UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA DISSERTAÇÃO DE MESTRADO

ESTUDO DA FRAÇÃO AQUOSA PROVENIENTE DA PIRÓLISE DA PALHA DE CANA-DE-AÇÚCAR

Mestranda: Gabriela Pereira da Silva Maciel

Orientadora: Prof^a. Dr^a. Elina Bastos Caramão (IQ/UFRGS)

Porto Alegre, dezembro de 2011.

Universidade Federal do Rio Grande do Sul Programa de Pós-Graduação em Química

ESTUDO DA FRAÇÃO AQUOSA PROVENIENTE DA PIRÓLISE DA PALHA DE CANA-DE-AÇÚCAR

Gabriela Pereira da Silva Maciel

Dissertação realizada sob a orientação da Profª. Dra. Elina Bastos Caramão, apresentada ao Programa de Pós-Graduação em Química da Universidade Federal do Rio Grande do Sul em preenchimento parcial dos requisitos para a obtenção do título de Mestre em Química.

DECLARAÇÃO DE OUTORIA

A presente dissertação foi realizada pela autora e orientada pela Prof.ª Drª. Elina Bastos Caramão, com algumas colaborações de colegas do Laboratório de Química Analítica e Ambiental e Oleoquímica (LAAO), nos laboratórios E202, CA101, CA102 do Instituto de Química da Universidade Federal do Rio Grande do Sul no período entre agosto de 2009 e dezembro de 2011.

Chu flower

Prof^a. Dr^a. Elina Bastos Caramão Orientadora Gabriela Pereira da Silva Maciel

Mestranda

Esta dissertação foi julgada adequada para a obtenção de título de Mestre em Química e aprovada na sua forma final, pela orientadora e pela banca examinadora do Programa de Pós-Graduação em Química (PPGQ).

& husplacence

Orientadora: Prof^a. Dr^a. Elina Bastos Caramão

BANCA EXAMINADORA:

Prof. Dr. José Vladimir de Oliveira (EQA/UFSC)

Prof^a. Dr^a. Maria Inês Melecchi (CMPA)

Prof^a. Dr^a. Cláudia Alcaraz Zini (PPGQ/UFRGS)

Prof^a. Dr^a. Rosângela Assis Jacques (PPGQ/UFRGS)

Prof. Dr. Osvaldo de Lázaro Casagrande Jr.

Coordenador do PPGQ

"... As coisas não tão boas devemos do escrever onde 0 vento esquecimento е 0 perdão se encarreguem de passar e apagar a lembrança. Por outro lado, quando nos acontece algo de grandioso, devemos gravar isso na pedra da memória e no coração onde vento nenhum em todo o mundo possa apagar".

(final de uma lenda árabe)

DEDICATÓRIA

Dedico este trabalho ao meu amado filho, João Gabriel, razão da minha vida e incentivo para eu seguir nesta caminhada.

AGRADECIMENTOS

Agradeço primeiramente a Deus e a todas as pessoas que me aconselharam, motivaram, orientaram e colaboraram ao longo desta etapa especial da minha vida.

A minha orientadora, Prof^a. Dr^a Elina Bastos Caramão por toda a bagagem intelectual adquirida, mas principalmente pelo apoio e compreensão.

À Prof^a Dr^a Rosângela Jaques pela co-orientação extra-oficial e pelo apoio em todas as horas.

Aos professores participantes da banca examinadora por aceitarem o convite e pelas contribuições propostas.

Aos colegas de trabalho, agradeço toda a colaboração, incentivo, afeto e solidariedade, em especial as minhas amigas Michele, Candice, Márcia Manique, Márcia Brasil e aos meus amigos Fernando e Marcelo pelos esforços que fizeram para eu vencer as dificuldades que foram surgindo, sempre com uma palavra amiga, uma história, uma graça, um momento de descontração fazendo com que este trabalho fosse mais prazeroso.

Ao Núcleo do GC×GC, em especial a Silvana e principalmente a Maria Elizabete, que muito me ajudou nesta etapa final colaborando para que esta dissertação chegasse ao fim.

Aos meus familiares e amigos, em especial a minha sogra Margarete, meu sogro Antônio e cunhado Rafael que ao longo dos últimos anos várias vezes me substituíram, me ajudaram nas mais diversas tarefas e, sobretudo, cuidaram de mim, do meu marido e do meu filho.

A minha irmã Márcia que mesmo de longe me ajudou muito, mais do que ela imagina, cuidando dos meus pais e sobrinhos.

Aos meus pais, Dione e Astrogildo agradeço por tudo que me deram ao longo da vida. Obrigada por depositarem em mim a confiança de todas as horas e o incentivo para continuar esta caminhada.

Ao meu filho João Gabriel, o meu orgulho e a minha alegria diária, agradeço por ter tido paciência de esperar a mamãe terminar o trabalho.

Ao meu marido Jeferson, companheiro no sucesso e no fracasso, na alegria e na tristeza, na saúde e na doença, quero agradecer todo o tempo que me dedicou, a paciência, a amizade e o incansável apoio e imenso amor. É com ele que reparto a alegria e satisfação do trabalho concluído.

Aos funcionários e amigos do Instituto de Química que colaboraram nos bastidores deste trabalho aproveito para expressar o meu agradecimento.

A Universidade Federal do Rio Grande do Sul (UFRGS) e seus funcionários pela acolhida desde a graduação.

À CAPES e Petrobrás pelo auxílio financeiro.

SUMÁRIO

Declaração de autoria e orientação	III
Dedicatória	ν
Agradecimentos	V
Sumário	viil
Lista de Figuras	ix
Lista de Tabelas	X
Lista de Abreviaturas e Siglas	Xİ
RESUMO	xiii
ABSTRACT	xiv
1. INTRODUÇÃO	1
1.1 Objetivos Deste Trabalho	4
1.1.1 Objetivo Geral	4
1.1.2 Objetivos Específicos	4
2. Revisão Bibliográfica	5 6
2.1 Biomassa	6
2.2 Produtos de Pirólise	7
2.3 Métodos de Extração	10
2.3.1 Extração Líquido-Líquido (LLE)	10
2.3.2 Extração em Fase Sólida (SPE)	11
2.4 Análise Cromatográfica	12
2.4.1 Cromatografia Gasosa Monodimensional	12
2.4.2 Cromatografia Gasosa Bidimensional	14
2.5 Características dos Principais Compostos Presentes na Fração Aquosa:	16
Fenóis, Cetonas, Aldeídos e Furanos	
3. PARTE EXPERIMENTAL	20
3.1 Proposta de Trabalho	21
3.2 Solventes, Reagentes e Gases	21
3.3 Obtenção e Características da Amostra	21
3.4 Métodos de Extração Utilizados	22
3.4.1 Extração Líquido-Líquido (LLE)	22
3.4.2 Extração em Fase Sólida (SPE)	24
3.5 Análise Cromatográfica dos Extratos da Fração Aquosa	25
3.5.1 Cromatografia Gasosa Monodimensional	25
3.5.2 Cromatografia Gasosa Bidimensional Abrangente	25
4. RESULTADOS E DISCUSSÃO	28
4.1. Análises por GC/qMS	29
4.2. Análises por GC×GC/TOFMS	36
4.3 Comparação dos Resultados Obtidos por GC/qMS e GC×GC/TOFMS	48
5. CONCLUSÕES	55
6. SUGESŢÕES PARA TRABĄLHOS FUTUROS	57
7. REFERÊNCIAS BIBLIOGRÁFICAS	59
ANEXO A:	65
ANEXO B:	86

LISTA DE FIGURAS

.		pag.
Fig. 1.	Desenho esquemático de um sistema de Cromatografia em Fase Gasosa com Detector de Espectrometria de Massas.	14
Fig. 2.	Desenho esquemático de um sistema de Cromatografia Gasosa Bidimensional Abrangente.	16
Fig. 3.	Fórmulas estruturais dos principais compostos encontrados em bio-óleos.	19
Fig. 4.	Esquema geral do procedimento experimental adotado neste trabalho.	22
Fig. 5.	Desenho esquemático do procedimento de extração líquido- líquido.	24
Fig. 6.	Desenho esquemático do procedimento de extração em fase sólida.	25
Fig. 7.	Cromatogramas do íon total para os extratos (a) LLE/HEX-GC/qMS, (b) SPE/HEX-GC/qMS, (c) LLE/DCM-GC/qMS, (d) SPE/DCM-GC/qMS	30
Fig. 8.	Distribuição das classes de compostos tentativamente identificados dos extratos da fração aquosa da pirólise da palha de cana-de-açúcar.	33
Fig. 9.	Distribuição e algumas estruturas dos fenóis tentativamente identificados dos extratos da fração aquosa da pirólise da palha de cana-de-açúcar.	35
Fig. 10.	Comparação entre a composição majoritária média das quatro sub-amostras por GC/qMS.	35
Fig. 11.	Diagrama de cores para o extrato LLE/HEX-GC×GC/TOFMS: (a) diagrama Bidimensional e (b) Diagrama Tridimensional.	37
Fig. 12.	Diagrama de cores para o extrato SPE/HEX-GC×GC/TOFMS: (a) Diagrama Bidimensional e (b) Diagrama Tridimensional.	38
Fig. 13.	Diagrama de cores para o extrato LLE/DCM-GC×GC/TOFMS: (a) Diagrama Bidimensional e (b) Diagrama Tridimensional.	39
Fig. 14.	Diagrama de cores para o extrato SPE/DCM-GC×GC/TOFMS: (a) Diagrama Bidimensional e (b) Diagrama Tridimensional.	40
Fig. 15.	Distribuição das classes de compostos identificados para os quatro extratos em estudo, classificando-as de acordo com a área percentual relativa dos compostos em cada classe.	42
Fig. 16.	Distribuição das classes de compostos identificados para os quatro extratos em estudo, classificando-as de acordo com o número de picos detectados em cada classe.	43
Fig. 17.	Distribuição dos alquil fenóis (a) e benzenodióis (b) no extrato LLE/HEX-GC×GC/TOFMS.	46
Fig. 18.	Distribuição dos alquil fenóis (a) e benzenodióis (b) no extrato SPE/HEX-GC×GC/TOFMS.	46
Fig. 19.	Distribuição dos alquil fenóis (a) e benzenodióis no extrato LLE/DCM-GC×GC/TOFMS.	47
Fig. 20.	Distribuição dos alquil fenóis (a) e benzenodióis (b) no extrato SPE/DCM-GC×GC/TOFMS.	47

Fig. 21.	Deconvolução espectral para os picos encontrados no tempo de retenção de 14,17 min na primeira dimensão para a amostra LLE-HEX-GC×GC/TOFMS. (a) cromatograma do íon total, (b) diagramas de íons selecionados, (c) espectros de cada pico e do respectivo padrão da biblioteca do GC×GC/TOFMS; (d) cromatograma reconstruído monitorando os íons selecionados.	49
Fig. 22.	Deconvolução espectral para dois picos de cetonas no tempo de retenção de 6,5 min na primeira dimensão para a amostra SPE-DCM-GC×GC/TOFMS. (a) parte do diagrama do íon total, (b) cromatograma reconstruído monitorando os íons selecionados, (c) fórmula estrutural das duas cetonas e (d). espectros de cada pico e do respectivo padrão da biblioteca do GC×GC/TOFMS.	50
Fig. 23.	Distribuição das classes de compostos nos extratos usando as duas técnicas analíticas (GC/qMS e GC×GC/TOFMS). (a) distribuição em relação ao percentual de áreas e (b) distribuição em número de picos identificados.	52
Fig. 24.	Distribuição das cetonas nos extratos e usando as duas técnicas analíticas (GC/qMS e GC×GC/TOFMS). (a) distribuição em relação ao percentual de áreas e (b) distribuição em número de picos identificados.	53
Fig. 25.	Distribuição dos fenóis nos extratos e usando as duas técnicas analíticas (GC/qMS e GC×GC/TOFMS). (a) distribuição em relação ao percentual de áreas e (b) distribuição em número de picos identificados.	54
Fig.A1.	Estruturas doe alguns compostos identificados	65
Fig. B1.	Gráficos de dispersão para os constituintes do extrato LLE/HEX GC×GC/TOFMS.	86
Fig. B2.	Gráficos de dispersão para os constituintes do extrato SPE/HEX GC×GC/TOFMS.	88
Fig. B3.	Gráficos de dispersão para os constituintes do extrato LLE/DCM GC×GC/TOFMS.	89
Fig. B4.	Gráficos de dispersão para os constituintes do extrato SPE/DCM GC×GC/TOFMS.	91

LISTA DE TABELAS

			pag.
Tab. I.	Condições utilizadas nas análises monodimensionais.	cromatográficas	26
Tab. II.	Condições utilizadas nas análises cromatográfic	as bidimensionais.	26
Tab. III.	Rendimento em massa dos extratos obtidos.		29
Tab. IV.	Distribuição dos compostos majoritários e suas encontrados nos 4 extratos estudados por GC/ql		31
Tab. V.	Distribuição dos compostos majoritários e suas e número de picos encontrados nos 4 extra GC×GC/TOFMS.	•	41
Tab. A1.	Identificação tentativa dos compostos para a GC/qMS e semi-quantificação dos mesmos atra de área.		66
Tab. A2.	Identificação tentativa dos compostos para a a GC/qMS e semi-quantificação dos mesmos atra de área.		67
Tab. A3.	Identificação tentativa dos compostos para a a GC/qMS e semi-quantificação dos mesmos atra de área.		69
Tab. A4.	Identificação tentativa dos compostos para a a GC/qMS e semi-quantificação dos mesmos atra de área.		71
Tab. A5.	Identificação tentativa dos compostos para a GC×GC/TOFMS e semi-quantificação dos mo percentual de área.		72
Tab. A6.	Compostos tentativamente identificados na a GC×GC/TOFMS e semi-quantificação dos mo percentual de área.		76
Tab. A7.	Compostos tentativamente identificados na a GC×GC/TOFMS e semi-quantificação dos mo percentual de área.		80
Tab. A8.	Compostos tentativamente identificados na a GC×GC/TOFMS e semi-quantificação dos me percentual de área.		82

LISTA DE ABREVIATURAS E SIGLAS

GC: Cromatografia em Fase Gasosa (do inglês Gas Chromatography)

GC/qMS: Cromatografia em Fase Gasosa com Detector de Espectrometria de Massas com analisador quadrupolar *(do inglês Gas Chromatography – quadrupole Mass Spectrometry detector")*

SPE: Extração em Fase Sólida (do inglês Solid Phase Extraction)

LLE: Extração Líquido Líquido (do inglês *Liquid Liquid Extraction*)

GCxGC/TOFMS: Cromatografia Gasosa Bidimensional Abrangente com Detector de Espectrometria de Massas por Tempo de Vôo (do inglês *Comprehensive Two Dimensional Gas Chromatography coupled to Time of Flight Mass Spectrometry)*

PAH: Hidrocarbonetos Poliaromáticos (do inglês *Polyaromatic Hydrocarbons*)

DCM: diclorometano

CHCI3: clorofórmio

He: hélio

CO: monóxido de carbono

CH₄: metano

SPME: Microextração em Fase Sólida (do inglês *Solid Phase Micro Extraction*)

LLME: Microextração Líquido-Liquido (do inglês *Liquid Liquid Micro Extraction*)

RESUMO

A palha de cana resultante da colheita da cana-de-açúcar, usada na produção de etanol no Brasil, pode ser utilizada como fonte de biomassa. Uma das maneiras de utilização deste e de outros resíduos agro-industriais é a sua transformação por pirólise. Durante este processo, gera-se uma fração aquosa que é oriunda da umidade inicial da matéria prima e de reações que ocorrem durante a pirólise, e contém na sua composição uma variedade de compostos oxigenados de alto valor. O desenvolvimento de métodos de extração do material orgânico presente nesta fração aquosa assume um importante papel na caracterização e aproveitamento deste material. No presente trabalho foram aplicadas a extração em fase sólida (SPE) com cartucho comercial C18 e a extração líquido-líquido (LLE), para o isolamento dos analitos presentes na fração aquosa da pirólise da palha de cana, usando três solventes de diferentes polaridades (hexano, diclorometano e clorofórmio). A caracterização dos extratos orgânicos obtidos foi realizada por GC/qMS e GC×GC/TOFMS. Os dois métodos de extração mostraram-se satisfatórios e os solventes usados foram complementares. Os extratos apresentaram em sua composição compostos oxigenados tais como fenóis, ácidos, cetonas, aldeídos e éteres, com sensível predomínio dos fenóis. A técnica de GC×GC/TOFMS apresentou maior sensibilidade e permitiu a identificação de um maior número de compostos.

ABSTRACT

The sugar cane straw, resulting from the harvesting of sugar cane, used in ethanol production in Brazil, can be used as a source of biomass. Pyrolysis is one of the way to transform and aggregate value to this and other agro-industrial wastes. During this process, it is generated an aqueous fraction originated from the initial moisture of raw material, which contains a variety of oxygenated compounds of high industrial importance. The application of techniques for extraction of organic material from this aqueous fraction plays an important role in the characterization and use of this material. In the present study solid phase extraction (SPE), using C18 commercial cartridges, and liquid-liquid extraction (LLE) was applied the for the isolation of the analytes present in the aqueous fraction of pyrolysis of sugarcane straw, using three solvents of different polarities (hexane, dichloromethane and chloroform). Characterization of organic extracts was performed by GC/qMS GC×GC/TOFMS. Both extraction methods were satisfactory and the solvents used were complementary. The extracts showed several oxygenated compounds in their composition, such as phenols, acids, ketones, aldehydes and ethers, with significant predominance of phenols. The technique of GC×GC/TOFMS showed higher sensitivity and allowed the identification of a greater number of compounds.

