is normally design to illegal purposes. Also, the definition from Wikipedia 

to Malware: “Malware, short for malicious software, consists of programming 

(code, scripts, active content, and other software) designed to disrupt or deny 

operation, gather information that leads to loss of privacy or exploitation, gain 

unauthorized access to system resources and other abusive behavior”.  

To the detection of malicious software, Emerging Threats publishes signatures to 

many malicious programs traffic. These signatures are based in any specific traffic 

that normally only this Malware generates. Sometimes, it can give false positives 

(e.g. Malware does a HTTP GET with the content owned), but if we have multiple 

alerts of the same Malware signatures, it pretty much means that it is actually the 

Malware. 

Addresses are defined as malicious when they are related with suspicious or malicious 

behavior in the network. The main detection method is based in to know IPs, 

networks or URLs that are associated with malicious traffic. The main sources of 

malicious addresses used by ET are: 

 Malicious addresses by DSHIELD [DSHIELD, 2011] 

 Russian Business network hosts 

 C&C servers addresses by ShadowServer [SHADOWSERVER, 2011] 

 Malicious addresses by C.I. Army [CI ARMY, 2011] 

 ET compromised addresses 

DSHIELD website classifies periodically the networks that present a high malicious 

traffic frequency. The addresses are updated regularly. Russian business networks are 

famous in the security domain for being source of malicious acts, mainly related with 



13 

 

Botnets, for this reason was added in the malicious addresses detection. 

ShadowServer keeps a list of many Botnet C&C servers, based in their studies. C.I. 

Army uses a methodology based in distributed sentinels that study device 

behaviors in the network and judge if an IP is doing some malicious activity. Finally 

there are many known compromised hosts in the network that Emerging Threats 

keeps a list of them.  

Also, it is important to highlight that Snort does not only detect these types of threats, 

but it certainly has focus in these types of threats, mainly in remote application 

exploitation detection, that is the strongest point in Snort. 

2.2 Suricata 
 

Suricata is an open source NIDS developed by the Open Information Security 

Foundation (OISF) [OISF, 2011]. Its development started in 2009, but it is 

experimenting a fast growing and soon can become a real Open Source option. OISF 

defends Suricata saying that it is the next generation of NIDS. However what this 

study saw is that its structure is incredibly similar to Snort, but with less features. One 

important advantage is that it is multi-threaded, while Snort engine doesn't support 

threads. Suricata supports almost all Snort rules and present a good HTTP engine 

(this engine makes easier create rules to detect behaviors over HTTP packets). Even 

being able to perform a good part of the Snort functions, it is still too young, while 

Snort is mature and well accepted by the security community. 

2.3 SourceFire IPSx 
 

The first commercial product presented in this chapter, this solution from SourceFire 

is called IPSx. The engine used by this system is Snort, including the rules developed 

by a team from the company SourceFire, called VRT [VRT, 2011]. This NIDS also 

includes an easy to use graphical interface that automates the control of many 

structures of an NIDS solution: sensors configuration, reports about attacks or hosts 

and email alerts.  As a conclusion, this NIDS is Snort with a beautiful graphical 

interface to manage some parts of the NIDS and create reports. 

2.4 SourceFire NGIPS 
 

NGIPS is a more robust NIDS solution from SourceFire. As the IPSx solution, it 

uses Snort as the NIDS Engine and it has a good graphical interface to manage the 

solution, but it also has other characteristics. It has a host profiling based detection 

system, in other words, it applies a specific rules’ set to a type of host automatically.  

A feature in special makes this NIDS a great tool, the capability to auto-tuning. In 

few words, tune a NIDS is to configure this NIDS to a specific computer network, 

affecting mainly the detections based in anomalies in the network (i.e. anomaly in the 

frequency of a behavior). What makes this special is that tuning a NIDS is not a easy 

work for a system administrator (or even a security specialist), for this reason it 

becomes a handful feature in this NIDS. Finally, it is a great tool, but it is still lies 

over the Snort engine. 



14 

 

2.5 Cisco IPS 
 

The worldwide known company in the computer network area also has an IPS 

solution. The engine is similar to snort, i.e. it uses stateless rules/signatures to detect 

threats. 

This solution has bigger and better explained rules’ sets, each rule has a risk value 

defined, i.e. each rule is evaluated by probability of false positive/negative detection 

versus impact of the threat (e.g. a  rule that has almost null false positives/negatives 

and has a critical impact of the system, this rule will have a high risk value). In this 

solution the rules are created in a higher abstraction level, making easier to create 

rules, but also sometimes it makes more restrictive (i.e. you cannot work in the byte 

level). Also, this NIDS obviously has an easy integration with CISCO devices, 

making easier its use in networks full of CISCO equipment (that is normally the case 

of many companies).  

Finally, in a more technical point of view, it is hard to define if it detects 

more/better threats than Snort due to the lack of information available. 

2.6 IBM Proventia IPS 
 

The biggest Information Technology company in the world also has a NIDS. To be 

exact, the IBM Proventia IPS encloses 4 functions:  

 Classic Firewall 

 IPS (NIDS) 

 OS Events (i.e. more deep analysis over the log files) 

 Buffer Overflow exploit detection (host based) 
 

The NIDS part of this solution uses also stateless signature based detection. The rule 

syntax in special is incredibly similar to the snort one, as can be seen in the IBM 

Proventia rule below: 
 

alert tcp any any -> any any (msg:"Yahoo accessed"; 

content:"yahoo"; nocase; sid:5000;) 
 

 

This solution in an overall just presents a more complex solution that includes a NIDS 

solution that is incredibly similar to Snort. 

2.7 CheckPoint IPS-1 
  

CheckPoint is a big company from Israel specialized in system security that also has a 

NIDS solution. As all the solutions studied until now, it also has a signature based 

engine. However, it has a big improvement, the capability to create stateful signatures 

using finite state machine of rules (i.e. a digraph of rules that activate themselves). A 

bad point in this engine is its ugly graphical interface, but at least functional. Also, in 

the same way of the other commercial IPS studied, it is practically impossible to 

compare in a technical point of view which one is the best. 



15 

 

2.8 NIDS Solutions Comparison 
 

In the table 2.1 we can see the characteristics comparison of all the solutions studied 

here. 

 Open 

Source 

Stateless 

Signatures 

Stateful 

Signatures 

Good 

GUI 

Auto 

Tuning 

Host 

Profiling 

Good 

Rules 

Docs 

Extra 

Functions 

Snort         
Suricata         
IPSx         
NGIPS         
CISCO IPS         
IBM 

Proventia 
        

CheckPoint 

IPS 
        

 

Table 2.1 – NIDS solutions comparison. 

 

To complete the analysis presented in the table 2.1, we also present an analysis made 

by a security company called NSSLABS [NSSLABS4, 2011]. Each year, this 

company presents reports of a supposed fair, clear and technical comparison of 

“who detects more threats” between the main IPS in the market. The last full 

technical comparison (2010) between the main IPS in the market , the first place was 

given to SourceFire IPS 3D 4500 sensor [NSSLABS1, 2011][NSSLABS2, 2011] 

[NSSLABS3, 2011]. 

2.9 Final Considerations 
 

Based in this informal comparison made by the work author, his experience in the 

security area and the technical comparison from NSSLabs, it was not hard to 

conclude that even being a totally free IPS, or in our  case NIDS, Snort is de facto 

the best cost over benefits NIDS in the market. However, many things need to be 

improved in Snort. 

Snort has a big support to detect remote application exploitation and malicious 

software and addresses, but it lacks in detection capability in many other types of 

threats, as for example: threats that exploit protocols or network architectures, threats 

to VoIP Phones, threats to companies’ policies, etc. 

Also, Snort is an awesome tool when related to stateless detection (i.e. analyzing 

only one packet). Rules can be made easily to analyze deeply any packet's content, 

but Snort is still really poor to stateful analysis. The majority of the stateful analysis 

performed by Snort are made in a Preprocessor level (e.g. port scan detector 

preprocessor), but these analysis are in general weak and noiseful, needing to be well 

tuned to work properly.  



