
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

TIBÉRIO SILVA CAETANO

Graphical Models and Point Set Matching

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Prof. Dr. Dante Augusto Couto Barone
Advisor

Prof. Dr. Terry Caelli
Coadvisor

Porto Alegre, July 2004

CIP – CATALOGING-IN-PUBLICATION

Caetano, Tibério Silva

Graphical Models and Point Set Matching / Tibério Silva Cae-
tano. – Porto Alegre: PPGC da UFRGS, 2004.

87 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Curso de Pós-Graduação em Ciência da Computação, Porto Ale-
gre, BR–RS, 2004. Advisor: Dante Augusto Couto Barone;
Coadvisor: Terry Caelli.

1. Point pattern matching. 2. Weighted graph matching.
3. Probabilistic graphical models. 4. Hidden Markov random
fields. 5. Pattern recognition. I. Barone, Dante Augusto Couto.
II. Caelli, Terry. III. Title.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitora: Profa. Wrana Maria Panizzi
Pró-Reitor de Ensino: Prof. José Carlos Ferraz Hennemann
Pró-Reitora Adjunta de Pós-Graduação: Profa. Jocélia Grazia
Diretor do Instituto de Informática: Prof. Philippe Olivier Alexandre Navaux
Coordenador do PPGC: Prof. Carlos Alberto Heuser
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

À Camila

ACKNOWLEDGMENTS

First of all, I thank my supervisor Dante Augusto Couto Barone and my co-supervisor
Terry Caelli. Dante has provided me continuous encouragement, support and, specially,
has made me realize that science can be better made if one has freedom to think. In
all circumstances where I needed his approval for taking important decisions, he was
supportive. This freedom with which I have undertaken my Ph.D. program is - I’m very
aware of this now - one of the main elements that lead me to obtain the results presented in
this Thesis. Terry was not only an outstanding supervisor during my stay at the University
of Alberta (UofA), where most of the technical work documented in this Thesis was
developed, but also a mentor, an example as a scientist, and a friend. While working with
him, I always had the most genuine sense of freedom in pursuing research in my own
way. Yet, he was always there to solve my technical questions, as well as to give me wise
advices about which path to choose in the uncountable bifurcations that one faces during
the course of a Ph.D. Thesis gestation. For all this I believe I was most fortunate to have
Dante and Terry as my advisors, and here I acknowledge that.

Many Professors have somehow been important during the course of my academic
career, either during the Ph.D. or before it. At the Universidade Federal do Rio Grande
do Sul (UFRGS), during my undergraduate studies, Felipe Rizzato was the first person to
give me an opportunity to be involved with science, and much of my scientific posture has
been inherited from him. Already in the course of my graduate studies, several Professors
have influenced me significantly at UFRGS: Sílvia Olabarriaga, Jacob Scharcanski, Vitor
Haertel and Robin Thomas Clarke. Sílvia deserves a special mention because she was
of fundamental importance for having established formal contact with the University of
Alberta in order to help me to undertake my sandwich program with Terry Caelli. Jacob,
Vitor and Clarke prepared me technically so that I could attack the Thesis problem with
a solid background. During my stay in Canada, I have benefited from the interactions
with several Professors, but one had a direct impact on the development of this Thesis:
Dale Schuurmans. Dale’s influence cannot be easily quantified. All the Graphical Model
apparatus that I have used to solve the problem of this Thesis was acquired in a course
where Dale was the instructor. He has helped me so much by giving several suggestions
and by raising fundamental questions (that made me think a lot!) that I realized he should
necessarily take part in my Thesis committee, for no one else was so aware of the technical
intricacies involved in the work.

Important technical discussions with many people were helpful while I was maturing
the ideas. Discussions with X. Chen, Robert Connelly, Jon Dattorro, Ted Lewis and with
my brother Gregório Silva Caetano and his wife Maria Carolina Nizarala Caetano were
helpful in order to obtain the theoretical results.

Some people have diligently revised the first version of this Thesis. My brother

Gregório and my brother-in-law Adriano Petry have both provided thorough and impres-
sively detailed revisions by correcting many errors and making critical observations that
have improved significantly the quality of the original version of the manuscript. My
great friend and guru for technological inquires Marcelo Boeira de Barcelos introduced
many important ideas and observations about the presentation of the work, and I believe
it became more readable for a broader audience after that.

From all the colleagues with whom I have professionally interacted during the course
of my graduate studies, I would like to mention four in particular: Luís Renato Erpen and
Siovani Felipussi at UFRGS and Li Cheng and John Arnold at UofA. Renato was my best
friend at UFRGS during the years where we coexisted there. He was very helpful in many
technical senses, in particular in his ability to optimizing my codes. He was very helpful
as well when it came to listen patiently to crazy ideas from his friends. The relaxing
and funny conversations with Siovani will never be forgotten. They were important to
improve my mood in many circumstances. At UofA, Li Cheng was the colleague with
whom I have interacted the most. John Arnold shared the office with me, and he was my
Mac guru.

I am deeply grateful to the Universidade Federal do Rio Grande do Sul (UFRGS), in
which I was a student both during undergraduate and graduate programs. In particular I
thank the Instituto de Informática and all its members with whom I have interacted during
these years. I also thank sincerely the University of Alberta (UofA), and specially the
Department of Computing Science and its members, where part of the Ph.D. program was
undertaken. The dedication needed to accomplish full-time research was only possible
due to generous grants that I have received from the Brazilian research agencies CNPq
and CAPES. CNPq has funded me while in Brazil, whereas CAPES funded the sandwich
program in Canada.

I owe a special acknowledgment to the members of my committee. They have pointed
out several errors and have made important suggestions in order to improve the quality of
the final Thesis document. Felipe, Jacob, Vitor and Dale: thanks.

To all the friends from Cardionuclear, my sincere and deep thanks. Friendship is
something that takes time to be established, and we certainly made it. We have interacted
during most part of my graduate program, and their confidence in myself will never be
forgotten.

A very important person was Adriano Petry, my wife’s brother. Adriano was the
person who convinced me that I should get back to school and do a Ph.D.. I am sincerely
grateful for this attitude. This Thesis would not exist if he were not so committed in his
attempts to convince me to return to Academia. He has also carefully and competently
revised many of my papers prior to submission, as well as the first version of this Thesis.

I would like to thank all my Brazilian friends from Edmonton. They have provided
a social environment that allowed me to relax from my hard moments. They have also
provided important emotional support, specially when one is away from the great family
and important friends. I would like to mention specially the fundamental role that Stanley
Oliveira played in all the stages of our lives in Canada. From the moment we arrived in
Edmonton to the moment we left, he was helpful in practically all matters: from providing
us a place to stay in the first days to making us laugh with his keen sense of humor.
This not to mention many other ways in which he has definitely made our lives easier in
Edmonton. To me, he is now as another brother.

My parents-in-law, Claudio and Elisabeth, as well as Elisabeth’s mother, Ethel, have
made a significant effort in order to provide the appropriate environment for the writing

of the Thesis. A significant part of this document was typed in their residence, and they
were always very patient, demonstrating willingness in every matter that could in any
sense make my life easier.

A very special acknowledgment goes to three very important people. My father, Regi-
naldo, was my first Professor, from whom I found inspiration to follow the scientific ca-
reer by observing his indications that nature is outside there waiting to be understood. My
mother Ione is the person who is always teaching me that without a synergic equilibrium
between intellectual and physical developments one cannot succeed. Both have, since my
early days, provided an education full of love, wisdom, well-defined values and constant
support in all senses. In this respect, this Thesis is a result of their work as well. I am
deeply grateful for all that they are and for everything that they have done and still do.
My brother Gregório was and is an example of human being, and many of my attitudes
both in professional and personal life have in him an inspiration. He is a great counselor
for any matter, and has a special gift when it comes to clarify in a simple picture appar-
ently complex psychological interactions among people. Certainly great part of my way
of thinking today is a result of my interactions with him.

Finally, the most present person in all this endeavor was my wife, Camila. Her love,
patience, continuous encouragement and support were present during all stages. The
emotional stability resultant from a healthy relationship has been the major element in
tackling the most varied issues and difficulties which are typical of the stressful period
which is that of a Ph.D. program. The successful completion of this Thesis was only
possible due to her commitment, optimism and unconditional support in all senses. I owe
her my most profound acknowledgments.Obrigado, Cami.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 9

LIST OF SYMBOLS . 10

LIST OF FIGURES . 13

ABSTRACT . 15

RESUMO . 16

CONTRIBUIÇÕES . 17

1 INTRODUCTION . 18

2 THE PROBLEM . 20
2.1 The Point Pattern Matching Problem . 20
2.2 Graph Matching Problems . 21
2.2.1 Structural graph matching .21
2.2.2 Weighted graph matching .22
2.2.3 Attributed graph matching .24
2.3 Point Pattern Matching as a Weighted Graph Matching Problem 24
2.3.1 Euclidean distance matrices .24
2.3.2 Problem formulation by comparingEDMs 25
2.3.3 Problem formulation by comparing graph embeddings inRn 25
2.4 Application Domains . 27
2.4.1 Model-based object recognition .27
2.4.2 Stereo matching .27
2.4.3 Image registration .28

3 RELATED LITERATURE . 31
3.1 Exact Matching . 32
3.1.1 Search-based methods .32
3.1.2 Miscellaneous methods .32
3.2 Inexact Matching . 33
3.2.1 Search-based methods .33
3.2.2 Continuous optimization .34
3.2.3 Spectral methods .34
3.2.4 Miscellaneous methods .35

4 BACKGROUND: GRAPHICAL MODELS AND EXACT INFERENCE . 36
4.1 Probabilistic Inference . 36
4.2 Undirected Graphical Models . 37
4.2.1 Conditional independence .38
4.2.2 Markov properties .38
4.2.3 Cliques, potentials and factorization .39
4.2.4 Factorization implies Markovianity .40
4.2.5 Markovianity implies factorization: The Hammersley-Clifford Theorem .41
4.3 Exact Inference and the Junction Tree Framework 43
4.3.1 The Junction Tree framework .44
4.3.2 Graph triangulation .44
4.3.3 Junction Tree construction .45
4.3.4 Initialization of potentials .47
4.3.5 Propagation .48
4.3.6 Computational complexity .51

5 THESIS CONTRIBUTIONS: THEORY 53
5.1 Point Pattern Matching as Inference in Graphical Models 53
5.1.1 The modeling idea .53
5.1.2 Formulation .55
5.2 The Model: Potential Functions. 57
5.3 The Model: Connectivity . 59
5.3.1 A relevant lemma .60
5.3.2 Global rigidity: basic definitions .61
5.3.3 Global rigidity ofk-trees .62
5.3.4 The main result .63
5.4 The Complete Graphical Model. 65
5.4.1 The model .66
5.4.2 Optimization .67
5.5 General Matching with Graphical Models 69
5.5.1 Attributed graph matching .69
5.5.2 Generalized attributed graph matching70

6 THESIS CONTRIBUTIONS: EXPERIMENTS 72
6.1 The Benchmark. 72
6.1.1 The algorithm .72
6.1.2 Computational complexity .73
6.2 Experiments. .73
6.2.1 Exact matching .75
6.2.2 Inexact matching: sensitivity to noise .76
6.2.3 Inexact matching: sensitivity to problem size76

7 DISCUSSION . 80

8 CONCLUSION . 82

REFERENCES . 83

LIST OF ABBREVIATIONS AND ACRONYMS

AGM Attributed Graph Matching

ARG Attributed Relational Graph

ARS Attributed Relational Structure

CPU Central Processing Unit

CSP Constraint Satisfaction Problem

EDM Euclidean Distance Matrix

GAGM Generalized Attributed Graph Matching

GPS Global Positioning System

HC Hammersley-Clifford

JT Junction Tree technique (the technique proposed in this work)

MAP Maximum a Posteriori

MBOR Model-Based Object Recognition

MRF Markov Random Field

PCA Principal Component Analysis

PPM Point Pattern Matching

PRL Probabilistic Relaxation Labeling technique

PSM Point Set Matching

RAM Random Access Memory

rv Random Variable

SGM Structural Graph Matching

std Standard Deviation

WGM Weighted Graph Matching

LIST OF SYMBOLS

G graph

V vertex set of graphG

E edge set of graphG

Gd domain graph

Gc codomain graph

Vd vertex set of graphGd

Ed edge set of graphGd

Vc vertex set of graphGc

Ec edge set of graphGc

y(V) set of attributes of vertex setV

y(E) set of weights/attributes of edge setE

y(Vd) set of attributes of vertex setVd

y(Ed) set of weights/attributes of edge setEd

y(Vc) set of attributes of vertex setVc

y(Ec) set of weights/attributes of edge setEc

F factorization property

G global Markov property

L local Markov property

P pairwise Markov property

G(·) Gaussian similarity function

H(·) Hyperbolic tangent similarity function

I(·) Increasing weighting similarity function

P(·) Similarity function

d dimensionality of a maximal clique/dimensionality of Euclidean Space

C a maximal clique of a graph

C set of allC’s

CΩ aΩ-clique of a graph

CΩ set of allCΩ’s

ψC potential function of cliqueC

φS potential function of separatorS

VC modified potential function of cliqueC

y notation for conditional independence

|.| absolute value of a number/cardinality of a set

||.|| Euclidean (L2) norm

K minimum possible value for a similarity function in the experiments

Ni nodes belonging to clique nodei

Ni set of neighbors of nodei in a graph

c(·) compatibility function in PRL

Kn the complete graph withn vertices

Z partition function

T cardinality of the domain vertex setVd

S cardinality of the codomain vertex setVc

di ith vertex of the domain vertex setVd

ck kth vertex of the codomain vertex setVc

di1i2 edge connecting verticesdi1 anddi2

ck1k2 edge connecting verticesck1 andck2

Xi random variable associated to vertexdi in Gd

xk realization associated to vertexck in Gc

yd
i1

attribute of vertexdi1

yc
k1

attribute of vertexck1

yd
i1i2

weight/attribute of edgedi1i2

yc
k1k2

weight/attribute of edgeck1k2

yd whole set of weights/attributes in graphGd

yc whole set of weights/attributes in graphGc

Gm model graph

XA set of random variables indexed by setA

X entire set of random variables (the complete random field)

x a particular realization of the entire random fieldX

xC realization of random variables in cliqueC

XA sample space of random fieldXA

X sample space of random fieldX

p(x) probability distribution onX

U(x) energy function onX

C(·) compatibility function

CΩ(·) compatibility function between attributes of aΩ-clique

D(·) some distance function

DΩ(·) distance function between attributes of aΩ-clique

J subset of the cartesian productVd ×Vc

S(·) similarity measure

M matching matrix

Ki j set of clique nodes between clique nodesi and j

p a configuration inRd (a set of labeled points)/a realization of anEDM

pi ith realization of anEDM

G(p) a framework defined by graphG and configurationp

pi ith point in a configurationp

Si ith sphere inRd

Q a vector subspace

Ii ith sphere lying inQ

σ parameter that controls the width of the similarity functionsG,H andI

� symbol for end of proof

J indicator function

B set of clique nodes in a clique tree

LIST OF FIGURES

Figure 2.1: A matching between two point sets.21
Figure 2.2: Different straight line embeddings of the same graph.26
Figure 2.3: Point set matching applied to model-based object recognition: (a) a

scene and a template; (b) point features detected in both images in
order to apply point set matching to find where is the template in the
scene. .28

Figure 2.4: Point set matching applied to stereo matching: (a) left and right im-
ages; (b) left and right images with the landmark points detected in
order to apply point set matching to derive the correspondence.29

Figure 2.5: Point set matching applied to image registration: (a) two significantly
different images acquired from the same scene; (b) the two images
with the landmark points detected in order to apply point set match-
ing, from which parameters can be extracted to perform image regis-
tration. .30

Figure 4.1: A particular undirected graphical model.37
Figure 4.2: The concept of conditional independence in undirected graphical mod-

els. .39
Figure 4.3: Cliques and Maximal cliques. Every node is a clique (A,B,C,D,E,F),

every connected pair of nodes is a clique (AB,BC,CD,AD,BF,CF) and
the triple BCF is a clique. The Maximal cliques are AB,CD,AD,BCF
and E. .40

Figure 4.4: A graph with conditional independence given byX y Z | Y. 41
Figure 4.5: Left: a non-triangulated graph. Right: a possible triangulation for the

graph on the left. .45
Figure 4.6: A graph on the top and a corresponding clique tree on the bottom. . .45
Figure 4.7: A Junction Tree for the triangulated graph in Figure 4.5.46
Figure 4.8: A clique tree for the triangulated graph in Figure 4.5 which is not a

Junction Tree. .47
Figure 4.9: A model with maximal clique of size 3 which can be parameterized

with pairwise potentials:ψAB, ψAC, ψBC, ψBD andψCD. 48
Figure 4.10: A situation in which the same set of nodes (X1X2X3) appears as sep-

arating different pairs of clique nodes. In this case, different copies
of the potentials must be stored. Top: the model. Bottom: a possible
Junction Tree. .50

Figure 5.1: Pictorial representation of the modeling idea.54

Figure 5.2: An example of a pairwise mapping. An appropriate potential function
should penalize more severely mappings for which |yd

i1i2
−yc

k1k2
| is higher. 58

Figure 5.3: The kernel structure of the graphical model.58
Figure 5.4: n = 1: 2 spheres inR1 whose centers do not lie in a 0-dimensional

vector space (a point); Left: null intersection. Right: intersection is a
single point. .60

Figure 5.5: An illustration of Lemma 5.1 inR2. 61
Figure 5.6: The process of constructing 3-trees.62
Figure 5.7: Left: the domain pattern with the graphsGkt

d andḠkt
d depicted; Right:

the codomain pattern with the graphsGkt
c andḠkt

c depicted. An opti-
mal mapf is shown. .64

Figure 5.8: A possiblek-tree model fork = 3. 67
Figure 5.9: The Junction Tree obtained from the model in Figure 5.8.67

Figure 6.1: The process of creating domain and codomain point sets for exper-
imentation: thek-tree model is created from the final version of the
domain pattern by fully connecting a basek-clique in general position
and by connecting to its vertices all the remaining nodes.74

Figure 6.2: The results in the absence of noise. Experiments confirm the theoreti-
cal prediction that in this case our technique should always return the
global optimum, that for exact matching means cost function equals
to zero or equivalently similarity function equals to one.75

Figure 6.3: Robustness with respect to the noise level in the codomain pattern.
Results for both the proposed Junction Tree technique (JT) and Prob-
abilistic Relaxation Labeling (PRL), using the Gaussian (G), Hyper-
bolic Tangent (H) and Increasing Weighting (I) similarity functions. .77

Figure 6.4: Robustness with respect to the size of the codomain pattern. Results
for both the proposed Junction Tree technique (JT) and Probabilis-
tic Relaxation Labeling (PRL), using the Gaussian (G), Hyperbolic
Tangent (H) and Increasing Weighting (I) similarity functions.78

ABSTRACT

Point pattern matching in Euclidean Spaces is one of the fundamental problems in Pat-
tern Recognition, having applications ranging from Computer Vision to Computational
Chemistry. Whenever two complex patterns are encoded by two sets of points identify-
ing their key features, their comparison can be seen as a point pattern matching problem.
This work proposes a single approach to both exact and inexact point set matching in
Euclidean Spaces of arbitrary dimension. In the case of exact matching, it is assured to
find an optimal solution. For inexact matching (when noise is involved), experimental
results confirm the validity of the approach. We start by regarding point pattern matching
as a weighted graph matching problem. We then formulate the weighted graph matching
problem as one of Bayesian inference in a probabilistic graphical model. By exploiting
the existence of fundamental constraints in patterns embedded in Euclidean Spaces, we
prove that for exact point set matching a simple graphical model is equivalent to the full
model. It is possible to show that exact probabilistic inference in this simple model has
polynomial time complexity with respect to the number of elements in the patterns to be
matched. This gives rise to a technique that for exact matching provably finds a global
optimum in polynomial time for any dimensionality of the underlying Euclidean Space.
Computational experiments comparing this technique with well-known probabilistic re-
laxation labeling show significant performance improvement for inexact matching. The
proposed approach is significantly more robust under augmentation of the sizes of the
involved patterns. In the absence of noise, the results are always perfect.

Keywords: Point pattern matching, weighted graph matching, probabilistic graphical
models, hidden Markov random fields, pattern recognition.

RESUMO

Modelos Gráficos e Casamento de Padrões de Pontos

Casamento de padrões de pontos em Espaços Euclidianos é um dos problemas fun-
damentais em reconhecimento de padrões, tendo aplicações que vão desde Visão Com-
putacional até Química Computacional. Sempre que dois padrões complexos estão codi-
ficados em termos de dois conjuntos de pontos que identificam suas características funda-
mentais, sua comparação pode ser vista como um problema de casamento de padrões de
pontos. Este trabalho propõe uma abordagem unificada para os problemas de casamento
exato e inexato de padrões de pontos em Espaços Euclidianos de dimensão arbitrária. No
caso de casamento exato, é garantida a obtenção de uma solução ótima. Para casamento
inexato (quando ruído está presente), resultados experimentais confirmam a validade da
abordagem. Inicialmente, considera-se o problema de casamento de padrões de pontos
como um problema de casamento de grafos ponderados. O problema de casamento de
grafos ponderados é então formulado como um problema de inferência Bayesiana em
um modelo gráfico probabilístico. Ao explorar certos vínculos fundamentais existentes
em padrões de pontos imersos em Espaços Euclidianos, provamos que, para o casamento
exato de padrões de pontos, um modelo gráfico simples é equivalente ao modelo com-
pleto. É possível mostrar que inferência probabilística exata neste modelo simples tem
complexidade polinomial para qualquer dimensionalidade do Espaço Euclidiano em con-
sideração. Experimentos computacionais comparando esta técnica com a bem conhecida
baseada em relaxamento probabilístico evidenciam uma melhora significativa de desem-
penho para casamento inexato de padrões de pontos. A abordagem proposta é signi-
ficativamente mais robusta diante do aumento do tamanho dos padrões envolvidos. Na
ausência de ruído, os resultados são sempre perfeitos.

Palavras-chave:casamento de padrões de pontos, casamento de grafos ponderados, mod-
elos gráficos probabilísticos, campos aleatórios de Markov, reconhecimento de padrões.

CONTRIBUIÇÕES

Este trabalho apresenta algumas contribuições relativas ao problema de casamento de
padrões de pontos em Espaços Euclidianos de dimensão qualquer.

A primeira contribuição é formular o problema de casamento de padrões de pontos
como um problema de casamento de grafos ponderados onde nodos e pesos dos grafos
correspondem, respectivamente, a pontos e a distâncias entre pontos em um Espaço Eu-
clidiano.