Dissertação	de Mestrado

INTRODUÇÃO

1. INTRODUÇÃO

Ao longo das últimas duas décadas, uma maior atenção tem sido dada para a biomassa, como fonte renovável de combustíveis e produtos químicos devido a questões ambientais ^{1,2}. O termo biomassa diz respeito a quaisquer recursos que possam ser utilizados para a produção de energia e abrange uma ampla gama de materiais, tais como os resíduos florestais, resíduos orgânicos, resíduos agrícolas, entre outros ². A biomassa pode ser considerada um recurso sustentável para o futuro, pois tem vantagens potenciais em minimizar a poluição ambiental, diminuir o aquecimento global e reduzir a dependência aos combustíveis fósseis ³.

Atualmente, a palha de cana-de-açúcar proveniente da produção de etanol vem sendo utilizada como fonte de biomassa. Após a primeira crise do petróleo em 1973, o Governo Federal Brasileiro considerou a palmeira de babaçu, juntamente com a cana-de-açúcar e a mandioca as fontes de energia possíveis de substituir o petróleo importado. No entanto, o mesmo decidiu basear o seu programa de combustível renovável na produção de cana-de-açúcar ⁵. Com isso, observa-se um crescente aumento do uso da palha de cana como fonte de biomassa, visto que, os métodos tradicionais de eliminação deste resíduo da colheita da cana-de-açúcar, tais como as queimadas, causam muitos danos ao meio ambiente. Alguns autores ^{6,7} mostram a viabilidade do uso da palha na produção de energia, pois além do potencial energético desta biomassa, têm-se como vantagens as questões ambientais, a manutenção de empregos e a substituição dos recursos energéticos de fontes naturais.

O desenvolvimento de tecnologias avançadas, tais como a pirólise, auxiliam no tratamento dos resíduos agro-industriais gerados, diminuindo a poluição ambiental e convertendo a biomassa agrícola em bio-produtos de maior valor agregado ⁸.

A pirólise é um processo de decomposição térmica que ocorre na ausência de oxigênio para converter a biomassa em produtos líquidos (bio-óleo e fase aquosa), juntamente com os gases não condensáveis e um resíduo sólido, que pode conter carvão e material mineral (cinzas) ⁹.

A fase aquosa é gerada devido à umidade original da matéria-prima e da reação de desidratação durante o processo de pirólise. O conteúdo de água no bio-óleo geralmente varia na faixa de 15-30% em massa ⁹, mas, em alguns casos, pode conter até 70% em massa, de acordo com a umidade inicial da matéria-prima e das condições de pirólise. Esta água não pode ser removida por métodos convencionais, como a destilação e a

separação natural das fases só pode ocorrer acima de certos teores de água ^{7,10} ou por meio de extrações ^{8,11}.

A fase aquosa é constituída principalmente por água e compostos como ácidos e fenóis, apresentando pH ácido. Não pode ser usada diretamente como combustível e se descartada sem qualquer tratamento ou utilização adequada, não só reduz a taxa de utilização da bioenergia como também pode contaminar o meio ambiente devido à sua complexa composição química.

Em geral, a troca de solventes, a pré-concentração e o enriquecimento de compostos é essencial para a determinação de poluentes orgânicos em amostras aquosas, devido à falta de métodos instrumentais para a análise direta e eficaz dos analitos na matriz aquosa original.

Uma das etapas mais difíceis envolvidas na análise de matrizes aquosas complexas consiste na extração e no isolamento dos compostos de interesse. A extração visa à remoção dos analitos da matriz, enquanto a etapa de isolamento focaliza-se na remoção dos interferentes. As técnicas comumente utilizadas para a pré-concentração são extração líquido-líquido (LLE, do inglês *Liquid-Liquid Extraction*) e a extração em fase sólida (SPE, do inglês *Solid Phase Extraction*), esta última, mais simples, rápida, econômica e fácil de automatizar e por isso, tem sido utilizada preferencialmente à extração líquido-líquido¹².

O desenvolvimento destas técnicas de preparação de amostras, assume um papel importante na caracterização dos compostos da fração aquosa proveniente da pirólise da cana-de-açúcar, pois auxilia na pré-concentração dos analitos da matriz aquosa, ainda mais se aliada a uma técnica de identificação com alto poder de resolução e separação, como é o caso da cromatografia gasosa bidimensional abrangente. Até o momento, a literatura tem poucos registros relacionados com a identificação de compostos presentes na fração aquosa da pirólise de cana-de-açúcar. No entanto, a caracterização destes compostos é de grande importância, uma vez que possibilita o emprego de alguns compostos em aplicações de Química Fina, bem como a utilização em reformas catalíticas. Além disso, permite o desenvolvimento de um método de descarte adequado minimizando os danos ambientais causados por esses compostos, mostrando a relevância deste trabalho.

1.1 OBJETIVOS DESTE TRABALHO

A partir do acima exposto, foram definidos os seguintes objetivos para este trabalho:

1.1.1 OBJETIVO GERAL

O presente trabalho tem como objetivo geral aplicar a cromatografia gasosa monodimensional e bidimensional abrangente na caracterização da fração aquosa proveniente da pirólise da palha de cana-de-açúcar gerada na Petrobrás.

1.1.2 OBJETIVOS ESPECÍFICOS

- Comparar duas técnicas de extração de compostos orgânicos de amostras aquosas – Extração Líquido-Líquido (LLE) e Extração em Fase Sólida (SPE) – na extração dos compostos orgânicos da fração aquosa da pirólise de palha de canade- açúcar;
- Avaliar a eficiência da LLE e da SPE utilizando dois tipos de solventes: hexano (menor polaridade) e diclorometano com clorofórmio (maior polaridade);
- Caracterizar qualitativa e semi-quantitativamente os extratos obtidos nos dois procedimentos usando GC/qMS e GCxGC/TOFMS;

·ICA
ICA
'ICA
TICA
TICA
TICA
TICA
TCA
TCA
ICA_
ICA_
ICA_

2. REVISÃO BIBLIOGRÁFICA

2.1 BIOMASSA

Nos dias atuais, há uma intensa procura por materiais que substituam o petróleo, devido a sua ameaça de escassez, instabilidade de preços, distribuição desuniforme e especialmente pelas emissões de CO₂, metano e óxidos de nitrogênio, além do atual contexto de desenvolvimento científico e tecnológico em que se buscam novas tecnologias para uma economia sustentável, baseada em recursos renováveis ¹³.

Recursos de biomassa incluem vários materiais naturais e seus derivados, como as espécies lenhosas e herbáceas, resíduos de madeira, bagaço e palha de cana, resíduos agrícolas e industriais, resíduos de papel, resíduos sólidos urbanos, serragem, grama, restos de alimentos processados, resíduos animais, plantas aquáticas, etc ¹. As fontes de biomassa, em geral, podem ser definidas como qualquer material derivado de carboidratos e consistem principalmente de carbono, hidrogênio, oxigênio e nitrogênio. Alguns tipos de biomassa também carregam uma parte significativa de espécies inorgânicas. A concentração das cinzas resultantes destes compostos inorgânicos varia de menos de 1% em coníferas até 15% em biomassa herbácea e resíduos agrícolas ¹. A estrutura química e os principais componentes orgânicos da biomassa são extremamente importantes no desenvolvimento de processos para a produção de derivados combustíveis e produtos químicos. Os principais componentes orgânicos da biomassa são classificados como celulose, hemicelulose e lignina ¹⁴. A lignina é de particular interesse, devido à sua natureza fenólica, a partir da qual uma grande variedade de fenóis, derivados fenólicos e compostos aromáticos podem ser obtidos.

Várias biomassas contêm íons metálicos e sais. O cálcio e o potássio são os principais íons metálicos presentes, juntamente com pequenas quantidades de sódio, magnésio e outros elementos. Para outras biomassas, íons metálicos podem ser adicionados externamente para alterar ou adequar os produtos a partir da pirólise da biomassa. Lu e colaboradores ¹⁵, por exemplo, adicionaram cloreto de zinco à biomassa para a produção de furfural como composto majoritário.

A biomassa florestal tem desempenhado um papel cada vez mais importante na substituição de recursos não renováveis ¹⁶. O seu potencial biológico tem se mostrado essencial para a produção ecológica de combustíveis e produtos derivados de fontes renováveis. As principais vantagens das fontes de biomassa é que estas podem

apresentar CO₂ neutro, ou seja, todo CO₂ produzido seria mais tarde consumido pela própria fonte, além das baixas concentrações de enxofre e nitrogênio, ou de outros poluentes que são emitidos para a atmosfera ¹⁷. Portanto, diferentemente dos combustíveis fósseis, o uso da biomassa como fonte de energia implica em significantes vantagens ambientais, visto que, esta é uma alternativa viável para a fixação, em curto prazo, de grandes quantidades de gás carbônico ⁸.

O ritmo acelerado do crescimento do consumo de energia na Ásia, principalmente na China e na Índia leva esse incentivo para todos os países. Além disso, a queima de combustíveis fósseis emite grande quantidade de CO₂ na atmosfera ¹⁸. Por isso, a necessidade de fontes limpas de energia está recebendo crescente atenção desde meados do século 20. Com a escassez e valorização do petróleo, juntamente com as recentes preocupações ambientais, os mercados internacionais do petróleo e as políticas de energia das nações mais industrializadas mudaram consideravelmente ¹⁹.

Muitos esforços estão sendo feitos para converter a biomassa em combustíveis e produtos químicos desde a crise do petróleo em meados dos anos 70. Os Estados Unidos, China e outros países são fortemente dependentes de fontes estrangeiras de energia proveniente de combustíveis de origem petroquímica e têm demonstrado grande incentivo para o desenvolvimento de fontes de energia renováveis ²⁰.

A atual preocupação ambiental faz com que empresas produtoras de cana-de-açúcar invistam na utilização do corte mecanizado reduzindo a queima da palha na pré-colheita. A queima da palha é utilizada para facilitar a colheita manual e pode causar um grande impacto ambiental, uma vez que esta prática pode prejudicar a estrutura do solo devido à diminuição da umidade e aumentar o risco de erosão do solo ⁶. Segundo Goldemberg *et al.* ⁶ além dos impactos ambientais, a queima da palha de cana também pode aumentar os riscos em sistemas elétricos, ferrovias, rodovias e reservas florestais; e ainda emitir gases prejudiciais à saúde, como o CO e CH₄, aumentando também a concentração de ozônio em áreas produtoras de cana-de-açúcar.

2.2 PRODUTOS DE PIRÓLISE

O recente interesse em extrair substâncias químicas de alto valor do processo de conversão térmica da biomassa e de seus componentes está em crescente avanço. A produção de valiosos produtos químicos oxigenados, tais como compostos fenólicos e açúcares anidros a partir da pirólise da biomassa, demonstra o grande potencial de lucratividade ¹⁶.

Na pirólise, a biomassa é aquecida na ausência de oxigênio produzindo o óleo que pode ser utilizado como matéria-prima em refinarias de petróleo. De acordo com as condições de funcionamento, o processo de pirólise pode ser dividido em três subclasses: pirólise lenta (carbonização), pirólise rápida e a pirólise *flash* ¹⁰.

A pirólise da biomassa em atmosfera inerte gera produtos gasosos (principalmente CO₂, H₂, CO, CH₄, C₂H₂, C₂H₄, C₆H₆), produtos líquidos (alcatrão, hidrocarbonetos de alta massa molecular e água) e produtos sólidos (carvão e cinza). Os produtos de pirólise podem ser controlados pela regulação das condições do processo, podendo-se citar como parâmetros que afetam a decomposição da biomassa, a taxa de aquecimento, fluxo de gás, pressão, tamanho das partículas e presença de sais inorgânicos ².

A conversão de biomassa em carvão, produtos líquidos e produtos gasosos por tecnologias pirolíticas é uma das alternativas atuais mais promissoras, para converter a biomassa em produtos úteis e em energia ¹⁹.

Alterar a taxa de aquecimento e temperatura, junto com outros fatores, pode modificar a distribuição e propriedades dos produtos. A quantidade de carvão pode ser maximizada com o uso de baixa temperatura, baixa taxa de aquecimento e longo tempo de residência. É reconhecido que a pirólise rápida aumenta a quantidade de produto líquido, devido a sua alta taxa de aquecimento (100 a 1000 ℃/min), com rápida taxa de transferência de calor e baixo tempo de residência ¹⁸.

Os óleos oriundos da pirólise são misturas complexas de compostos orgânicos, que apresentam um amplo espectro de funcionalidade química, e água ¹⁷. O bio-óleo, também conhecido sob os nomes de óleo de pirólise ou líquido de pirólise, é geralmente um líquido orgânico de cor castanho escuro. Os bio-óleos são compostos por moléculas de diferentes tamanhos, derivadas das reações de despolimerização e fragmentação dos três principais blocos de constituição da biomassa: celulose, hemicelulose, e lignina. Por isso, a composição elementar do bio-óleo se assemelha à biomassa que lhe deu origem e depende também das condições do processo.

Além da grande quantidade de água, os outros grandes grupos de compostos identificados nos bio-óleos são aldeídos e hidroxialdeídos, cetonas e hidroxicetonas, derivados de açúcares, ácidos carboxílicos e compostos fenólicos ²¹. A presença destes compostos altamente oxigenados é a principal razão para as diferenças nas propriedades físico-químicas entre o bio-óleo e os combustíveis de hidrocarbonetos. Portanto, a eliminação eficiente de oxigênio é necessária para transformar o bio-óleo em um combustível líquido para utilização em motores, devido a sua alta viscosidade, baixo poder calorífico, corrosividade e instabilidade. Para um possível uso futuro como

substituto para hidrocarbonetos e combustíveis, o bio-óleo requer um tratamento (*up-grade*) a fim de melhorar as suas características ¹⁷. Vários métodos de tratamento podem ser utilizados e incluem fracionamento com solventes, hidroprocessamento e quebra catalítica ²².

A pirólise catalítica de biomassa pode aumentar consideravelmente o conteúdo dos produtos alvo no bio-óleo produzido ¹⁵, sendo, portanto, um caminho em potencial para modificar as suas propriedades ²² e também a composição da fração aquosa possibilitando um aumento no conteúdo de produtos químicos com maior valor agregado³.

Os bio-óleos apresentam entre 14-33% em massa de água e esta não pode ser removida por métodos convencionais, como a destilação. A separação de fases só ocorre acima de certos teores de água ^{22,23} ou por meio de extrações ^{8,11}.

A fração aquosa é oriunda da desidratação da biomassa durante o processo de pirólise e consiste principalmente de compostos derivados dos hidratos de carbono. A quantidade de fase aquosa formada depende da umidade inicial da matéria-prima e das condições de pirólise. Os vapores da fase aquosa podem ser utilizados para a produção de hidrogênio através de uma reforma catalítica ²⁴. A fração aquosa pode ser tratada para produzir diferentes produtos químicos com alto valor agregado, tais como ácidos, compostos fenólicos, aldeídos, furanos e cetonas que podem ser utilizados como intermediários ou como produto final ²⁵.

A fração aquosa não pode ser utilizada diretamente como combustível. Dumisec et al. ²⁶ propuseram um novo processo para produzir alcanos a partir dos hidratos de carbono derivados da biomassa na reação da reforma catalítica da fase aquosa, que poderiam ser usados como diesel limpo em transporte. Os alcanos líquidos que variam de C₇ a C₁₅ (número de átomos de carbono por molécula) podem ser produzidos a partir de reações de condensação aldólica, para a formação das ligações C-C, combinadas com o processo de desidratação/hidratação catalisadas em um único reator por um catalisador bifuncional (Pt/SiO₂-Al₂O₃, por exemplo).

Medrano e colaboradores ²⁴ relatam que o bio-óleo pode ser separado em duas frações, simplesmente adicionando água. A fração aquosa contém principalmente compostos derivados de hidratos de carbono e a fração não solúvel contém os compostos derivados de lignina. Outro grupo de pesquisadores ¹¹ utilizou acetato de etila para a separação da fração aquosa da fração orgânica, onde os fenóis foram extraídos preferencialmente para a fase orgânica. Dharani e colaboradores ⁸ extraíram a fração aquosa com o uso de diclorometano e solução de bicarbonato de sódio para a obtenção do extrato ácido.

Guedes *et al.* ²⁷ após esterificação da fração aquosa obtiveram ésteres alifáticos e aromáticos, além de outros produtos oxigenados (éteres, aldeídos, cetonas e fenóis) que após tratamento adequado, foram adicionados à gasolina originando um biocombustível.

Li *et al.* ¹¹ propuseram a reforma catalítica com hidrogênio como forma de utilização da fração aquosa proveniente da pirólise.