16 

 

Finally, some existing solutions in Snort are not well made. As a good example is the 

Arpspoof preprocessor. This preprocessor only supports static network based 

detection (i.e it is necessary to write manually all the IP-MAC relations to detect a 

possible ARP spoofing (see 3.1.1 for details), while tools in the wild like Arpwatch 

[ARPWATCH, 2011] does also dynamic network based detection (i.e. it learns the 

relation of IP-MAC and test for possible IP  Flip-Flop effects). In the static mode, it 

will detect ARP spoofing attacks, but it doesn't save the packets related with the 

ARP Spoofing, making almost useless to know that someone is attacking when it 

cannot even say who is performing the attack. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

3. DEVELOPED THREAT DETECTIONS 
 

In this chapter we will present all the threat detections implemented in this work, 

improving the actual capabilities of Snort. There will be 4 types of menaces treated 

here: internal network threats, SIP VoIP phone threats, policy based threats and 

profile based threats. 

Since that Snort does not provide a good detection capability to threats based in 

protocols and network architectures, and also does not provide a good detection 

capability to VoIP threats. For this reason, in the chapter 3.1 and chapter 3.2 we will 

treat these both types of menaces. In the chapter 3.3 we will present an important type 

of threats that are not very well treated by Snort, called policy based threats. In the 

chapter 3.4 will be presented a new concept of detection threat methodology, called 

profile based threat. Finally, in the chapter 3.5, a resume will be presented, explaining 

in few words what were developed and the main characteristics of each detection 

construction. 

3.1 Internal Network Threats 
 

In this we will describe some threats that exploit flaws in protocols and network 

architectures in a local network and how to detect the threat. 

3.1.1 ARP Spoofing 
 

ARP spoofing (or ARP poisoning) is the act to send ARP answers with a fake 

response. There are 3 possible different attacks that can be done, exploiting the lack 

of secure in the ARP protocol. Considering to the attack explanations the follow 

machines connected to a switch:  

Alice IP:192.168.56.1 MAC: aa:aa:aa:aa:aa:aa 

Bob IP:192.168.56.2 MAC: bb:bb:bb:bb:bb:bb 

Eve IP:192.168.56.3 MAC: cc:cc:cc:cc:cc:cc (the evil machine) 

In a good case, if Alice want to communicate with 192.168.56.2, she will send an 

ARP packet saying “who has 192.168.56.2 says to 192.168.56.1”. This message 

will be send in MAC broadcast (i.e. ff:ff:ff:ff:ff:ff), Bob and Eve will receive the 

message, since that Eve doesn't own 192.168.56.2, it will drop the packet silently, 

while Bob will see the packet and will answer with a “192.168.56.2 is at 

bb:bb:bb:bb:bb:bb. The weakness here is that, when Alice receives a message, 

there is no guarantee that the message is correct, so Alice will always believe in this 

as true. 

Suppose now that Eve answers the question saying "192.168.56.2 is at 

cc:cc:cc:cc:cc:cc" and that this message arrives before or overwrite (depends the 

Arptable politic) the good address. At this moment Alice will believe that Eve is the 

owner of 192.168.56.2, i.e. Eve impersonates Bob. 

In a second case, suppose now that Eve answers the question saying "192.168.56.2 is 

at dd:dd:dd:dd:dd:dd". Since that this address doesn't exist, no one (again, depend of 



18 

 

the switch politics) will receive the packet (including the true destination), causing a 

DoS. 

In a third case, Eve sends to Alice a message "192.168.56.2 is at cc:cc:cc:cc:cc:cc" 

and sends to Bob "192.168.56.1 is at cc:cc:cc:cc:cc:cc". From this moment, Eve 

impersonates both Alice and Bob, so any traffic between them will arrive to Eve, 

that after seeing or modifying the traffic, can forward to the true destination. This 

attack is an opened door to numerous other attacks based in Man-in-the-Middle. 

All the attacks presented have the same basic attack approach, so the detection 

for one of them normally should work to all of them. Based only in a passive 

network probing, we can see if an IP is suffering a MAC Flip Flop, i.e. in a small 

time interval, the MAC is oscillating between 2 different MACs. This solution can 

give false positives/negatives. This implementation was based in the Arpwatch tool 

solution [ARPWATCH, 2011]. 

3.1.2 DNS Rebinding 
 

One important security policy in browsers is the same-origin policy, where a 

script cannot access another hostname:port that it is not related with its scope (i.e. 

the address that launched it). Also, it is important to highlight that an address 

resolution (DNS query) can be resolved to numerous IPs (e.g. www.google.com) 

and the same-origin will accept these IPs as they are from the same scope. Exploiting 

this policy, the DNS Rebinding attack solves an address (e.g. evil.mywebsite.com) 

to the true address but also to the attacked IP (public or private), making possible the 

connection redirection. 

The DNS rebinding attack based in small TTLs was for many years an important 

threat, because with that an attacker has access to the internal network from 

outside using the victim as a "proxy". Nowadays the DNS rebinding based in an 

internal DNS doesn't work due to DNS Pinning method (i.e. browser pins the first 

DNS response and doesn't accept the new one) and the policy of always use an 

internal IP first when receiving public and private IPs in a DNS resolution. 

In 2010, Craig Heffner presented a new attack using DNS Rebinding [HEFFNER, 

2010]. This n ew attack profits of a bad policy in routers that accept connections 

in an interface with an IP of another interface.  So the attack rebinds to a Public 

Router IP and access this IP from the internal interface. 

The easiest way to detect the Heffner’s attack is to test if an external IP is solving to 

our public router/gateway IP. A simple rule was developed to be able to detect this 

attack in the NIDS module. 

3.1.3 DNS Tunneling 
 

Using  DNS  tunneling  applications  such  as  iodine [IODINE, 2011],  an  attacker  

can  gain  external  access  by encapsulating its traffic into DNS traffic. The attacker 

has at least to needs before the attack: be authoritative for (at least) 1 DNS zone and install 

a tunneling tool on the server that is authoritative for the zone.  

http://www.google.com/


19 

 

This attack is common in networks where you have access to the internal network, 

but you don't have access to the external network. However, in many cases, the 

internal DNS server is still accepting requests to the exterior. 

Suppose an attacker authoritative to a domain (e.g.  myevildomain.com), if he is inside 

the victim’s network he can do a DNS query to “hello.myevildomain.com”. It will go 

to the internal DNS server of the network, since that it will not be in the DNS cache 

from the server, it will ask in the exterior to the DNS query resolution. Supposing 

again that no one has this address in a cache (the DNS tunneling tools will try to 

guarantee a unique subdomain request per time) it will arrive in the DNS server 

authoritative to this domain (that is controlled by the attacker). The DNS server 

will answer, for example, a CNAME with the address hi.myevildomain.com, it will 

returns to the internal Server DNS that will forward to the attacker inside the 

network. 

One method of detecting DNS tunneling is by performing statistical anomaly 

detection on the network. The main characteristic is a high flow of DNS queries to the 

same top domain. For this reason, the NIDS module uses the frequency method 

based in the IP source and in the top domain (e.g. myeviltopdomain.com) with 

different subdomains (e.g. mysubdomain.myeviltopdomain.com). Also, all the 

primaries top domains are in a whitelist (e.g. .com, .fr, .gov) and almost all the second 

domains with the same structure (e.g. .com.br, .gov.fr). 

3.1.4 DNS Internal IPs Leakage 
 

The resolution of address to internal IPs from the exterior should never happens, 

being considered a threat due to the fact that it leaks internal network structure 

information. The internal DNS server, due to a misconfiguration,  answers to an 

external DNS Query request with the internal IP related to the query. After this, the 

attacker just needs to do a DNS query request to a vulnerable address and he 

receives this related internal IP.  

The detection used analyses the DNS responses from the internal DNS servers to the 

external network, if it contains at least an internal IP, it will trigger an alert. 