A segunda contribuição consiste na reformulação do problema de casamento de grafos
ponderados como um problema de inferência probabilística Bayesiana em um modelo
gráfico probabilístico. Neste modelo, as variáveis aleatórias correspondem a pontos em
um padrão de pontos e as realizações correspondem a pontos no outro padrão de pontos.
Neste problema de inferência, uma solução máxima a posteriori (MAP) é procurada.

A terceira contribuição consiste na demonstração de que um simples modelo gráfico
esparso é equivalente ao modelo completo no caso de casamento exato. Ocorre que infer-
ência probabilística exata neste modelo simples é factível em tempo polinomial, o que nos
permite obter uma técnica eficiente tanto para casamento exato quanto inexato de padrões
de pontos em Espaços Euclidianos de dimensão arbitrária, que além disso ainda é ótima
para o caso de casamento exato.

A quarta contribuição consiste na extensão da formulação através da demonstração de
que qualquer tipo de problema de casamento de padrões pode ser visto como um problema
de inferência probabilística em um modelo gráfico.

A quinta e última contribuição consiste na implementação em software do algoritmo
resultante e sua comparação com uma técnica padrão na literatura através de uma série de
numerosos experimentos controlados. Os experimentos evidenciam uma melhora signi-
ficativa de desempenho, o qual tende a ser progressivamente melhor à medida em que a
quantidade de pontos envolvidos aumenta.

18

1 INTRODUCTION

A fundamental problem in Pattern Recognition is that ofmatchingtwo sets of points
that represent relevant features of associated objects or entities. Matching simply means
finding a mapping, or a correspondence, from one set of points to another set of points.
By representing objects with point sets depicting their fundamental structure, an abstract
representation is obtained through which the comparison between a pair of objects can be
made in practice via point set matching.

This issue arises in a large variety of fields. In Computer Vision, researchers are
frequently interested in model-based object recognition, for example. In this problem
domain, a visual object is frequently modeled as a set of spatially distributed points that
summarizes its structural content (LEUNG; BURL; PERONA, 1995; BESL; JAIN, 1985).
As a result, the problem of finding an object in a visual scene (which is a set of visual ob-
jects) turns out to be a point pattern matching problem. Also in Computer Vision one
finds the stereo matching problem, which consists in finding the correspondence between
points of a pair of slightly different 2D images acquired by a binocular camera setting
(REIMANN; HAKEN, 1994). In Image Processing, there is the problem of Image Reg-
istration, which consists of aligning two images which are supposed to correspond to the
same scene but were acquired under different circumstances (TON; JAIN, 1989). In order
to find a proper alignment, it is necessary to know which points in one image correspond
to which points in the other. If the mapping is known, a transformation can be obtained,
which brings the misaligned image to match the reference one. This issue also appears in
fields like Computational Chemistry and Biology, where problems like that of detecting
pharmacophores, crucial in drug design, can be regarded as a point set matching task, as
well as molecular database screening and comparative molecular field analysis (MAR-
TIN et al., 1993; AKUTSU et al., 2003). In Astronomy, constellation pattern search can
be also modeled as a point pattern matching problem (MURTAGH, 1992). Many other
application domains involve some sort of matching problems, including Data Mining,
Biometrics and Information Retrieval, among others (CONTE et al., 2004).

Although the theoretical results presented in this work are clearly independent on the
type of application considered, the main focus lies on the Computer Vision and Image
Analysis domain, in which the computational experiments were performed. In Computer
Vision, the point pattern matching problem has been almost entirely approached as a
graph matchingproblem since the 1970’s when the pioneering studies in this area were
published (CONTE et al., 2004). In graph matching, point sets are abstracted as being
graphs where the points correspond to nodes and some edge adjacency structure is used
to model the spatial configuration of the distribution of points. Purely structural relations
(i.e. presence or absence of edges) may be used, that results in thestructural graph
matching problem. Alternatively,attributedrelations may be used, where the edges and

19

maybe nodes are associated with attribute vectors. In this last case, it is said that we
have anattributedgraph matching problem, which has as an important particular case the
weightedgraph matching problem. Once the patterns have been encoded as graphs, point
set matching becomes a graph matching problem, that consists in finding the mapping
from the set of nodes in one graph to the set of nodes in the other graph such that some
global similarity measure (which will depend on the adjacency structure or attribute set
of both graphs) is maximized.

Over the past 30 years, several contributions have been made aiming at developing ef-
ficient algorithms for graph matching in visual pattern recognition. The initial enthusiasm
of the late 1970’s and early 1980’s, however, was shifted into a period of minor interest
from mid 1980’s to early 1990’s. Recently, it has been observed a significant growth in the
attention devoted by the scientific community to this problem, probably due to the fact that
the computational cost of graph matching algorithms is now becoming compatible with
modern hardware facilities (CONTE et al., 2004). Among the existent approaches for
tackling the problem, it is possible to identify Tree Search algorithms, Spectral methods,
Continuous Optimization techniques and many others (CONTE et al., 2004). A common
feature of all approaches for graph matching in Computer Vision is that they do not as-
sure global optimality in polynomial time (CONTE et al., 2004). For arbitrary graphs,
the worst case scenario for finding the optimal match has always exponential time com-
plexity, what has encouraged researchers to develop efficient approximations that run in
polynomial time.

The main contribution of this work is to show how it is possible to obtain remarkably
good solutions (optimal solutions in the case of exact matching) to the graph matching
problem in Euclidean Spaces in polynomial time while handling invariance to transla-
tions, rotations and reflections of the involved patterns. This is not a polynomial time op-
timal solution to the general graph matching problem, which is known to be NP-complete,
but to the particular case when the graphs are embedded in Euclidean spaces of arbitrary
dimension, which includes Computer Vision and many other domains. Computational
experiments comparing the proposed technique with the well-known and widely used
probabilistic relaxation labeling approach confirm a significant improvement in perfor-
mance. In particular, the suggested method exhibits robustness under augmentation of the
problem size which is unparalleled in the alternative technique.

We also make a contribution when we show that the proposed principle of modeling
matching via inference in graphical models is naturally extendable toanyform of match-
ing. This is done by showing that the formulation naturally gives rise to the most general
form of attributed graph matching, which itself is the most general form of matching.

This Thesis is organized as follows. Chapter 2 describes the graph matching problem
and its several instances, as well as the specific instance considered in the present work.
Chapter 3 presents an overview of several of the important contributions in the related
literature spread over the last 30 years. Chapter 4 provides the necessary background
for the subsequent chapters: the theory of probabilistic graphical models. In Chapters 5
and 6, we present the original contributions of this work, which include the theoretical
foundations of a new point set matching procedure as well as a set of computational ex-
periments aiming at evaluating its performance. Chapters 7 and 8 present final discussion
and conclusions.

20

2 THE PROBLEM

Point Pattern Matching in Computer Vision has been eminently modeled as a graph
matching problem, and in this work we also take this perspective. The expression “graph
matching problem” actually involves not just a single problem, but a series of similar but
different problems that have been studied in the Pattern Recognition research community
over the past 30 years. In essence, these problems are important because graphs are pow-
erful mathematical representations that can model real patterns, and the pattern matching
task is of course the core of Pattern Recognition.

In this chapter, the point pattern matching problem is described, both in its exact and
inexact versions. It is then explained that this problem is almost always formulated as a
graph matching task, and the attention is then turned to graph matching per se. The differ-
ent “classes” of graph matching problems are described in further detail. In particular, we
introduce our first contribution by formulating point pattern matching as a graph match-
ing problem (a weighted graph matching problem) based on the concept of Euclidean
Distance Matrices.

2.1 The Point Pattern Matching Problem

Point Pattern Matching (PPM), or, equivalently, Point Set Matching (PSM), is one of
the most fundamental problems in Structural Pattern Recognition (CONTE et al., 2004).
It arises in several fields like 2D and 3D Image Analysis, Document Processing, Bio-
metric Identification, Image Databases, Video Analysis and Biological and Biomedical
applications (CONTE et al., 2004). In a loose description, it consists in assigning each
point in one point set to a point in another point set, such that some constraint or set of
constraints is enforced, and some global similarity measure is optimized. The types of
constraints and similarity measure determine the type of the matching problem. Figure
2.1 shows a pictorial description of a point set matching task where the matched patterns
are rotated with respect to each other.

PPM can be eitherexactor inexact. In exact matching, the “query” point set is identi-
cal, up to some linear transformation such as an isometry, for example, to the “database”
point set, or to some subset of it. In inexact matching, some type of stochastic noise may
alter the intrinsic structure of the pattern, such that its instance contained in the database
may be significantly deformed. In most applications, particularly in Computer Vision,
virtually any matching problem falls into this second category, due to the unavoidable
interference of imperfect acquisition systems and non-stationary acquisition conditions.

The fact that inexact matching is the rule, not the exception, means that matching
algorithms must be able to cope with some degree of uncertainty, as well as be able to
show some robustness with respect to the introduction of noisy artifacts and structural

21

DatabaseQuery

Figure 2.1: A matching between two point sets.

corruption of the involved patterns. This necessity for a representation somewhat robust
to error deviations, among other things, has encouraged researchers - at least in Computer
Vision and related domains - to model point pattern matching as a graph matching prob-
lem (HANCOCK; WILSON, 2002). Graphs are entities that preserve their topological
properties even under a large class of node position deformations, and this fact has caught
the attention of algorithm designers over the years, who have exploited these invariance
properties to develop efficient invariant matching algorithms (LUO; HANCOCK, 2001).
Alternatively, graphs can be generalized by including node and edgeattributes, and invari-
ant matching can be accomplished by properly choosing invariant features as attributes
(LI, 1992). In summary, inexact point pattern matching (which can include the exact case
as a particular instance when the noise is zero) can be effectively modeled as a graph
matching problem. In the following section a classification of graph matching problems
is introduced.

2.2 Graph Matching Problems

Although it is possible to differentiate a few types of graph matching problems, it is
also true that they have a common feature: acorrespondencebetween vertices of two
graphs must be found. Assume that adomaingraph with vertex setVd and acodomain
graph with vertex setVc are given. A correspondence simply means that a particular
subsetJ of the cartesian product between the two vertex setsVd andVc must be selected:

J ⊂ Vd ×Vc. (2.1)

However, it is clear that this definition is too general to be useful. What really specifies
the type of graph matching problem are the requirements, constraints or specificities in-
volved in the selection of this subsetJ . And this has to do with the characteristics of the
particular graphs being considered. In this section it is presented a classification of graph
matching problems which aims to cover all types of studied problems.

2.2.1 Structural graph matching

The type of graph matching problem is directly dependent on thetypes of graphs
being considered. If the graphs are defined as usual, being a pairG = (V,E) composed
of the vertex setV and the edge setE, the resulting problem is called aStructural Graph
Matching(SGM) problem.

In the SGM problem, the only information available in order to determine the “cor-
rect” correspondence is theadjacency matrixof the involved graphs. For a given vertex

22

ordering, the adjacency matrix has an element that equals 0 when there is no edge be-
tween the vertices associated to the indexes of the corresponding row and column, and
that equals 1 otherwise. The “correct” correspondence in this case may have several
different meanings, depending on the type of constraints enforced in the mapping. For
example, there is thegraph isomorphismproblem, which consists in finding a mapping
J such that the adjacency matrices of both graphs (when the vertices of the second are
indexed isomorphically with respect to those of the first, according toJ) are equal. From
this definition it is possible to conclude that graph isomorphism applies only to graphs
with the same number of vertices. Another example issubgraph isomorphism, which
simply consists in finding a graph isomorphism between a subset of the first graph and
the second graph, where “first graph” means the graph with greater (or equal) amount of
vertices.

In the strict versions of these two problems, the interest lies inexactmatching: a per-
fect correspondence (one which preserves adjacency) is sought. In many real applications,
however, this is not the case. Consider, for example, Computer Vision where the relevant
point features in two objects to be matched are invariably extracted under error measure-
ments or noisy conditions. Points extracted in one object may be missed in the other,
and strict graph or subgraph isomorphism is no longer useful. Due to these limitations
presented by exact graph matching methods, researchers have also created what is called
inexactgraph matching, orerror-tolerant graph matching. In these techniques, models
for structural errors are postulated, and the “optimal” match is the one that minimizes the
global error measure. SGM problems can also be of this kind (HANCOCK; WILSON,
2002; LUO; HANCOCK, 2001), in which case one is interested in finding a correspon-
dence that in some sense locally or globally maximizes some compatibility measure be-
tween the graphs. The types of constraints enforced in the correspondence mapping are in
this case a key aspect of the designed algorithm. For example, one may be interested only
in injective mappings (each element of the domain graph maps to a unique element of the
codomain graph, and two elements never map to the same element), or in total mappings
(each element of the domain graph maps to a unique element of the codomain graph, but
different elements may map to the same element). These concepts will be addressed in
the other types of graph matching problems discussed in the following.

2.2.2 Weighted graph matching

Weighted graph matching (WGM) is the problem of matchingweighted graphs. A
weighted graph is a tripleG = (V,E, y(E)) whereV andE are defined as before and
y(E) is a set of real values, each one associated to an element ofE (an edge). These
real values are called weights. Consider a domain graphGd and a codomain graphGc.
The ith vertex inGd is denoted bydi, while thekth vertex inGc is denoted byck. The
particular weight associated to the edge that connects verticesdi1 anddi2 in Gd is denoted
asyd

i1i2
, and similarly for the weight of the edge that connectsck1 andck2 in Gc, which is

denoted asyc
k1k2

. The complete sets of weights inGd andGc are simply denoted byyd and
yc, respectively. It is possible to see the SGM problem as a particular case of the WGM
problem, where the weights only take values in{0, 1}.

Given two weighted graphsGd = (Vd,Ed, y(Ed)) andGc = (Vc,Ec, y(Ec)), the WGM
problem can be posed as one of maximizing with respect toM the following function
(GOLD; RANGARAJAN, 1996):

23

P(M) =
T∑

i1=1

T∑
i2=1

S∑
k1=1

S∑
k2=1

Mi1k1Mi2k2C(yd
i1i2 , y

c
k1k2

) (2.2)

whereT andS are the cardinalities ofVd andVc, respectively.C(·, ·) is a compatibility
measure between the weights of the two edges associated with the corresponding vertex
indices.M is amatching matrix(Mi jk j), which plays the role of an indicator function such
that

Mi jk j =

{
0, if di j does not map tock j , j = 1, 2
1, if di j does map tock j , j = 1, 2 (2.3)

where different constraints can be enforced inM, such as the requirement that the map
must beinjective(GOLD; RANGARAJAN, 1996)

S∑
k j=1

Mi jk j = 1,∀i j; j = 1, 2

S∑
i j=1

Mi jk j = 1,∀k j; j = 1, 2 (2.4)

or more generally a total function

S∑
k j=1

Mi jk j = 1,∀i j; j = 1, 2. (2.5)

Equivalently, the WGM problem can be also formulated as one of minimizing an
“energy” functionU(M), as described in (GOLD; RANGARAJAN, 1996):

U(M) =
T∑

i1=1

T∑
i2=1

S∑
k1=1

S∑
k2=1

Mi1k1Mi2k2D(yd
i1i2 , y

c
k1k2

) (2.6)

whereD(·) in Eq. (2.6), as opposed toC(·) in Eq. (2.2), is adissimilaritymeasure (instead
of a similarity or compatibility measure).

In words, this optimization problem involves finding the optimal mappingM, which is
the one that maximizes the sum over all compatibility measures over pairwise mappings.
This problem is known to be NP-complete for many definitions of the compatibility mea-
sureC(·, ·) (GOLD; RANGARAJAN, 1996).

It is possible to infer from its definition that this problem is a model suited for de-
scribing the matching of patterns whose parts are related not in a discrete, but in a more
flexible way such as a gradual representation over a certain range of values. This may be
the case, as we will show in this work, when mutual distances of point sets need to be
encoded in a graph.

24

2.2.3 Attributed graph matching

A natural generalization of a weighted graph is anattributedgraph, which is a 4-tuple
G = (V,E, y(V), y(E)), whereV andE are defined as before,y(V) is a set of vector
attributes associated to the vertices ofG andy(E) is a set of edge vector attributes asso-
ciated to the edges ofG. It generalizes the weighted graph in two senses: first, the edge
weights (scalars) are generalized to edgevectorattributes, also calledbinary attributes;
second, the vertices are also endowed with vector attributes, also calledunary attributes.
A particular attribute vector associated to vertexdi1 is denoted asyd

i1
, and a particular at-

tribute vector associated to an edgedi1i2 asyd
i1i2

. Analogously, a vector associated to vertex
ck1 is denoted asyc

k1
, and a vector associated to an edgeck1k2 asyc

k1k2
.

Given a domain attributed graphGd = (Vd,Ed, y(Vd), y(Ed)) and a codomain at-
tributed graphGc = (Vc,Ec, y(Vc), y(Ec)), theattributed graph matching(AGM) prob-
lem can be directly generalized as one of maximizing, with respect toM, the following
function:

P(M) =
T∑

i1=1

S∑
k1=1

Mi1k1C1(yd
i1 , y

c
k1

)+

+

T∑
i1=1

T∑
i2=1

S∑
k1=1

S∑
k2=1

Mi1k1Mi2k2C2(yd
i1i2 , y

c
k1k2

) (2.7)

under some of the constraints in the spirit of 2.4 or 2.5.C1(·, ·) andC2(·, ·) denote respec-
tively the “unary” and “binary” compatibility measure functions. It is evident that this
problem is a generalization of the WGM problem, which can be obtained by choosingC1

to be null and restricting binary attributes to be 1-dimensional.
Several relevant problems in Computer Vision can be modeled as AGM problems

(CHRISTMAS; KITTLER; PETROU, 1994; LI, 1992).

2.3 Point Pattern Matching as a Weighted Graph Matching Problem

As said above, the problem studied in this work - exact and inexact point pattern
matching - can be formulated as a graph matching problem. Here we present the first
contribution of this work by showing how to formulate this problem specifically as a
weightedgraph matching problem.

2.3.1 Euclidean distance matrices

A helpful concept to introduce our way of formulating the PPM problem is that of
anEuclidean Distance Matrix(EDM) (DATTORRO, 2004; HUANG; LIANG; PARDA-
LOS, 2003). A matrixA = (ai j) ∈ Rm×m is anEDM if there exist vectorsp1, . . . , pm ∈ Rn

(for somen ≥ 1) such that||pi − p j|| = ai j for all i, j ∈ N = {1, . . . ,m}, where||.|| denotes
the Euclidean norm inRn. Note that the ordering of the vectors is essential: different
orderings will result in general in differentEDMs, even if all the relative distances are the
same. Below are two differentEDMs that have the same set of elements.

EDM1 =


0 1 1
1 0

√
2

1
√

2 0

 EDM2 =

 0 1
√

2
1 0 1
√

2 1 0

 (2.8)

25

Note that these differentEDMs can represent a different ordering in the indexing of
the underlying vectors: the order of the first and second vectors have been switched.

The set of vectorsp = {pi, i ∈ N} is called arealizationof A (which has nothing to do
with a realization of a random variable). Obviously, there are infinite realizations for the
sameEDM. Two possible realizations inR2 for the aboveEDM1 are

p1 = (0, 0), p2 = (0, 1), p3 = (1, 0) and p1 = (1, 0), p2 = (1, 1), p3 = (2, 0)

and two possible realizations forEDM2 are

p1 = (0, 0), p2 = (1, 0), p3 = (0, 1) and p1 = (1, 0), p2 = (1, 1), p3 = (0, 2)

There is a formal result which confirms the intuitive notion that any linear combi-
nation of translations, rotations and reflections (anisometryin general) of a realization
p1 of an EDM gives another realizationp2 of the sameEDM, such that theconforma-
tion (i.e., the rigid spatial structure related to points in a realization) of the realizations
remain the same (HUANG; LIANG; PARDALOS, 2003). This is the starting point for
our formulation of the PPM problem: anEDM uniquelydetermines the conformation of
the corresponding point set. Since anEDM uniquely determines the conformation, the
equality of twoEDMs implies the equality of their conformations, what justifies the com-
parison of conformations in terms of the comparison of their respectiveEDMs. This is
precisely the idea of our formulation: measuring the similarity of two conformations (two
point patterns) by the similarity of their respectiveEDMs. In the following we present
the description of the problem formulation.

2.3.2 Problem formulation by comparingEDMs

Assume the existence of two sets of points (vectors) inRn, p1 andp2. Assume for
convenience that the cardinality ofp2 is greater than or equal to that ofp1: |p2| ≥ |p1|.
The interest here is to find a subset ofp2 that has the sameEDM thanp1. The equality of
two EDMs can be tested by simply making an element-by-element equality comparison.
However, in the present work we are interested in handling noisy situations, where the
conformation sought is possibly deformed. This encourages us to model asimilarity
measure between twoEDMs as follows:

S(EDM1,EDM2) =
|p1|∑
i=1

|p1|∑
j=1

C(EDM1(i, j),EDM2(i, j)) (2.9)

whereC(·, ·) is somecompatibilityor proximity measure between the corresponding ele-
ments (distances) of the two matrices.

In the following we show that this problem can be recast into a WGM problem.

2.3.3 Problem formulation by comparing graph embeddings inRn

It is useful in the context of this work to make an analogy between realizations of
an EDM andgraph embeddings. Graphs are abstract entities that, in principle, have no
relation with the concept of vector spaces in linear algebra. It is possible to define a new
object, however, if it is considered a graph whose vertices represent points in some vector
space, such asRn, and whose edges represent curves in this vector space. It is said that
this relevant object is agraph embeddingin Rn (WEST, 2001). Figure 2.2 shows two
examples of different embeddings of the same graph in the plane of this page (inR2, the

26

Figure 2.2: Different straight line embeddings of the same graph.

concept of embedding is analogous to the concept of “drawing”). These embeddings are
called “straight line embeddings”, in the sense that the curves that join neighbor nodes
are straight line segments.

In particular, if the edges are restricted to be straight line segments, their length will
coincide with the Euclidean distance between the corresponding points (nodes in the
graph embedding). This leads to a complete analogy between anEDM and a weighted
graph: if the edge weights are precisely the Euclidean distances between the correspond-
ing points, anEDM can be seen as a table which indicates the correspondent weight
between each pair of vertices in the graph. A particular realization of anEDM will then
correspond to a particular embedding of the graph (always assuming straight line edges).
Under this perspective, we can remap the problem of comparing twoEDMs to that of
comparing two weighted graphs where the weights correspond to the Euclidean distances
between the corresponding vertices.