Além disso, conforme relatado por Xu *et al.* ²⁸ alguns parâmetros ambientais podem estar acima dos limites aceitáveis na fração aquosa proveniente da pirólise. Algumas substâncias presentes na fração aquosa são preocupantes do ponto de vista ambiental, devido ao seu alto grau de toxicidade, bioacumulação nas cadeias alimentares, mesmo em pequena concentração. Portanto, há a necessidade de um estudo prévio para verificar se esta fração deve receber algum tratamento antes de ser descartada no meio ambiente.

2.3 MÉTODOS DE EXTRAÇÃO

2.3.1 EXTRAÇÃO LÍQUIDO-LÍQUIDO (LLE)

A técnica analítica mais utilizada para a análise de matrizes complexas, até pouco tempo, era a extração líquido-líquido (LLE). Hoje, esta técnica vem perdendo terreno frente a outras técnicas, tais como extração em fase sólida, microextração em fase sólida, microextração em fase sólida, microextração líquido-líquido, entre outras. Pois, mesmo que a LLE ofereça eficientes resultados, é uma técnica relativamente demorada e que utiliza grandes quantidades de solventes orgânicos ²⁹, o que expõe o analista ao contato com estes solventes e implica no descarte de grandes volumes destas substâncias.

A extração líquido-líquido baseia-se na solubilidade relativa dos analitos presentes na amostra em dois solventes parcialmente imiscíveis. Normalmente, os analitos e os interferentes encontram-se na matriz aquosa, a qual é colocada em um funil de separação onde é adicionado um solvente orgânico imiscível ou pouco miscível com a água. O sistema é agitado e o analito é removido para a fase orgânica, enquanto os interferentes permanecem na fase aquosa ³⁰.

Ao longo dos últimos anos, agências ambientais regulatórias de países desenvolvidos estabeleceram procedimentos de caracterização e controle de substâncias prejudiciais ao meio ambiente e principalmente à saúde humana, os chamados "poluentes orgânicos prioritários", que são um tópico de grande destaque na ciência e tecnologia ambiental e vem sendo determinados desde os anos 70 em baixas concentrações nas

matrizes ambientais por métodos baseados na LLE. Conforme citado por Silva *et al.* ³¹, a Agência de Proteção ambiental dos Estados Unidos (US-EPA, *United States Environmental Protection Agency*) utiliza o método EPA-625 para a determinação de compostos orgânicos em águas, e este método consiste na extração líquido-líquido de compostos orgânicos semi-voláteis presentes na amostra.

A LLE foi utilizada por De Marco *et al.*³² afim de recuperar compostos fenólicos de águas residuais de uma usina de azeite de oliva com o objetivo de verificar a eficiência da extração líquido-líquido na recuperação de biofenóis em águas residuais e mostrou-se bastante eficiente.

Yanik *et al.*³³ utilizaram a LLE com diclorometano para a separação da fase aquosa e do bio-óleo proveniente da pirólise rápida do talo de orégano, palha e do sabugo de milho e verificaram boa separação de fases, tornando-a uma possível técnica para extração do bio-óleo da fração aquosa da pirólise de outros resíduos agro-industriais.

2.3.2 EXTRAÇÃO EM FASE SÓLIDA (SPE)

A extração em fase sólida (SPE) é uma técnica de separação que se baseia nos mecanismos de separação da cromatografia líquida clássica, pois emprega uma pequena coluna aberta (cartucho de extração), que contém a fase sólida através da qual as amostras são percoladas ²⁹. O princípio da técnica está na partição dos compostos em duas fases (uma sólida e outra líquida). Os analitos são retidos por adsorção na fase sólida, há uma maior afinidade pela fase sólida do que pela matriz da amostra, e posteriormente são dessorvidos com a utilização de solvente, dessorção química ou por aquecimento conhecida como dessorção térmica.

A técnica de SPE é normalmente utilizada para a análise em nível de traços e por isso, os recipientes e as fases sólidas utilizadas devem ter altíssima pureza. As formas comerciais mais comuns de SPE são os cartuchos, discos e membranas que podem ser de vidro, teflon, aço inox, entre outros tipos de materiais³⁴.

O uso da SPE acarreta em algumas vantagens em comparação com a LLE, visto que se utilizam pequenos volumes de solventes, são atingidos valores aceitáveis de recuperação dos analitos, sendo a técnica rápida e facilmente adaptada para sistemas *online*. As desvantagens da utilização da SPE como técnica de pré-concentração são: possibilidade de contaminação com o material do cartucho, necessidade de pré-condicionamento do mesmo e a exposição do analista ao solvente, mesmo que em menor volume quando comparada a LLE. No entanto, as vantagens do uso da técnica se

sobressaem em relação às desvantagens, pois há uma redução considerável no tempo de manuseio da amostra e no tempo total de análise, redução no volume de solvente utilizado, eliminação da formação de emulsões, comuns na LLE, e o enriquecimento dos compostos em nível de traços ³⁴.

A SPE é usualmente empregada para o isolamento de um ou mais analitos presentes na matriz complexa para posterior análise instrumental, e vem sendo utilizada na determinação de uma vasta gama de analitos em matrizes variadas. A técnica tem sido muito aplicada em várias áreas, tais como: ambiental, petroquímica, farmacêutica, cosméticos, biológicas, alimentos, forense, entre outras³⁰.

Fabbri *et al.* estudaram a determinação de PAH (hidrocarbonetos poliaromáticos, do inglês *polyaromatic hydrocarbons*) em bio-óleo proveniente da pirólise de madeira utilizando SPE para separação dos interferentes fenólicos ³⁵. Em um estudo anterior, Silva *et al* utilizaram C₁₈ como fase adsorvente para reter alquilfenóis em óleos da Bacia de Sergipe-Alagoas ³⁶.

Yu *et al.* utilizaram SPE para extrair os compostos nitrogenados heterocíclicos do alcatrão de quatro diferentes tipos de biomassas ³⁷.

Rodríguez e colaboradores revisaram a preparação de amostras para a determinação de fenóis utilizando extração em fase sólida ³⁸.

Em todos os trabalhos citados os autores obtiveram resultados satisfatórios com a utilização da SPE, apontando para a possibilidade de sucesso desta técnica, de préconcentração de analitos no estudo da fração aquosa da pirólise da palha de cana.

2.4. ANÁLISE CROMATOGRÁFICA

2.4.1. CROMATOGRAFIA GASOSA MONODIMENSIONAL

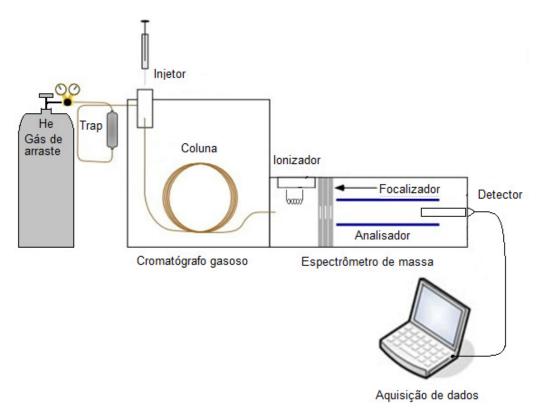
A cromatografia gasosa monodimensional tem sido uma das técnicas mais utilizadas para análise de uma vasta gama de compostos, pois emprega tanto colunas com fases polares como apolares e normalmente está associada a um detector de ionização em chama (GC-FID) ou a detectores espectrométricos de massa (GC/qMS) 39,40,41,42

A separação de compostos voláteis na cromatografia gasosa se baseia na diferente distribuição dos constituintes da amostra entre uma fase estacionária (sólida ou líquida) e uma fase móvel (gasosa). A amostra é introduzida em uma coluna que contém a fase estacionária através de um sistema de injeção. A utilização de temperaturas apropriadas

no injetor e na coluna possibilita a vaporização destas substâncias, que de acordo com as suas propriedades e as da fase estacionária, são retidas por tempos determinados e chegam à saída da coluna em tempos diferentes. O uso de um detector conveniente na saída da coluna possibilita a detecção e quantificação desses compostos⁴³.

A cromatografia gasosa é frequentemente acoplada a técnicas espectroscópicas para possibilitar a separação e identificação de componentes em misturas complexas ⁴⁴. Em GC/qMS, usa-se um detector de espectrometria de massas com analisador tipo quadrupolo e o espectrômetro varre as massas repetidamente durante a corrida cromatográfica. O princípio da espectrometria de massas é relativamente simples: um composto é ionizado e fragmentado e seus fragmentos iônicos são separados com base na razão massa/carga e o número de íons que correspondem a cada unidade de massa/carga é registrado na forma de um espectro ⁴⁵.

Um sistema de dados pode analisar os resultados de vários modos diferentes. A soma da abundância de íons em cada espectro é colocada em um gráfico em função do tempo e fornece um cromatograma de corrente iônica total. O espectro de massas pode também ser mostrado em um tempo particular durante o cromatograma para identificar o composto que está sendo eluído naquele momento. Também pode-se selecionar e monitorar um único valor de razão massa/carga durante o experimento cromatográfico, e essa técnica é conhecida como monitoramento de íon selecionado (modo SIM, do inglês *Single Ion Monitoring*) ⁴⁴.


A cromatografia gasosa é uma técnica com alto poder de resolução, tornando possível a caracterização de dezenas de substâncias, além de possibilitar a detecção de compostos em baixos limites de detecção que podem ser conseguidos sem a necessidade de grandes quantidades de amostra. É uma técnica excelente para análise quantitativa, com resultados quantitativos em concentrações que variam de picogramas a miligramas ⁴³.

Entretanto, apesar dos bons resultados apresentados por esta técnica, ela exige o uso de colunas capilares longas (25-30m) e longos tempos de corrida para obter uma boa resolução ^{46,47}, e ainda assim é comum a ocorrência de co-eluições e a possibilidade de confundir sinais de ruídos com picos da amostra. No caso dos compostos voláteis a identificação geralmente é realizada através dos índices de retenção linear e/ou informações fornecidas pelo espectro de massas ^{48,49,50}.

A GC/qMS tornou-se a técnica de referência na análise qualitativa de compostos voláteis por apresentar bibliotecas comercias bem completas. No entanto, frequentemente diferentes espectros são identificados na biblioteca para um único composto dificultando a

identificação. Portanto, o uso de sistemas com maior capacidade de separação ^{51,52} tornase cada vez mais necessário, devido à necessidade de resultados com maior precisão.

A **Figura 1** apresenta um esquema geral de um sistema GC/qMS.

Figura 1: Desenho esquemático de um sistema de Cromatografia em Fase Gasosa com Detector de Espectrometria de Massas.

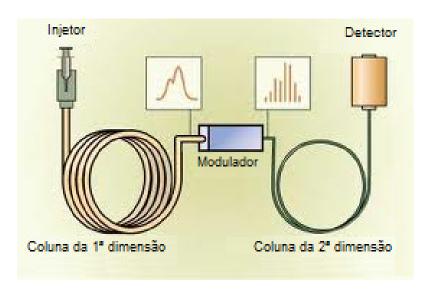
2.4.2. CROMATOGRAFIA GASOSA BIDIMENSIONAL

A cromatografia gasosa bidimensional abrangente (GC×GC) vem ganhando desde 1991, popularidade na análise de amostras complexas ⁵³. As primeiras aplicações da técnica GC×GC foram realizadas em matrizes petroquímicas, mas as áreas de aplicação têm aumentado muito nos últimos anos. Atualmente envolvem, além da área petroquímica, as áreas ambiental, de alimentos, óleos essenciais, Química forense, controle de qualidade de aromas e fragrâncias e pesticidas em alimentos, entre outras ^{54,55,56}. Esta técnica fornece grande aumento no poder de separação quando comparada às técnicas convencionais, como por exemplo, a GC/qMS ⁵⁷.

A GC×GC é uma técnica cromatográfica multidimensional que utiliza duas colunas capilares ligadas em série por uma interface denominada modulador ^{58,59}. Na primeira dimensão geralmente é usada uma coluna de tamanho convencional. Na segunda dimensão a coluna é pequena, do tipo *fast*-GC, e tem a capacidade de separar os

compostos presentes em cada um dos períodos de modulação, produzindo uma série de cromatogramas em alta velocidade. O processo de modulação é muito importante para se obter alta resolução em um sistema GC×GC ⁴⁶. O modulador tem a função de comprimir a banda cromatográfica e re-injetar frações da primeira coluna na segunda de forma pulsada em intervalos de tempo curtos e regulares ⁵⁸.

Na GC×GC estuda-se a chamada ortogonalidade, em que o mecanismo de separação da primeira dimensão é independente e diferente do mecanismo de separação da segunda dimensão. Na primeira coluna geralmente emprega-se uma fase estacionária apolar ou menos polar, ocorrendo separação dos compostos por diferença de volatilidade, e na segunda coluna utiliza-se uma fase polar, ocorrendo separação por polaridade ⁴⁶. Diz-se que o conjunto de colunas para este tipo de separação é "convencional". Quando se muda a ordem, usando-se uma coluna polar na primeira dimensão e uma coluna menos polar na segunda dimensão, trata-se de um conjunto "inverso".


Através da combinação de duas colunas cromatográficas com mecanismos de separação ortogonais consegue-se um aumento significativo na seletividade. Além disso, há a possibilidade de ordenar e agrupar as estruturas dos compostos em um cromatograma de GC×GC, devido às similaridades das propriedades físico-químicas destes compostos, sendo estes cromatogramas estruturados uma ferramenta muito valiosa na identificação dos constituintes da amostra ⁶⁰.

Quando não há a combinação da coluna não polar na primeira dimensão e polar na segunda dimensão, a condição que se segue é não ortogonal. Esta condição é usada para amostras que contenham grande número de isômeros, onde a segunda dimensão depende das propriedades físico-químicas dos analitos ⁵⁷.

As maiores vantagens da GC×GC sobre as técnicas convencionais são o aumento da capacidade de pico, da sensibilidade e estruturação dos cromatogramas, que facilitam a identificação de analitos desconhecidos ⁵⁴. Um esquema geral para um sistema GC×GC está apresentado na **Figura 2**.

Para detectar analitos que eluem como picos muito estreitos, um detector com alta velocidade de aquisição de dados é necessário ⁵⁶. A separação é muito rápida na coluna da segunda dimensão e resulta em picos com largura de base típica de 100 a 600 ms ^{56,61}. A largura real do pico depende do tipo de modulador, do fluxo de gás e da dimensão da segunda coluna. Para assegurar uma reconstrução exata dos cromatogramas, os picos estreitos necessitam de detectores rápidos, com pequeno volume interno, alta aquisição de dados e curto tempo de detecção.

Os detectores rápidos, como os de ionização em chama (FID), adquirem dados com freqüência de 50 a 200Hz e possuem pequeno volume interno. No caso dos detectores espectroscópicos, o TOFMS se destaca por ter como vantagem a rápida aquisição de dados, 500 espectros/s e o MS é indispensável para permitir a identificação dos numerosos compostos separados. Sem dúvida o TOFMS é uma ferramenta essencial para a identificação e confirmação dos analitos de uma amostra desconhecida ⁵⁷.

Figura 2: Desenho esquemático de um sistema de Cromatografia Gasosa Bidimensional Abrangente.

2.5 CARACTERÍSTICAS DOS PRINCIPAIS COMPOSTOS PRESENTES NA FRAÇÃO AQUOSA: FENÓIS, CETONAS, ALDEÍDOS E FURANOS

Dentre as classes de compostos presentes na fração aquosa destacam-se os compostos fenólicos e as cetonas.

O fenol é uma substância incolor e cristalina usada como desinfetante e na produção de várias resinas poliméricas, como por exemplo, a baquelite, na fabricação de pesticidas, explosivos, drogas e corantes. Ele também é utilizado no processo de branqueamento da fabricação de papel, além de ser usado na agricultura como herbicida, inseticida e fungicida ⁶². Os fenóis possuem maior solubilidade em água do que os hidrocarbonetos aromáticos correspondentes. A propriedade mais marcante dos fenóis, no entanto, é a sua acidez. Os fenóis são ácidos porque suas bases conjugadas são estabilizadas por ressonância. Assim, grupamentos que retirem elétrons do anel aromático por meio de efeitos eletrônicos aumentam a acidez dos fenóis, enquanto grupos doadores de elétrons reduzem-na. Entretanto, fenóis são ácidos mais fracos que ácidos carboxílicos ⁶³.

Os compostos fenólicos que apresentam estruturas mais complexas têm normalmente maior toxicidade. A toxicidade destes compostos, em ambientes aquáticos, mesmo em níveis de mg L⁻¹ (partes por milhão), podem afetar consideravelmente as propriedades organolépticas da água. Além disso, a presença desses contaminantes no processo de cloração da água potável promove a formação de clorofenóis e policlorofenóis que são agentes carcinogênicos ²⁶.

O principal uso dos cresóis (metil fenóis) está na fabricação de resinas sintéticas, mas também são usados como desinfetantes, desodorantes e para a produção de perfumes, corantes e inseticidas ⁶².

O fenol e o-cresol podem ser separados por destilação, a separação de m-cresol e p-cresol exige um processo mais sofisticado, devido aos pontos de ebulição semelhantes. Os cresóis são menos solúveis em água que o fenol. Os xilenóis ou dimetil-fenóis estão disponíveis no ambiente como seis formas isoméricas. Em comparação com os cresóis, os xilenóis são menos solúveis em água ⁶⁴.