3.1.5 DNS Cache Poisoning 
 

This threat is characterized when a DNS server receives a fake answer to a query 

that will be stored in its cache. When a DNS server does a query to an address, it will 

wait for a response where the follow answer values match: 

 Query ID (16 bits) 

 Source query port (16 bits supposing all of them) 

 Query request 

 The authority in the additional sections is in the top domain 

 The first good answer received is accepted 

If an attacker can predict all these values, he can fake an answer that will be 

accepted by the DNS server. The main security characteristic in DNS response 



20 

 

authentication was the random Query ID that needs to match in the query and in the 

answer. The pool of possible random Query ID is of size of near 65536, for this 

reason we could say that with a flood of 40 responses it could be hard to guess the 

correct value. However, Dan Kaminsky presented an attack at Black Hat USA 2008 

[KAMINSKY, 2008] how to own and entire zone even with the random Query ID 

method. 

Suppose that a client does a request to iamainvalisubdomain.google.com, it will 

arrive at some moment to a DNS server authoritative to the google.com zone (since 

that it will not be in ANY cache) and since that it doesn't exist, it will be answered as 

inexistent, but it will have an additional information saying that the authoritative 

server is ns1.google.com - 216.239.32.10 to this domain. The DNS server will keep 

this information as true (the exploited point by Dan's attack) and the next time the 

resolution will go directly to the address of ns1.google.com 216.239.32.10. 

The Dan's attack tries to poison the authoritative nameserver IP, gaining control of 

entire google.com zone. The attack follows like that: 

 Attacker send request to invalidrandom().google.com resolution request to 

the victim’s DNS server 

 Attacker flood with random Query NIDS the victim's DNS server with 

fake answers saying: domain doesn't exist, but the authoritative DNS 

server to google.com is ns1.google.com - 50.50.50.50 (the evil IP) 

 Repeats the process until guess correctly the query ID (you can because 

none of the requested addresses are in the cache) 

With automatized tools the guessing time is around 10 seconds, after that the 

attacker owns an entire zone (e.g. .fr, google.com, etc). This attack also does not 

work anymore due to the massive mobilization of DNS vendors and open source 

communities. 

The problem is the small pool of possibilities related with the Query ID, so the 

solution is to increase the number the possibilities. The way used today is the use of a 

random source port (16bits), making the new pool of size  65k * 65k = 4G, becoming 

really harder to guess the right values. Thankfully to the massive cooperation between 

DNS server providers and the Kaminsky intelligence, this attack does not work 

anymore. 

The only well-known way to apply a DNS cache poisoning in 2011 is if you can 

eavesdrop (i.e. capture) the traffic between the victim's DNS Server and the external 

victim's network. Having the DNS query packet, you have all the authentication 

values to give a valid fake answer. Since that Eavesdrop is a passive behavior, the 

only way to stop such attack, is to stop the vector that allowed the eavesdropping. 

Some vectors can be found in the chapter 3.1.1 and 3.1.7.. 

3.1.6 DHCP Exhaustion 
 

DHCP Exhaustion (also known by DHCP Starvation) is a threat when an attacker 

exhausts all the pool of available IPs in a DHCP server [RFC 2131, 1997]. 



21 

 

The first method to exhaust the DHCP server pool is flooding the network with 

DHCP discovers to consume all the available IPs in the server.  This works because 

after a discover packet, the DHCP server will offer an IP to the MAC that sent the 

discover packet and wait a possible request time, making the offered IP unavailable to 

anyone else in this interval. To detect this threat, we used anomaly based detection, 

i.e. if the quantity of DHCP discovers passes a frequency limit, an alert is trigged. 

The second method uses a more intelligent and stealth attack. Instead of only to make 

an avalanche of discover packets, this attack allocates all the offered IPs to all the 

created spoofed MACs. A good tool to perform this attack is the Metasploit 

[METASPLOIT, 2011] module called Digininja [DIGININJA, 2011]. The detection 

in this case is based in the frequency of allocated IPs in a switch’s port, if the number 

of allocated IPs passes a value, an alert is trigged. The detection of this threat is only 

possible when the Mancala Network framework has access to the Switch 

configuration. 

3.1.7 Rogue DHCP Server 
 

A rogue server is an unauthorized server that coexists in a network with the 

authorized server. In the moment that a rogue DHCP sever starts to answer discovers 

and requests of others machines in the network, it can lie about all the information 

configured by the DHCP server, including gateway and DNS servers.  

If a rogue DHCP server lies about the gateway, it will be able to apply a man-in-the-

middle between the victim and the gateway. It is only necessary that the DHCP server 

answers the DHCP discover and request with the correct values from the authorized 

server, except by the gateway, giving his own IP. The same thing can be used to 

make a man-in-the-middle in the DNS server. 

It is possible to deny the service to any part in the network that the DHCP answer can 

be forged, for example: the Gateway and the DNS servers. The attacker gives an 

invalid value of gateway or DNS server, making it unavailable. 

The NIDS developed in this work uses two methods to detect rogue DHCP servers. 

The first method analyses the DHCP answers packets to see if the MAC origin 

matches with the authorized DHCP server MAC. It can be evaded if the rogue DHCP 

server spoofs its MAC address. 

The second method used to detect rogue DHCP server uses a discover packet with 

spoofed MAC address, time to time, if 2 DHCP answers are received, it means that 

exist a rogue DHCP server. 

3.1.8 Port Scanning 
 

Port scanning is the act of probe a host or multiple hosts to find opened ports. 

Usual methods can be used to detect if a port is opened, the main ones can be found 

in the tool Nmap[NMAP, 2011]. 

A port scan can be based in the protocol TCP or UDP. In the TCP case, way to detect 

opened ports is to abuse some characteristics of the TCP flags. The most usual case is 



22 

 

the SYN scan, where the attacker sends a SYN packet to a specific port against a 

victim, if it answer with a SYN/ACK, it means that the port is open (i.e. starting the 

handshake), if the victim answers with a RST (i.e. port closed in Linux systems) or if 

it does not answer, it means that it is filtered, or it cannot reach the destination. Of 

course, this one is the simplest port scan TCP based, but we have others that will not 

be detailed here, as for example: NULL Scan, Xmas Scan, FIN Scan, ACK Scan, etc. 

The UDP scan depend a little bit more of the service in the application layer that the 

port is related. 

The detection to this attack was not developed because Snort already has a good pre-

processor to detect scans. This preprocessor can detect both probe types presented: 

TCP and UDP (also ICMP [RFC 792,  1981] , but it does not fit in port scan). 

3.2 SIP VoIP Threats 
 

VoIP phones SIP based are almost a standard to companies’ telephony. It happens 

due to low cost calls and easy implementation of these systems that only depend of a 

simple IP network infrastructure. Nevertheless, in the standard implementation, the 

SIP VoIP Phones presents numerous vulnerabilities based in the protocol 

infrastructure, network architecture and firmware flaws, as will be presented next. 

The lecture of this vulnerabilities are depended of a previous knowledge in the SIP 

and RTP protocols, that can be find in details in their respective RFCs [RFC 3261, 

2002][RFC 3550, 2003]. 

3.2.1 SIP Register Credentials Guessing Flood 
 

An attacker can apply a brute-force attack against the SIP Registar to find an 

registered user credential. In the figure 3.1 is represented the authentication method 

of an user to its respective Registar. As can be seen, first the user Alice tries to 

register herself in the Registar, as an answer the Registar sends that she needs to 

authenticate herself, sending a challenge based in a Nonce (abbreviation of number 

used once) and a digest algorithm, as for example MD5 [RFC 1321, 1992]. After  

that, Alice will compute the Nonce together with a secret (e.g. a password) with the 

specified digest algorithm and send back to the Registar, if the digest is correct, the 

Registar sends a OK, else it sends a message of forbidden (error 403). 

Since that the number of times that an user tries to register himself in the Registar 

is not tested, it is easy to see that  someone can just apply a brute-force in this 

authentication method, guessing the credentials of the victim, until find the correct 

secret. However this method is slow and definitely works only to weak passwords (i.e. 

less than 5 characters or easily guessable). 