The final function to be maximized will be

P(M) =
|p1|∑
i1=1

|p1|∑
i2=1

|p2|∑
k1=1

|p2|∑
k2=1

Mi1k1Mi2k2C(yd
i1i2 , y

c
k1k2

), (2.10)

where we introduce explicitly the notation in terms of the WGM problem:C(·, ·) measures
the similarity of the two distancesyd

i1i2
andyc

k1k2
, while Mi jk j indicates ifdi j maps tock j (

Mi jk j = 1) or not (Mi jk j = 0), for j = 1, 2. Note that the elements ofEDM1 andEDM2

are denoted now asyd
i1i2

andyc
k1k2

, the edge weights. Also, the comparison between two
EDMs as shown in Eq. (2.9) now is explicitly done for all possibleEDM2s, what is
represented in the sums over the indices of the elements inp2.

In summary, for a given global mappingM (analogously, for givenEDM1 andEDM2),
the above expression computes the sum of the pairwise compatibility measures over all
pairwise mappings. By spanning over the whole range of possible mappingsM (by span-
ning over all possibleEDM2s), it is possible to find which mapM (which combination of
EDM1 andEDM2) maximizesP(M).

In this work, we choose to enforce only the constraint that the mapping must be total:

|p2|∑
k j=1

Mi jk j = 1,∀i j, j = 1, 2 (2.11)

such that every element inp1 must map to one and only one element inp2, but there is no
enforcement that different elements inp1 must map to different elements inp2, which is

27

the case in injective mappings (GOLD; RANGARAJAN, 1996). There are two reasons
for this choice: first, as we will see, the technique we are going to propose to solve the
problem is naturally suited for the case of total mappings; second, and most relevant,
is the fact that in many practical applications injective mappings are too restrictive to
capture the variety of possible settings that may arise. For example, in Computer Vision
it is often the case when two points closely apart in one image are superimposed in the
second image due to noise influences: in this situation an injective-enforcing algorithm
will not allow these two points to be mapped to the same point, although this is the correct
interpretation.

It is clear that a naive solution to the problem is to compute the expression 2.10 for
each one of the possibleEDM2s and choose the one for which the computed value forP
is maximal. In detail, this expression must be calculated for all the|p1|! orderings of each
of the |p2|!/(|p1|!(|p2| − |p1|)!) unordered|p1|-sized subsets ofp2. Although this may look
like an NP-hard problem, in this work we will show how to globally optimize the function
2.10 in polynomial time for the exact matching case.

2.4 Application Domains

We mentioned in the introduction that there is a large set of application domains in
which the point pattern matching problem arises. In this section, a brief description of
some relevant applications related to Computer Vision, which is the main focus of this
work, will be presented.

2.4.1 Model-based object recognition

In Computer Vision, researchers are frequently interested in designing algorithms to
recognize objects in visual scenes (LEUNG; BURL; PERONA, 1995). In order to ac-
complish that, they may use model-based object recognition (MBOR). MBOR consists
in representing both the scene and a particular object that is expected to be found in the
scene by some mathematical model. The problem of finding the object in the scene then
reduces to a problem of comparison or matching between the scene and object models.
This problem is probably one of the most important in Computer Vision (CONTE et al.,
2004).

Point set matching is a standard way of performing MBOR. Figure 2.3 shows a scene
and a particular instance that one is interested in finding in the scene. Point feature de-
tectors are applied to both images in order to select representative landmarks and finally
a point set matching algorithm is applied in order to find which point in the scene cor-
respond to each point in the template. In this way the face of the boy is expected to be
found.

2.4.2 Stereo matching

Another important application for point set matching is in finding the correspondence
between a pair of images acquired by a stereo camera apparatus (BOYER; KAK, 1988).
Figure 2.4 shows the first pair of images acquired from Mars exploration rover Spirit in
early 2004.

In this particular application, the robot is expected to exhibit stereoscopic vision, what
is only possible through a continuous matching of both images via some point set match-
ing algorithm. From the disparity measured in the matching process, the robot can infer
the depth of each point in the image, what is the main characteristic of stereoscopic vision.

28

(a)

(b)

Figure 2.3: Point set matching applied to model-based object recognition: (a) a scene and
a template; (b) point features detected in both images in order to apply point set matching
to find where is the template in the scene.

2.4.3 Image registration

A very important application in Image Processing is “Image Registration”. It consists
in aligning a pair of misaligned images that have been acquired from the same scene
but from different camera positions, and possibly different cameras. Figure 2.5 shows
an example of images that are expected to be registered against each other. Using some
point feature detector, the relevant points describing both images can be selected and a
point set matching algorithm is run. From the resultant matching, a set of parameters can
be estimated, which will recover the position and orientations of one image with respect
to the other (TON; JAIN, 1989).

In the next chapter, it is presented a general overview of the literature addressing graph
matching problems.

29

(a)

(b)

Figure 2.4: Point set matching applied to stereo matching: (a) left and right images;
(b) left and right images with the landmark points detected in order to apply point set
matching to derive the correspondence.

30

(a)

(b)

Figure 2.5: Point set matching applied to image registration: (a) two significantly differ-
ent images acquired from the same scene; (b) the two images with the landmark points
detected in order to apply point set matching, from which parameters can be extracted to
perform image registration.

31

3 RELATED LITERATURE

In the early 1970’s, it was already clear that powerful mathematical representations
for complex structures could be obtained by usinggraphs(BARROW; POPPLESTONE,
1971; FISCHLER; ELSCHLAGER, 1973). This is due to the fact that graphs are abstract
objects characterized by nodes (which play the role of structure parts) and edges (which
represent the relations eventually present between subsets of parts). Since then, the prob-
lem of matching structural entities has been almost exclusively approached as agraph
matching problem, which essentially consists in assigning each node of a graph to some
node of a second graph aiming at achieving some “global consistency”. In particular, dif-
ferent classes of the graph matching problem appeared, mainly represented by thestruc-
tural and theattributedapproaches. In the structural approach, a structure is represented
by a “standard” graph: it is made up by a vertex set and an edge set denoting vertices
that are in some sense related. In the attributed approach, a structure is represented by an
attributed graph, which has attribute vectors associated to vertices and edges. Represent-
ing a graph solely by its adjacency structure (the structural approach) has the advantage
of providing abstractions that convey important visual invariances (LUO; HANCOCK,
2001). However, attributed graphs are suitable for encoding complex dependencies in
a straightforward way, and powerful representations are obtained when appropriate fea-
tures are selected such that a certain degree of invariance is achieved (CHRISTMAS;
KITTLER; PETROU, 1994; LI, 1992). Apart from this classification into structural or
attributed approaches, matching can also beexactor inexact.

Not only these two different classes of graph matching problems have been identi-
fied, but also two different classes of techniques or algorithms. Gold and Rangarajan
(GOLD; RANGARAJAN, 1996) divided graph matching algorithms into search-based,
which rely on the construction of a state-space and have worst case exponential complex-
ity, and non-search methods, which are based on nonlinear optimization techniques, or
heuristic approximations, and are in general of polynomial complexity. The first class
of algorithms finds the global optimum of the matching task, while in the second this is
not guaranteed. Several of the early attempts to graph matching fall into the first cate-
gory. Typical instances of the first class are graph decomposition methods and tree search
(ULLMAN, 1976; MESSMER; BUNKE, 1998; BERRETI; BIMBO; VICARIO, 2001),
but several other techniques also exist (FU, 1983; ESHERA; FU, 1984; TSAI; FU, 1983;
BOYER; KAK, 1988). In the second class, which has gained increasing popularity since
its appearance in the late 1970’s, the most popular and widely used approach is based on
probabilistic relaxation labeling (ROSENFELD; HUMMEL; ZUCKER, 1976; BHANU,
1984; BHANU; FAUGERAS, 1984; DAVIS, 1979; FAUGERAS; BERTHOD, 1981; UL-
MANN, 1979; ROSENFELD; KAK, 1982; CHRISTMAS; KITTLER; PETROU, 1994;
LI, 1994; HUMMEL; ZUCKER, 1983). Techniques based on spectral analysis and least-

32

squares methods (UMEYAMA, 1998; SHAPIRO; BRADY, 1992; WYK; WYK, 2003;
WYK; DURRANI; WYK, 2002), graduated assignment (GOLD; RANGARAJAN, 1996),
genetic optimization (SUGANTHAN, 2002) and other principles (SIMIC, 1991; SUG-
ANTHAN; TEOH; MITAL, 1995; PELILLO, 1999; PELILLO; SIDDIQI; ZUCKER,
1999) have also been proposed in recent years.

In this chapter, a discussion of some of the most important approaches for matching
developed along the years is presented. Most of what follows is based on (CONTE et al.,
2004) and (HANCOCK; WILSON, 2002).

3.1 Exact Matching

We first address briefly the exact matching problem. Although real problems in most
application domains involve predominantly inexact matching, it is elucidating to start
with the idealized problem of exact matching since it provides some basic terminology
and concepts to be further explored in the description of the inexact matching problem.

Exact matching, as seen in the previous chapter, is characterized by the fact that the
mapping between the vertices of the two graphs must be edge-preserving. The most strin-
gent form of exact matching isgraph isomorphism, which consists in a bijective mapping
between graphs with the same number of vertices.Subgraph isomorphismconsists in a
graph isomorphism between a graph and a subset of the other graph. Amonomorphism
is an injective mapping, such that different nodes in the first graph are mapped to distinct
nodes in the second graph. Finally, the most general form of correspondence is namedho-
momorphism, which consists in a total function: the only requirement is that each vertex
in the first graph must map to a unique vertex in the second graph.

All the above forms of graph matching are NP-complete, except for graph isomor-
phism, which has not yet been proven to be NP-hard or not.

3.1.1 Search-based methods

Most exact matching algorithms involve some sort of tree searching and backtracking.
The first relevant algorithm of this kind is due to Ullman (ULLMAN, 1976). This algo-
rithm tackles graph isomorphism, subgraph isomorphism and monomorphism, and is still
very popular. It is essentially a branch and bound algorithm that progressively expands
partial matchings until a global matching has been reached or, alternatively, a point is
reached where no additional matchings are possible given the constraints. If this is the
case, the algorithm backtracks until it finds a partial matching that meets the constraints.

A more recent version of exact search-based exact matching algorithm is due to
Cordella et al. (CORDELLA et al., 1998). In this work, a heuristic is introduced which
is based on the analysis of the sets of nodes adjacent to those already taken into account
in the partial mapping. It turns out that this heuristic is fast to compute, and significant
improvements over the Ullman algorithm have been observed.

Another recent tree search method for isomorphism was proposed by Larrosa and
Valiente (LARROSA; VALIENTE, 2002), where the authors pose the problem of isomor-
phism as a constraint satisfaction problem (CSP). They use heuristics developed in the
CSP literature in order to solve the isomorphism problem.

3.1.2 Miscellaneous methods

One of the most effective algorithms for graph isomorphism is not based on three
search, but on group theory. It was developed by Mckay in 1981 (MCKAY, 1981), and is

33

calledNauty. The automorphism group of each graph is constructed and from it a canon-
ical labeling of each graph is obtained. In this way, isomorphism between two graphs
can be checked by comparing the adjacency matrix of their canonical form. The equality
can be done inO(N2) time, but the construction of the canonical labeling has worst case
exponential time complexity. On average, however, the algorithm is very effective and is
considered by many authors to be the fastest isomorphism algorithm available (CONTE
et al., 2004).

Another important algorithm specifically designed to match an input graph against a
large library of graphs is due to Messmer (MESSMER, 1995). The approach is based
on the decomposition of each graph in the library into smaller subgraphs. The matching
process then exploits the fact that some parts of the graphs are similar and redundant
comparison is avoided. Some other recent papers have proposed the use of decision trees
to speed up the matching against a large database of graphs (IRNIGER; BUNKE, 2001;
LAZARESCU; BUNKE; VENKATESH, 2000).

3.2 Inexact Matching

In many real applications, the observed graphs are subject to a number of factors that
may deform their original structure: noisy conditions in the acquisition process, intrin-
sic variability of features within a given pattern and nonlinear deformations of sensing
apparatus are some examples.

These unavoidable factors make exact graph matching not very realistic, since exact
similarities may never be encountered in practice. Aiming at dealing with these uncer-
tainties, researchers have developed what is known asinexactmatching algorithms, or
error-tolerant matching algorithms. Instead of forbidding matches that are not edge-
preserving, acostis associated to these imperfect assignments. As a result, the purpose of
inexact matching algorithms is to find a particular mapping that minimizes some global
cost measure. Note that exact matching may be considered in this formulation as a special
case where the involved cost is zero.

Optimal inexact matching algorithms are those that find the global minimum of the
cost function. All existent algorithms of this class have worst case exponential time com-
plexity. Approximateinexact matching algorithms only guarantee that a local minimum
of the cost function will be found. On the other hand, many algorithms of this class have
polynomial time complexity.

3.2.1 Search-based methods

The idea of searching in trees with backtracking, used in exact matching, is also
present in the development of inexact matching algorithms. The first of these algorithms
proposed in the literature is due to Tsai and Fu (TSAI; FU, 1979). This work defines
attributed relational graphs (ARGs) and a possible error measure in the matching of two
ARGs. The algorithm suggests operations of node and edge substitution, and was later ex-
tended to incorporate other operations like node insertion and deletion (TSAI; FU, 1983).

Sanfeliu and Fu further developed these ideas by introducing the definition of a graph
edit distance measure (SANFELIU; FU, 1983). This is obtained by considering a canon-
ical set of operations defined by node and edge substitution as well as node splitting and
merging. In the sequel, Eshera and Fu (ESHERA; FU, 1984) proposed a method for
distance computation, which is based on defining appropriate simple subgraphs and ap-
proximating the matching by finding an optimal matching of these subgraphs via dynamic

34

programming.
Shapiro and Haralick proposed in 1981 an algorithm for optimal error-correcting ho-

momorphism, which is based on branch and bound with the use of heuristics (SHAPIRO;
HARALICK, 1981). In 1985, they proposed a distance measure between relational de-
scriptions that satisfies the requirements of a metric (SHAPIRO; HARALICK, 1985).

Some recent contributions using tree search - specifically theA∗ algorithm - are due
to Berreti et al. (BERRETI; BIMBO; VICARIO, 2001) and Gregory and Kittler (GRE-
GORY; KITTLER, 2002). These works use heuristics that take into account estimates of
the cost of future partial matchings.

3.2.2 Continuous optimization

A different approach to inexact matching consists in formulating the problem as one
of a continuous function optimization, instead of purely discrete search. This allows for
the use of continuous optimization techniques to solve the matching problem. These
algorithms do not assure global optimality, but very often they provide fast and accurate
solutions.

The most important representatives of this class are methods based on Probabilis-
tic Relaxation Labeling (PRL). The first forms of relaxation labeling appeared in early
1970’s with the work of Fischler and Elschlager (FISCHLER; ELSCHLAGER, 1973). In
1976, Rosenfeld et al. introduced a formalism for relaxation applied to scene labeling
(ROSENFELD; HUMMEL; ZUCKER, 1976). The fundamental idea of this approach
consists in assigninglabelsto vertices in the first graph that correspond to the vertices in
the second graph. This is done in parallel such that the likelihood that a given vertex is
assigned to a given label is related to the support that neighbors of this vertex provide to
that label. It is essentially an iterative heuristic algorithm that updates the likelihood of
assignment according to evidence provided by neighboring sites.

The initially heuristic formulation of relaxation labeling was along the years changed
into a more principled probabilistic formulation. In subsequent works, Kittler and Han-
cock (KITTLER; HANCOCK, 1989) and Christmas et al. (CHRISTMAS; KITTLER;
PETROU, 1994) further developed a Bayesian probabilistic relaxation framework that
has proven to be very successful for attributed graph matching problems. In a similar
path, Hancock and associates (HANCOCK; WILSON, 2002) have explored several for-
mulations of graph matching in terms of probabilistic relaxation. They have introduced
principled models of matching errors and used Bayesian probabilistic relaxation in several
of their contributions. It is fair to say that their work has established a new view of graph
matching in terms of probabilistic relaxation labeling that has had a significant impact in
the research community.

In 1996, Gold and Rangarajan introduced the Graduated Assignment algorithm for
graph matching (GOLD; RANGARAJAN, 1996). In this algorithm, a technique called
graduated nonconvexityis used to avoid local minima solutions. The algorithm presents
impressive results when compared to standard probabilistic relaxation labeling and has
low order polynomial time complexity. However, as all the other algorithms based on
continuous optimization, it does not assure reaching the global minimum of the matching
cost.

3.2.3 Spectral methods

Alternatively to search-based and continuous optimization techniques, graph match-
ing has also been approached using spectral methods. The key idea underlying this ap-

35

proach is that the eigenvalues and eigenvectors of the adjacency matrix of a graph are
invariant with respect to node permutations. As a result, isomorphic graphs will have
adjacency matrices with the same set of eigenvalues and eigenvectors. The opposite does
not hold. If the eigenvalues and eigenvectors are the same, it is not possible to infer that
the graphs are isomorphic. However, since the computational complexity of spectral de-
composition is attractive, researchers have been interested in using the spectral signature
of graphs to measure their similarities.

The pioneering study in this area was performed by Umeyama in 1988 (UMEYAMA,
1998). This work studies the weighted graph matching problem in the isomorphism case.
There are important limitations such as the restriction that the number of nodes in both
graphs must be the same and the matching matrix must be a permutation matrix. The
author derives in closed form the orthogonal matrix that optimizes the objective function,
assuming that the graphs are isomorphic. If it is not known that the graphs are isomorphic,
the method can produce very unsatisfactory results.

A recent alternative method was proposed by Xu and King (XU; KING, 2001), who
used Principal Component Analysis (PCA) and gradient descent to find the optimum of
the cost function. The resulting method is claimed to outperform Umeyama’s both in
speed and accuracy.

Shapiro and Brady (SHAPIRO; BRADY, 1992) proposed a method in which point
sets are matched by comparing the eigenvectors of the point proximity function, where the
proximity function is build using the Gaussian function. The similarity of point patterns
can then be evaluated by comparing the pattern of eigenvectors.

Carcassoni and Hancock (CARCASSONI; HANCOCK, 2003) also developed an al-
gorithm for spectral correspondence of point sets. The method consists in clustering
nodes that are likely to be matched. Then the algorithm exploits this hierarchy and first
matches the clusters and just after that matches the nodes within clusters. Differently from
Umeyama’s method, this technique can be applied to graphs of different size.

Kosinov and Caelli also introduced a method that combines clustering and spectral
decomposition (KOSINOV; CAELLI, 2002). In this method, the eigenvectors of the ad-
jacency matrix are used to form a vector space denoted “graph eigenspace”. The nodes of
the graphs are then projected on this space, and a clustering algorithm is responsible for
finding the nodes that should match. The method is very robust to graph distortions.

3.2.4 Miscellaneous methods

Several miscellaneous algorithms have been proposed for graph matching. There are
methods based on Neural Networks and Genetic Algorithms, like those proposed by Sug-
anthan et al. (SUGANTHAN; TEOH; MITAL, 1995), Suganthan and Yan (SUGAN-
THAN; YAN, 1998) and Suganthan (SUGANTHAN, 2002). There are also methods
based on evolutionary game theory (PELILLO, 1999), which have been used to match
shock graphs (PELILLO; SIDDIQI; ZUCKER, 1999).

The next chapter presents the background knowledge needed in order to introduce the
matching technique proposed in this work.

36

4 BACKGROUND: GRAPHICAL MODELS AND EXACT
INFERENCE

This chapter presents the background knowledge necessary to understand the technical
work of this Thesis. Essentially, a brief description of the theory of probabilistic graphical
models is introduced, emphasizing undirected graphical models. Although the expression
“graphical models” may represent several different concepts, depending on the research
domain that one considers, its meaning here is the one used by the statistical machine
learning research community, and consists of a model defined by a graph whose nodes
represent random variables and whose edges represent possible dependencies between
those random variables. The classical reference for a formal description of Graphical
Models is (LAURITZEN, 1996).

4.1 Probabilistic Inference

Consider a set of random variables (rv’s){X1,X2, . . . ,Xn}, such thatxi is the realiza-
tion of a rv Xi. These variables may be scalar-valued or vector-valued, continuous or
discrete. In this work, they will always be scalar-valued and discrete, so that from now
on this will be implicit wherever random variables are mentioned. Given this collection
of random variables, it may be of interest to perform “queries” about subsets of them.
For example, it may be of interest the computation of the marginal probability of one
subset of these variables. It may be either the case that one is interested in computing the
conditional probability of a particular subset of variables given another particular subset.
Another important and relevant problem is that of evaluating what is the most likely real-
ization of a subset of random variables if the realization of the complement set is known.
These “query” problems are calledprobabilistic inferenceproblems.

In principle, such queries can be answered if one has available the joint probability
distributionP(X1,X2, . . . ,Xn). For example, ifXA denotes the set of random variables
indexed by an index setA andU is the complete index set, it is possible to obtain the
marginal probability distribution over the setXA simply by summing the joint distribution
over the complement ofXA:

P(XA) =
∑

XU\XA

P(X1,X2, . . . ,Xn). (4.1)

Similarly, for calculating the most likely completion (or Maximum a Posteriori - MAP
- estimate) with respect to a subsetXA it is necessary to maximize the joint distribution
over the complement variables:

MAP(XA) = max
XU\XA

P(X1,X2, . . . ,Xn), (4.2)

37

61

X2

X3

X4

X5

XX

Figure 4.1: A particular undirected graphical model.

whereMAP(XA) denotes the most likely estimate of the complement variables with re-
spect to variables inXA.

Conditional probabilities, in their turn, can be computed as a normalization of marginals:

P(XA|XB) =
P(XA,XB)

P(XB)
. (4.3)

In summary, probabilistic inference problems can be solved by computational manipula-
tion of the joint distribution.

However, a detailed observation of the type of a generic representation for a non-
parametric joint probability distribution over discrete random variables should convince
us that the above naive solutions are infeasible for most real-world situations. Consider for
example the most general representation for the joint distribution of a set ofn discrete ran-
dom variables that can assumer possible realizations: it can be seen as ann-dimensional
table where each cell contains the probabilityp(x1, x2, . . . , xn) for a specific realization
(x1, x2, . . . , xn) of the set of random variablesX1,X2, . . . ,Xn. This representation needs
a storage capacity ofrn numbers, which is exponential onn. Moreover, the computa-
tion of a marginal distribution, for example, involves in the worst case a sum which is
also exponential onn (for calculating the marginal distribution of a singleton, there are
r.rn−1 = rn elements to be summed). Useful models in most areas involven in the dozens
or hundreds. As a result, this naive tabular representation is not feasible.

Graphical Models provide a way of representing joint probability distributions in a
more parsimonious manner. The key idea is to capture conditional independence rela-
tionships among variables and use them in order to factorize the joint distribution for
facilitating the inference procedure.