O catecol, resorcinol e a hidroquinona são os três isômeros de dihidroxibenzenos (ou benzenodióis) e são encontrados em efluentes industriais, tais como, refinarias de petróleo, alcatrão de carvão, indústria de plásticos, couro, aço e na indústria farmacêutica. O catecol (isômero orto) possui excelente atividade eletroquímica e tem sido amplamente estudado, devido a sua importância biológica como antioxidante e antivírus visto que afeta a atividade de algumas enzimas ⁶⁵.

Estes compostos são também amplamente utilizados como solventes industriais. Também são intermediários da via metabólica durante a biodegradação de inúmeros compostos aromáticos. O catecol é um composto cristalino incolor com odor fenólico e descolore a marrom em exposição à luz e ao ar. É combustível quando exposto ao calor, chama ou oxidantes. O catecol é considerado mais tóxico que o resorcinol (isômero meta)²¹. A hidroquinona (isômero para) tem uma variedade de usos, principalmente associados com sua ação como um agente redutor solúvel em água. É o principal componente na maioria dos reveladores fotográficos. Também é muito usada como inibidor de reações de polimerização de monômeros vinílicos e como antioxidante na fabricação de borrachas ⁶⁵. Na medicina, a hidroquinona é usada como uma aplicação tópica em clareamento da pele ⁶⁶. O sal difenolato de sódio da hidroquinona é usado como um alternativo co-monômero na produção de alguns polímeros ^{67,68}. A hidroquinona também é usada como uma matéria prima de herbicidas, antioxidantes para borracha e corantes ⁶⁹.

O metóxi-fenol ou guaiacol é um composto orgânico derivado do creosoto da madeira resultando da pirólise da lignina ⁷⁰. Apresenta-se como uma substância aromática, oleosa e incolor. As amostras escurecem quando expostas ao ar e à luz e devido a esta característica natural de mudança de cor, algumas vezes é utilizado como indicador em vários experimentos envolvendo enzimas. O guaiacol também é usado na preparação do eugenol e da vanilina. Pode ser utilizado medicinalmente como expectorante, antiséptico e anestésico local ^{71,72}.

A biodegradabilidade anaeróbia de compostos fenólicos individualmente e na presença de outros compostos tem sido bastante estudada.

A benzoquinona, produto da oxidação do benzenodiol, é um composto que apresenta atividade antimicrobiana natural que previne a infecção de plantas (principalmente nos seus frutos). A oxidação do catecol é também utilizada em laboratório para investigação oncológica. Alguns ensaios científicos provaram a eficácia de várias espécies químicas de quinonas no combate a células cancerígenas no cérebro ⁷³.

Diversas classes de furanonas têm sido estudadas, devido à possibilidade do uso como compostos antibacterianos em algumas doenças causadas por microorganismos resistentes às terapias convencionais ^{74.75}. Outra aplicação das furanonas é no emprego de agroquímicos como agente inibidor da germinação de novas sementes ⁷⁶.

Uma atenção especial tem sido dada para a benzopiranona como receptor seletivo de estrogênio, utilizado em reposição hormonal, de modo que os efeitos farmacológicos deste procedimento sejam mantidos e as reações indesejáveis sejam eliminadas ⁷⁷.

A atividade antifúngica de certas piranonas disubstituídas também foi avaliada, sendo que para alguns compostos esta atividade é perdida, exibem um efeito contra certas linhagens de células, incluindo células cancerígenas ⁷⁸.

A conversão de acetofenonas substituídas aos seus correspondentes alcoóis opticamente ativos é uma das reações mais comuns em química orgânica, uma vez que estes alcoóis têm um grande número de aplicações em síntese de compostos bioativos farmacêuticos, agroquímicos e em produtos naturais ⁷⁹. A acetofenona com um halogênio introduzido é utilizada para a preparação de haloidrinas quirais, que são importantes intermediários sintéticos na produção de fungicidas ⁸⁰.

As ciclohexenonas são compostos chaves na síntese de outros compostos biologicamente ativos e de produtos farmacêuticos ⁸¹. Assim como a vanilina, um composto derivado do eugenol, muito empregada na indústria como aromatizante e em produtos farmacêuticos ⁸².

O furfural (furanocarboxialdeído) pode ser produzido a partir da hidrólise ácida da pentosana ⁸³ presente na celulose contida na biomassa de resíduos agrícolas ⁸⁴. O furfural pode ser utilizado para a produção de lubrificantes, adesivos, plásticos e nylons entre outras aplicações. A hidrogenação do furfural produz álcool furfurílico, um produto de alto valor agregado ^{83,85}.

O benzaldeído é o principal componente do óleo de amêndoas, mas pode ser extraído de outras fontes naturais. Pode ser utilizado como aromatizante e flavorizante em alimentos, em perfumes, corantes e na indústria farmacêutica ⁸⁶. Na presença de oxigênio se oxida a ácido benzóico, um composto amplamente utilizado em medicamentos, medicamentos veterinários, matérias-primas industriais, conservantes de alimentos, cosméticos, plastificantes, fibras sintéticas e em preparações de resinas ⁸⁷.

A síntese de furanos tem recebido considerável atenção na literatura. Os furanos são compostos que podem ser usados como intermediários sintéticos bem como precursores em produtos naturais polioxigenados ⁸⁸. Os furanos também são bastante utilizados na química de materiais, como por exemplo, em derivados plásticos de fontes renováveis ⁸⁹, em polímeros condutores ⁹⁰ e fotovoltaicos ⁹.

A **Figura 3** ilustra a estrutura de alguns compostos encontrados na literatura como integrantes de bio-óleos.

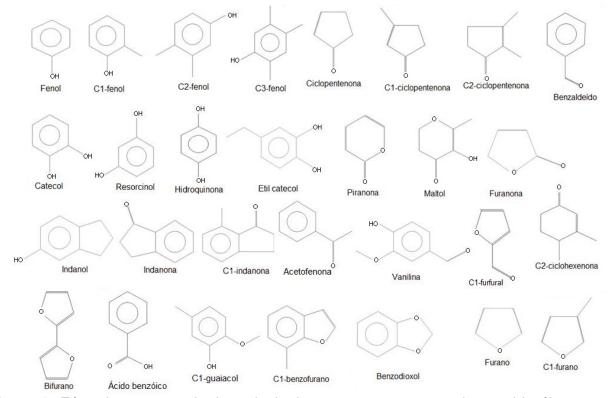


Figura 3: Fórmulas estruturais dos principais compostos encontrados em bio-óleos.

PARTE EXPER	IMENTAL
PARTE EXPER	IMENTAL
PARTE EXPER Gabriela Pereira da Silva Maciel	IMENTAL 20

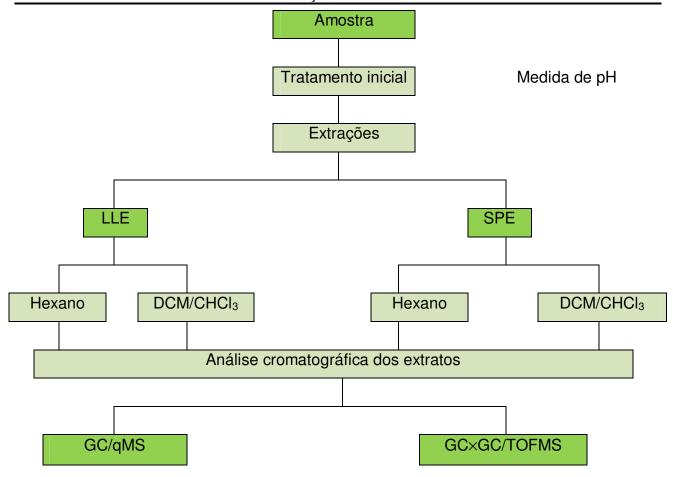
3. PARTE EXPERIMENTAL

3.1 PROPOSTA DE TRABALHO

Baseado no levantamento bibliográfico apresentado e visando a caracterização de uma amostra de água proveniente da pirólise da palha de cana-de-açúcar, neste trabalho faz-se a comparação das duas técnicas de extração citadas (LLE e SPE) para a extração de compostos orgânicos presentes na amostra aquosa e a posterior caracterização do extrato obtido através de cromatografia gasosa (mono e bidimensional)

3.2 SOLVENTES, REAGENTES E GASES

Os reagentes utilizados como, diclorometano, clorofórmio, hexano e sulfato de sódio anidro, foram de grau analítico (Merck, Alemanha). O cartucho de extração utilizado foi o cartucho comercial C₁₈ (sílica modificada com grupos octadecil) da marca Agilent, Califórnia (500 mg/3 mL).


Os gases utilizados para as análises cromatográficas (He) e para a evaporação das amostras (N₂), com purezas superiores a 99%, foram adquiridos da Linde Gases (Porto Alegre, RS).

3.3 OBTENÇÃO E CARACTERÍSTICAS DA AMOSTRA

A amostra da fração aquosa da pirólise da palha de cana-de-açúcar foi obtida de uma planta de pirólise catalítica da empresa Petrobrás localizada no Rio de Janeiro, e a palha de cana foi coletada no estado de São Paulo.

A amostra apresentou-se como uma solução de coloração marrom, com alguns traços de bio-óleo, de forma guase homogênea e bastante ácida (pH ~2).

A **Figura 4** apresenta um esquema com todas as etapas do trabalho experimental realizado para a caracterização da fração aquosa da palha de cana-de-açúcar.

Figura 4: Esquema geral do procedimento experimental adotado neste trabalho.

3.4 MÉTODOS DE EXTRAÇÃO UTILIZADOS

3.4.1 EXTRAÇÃO LÍQUIDO-LÍQUIDO (LLE)

Para este procedimento foram escolhidos três solventes com diferentes polaridades. A polaridade é capacidade de solvatação do solvente e depende da ação de todas as interações intermoleculares possíveis entre íons ou moléculas do soluto e as moléculas do solvente 92 . Alguns parâmetros podem ser utilizados na avaliação da afinidade entre o soluto e o solvente, tais como: momento dipolar (μ), permissividade elétrica (ϵ) e parâmetro de solubilidade de Hildebrand (δ_H).

A **permissividade elétrica** (ε) é uma constante física que descreve como um campo elétrico afeta e é afetado por um meio, e é determinada pela habilidade de um material polarizar-se em resposta a um campo elétrico aplicado e, dessa forma, cancelar parcialmente o campo dentro do material. Também pode ser definida como a capacidade

de um eletron "capturar" um fóton no espaço. Está diretamente relacionado com a susceptibilidade elétrica.

O **momento dipolar** (μ) é uma medida da polaridade de um sistema de cargas elétricas. Toda molécula, devido à sua estrutura, pode ter vários dipolos que se anulam e se reforçam mutuamente. A soma resultante de todos os dipolos é o que é conhecido como o momento de dipolo da molécula. Moléculas que têm momentos de dipolo permanentes são consideradas polares, enquanto que as moléculas em que todos os dipolos se cancelam, são apolares 93 .

O parâmetro de solubilidade de Hildebrand (δ_H) é uma constante que indica a capacidade de solvência de um solvente específico. Compostos com δ_H próximos geralmente formam misturas entre si. Sendo assim, solventes que apresentam um δ_H próximo ao δ_H de um analito teoricamente resultam em boa eficiência de extração. 93,94,95

A fim de verificar a seletividade da extração foram usados os seguintes solventes: n-hexano ($C_6H_{14},~\mu=0,~\epsilon=1,88,~\delta_H=14,9$), diclorometano (DCM – $CH_2CI_2,~\mu=1,60,~\epsilon=9,02,~\delta_H=20,3$) e clorofórmio (CHCl $_3,~\mu=1,02,~\epsilon=4,89~\delta_H=18,9$) ⁹⁴. Como a amostra é aquosa as propriedades da água também foram consideradas: ($H_2O,~\mu=1,85,~\epsilon=78,5,~\delta_H=47,9$) ⁹⁵.

Os parâmetros de solubilidade de Hildebrand para alguns compostos possivelmente presentes na fração aquosa estão listados a seguir: (fenol $\delta_H=24,1$, resorcinol $\delta_H=29,0$, m-cresol $\delta_H=22,7$, ciclohexanona $\delta_H=19,6$, acetofenona $\delta_H=21,8$) ⁹⁴ justificando a escolha dos solventes de extração.

Transferiu-se 5 mL da amostra para um funil de separação e adicionou-se 5 mL de hexano, agitou-se e após a separação das fases (aquosa e orgânica) coletou-se a fase orgânica em um frasco. Este procedimento foi repetido por mais duas vezes. A fase orgânica foi lavada com 3 porções de 5 mL de água destilada. Sulfato de sódio anidro (previamente seco em forno a 200 ℃ por 12 h) foi adicionado ao frasco que continha as fases orgânicas extraídas para retirar a água residual do extrato. O extrato foi filtrado e os solventes evaporados e foi preparado para análise cromatográfica. A **Figura 5** apresenta um desenho esquemático ilustrando este procedimento. Quando foi usado o diclorometano, realizou-se o mesmo procedimento utilizado com hexano, porém repetiu-se a extração da fase aquosa já extraída com DCM, usando-se 5 mL de clorofórmio, adicionando-se este quarto extrato a fase orgânica já obtida. Todos os procedimentos (extração e análise cromatográfica) foram executados em triplicata.

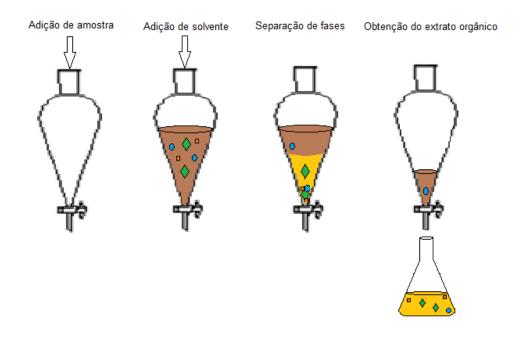
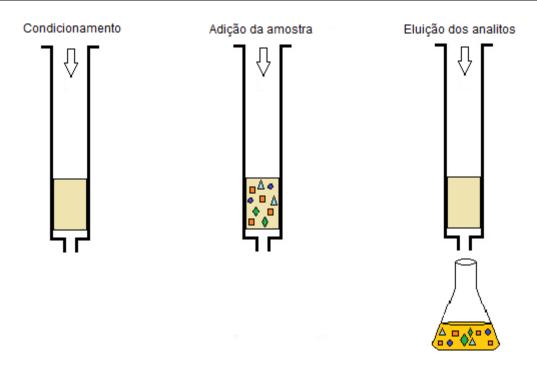



Figura 5. Desenho esquemático do procedimento de extração líquido-líquido.

3.4.2 EXTRAÇÃO EM FASE SÓLIDA (SPE)

Na etapa de SPE também foram usados os mesmos solventes da LLE: n-hexano, diclorometano e clorofórmio.

Para o condicionamento do cartucho adicionou-se 4 mL de metanol sob vácuo em Kitasato e lavou-se com 20 mL de água mili-Q. No cartucho frações seqüenciais, até o volume de 5 mL, de amostra líquida foram adicionadas e após secar o cartucho, os analitos foram eluídos com 5 mL de DCM, e posteriormente com 5 mL de clorofórmio, ou com apenas 5 mL de n-hexano. O extrato obtido foi transferido para um béquer com auxílio de DCM para a solubilização. Após a evaporação dos solventes a amostra foi submetida à análise cromatográfica. O procedimento de extração e a análise cromatográfica dos extratos foram realizados em triplicata. Um desenho esquemático deste procedimento pode ser visualizado na **Figura 6**.

Figura 6. Desenho esquemático do procedimento de extração em fase sólida.

3.5 ANÁLISE CROMATOGRÁFICA DOS EXTRATOS DA FRAÇÃO AQUOSA

3.5.1 CROMATOGRAFIA GASOSA MONODIMENSIONAL

Para a identificação dos compostos presentes nos extratos da fração aquosa utilizou-se um cromatógrafo gasoso acoplado a um detector de espectrometria de massas com analisador de massas tipo quadrupolo, modelo GC/MS-QP 5050A, da marca Shimadzu (Japão). A coluna capilar utilizada foi uma DB5 (poli-dimetil siloxano com 5% de grupos fenila) com 30 m de comprimento, 0,25 mm de diâmetro interno e 0,25 µm de espessura de fase estacionária. As condições cromatográficas estão descritas na **Tabela I**.

3.5.2 CROMATOGRAFIA GASOSA BIDIMENSIONAL ABRANGENTE

As análises foram realizadas em um sistema GC×GC/TOFMS Pegasus IV LECO constituído de um GC Agilent 6890N, com injetor split/splitless, modulador criogênico com quatro jatos (*quadjet*), resfriado por nitrogênio e amostrador automático CTC-CombiPal CTC Analytics. O conjunto de colunas empregado foi o convencional, constituído de uma coluna apolar de 60 m (0,25 mm, 0,25 μm) na primeira dimensão, DB-5 (metil siloxano com 5% de grupos fenila), e uma coluna um pouco mais polar de 2,15 m (0,18 mm, 0,18 μm) na

segunda dimensão, DB-17ms (poli-dimetil siloxano com 50% de grupos fenila), fornecidas por Agilent Technologies (J&W Scientific, EUA). As condições otimizadas estão apresentadas na **Tabela II**. Os dados obtidos foram analisados usando o software ChromaTOF® versão 3.32.