When the authentication fails, the Registar sends a 403 (forbidden) SIP message to 

the attacker, so if we have many 403 messages (or 4xy in general) to some IP in a 

small time interval, it means that this IP is maybe trying to crack an user password. 

This detection based in the frequency of 403 messages can give false positives (as 

any frequency based detection), being dependent of the constant trigger value, 

defined in the detection as 10 403 messages in 1 second from the same attacker. 



23 

 

 
 
 

Figure 3.1 – User Alice authenticate herself to a SIP Registar. 
 
 

3.2.2 MD5 Hashes Eavesdropping 
 

If we have access to a sample of nonce/hash from the victim, we can try to reverse the 

hash guessing the credentials locally. If the attacker is able to probe the victim traffic, 

he can use the tools sipdump and sipcrack, found in Backtrack [BACKTRACK, 

2011], to capture the Nonce/hash relation and finally crack it. This attack is definitely 

more effectively than the Registar brute-force due to the fact that the brute-force is 

made locally. 

To apply this threat, the attacker need to have access to the relation nonce/hash, the 

main method have access to this is to eavesdrop the victim VoIP traffic. Since that 

eavesdrop is a passive act, we need to detect how it was eavesdropped. See chapters 

3.1.1 and 3.1.7 for methods that can be vectors to this attack. 

3.2.3 SIP VoIP Fuzzing 
 

Fuzzing is a technique to test software, often in an automated way, to involve 

providing invalid, unexpected, or random data to the inputs of the respective 

software. In this case, SIP VoIP Fuzzing is the Fuzzing technique applied over the 

VoIP firmware responsible to deal with the SIP traffic. A study presented in the Misc 

magazine [MISC, 2011] edition 39 shows how vulnerable VoIP phones firmware are 

over SIP Fuzzing attacks. Even being from the end of 2008, not much changed over 

the firmware security policies. 

Automated attacks can be applied easily with the advent of some tools like SIP 

PROTOS [PROTOS, 2011], that can be found in the Backtrack [BACKTRACK, 



24 

 

2011] operational system. It is important to highlight, that a Fuzzing attack can be 

responsible by the follow threats (or at least be a vector to): 

 Unstable behavior 

 Denial of Service / Firmware Crash 

 Arbitrary Code Execution 

To detect this attack, many rules created by VRT that detects invalid SIP packets can 

be used to detect Fuzzing attacks. Due to the incomplete nature of the RFC SIP, and 

sometimes even the disrespect of this norm by VoIP phone vendors, some of these 

rules can give some false positives 

3.2.4 SIP Invite Flood 
 

The  invite  SIP  message  is  the  equivalent  of  SYN  to  a  SIP  session,  i.e.  it 

starts  the  SIP  session negotiation. When an attacker sends an excessive quantity of 

invite to a certain VoIP phone, this one will consume its resources, causing a 

possible Denial of Service. 

This attacks is detected with a frequency based solution, i.e. if an IP is sending 

multiple SIP invite packets in a small time interval to the same IP destination, it will 

be considered a Denial of Service attempt. 

3.2.5 Eavesdropping Call Sessions 
 

If the media transport is made by the RTP protocol (that is almost always the 

case), the call session is passing in clear, so we just need to sniff them and transform 

it in an audio file. 

Since that eavesdrop is a passive act, we need to detect how it was eavesdropped. See 

chapters 3.1.1 and 3.1.7 for methods that can be vectors to this attack. 

3.2.6 Information Leak from Configuration files 
 

When activated, normally a VoIP phone will try to download a configuration file 

from the server using TFTP. So, if we sniff configure file's name downloaded by 

the VoIP phone, we can retrieve many sensitive information getting this file from 

the server. 

Since that eavesdrop is a passive act, we need to detect how it was eavesdropped. See 

chapters 3.1.1 and 3.1.7 for methods that can be vectors to this attack. 

3.2.7 Redirection Attacks 
 

In SIP, a proxy or UA can respond to an INVITE request with a 301 Moved 

Permanently or 302 Moved Temporarily response. The initiating UA should use the 

value in the Contact header line to locate the moved user. The 302 response will 

also include an Expires header line that communicates how long the redirection 

should last. If an attacker is able to monitor for (or is an MITM) the INVITE request, 

he can respond with a redirection response. It can be an attack that can open ports to 



25 

 

new and more dangerous attacks, like tricking the caller into communication with a 

rogue User Agent for example. 

Detecting 301 or 302 responses can alert want this threat happens. Of course, it can 

give false positives, since that you could have a trusted 301/302 answer in your 

network. The better solution to detect this threat is to avoid eavesdrop, avoiding for 

example man-in-the-middle attacks (see 3.1.1 and 3.1.7). 

3.2.8 SIP Devices Scanning 
 

SIP devices scanning is the act of probe a host or multiple hosts to find SIP based 

devices (e.g. VoIP devices). You can find a good SIP scanner in the auditing VoIP 

device tools called SIPVicious [SIPVICIOUS, 2011]. 

To detect this attack, we used a frequency based solution, i.e. if an IP is sending 

multiple SIP options packets in a small time interval, it will be considered a scan. To 

improve: detect if the destination is different to each packet (a true scan) and add 

the possibility to be other types of scan (e.g. invite scan). 

3.2.9 SIP Enumeration Scanning 
 

Many Registar implementations (e.g. Asterisk 1.6.2 [ASTERISK, 2011]) when 

receive a REGISTER message answer or with 401 – Unauthorized (if the user exist) 

or with 404 – Not Found (user does not exist). This behavior clearly leaks 

information about the existing users in the Registar, making possible to enumerate 

the existent users in the Registar. The module swvar from the auditing VoIP device 

tools called SIPVicious [SIPVICIOUS, 2011] offers this feature. 

The detection based in frequency is the solution used to detect this threat. If an IP is 

sending more SIP Register packets to an IP destination than the trigger value (5 

tries 1 minute), it will be considered an SIP Enumeration Scanning attempt. 

3.3 Policy Based Threats 
 

Some traffic behaviors can be not exactly associated with the classical point of 

view of threats, but it can be against the corporation network policy. It is very 

common in corporations to deny some specific type of services that, for numerous 

reasons, disturb the company environment, as for example, p2p programs to share 

files. Due to this need, the NIDS module also supports a module to detect the most 

common undesired behaviors that are presented in the follow chapters. 

3.3.1 Chat 
 

This engine is responsible for detecting the main social networks and chat 

programs. The list of detected chat networks can be seen below: 

 Facebook 

 GaduGadu 

 Google Talk 

 Google IM 



26 

 

 MSN 

 Yahoo! IM 

 IRC based software 

 Skype 

 ICQ 

 AIM 

 Jive 
 

The detection engine used existing signatures in Snort, signatures from Emerging 

Threats and signatures developed by the work’s author. The signatures used by Snort 

are in general based in the detection of certain parts of its traffic (e.g. IRC has a very 

specific traffic that can be easily detected, of course, if not encrypted). However, the 

signatures developed by the work’s author are based in the DNS resolution of those 

services (e.g. if www.facebook.com is asked in a DNS query, we detect it and block). 

3.3.2 P2P 
 

This engine is responsible for detecting the main P2P programs in the wild. The list 

of detected of P2P programs are listed below: 

 ABC 

 Ares 

 Vuze/Azureus 

 Bittorrent 

 Gnutella 

 eDonkey 

 Kaaza 

 GnucDNA 

 LimeWire 

 Manolito 

 Morpheus 

 OctoShape 

 Pando 

 SoulSeek 

 ThunderNetwork 

 Emule 

 uTorrent 

In this engine exists both signatures from Snort communities and signatures 

developed by the work’s author. In the same way of the Chat engine, the existing 

rules use characteristics from the protocols to detect the certain type of service. 