4.2 Undirected Graphical Models

Graphical Models can be eitherdirectedor undirected. Directed graphical models are
those where each edge has a particular direction, such that there is an asymmetric relation
between neighbor nodes in the graph. In undirected graphical models, the edges have
no direction (JORDAN, Forthcoming, 2004). The present work considers exclusively
the undirected case. Undirected graphical models are also known asMarkov Random
Fields (MRFs). An undirected graphical model is a graphG(V,E), whereV is a set of
nodes that have a bijective relation with a set of random variables andE is a set of edges.
Although nodes and random variables are different objects, from now on we will simply
say that a node of a graphical modelis a random variable. Figure 4.1 shows an example
of a graphical model with a particular connectivity.

38

4.2.1 Conditional independence

The first fundamental concept necessary to understand graphical models is that of con-
ditional independence. It is said that a subset of variablesXA is conditionally independent
on the subsetXC givenXB if the knowledge aboutXC does not add any information to the
knowledge of the distribution ofXA if it is known in advance the value ofXB. It is impor-
tant to stress that this must hold for all possible realizations ofXB. We use the following
notation to express this fact:

XA y XC | XB. (4.4)

In terms of conditional probabilities, this fact can be described in the following manner:

P(XA|XB,XC) = P(XA|XB). (4.5)

In other words, the conditional probability ofXA given XB is the same regardless
if XC is given or not. A common real-life example of conditional independence is the
conditional independence of past and future given the present. All the past events that
could affect the future are collapsed in the present, in the sense that there is no information
from the past that can “be transfered” to the future without passing through the present:

futurey past| present. (4.6)

4.2.2 Markov properties

In this subsection we consider conditional independence in the case when there is a set
of random variables{Xi}i∈V which take values in sample spaces{Xi}i∈V. These variables
correspond to the nodes of a graphical model, whose vertex set isV. If A, B andC are
sets of numbers that index variables, we will for simplicity of notation denote the assertion
XA y XC | XB asA y C | B. For a given graphG = (V,E) and a set of random variables
{Xi}i∈V, it is possible to define a series of properties (LAURITZEN, 1996):

Definition 4.1 (Pairwise Markov property (P)) A probability distributionp onX is said
to bepairwise Markovwith respect to an undirected graphG if, for any non-adjacent pair
of nodesα andβ in G, α is independent ofβ given the states of all the remaining nodes:

α y β | V\{α, β}. (4.7)

Definition 4.2 (Local Markov property (L)) A probability distributionp onX is said
to be local Markovwith respect to an undirected graphG if, for any nodeα in G and
given its boundarybd(α) (which is the set of nodes connected toα), α is independent of
the remaining nodes:

α y V\{bd(α) ∪ α} | bd(α). (4.8)

Definition 4.3 (Global Markov property (G)) A probability distributionp onX is said
to beglobal Markovwith respect to an undirected graphG if, for any triple (A,B,C) of
disjoint subsets such thatB separatesA from C in G, A andC are conditionally indepen-
dent givenB:

A y C | B. (4.9)

These Markov properties are tied together via the following result (LAURITZEN,
1996):

39

C

1

X2

X3

X4

X5

X6

X A

X B
X

X

Figure 4.2: The concept of conditional independence in undirected graphical models.

Proposition 4.1 (G ⇒ L ⇒ P) For any undirected graphG and any probability distri-
bution onX it holds that

(G)⇒ (L)⇒ (P). (4.10)

In particular, ifp is strictly positive (p(x) > 0,∀x ∈ X), the following theorem holds:

Theorem 4.1 (Pearl and Paz (G ⇔ L⇔ P)) If the probability distributionp is strictly
positive onX, the pairwise, local and global Markov properties are equivalent:

(G)⇔ (L)⇔ (P). (4.11)

The importance of the global Markov property lies in the introduction of a general
criterion for inferring when the sets of variablesA andC are conditionally independent
given a third set of variablesB. Figure 4.2 shows, for the graphical model in Figure 4.1, a
separator setXB and two sets (XA andXC) who are conditionally independent givenXB.

Conditional independence statements can be read directly from an undirected graph.
It is said thatXA is independent ofXC givenXB if the set of nodesXB separates the sets
of nodesXA andXC, in the graph-theoretic sense. This means that if every path from any
node inXA to any node inXC includes at least one node inXB, thenXA y XC | XB holds.
Otherwise,XA y XC | XB does not hold. Figure 4.2 illustrates this fact.

4.2.3 Cliques, potentials and factorization

It is important to introduce some additional key concepts regarding graphical models.
The first basic concept is that of aclique. A clique in a graphical model is a set of nodes in
which every pair of nodes is connected by an edge. It is also necessary to define a trivial
clique: a single node is itself a clique. Amaximal cliqueis a clique which is not a proper
subset of another clique. Figure 4.3 shows examples of cliques and maximal cliques.

A potential functionψC of a particular cliqueC is defined as a function that associates
to each joint realization of the random variables inC a positive real number (which is
called “potential”):

ψC : XC → R
+, (4.12)

whereXC denotes the probability subspace involving exclusively the variables in clique
C. In practice, potential functions are seen as measures of likelihood for a given con-
figuration. Note an important detail about potential functions in face of the definitions

40

E

A B

CD

F

Figure 4.3: Cliques and Maximal cliques. Every node is a clique (A,B,C,D,E,F), every
connected pair of nodes is a clique (AB,BC,CD,AD,BF,CF) and the triple BCF is a clique.
The Maximal cliques are AB,CD,AD,BCF and E.

regarding cliques: since every clique is a maximal clique or a proper subset of it, po-
tential functions of non-maximal cliques may be embedded into the potential function of
their correspondent maximal cliques. Consider the example in Figure 4.3. The clique BC
is a proper subset of the clique BCF. So, the potentialψBCF may actually include in its
expression a factorψBC.

A formal definition of factorization in graphical models is now introduced:

Definition 4.4 (Factorization Property (F)) A probability distributionp onX is said to
factorizewith respect to an undirected graphG if it can be expressed as the product of
potential functions over the setC of maximal cliques inG:

p(x) =
∏
C∈C

ψC(xC). (4.13)

The potentialsψC are nonnegative and such that
∑

x p(x) = 1. Apart from this they are
arbitrary. They may or may not factorize into products of sub-potentials over smaller
cliques.

Now it is possible to present important results on the relations between Markov prop-
erties and factorization.

4.2.4 Factorization implies Markovianity

Two results connect Markov properties and the Factorization property. Here the first
result is shown and in the next subsection the most important result is introduced.

The factorization property is related formally to the Markov properties via the follow-
ing result (LAURITZEN, 1996):

Proposition 4.2 (Gibbs⇒ Markov) For any undirected graphG and any probability
distribution onX it holds that

F ⇒ G ⇒ L⇒ P. (4.14)

We denote this important result as the “Gibbs⇒Markov” result, as it is usually known
in Statistical Image Processing and Vision. The “Gibbs” label refers to the fact that the
factorized form of the joint distribution is equivalent to a Gibbs distribution, as it is known
in Statistical Physics.

In summary, the following implication diagram involving these properties arises:

41

ZX Y

Figure 4.4: A graph with conditional independence given byX y Z | Y.

• For general distributionsp:

F ⇒ G ⇒ L⇒ P. (4.15)

• For strictly positive distributionsp:

F ⇒ G ⇔ L⇔ P. (4.16)

Markov Random Fields, as they are understood in Image Processing and related areas,
are defined as undirected graphical models where the positivity condition and the Markov
properties hold. Note, however, that these two facts donot imply a factorized form for the
joint distribution from the above. Only the converse was shown to be true: factorization
implies Markovianity. In the following the presentation is completed by the introduction
of the result which is lacking. The result implies that factorization is not only a sufficient
condition for Markovianity, but also a necessary condition. This will allow us to faithfully
represent Markov Random Fields via a factorized distribution.

4.2.5 Markovianity implies factorization: The Hammersley-Clifford Theorem

We can think of a particular graphical model as a “filter” (JORDAN, Forthcoming,
2004) in which only joint distributions that satisfy the conditional independency assump-
tions implied by the graph are accepted. What is the most general form for the joint
distribution such that all conditional independency assumptions are strictly respected?
This is a fundamental question, and before presenting the theorem that answers it, a brief
intuitive investigation into the question is presented.

Let us start with an example. Consider the graphical model in Figure 4.4.
This graphical model has an associated conditional independence assumption given

by X y Z | Y. The joint distribution over the variables can be then factorized as follows:

p(x, y, z) = p(x|y, z)p(y, z) (4.17)

= p(x|y)p(y, z) (4.18)

=
p(x, y)
p(y)

p(y, z) (4.19)

≡ ψ1(x, y)ψ2(y, z) (4.20)

where we have defined the functionsψ1(x, y) ≡ p(x, y)/p(y) andψ2(y, z) ≡ p(y, z). Note
that it was possible to factorize the joint distribution over three variables into a product
of functions over only two variables. This is important because, as seen in chapter 2,
the complexity of both storing and manipulating the numbers in a given distribution is
exponential on the number of variables in the distribution table. This apparently simple
procedure is the core of graphical models: to exploit systematically the conditional in-
dependence assumptions implied by the graph in order to factorize the joint distribution
into a product overlocal sets of variables. In our example, these local sets of variables
are{X,Y} and{Y,Z}. The fact that the resulting local variables are connected by an edge

42

in the graph is not a coincidence (note thatX is connected toY andY is connected toZ).
Neither it is a coincidence that unconnected variables (X andZ in our example) donot
appear as arguments of a same factor functionψ. It will be seen in a moment that these
facts emerge from a very important theorem.

An important observation is that, in order to construct a factorization in terms of the
variables in separate cliques, it is necessary to introduce the factor functionsψ1 andψ2

which in general are not simply conditional distributions. In our particular example,ψ1

is a conditional, butψ2 is a marginal distribution. So, the functionsψ that allow for the
factorization of the joint distribution in terms of the maximal cliques are more general
objects. Indeed, they correspond to what was defined as being potential functions and, in
general, they convey the intuitive meaning of likelihood of a particular realization.

This simple but important example reveals a fact that is derived indeed from a deep
result, which is valid for arbitrary graphs, and was first proven in 1971 by Hammers-
ley and Clifford (HAMMERSLEY; CLIFFORD, 1971), although published versions are
due to other authors (BESAG, 1974). The result bears their names, being known as the
Hammersley-Clifford (HC) theorem. It can be formalized as follows:

Theorem 4.2 (Hammersley-Clifford (P⇒ F)) Any strictly positive distribution which
satisfies the pairwise Markov property with respect to a particular arbitrary graph fac-
torizes with respect to this graph.

This Theorem, when tied to Theorem 4.1, gives us a particularly suitable form for this
result:

Theorem 4.3 (Hammersley-Clifford (P⇒ F, L⇒ F, G⇒ F)) Any strictly positive dis-
tribution which satisfies any type of Markov property with respect to a particular arbitrary
graph factorizes with respect to this graph.

which from now on will be denoted as the “HC theorem”. Note that, in the example
in Figure 4.4, the joint distribution was decomposed into a product of potentials over
pairwise cliques (in this case the maximal cliques). This is precisely what the theorem
says: it tells us that any strictly positive joint distribution which respects the Markov
properties in some graph can be factorized as a product over functions whose arguments
involve only nodes in the maximal cliques of this graph. In other words, if the maximal
cliques have a moderate size one may be able to deal with low dimensional tables, what
possibly will render inference problems feasible, as seen in the previous section.

A real problem still persists. It is necessary to choose the potential functions as being
such that ∑

x

∏
C∈C

ψC(xC) = 1 (4.21)

in order to guarantee that the factorization is a probability distribution. It turns out that
this is extremely inconvenient, since in most applications a high degree of flexibility in
choosing the potential functions is required. If one needs this flexibility in choosing
arbitrary non-negative potential functions, it is necessary to pay the price of normalizing
the factorized form such that the entire expression still sums to one:

p(x) =
∏

C∈CψC(xC)
Z

(4.22)

43

whereZ,

Z ≡
∑

x

∏
C∈C

ψC(xC), (4.23)

is a sum that runs over all configurations in the sample spaceX - an infeasible calcula-
tion. However, there is a particular type of inference problem where the knowledge ofZ
is irrelevant to the problems’ solution (the calculation of most likely completions or Max-
imum a Posteriori probabilities). Fortunately, we have managed to formulate the problem
of this Thesis precisely in this particular instance form, as will be seen.

The HC theorem allows us to change the “implication diagram” into an “equivalence
diagram”. For strictly positive distributionsp, now the following holds:

F ⇔ G ⇔ L⇔ P (4.24)

In other words, if every configuration in a graphical model has strictly positive proba-
bility of occurrence, then all Markov properties are equivalent and, more importantly, they
imply that the joint distribution can be factorized into a product of potential functions over
the maximal cliques of the graph.

We are now able to exploit this factorization property of Markov Random Fields in
order to describe efficient algorithms for probabilistic inference.

4.3 Exact Inference and the Junction Tree Framework

So far it has been shown that the joint distribution in Markov Random Fields is a
factorized expression over functions of variables in the maximal cliques of the graph.
How can probabilistic inference be realized effectively with this simplified form of the
joint distribution? This section presents an answer to this question, which involves what
is known as theJunction Treeframework for probabilistic inference.

During the past decades, a few efficient algorithms for inference in graphical models
without cycles were developed (PEARL, 1988; LAURITZEN, 1996; SHAFER; SHENOY,
1990). All of these algorithms involve some form of dynamic programming. Examples
are the Viterbi and forward-backward algorithms for chain graphs and belief propagation
(or sum-product) for tree graphs. In general, what has been discovered is that in graphs
with no cycles the dynamic programming principle can be applied in order to efficiently
accomplish exact inference.

However, in general graphs, which may involve cycles, these algorithms fail to give
exact solutions. This limitation encouraged researchers to rethink the graph structure over
which the algorithms should run, not the algorithms themselves. The idea was to trans-
form an arbitrary graph in a “hypergraph” where nodes consist of the maximal cliques
of the triangulated graph, and derive a way to guarantee that this general graph would
be a tree (even if the original one had cycles). Then the same efficient algorithms for
trees could be used on these hypergraphs, and the only difference would be that the final
marginals would not be associated to singleton nodes, but with an entire clique. Individ-
ual marginals then could be obtained by marginalizing out the remaining variables within
the same clique.

The above is a very short primer to what was later formally developed as theJunction
TreeFramework for exact inference, which will now be described in detail.

44

4.3.1 The Junction Tree framework

The Junction Tree framework consists in a set of algorithms for systematic exact in-
ference on arbitrary graphical models. Several different algorithms for performing infer-
ence are available (e.g. the Hugin, Shafer-Shenoy and Lauritzen-Spiegelhalter algorithms
(VASILICA; PRAKASH, 1998)) in this framework, but essentially they lie on the same
principle: to accomplish local computations systematically in a special data structure - a
“Junction Tree”.

We will be concerned with a particular algorithm called the “Hugin algorithm” (LAU-
RITZEN, 1996). However, the same results would be obtained by using either the Shafer-
Shenoy or the Lauritzen-Spiegelhalter algorithm, since all of them perform exact infer-
ence. For a comparison among the three algorithms, see (VASILICA; PRAKASH, 1998).
The presentation that follows is mainly based on (JORDAN, Forthcoming, 2004).

The Hugin algorithm is a “message-passing” algorithm, where “messages” are seen
as local computations involving two maximal cliques of the graph. Its general view for
undirected graphical models can be described as follows:

• Triangulation. The first step is totriangulatethe graph, or equivalently to make it
achordal graphby proper insertion of edges.

• Junction Tree construction. A hypergraph (called aJunction Tree), where the
nodes are the maximal cliques of the original graph, is constructed.

• Initialization of potentials. The nodes of this Junction Tree are initialized with
potentials in a proper manner.

• Propagation. A “message-passing” or “probability propagation” algorithm is run
on this Junction Tree in order to systematically update the potentials.

Once the algorithm finishes, each node of the Junction Tree is guaranteed to have a
potential which is proportional to the marginal distribution (or proportional to the MAP
distribution, depending on the version of Hugin used) for the node. Each of these steps
will be detailed in what follows.

4.3.2 Graph triangulation

Graph triangulation is the first step in the algorithm. Recall from graph theory that
a triangulated (or chordal) graph is a graph with no chordless cycles (WEST, 2001). A
chord in a cycle is an edge between non-consecutive nodes in that cycle. Figure 4.5 shows
an example of graph triangulation. The graph on the left is not triangulated because there
are two cycles that have no chord (ABDCA and CDFEC). In order to triangulate this
graph, it is necessary to create at least one chord in each of these cycles, by inserting
edges BC and DE, for example, as shown in the graph on the right.

This triangulation step is necessary for the following reason: there is a result which
states that a graph has a Junction Tree if and only if it is triangulated (JORDAN, Forth-
coming, 2004; LAURITZEN, 1996). Although a Junction Tree has not yet been defined,
it was already written that the inference algorithm runs over such a structure, what forces
the accomplishment of the triangulation step.

The same graph can be triangulated in different ways. It will be seen that there are
triangulations which are “optimal”, in the sense that the Junction Tree that arises from

45

C

FE

A B

DC

FE

A B

D

Figure 4.5: Left: a non-triangulated graph. Right: a possible triangulation for the graph
on the left.

AC

A B

DC

AB BD CD

Figure 4.6: A graph on the top and a corresponding clique tree on the bottom.

this triangulation has a maximal clique size which is minimum among all possible trian-
gulations (what impacts on the complexity of the propagation phase, as will be shown).
As a result, if one is concerned with optimal models, an optimal triangulation should be
computed. The problem of computing an optimal triangulation for arbitrary graphs is,
however, known to be NP-hard (JORDAN, Forthcoming, 2004). This would be a signifi-
cant problem if triangulation were not an “off-line” process in the whole algorithm: note
that for a given model it is necessary to triangulate just once the graph and obtain its Junc-
tion Tree. From this moment on, the model can be applied to different inference problems
by only executing the initialization and propagation phases. Moreover, in many problem
domains the graph isalreadytriangulated (as in the problem tackled in the present work),
what makes vacuous this step of the algorithm.

4.3.3 Junction Tree construction

The first key concept for understanding the construction of a Junction Tree is that of
a clique tree. A clique tree of a graph is another graph (a “hypergraph”) where the nodes
(which are calledclique nodes) correspond to the maximal cliques of the original graph,
and the connectivity is such that there are no loops in the hypergraph. Figure 4.6 shows a
graph (on the top) and a possible clique tree for this graph (on the bottom).

The Junction Tree algorithm for inference in a graphical model runs over a clique tree
of this graphical model. However, not all clique trees are appropriate for the purpose of
the algorithm. The associated clique tree must have what is called therunning intersection

46

DE

ABC BCD

CDEDEF

BC

CD

Figure 4.7: A Junction Tree for the triangulated graph in Figure 4.5.

property. The running intersection property asserts that all clique nodes (k) in the path
between any two nodes (i, j) must contain their intersection. IfB is the set of clique nodes,
Ni is the set of nodes in clique nodei andKi j is the set of clique nodes in the path fromi
to j, this property can be formalized as

Ni ∩N j ⊂ Nk,∀ i, j ∈ B,∀ k ∈ Ki j. (4.25)

If a clique tree possesses the running intersection property, it is called a Junction Tree.
Note that the clique tree in Figure 4.6 isnot a Junction Tree, because nodeA, which ap-
pears in the clique nodesAB andAC, does not appear in clique nodes in the path from
AB to AC. Indeed, this is not a surprise because the graph in Figure 4.6 is not triangu-
lated, so all clique trees associated to this graph will not present the running intersection
property. The equivalence between the existence of a Junction Tree and triangularity of
the graph is what forces the triangulation of the graph in the first step of the algorithm,
since a Junction Tree is needed in order to run the propagation step.

Consider again the triangulated graph in Figure 4.5. Since it is triangulated, it has
a Junction Tree representation. In Figure 4.7, it is shown a possible Junction Tree for
this graph. In this Junction Tree, it is introduced explicitly what are called theseparator
nodes. They are denoted in rectangles and represent the intersection set of the neighboring
clique nodes. This is done as a matter of convenience: as we will see, the propagation
phase of the algorithm involves a transfer of information between two clique nodes in
such a way that their separator plays a prominent role. By inserting the separators, the
joint distribution can be written as

p(x) =
∏

CψC(xC)∏
S φS(xS)

(4.26)

whereφS(xS) is a separator potential function. It is not difficult to see that this represen-
tation is equivalent to the one given by the HC theorem:

p(x) =
∏
C∈C

ψC(xC). (4.27)

This is because the separators are subsets of the maximal cliques and thus the joint dis-
tribution remains unaltered in this new parameterization (JORDAN, Forthcoming, 2004).

47

C

ABC

CDEDEF

BC

DE

BCD

Figure 4.8: A clique tree for the triangulated graph in Figure 4.5 which is not a Junction
Tree.

But a question remains: how are the clique nodes connected in order to form a Junction
Tree? One solution is given by Kruskal’s algorithm (JORDAN, Forthcoming, 2004),
which consists in beginning with no edges and, at each step, add an edge that has maximal
separator cardinality (without creating loops in the graph). Once there is a path between
any pair of cliques (once the graph is connected), the resulting tree will be a Junction Tree
(JORDAN, Forthcoming, 2004). Figure 4.8 shows a clique tree for the triangulated graph
in Figure 4.5 which isnot a Junction Tree. Note that the sum of the cardinalities of the
separator sets is|{BC}|+ |{C}|+ |{DE}| = 5. This sum for the Junction Tree in Figure 4.7 is
6. It is possible to prove that a clique tree of a triangulated graph is a Junction Tree if and
only if this number is maximal among all possible clique trees (JORDAN, Forthcoming,
2004). There may exist, however, more than one Junction Tree.

4.3.4 Initialization of potentials

Once the graph has been triangulated and a Junction Tree has been constructed, it is
necessary to “initialize the clique potentials”. What is meant by that is the following:
the potential functions of the underlying graph must be somehow encoded in the new
hypergraph.

There are situations in which the potentials of the underlying graph are given in terms
of its maximal cliques. In these cases, the initialization procedure is trivial: simply assign
the potential of each maximal clique to the correspondent node of the Junction Tree (since
the Junction Tree is made up by nodes representing the maximal cliques). However, this
is in general not the case. It is common that the potentials in the underlying graph are
given in terms of proper subsets of the maximal cliques. In this situation, the potentials
in the nodes of the Junction Tree are given by the product of the potentials in the proper
subsets (JORDAN, Forthcoming, 2004).