Tabela I: Condições utilizadas nas análises cromatográficas monodimensionais.

Parâmetros	GC/qMS
Injetor/modo de injeção	split/splitless - operando no modo split1:10
Temperatura do injetor	280℃
Volume injetado	1 μL
Fase móvel/fluxo	Hélio/1 mL min ⁻¹
Temperatura do forno	50 °C (2 min) − 5 °C/min − 280 °C (2 min)
Energia da eletromultiplicadora	1,8 kV
Temperatura da interface	280℃
Taxa de aquisição de dados	25 espectros/s

Tabela II: Condições utilizadas nas análises cromatográficas das análises bidimensionais.

Parâmetros	GC×GC/TOFMS
Injetor	split/splitless operando no modo splitless
Temperatura do injetor	280 ℃
Volume injetado	1 μL
Fase móvel/fluxo	Hélio / 1,2 mL min ⁻¹
Rampa de temperatura (forno ¹ D)	100 °C (0,2 min) − 2 °C/min − 210 °C (3 min)
ΔT (forno ^{1}D e ^{2}D)	20 ℃
Temperatura da fonte	250 ℃
Período de modulação	10 s
Pulso quente	20 % do período de modulação
Pulso frio	80 % do período de modulação
Taxa de aquisição de dados	100 espectros/s

As condições cromatográficas conforme descrito na **Tabela II** foram otimizadas a partir do extrato LLE/HEX na concentração de 1500 mgL⁻¹ para todas as sub-amostras.

Para a análise de dados foram testados diferentes métodos de processamento, variando-se as larguras de pico na primeira e segunda dimensão. A escolha do melhor método de processamento foi baseada no menor número de picos desconhecidos obtidos. Após esta etapa, foi realizado um novo processamento das amostras, no qual a sangria da coluna foi retirada (esta etapa visa facilitar a posterior classificação dos compostos de acordo com a área percentual). Observou-se ainda a presença de um grande número de compostos desconhecidos, sendo que na etapa de processamento empregou-se um número de picos a serem identificados de 1000. Numa etapa posterior, diminui-se este número para 500 e 400, o que não prejudicou a identificação dos compostos e diminuiu o número de picos desconhecidos, dando maior segurança na identificação dos constituintes das amostras.

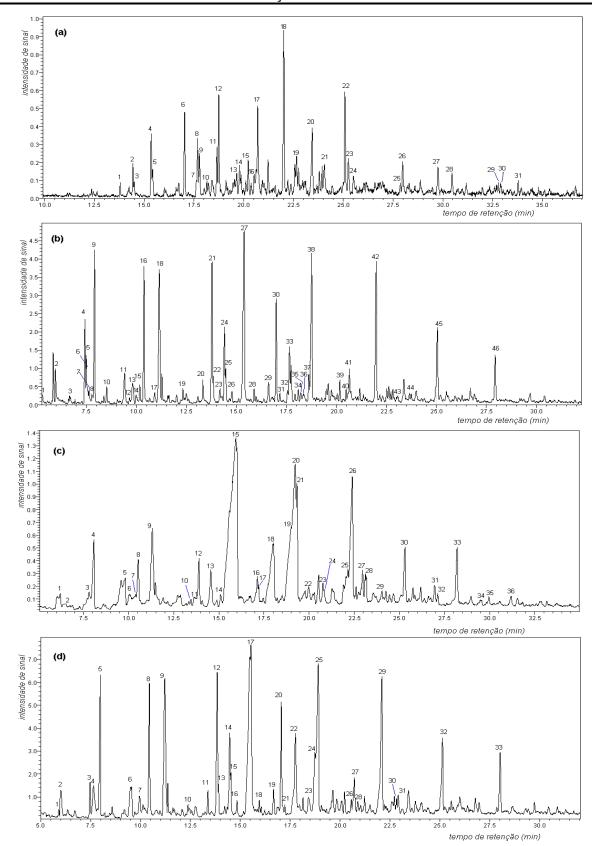
A análise semi-quantitativa é apresentada na **Tabela V** e nas **Tabelas** do **Anexo A**, e foi realizada calculando as áreas percentuais para cada composto e para cada classe de compostos presentes nos diferentes extratos e assim, se ter uma aproximação da concentração em que as mesmas se encontram na amostra. Considerou-se que o fator de resposta fosse unitário, o que é uma aproximação inicial, sabendo-se ser necessária a análise quantitativa usando pelos menos alguns padrões em cada classe estudada.

Dissertação de Mestrado	
	~
RESULTADOS E DISC	CUSSAO
_	RESULTADOS E DISC

4. RESULTADOS E DISCUSSÃO

O rendimento em massa [(massa de extrato/massa de amostra aquosa).100] obtido nas extrações realizadas gerando os 4 extratos é apresentado na **Tabela III**.

Tabela III: Rendimento em massa dos extratos obtidos.


Sub-amostra	Rendimento (%)
LLE/HEX	4.8 ± 0.4
LLE/DCM	5.0 ± 0.5
SPE/HEX	$6,1 \pm 0,6$
SPE/DCM	$6,4 \pm 0,6$

Estes resultados referem-se a triplicatas com desvio padrão aproximado de 10% aceitáveis para este tipo de procedimento analítico ⁹⁹, e conforme estes resultados notase um rendimento levemente superior para a SPE e uma eficiência maior para a mistura de solventes diclorometano/clorofórmio, conforme o esperado devido à maior polaridade dos analitos. No entanto, o aumento da percentagem é um valor pouco significativo.

4.1. ANÁLISES POR GC/qMS

A **Figura 7** apresenta os cromatogramas de corrente iônica total dos extratos da fase aquosa obtidos por LLE e SPE com hexano e diclorometano/clorofórmio, respectivamente. Estes 4 extratos foram codificadas como LLE/HEX-GC/qMS, SPE/HEX-GC/qMS, LLE/DCM-GC/qMS e SPE/DCM-GC/qMS.

A identificação tentativa e semi-quantificação (feita apenas pela comparação entre áreas relativas - % -) dos compostos em cada **Figura** estão apresentadas nas **Tabelas A1 a A4,** apresentadas no **Anexo A**, ao final desta Dissertação. Os compostos foram tentativamente identificados com base nas bibliotecas Wiley NBS e NIST de espectros de massas do equipamento e estão listados nas citadas **Tabelas** em ordem de eluição, sendo considerados tentativamente identificados apenas quando as probabilidades de semelhança entre os espectros de massa (comparando com o banco de espectros da biblioteca do equipamento) foram superiores a 80% e após detalhada análise de cada espectro da amostra.

Figura 7: Cromatogramas de corrente iônica total para os extratos (a) LLE/HEX-GC/qMS, (b) SPE/HEX-GC/qMS, (c) LLE/DCM-GC/qMS, (d) SPE/DCM-GC/qMS. *Condições cromatográficas descritas na Tabela I.*

Na LLE/HEX foram tentativamente identificados 31 compostos. Na LLE/DCM foram tentativamente identificados 36 compostos onde os benzenodióis são os compostos em maior concentração. O cromatograma da SPE/HEX assemelha-se com o da LLE/HEX com a identificação de 46 compostos. Na SPE/DCM foram tentativamente identificados 33 compostos. Um menor número de compostos foram identificados neste extrato em relação à SPE/HEX. A **Tabela IV** apresenta uma comparação entre os quatro extratos em termos de área percentual relativa para os compostos majoritários. Foram incluídos todos os isômeros encontrados para cada composto, por exemplo, todos os C2-fenóis foram considerados em conjunto.

Tabela IV: Distribuição dos compostos majoritários e suas áreas percentuais, encontrados nos quatro extratos estudados por GC/gMS.

classe	nomo	área %					
Classe	nome	LLE/HEX	SPE/HEX	LLE/DCM	SPE/DCM		
ácidos	Ácido C2-Benzóico	3,19	2,15	2,53	2,58		
	C1-Furfural		3,24		1,15		
aldeídos	C3-benzaldeído	6,93					
	hidróxi benzaldeído			1,23			
	Vanilina (hidróxi metóxi benzaldeído)	3,07		1,59			
	Acetovanilona	1,48					
	Benzopiranona	2,40					
	Furanona				1,41		
	C2-benzofuranona	1,18					
cetonas	Indanona	3,40	1,15				
	C1-Ciclopentenona		3,30		2,45		
	C2-Ciclopentenona		1,39	1,46			
	C2-Hidróxi-Ciclopentenona		1,86	2,14	2,30		
	C2-Benzoquinona	3,08					
éteres	Bifurano	2,24					
	Fenol		5,98	2,82	5,57		
	C1-Fenol		14,18	6,69	13,61		
	C2-Fenol	3,93	10,51	3,90	8,93		
	Alil fenol	2,67					
	C3-Fenol	9,63	5,95	0,00	3,85		
fenóis	C4-fenol	2,56					
ICHOIS	Benzenediol	4,47	12,45	29,29	18,89		
	C1-Benzenediol	11,39	11,42	25,87	8,41		
	C2-Benzenediol	14,98	7,88	9,27	8,55		
	C3-Benzenediol	6,82	4,01	2,44	3,54		
	Indanol	7,59	1,76		1,48		
	C1-naftol	6,49					

Pode-se observar, através da análise da Tabela IV e das **Tabelas no anexo**, que os extratos apresentam em sua composição uma mistura complexa de compostos oxigenados tais como ácidos, aldeídos, éteres, cetonas e fenóis. Os compostos oxigenados formados no processo de pirólise, entre eles os compostos fenólicos, concentram-se na fase aquosa por afinidade visto que, são solúveis em água.

Usando-se o percentual de área como uma medida semi-quantitativa da composição química da amostra, pode-se traçar os gráficos da **Figura 8** com a soma das áreas relativas de cada classe de compostos identificados nos diferentes extratos. A classe de compostos majoritária foi a de fenóis, seguida de cetonas em todos os extratos aquosos.

Na **Figura 8** pode-se observar que a LLE/DCM tem maior percentual de área para os ácidos carboxílicos, onde foram extraídas quatro famílias de ácidos. Somente o ácido C2-benzóico foi tentativamente identificado na LLE/HEX e SPE/DCM. O ácido hexanóico foi extraído apenas por SPE/HEX. Os ácidos com mais de seis carbonos são insolúveis em água, porém, apresentam certa polaridade devido à presença dos dois oxigênios na molécula.

Os aldeídos no extrato LLE/HEX representam 10% da área de picos tentativamente identificados, sendo este extrato o que apresenta maior percentual de área para aldeídos. A SPE/DCM foi o extrato com menor percentual de área para os aldeídos. Os aldeídos menores são solúveis em água, mas com o aumento da cadeia carbônica a solubilidade vai diminuindo até o ponto em que eles se tornam insolúveis. Todos os aldeídos são solúveis em solventes apolares e isso pode ser observado com a utilização do hexano como solvente extrator. Os aldeídos de cadeia alifática são mais reativos que os aldeídos de cadeia aromática, pois a ressonância estabiliza o composto e essa propriedade pode ter prejudicado a interação desses compostos aromáticos com a fase sólida.

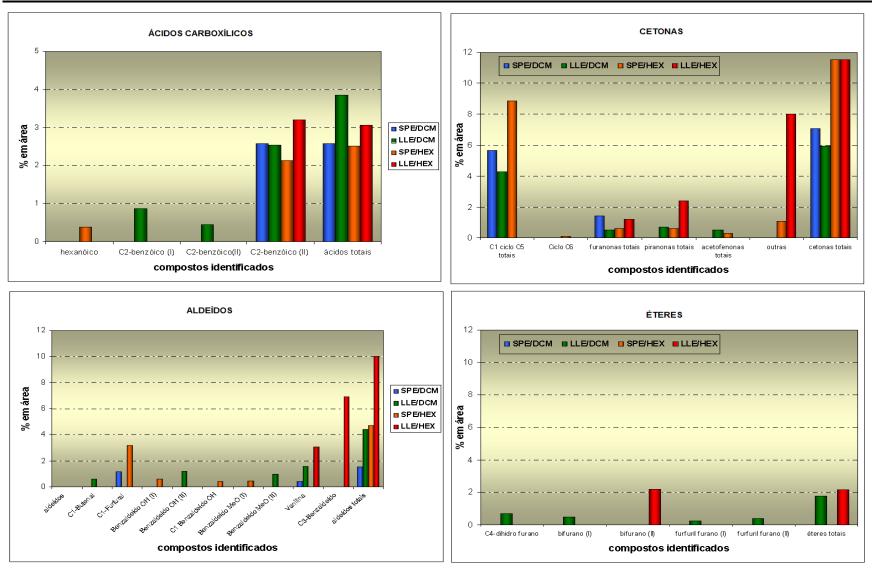
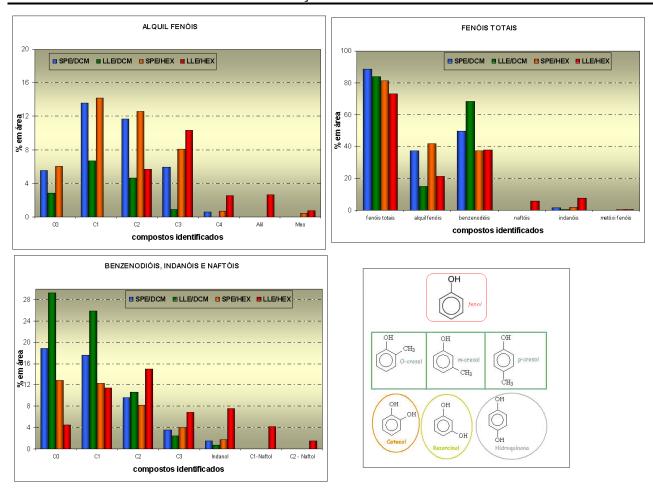
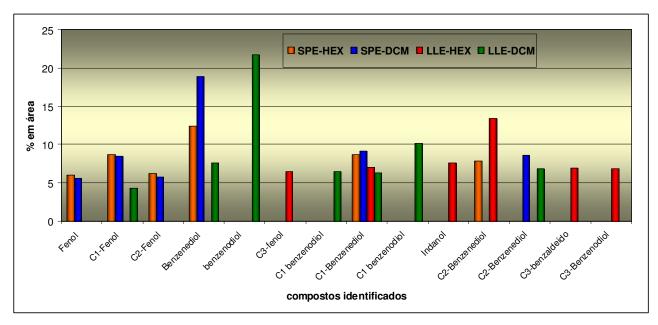


Figura 8. Distribuição das classes de compostos tentativamente identificados dos extratos da fração aquosa da pirólise da palha de cana-de-açúcar.


A presença de éteres só foi percebida na extração líquido-líquido. Na LLE/HEX somente um composto foi tentativamente identificado (percentual de área > 2%). Na LLE/DCM quatro compostos foram tentativamente identificados. Entretanto, o percentual de área total foi inferior a 2%, isso pode ter ocorrido em função da volatilidade dos éteres menores. Os éteres de baixo peso molecular apresentam certa solubilidade em água devido às ligações de hidrogênio. Os éteres maiores não são capazes de formar ligações de hidrogênio e por isso, são mais solúveis em solventes apolares.

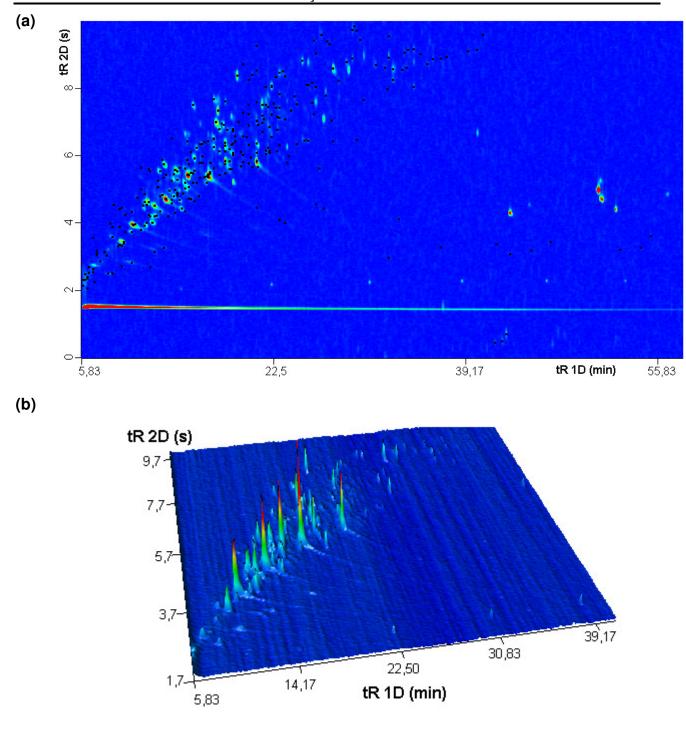
Duas famílias de cetonas foram extraídas por SPE/DCM. A LLE/DCM extraiu quatro famílias de cetonas. As cetonas são mais solúveis em água do que os aldeídos, pois a carbonila é muito mais polarizada, mas também são compostos solúveis em solventes apolares. A SPE/HEX conseguiu extrair todas as espécies de cetonas tentativamente identificadas na amostra. A LLE/HEX extraiu uma menor variedade de cetonas, mas com percentual de área maior que 10%.