Finally, the author also developed rules based in their DNS resolution, when existent. 

http://www.facebook.com/


27 

 

 

3.3.3 Online Games 
 

This engine is responsible for detecting the main online games running in the 

network. The list of detected online games can be seen below: 

 Alien Arena 

 StarCraft 

 Brood War 

 Diablo 

 Diablo 2 

 Warcraft 2 

 Warcraft 3 

 Battle.net general traffic 

 World of Warcraft 

 Guild Wars 

 Trackmania general traffic 

Exactly the same way of the other engines presented (chat and p2p), the games 

existent signatures are based in special characteristics of their traffics that due to lack 

of the time of the author of this work, he did not study deeply to see these points in 

details. 

Also, there are rules developed in this work, this rules are based in the DNS 

resolution of URL addresses related with these services (e.g. battle.net).  

3.3.4 Inappropriate Content 
 

This engine is responsible to detect sensible words/phrases related with pornography. 

The detection is based in sensitive words, normally related with pornography 

searching, including words well known to be related with pedophilia. The author 

included many signatures to detect words that he considered related with 

pornography searching.  

3.3.5 TOR Network 
 

This engine is responsible to detect machines that are using the service TOR [TOR, 

2011] to hide their traffic (and maybe do things that they should not be able to do).  

This engine works only with existent rules from Emerging Threats. It used a regularly 

refreshed database of border nodes IPs from the TOR network, so if some traffic is 

detected coming from or going to one of these addresses, it will trigger an alert of 

TOR use. 

3.3.6 NAT 
 

This engine is responsible to detect devices that are implementing a NAT in the 

network. 



28 

 

The detection, developed by the work’s author, is based in the IP field TTL behavior. 

This method is based in 2 assumptions: 

 Different Operational Systems normally have different default TTLs 

 NAT decreases TTL value (as a router) 

Based in these assumptions a tool can apply over a probed traffic the follow rule: if a 

IP just does flip- flops of TTL default values in a small time interval, it probably 

means that this IP is running a NAT. Tha was the method implemented over the 

NIDS module. However, this method can give false positives (e.g. traceroute traffic). 

Also, due to the stateful nature of this detection (same thing to ARP Spoofing and 

DNS Tunneling), it is not used Snort as engine, but Perl scripts. 

3.3.7 General 
 

This engine detects different services that do not fall in the other categories 

described before. A non- exhaustive list of detected services is listed below: 

 PCAnywhere 

 Google Desktop 

 Teredo Traffic 

 Nintendo Wii generated traffic 

 XBOX generated traffic 

 Microsoft Office generated traffic 

 AOL ToolBar 

 Megaupload download service 
 

This is the rest of signatures from ET and VRT that do not fall in any other category 

presented before. The majority of them are based in special characteristics of each 

service that is present in its traffic. 

3.4 Profile Based Threats 
 

An informal definition that the report author gives to classical threats is “things 

that cannot arrive independent of the attacker profile”. In other words, when a device 

starts flooding a Ipv4 local network with fake ARP answers, it doesn't care if the 

attacker is a printer, a SIP VoIP phone or a PC, it will be considered a threat. 

However, imagine that there is a device in the network that is doing a DNS 

resolution to www.facebook.com, if it is a PC, normally it will look correct, but 

what happens if the device is defined as a printer, it will probably be an unexpected 

and undesired behavior, indicating that something wrong is happening in the network. 

The NIDS module uses the MCN engine (that in real time create profiles of all the 

active devices in its visible network) to apply personalized rules to a specific profile. 

Defining a profile to a diversified group of devices (i.e. what these devices can and 

cannot do) can be a hard task, due to the lack of a “perfect” pattern between all of 

them. However some devices groups, as an example SIP VoIP Phones, have a kind 

http://www.facebook.com/


29 

 

of strict behavior and to these kinds of devices, a detection policy based in the type 

of device is welcome. 

In this topic it will be presented profiles that were created in the NIDS Module. 

It is important to highlight that a profile usually is not perfect (since that there 

isn't a formal specification about the respective device type), so it is not 

impossible to find a device that does not fit with the profile definition. 

3.4.1 SIP VoIP Phones Profile 
 

It was defined that a SIP VoIP Phone can only do the follow tasks: 

Client Side: 

 SIP at port 5060-5070 (most used 5060 and 5061) 

 RTP: UDP ports 16384-32767[RFC 3550] 

 FTP (21) and TFTP (69) 

Server Side: 

 SIP at port 5060-5070 (most used 5060 and 5061) 

 RTP: UDP ports 16384-32767[RFC 3550] 

 Webserver (80, 443) 

 SSH (22) 

 Telnet (23) 

So, any device classified as a Sip VoIP Phone could in theory have only the behaviors 

described below, if any traffic from/to this device is outside this definition, it will 

trigger an alert. 

To automatically relate IPs to devices, we used the Mancala Network Framework 

(that has automatically host profiling), after it, we just created rules testing if one of 

these devices are presenting such traffic, as described in the profile. Of course, since 

that there is no perfect standard related with SIP VoIP Phone devices, it can give 

some false positives. 

3.4.2 Another Profiles 
 

Due to the limited time of the work any other profile was created. However, there are 

some profiles that are highly recommended to exist: Printers, DHCP server, DNS 

Server, PBX Server, etc. 

3.5 Final Considerations 
 

Both types of classical threats presented before, Snort had not a big detection 

capability, but with this work were developed numerous detections to the known 

attacks related with these 2 topics in the last years. In the table 3.1 we can see a 

resume of all the developed detections. 

 
 

 



30 

 

 Entirely 

Developed 

Improved 

an 

existent 

solution 

Use only 

the Snort 

Solution 

Not 

dangerous 

anymore 

Based in 

an 

external 

solution 

vector is 
detected 

ARP Spoofing       

DNS Rebinding – 

Small TTL Attack 

      

DNS Rebinding –

Heffner Attack 

      

DNS Tunneling       

DNS Internal IPs 

Leakage 

      

DNS Cache 

Poisoning – 

Kaminsky Attack 

      

DNS Cache 

Poisoning - 

Eavesdropping 

      

DHCP Exhaustion 

– Discover Flood 

      

DHCP Exhaustion 

– Spoofed MAC 

Association 

      

Rogue DHCP 

Server 

      

Port Scanning       

SIP Register 

Credentials 

Guessing 

      

MD5 hash crack - 

eavesdropping 

      

SIP VoiP Fuzzing       

SIP Invite Flood       

Eavesdropping Call 

Sessions 

      

Information Leak 

from Config Files 

      

Redirection Attacks       

SIP Devices 

Scanning 

      

SIP Enumeration 

Scanning 

      

Chat       

P2P       

Online Games       

Inappropriate 

Content 

      

TOR Network       



31 

 

NAT       

General       

SIP VoIP Phones 

Profile 

      

 

Table 3.1 – Classical Threats Detection Treated 

 

Even developing many types of threat detection, there are many other types that could 

be treated, as for example: web application threats, the microcontroller application 

threats and new profiles to profile based detection. The detection of these threats is 

recommended as future work.  

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 

 

4. NIDS MODULE DEVELOPMENT AND INTEGRATION 
 

In this chapter it will be presented the needs to the software development, its 

structure and finally the followed process to its development. 

4.1 NIDS Module Overview 
 

Before develop the module, some constraints need to be respected to the module 

development be consistent with the pattern applied by the Mancala Networks 

Development Team.  

The development language was Perl (the language used by the Mancala Network 

Controller), including some specific libraries (e.g. Rose to handle files) and 

determined functions. Also, the development was totally object oriented. 

The IDS module should also follow the structure of all the other modules in the 

Mancala Network Controller, as for example: use templates for database, develop test 

codes, create views (to the CLI module), library codes, makefiles, debian package 

configuration, dependencies, configuration template files, etc. Also, to store and 

organize the module, GIT [GIT, 2011] was used.  

 
 

 

 

Figure 4.1 – NIDS Module Integration Architecture Simplified 
 



33 

 

 
 

 
 

Figure 4.2 – NIDS Module CLI Interface, main menu. 



34 

 

 

 

 
 

Figure 4.3 – NIDS Module CLI Interface topology menu. 