Consider, for example, the graphical model shown in Figure 4.9. In this figure, it is
assumed that the graphical model is parameterized in terms of pairwise potentials. How-
ever, the maximal cliques of the model are triples. In this case, the potentials of the triples
ABC andBCD would be factorized as

ψABC = ψABψBCψAC and ψBCD = ψCDψBD (4.28)

Note that the pairBC has been arbitrarily assigned to the cliqueABC. It could also
have been assigned to the cliqueBCD. What is important is that each pairwise clique is

48

C

A B

D

Figure 4.9: A model with maximal clique of size 3 which can be parameterized with
pairwise potentials:ψAB, ψAC, ψBC, ψBD andψCD.

inserted just once in the representation of the joint distribution. If the clique potentials are
mounted in this way, it is guaranteed that the factorized form

p(x) =
∏

C∈CψC(xC)
Z

(4.29)

does represent faithfully the joint distribution (JORDAN, Forthcoming, 2004).
We must also initialize the separator potentials. These are initialized to unity (JOR-

DAN, Forthcoming, 2004).
Once the clique potentials have been initialized, the last step of the algorithm provides

a systematic way of updating them. This procedure is described in what follows.

4.3.5 Propagation

The final stage of the Hugin algorithm consists in a probability propagation or message-
passing phase. This propagation phase can be seen as an algorithm that performs local
operations between neighboring clique nodes so as to manipulate the clique potentials by
“transforming” them into maximum a posteriori clique distributions (or marginal clique
distributions, depending on how the computations are performed, as will be seen). After
the algorithm runs, it is guaranteed that every clique potentialψC will be proportional to
the MAP distributionMAP(C) (or proportional to the marginal distributionp(C)).

In order to understand the propagation algorithm, it is important to describe its core
procedure, which consists in a computation involving two neighbor clique nodes and their
separator (JORDAN, Forthcoming, 2004). Assume the existence of two clique nodes,V
andW, with separator nodeS. The basic operation of the propagation algorithm involves
updating the potentialsψV, ψW andφS so as to enforce the consistency of both MAPs
(marginals) with respect to the separator. This operation can be understood as a transfer
of information betweenV andW, with S being a conduit.

The first step is to updateW from V:

φ∗S =
∑
V\S

ψV (4.30)

ψ∗W =
φ∗S
φS
ψW. (4.31)

Eq. (4.30) is simply a summation in order to obtain the marginal for the separator with
respect to the potentialψV. If the purpose is to obtain MAPs, not marginals, Eq. (4.30)
should be changed to

49

φ∗S = max
V\S

ψV. (4.32)

As a result, there is a “marginal version” and a “MAP version” of the algorithm.
Eq. (4.31) is an update inψW so as to retain the same joint distribution. Note that the

joint distribution prior to this update is the same after it has been computed:

ψVψW

φS
=
ψVψ∗WφS

φSφ∗S
=
ψVψ∗W
φ∗S

. (4.33)

Once the “message” has been passed fromV to W, it is necessary to send back toV a
new message fromW, which is the second step in the propagation algorithm:

φ∗∗S =
∑
W\S

ψ∗W (4.34)

ψ∗∗V =
φ∗∗S
φ∗S
ψ∗W. (4.35)

Again, for calculating MAPs (for running the MAP version instead of the marginal
version), Eq. (4.34) should be changed to

φ∗∗S = max
W\S

ψ∗W. (4.36)

Since the only potential function to be updated twice is that of the separator (φS), the
following correspondences are defined:ψ∗V ≡ ψ

∗∗

V andψ∗W ≡ ψ
∗∗

W. Note that, for the same
reason as described above, this second step of the propagation algorithm does not alter the
joint distribution. Moreover, it is possible to show that once the forward and backward
messages have been passed, the marginal ofφS with respect toψV is consistent with the
marginal ofφS with respect toψW:

∑
V\S

ψ∗∗V =
∑
V\S

φ∗∗S
φ∗S
ψ∗V (4.37)

=
φ∗∗S
φ∗S

∑
V\S

ψ∗V (4.38)

=
φ∗∗S
φ∗S
φ∗S (4.39)

= φ∗∗S (4.40)

=
∑
W\S

ψ∗∗W, (4.41)

what is also true for the MAPs, where it is obtained thatmaxV\Sψ∗∗V = maxW\Sψ∗∗W. This
fact is calledlocal consistency.

The above message-passing operation is the fundamental element of the propagation
algorithm. Real graphs will have in general Junction Trees that have more than two clique
nodes. In this case, the message-passing scheme must1 respect the following protocol:

1Actually, even if the protocol is not respected, eventually all messages will be passed and the algorithm
will succeed. However, in order to avoid unnecessary operations the protocol should be respected.

50

• A node V can only send a message to a neighborW if it has already received
messages from all its other neighbors.

This protocol can be implemented using different algorithms, but it is clear from it
that the first messages should come from the leafs of the Junction Tree, since they have
no other neighbors than the one they should pass the message to. The algorithm is said to
be finished when all clique nodes have received messages from all their neighbors.

Note that there is an interesting scenario in which we need to keep multiple copies of
separator potentials. This is the case when a given set of nodes is the separator for more
than one pair of clique nodes. Consider the example in Figure (4.10).

Duplicate Copies

X4

X6

X1 X2 X3 X4 X1 X2 X3X1 X2 X3 X1 X2 X3

X X X1 2 3

X5

X6 X1 X2 X3 X5

Figure 4.10: A situation in which the same set of nodes (X1X2X3) appears as separating
different pairs of clique nodes. In this case, different copies of the potentials must be
stored. Top: the model. Bottom: a possible Junction Tree.

In this situation, when the potential in one rectangle is updated, the potential in the
other rectangle keeps its value until the moment specified by the protocol, when then its
value will be updated. As a result, there must be as many copies of a separator potential
as is the number of its occurrences in a Junction Tree.

We will encounter in this Thesis a graphical model with this property.
It is not difficult to see that after the algorithm has finished it will be obtained a Junc-

tion Tree which is “globally” consistent (in the sense that every separator is consistent
with respect to its neighbors), because (a) the local consistency is guaranteed by the up-
dating computations and (b) the running intersection property implies that local consis-
tency, in a Junction Tree, is equivalent to global consistency. It is certainly true that we
have a consistent Junction Tree with the same joint distribution than before the algorithm
was run. The question that arises at this stage is: have we achieved something useful?
The answer comes in the following theorem (JORDAN, Forthcoming, 2004):

51

Theorem 4.4 Let p(xC) and p(xS) be the marginal probability distributions for a clique
nodeC and a separator nodeS of a Junction Tree. LetψC andφS be, respectively, the
final potentials for clique nodeC and separator nodeS after the marginal version of the
Hugin algorithm has finished. For every clique nodeC and separator nodeS, it holds that

ψC = p(xC)Z (4.42)

φS = p(xS)Z. (4.43)

whereZ is a constant (which is the same for every clique node). Similarly, ifMAP(xC)
andMAP(xS) are the Maximum a Posteriori distributions for the clique nodeC and sep-
arator nodeS, after the MAP version of Hugin has finished it holds that

ψC =MAP(xC)Z (4.44)

φS =MAP(xS)Z (4.45)

for every clique nodeC and separatorS.

In other words, the final potentials in each clique and separator are proportional to
their marginals (or proportional to their MAPs, if the MAP version is run). The constant
of proportionality is thesamefor all clique nodes, though. This is what Junction Tree
algorithms (in particular the Hugin instance described here) give us: a way of obtaining
the marginal (MAP) distribution for each maximal clique and separator of the underlying
graph. If the interest is to compute marginals (MAPs) for subsets of the maximal cliques,
it is necessary to perform as post-processing a marginalization (maximization) within
those cliques. For example, if after running Hugin we obtain the MAP for the maximal
cliqueABC but we want the MAP for the singletonA, it is necessary to computep(xA) =
maxxBxC p(xAxBxC), which is a local computation with cost determined by the size of the
clique node (in this case the dimension of the clique node is 3).

As a summary, this is the set of procedures for realizing probabilistic inference in
arbitrary undirected graphical models: (1) first triangulate the graph and construct a Junc-
tion Tree, then (2) initialize the potentials by direct plug-in if they are parameterized with
respect to the maximal cliques, or by multiplication of sub-potentials if they are param-
eterized with respect to proper subsets of the maximal cliques; (3) run the propagation
algorithm respecting the protocol and finally (4) perform local marginalization (maxi-
mization) if marginals (MAPs) for the subsets of maximal cliques are needed.

It turns out that the computational complexity of this algorithm is dominated by an
exponential term on the dimensionality of the maximal clique, as will be shown in what
follows. This is an important result, because for models where the maximal cliques have
a moderate size exact inference may be feasible.

4.3.6 Computational complexity

As seen above, the Hugin algorithm has a series of steps, each of them having its own
computational complexity.

Finding an optimal triangulation is known to be NP-hard (JORDAN, Forthcoming,
2004). However, as was mentioned earlier this is an off-line procedure, and we may
accept to pay the price of running an algorithm for a reasonable amount of time based on

52

heuristics in order to find a good triangulation2. Moreover, in many cases it happens that
the underlying graph is already triangulated, which is precisely the case in the problem
studied in this Thesis. As a result, triangulation will not be a concern in the context of
this work.

The determination of a Junction Tree from a triangulated graph can be obtained by
greedy algorithms such as Kruskal’s or Primm’s (JORDAN, Forthcoming, 2004). The
run time of both these algorithms isO(N2) - beingN the number of nodes in the tree -
which is feasible.

Initialization is a straightforward procedure once the parameterized potentials are
available and the Junction Tree is constructed. It is clearly linear on the number of nodes,
since there is no dependency between the assignment of different potentials. The con-
struction of the potentials, however, may be a problem because the number of entries in
the table defining a potential is exponential on the dimensionality of this potential. The
complexity of this task depends on the way that the potentials are parameterized. In the
problem studied in this work, we will see an instance of the issue of constructing the
potentials.

The above phases of the algorithm - triangulation, Junction Tree construction and ini-
tialization - arepreprocessingphases. In usual situations, one is interested in answering
probabilistic inference questions about an already given model. As a result, these tasks
are usually performed off-line in real problems. The on-line phase of the algorithm is
the propagation one. A tree withN nodes hasN − 1 edges. Two messages are passed
through each edge - one in each direction. So the total number of messages to be passed
is 2(N − 1). Each message has a marginalization (maximization) step and a normaliza-
tion step, what results in4(N − 1) steps. Both the marginalization (maximization) and
the normalization steps involve operating all entries in the tables of the involved poten-
tials. Since the number of entries in a table is exponential on its dimensionality and the
dimensionality of a table is the size of the correspondent maximal clique, the number of
computations involved in the marginalization (maximization) and normalization steps is
exponential on the size of the largest clique involved3, O(Sd), whereS is the number of
possible realizations for each random variable andd is the dimensionality of the largest
clique in the Junction Tree. As a result, the clique which has maximal size is the one
who dominates the computational complexity of the propagation phase. The propagation
phase overall complexity is obtained by merging the complexity of local message-passing
and that of computing all messages. This results inO(NSd).

We will see that, in the problem studied in this work, a particular off-line phase is actu-
ally performed on-line. This is precisely the phase of construction of the potentials. This
fact results in a dual on-line processing: the construction and initialization of potentials
and the propagation phase.

The next chapter introduces the original contributions of this work by establishing a
formulation for point set matching in terms of inference in graphical models as well as
some important theoretical results.

2Note that by “optimal triangulation” we mean a triangulation that makes the size of the maximal clique
minimum. “Good triangulation” would be a triangulation that generates a maximal clique of acceptable
size for the given application.

3Note that, if a message is to be passed between clique nodes of different dimensionality, the compu-
tational complexity will effectively be dominated by the largest clique. This occurs because in order to
perform the element-by-element computation it is necessary to replicate the smaller table over the dimen-
sion(s) that is (are) present in the larger clique but not in the smaller.

53

5 THESIS CONTRIBUTIONS: THEORY

This chapter presents three contributions: (1) a principled way of formulating the point
pattern matching problem as one of inference in graphical models, (2) the introduction of a
graphical model for point set matching which is optimal in the limit case of exact matching
and where optimal inference is feasible in polynomial time and (3) a generalization of the
formulation for arbitrary attributed graph matching problems. The original publications
describing most of these contributions are (CAETANO; CAELLI; BARONE, 2004a,b;
CAELLI; CAETANO, 2003, 2004).

We start by formulating point pattern matching as a problem of probabilistic inference
over a graphical model, where the purpose consists in finding a Maximum a Posteriori
(MAP) estimate. In the following, we present a fundamental result regarding the global
rigidity of straight line graph embeddings, which will allow us to prove that, in the limit of
exact matching, a particularly simple graphical model is equivalent to the fully connected
model for this problem. This result lays the foundation of the present work since exact
inference in the resulting graphical model is feasible. It turns out that we obtain a point
set matching technique that (1) is based on an optimal probabilistic inference algorithm
over a graphical model, such that (2) this graphical model is optimal in the limit of exact
matching, in the sense that it is equivalent to the full model and (3) this graphical model
is sufficiently simple so that exact inference runs in polynomial time. The final result
is a polynomial time procedure for point set matching in arbitrary dimensions invariant
to translations, rotations and reflections, which in addition is optimal in the noise free
scenario. Finally, we present a straightforward generalization of the formulation for the
case of arbitrary attributed graph matching problems.

5.1 Point Pattern Matching as Inference in Graphical Models

The fundamental idea driving the formulation of our model is that the matching prob-
lem between two point sets can be seen as a Maximum a Posteriori (MAP) inference
problem in a Graphical Model. It was seen in chapter 2 that the point set matching prob-
lem can be seen as one of Weighted Graph Matching. The idea is to formulate WGM
itself as an inference problem in a Graphical Model. First we present the modeling idea
and then the formal development of the Markov Random Field formulation.

5.1.1 The modeling idea

In order to introduce and describe the modeling idea, let us recall the definition of
one point pattern as thedomainpattern and the second point pattern as thecodomain
pattern. This notation is in accordance with the formal notions of domain and codomain

54

1Problem Domain:
Point Pattern Matching

Modeling Domain:
Graphical Model

d
ckS

ck2ck
i 1

Xi 1

xk2

xk1

xkS

Figure 5.1: Pictorial representation of the modeling idea.

of functions, such that we assume that each point in the domain pattern will necessarily
map to one and only one point in the codomain pattern. Now, assume that to each pointdi

in the domain pattern a random variableXi is assigned. Formally, there is an isomorphism
between the set of points and a set of random variables, but for simplicity we say that
each point in the domain pattern “is” a random variable. This is the first step of the
construction of our model: to understand each point in the domain pattern as being a
random variable. The second step is quite logical: each random variable has a finite set of
possible realizations which coincides with the set of points in the codomain pattern. As a
result, a particular realizationxk of a random variableXi corresponds to a particular map
between pointdi in the domain pattern and pointck in the codomain pattern. Consequently,
a particular joint realization{xk,∀k ∈ Vc} of the complete random field{Xi,∀i ∈ Vd}

corresponds to a particular match between the point sets{di} and{ck}. Figure 5.1 shows a
pictorial description of this modeling strategy. In this figure, we illustrate the notion that
a particular unary map from an elementdi1 in one pattern to an elementck1 in the other
pattern is represented, in our modeling scheme, as the fact that the random variableXi1
has realizationxk1.

In this sense a joint realization of the whole set of random variables corresponds to
a particular match between the two patterns. The purpose then is to find an appropriate
graphical model (i.e. connectivity structure and potential functions) in order to make the
likelihood of a particular joint realization of the entire random field representative of the
global similarity between the two point patterns.

Note that the formulation in terms of random variables and their realizations naturally
poses the problem as one of optimization under the constraint of a total (many-to-one)
mapping, as described in chapter 2, section 2.2:

S∑
k1=1

Mi1k1 = 1,∀i1 (5.1)

since every random variable (an element of the domain pattern) must assume one and only
one value (an element of the codomain pattern).

The next section describes formally how we derive the problem from first principles
using MRF theory.

55

5.1.2 Formulation

Here we present a contribution by showing how the weighted graph matching prob-
lem, usually posed as the minimization of an heuristic energy function (GOLD; RAN-
GARAJAN, 1996), can be formally derived from first principles using the theory of
graphical models. We will make assertions concerning probability distributions defined
over random variables indexed by nodes of a graph (JORDAN, Forthcoming, 2004). We
follow here the notation used in the previous chapter:X is a set of random variables in-
dexed by the nodes of a graph,x is a particular realization of this set andX is the set of
all possible realizations.

We saw in the last chapter that the HC theorem tells us that the probability distri-
bution of a MRF can be expressed as a product over “clique potential functions”. This
is important because the problem reduces to simply specifying these potential functions.
This result is well-known and is usually presented as the “MRF-Gibbs equivalence”, due
to the fact that the factorized distribution can be expressed as a Gibbs (or Boltzmann)
distribution from Statistical Physics (GEMAN; GEMAN, 1984).

Taking this result into account, we are equipped to derive the weighted graph matching
problem. Assume the existence of a graphGm, wherem represents the model. Having
chosen a particular graphGm, the HC Theorem states that any strictly positive probability
distribution which is Markov over the nodes of this graph can be expressed as (see the
previous chapter)

p(x) =
∏
C∈C

ψC(xC), (5.2)

whereC is a maximal clique inGm, C is the set of allC’s andψxC(·) is the potential
function for cliqueC. Similarly, we will denote a clique of sizeΩ asCΩ, and the set of
all CΩ’s asCΩ. xC is the joint realization of the set of variablesXC comprising cliqueC.
Now, we define a MRF (Gm, p(X = x)) over the graphGm, such that each random variable
Xi (a node inGm) corresponds to a node of the graphGd and each possible realization
xk corresponds to a node in the graphGc. Thus, the joint realizationX = x represents a
particular match from the domain graphGd to the codomain graphGc. Note that there is
a conceptual difference between the graphGm and the graphsGd andGc. While Gd and
Gc are the full attributed graphs to be matched,Gm is a possibly sparse graph. The fact
that the nodes ofGm represent the random variables associated to nodes inGd implies that
Gm andGd have the same number of nodes. It is possible to seeGm as a subgraph ofGd,
since it has the same number of nodes but possibly a sparse edge constitution (whileGd

is a fully connected graph).
Being (Gm, p(x)) a MRF, the HC Theorem states thatp(x) is given by Eq. (5.2), which

can be rewritten as a Gibbs distribution:

p(x) = exp

−∑
C∈C

VC(xC)

 (5.3)

whereVC = − logψC(xC). Observe that, although the potentialsψC must be non-negative,
the modified potentials1 VC are arbitrary - apart from being such that

∑
x p(x) = 1, since

log(x) maps from the positives to the entire real line. Actually, we can decouple fromVC

the part responsible for normalizingp(x) and make it totally arbitrary:

1We call both the function over a clique and its negative logarithm as “clique potential function” or
simply “potential function”. This is for simplicity and will hopefully not harm the clarity of the presentation.

56

p(x) =
exp
(
−
∑

C∈CVC(xC)
)∑

x exp
(
−
∑

C∈CVC(xC)
) (5.4)

where the denominator is a normalization constant (called partition function) that renders∑
x p(x) = 1.

Note that we are interested in finding the most likely joint realization of the MRF,
given all theVC’s. This is precisely the solution to the assignment problem, since the
realizationX = x represents a particular match in this formulation. It is obvious that the
VC’s are functions of the attributes ofGd andGc. So, for a given set ofVC’s, our purpose
is to findx∗ that maximizes Eq. (5.4):

x∗ = arg max
x

p(x|{VC}) (5.5)

where{VC} denotes the set of allVC’s. Here,x∗ is known as the Maximum a Posteri-
ori (MAP) estimate, because it is the argument that maximizes the posterior distribution
p(x|{VC}).

In this way, the problem is one of finding a MAP estimate forp(x) given all the poten-
tials VC, which are themselves functions of the attributes in both graphs.

Due to the fact that the negative exponential is a strictly decreasing function, maxi-
mizing Eq. (5.4) is equivalent to minimizing:

U(x) =
∑
C∈C

VC(xC). (5.6)

In words, the MAP problem over the MRF is equivalent to one of minimizing an “energy”
functionU(x) made up of a sum over local clique potentials. This fact will lead us to a
definition of the problem in terms of the minimization of a cost function, as it is usually
posed (GOLD; RANGARAJAN, 1996). We recall that the local clique potentialsVC’s
are in principle functions of the maximal cliques ofGm, but can be decomposed into sums
of smaller clique potentials. In particular, the standard definition of the weighted graph
matching problem can be obtained by decomposing the maximal clique potentials into a
sum of pairwise clique potentials:

U(x) =
∑

C2∈C2

VC2(xC2). (5.7)

Since a 2-clique is an edge inGm, these potentials must simply measure the dissimilarity
of these attributes for a given pairwise mapping:

VC2(Xi1 = xk1 ; Xi2 = xk2) = D2(yd
i1i2 , y

c
k1k2

), (5.8)

whereD2(yd
ij, y

c
kl) is some distance measure between the weights of edgesdi j in Gd andckl

in Gc.
What we finally obtain is the following optimization problem:

U(M) =
∑

C2∈C2

S∑
k1=1

S∑
k2=1

Mi1k1Mi2k2D2(yd
i1i2 , y

c
k1k2

) (5.9)

57

subject to

∀i1,
S∑

k1=1

Mi1k1 = 1 (5.10)

whereMik denotes an indicator function with respect to the matchX = x:

Mi1k1 =

{
0, Xi1 , xk1

1, Xi1 = xk1

(5.11)

This condition simply states that the only constraint enforced in the mapping is that it is
a total function, so that every node inGd must map to a single node inGc. The opposite
is not necessarily true, because we do not require that

∑
i1 Mi1k1 = 1. This is in contrast,

for example, with (GOLD; RANGARAJAN, 1996), where both constraints were imposed
and so generating an injective function.

We note that Eq. (5.9) involves a summation only over the edges (2-cliques) ofGd

that correspond to edges of the model graphGm. This is indeed an approximation to the
complete problem, and lies at the core of our MRF formulation2. The complete problem
is obtained directly from Eq. (5.9) by consideringGm a full graph, and resembles well-
known definitions of the weighted graph matching problem (GOLD; RANGARAJAN,
1996):

U(M) =
T∑

i1=1

T∑
i2=1

S∑
k1=1

S∑
k2=1

Mi1k1Mi2k2D2(yd
i1i2 , y

c
k1k2

) (5.12)

under the same constraint (5.10). Note that Eq. (5.12) has the same form of Eq. (2.6),
which is the heuristic definition of the WGM problem existent in the literature (GOLD;
RANGARAJAN, 1996) . In this way, we notice that the usual formulation of the WGM
problem can be derived from first principles using the theory of probabilistic graphical
models.

In order to fully specify the model, one needs to define the potential functions and the
connectivity structure of the graph. This is done in the next two sections.

5.2 The Model: Potential Functions

Recall that the basic idea of the modeling strategy is to consider a graphical model
where the nodes are points in the domain pattern and their possible realizations are points
in the codomain pattern. In order to fully specify the graphical model, it is necessary
to define (1) the potential functions and (2) the connectivity of the model. We start by
formally specifying the model and introducing the potential functions.