A classe de compostos majoritária, como dito anteriormente, foi a de fenóis. Desta forma, a **Figura 9** apresenta em separado a distribuição dos diferentes tipos de fenóis tentativamente identificados em cada amostra, além da fórmula estrutural dos principais compostos.

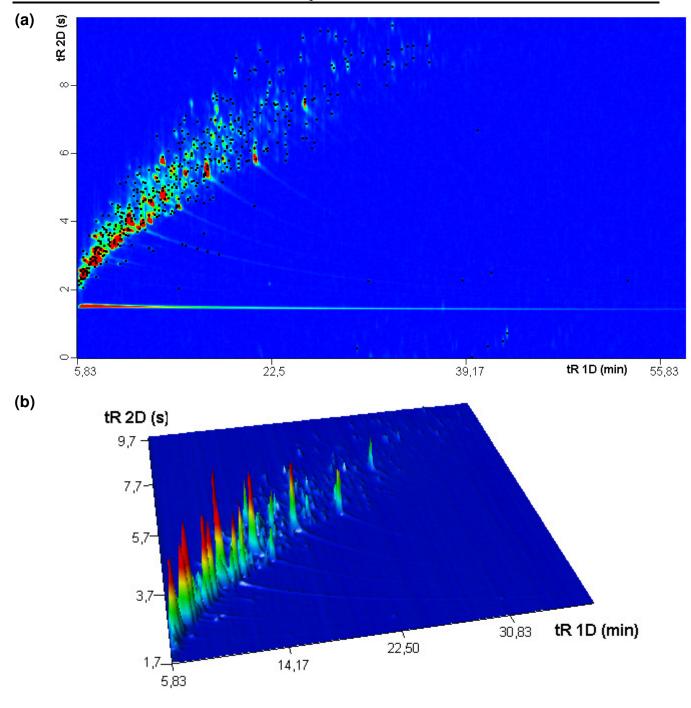
Para a extração de fenóis não substituídos, mono-substituídos e di-substituídos a SPE/HEX e SPE/DCM mostraram o maior percentual de área e conforme aumenta a cadeia carbônica da substituição esta percentagem vai diminuindo, tendo-se o maior percentual para os fenóis mono-substituídos. Na LLE/HEX o maior percentual de área foi para o C3-fenol, isso provavelmente ocorreu devido à diminuição da polaridade e aumento da solubilidade em solvente apolar. A LLE/DCM seguida da SPE/DCM foram as extrações que apresentaram os maiores percentuais de área para os benzenodióis. De forma semelhante aos fenóis, com o aumento da cadeia carbônica ocorre a diminuição da polaridade, tendo como consequência o aumento do percentual de área das extrações que utilizam solvente apolar.

A **Figura 10** apresenta de forma resumida a composição majoritária média (cinco compostos majoritários) de cada extrato, para efeito de comparação. Pode-se observar que o maior valor de área percentual foi para o benzenodiol extraído por LLE utilizando a mistura de solventes mais polar (DCM/CHCl₃) quando analisada por GC/qMS.

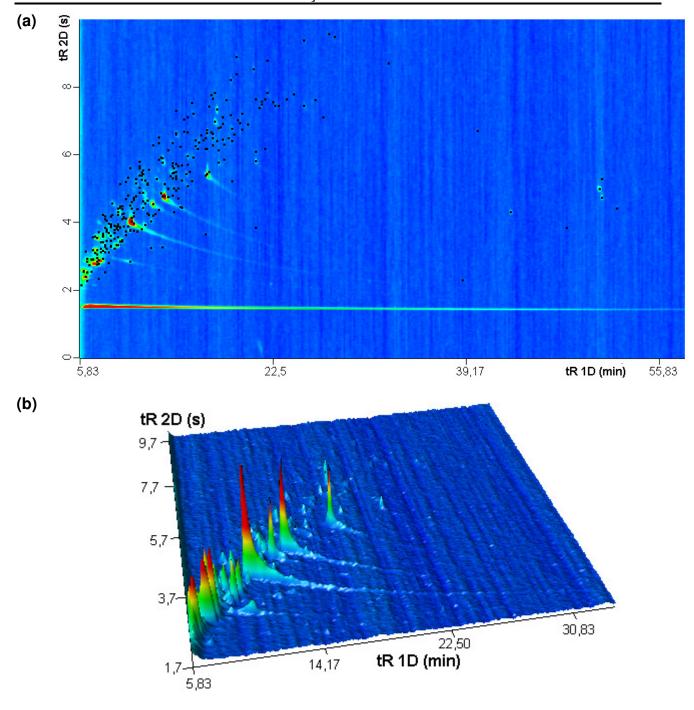
Figura 9. Distribuição e algumas estruturas dos fenóis tentativamente identificados dos extratos da fração aquosa da pirólise da palha de cana-de-açúcar.


Figura 10: Comparação entre a composição majoritária média dos quatro extratos por GC/qMS.

Os extratos obtidos pelos dois métodos de extração aplicados (LLE e SPE) são muito semelhantes. Os dois métodos demonstram certa seletividade em relação à extração de compostos, tanto pelo modo de extração, como através da escolha dos solventes extratores.


A GC/qMS mostrou-se uma técnica eficiente para a análise qualitativa de alguns compostos presentes nos extratos. Entretanto, apresenta algumas co-eluições de compostos e muitos picos não identificados, sendo necessário o uso de uma técnica mais sensível e seletiva, justificando o uso da GC×GC/TOFMS no presente trabalho.

4.2. ANÁLISES POR GC×GC/TOFMS


As **Figuras 11 a 14** apresentam os diagramas de cores dos quatro extratos da LLE/HEX-GC×GC/TOFMS, SPE/HEX-GC×GC/TOFMS, LLE/DCM-GC×GC/TOFMS e SPE/DCM-GC×GC/TOFMS respectivamente. A identificação e semi-quantificação dos compostos em cada Figura estão apresentadas nas **Tabelas A5 a A8**, apresentadas no **Anexo A**, ao final desta Dissertação. Da mesma forma que para a análise monodimensional, e usando os mesmos critérios de identificação, os compostos foram tentativamente identificados com base nas bibliotecas Wiley NBS e NIST de espectros de massas do equipamento e estão listados nas citadas **Tabelas** em ordem de eluição. A semi-quantificação foi feita apenas pela comparação entre áreas relativas (%).

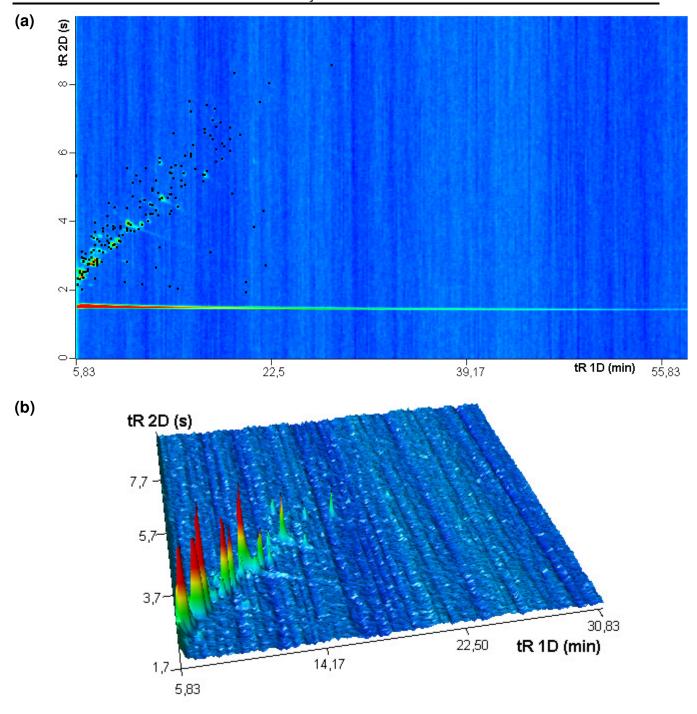

Figura 11: Diagrama de cores para o extrato LLE/HEX-GC×GC/TOFMS: (a) diagrama bidimensional e (b) diagrama tridimensional. *Condições cromatográficas descritas na Tabela II*

Figura 12: Diagrama de cores para o extrato SPE/HEX-GC×GC/TOFMS: (a) diagrama bidimensional e (b) diagrama tridimensional. *Condições cromatográficas descritas na Tabela II*

Figura 13: Diagrama de cores para o extrato LLE/DCM-GC×GC/TOFMS: (a) diagrama bidimensional e (b) diagrama tridimensional. *Condições cromatográficas descritas na Tabela II*

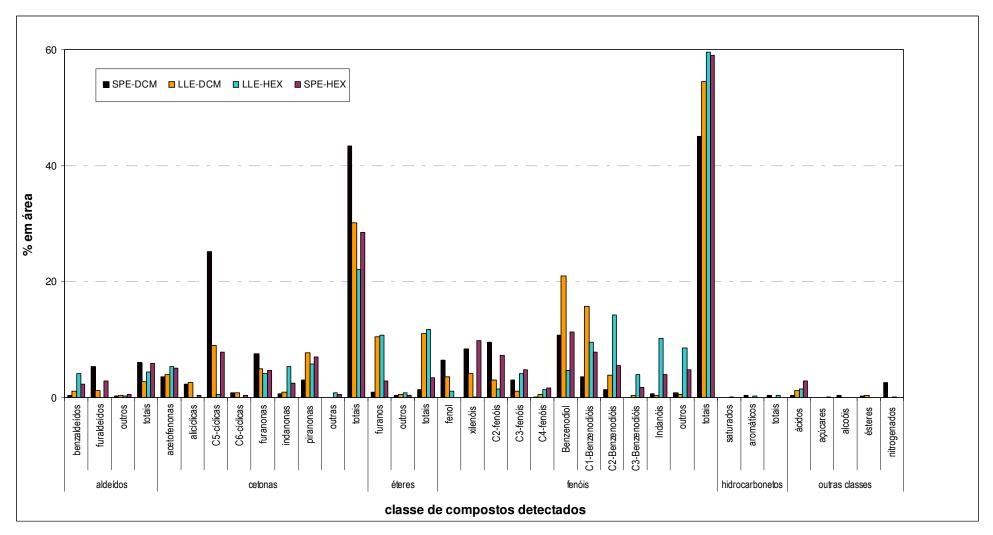


Figura 14: Diagrama de cores para o extrato SPE/DCM-GC×GC/TOFMS: (a) diagrama bidimensional e (b) diagrama tridimensional. *Condições cromatográficas descritas na Tabela II*

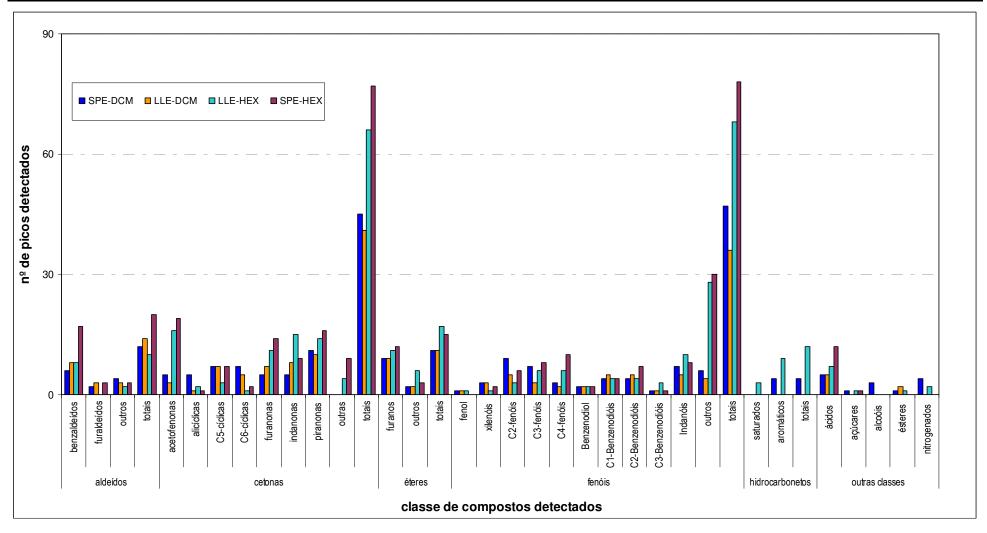

A **Tabela V** apresenta uma comparação dos dados obtidos para os 4 extratos analisados por GC×GC/TOFMS. Os dados apresentados nesta **Tabela** podem ser melhor visualizados nos gráficos apresentados nas **Figuras 15** e **16**.

Tabela V: Distribuição dos compostos majoritários tentativamente identificados nos diversos extratos e suas áreas percentuais e número de picos, encontrados nos 4 extratos estudados por GC×GC/TOFMS.

			% á	rea			Nº de	picos	
classe	famílias	SPE/DCM	LLE/DCM	LLE/HEX	SPE/HEX	SPE/DCM	LLE/DCM	LLE/HEX	SPE/HEX
	benzaldeídos	0,42	1,14	4,12	2,42	6	8	8	17
aldeídos	furaldeídos	5,37	1,24	nd	2,96	2	3	nd	3
alueluos	outros	0,23	0,41	0,28	0,61	4	3	2	3
	totais	6,02	2,79	4,40	5,98	12	14	10	20
	acetofenonas	3,62	3,97	5,40	5,05	5	3	16	19
	alicíclicas	2,41	2,68	0,05	0,37	5	1	2	1
	C5-cíclicas	25,20	9,01	0,58	7,86	7	7	3	7
	C6-cíclicas	0,83	0,79	0,03	0,47	7	5	1	2
cetonas	furanonas	7,60	4,97	4,08	4,75	5	7	11	14
	indanonas	0,73	1,00	5,39	2,53	5	8	15	9
	piranonas	2,98	7,73	5,80	6,99	11	10	14	16
	outras	nd	nd	0,83	0,52	nd	nd	4	9
	totais	43,35	30,15	22,16	28,55	45	41	66	77
	furanos	0,94	10,49	10,82	2,97	9	9	11	12
éteres	outros	0,46	0,53	0,89	0,46	2	2	6	3
	totais	1,40	11,02	11,71	3,43	11	11	17	15
	fenol	6,44	3,62	1,04	nd	1	1	1	nd
	xilenóis	8,46	4,16	0,13	9,87	3	3	1	2
	C2-fenóis	9,58	3,07	1,56	7,28	9	5	3	6
	C3-fenóis	2,99	1,10	4,13	4,79	7	3	6	8
	C4-fenóis	0,16	0,50	1,43	1,65	3	2	6	10
fenóis	Benzenodiol	10,81	21,00	4,76	11,34	2	2	2	2
ienois	C1-Benzenodióis	3,53	15,82	9,52	7,92	4	5	4	4
	C2-Benzenodióis	1,40	3,83	14,28	5,56	4	5	4	7
	C3-Benzenodióis	0,02	0,38	4,07	1,75	1	1	3	1
	Indanóis	0,74	0,39	10,23	3,97	7	5	10	8
	outros	0,90	0,54	8,52	4,86	6	4	28	30
	totais	45,03	54,41	59,65	58,99	47	36	68	78
hidrocarbonetos	saturados	nd	nd	0,13	nd	nd	nd	3	nd
illurocarbonetos	aromáticos	0,41	nd	0,27	nd	4	nd	9	nd
	totais	0,41	nd	0,40	nd	4	nd	12	nd
	ácidos totais	0,42	1,19	1,51	2,95	5	5	7	12
	açúcares totais	0,06	nd	0,05	0,11	1	nd	1	1
outros	alcoóis totais	0,40	nd	nd	nd	3	nd	nd	nd
	ésteres totais	0,25	0,43	0,04	nd	1	2	1	nd
	nitrogenados totais	2,65	nd	0,08	nd	4	nd	2	nd
				-					

Figura 15: Distribuição das classes de compostos identificados para os quatro extratos em estudo, classificando-as de acordo com a área percentual relativa dos compostos em cada classe.

Figura 16: Distribuição das classes de compostos identificados para os quatro extratos em estudo, classificando-as de acordo com o número de picos detectados em cada classe.

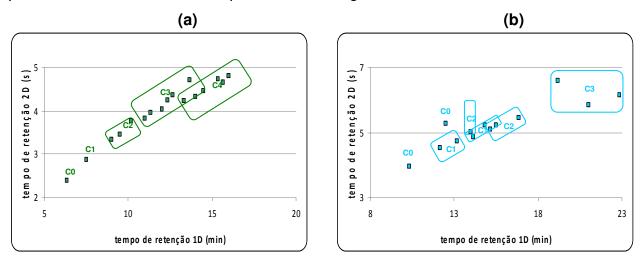
Comparando-se os diagramas de cores obtidos e as tabelas de identificação, é possível observar que as amostras nas quais se empregou o solvente hexano, apresentaram um maior número de compostos identificados, sendo que a técnica de SPE foi um pouco superior a LLE (203 e 184 compostos tentativamente identificados, respectivamente) (Figuras 11 e 12). Com relação ao emprego dos solventes DCM e CHCl₃ (Figuras 13 e 14) pode-se verificar que foram menos eficientes do que o hexano em termos de número de compostos tentativamente identificados (109 para a técnica de LLE e 133 para a técnica de SPE).