 

In the figure 4.1 can be seen the module integration with the Mancala Network 

framework. All the alerts generated by the module are sent to the Event Notifier 

module using a respective syntax. These alerts are eventually saved in the database. 

The responsible to manage the enable/disable system from the NIDS module, 

including saving all the correct configuration files in the good place, is the Core 

module. 

The CLI is a module responsible to give a hierarchical text based interface, used to 

the configuration of the NIDS module. In the annexed figure 4.2 can be seen a 

sample of the NIDS module CLI interface, also, in the annexed figure 4.3 can be seen 

a sample of the topology configuration show command output. 

Using the CLI, it can be configured the follow values: 



35 

 

 Home Network 

 Interface 

 DNS, DHCP, HTTP and PBX Servers 

 SIP VoIP Phones 

 Devices to detect 

 Chat and social networks 

 P2P 

 Games 

 Inappropriate content 

 NAT 

It is important to highlight that all of these configuration values are optional, making 

the module almost “plug-and-play”. However, the home network and the interface 

values are highly recommended to be configured manually. 

4.2 Traffic from the Corporation Network 
 

The NIDS module solution presented is incorporated in the machine that runs the 

MCN framework. All the analyzed traffic must be redirected to the port that the 

NIDS probes. In the case that the company that is interested in the module has a 

small or medium network, a SPAN port [SPAN, 2011] that redirects the traffic to the 

NIDS could be enough. However, in big networks, it is not feasible to redirect all 

the traffic to just one port located in one place of the network, that is why that in 

the section, future plans it will be presented some improvements that could be 

applied over the NIDS module. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 

 

5. NIDS EVALUATION 
 

In this topic we will present the methods used to evaluate the NIDS module and the 

new detection methods created. The tests can be divided in 3 groups, the software test 

(see 3.2.1), the software integration with the Mancala Network Controller Framework 

and the most important, the detection methods tests that uses an entire virtual 

machines laboratory. 

5.1 Unit Tests 
 

The first tests performed, when writing codes, are used to make sure that each 

subroutine works as it should do. Ensure that given a set of input arguments, the 

function has the expected behavior and return the correct answer is the fastest way to 

detect an error in source code. If primary blocks of code do not work, more 

sophisticated pieces of code build from basics blocks can't work. These tests are 

called Unit Tests. 

Frameworks to do Unit Tests are very dependent of the coding language. The module 

Test::More written by Michael G Schwern [SCHWERN, 2011] was used during this 

project to perform unit tests in Perl. In the Figure 5.1 we can see an example of unit 

tests. 

 
 

#test the delete command 

ok($server->del($this_host),"check del command"); 

is($server->find("test_host"),undef,"check host 'test_host' 

deleted"); 
 

 

Figure 5.1 – Extract of an user test command. 
 

5.2 Integration Tests 
 

The goal of integration testing is to check that all the individual modules work 

properly together when integrated in the Network Controller application. It is 

complementary to unit testing which checks modules with a finer grain in isolation.  

Integration tests are based on the Virtualization technology. 

The basic mechanism of integration tests is relatively straightforward. A virtual 

computer is emulated using a virtualization solution [CPAN, 2011][KVM, 2011] and 

a basic Ubuntu operating system installed. Then every components of the Network 

Controller is installed one-by-one and tested. This is the easiest way to get a clean 

computer, and to test installation from scratch, without any pre-existent software. 

This emulated computer is the closest to the production environment – computer on 

which the product will be installed and shipped to the customer. Actually 

development environment – computers where the software is developed – is the very 

different from the production environment, that's the reason why this step is 

mandatory. 



37 

 

5.3 Virtualized Lab Environment 
 

The company Mancala Networks has a set of servers that implement an automatic 

laboratory to tests, where we can create routines to each machine (clients, attackers, 

servers, switches, routers, etc) in a way to simulate threats. This laboratory allowed 

validating the created detections. 

In the figure 5.2 we can see the virtual laboratory structure. The virtualized laboratory 

make available some high level scripts to automatize the tests, including return the 

machines to a “safe state” and configure them to different configurations or roles 

inside this virtualized network. Below a list of all the detections that were tested: 

 ARP Spoofing 

 DNS Tunneling 

 DNS Leakage internal IP 

 DNS Internal IP Rebinding 

 DNS Internal IPs Leakage 

 NAT 

 SIP Enumeration Scan 

 SIP Invite DoS 

 SIP Devices Scan 

 SIP Register credentials guessing flood 

 SIP Fuzzing with SIP PROTOS 

 Rogue DHCP Server 

 DHCP Starvation Discover Flood Based 

 DHCP Rogue 

 Chat DNS resolutions 

 P2P DNS resolutions 

 Games DNS resolutions 

 Inappropriate Content 

 NAT 

 SIP VoIP Phone Profile 

All the tests were applied every night for one month in this laboratory. Also, we 

tested this module in a real environment (the Mancala Networks network). 

The majority of detections created worked to their respective threats. However, the 

ones based in the frequency of a behavior (e.g. if there is 300 DNS responses queries 

to the same top domain, it is a DNS Tunneling) presented a high sensibility to false 

positives and negatives.  

The problem related with frequency based detections (or also known by anomaly 

based detections) is that they are sensitive to the environment that they analyze. 

Nevertheless, all the frequency based detections have the possibility to be tuned (i.e. 

to adapt the detection trigger value to the respective environment). 



38 

 

 
 

Figure 5.2 – Integration Laboratory Tests Architecture 

 

In the next chapters we will present 4 examples from the Integration Laboratory tests, 

Facebook DNS resolution (unique signature), the ARP spoofing detection (stateful 

analysis), the SIP register credentials guessing flood (frequency based) and the SIP 

VoiP phone profile detection (profile based detection test). 

5.4 Facebook DNS Resolution Test 
 

This detection is from the CHAT engine (see chapter 3.3.1). It is a single rule that 

detects if a DNS Query packet is asking for the resolution www.facebook.com.  

In this test, first the Machine 1 generates 3 DNS Queries to the follow addresses: 

 www.myfacebook.com 

 www.facebookc.om 

 www.acebook.com 

All these tests were performed to see if the signature was with the correct URL 

address. In the second part of the test, the machine tries to solve www.facebook.com. 

This test should trigger an alert. 

False positives and negatives were not detected in our tests. However, it is not the 

perfect way to detect if someone is accessing Facebook, there are many other ways to 

evade this detection (e.g. have directly the server IP address or access it using a 

http://www.facebook.com/
http://www.myfacebook.com/
http://www.facebookc.om/
http://www.acebook.com/
http://www.facebook.com/


39 

 

proxy), but based in the proposition of this rule, it detects perfectly what it proposes: 

to detect DNS resolutions of www.facebook.com. 

5.5 ARP Spoofing Detection Test 
 

This test first analyze the detection capability and in a second moment the false 

positives and negatives. The Machine 2 does an ARP request of the MAC address of 

10.0.50.103, the machine 3 and the machine 1 answer. Since that 2 different IPs are 

claiming the same MAC, it will trigger an alert of ARP Spoofing. 

The second part of the test see if the release time from the detector is respected (i.e. 

when 1 IP is associated with one MAC, this association has a time-to-live of 5 

minutes). So, the Machine 2 does an ARP request asking who has the IP 10.0.50.103, 

the machine 3 answer with its MAC. 4 minutes later, the Machine 3 flushes its ARP 

Table and does ask again, the machine 3 does not answer (the network interface is put 

down), and the Machine 1 answers. This behavior should trigger an alert. The third 

part tests the release time after 5 minutes, in the same way of the part 2, where in this 

case this should not trigger an alert. 

There are false positives and negatives in this detection. A false positive happens 

when a machine is configured statically with the same IP of another machine in the 

network, both machines will not be lying about their IPs, but it will cause many ARP 

Spoofing alerts. In this case, it is interesting the false positive, because, the majority 

of the cases, there is no interest of having 2 machines with the same IP in the same 

network. 