We continue with a notation coherent with the descriptions of the problem presented
in chapter 2. The cardinalities of the domain and codomain pattern sets are denoted,
respectively, byT andS. Each point in the domain is associated with a vertex of a graph
Gd, and each point in the codomain is associated with a vertex of a graphGc. The relative
distance between a pair{i, j} of points in a pattern is seen as anedge weightof the edge
that connects verticesi and j in the respective graph. In this formulation, point pattern
matching turns out to be a weighted graph matching problem, as seen in chapter 2.

2Although this is in principle an approximation, we will show that there is a particular graphGm that
has the same representational power than the full graph in the limit of exact matching.

58

The model formulation consists, initially, in defining each of theT vertices inGd as a
random variable that can assumeS possible values (discrete states), corresponding to the
vertices inGc. Note that in this formulation the solution to the problem (the best match)
corresponds to finding the most likely (the best) realization of the set of rv’s.

According to the last section, one needs to define the distance measuresD2(yd
i1i2
, yc

k1k2
)

that represent the potential functions of our graphical model (the potential functions are
the negative exponentials of the distance measures, see eq. (5.3)). Recall that the funda-
mental feature of this measure is that is must penalize more severely pairwise mappings
for which the difference of the lengths of mapped edges (yd

i1i2
and yc

k1k2
) is higher. Fig-

ure (5.2) illustrates a pairwise map and a possible measure which is relevant in order to
construct the potential functions (|yd

i1i2
− yc

k1k2
|).

2

ck2

di 1

ck1

y 1i i2 y k21k

y k21ky 1i i2
d c

d c

di

Figure 5.2: An example of a pairwise mapping. An appropriate potential function should
penalize more severely mappings for which |yd

i1i2
− yc

k1k2
| is higher.

Since each node in the domain graph can map toS different nodes in the codomain
graph, each pair of nodes can map toS2 different pairs in the codomain graph. Figure (5.3)
illustrates the kernel structure of our model: a pairwise clique, where each random vari-
able represents a point in the domain graph which in turn can assume a set ofS possible
realizations (which themselves correspond to points in the codomain graph).

x

Xi Xj
x S

1x

x S

1

Figure 5.3: The kernel structure of the graphical model.

The sample space for this clique hasS2 elements, corresponding to all possible com-
binations that a pair of points in the domain graph can map to in the codomain graph. A
potential function - recall from chapter (4) - is a function that associates to each element
of the sample space a positive real number. In our case, the only requirement that the
potential function must obey is that its value must be as higher as more similar are the
distances of the mapped edges, as illustrated in Figure (5.2).

Formally, we can specify the potential function by

ψi j;kl = p(Xi = xk|X j = xl) (5.13)

59

or, in matrix form, for each pair{Xi,X j} in Gd, we define

ψi j = ψi j(Xi,X j) =
1
Z


S(yd

ij, y
c
11) . . . S(yd

ij, y
c
1S)

...
. . .

...
S(yd

ij, y
c
S1) . . . S(yd

ij, y
c
SS)

 (5.14)

whereya
bc denotes the edge weight between vertices with indexesb andc in graphGa. Z is

a normalization constant that equals the sum of all elements in the matrix, in order to keep
ψi j compatible with a probability distribution (it is known as partition function in Physics).
S is a similarity function that measures the compatibility of the two arguments. Several
options are available forS (CARCASSONI; HANCOCK, 2003), such as the Gaussian,

G(yd
ij, y

c
kl) = exp

(
−

1
2σ2 |y

d
ij − yc

kl|
2
)

(5.15)

the Hyperbolic Tangent,

H(yd
ij, y

c
kl) = 1 − tanh

 |yd
ij − yc

kl|

σ

 (5.16)

or an Increasing Weighting function,

I(yd
ij, y

c
kl) =

1 + |yd
ij − yc

kl|

σ


−1

. (5.17)

These proximity measures are needed in order to model the uncertainty due to the
presence of noise. Obviously, their maximal value must be reached when there is no noise
(yd

ij = yc
kl). In the particular case of exact matching, one may use simply the indicator

function,
J(yd

ij, y
c
kl) = 1(yd

ij, y
c
kl), (5.18)

which is defined as

1(yd
ij, y

c
kl) =

{
1, if yd

ij = yc
kl

0, if yd
ij , yc

kl
(5.19)

As a result we can now define a Markov Random Field (MRF) graphical model (i.e.
anundirectedgraphical model) over the model graphGm (as described in chapter 2). The
nodes in the model correspond to the vertices inGd whose states are defined by the set of
vertices inGc, and joint realizations of neighboring random variables have an associated
potential.

Having specified the potential functions, it remains to be determined the connectivity
of the graphical model: which nodes will be neighbors in the model? Next section shows
theoretical results that lead us to an answer to this question.

5.3 The Model: Connectivity

In this section we present a contribution by introducing some theoretical results that
will ultimately lead us to a properconnectivitystructure for the graphical model to be
considered.

60

5.3.1 A relevant lemma

To start our considerations, we now formulate a relevant lemma which turns out to be
essential in order to obtain the upcoming results:

Lemma 5.1 Let S1,S2, . . . ,Sn+1 be (n + 1) spheres inRn whose centers are in general
position (do not lie in a(n − 1)-dimensional vector subspace). Then the intersection set
∩

n+1
i=1 Si is either a single point or the null set.

Proof. Induction over n.
Recall that a sphere in a vector space is the set of points equidistant to a fixed point in

that vector space.
The Lemma obviously holds for the trivial case whenn = 1. See Figure (5.4).

Single point

Sphere 1 Sphere 2

Not concentric

Sphere 1 Sphere 2

Not concentric

Null set

Figure 5.4:n = 1: 2 spheres inR1 whose centers do not lie in a 0-dimensional vector
space (a point); Left: null intersection. Right: intersection is a single point.

Let S1 ∩ S2 = I1. ThenI1 is a (n − 2)-sphere lying in a(n − 1) vector subspaceQ
(we use the convention of topology, which denotes an-sphere as a sphere whose surface
is n-dimensional). LetIi = Si+1 ∩Q for i = 2, 3, . . . ,n. ThenI1, I2, . . . , In aren spheres in
Q � Rn−1 and, obviously,∩n+1

i=1 Si = ∩
n
j=1I j. We can now apply the induction hypothesis to

the set of spheresI1, I2, . . . , In. In order to prove it, it is necessary to show that the centers
of I j do not lie in a(n − 2) vector subspace.

Let (x1, x2, . . . , xn) be the coordinates ofRn. Let (ai1, ai2, . . . , ain) be the center ofSi.
It is easy to see that the centers ofSi are in general position if and only if the matrix

a11 a12 . . . a1n 1
a21 a22 . . . a2n 1
...

...
. . .

...
...

an+1,1 an+1,2 . . . an+1,n 1

 (5.20)

is invertible, i.e. has maximal rank.
Without loss of generality, we may assume thatQ is given byx1 = 0. ThenQ � Rn−1

is parameterized by(x2, x3, . . . , xn). The center ofI j−1 has coordinate(a j2, a j3, . . . , a jn). If
we subtract the second row from the first row of matrix 5.20 we obtain:

a11 − a21 0 . . . 0 0
a21 a22 . . . a2n 1
...

...
. . .

...
...

an+1,1 an+1,2 . . . an+1,n 1

 (5.21)

Note thatQ = {x1 = 0} implies that(a12, a13, . . . , a1n) = (a22, a23, . . . , a2n). If we eliminate
the first row and column of matrix (5.21), we obtain

61


a22 a23 . . . a2n 1
a32 a33 . . . a3n 1
...

. . .
...

...
...

an+1,2 an+1,3 . . . an+1,n 1

 (5.22)

It is evident that matrix 5.21 is invertible if and only ifa11 , a21 and matrix 5.22 is
invertible. This implies that the centers ofI j do not lie in a(n− 2) vector subspace inQ �
Rn−1, what completes the proof. �

Note that this result assures that there is a unique point with fixed distances fromk
fixed points inRk−1 (the intersection point of the spheres). Actually there is a widely
known application of a particular case of this result whenk = 4 (in R3), which is based
on the "Global Positioning System (GPS) principle": if the distances from a point to 4
known points inR3 is available, then the position of this point is known (the four points
should not lie in a plane).

Figure (5.5) illustrates the particular case of this result inR2.

Figure 5.5: An illustration of Lemma 5.1 inR2.

In Figure (5.5), if the center of the dashed circle does not lie in the same straight line
defined by the centers of the other two circles, it can intersect the intersection set of the
other circles inat mostone point (the one pointed by the arrow).

5.3.2 Global rigidity: basic definitions

The Lemma introduced above will enable us to obtain an important result regarding
the redundancy of pairwise distances in a point set. Here we present some basic def-
initions of the global rigidity of graphs (GRAVER; SERVATIUS; SERVATIUS, 1993;
CONNELLY, 1982, 2003), which will lay the basic concepts needed in order to introduce
this result. Aconfigurationis a finite set ofn labeled points,p = (p1, · · · , pn), such that
eachpi ∈ Rd. A frameworkin Rd consists of a straight line embedding of a graphG
with n vertices with configurationp = (p1, · · · , pn), and is denoted byG(p). In this rep-
resentation the lengths of the edges correspond to the Euclidean distances between the
corresponding vertices. A configuration ingeneral position(also called ageneral config-
uration) in Rd is such that no (d+1) points lie in a (d-1)-dimensional vector subspace. In
R2, this means that no 3 points are collinear.

Two frameworksG(p) andG(q) are said to beequivalent, and are denoted byG(p) ≡
G(q), if when {i, j} is an edge ofG, then||pi − p j|| = ||qi − q j||, where||.|| is the Euclidean

62

norm. It is said that a configurationp = (p1, · · · , pn) is congruentto q = (q1, · · · , qn), and
are denoted byp ≡ q, if, for all {i, j} ∈ {1, · · · ,n}, ||pi−p j|| = ||qi−q j||. This is equivalent to
saying that congruent configurations are those related by anisometry, or a transformation
that preserves distances. A frameworkG(p) is calledglobally rigid in Rd if G(p) ≡ G(q)
impliesp ≡ q. In other words, a framework is globally rigid when the specification of the
edge lengths uniquely specifies the remaining pairwise distances between vertices that are
not joined by an edge. Note that under this definition a framework with a complete set of
edges is necessarily globally rigid. In the following we present a key fact about the global
rigidity of a special kind of framework, which turns out to allow for the development of
an effective technique for point set matching.

5.3.3 Global rigidity of k-trees

In order to present the basic result about the global rigidity of a special kind of framework
- a k-tree -, we start by reviewing some basic definitions from graph theory (WEST,
2001). In what follows a complete graph withn vertices is denoted asKn. We recall that
a frameworkis a straight line embedding of a graph.

Definition 5.1 (k-clique) A k-cliqueof a graph is a complete subgraph with k vertices.

Definition 5.2 (k-tree, basek-clique) A k-tree is a graph that arises fromKk by zero or
more iterations of adding a new vertex adjacent to each vertex of ak-clique in the older
graph and nonadjacent to the remaining vertices. Thek-cliques adjacent to the new
vertices are calledbase k-cliques.

Figure 5.6 shows the process of creating ak-tree, in the particular case wherek = 3. We
start with aK3 graph. Then we add new vertices by connecting them to 3 vertices of
any existing base 3-clique. Note that all intermediate graphs generated in this way are
themselves legitimate3-trees.

5

2 2

3

5

4 4 64

13

2

1

2

3
1

Base 3−cliques

1
3

Figure 5.6: The process of constructing 3-trees.

We are now equipped to prove the second result:

Proposition 5.1 Anyk-tree framework having each of its basek-cliques in general posi-
tion inRk−1 is globally rigid inRk−1.

Proof. We use induction on the number of verticesn in thek-tree framework.
Forn = k the result is obvious because the graph is simply ak-clique, which is a fully

connected graph and as a result has an associated framework which is globally rigid. Now
let us assume that the result is true for somen > k and check if under this assumption
the result is also true forn + 1. First, choose a fixed (but arbitrary) coordinate system
S. If it is true for somen > k, then all the points in the framework are determined inS.

63

Now let us include a new vertex such that we know its distances from all thek vertices
of any existent basek-clique in general position of the previous framework. By drawing
edges corresponding to these known distances, we generate a new framework withn + 1
vertices. But since the inserted vertex has determined distances from all vertices of a
basek-clique which is in general position, its position is determined inS by virtue of
lemma 5.1. If its position is determined inS, then the positions of all vertices in the new
framework are determined inS (because the previous framework was globally rigid by
the induction hypothesis). If all the positions are determined inS, all pairwise distances
are determined. Since the pairwise distances do not depend on any particular choice ofS,
the result is valid for any coordinate system, what confirms that the initial choice ofS is
indeed arbitrary. This guarantees that the new framework is globally rigid inRk−1, what
completes the proof. �

The direct implication of the result is that thek-tree framework hasexactlythe same
informational content than a fully connected framework (since the absent edges have
uniquely determined lengths, given the present edges). We can now exploit this result
in order to derive the fundamental result of this section.

5.3.4 The main result

In order to introduce our main result, we recall for convenience some already defined
notation and also introduce some new terminology.

Gd = (Vd,Ed) is thedomain graphandGc = (Vc,Ec) is thecodomain graph, which
are both complete graphs (the edge sets are complete) embedded inRk−1, for some in-
tegerk > 1. They are “straight line embeddings”, in the sense that their edges are the
straight line segments that join the corresponding points in the vector space. The name
for these straight line embeddings of graphs areframeworks, but we will for simplicity of
terminology use “framework” and “graph” interchangeably, and always meaning by that
a straight line embedding of a graph in a vector space.

The vertex in the codomain graph to which the vertexdi in the domain graph maps is
c f (i), wheref is a “mapping function” such thatMi f (i) = 1,∀i, whereM is defined as in eq.
(2.3). Let us also define asGkt

d = (Vd,Ekt
d) a model graph with the same nodes thanGd but

with an edge connectivity given by ak-tree whose basek-cliques are in general position
in Rk−1. Gkt

c = (Vkt
c ,E

kt
c) is the subgraph ofGc whose nodes are those to which the nodes

Vd map under an optimal mapf and whose edges have the same length as those inE
kt
d . In

other words,Gkt
c is the subgraph ofGc which is isomorphic and isometric (mapped edges

under f have the same length) to the domain graphGd, and the mapf is said to be the
optimal map betweenGkt

d andGkt
c . We define as̄Gkt

d = (Vd, Ēkt
d) the complement graph of

Gkt
d , while Ḡkt

c = (Vkt
c , Ē

kt
c) is the complement graph ofGkt

c . Figure (5.7) shows a pictorial
description of an optimal matchf , where the aforementioned graphs are depicted.

According to the above notation and definitions, the complete optimization problem
of eq. (5.12) can be rewritten as one of minimizing with respect tof the “total” cost
function

UT(f) =
T∑

i=1

T∑
j=1

D(yd
ij, y

c
f (i) f (j)), (5.23)

whereT is the cardinality ofVd, yd
ij is the Euclidean distance between verticesdi andd j

in the domain graph andyc
f (i) f (j) is the Euclidean distance between verticesc f (i) andc f (j) in

64

f

Dashed Lines: Graph G

Solid Lines: Graph G

Dashed Lines: Graph G

Solid Lines: Graph Gkt
d

kt
c

c
kt

d
kt

Figure 5.7: Left: the domain pattern with the graphsGkt
d and Ḡkt

d depicted; Right: the
codomain pattern with the graphsGkt

c andḠkt
c depicted. An optimal mapf is shown.

the codomain graph.D(·) is simply some distance measure that satisfiesD(a, b) ≥ 0,∀a, b
andD(a, b) = 0 iff a = b.

The optimization problem over ak-tree graphGkt
d can be redefined from eq. (5.9) as

one of minimizing with respect tof the cost function

UGkt
d
(f) =

∑
i, j|di j∈E

kt
d

D(yd
ij, y

c
f (i) f (j)), (5.24)

wheredi j is the edge between verticesdi andd j in the domain graph andEkt
d is the edge

set of graphGkt
d .

We now have all the background to introduce our main result.

Theorem 5.1 In the exact matching case, a mapping functionf which minimizesUGkt
d
(f)

also minimizesUT(f).

Proof: If we define a cost function over the graph which is the complement ofGkt
d

(Ḡkt
d):

UḠkt
d
(f) =

∑
i, j|di j∈Ē

kt
d

D(yd
ij, y

c
f (i) f (j)), (5.25)

we naturally have that

UT(f) = UGkt
d
(f) +UḠkt

d
(f). (5.26)

In the noiseless case, the dissimilarity functionD associated to a particular match is
described simply in terms of an indicator function1(.):

D(yd
ij, y

c
f (i) f (j)) = 1 − 1(yd

ij, y
c
f (i) f (j)) =

{
0, if yd

ij = yc
f (i) f (j)

1, if yd
ij , yc

f (i) f (j)
(5.27)

65

The optimal matching functionf is such thatUT(f) = 0. Obviously, from eq. (5.26) it
holds thatUT(f) = 0⇒ UGkt

d
(f) = 0, sinceUGkt

d
(f) andUḠkt

d
(f) are non-negative because

D(.) is non-negative (eqs. (5.24) and (5.25)). Our purpose is to prove the converse, i.e.
thatUGkt

d
(f) = 0 ⇒ UT(f) = 0. According to eq. (5.26), in order to do that it suffices to

prove thatUGkt
d
(f) = 0⇒ UḠkt

d
(f) = 0.

We use here Proposition 5.1, which means, in words, that if the distances correspond-
ing to the edges of ak-tree framework whose basek-cliques are in general position are
determined, then all the remaining distances between vertices not connected by an edge
are determined.

Let us write this result symbolically, for ak-tree in the domain graph, as

{yd
ij = constd

ij,∀i, j|di j ∈ E
kt
d } ⇒ {y

d
ij = constd

ij,∀i, j|di j ∈ Ē
kt
d } (5.28)

whereconstd
ij is a constant for fixedi and j.

SinceUGkt
d
(f) = 0, every term of the sum in eq. (5.24) must be zero, since they are

non-negative:

D(yd
ij, y

c
f (i) f (j)) = 0,∀i, j|di j ∈ E

kt
d . (5.29)

However, from the definition ofD(.) for exact matching (eq. (5.27)), this means that

yd
ij = yc

f (i) f (j),∀i, j|di j ∈ E
kt
d . (5.30)

Notice that the proposition (eq. (5.28)) holds for anyk-tree whose basek-cliques are in
general position, in particular forGkt

c (Gkt
c also has its basek-cliques in general position in

Rk−1 because it is isometric toGkt
d , which by assumption has its basek-cliques in general

position and so is globally rigid):

{yc
f (i) f (j) = constc

f (i) f (j),∀i, j|d f (i) f (j) ∈ E
kt
c } ⇒

⇒ {yc
f (i) f (j) = constc

f (i) f (j),∀i, j|c f (i) f (j) ∈ Ē
kt
c } (5.31)

Notice that eq. (5.30) implies that the left hand side of implications (5.28) and (5.31)
are equivalent. As a result, their right hand side is equivalent and the following holds:

yd
ij = yc

f (i) f (j),∀i, j|di j ∈ Ē
kt
d , (5.32)

that, when substituted in eq. (5.25), yields

UḠkt
d
(f) = 0, (5.33)

that was what we wanted to prove. �
In the next section we show how, by taking advantage of this result, we can formulate

a MRF model that in the limit of exact matching is equivalent to the full model and where
exact probabilistic inference is feasible in polynomial time.

5.4 The Complete Graphical Model

In this section we show how the results obtained in the previous section can be ex-
ploited in order to create a suitable connectivity structure for the graphical model.

66

5.4.1 The model

The MAP solution found by the Hugin algorithm over a particular sparse MRF model
Gm, we recall eq. (5.9), is such that minimizes

U(M) =
∑

C2∈C2

S∑
k1=1

S∑
k2=1

Mi1k1Mi2k2D2(yd
i1i2 , y

c
k1k2

) (5.34)

whereC2 is the set of all edges inGm andC2 is a particular edge. Equivalently, according
to the notation of the mapping functionf , it is the one that minimizes

UGm(f) =
∑

i, j|di j∈Em

D(yd
ij, y

c
f (i) f (j)), (5.35)

whereEm is the edge set ofGm. The results of the previous subsection imply that, in the
limit of exact matching, ifGm is ak-tree with its basek-cliques in general position inRk−1

(and we recall that it is denoted byGkt
d), then the argumentf that minimizes eq. (5.35)

alsominimizes the cost function associated to acomplete model:

UT(f) =
T∑

i=1

T∑
j=1

D(yd
ij, y

c
f (i) f (j)). (5.36)

As a result, if our purpose is to minimizeUT(f), it suffices to minimizeUGkt
d
(f), and

a sparse graphical model given by ak-tree topology can be used. The MAP estimate
obtained (the best mapping functionf) will be then an estimate that is optimal for both
thek-tree model and the complete model.

Figure 5.8 shows an example of a particular 3-tree graphical model. The results of
subsection 5.3.3 imply that, in the limit of exact matching, this model is equivalent to a
complete model for matching tasks inR2, where our experiments will take place. Each
connection represents the interaction between the corresponding random variables, which
is given by the associated potential functionψi j.

It is important to emphasize that any model that has the topology of a 3-treeandhas
all the basek-cliques in general position will be equivalent to the model in Figure 5.8 (in
the limit of exact matching). However, the particular model drawn in Figure (5.8) has a
very attractive property: it has asinglebasek-clique given by nodesX1X2X3. This means
that, in order to meet the requirements for an optimal model as explained in the previous
subsection, only the points corresponding to variablesX1, X2 andX3 will be required not
to lie in a 1-dimensional vector space (a straight line). In other words, for the construction
of models for matching tasks inR2, it suffices to find 3 non-collinear points and define
them as beingX1, X2 andX3, and the algorithm will run properly irrespectively of the
position of the remaining points.

The model shown in Figure (5.8) has a maximal clique of fixed size: 4. In general, note
thatk-tree structured models will have maximal cliques of size fixed ink + 1 and will be
used for matching tasks inRk−1. Since the maximal cliques for a fixed dimensiond = k−1
have a fixed size equal tok+ 1, the exponential complexity of the inference algorithm (as
seen in chapter 4) will be fixed and the complexity on the number of elementsT andS in
the graphs will be polynomial.

In what follows we describe the inference procedure in thek-tree graphical model.

67

T−1

X X X

XXX

1 2 3

4 5 TX

Figure 5.8: A possiblek-tree model fork = 3.

5.4.2 Optimization

Inference in MRFs typically capitalizes on the Gibbs distribution to employ simulated
annealing or Monte Carlo methods to derive the assignment (GEMAN; GEMAN, 1984).
However, these inexact inference procedures are needed only in models where exact infer-
ence is infeasible (models where the underlying triangulated graph has a maximal clique
size that grows with the problem size, as image models for example). The key fact about
our model is that it both (1) has a fixed and small maximal clique size and (2) has, in
the limit of exact matching, an encoding capacity equivalent to that of the full model,
which has maximal clique size equal to the graph size. As a result, we may be able to use
effectively the exact inference methods described in chapter 4.