De acordo com a **Tabela V**, as principais classes de compostos identificados foram cetonas e fenóis, baseados no número de compostos identificados e nas áreas relativas dos mesmos, entretanto, as classes com maior área % obtida pela semi-quantificação não apresentaram, necessariamente, um maior número de compostos extraídos. O que pode ser justificado pela seletividade das técnicas empregadas. Por exemplo, as C1-ciclopentenonas foram extraídas em todos os extratos, porém, a técnica de SPE foi mais seletiva para estes compostos com o extrato SPE/DCM apresentando % em área maior (4,67 %) do que a área obtida por SPE/HEX (2,24 %). A LLE, por sua vez, extraiu menos seletivamente estes compostos para os dois solventes estudados, com área % de 2,01 % para DCM e 0,50 % para HEX. Outros casos, como para o fenol, houve uma seletividade bem mais diferenciada, tendo inclusive ausência deste composto no extrato SPE/HEX.

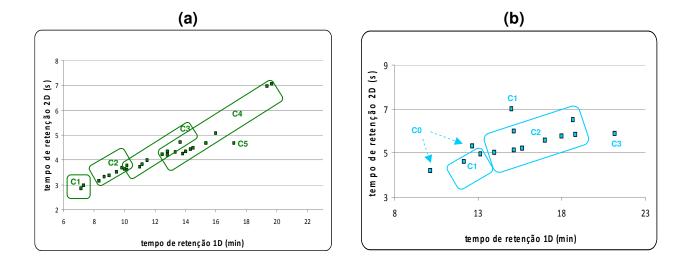
Comparando-se as técnicas de extração utilizadas, verificou-se que o emprego da SPE/HEX foi mais eficiente no que se refere a maior diversidade de compostos extraídos (206 compostos no total) para todas as classes. O solvente hexano apresentou resultados melhores também sob este aspecto se comparado ao diclorometano e clorofórmio, considerando os dois processos de extração utilizados.

Para as cetonas, observou-se que a maior parte destas são cíclicas, com um percentual menor para cetonas alicíclicas. As acetofenonas também foram encontradas em proporção variando de 3,62 % para o extrato SPE/DCM a 5,40 para o extrato LLE/HEX. Entre as cetonas cíclicas destacaram-se as ciclopentenonas, em especial para os extratos extraídos com diclorometano, com destaque para a extração por SPE com 25,20% destes compostos em termos de área percentual, correspondendo a 7 diferentes congêneres. As mesmas 7 ciclopentenonas foram extraídas com este solvente por LLE, porém com área percentual consideravelmente menor (9,01 %). Diferença maior ocorreu com o solvente hexano onde apenas 0,58 % de área corresponderam a ciclopentenonas (3 compostos) para o extrato por LLE enquanto para o extrato por SPE com este mesmo solvente, a área relativa das ciclopentenonas foi de 7,86 %.

As demais cetonas cíclicas dividiram-se em furanonas, piranonas e indanonas, sendo que as primeiras devem ser classificadas mais corretamente como lactonas. Também entre estas ocorreram pequenas diferenças de seletividade tanto no que se refere ao solvente como em relação ao método de extração.

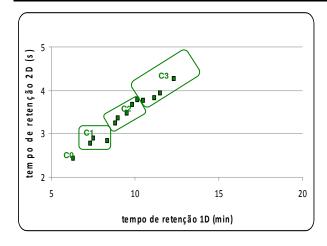

Para os fenóis os resultados não apresentaram diferenças significativas quanto ao percentual em área para os diferentes solventes e métodos de extração, mas considerando-se o número de compostos extraídos pode-se verificar que o solvente hexano foi mais abrangente, especialmente usando a técnica SPE, com 78 compostos extraídos no extrato SPE/HEX e 68 compostos no extrato LLE/HEX.

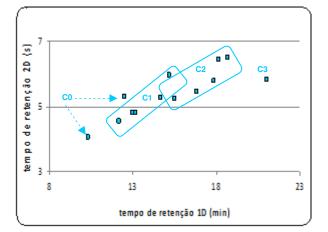
Os ácidos carboxílicos também seguem o mesmo perfil, indicando a maior heterogeneidade da amostra extraída com hexano e pela técnica de SPE. Os éteres foram preferencialmente extraídos por extração líquido-líquido, com resultados similares para DCM e HEX, sendo que estes compostos não foram identificados quando empregouse a SPE na análise por GC/qMS. Este é provavelmente um caso típico de co-eluição com outro composto na Cromatografia Gasosa Monodimensional, gerando um espectro impossível de ser identificado. Por GC/qMs os éteres foram percebidos somente nos extratos em que se utilizou a extração líquido-líquido.

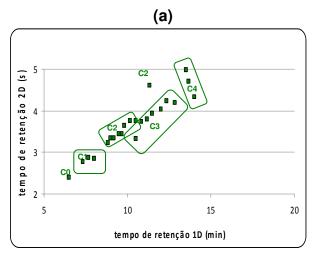

Os aldeídos apresentam maior percentual de área usando a técnica de SPE, independente do solvente escolhido, sendo os derivados do furfural majoritários. A LLE/HEX foi o método mais eficiente para a extração da vanilina. A vanilina é um composto derivado do eugenol, muito empregada na indústria como aromatizante e também em produtos farmacêuticos 82. Ésteres, hidrocarbonetos e compostos nitrogenados apareceram de forma aleatória nas sub-amostras e em quantidades muito pequenas, em nível de traços, independente da técnica e do solvente utilizado.

Uma maneira mais didática de verificar a distribuição dos compostos no espaço bidimensional e que demonstra de forma inequívoca a grande vantagem da GC×GC é a análise das diferentes famílias de forma isolada, com uma classificação lógica entre os congêneres. Esta análise pode ser feita usando-se o programa Excel (Microsoft®) e com este cosntruir gráficos de dispersão que contenham os valores de tempo de retenção na primeira e na segunda dimensão para cada classe de compostos tentativamente identificados e para cada extrato estudado. O **Anexo B** apresenta os gráficos para esta distribuição de compostos em cada extrato, a exceção dos alquil fenóis e benzenodióis, compostos majoritários, cujos gráficos podem ser vistos nas **Figuras 17** a **20** apresentadas a seguir.

Observa-se uma clara estruturação espacial de acordo com o número de carbonos tanto para os alquil fenóis (C0 – não alquilado -, C1, C2, C3, C4 e C5 fenóis) quanto para os alquil benzenodióis (C0 – não alquilado -, C1, C2 e C3 benzenodióis). Verifica-se também que apenas dois isômeros do benzenodiol não substituído (C0-benzenodiol) aparecem nas amostras e pelas Tabelas apresentadas no anexo, um destes isômeros, que provavelmente é o catecol (1,2 benzenodiol) é francamente majoritário em todas as amostras. Por não trabalharmos com padrões nesta etapa, optamos por não identificar positivamente o isômero mas apenas a fórmula geral do mesmo.




Figura 17: Distribuição dos alquil fenóis (a) e benzenodióis (b) no extrato LLE/HEX-GC×GC/TOFMS.


Figura 18: Distribuição dos alquil fenóis (a) e benzenodióis (b) no extrato SPE/HEX-GC×GC/TOFMS.

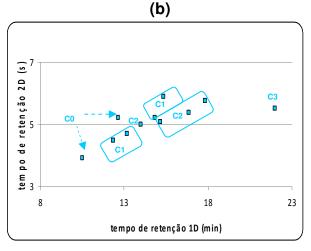
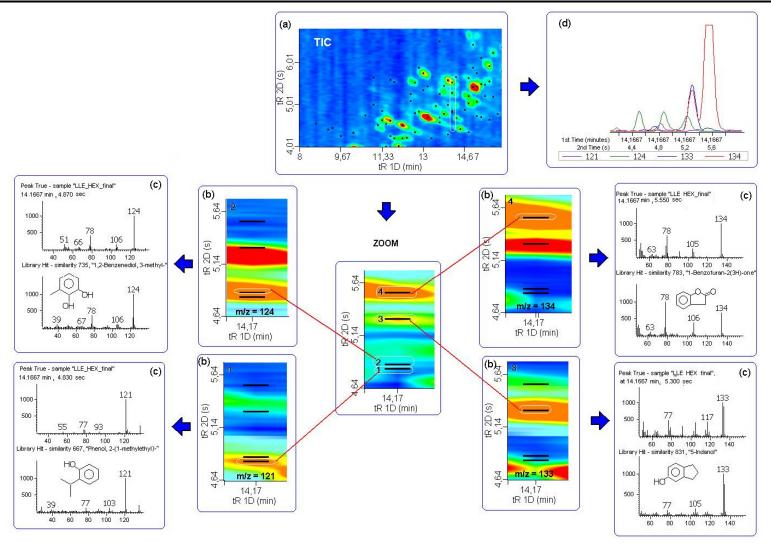

(a) (b)

Figura 19: Distribuição dos alquil fenóis (a) e benzenodióis (b) no extrato LLE/DCM-GC×GC/TOFMS.

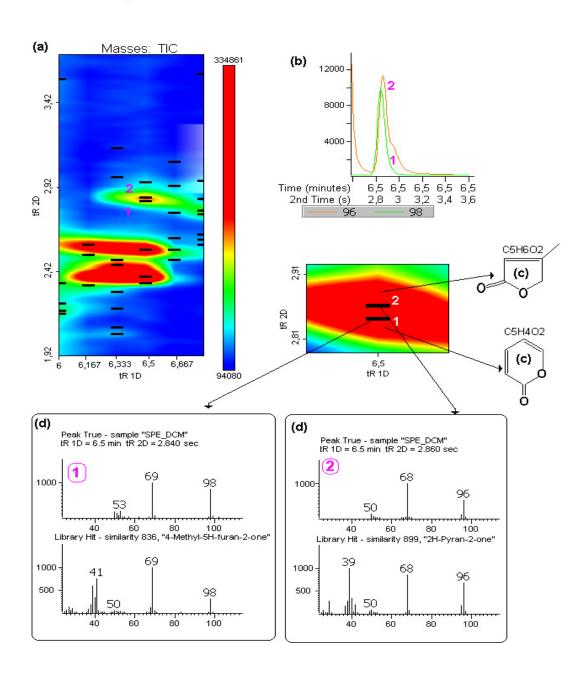
Figura 20: Distribuição dos alquil fenóis (a) e benzenodióis (b) no extrato SPE/DCM-GC×GC/TOFMS.

A estruturação dos picos cromatográficos dos alqui fenóis ocorre de forma mais ordenada que dos benzenodióis exatamente por existirem 3 possíveis isômeros do benzenodiol não alquilado (orto, meta e para), com um conjunto de tempos de retenção na primeira e na segunda dimensão bastante diferentes, o que aumenta a possibilidade de ocorrência de diferentes isômeros dos derivados alquilados. A separação/identificação de fenóis e benzenodióis é de fundamental importância, uma vez que os fenóis, quando isolados, podem ser empregados como desinfetantes, pesticidas, corantes, etc ⁶². Já os benzenodióis, por sua vez, além de aplicações como solventes industriais ²¹, podem ser utilizados como medicamento de uso tópico ⁶⁶.


4.3 COMPARAÇÃO DOS RESULTADOS OBTIDOS POR GC/gMS e GC×GC/TOFMS

Analisando-se os resultados até aqui apresentados, fica evidente a superioridade analítica da técnica GC×GC, tanto no que se refere ao número de compostos identificados, área percentual de cada composto, área total identificada e também sensibilidade para detecção de traços. Algumas classes de compostos sequer foram detectadas por GC/qMS, como nitrogenados, alcoóis, hidrocarbonetos e ésteres. Outros compostos tiveram diferenças consideráveis na área percentual e também no número de potenciais isômeros presentes na amostra original.

Muitas das identificações feitas por GC×GC que não foram possíveis na análise monodimensional podem ser facilmente explicadas pela ocorrência de co-eluição, como pode ser visualizado nas duas figuras a seguir.

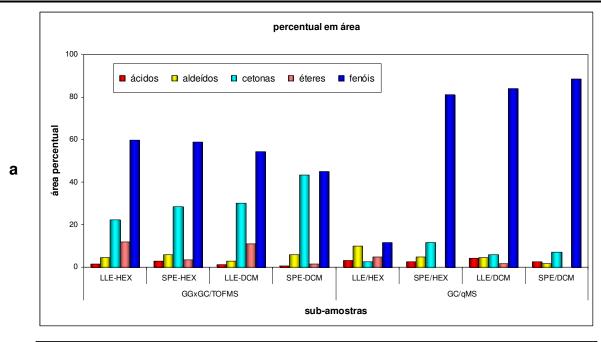

A **Figura 21** apresenta a deconvolução espectral para o extrato LLE/HEX. Percebese nesta figura que pelo menos 4 compostos diferentes com espectros perfeitamente definidos, coeluíriam na primeira dimensão (${}^{1}t_{R}=14,17$ min) mas são perfeitamente separados na segunda dimensão: 3 fenóis (C3-fenol – ${}^{2}t_{R}=4,83$ s C1-benzenodiol – ${}^{2}t_{R}=4,87$ s e indanol – ${}^{2}t_{R}=5,30$ s) e uma cetona (benzofuranona – ${}^{2}t_{R}=5,55$ s).

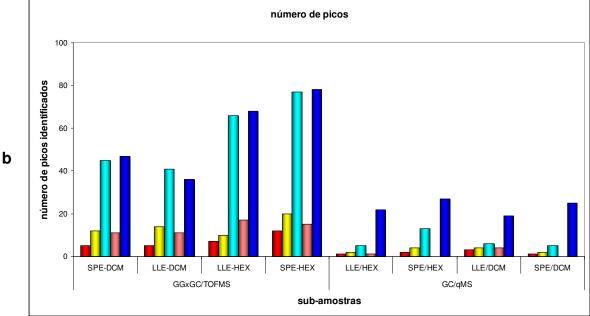
Nesta Figura tem-se uma ampliação de parte do diagrama de cores do extrato LLE/HEX usando o modo do cromatograma do íon total, os diagramas de íons selecionado usando um íon majoritário de cada composto, os espectros de cada pico e do respectivo padrão da biblioteca do equipamento, além do cromatograma reconstruído monitorando os íons selecionados.

Figura 21: Deconvolução espectral para os picos encontrados no ${}^{1}t_{R} = 14,17$ min para o extrato proveniente da LLE-HEX-GC×GC/TOFMS. (a) cromatograma da corrente iônica total, (b) partes de diagramas de cores de íons selecionados, (c) espectros de massas cada pico e do respectivo padrão da biblioteca do GC×GC/TOFMS; (d) cromatograma reconstruído monitorando os íons selecionados.

A **Figura 22** ilustra outro caso interessante de co-eluição na primeira dimensão com separação na segunda dimensão para duas cetonas (lactonas) muito semelhantes: a C1-furanona ($C_5H_6O_2$) e a piranona ($C_5H_4O_2$) cujos tempos de retenção são 6,5 min (na primeira dimensão) e 2,84 e 2,86 s (na segunda dimensão, respectivamente), na amostra SPE-DCM.

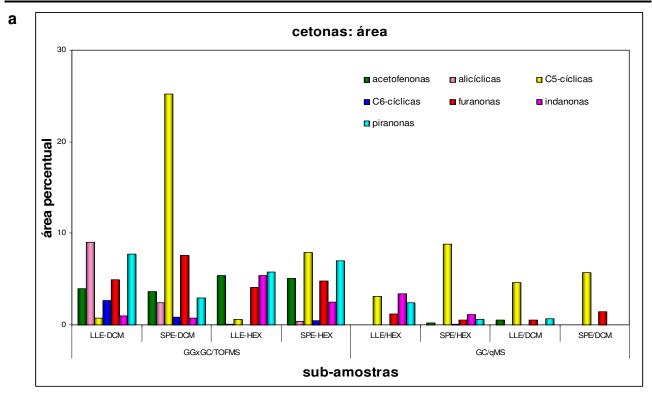
Figura 22: Deconvolução espectral para dois picos de cetonas no tempo de retenção de 6,5 min na primeira dimensão para o extrato proveniente da SPE-DCM-GC×GC/TOFMS. (a) parte do diagrama de corrente iônica total, (b) cromatograma reconstruído, monitorando os íons selecionados, (c) fórmula estrutural das duas cetonas e (d) espectros de cada pico e do respectivo padrão da biblioteca do GC×GC/TOFMS.


A pequena diferença de tempos de retenção na segunda dimensão, devido, principalmente à grande semelhança nas estruturas, dificulta bastante esta separação, valorizando muito a seletividade do sistema GC×GC/TOFMS devida ao detector. Casos semelhantes ao apresentado como ilustração nestas figuras foram observados nas demais sub-amostras, como pode ser verificado pela grade quantidade de picos com mesmo tempo de retenção na primeira dimensão e diferentes tempos na segunda dimensão, nas **Tabelas A5,A6, A7** e **A8**.