The main responsible by false positives and negatives is the release time value. If we 

put a small release time, many false negatives will happen (just apply the spoofing a 

little bit later the good answer), but if we put a big release time, we will have many 

false positives when new machines enter in the network, using IPs that were used 

before by another machine. 

Finally, this detection, mainly due to the fact of being a little bit more complicated 

than the other presented in the chapter 5.4, it presents a certain quantity of false 

positives and negatives, but in the majority of the cases, the best solution is tune the 

release value to the respective network needs. 

5.6 SIP Register Credentials Guessing Flood Test 
  

To apply this test, the machine 1 uses to attack a tool from Backtrack called Sipcrack 

[BACKTRACK, 2011]. The functionality of Sipcrack is: it generates a REGISTER 

command claiming be an user to the attacked REGISTAR, in consequence the 

REGISTAR will answer with a challenge (i.e. a string to be used in the hash), the 

machine 1 answers with a guessed password plus the challenge, all together hashed, if 

the hash matches, the registration is successful, else it will answer with a forbidden 

message (code 403). 

Since that the detection is based in the frequency of forbidden messages, the quantity 

of false positives (a normal user answering with a wrong password) and the quantity 

http://www.facebook.com/


40 

 

of false negatives (a guessing flood below the trigger value) are direct related with the 

frequency trigger value. 

The tests were made over and below the defined trigger frequency value (i.e. 10 

messages in 1 minute). The tests below the trigger value, did not trigger an alert, 

giving a false positive. However, if an user has a random alphanumeric password of 

at least 6 characters, it will take the average of at least 25.10
8
 tries, making the attack 

expend more or less 494 years to be successful. Of course, if the password is easily 

guessable, the attack can be reduced to hours or days with the use of a dictionary. 

False negatives were not detected in the tests.   

5.7 SIP VoIP Phone Profile Detection Test 
 

The first part of the test, it sees the existence of false negatives and true threats. In the 

second step, it sees the false positives. The tests were made using simple Perl scripts 

to open UDP and TCP sockets, respecting the profile created (see chapter 3.4). To 

simulate the VoIP device, the machine 1 was defined manually in the NIDS as a VoIP 

device. No false positives were generated. 

The second part of this test was to see if false positives were created. The generated 

traffics from Machine 1 were: 

 TCP destination ports 80 and 443 

 UDP destination and source port 53 

These ports were chosen because they are the most usual ports in a regular machine 

and normally not blocked by firewalls. No false negatives were generated. 

This test presents a certain trust in the detection, but does not prove that the profile is 

correct. The profile’s tests are more interesting in a real network with real VoIP 

phones. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 

 

6. CONCLUSION 
 

A good security solution, to corporation systems, is a need nowadays. Between the 

existing solutions, the Network Intrusion Detection System (NIDS) presents an extra 

layer in the company system security. 

The objective of this work was present a NIDS solution that has as objective to 

improve the detection capabilities from the state of the art NIDS solution in the wild. 

The developed solution used the engine Snort, defined as the state of the art in the 

studied NIDS solutions.  

The final solution implemented improved the detection capabilities in some threat 

types, as internal network threats and VoIP threats. However, not only these classical 

threats are now detected by this new NIDS solution, but also different types of 

threats, as policy threats, avoiding users undesired behaviors inside a company or 

even a new approach that judges devices not only based in their IP, but also in their 

device type (i.e. role in the network). All the new detections were tested multiple 

times in the Integration Laboratory from the company Mancala Network, and now it 

is being used by their commercial product, Mancala Network Controller. 

The NIDS module is already a stable and a usable module. Nevertheless, there 

are many improvements that could be applied. The main ones will be discussed here. 

One of the main improvements in the NIDS module presented compared with other 

solutions (inclusive Snort) is the profile based detection approach. As discussed in 

the chapter 3.4, this approach detects all the traffic in a transport level (i.e. TCP 

and UDP) that it is not expected to the defined profile. As a concrete example, was 

the SIP VoIP Phones profile, presented in the chapter 3.4.1. It is strongly 

recommended to create profiles to Printer, DHCP, DNS, SIP Proxy and SIP 

Registar servers. 

A second point is that many rules are incredibly time sensitive, i.e. 1 week after their 

release, they can be already considered old, useless and even wrong (e.g. blacklist 

rules). For this reason, it is vital to have a system to update rules.  When  treated  

directly  with  the  Snort  NIDS,  there  is  a  good  solution  called  PulledPork 

[PULLEDPORK, 2011]. However, the NIDS modules use modified VRT rules, 

modified ET rules and rules created in this work, making necessary an adaption of 

the existent solution. 

A third proposition is the creation of detections against web application threats. Some 

example of attacks that are highly recommended the creation of detection 

methodologies: SQL injection, cross site request forgery, cross site scripting, file 

inclusion, poison null byte and server side includes. 

Finally, the existent solution only supports one NIDS sensor that is in the same 

machine where is running the Mancala Network Controller (MCN). In small 

networks (50 devices or less) it is not a real problem, because the traffic can be 

easily redirected to an interface in the MCN machine using a switch SPAN port for 



42 

 

example. However, if it is a large network, it is necessary to use a distributed solution 

to the NIDS module. It is highly recommended to a future release. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 

 

REFERENCES 

 

[ARPWATCH, 2011] http://www.securityfocus.com/tools/142, last access: June 2011 

[ASTERISK, 2011]   http://www.asterisk.org , last access: August 2011  

[BACKTRACK, 2011]  www.backtrack-linux.org, last access: August 2011 

[CHECKPOINT, 2011] http://www.checkpoint.com/, last access: August 2011 

[CI ARMY, 2011]  http://ciarmy.com, last access: August 2011  

[CISCO, 2011]   http://www.cisco.com, last access: August 2011 

[CPAN, 2011] http://search.cpan.org/~mschwern/Test-Simple-0.94/lib/Test/More.pm, 

CPAN Test::More, last access: August 2011 

[DIGININJA, 2011]  www.digininja.org, last access: August 2011 

[DSHIELD, 2011]  http://www.dshield.org, last access: August 2011 

[ET, 2011] http://www.emergingthreats.net, last access: August 2011 

[FREERADIUS, 2011]  http://freeradius.org, last access: August 2011 

[GIT, 2011]  http://git-scm.com, last access: August 2011 

[HEFFNER, 2010]   http://www.blackhat.com/html/bh-us-10/bh- us-10-briefings.html, 

How to hack millions of routers by Craig Heffner, Black Hat USA, 2010 

[IBM, 2011]  http://www.ibm.com, last access: August 2011   

[IODINE, 2011]  http://code.kryo.se/iodine/, last access: June 2011 

[KAMINSKY, 2008] www.blackhat.com/html/webinars/kaminsky- DNS.html, Black 

Hat USA 2008 Kaminsky presentation, 2008 

[KEVIN BIO, 1996] Tsutomu Shimomura and John Markoff. “Takedown: The 

Pursuit and Capture of Kevin Mitnick, America's Most Wanted Computer Outlaw-By 

the Man Who Did It”. Hyperion, 1996. 

[KVM, 2011]  http://www.linux-kvm.org/page/Main_Page, last access: August 2011 

[LULZSEC, 2011] http://www.bbc.co.uk/news/technology-13787229, last access: 

November 2011 

[MANCALA, 2011]  http://www.mancalanetworks.com/en/products/, last access: 

June 2011 

[MARKOFF, 2009] Markoff, John (2009-01-22). "Worm Infects Millions of 

Computers Worldwide". New York Times. Retrieved 2009-04-23. 