Following the material presented in chapter 4, we can design a Junction Tree for our
model and run an optimal inference algorithm in this Junction Tree. Recall that the Junc-
tion Tree framework encompasses a set of deterministic algorithms forexact inference
in arbitrary graphical models (JORDAN, Forthcoming, 2004; LAURITZEN, 1996), and
is defined as a graph where the nodes correspond to the maximal cliques of the origi-
nal graph such that therunning intersection propertyis satisfied. This property states
that all the nodes in the path between any two nodes in the Junction Tree must contain
the intersection of these two nodes. It is known that the condition for the existence of a
Junction Tree is that the graph must be chordal or triangulated (LAURITZEN, 1996). A
k-tree is a chordal graph, and this allows us to use the Junction Tree framework to perform
optimization over the model.

X 4X 3X1 X2 X 5X 3X1 X2

X 3X1 X2

X TX3X1 X2

X3X1 X2

XXX1 X2 T−13

Figure 5.9: The Junction Tree obtained from the model in Figure 5.8.

Figure 5.9 shows a Junction Tree obtained from the model in Figure 5.8. The nodes
of the Junction Tree are denoted by circles in which are listed the nodes of the original
graph that correspond to the respective maximal cliques. The rectangles are the so-called
separators, that contain the intersection of the nodes to which they are linked. Both the
nodes and the separators are endowed with “clique potentials”, and the optimization pro-

68

cess consists in updating these potentials, as explained in chapter 4. Note that the Junction
Tree in Figure (5.9) has multiple instances of the tripleX1X2X3 as separator nodes. Recall
from chapter 4 that, in this case, we must keep several copies of the potentials, one for
each separator, so as to guarantee that the updating of a particular instance will not affect
the content of another instance.

We can apply the Hugin algorithm, introduced in chapter 4, to accomplish exact in-
ference in thek-tree model (in particular in the 3-tree model shown in Figure 5.8). From
the analysis of the computational complexity in chapter 4, we conclude that the complex-
ity of Hugin in our k-tree model isO(Sk+1T) (or equivalentlyO(Sd+2T), whered is the
dimension of the Euclidean Space). As a result, the complexity onS andT is polynomial.

Our model is parameterized with pairwise clique potentials determined by similarity
functions between distances of the two point patterns (see the previous subsection). The
number of edges in ak-tree - which is the number of pairwise potential functions - withT
vertices can be easily shown to bek[T−(k+1)/2]. Each pairwise potential function hasS2

elements, beingS the number of points in the codomain pattern. Assumingk << T, which
is always the case in problems of interest, the computational complexity of assembling all
the pairwise potential functions isO(TS2). As a result, the computational complexity of
the propagation phase is still the bottleneck of the overall algorithm.

Once the pairwise potential functions are available, we must initialize the potentials
of the maximal cliques in the Junction Tree. The initialization of the clique potentials in-
volves a subtlety in our case. Note that the potentials in our model arepairwisepotentials,
while the clique nodes of the corresponding Junction Tree have four elements, meaning
that 4D potentials would be required instead of pairwise potentials. This is indeed a com-
mon situation in many modeling scenarios, where the available parameterization of an
underlying undirected graph is restricted to cliques that are proper subsets of its maximal
cliques. This issue was discussed in detail in chapter 4.

The final result in our model is that the clique potentials of a clique node are assem-
bled as an element-by-element product of the pairwise potentials (see Eq. (5.14)) in the
respective clique node. For example,ψ(xi, x j, xk, xl) = ψ(xi, x j)ψ(xi, xk)ψ(xi, xl) for the
3-tree model, assuming thatψ(x j, xk), ψ(x j, xl) andψ(xk, xl) will belong to the “next”
maximal clique.

Once the initialization process is finished, the second step of the Hugin algorithm
starts. It is the message-passing scheme, which involves a transfer of information between
two nodesV andW (JORDAN, Forthcoming, 2004). In our problem, we are interested
in deriving the optimal assignment of the MRF, so we apply the maximization version of
Hugin:

φ∗S = max
V\S

ψV (5.37)

ψ∗W =
φ∗S
φS
ψW. (5.38)

The above potential update rules must respect the following protocol: a nodeV can
only send a message to a nodeW when it has already received messages from all its other
neighbors. If this protocol is respected and the equations are applied until all clique nodes
have been updated, the algorithm assures that the resulting potential in each node and
separator of the Junction Tree is equal to the maximum a posteriori probability distribution
of the set of enclosed singleton nodes (JORDAN, Forthcoming, 2004). In our particular
case, we need the maximum probability for each singleton, what can be obtained by

69

maximizing out the remainingk singletons in each of the nodes. The indexes for which the
final potentials are maximum are considered the vertices inGc to which the corresponding
vertices inGd must be assigned.

5.5 General Matching with Graphical Models

Here we show that the theory of graphical models allows for the formulation of a more
general form of matching problem: theattributedgraph matching problem, described in
chapter 2. Actually, we even show that the formalism of graphical models reveals that
the attributed graph matching problem, as it is usually understood, is only a particular
instance of an even more general matching problem, which we denote here as thegener-
alizedattributed graph matching (GAGM) problem. The notation used here follows that
introduced in section 5.1.

Although these more general problems can be nicely modeled as inference in graphi-
cal models, exact inference may not be feasible in these cases because the inter-relations
may not present redundancy and conditional independence assumptions cannot be postu-
lated without introducing errors. Thek-tree model is an optimal model for matching tasks
in Euclidean Spaces, but, in the most general formulation of AGM, the binary attributes
in the graph are arbitrary and may not present the redundancy that is present in the set of
relative distances in the Euclidean Space.

5.5.1 Attributed graph matching

Recall from chapter 2 that the AGM problem involves measuring unary and binary
compatibilities between the graphs. In a development similar to that shown for the WGM
problem, we can formulate the AGM problem as inference in a graphical model by de-
composing the modified factorized expression over the maximal cliques (eq. 5.6):

U(x) =
∑
C∈C

VC(xC) (5.39)

into sums of unary and pairwise clique potentials:

U(x) =
∑

C1∈C1

VC1(xC1) +
∑

C2∈C2

VC2(xC2) (5.40)

Since a 1-clique is a node and a 2-clique is an edge inGm, these potentials must sim-
ply measure the dissimilarity of these attributes for a given unary or pairwise mapping,
respectively:

VC1(Xi1 = xk1) = D1(yd
i1 , y

c
k1

) (5.41)

and

VC2(Xi1 = xk1 ; Xi2 = xk2) = D2(yd
i1i2 , y

c
k1k2

), (5.42)

whereD1(yd
i , y

c
k) is a distance measure between the unary vector attributes of nodesdi in

Gd andck in Gc. Analogously,D2(yd
ij, y

c
kl) is a distance measure between the binary vector

attributes of edgesdi j in Gd andckl in Gc.
What we finally obtain is the optimization of:

70

U(M) =
T∑

i1=1

S∑
k1=1

Mi1k1D1(yd
i1 , y

c
k1

)+

+
∑

C2∈C2

S∑
k1=1

S∑
k2=1

Mi1k1Mi2k2D2(yd
i1i2 , y

c
k1k2

) (5.43)

with respect toM, subject to the same condition than the WGM problem (5.10).
The complete version of the problem is obtained by settingGm as being the full graph:

U(M) =
T∑

i1=1

S∑
k1=1

Mi1k1D1(yd
i1 , y

c
k1

)+

+

T∑
i1=1

T∑
i2=1

S∑
k1=1

S∑
k2=1

Mi1k1Mi2k2D2(yd
i1i2 , y

c
k1k2

). (5.44)

Note that the approximated problem defined by Eq. (5.43) is nowreally an approxi-
mation, in the sense that the missing information is not redundant as in the point pattern
matching problem.

5.5.2 Generalized attributed graph matching

Note that we have described the attributed graph matching problem in accordance
with the usual formulation, where only nodes and edges have attributes. However, this
is not necessarily so. Li has argued in (LI, 1992) that higher-order attributes may be in-
volved, and suggested the term attributed relational structure (ARS), instead of attributed
relational graph (ARG), to denote graphs where also ternary relations are present. In the
present work, we take this view into attributed graph matching. The extension of the op-
timization problem for this case is straightforward from the MRF formulation: instead
of considering just singleton and pairwise cliques in the factorization, we may include
any higher-order clique, so that ternary and other possibly complex attributes involving
several nodes can also be explicitly considered. In this way Eq. (5.40) is generalized to

U(x) =
T∑
Ω=1

 ∑
CΩ∈CΩ

VCΩ(xCΩ)

 , (5.45)

and using analogous notation for higher-order distance measuresDΩ(., .), we have a gen-
eralization for the approximated optimization problem of Eq. (5.43):

U(M) =
T∑
Ω=1

∑
i1∈C1

· · ·

∑
iΩ∈CΩ

S∑
k1=1

· · ·

S∑
kΩ=1

D

 (5.46)

where

D =Mi1k1 · · ·MiΩkΩDΩ(yd
i1···iΩ , y

c
k1···kΩ

) (5.47)

and for the generalized complete problem:

71

U(M) =
T∑
Ω=1

 T∑
i1=1

· · ·

T∑
iΩ=1

S∑
k1=1

· · ·

S∑
kΩ=1

D

 (5.48)

subject to the same constraint (5.10). In general, of course,Dn can incorporateDm for
m < n. However, we explicitly denote eachDn as having only terms which cannot be
split into lower-order ones.

These derivations show that, starting from the MAP formulation in the MRF, we can
obtain the standard definition of the attributed graph matching problem (Eq. (5.44)), as
well as approximated versions of the problem (Eq. (5.43)), which are dependent on the
chosen graphGm. Moreover, the derivations lead us to a general definition of the problem,
both in its complete (Eq. (5.48)) and approximated (Eq. (5.46)) versions.

72

6 THESIS CONTRIBUTIONS: EXPERIMENTS

In this chapter we present a contribution by providing experimental support for the
technique proposed in this work. In a series of experiments we compare the accuracy
of our technique (which we denote as JT) and that of Probabilistic Relaxation Label-
ing (PRL). PRL is often used as a benchmark to compare new algorithms for matching
because (1) it is the most widely used technique for this purpose, (2) it is easy to im-
plement and (3) it gives state-of-the-art results (GOLD; RANGARAJAN, 1996). There
is an additional reason to compare our method with PRL. Both methods have a similar
principle: they are “message-passing” algorithms that update probabilities according to
evidence provided by neighbor sites. The original source of the results presented here is
(CAETANO; CAELLI; BARONE, 2004c).

6.1 The Benchmark

Probabilistic Relaxation Labeling has its roots in the 1970’s (ROSENFELD; HUM-
MEL; ZUCKER, 1976; DAVIS, 1979; ULMANN, 1979), when it was first conceived as
an heuristic method for classification where the probability of classifying a “site” into a
given label is a function of the support that its neighbors give to that label. The concepts
of “site” and “neighbor” naturally fit into a graph structure, and PRL has been used ever
since in domains like image processing, analysis and classification (where the graph is a
grid) and graph matching (where the graph is in principle arbitrary).

Several variations on the relaxation labeling theme appeared over the years (ROSEN-
FELD; HUMMEL; ZUCKER, 1976; DAVIS, 1979; FAUGERAS; BERTHOD, 1981; UL-
MANN, 1979; ROSENFELD; KAK, 1982; CHRISTMAS; KITTLER; PETROU, 1994;
HUMMEL; ZUCKER, 1983). We decided to use as a benchmark the algorithm described
in (ROSENFELD; KAK, 1982), which is a standard form of relaxation labeling that has
been used for purposes of comparison when introducing new algorithms (GOLD; RAN-
GARAJAN, 1996).

6.1.1 The algorithm

In order to introduce the algorithm, assume the existence of a graph with a particular
connectivity and our purpose is to assign a label to each vertex. Assume that there are
S labels andT vertices. Assume also that there is acompatibility functionc(i, k; j, l) that
measures the strength of the likelihood with which vertexi receives labelk and vertex j
receives labell. The fundamental idea of PRL is to update the probability of assigning
labelk to vertexi by taking into account its neighbors “opinions” about this assignment.
The global “opinion” or support that the neighbors ofi pass toi at iterationr is then an

73

average over the individual opinions at iterationr:

q(r)
ik =

1
|Ni|

∑
j∈Ni

S∑
l=1

c(i, k; j, l)p(r)
jl (6.1)

whereNi is the set of neighbors of vertexi, qik is the support that the assignmenti → k
receives from the neighbors ofi andp jl is the probability of the assignmentj→ l. For the
particular case where the graph is fully connected and all vertices are neighbors we have

q(r)
ik =

1
T − 1

∑
j,i

S∑
l=1

c(i, k; j, l)p(r)
jl . (6.2)

The probability thati should be assigned tok is then updated based on the support:

p(r+1)
ik =

p(r)
ik q(r)

ik∑S
k=1 p(r)

ik q(r)
ik

. (6.3)

The algorithm is thus an iterative one. At each iterationr, the probabilitiesp(r)
ik , for all

i andk, are updated (what can indeed be done in parallel). The algorithm stops when a
fixed maximum number of iterations has been reached or when it finds a fixed point. At
this point, we simply assign to each vertexi the labelk∗ such thatpik∗ > pik,∀k , k∗.

The performance of the algorithm is dependent on the initialization of the probabili-
tiespik. If we are lucky to initialize the probabilities in such a way that the maximum of
the matching similarity is close to the first solution, the algorithm may converge in a rea-
sonable amount of iterations. On the other hand, if this is not the case and the complexity
of the problem is high (ifT and/orS are not small), the amount of iterations needed in
order to find the optimal solution may be so large that it is simply not feasible to wait
the required time. These two different behaviors are clearly observed in the experiments
described in this chapter.

6.1.2 Computational complexity

A careful analysis of the steps involved in the PRL algorithm described above leads to
the conclusion that each iteration has computational complexityO(S3T2). From Eq. (6.2),
the calculation of eachqik is easily seen to beO(ST), assuming that the neighborhood
of node i consists of all the other nodes. The computation of eachpik, as seen from
Eq. (6.3), requiresS terms involvingqik, what results in a complexity ofO(S2T) for the
computation of eachpik. Since there areST piks, the total computational complexity for a
single iteration of all sites results inO(S3T2).

However, notice that the number of iterations is not considered (simply because it is
not determined). In practical applications, the number of iterations is a parameter that
must be tuned properly, according to the specific complexity of the particular problem. In
the experiments performed in this chapter, it was set to 200 (what still gives poor results
when compared to the proposed technique, as will be shown).

6.2 Experiments

All the performed experiments consist in generating artificial point sets in digital im-
ages of size 256x256 pixels. Thecodomainpoint set is created first in one image by

74

Random selection of domainThe codomain pattern

Selected points for domain pattern

The construction of a k−tree

Base k−clique

After isometric transformations

Figure 6.1: The process of creating domain and codomain point sets for experimentation:
thek-tree model is created from the final version of the domain pattern by fully connecting
a basek-clique in general position and by connecting to its vertices all the remaining
nodes.

randomly selecting, according to a uniform distribution, a fixed numberS of pixels as
representing the points. The implementation simply generates the cartesian coordinates
of the selected points ensuring that no coincident points are produced. Thedomainpoint
set is then createdfrom the codomain point set by selecting from it a subset ofT points
according to a uniform distribution. Finally, the domain point set is rotated, translated and
reflected randomly. Figure 6.1 illustrates this process. Since the experiments were per-
formed inR2, the computational complexity of the proposed algorithm isO(S4T) (recall
from chapter 5 that the complexity of the algorithm isO(Sd+2T), whered is the dimension
of the Euclidean Space considered). The computational complexity of PRL, as described
above, isO(S3T2). However, all the experiments presented here were performed using
200 iterations for PRL, what represents a factor of2T2 in the time required to perform
each iteration (since all experiments useT = 10).

Three types of series of experiments were performed using this setting as a starting

75

point. The first type was done in the absence of noise. The theoretical predictions indi-
cate that in this situation the result found by our technique will be optimal, and this is
indeed the case. In the second type, the sizes of the domain and codomain patterns are
fixed and noise is progressively introduced in order to corrupt the codomain pattern. This
simulation evaluates the robustness of both techniques with respect to the introduction of
Gaussian noise. In the other type of experiments, a fixed noise level is set and the size
of the codomain pattern is increased. The experiments reveal how the performance of the
different techniques scale with the problem size.

6.2.1 Exact matching

In the exact matching case, there is no noise and the domain pattern has a perfect
instance embedded in the codomain pattern, apart from isometric transformations. The-
ory expects that in this situation anyk-tree model whose basek-cliques correspond to
points that are in general position is equivalent to the complete model, and thus the global
optimal solution to the complete problem must be found.

This is precisely what was observed in practice. We have performed 50 experiments
following the setup described above but without introducing noise, keepingT = 10 and
varying S from S = 20 to S = 40 in steps of 5. In each experiment, different positions
of the points where generated and a random3-tree was created ensuring that the base3-
cliques did not lie in a straight line (we used the model depicted in chapter 5, which has a
single 3-tree).

In all experiments, the correct assignment rate of our technique was 1, meaning that
no incorrect assignments were detected. PRL however exhibited a non-perfect behavior.
Figure (6.2) shows the results. Each point in a curve is the average result over 50 runs of
the corresponding algorithm.

20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
T=10, no noise

Number of points in the codomain pattern (S)

F
ra

ct
io

n
of

 c
or

re
ct

 c
or

re
sp

on
de

nc
es

JT
PRL

Figure 6.2: The results in the absence of noise. Experiments confirm the theoretical
prediction that in this case our technique should always return the global optimum, that
for exact matching means cost function equals to zero or equivalently similarity function
equals to one.

76

6.2.2 Inexact matching: sensitivity to noise

In the second series of experiments, we fix the sizes of the domain and codomain
patterns (T was set to 10 andS to 20) and progressively introducing noise in the codomain
pattern. First the domain and codomain patterns are created according to the procedure
described in the beginning of this section. Then the codomain pattern is perturbed by the
introduction of Gaussian noise. Allx and y point coordinates in the codomain pattern
were shifted by numbers drawn independently from a normal distribution with zero mean
and varying standard deviation. The standard deviation (std) was progressively set to
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} pixels. In this way, we generated 10 experiments: each with a
different level of noise.

Each of these 10 experiments was run 1000 times. In each of these runs,20 ran-
dom points were generated for the codomain pattern and a random selection of10 points
was done for building the domain pattern, followed by random rotation, translation and
reflection. Finally, noise was introduced in the codomain pattern as explained above.

The results are shown in Figure 6.3. Solid lines correspond to the proposed method
(the JT method), while dashed ones correspond to PRL. Different curves were produced
for JT and PRL, one for each type of similarity function described in chapter 5 (Gaus-
sian, Hyperbolic and Increasing Weighting). The four different graphs correspond to four
different values for the parameterσ in the similarity functions (note that the three simi-
larity functions involve a parameter that essentially determine the width of the function).
σ is such that the minimum possible value for the similarity functions is normalized to
K, whose values are in the top of the images in the figure. This normalization prevents
underflow in the computation of the similarity functions.

Note thatevery pointin the curves of Figure 6.3 represents the average result over
1000 runs of the algorithm for the correspondent noise level and similarity function. Since
each figure has 6 curves each with 10 levels of noise, the total number of experiments run
in order to generate a single graph of Figure 6.3 is 60,000. A total of 240,000 experiments
were performed in order to generate the four graphs in this figure. The amount of compu-
tational processing needed in order to generate the four graphs of Figure 6.3 was nearly
108 hours (4.5 days) using a MATLAB code running over Linux on a computer with Intel
Pentium 4 CPU at 2.4 GHz and 1Gb of RAM.

Essentially what we can infer from these results is that the performance of PRL is
roughly upper bounded by that of JT. Clearly the Hyperbolic version of PRL performs
equivalently to the Gaussian and Hyperbolic versions of JT for smallK. We may in fact
ask what is the real advantage of using JT. The answer comes in what follows.

6.2.3 Inexact matching: sensitivity to problem size

In the above set of experiments, modest values for the sizes of domain and codomain
patterns were used. How will the performances of both techniques scale with problem
size? In order to answer this question, we prepared a series of experiments in which the
size of the codomain pattern is progressively increased while the noise level introduced is
kept constant.

A set of 8 increasingly complex matching tasks were carried out, where graphs of
size (T,S) = (10,15), (10,20), (10,25), (10,30), (10,35), (10,40), (10,45) and (10,50) were
matched using both JT and PRL1. Results are shown in Figure 6.4. The noise level was

1Note that our interest is to increase the size of the “database” point set (the codomain pattern), because
it can be done without changing the size of the domain point set. We could of course increase the size of

77

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise level (std, in pixels)

F
ra

ct
io

n
of

 c
or

re
ct

 c
or

re
sp

on
de

nc
es

T = 10, S = 20, K = 1e−03

JT−G
JT−H
JT−I
PRL−G
PRL−H
PRL−I

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise level (std, in pixels)

Fr
ac

tio
n

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es

T = 10, S = 20, K = 1e−06

JT−G
JT−H
JT−I
PRL−G
PRL−H
PRL−I

(a) (b)

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise level (std, in pixels)

Fr
ac

tio
n

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es

T = 10, S = 20, K = 1e−09
JT−G
JT−H
JT−I
PRL−G
PRL−H
PRL−I

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise level (std, in pixels)

Fr
ac

tio
n

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es
T = 10, S = 20, K = 1e−12

JT−G
JT−H
JT−I
PRL−G
PRL−H
PRL−I

(c) (d)

Figure 6.3: Robustness with respect to the noise level in the codomain pattern. Results
for both the proposed Junction Tree technique (JT) and Probabilistic Relaxation Labeling
(PRL), using the Gaussian (G), Hyperbolic Tangent (H) and Increasing Weighting (I)
similarity functions.

set to a standard deviation of 2 pixels. As in the previous experiments, the three similarity
functions (Gaussian, Hyperbolic Tangent and Increasing Weighting) were considered as
well as the four values forK, resulting in the four graphs in the figure. Also,each point
in a curve of Figure 6.4 corresponds to the result over 1000 runs of the algorithms for the
correspondent size of codomain pattern and type of similarity function. Since there were
6 curves and 8 operating regions, the total amount of experiments run in a single graph
was 48,000 (making up a total of 192,000 in the four graphs of Figure 6.4). The total
amount of time needed to generate the four graphs (with the same hardware and software
used in the experiment of varying noise) in this figure was about 1100 hours: more than

T and reduce the amount of points in the codomain pattern that do not correspond to the domain in order
to keepS constant. However, increasingT results in an exponential growth in the search space (which has
ST configurations), what will severely affect the performance of PRL, which depends on the initialization
as will be seen. JT, on the other hand, will always find the global maximum in a determined number
of messages. The overall conclusion is that increasingT but notS will be much worse to PRL than the
opposite, and we decided to choose the experimental setup where PRL performs best.

78

45 days.

15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of points in the codomain pattern (S)

Fr
ac

tio
n

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es

T = 10, std = 2 pixels, K = 1e−03

JT−G
JT−H
JT−I
PRL−G
PRL−H
PRL−I

15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of points in the codomain pattern (S)

Fr
ac

tio
n

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es

T = 10, std = 2 pixels, K = 1e−06

JT−G
JT−H
JT−I
PRL−G
PRL−H
PRL−I

(a) (b)

15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of points in the codomain pattern (S)

Fr
ac

tio
n

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es

T = 10, std = 2 pixels, K = 1e−09

JT−G
JT−H
JT−I
PRL−G
PRL−H
PRL−I

15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of points in the codomain pattern (S)

Fr
ac

tio
n

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es

T = 10, std = 2 pixels, K = 1e−12

JT−G
JT−H
JT−I
PRL−G
PRL−H
PRL−I

(c) (d)

Figure 6.4: Robustness with respect to the size of the codomain pattern. Results for both
the proposed Junction Tree technique (JT) and Probabilistic Relaxation Labeling (PRL),
using the Gaussian (G), Hyperbolic Tangent (H) and Increasing Weighting (I) similarity
functions.

The difference in performance between the techniques is clearly seen to increase with
problem size. Indeed, this second set of experiments enlighten the understanding of the
results in the first series of experiments. Notice that, in the first set of experiments, we
haveT = 10 andS = 20, what corresponds in Figure 6.4 to operating points where the
Hyperbolic version of PRL performs similarly to at least the Gaussian and the Hyper-
bolic versions of JT. WhenS is increased, however, a significant divergence is observed
between the evolutions of performances for the different techniques: while JT retains
practically the same performance for the Gaussian and Hyperbolic functions, PRL has a
severe drop for all three functions. Note that despite the fact that the Increasing Weighting
function for JT loses performance quickly, the same happens with PRL in a more severe
scenario.

This analysis lead us to conclude that the similar results between PRL and JT in the
first series of experiments is mainly due to the fact that the operating region studied in

79

those experiments (T = 10 and S = 20) is not representative of the circumstances in
which JT outperforms PRL. The general conclusion is that JT is only significantly better
than PRL for complex matching problems involving large point sets.

80

7 DISCUSSION

The theoretical results presented in chapter 5 assure that the final match using the
proposed technique (JT) corresponds to theglobal maximum of the similarity function
over the simplifiedk-tree graph. Moreover, in the limit when there is no noise (exact
point set matching), the optimization problem over ak-tree is equivalent to the complete
optimization problem, and the obtained result as a consequence is optimal. This is done
with a predictable number of computations and in a feasible amount of time (the whole
algorithm has polynomial time complexity). The algorithm PRL, used as a benchmark
for comparison via experimental performance evaluation, also has polynomial time com-
plexity for each iteration, but (a) it only converges to alocal maximum of the complete
similarity function and (b) the number of iterations needed in order to reach this local
maximum is not determined. Moreover, the lack of ability to reach the global optimum in
polynomial time for this problem is a property not restricted to PRL, but to all algorithms
known until now.

In spite of the fact that our technique in principle presents these two advantages with
respect to PRL, in this work we havenot exploited the fact that our technique finds the
global optimum while PRL finds a local one. This is because the function to be optimized
(Eq. (2.10)) isstrictly quasi-concave(it has a unique local maximum which happens to
be the global maximum), since it is a sum of strictly quasi-concave functions, what can be
shown to be also strictly quasi-concave1 (LIMA, 2000). As a result, any local update in the
direction of the gradient will ultimately reach the global maximum, and in principle local
optimization techniques such as PRL would be able to reach the global maximum after a
sufficient number of iterative steps. However, the experimental evidence provided in the
previous chapter clearly indicates that our technique tends to progressively outperform
PRL when the task complexity is increased. What causes this gain in performance if we
are not taking advantage of the global x local optimization issue?

The answer arises if we pay attention to a fundamental difference between the two
techniques. PRL is an iterative process where the number of iterations needed in order
to reach the maximum is not specified. For simple problems where the search space
is not huge, PRL may converge quickly to a reasonable solution which is close to the
maximum, even if the initialization is not close to the solution. This is indeed evidenced
in the experiments, where we observe that there is no significant difference between our
technique and PRL for matching problems whereT andS are small (10-20). However,
in cases such as those experimented and shown in Figure 6.4, where huge search spaces
are involved (5010 configurations!), the number of iterations needed to make PRL reach a

1We mean here a sum of functions which are strictly quasi-concave with respect todifferentvariables. If
the sum is over strictly quasi-concave functions of the same variable, the resulting function is not necessarily
strictly quasi-concave.

81

satisfactory solution is inconceivable if we assume random initialization. For example, the
experiments described in Figures 6.3 and 6.4 were done with 200 iterations and random
initialization, what already made PRL 2 times slower than our technique. We tried to
increase the number of iterations in PRL to 500, 1000 and even 2000 without having any
significant improvement in the graphs2.

The key difference of the proposed approach is that the number of “iterations”3 in-
volved is absolutely determinedand feasible. It is linear on the number of maximal
cliques in the graph (remember from chapter 5 that this number is2(N − 1) whereN is
the number of maximal cliques). As a result, the solution is found in a predictable and
feasible amount of time.

Of course that, if the similarity function were not strictly quasi-concave, we would
take advantage of the fact that the proposed technique finds the global optimum while
others don’t. In this case, even if we could wait indefinitely the convergence of alternative
techniques, they would possibly produce unsatisfactory results due to their inability of
performing global optimization.

Therefore, we may as a general recommendation assert that the proposed technique
is a serious alternative to existent approaches for the point set matching problem, since it
assures both polynomial time complexity and optimality in the limit of exact matching.
In particular, the experiments have shown that it is a serious alternative to PRL for inexact
matching, and it is as more effective as larger are the sizes of the involved point patterns.

2However, due to limited availability of computational resources we only run 100 times each experiment
of 500, 1000 and 2000 iterations.

3We use quotes because they are not iterations in the sense of refining previous estimates, but computa-
tions (“messages”) that are optimal at every step.

82

8 CONCLUSION

This work presented a new way of performing both exact and inexact point set match-
ing in Euclidean Spaces of arbitrary dimension. The first contribution is to formulate
point set matching as a graph matching problem where nodes and weights of the graphs
correspond to, respectively, points and their relative distances in a Euclidean Space. The
second contribution consists in reformulating this graph matching problem as one of ex-
act probabilistic inference in a graphical model where the random variables are the nodes
in one point pattern and the realizations are the nodes in the other point pattern. In this
inference problem, a Maximum a Posteriori (MAP) optimal solution is sought. The third
contribution consists in proving that a particular sparse edge constitution for the graphical
model results in a simple model that, in the limit case of exact matching, is equivalent to
the fully connected model. It turns out that the particular form of this model (ak-tree) is
chordal and has a fixed maximal clique size, what allows us to obtain a polynomial time
algorithm for both inexact and exact point set matching in arbitrary dimensions which in
addition is provably optimal in the exact matching case. The fourth contribution of this
work consists in extending the formulation by showing that any matching problem can
be considered an inference problem in a graphical model. The fifth and last contribu-
tion is the software implementation of the resulting algorithm and its comparison with a
standard benchmark in the literature through a series of controlled and time-consuming
experiments. These experiments evidence that the proposed approach presents significant
performance improvement for large graph sizes.

83

REFERENCES

AKUTSU, T.; KANAYA, K.; OHYAMA, A.; FUJIYAMA, A. Point matching under non-
uniform distortions.Discrete Applied Mathematics. Special Issue: Computational bi-
ology series issue IV, [S.l.], v.127, n.1, p.5–21, 2003.

BARROW, H. G.; POPPLESTONE, R. Relational Descriptions in Picture Processing.
Machine Intelligence, [S.l.], v.6, p.377–396, 1971.

BERRETI, S.; BIMBO, A. D.; VICARIO, E. Efficient matching and indexing of graph
models in content-based retrieval.IEEE Trans. PAMI , [S.l.], v.23, n.10, p.1089–1105,
2001.

BESAG, J. Spatial interaction and the statistical analysis of lattice systems.J. Royal
Statistical Soc., Series B, [S.l.], v.36, p.192–236, 1974.

BESL, P. J.; JAIN, R. C. Three-Dimensional Object Recognition.Artificial Intelligence ,
[S.l.], v.17, n.1, p.75–145, 1985.

BHANU, B. Representation and shape matching of 3-D objects.IEEE Trans. PAMI ,
[S.l.], v.6, n.3, p.340–351, 1984.

BHANU, B.; FAUGERAS, O. D. Shape matching of two-dimensional objects.IEEE
Trans. PAMI , [S.l.], v.6, n.2, p.137–156, 1984.

BOYER, K. L.; KAK, A. C. Structural stereopsis for 3-D vision.IEEE Trans. on PAMI ,
[S.l.], v.10, n.2, p.144–166, 1988.

CAELLI, T.; CAETANO, T. Recent developments in the extraction and matching of im-
age structure and syntax: from relaxation to junction tree models. In: PATTERN RECOG-
NITION ASSOCIATION OF SOUTH AFRICA IAPR CONFERENCE, 2003.Proceed-
ings. . . [S.l.: s.n.], 2003. p.1–8.

CAELLI, T.; CAETANO, T. Graphical models for graph matching: approximate mod-
els and optimal algorithms.Pattern Recognition Letters, [S.l.], 2004. Invited paper in
honour of Azriel Rozenfeld, forthcoming.

CAETANO, T. S.; CAELLI, T.; BARONE, D. A. C. Graphical models for graph match-
ing. In: IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION AND
PATTERN RECOGNITION, 2004, Washington, DC.Proceedings. . .[S.l.: s.n.], 2004.
p.466–473.

84

CAETANO, T. S.; CAELLI, T.; BARONE, D. A. C. An optimal probabilistic graphi-
cal model for point set matching. In: INTERNATIONAL WORKSHOPS SSPR & SPR,
2004, Lisbon.Proceedings. . .[S.l.: s.n.], 2004. p.162–170.

CAETANO, T. S.; CAELLI, T.; BARONE, D. A. C. A comparison of Junction Tree
and Relaxation Algorithms for point matching using different distance metrics. In: IEEE
INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, 2004, Cambridge,
UK. Proceedings. . .[S.l.: s.n.], 2004. Accepted.

CARCASSONI, M.; HANCOCK, E. R. Spectral correspondence for point pattern match-
ing. Pattern Recognition, [S.l.], v.36, p.193–204, 2003.

CHRISTMAS, W. J.; KITTLER, J.; PETROU, M. Structural Matching in Computer Vi-
sion Using probabilistic Relaxation.IEEE Trans. PAMI , [S.l.], v.17, n.8, p.749–764,
1994.

CONNELLY, R. Rigidity and energy.Invent. Math. , [S.l.], v.66, n.1, p.11–33, 1982.

CONNELLY, R.Generic global rigidity . Preprint privately provided.

CONTE, D.; FOGGIA, P.; SANSONE, C.; VENTO, M. Thirty years of graph matching in
pattern recognition.Special Edition of the International Journal of Pattern Recogni-
tion and Artificial Intelligence on Graph Theory in Vision , [S.l.], v.18, n.3, p.265–298,
2004.

CORDELLA, L. P.; FOGGIA, P.; SANSONE, C.; VENTO, M. Graph matching: a fast al-
gorithm and its evaluation. In: IEEE INTERNATIONAL CONFERENCE ON PATTERN
RECOGNITION, 1998.Proceedings. . .[S.l.: s.n.], 1998. p.1582–1584.

DATTORRO, J.Euclidean Distance Matrices. Ph.D. Thesis, Stanford University.

DAVIS, L. S. Shape matching using relaxation techniques.IEEE Trans. PAMI , [S.l.],
v.1, n.1, p.60–72, 1979.

ESHERA, M.; FU, K. A Graph Distance Measure for Image Analysis.IEEE Transac-
tions on Systems Man and Cybernetics, [S.l.], v.14, n.3, p.353–363, 1984.

FAUGERAS, O. D.; BERTHOD, M. Improving consistency and reducing ambiguity in
stochastic labeling: an optimization approach.IEEE Trans. PAMI , [S.l.], v.3, p.412–423,
1981.

FISCHLER, M. A.; ELSCHLAGER, R. A. The representation and matching of pictorial
structures.IEEE Trans. on Computers, [S.l.], v.22, n.1, p.67–92, 1973.

FU, K. S. A step towards unification of syntatic and statistical pattern recognition.IEEE
Trans. PAMI , [S.l.], v.5, n.2, p.200–205, 1983.

GEMAN, S.; GEMAN, D. Stochastic relaxation, Gibbs distribution and the Bayesian
restoration of images.IEEE Transactions on PAMI , [S.l.], v.6, n.6, p.721–741, 1984.

GOLD, S.; RANGARAJAN, A. A graduated assignment algorithm for graph matching.
IEEE Trans. PAMI , [S.l.], v.18, n.4, p.377–388, 1996.

85

GRAVER, J.; SERVATIUS, B.; SERVATIUS, H.Combinatorial rigidity . Providence,
RI: American Mathematical Society, 1993.

GREGORY, L.; KITTLER, J. Using graph search techniques for contextual color re-
trieval. In: INTERNATIONAL WORKSHOPS SSPR & SPR, 2002.Proceedings. . .
[S.l.: s.n.], 2002. p.133–142.

HAMMERSLEY, J. M.; CLIFFORD, P. Markov fields on finite graphs and lattices. (un-
published), [S.l.], 1971.

HANCOCK, E.; WILSON, R. C. Graph-Based Methods for Vision: a yorkist manifesto.
In: INTERNATIONAL WORKSHOPS SSPR & SPR, 2002.Proceedings. . .[S.l.: s.n.],
2002. p.31–46.

HUANG, H.-X.; LIANG, Z.-A.; PARDALOS, P. M. Some properties of the Euclidean
distance matrix and positive semidefinite matrix completion problems.Journal of Global
Optimization , [S.l.], v.25, p.3–21, 2003.

HUMMEL, R. A.; ZUCKER, S. W. On the foundations of the relaxation labeling process.
IEEE Trans. on PAMI , [S.l.], v.5, n.3, p.267–286, 1983.

IRNIGER, C.; BUNKE, H. Graph matching: filtering a large database of graphs using
decision trees. In: WORKSHOP ON GRAPH-BASED REPRESENTATIONS IN PAT-
TERN RECOGNITION, 2001.Proceedings. . .[S.l.: s.n.], 2001. p.239–249.

JORDAN, M. I.An Introduction to Probabilistic Graphical Models . [S.l.: s.n.], Forth-
coming, 2004.

KITTLER, J. V.; HANCOCK, E. R. Combining Evidence in Probabilistic Relaxation.Int.
Journal of Pattern Recognition and Artificial Intelligence, [S.l.], v.3, p.29–51, 1989.

KOSINOV, S.; CAELLI, T. Inexact Multisubgraph matching using Graph Eigenspace and
Clustering Models. In: INTERNATIONAL WORKSHOPS SSPR & SPR, 2002.Proceed-
ings. . . [S.l.: s.n.], 2002. p.133–142.

LARROSA, J.; VALIENTE, G. Constraint satisfaction algorithms for graph pattern
matching.Mathematical structures in computer science, [S.l.], v.12, p.403–422, 2002.

LAURITZEN, S. L. Graphical Models. New York, NY: Oxford University Press, 1996.

LAZARESCU, M.; BUNKE, H.; VENKATESH, S. Graph matching: fast candidate elim-
ination using machine learning techniques. In: INTERNATIONAL WORKSHOPS SSPR
& SPR, 2000.Proceedings. . .[S.l.: s.n.], 2000. p.236–245.

LEUNG, T. K.; BURL, M. C.; PERONA, P. Finding faces in cluttered scenes using ran-
dom labeled graph matching. In: IEEE INTERNATIONAL CONFERENCE ON COM-
PUTER VISION, 1995.Proceedings. . .[S.l.: s.n.], 1995. p.637–644.

LI, S. Z. Matching: invariant to translations, rotations and scale changes.Pattern Recog-
nition , [S.l.], v.25, n.6, p.583–594, 1992.

LI, S. Z. A Markov random field model for object matching under contextual constraints.
In: IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION AND PAT-
TERN RECOGNITION, 1994.Proceedings. . .[S.l.: s.n.], 1994. p.866–869.

86

LIMA, E. L. Curso de Análise. Rio de Janeiro, RJ: IMPA, 2000. v. 2.

LUO, B.; HANCOCK, E. Structural graph matching using the EM algorithm and singular
value decomposition.IEEE Trans. PAMI , [S.l.], v.23, n.10, p.1120–1136, October 2001.

MARTIN, Y.; BURES, M.; DANAHER, E.; DELAZZER, J.; LICO, I. A fast new ap-
proach to pharmacophore mapping and its application to dopaminergic and bezodiazepine
agonists.J. of Computer-Aided Molecular Design, [S.l.], v.7, p.83–102, 1993.

MCKAY, B. D. Practical graph isomorphism.Congressus numerantium, [S.l.], v.30,
p.45–87, 1981.

MESSMER, B.Efficient graph matching algorithms for preprocessed model graphs.
Ph.D. Thesis, University of Bern.

MESSMER, B. T.; BUNKE, H. A new algorithm for error-tolerant subgraph isomorphism
detection.IEEE Trans. PAMI , [S.l.], v.20, n.5, p.493–503, 1998.

MURTAGH, F. A new approach to point-pattern matching.Astronomical Society of the
Pacific, [S.l.], v.104, n.674, p.301–307, 1992.

PEARL, J.Probabilistic Reasoning in Intelligent Systems: networks of plausible infer-
ence. San Mateo, CA: Morgan Kaufmann Publishers, 1988.

PELILLO, M. Replicator equations, maximal cliques, and graph isomorphism.Neural
Computation, [S.l.], v.11, p.1933–1955, 1999.

PELILLO, M.; SIDDIQI, K.; ZUCKER, S. Matching hierarchical structures using asso-
ciation graphs.IEEE Trans. PAMI , [S.l.], v.21, n.11, p.1105–1120, 1999.

REIMANN, D.; HAKEN, H. Stereo Vision by Self-Organization.Biological Cybernet-
ics, [S.l.], v.71, n.1, p.17–26, 1994.

ROSENFELD, A.; HUMMEL, R. A.; ZUCKER, S. W. Scene labelling by relaxation op-
erations.IEEE Transactions on Systems, Man and Cybernetics, [S.l.], v.6, n.6, p.420–
433, 1976.

ROSENFELD, A.; KAK, A. C.Digital Picture Processing. New York, NY: Academic
Press, 1982.

SANFELIU, A.; FU, K. A distance measure between attributed relational graphs for pat-
tern recognition.IEEE Transactions on Systems, Man and Cybernetics, [S.l.], v.13,
n.3, p.353–362, 1983.

SHAFER, G.; SHENOY, P. Probability propagation.Annals of Mathematics and Arti-
ficial Intelligence, [S.l.], v.2, p.327–352, 1990.

SHAPIRO, L.; BRADY, J. Feature-based Correspondence - An Eigenvector Approach.
Image and Vision Computing, [S.l.], v.10, p.283–288, 1992.

SHAPIRO, L. G.; HARALICK, R. M. Structural descriptions and inexact matching.
IEEE Trans. PAMI , [S.l.], v.3, n.5, p.504–519, 1981.

87

SHAPIRO, L. G.; HARALICK, R. M. A metric for comparing relational descriptions.
IEEE Trans. PAMI , [S.l.], v.7, n.1, p.90–94, 1985.

SIMIC, P. D. Constrained nets for graph matching and other quadratic assignment prob-
lems.Neural Computation, [S.l.], v.3, n.2, p.268–281, 1991.

SUGANTHAN, P. N. Structural pattern recognition using genetic algorithms.Pattern
Recognition, [S.l.], v.35, p.1883–1893, 2002.

SUGANTHAN, P. N.; YAN, H. Recognition of handprinted Chinese characters by con-
strained graph matching.Image and Vision Computing, [S.l.], v.16, n.3, p.191–201,
1998.

SUGANTHAN, P.; TEOH, E.; MITAL, D. Pattern recognition by graph matching using
potts mft networks.Pattern Recognition, [S.l.], v.28, p.997–1009, 1995.

TON, J.; JAIN, A. K. Registering Landsat images by point matching.IEEE Trans. on
Geoscience and Remote Sensing, [S.l.], v.27, n.5, p.642–651, 1989.

TSAI, W. H.; FU, K. S. Error-correcting isomorphism of attributed relational graphs for
pattern analysis.IEEE Trans. on Systems, Man and Cybernetics, [S.l.], v.9, n.2, p.757–
768, 1979.

TSAI, W. H.; FU, K. S. Subgraph error-correcting isomorphisms for syntactic pattern
recognition.IEEE Trans. on Systems, Man and Cybernetics, [S.l.], v.13, n.1, p.48–62,
1983.

ULLMAN, J. An algorithm for subgraph isomorphism.Journal of the ACM , [S.l.], v.23,
n.1, p.31–42, 1976.

ULMANN, S. Relaxation and constraint optimization by local process.Computer
Graphics and Image Processing, [S.l.], v.10, p.115–195, 1979.

UMEYAMA, S. An eigen decomposition approach to weighted graph matching problems.
IEEE Trans. PAMI , [S.l.], v.10, p.695–703, 1998.

VASILICA, L.; PRAKASH, S. A Comparison of Lauritzen-Spiegelhalter, Hugin, and
Shenoy-Shafer Architectures for Computing Marginals of Probability Distributions. In:
UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 1998, San Francisco, CA.Pro-
ceedings. . .Morgan Kaufmann Publishers, 1998. p.328–337.

WEST, D. B. Introduction to Graph Theory . Upper Saddle River, NJ: Prentice Hall,
2001.

WYK, B. J. van; WYK, M. A. van. Kronecker Product graph matching.Pattern Recog-
nition , [S.l.], v.36, n.9, p.2019–2030, 2003.

WYK, M. A. van; DURRANI, T. S.; WYK, B. J. van. A RKHS Interpolator-Based Graph
Matching Algorithm.IEEE Trans. on PAMI , [S.l.], v.24, n.7, p.988–995, 2002.

XU, L.; KING, I. A PCA approach for fast retrieval of structural patterns in attributed
graphs.IEEE Trans. on Systems, Man and Cybernetics, [S.l.], v.31, n.5, p.812–817,
2001.