[MCAFEE, 2011] http://www.mcafee.com, last access: August 2011   

[METASPLOIT, 2011]  www.metasploit.com, last access: August 2011 

[MISC, 2011] – Misc magazine website, August 2011,  http://www.miscmag.com 

[NETFILTER, 2011]  http://www.netfilter.org/, last access: June 2011 

[NMAP, 2011] http://sectools.org, last access: June 2011 

http://www.securityfocus.com/tools/142
http://www.asterisk.org/
http://www.backtrack-linux.org/
http://www.checkpoint.com/
http://ciarmy.com/
http://www.cisco.com/
http://search.cpan.org/~mschwern/Test-Simple-0.94/lib/Test/More.pm
http://www.digininja.org/
http://www.dshield.org/
http://www.emergingthreats.net/
http://freeradius.org/
http://git-scm.com/
http://www.blackhat.com/html/bh-us-10/bh-us-10-briefings.html
http://www.blackhat.com/html/bh-us-10/bh-us-10-briefings.html
http://www.ibm.com/
http://code.kryo.se/iodine/
http://www.blackhat.com/html/webinars/kaminsky-DNS.html
http://www.blackhat.com/html/webinars/kaminsky-DNS.html
http://www.linux-kvm.org/page/Main_Page
http://www.bbc.co.uk/news/technology-13787229
http://www.mancalanetworks.com/en/products/
http://en.wikipedia.org/wiki/John_Markoff
http://nytimes.com/2009/01/23/technology/internet/23worm.html
http://nytimes.com/2009/01/23/technology/internet/23worm.html
http://en.wikipedia.org/wiki/New_York_Times
http://www.mcafee.com/
http://www.metasploit.com/
http://www.miscmag.com/
http://www.netfilter.org/


44 

 

[NSSLABS1, 2011] http://www.nsslabs.com/research/network- security/network-

ips/sourcefire-3d-4500-q4-2010.html, Sourcefire   3D   4500   NSSLabs   report,   

last access: August   2011 

[NSSLABS2, 2011] www.clm.com.br/produtos/sourcefire/pdf/NSS- Labs-Network-

IPS-Group-Test-Sourcefire-3D4500-Test-Results.pdf, Sourcefire 3D 4500 NSSLabs 

report for free, last access: August 2011 

[NSSLABS3, 2011] www.checkpoint.com/campaigns/intrusion-prevention-

system/index.html, Comparison of CheckPoint with others vendors website, last 

access: August 2011 

[NSSLABS4, 2011]  www.nsslabs.com NSSLabs website, last access: August 2011 

[OISF, 2011] http://www.openinfosecfoundation.org/, last access: June 2011  

[PERL, 2011]  http://www.perl.org/, June 2011 

[PROTOS, 2011] https://www.ee.oulu.fi/research/ouspg/PROTOS_Test-Suite_c07- 

sip, last access: August 2011 

[PULLEDPORK, 2011]  http://code.google.com/p/pulledpork, last access: August 

2011 

[REUTERS, 2007] Jim Finkle (July 17, 2007). "Hackers steal U.S. government, 

corporate data from PCs". Reuters. Retrieved November 17, 2009. 

[RFC 134-135, 1987] http://tools.ietf.org/html/rfc1034 and 

http://tools.ietf.org/html/rfc1035, Domain Name System RFCs (just the 2 basic 

ones), November 1987 

[RFC 768, 1980] http://tools.ietf.org/html/rfc768, August 1980 

[RFC 792, 1981]  http://tools.ietf.org/html/rfc792, , September 1981 

[RFC 793, 1981]  http://tools.ietf.org/html/rfc793, September 1981  

[RFC 826, 1982] http://tools.ietf.org/html/rfc826, November 1982  

[RFC 1321, 1992]  http://tools.ietf.org/html/rfc1321, April 1992 

[RFC 2131, 1997] http://tools.ietf.org/html/rfc2131, March 1997 

[RFC 2616, 1999]  http://tools.ietf.org/html/rfc2616, June 1999 

[RFC 3261, 2002]   http://tools.ietf.org/html/rfc3261, June 2002 

[RFC 3550, 2003] http://tools.ietf.org/html/rfc3550 , July 2003 

[SCARFONE ET AL., 2007] Scarfone, Karen; Mell, Peter (February 2007). Guide 

to Intrusion Detection and Prevention Systems (IDPS). Computer Security 

Resource Center (National Institute of Standards and Technology) (800-94).  

[SCHWERN, 2011] http://search.cpan.org/~mschwern/Test-Simple-

0.98/lib/Test/More.pm, last access: June 2011 

[SHADOWSERVER, 2011] http://www.shadowserver.org, last access: August 2011 

[SHNEIER, 2011] http://www.schneier.com/blog/archives/2011/07/ 

is_there_a_hack.html, July 2011 

http://www.nsslabs.com/research/network-security/network-ips/sourcefire-3d-4500-q4-2010.html
http://www.nsslabs.com/research/network-security/network-ips/sourcefire-3d-4500-q4-2010.html
http://www.nsslabs.com/research/network-security/network-ips/sourcefire-3d-4500-q4-2010.html
http://www.clm.com.br/produtos/sourcefire/pdf/NSS-Labs-Network-IPS-Group-Test-Sourcefire-3D4500-Test-Results.pdf
http://www.clm.com.br/produtos/sourcefire/pdf/NSS-Labs-Network-IPS-Group-Test-Sourcefire-3D4500-Test-Results.pdf
http://www.clm.com.br/produtos/sourcefire/pdf/NSS-Labs-Network-IPS-Group-Test-Sourcefire-3D4500-Test-Results.pdf
http://www.checkpoint.com/campaigns/intrusion-prevention-system/index.html
http://www.checkpoint.com/campaigns/intrusion-prevention-system/index.html
http://www.nsslabs.com/
http://www.openinfosecfoundation.org/
http://www.perl.org/
https://www.ee.oulu.fi/research/ouspg/PROTOS_Test-Suite_c07-sip
https://www.ee.oulu.fi/research/ouspg/PROTOS_Test-Suite_c07-sip
http://code.google.com/p/pulledpork
http://www.reuters.com/article/domesticNews/idUSN1638118020070717
http://www.reuters.com/article/domesticNews/idUSN1638118020070717
http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc792
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc826
http://tools.ietf.org/html/rfc2131
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3550
http://search.cpan.org/~mschwern/Test-Simple-0.98/lib/Test/More.pm
http://search.cpan.org/~mschwern/Test-Simple-0.98/lib/Test/More.pm
http://www.shadowserver.org/
http://www.schneier.com/blog/archives/2011/07/%20is_there_a_hack.html
http://www.schneier.com/blog/archives/2011/07/%20is_there_a_hack.html


45 

 

[SIPVICIOUS, 2011] http://blog.sipvicious.org, last access: August 2011 

[SNORT, 2011] http://www.snort.org/, last access: June 2011 

[SOURCEFIRE, 2011] http://www.sourcefire.com/, last access: June 2011 

[SPAN, 2011] www.cisco.com/en/US/products/hw/switches/ps708/products_ 

tech_note09186a00805c612.shtml, Example of Switch SPAN port from Cisco 

switches, last access: August 2011 

[STUXNET, 2011]  "Last-minute paper: An indepth look into Stuxnet". Virus 

Bulletin. http://www.virusbtn.com/conference/vb2010/abstracts/LastMinute7.xml. 

[TCPDUMP, 2011]  http://www.tcpdump.org/, last access: June 2011  

[TOR, 2011] www.torproject.org , last access: June 2011 

[VRT, 2011]  http://www.snort.org/vrt, last access: June 2011 

[WIKIPEDIA, 2011]  http://en.wikipedia.org, last access: June 2011 

[ZEUS, 2011] http://www.net-security.org/malware_news.php?id=1811, last access: 

November 2011 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://blog.sipvicious.org/
http://www.snort.org/
http://www.sourcefire.com/
http://www.cisco.com/en/US/products/hw/switches/ps708/products_%20tech_note09186a00805c612.shtml
http://www.cisco.com/en/US/products/hw/switches/ps708/products_%20tech_note09186a00805c612.shtml
http://www.virusbtn.com/conference/vb2010/abstracts/LastMinute7.xml
http://www.virusbtn.com/conference/vb2010/abstracts/LastMinute7.xml
http://www.tcpdump.org/
http://www.torproject.org/
http://www.snort.org/vrt
http://en.wikipedia.org/
http://www.net-security.org/malware_news.php?id=1811


46 

 

 

 