O maior poder de separação e identificação de compostos da GC×GC/TOFMS frente à GC/qMS já está bem fundamentado na literatura ^{53,56,57} e não constitui uma inovação neste trabalho. Entretanto, o fato de identificar e informar as possíveis coeluições que podem ocorrer na GC/qMS e as separações obtidas na GC×GC para o extrato aquoso de bio-óleo da palha de cana-de-açúcar em estudo é de fundamental importância já que não há relatos de trabalhos caracterizando este tipo de matriz.

A Figura 23 apresenta uma comparação quanto à distribuição das classes de compostos identificados nas sub-amostras pelas duas técnicas de análise, enquanto as Figuras 24 e 25 apresentam a distribuição das cetonas e dos fenóis, compostos majoritários, respectivamente, nas sub-amostras estudadas pelas duas técnicas.

Percebe-se que, na análise monodimensional, tem-se uma grande diferença no número de picos identificados e também que há uma seletividade diferenciada. Em geral as amostras apresentaram grande quantidade de fenóis e quantidades bem menores das outras classes de compostos, mesmo as cetonas que foram também majoritárias nos resultados obtidos por análise bidimensional.


Entre as cetonas, a classe que apresentou maior área percentual e também maior número de isômeros foi a classe das ciclopentenonas, enquanto nos fenóis os congêneres do benzenodiol foram majoritários.

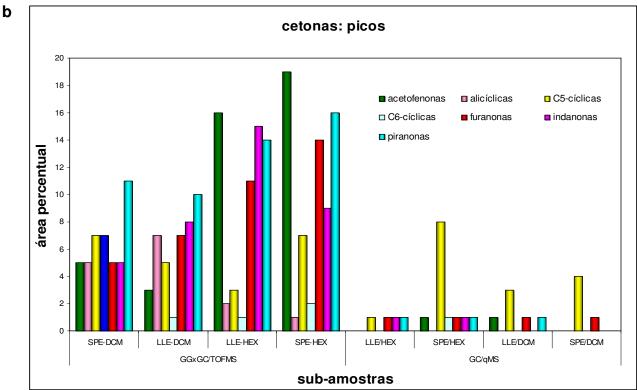
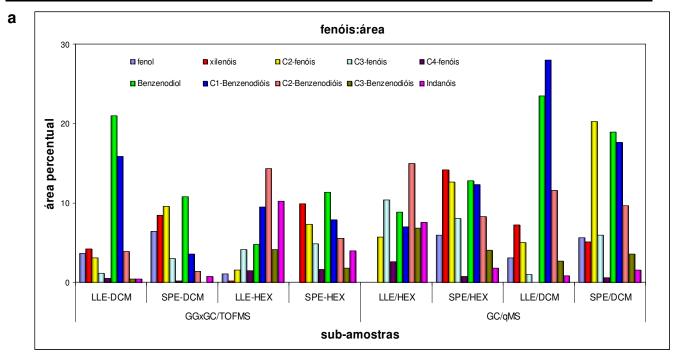


Figura 23: Distribuição das classes de compostos nos extratos, usando-se as duas técnicas analíticas (GC/qMS e GC×GC/TOFMS). (a) distribuição em relação ao percentual de áreas e (b) distribuição em número de picos identificados.


Entre as cetonas, verificou-se que não foram detectadas cetonas alicíclicas e ciclohexenonas na técnica de GC/qMS, enquanto que as furanonas, piranonas, indanonas e acetofenonas apareceram em baixas concentrações nesta técnica.

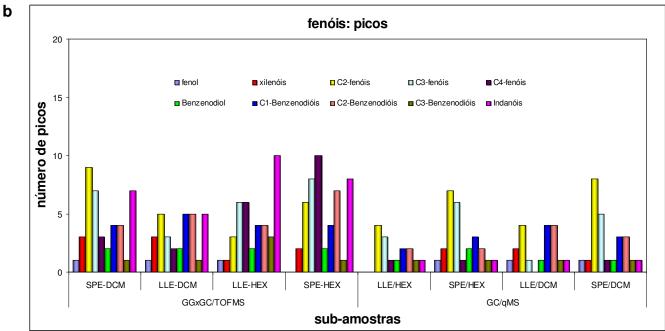


Figura 24: Distribuição das cetonas nos extratos e usando as duas técnicas analíticas (GC/qMS e GC×GC/TOFMS). (a) distribuição em relação ao percentual de áreas e (b) distribuição em número de picos identificados.

Os fenóis, entretanto, por serem absolutamente majoritários na amostra, foram detectados em todas as sub-amostras e usando as duas técnicas analíticas.

Figura 25: Distribuição dos fenóis nos extratos e usando as duas técnicas analíticas (GC/qMS e GC×GC/TOFMS). (a) distribuição em relação ao percentual de áreas e (b) distribuição em número de picos identificados.

De forma resumida pode-se dizer que a técnica GC×GC é a mais adequada para uma varredura completa na composição das amostras devido ao seu maior poder de resolução e separação de compostos.

Dissertação de Mestrado	
	CONCLUSÕES

5. CONCLUSÕES

Através das análises cromatográficas foram identificados compostos oxigenados como ácidos, fenóis, aldeídos e cetonas nos extratos obtidos pelos dois métodos, com muita semelhança entre os extratos. Quanto ao desempenho das técnicas, os dois métodos mostraram-se similares, extraindo aproximadamente os mesmos compostos em cada um. Os extratos apresentaram maior número de compostos quando extraídos com a mistura de maior polaridade (DCM/CHCl₃), quando foram tentativamente identificados por GC/qMS.

Das classes de compostos identificadas, os fenólicos foram os majoritários em todos os extratos analisados, indicando a possibilidade de uso desta amostra como fonte de matéria prima fenólica para a indústria.

A GC/qMS mostrou-se uma técnica eficiente para a análise qualitativa de alguns compostos presentes na fração aquosa da pirólise da palha de cana. Entretanto, esta técnica ainda apresenta algumas co-eluições de compostos com o mesmo tempo de retenção, inviabilizando a separação e a identificação tentativa de um grande número de compostos, fazendo-se necessário o uso de uma técnica cromatográfica com maior resolução espectral, mais sensível e seletiva, como por exemplo, a GCxGC/TOFMS.

O emprego da GCxGC/TOFMS neste trabalho, permitiu a identificação tentativa de um número de compostos superior a GC/qMS. Além disso, foi possível a separação de vários compostos na ²D, os quais estavam co-eluindo na análise por GC/qMS.

A técnica SPE com a utilização do solvente hexano foi a que apresentou os melhores resultados em termos de área percentual para os compostos orgânicos presentes na fração aquosa proveniente da pirólise da cana-de-açúcar quando analisado por GCxGC/TOFMS. No entanto, percebe-se uma certa seletividade de compostos frente ao uso de determinado solvente. Desta forma, pode-se sugerir o uso dos três solventes em série para a eluição ou extração dos constituintes por LLE ou SPE.

Quanto ao processo de pirólise, pode-se concluir que o mesmo produz um rejeito aquoso que ainda pode resultar em um grande número de importantes matérias primas, em especial os fenóis, que podem se constituir em insumos para a indústria química mas que, se não forem adequadamente tratado implica em grande impacto ambiental.

Dissertação de Mestrado	
SUGESTÕES PARA TRABALHOS FI	JTUROS
Gabriela Pereira da Silva Maciel	57

6. SUGESTÕES PARA TRABALHOS FUTUROS

- Identificação e quantificação dos compostos majoritários (fenóis e cetonas) através de GC/qMS (operando no modo SIM) e usando padrões cromatográficos;
- Identificação positiva por GCxGC/TOFMS dos compostos majoritários com injeção de padrões cromatográficos;
- Aplicação de técnicas miniaturizadas de extração como, por exemplo, o uso de microextração em fase sólida (SPME, do inglês *Solid Phase Micro Extraction*) e microextração líquido-líquido (LLME, do inglês *Liquid Liquid Micro Extraction*).
- Eluição seqüencial dos analitos utilizando hexano, diclorometano e clorofórmio para obtenção de um único extrato e comparação da melhor técnica de extração.
- Uso de novas fases estacionárias para a extração seletiva de alguns compostos via SPE, como por exemplo fases trocadoras de íons.
- Aplicação da técnica de GC×GC/qMS usando o modo SIM, para a quantificação de compostos presentes na amostra original.
- Uso da GC×GC com um conjunto inverso de colunas para verificar a possibilidade de melhor separar aldeídos, fenóis e cetonas nos extratos.

Dissertação de Mestrado
REFERENCIAS BIBLIOGRÁFICAS
REFERENCIAS BIBLIOGRÁFICAS Gabriela Pereira da Silva Maciel 59

7. REFERÊNCIAS BIBLIOGRÁFICAS

- 1. Z. Ji-lu, W.Wei-Ming, W. Na-na, En. Conv. Manag. 49 (2008) 1724-1730.
- 2. N. Ozbay, E. Apaydın-Varol, B.B. Uzun, A.E. Putun, *Energy* 33 (2008) 1233–1240.
- 3. Z. Xinghua, W. Tiejun, M. Longlong, W. Chuangzhi, Fuel 89 (2010) 2697–2702.
- 4. J. Goldemberg, Quim. Nova 32 (2009) 582-587.
- 5. M.A. Teixeira, Biom. Bioenergy 32 (2008) 857-864.
- 6. J. Goldemberg, S. T. Coelho, P. Guardabassi, Energy Policy 36 (2008) 2086–2097.
- 7. T.C.C. Ripoli, M.L.C. Ripoli, Rivista di Ingegneria Agraria 32 (2001) 202-210.
- 8. D.D. Das, M.I. Schnitzer, C.M. Monreal, P. Mayer, *Biores. Technol.* 100 (2009) 6524–6532.
- 9. Q. Lu, L. Wen-Zhi, Z. Xi-Feng, En. Conv. Manag. 50 (2009) 1376-1383.
- M.K. Bahng, C. Mukarakate, D.J. Robichaud, M.R. Nimlos, *Anal. Chim. Acta* 651 (2009) 117–138.
- 11. H. Li, Q. Xu, H. Xue, Y. Yan, *Renew. Energy* 34 (2009) 2872–2877.
- 12. N. Li, H. K. Lee, Anal. Chem. 69 (1997) 5193-5199.
- 13. F. Galembeck, S.A.C. Barbosa, A. Sousa, Quim. Nova 32 (2009) 571-581.
- 14. D. Ozçimen, A. Ersoy-Meriçboyu, *Renew. Energy* 35 (2010) 1319–1324.
- 15. Q. Lu, W.M. Xiong, W.Z Li, Q.X. Guo, X.F. Zhu, X-F, *Biores. Technol.* 100 (2009) 4871–4876.
- 16. D.K. Shen, S. Gu, K.H. Luo, S.R. Wang, M.X. Fang, *Biores. Technol.* 101 (2010) 6136–6146.
- 17. J. Xu, J. Jiang, Y. Sun, Y. Lu, *Biom. Bioenergy* 32 (2008) 1056–1061.
- L. Ingram, D. Mohan, M. Bricka, P. Steele, D. Strobel, D. Crocker, B. Mitchell, J. Mohammad, K. Cantrell, U.C Pittman Jr., *Energy Fuels* 22 (2008) 614–625.
- 19. G.M Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, *Biom. Bioenergy* 31 (2007) 222–242.
- 20. J. Chumpoo, P. Prasassarakich, Energy Fuels (2010) 2071–2077.
- 21. R. Subramanyam, I.M. Mishra, *Biores. Technol.* 99 (2008) 4147–4157.
- 22. A. Demirbas, *Applied Energy* 88 (2011) 17–28.
- 23. A.V. Bridgwater, Therm. Sci. 8 (2004) 21-49.

- 24. J.A. Medrano, M. Oliva, J. Ruiz, L. García, J. Arauzo, Energy 36 (2011) 2215-2224.
- 25. C. R. Vitasari, G. W. Meindersma, A. B. de Haan, *Biores. Technol.* 102 (2011) 7204–7210.
- 26. G.W. Huber, J.A. Dumesic, *Catal Today* 111 (2006) 119–132.
- C. L. B. Guedes, D.C. Adão, T.P. Quessada, D. Borsato, O. F. Galão, E. Di Mauro, J. M. M. Pérez, J. D. Rocha, *Quim. Nova* 33 (2010) 781–786.
- 28. R. Xu, L. Ferrante, C. Briens, F. Berruti, Journal Analytical and Applied Pyrolysis 91 (2011) 263–272.
- 29. C.M. Santana, Z.S. Ferrera, E.T. Padrón, J.J. Santana-Rodríguez, *Molecules* 14 (2009) 298–320.
- 30. F. M. Lanças, *Extração em Fase Sólida (SPE)*, Ed. RiMa (2004).
- 31. C. G. A. da Silva, C. H. Collins, Quim. Nova 34 (2011) 665-676.
- 32. E. De Marco, M. Savarese, A. Paduano, R. Sacchi, Food Chem. 104 (2007) 858-867.
- 33. J. Yanik, C. Kornmayer, M. Saglam, M. Yüksel, Fuel Proc. Technol. 88 (2007) 942–947.
- 34. E. C. Oliveira, M.C. R. Peralba, E. B. Caramão, J. Sep. Sci. 25 (2002) 356-360.
- 35. D. Fabbri, A. Adamiano, C. Torri, *Anal. Bioanal. Chem.* (2010) 397, 309–317.
- 36. L.M.C. Rebouças, A.R. Sabino, F.A.R. Nogueira, O.R.P. Araújo, A. E.G. Sant'Ana, trabalho apresentado durante o 4º PDPETRO, Campinas, SP (2007)
- 37. Q.Z. Yu, C. Brage, G.X. Chen, K. Sjöström, *Fuel* 86 (2007) 611–618.
- 38. I. Rodríguez, M.P. Llompart, R. Cela, J. Chrom. A 885 (2000) 291-304.
- 39. H.S. Choi, Journal of Agricultural and Food Chemistry 52 (2004), 8099–8104.
- 40. E. E. Stashenko, B. E. Jaramillo, J. R. Martinez, *J. Chrom. A* 1025 (2004) 93-103.
- 41. S. Ruffinengo, M. Eguaras, I. Floris, C. Faverin, P. Bailac, M. Ponzi, *Journal of Economic Entomology* 95 (2005) 651–655.
- 42. R. Shellie, P. Marriott, C. Cornwell, Journal Sep Science 24 (2001) 823-830.
- 43. C. H. Collins, G. L. Braga, P. S. Bonato, *Fundamentos de Cromatografia*, Ed. Unicamp (2006).
- 44. D.A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, *Fundamentos de Química Analítica*, Ed. Cengage Learning, Tradução da 8ª ed. Norte-americana (2004).
- 45. R. M. Silverstein, F. X. Webster, D. J. Kiemle, *Identificação espectométrica de compostos orgânicos*, Ed. LTC, 7ª ed. (2007).

- 46. R. Shellie, P. J. Marriott, Flavour and Fragrance Journal 18 (2003), 179-191.
- 47. M. Adahchour, J. Beens, R. J. J. Vreuls, A. M. Batenburg, E. A. E.Rosing, U. A. Th. Brinkman, *Chromatographia* 55 (2002) 361–367.
- 48. G. Flamini, P. L. Cioni, I. Morelli, *Food Chemistry* 91 (2005) 63-68.
- 49. Y. Shao, P. Marriott, R. Shellie, H. Hügel, Flavour and Fragrance Journal 18 (2002) 12.
- 50. A. P. Murray, M. A. Frontera, M. A. Tomas, M. C. Mulet, *Verlag der Zeitschrift für Naturforschung* 60 (2005) 25–29.
- 51. J. Wu, X. Lu, T. Wanying, H. Kong, S. Zhou, G. Xu, J. Chrom. A 1034 (2004) 199-205.
- 52. R. Shellie, P. Marriott, P. Morrison, J. Chrom. Sci.42 (2004) 417-422.
- 53. Z. Liu, J.B. Phillips, J. Chrom. Sci 29 (1991) 227.
- 54. X. Lu, M. Zhao, H. Kong, J. Cai, J. Wu, M. Wu, R. Hua, J. Liu, G. Xu, J. Chromatogr. A 1043 (2004) 265.
- 55. M. Kallio, T. Hyötyläinen, M. Lehtonen, M. Jussila, K. Hartonen, M. Shimmo, M.L. Riekkola, *J. Chrom. A* 1019 (2003) 251.
- 56. M. Moeder, C. Martin, D. Schlosser, J. Harynuk, T. Górecki, *J. Chrom. A* 1107 (2006) 233.
- 57. J. Dalluge, J. Beens, U. A. Th. Brinkman, J. Chrom. A 1000 (2003) 69.
- 58. J. M. Dimandja, S. B. Stanfill, J. Grainger, D. G. Paterson Jr, *Journal High Resolution Chromatography* 23 (2000) 208–214.
- 59. R. Shellie, P. J. Marriott, *Analytical Chemistry* 74 (2002), 5426–5430.
- 60. C. Deng, N. Li, X. Zhang, J. Chrom. A 1059 (2004) 149-155.
- 61. J. Dallüge, R. J. J. Vreuls, J. Beens, U. A. Th. Brinkman, J. Sep. Sci. 25 (2002) 201.
- 62. J.M. Britto, M.C. Rangel, Quim. Nova 31 (2008) 114-122.
- 63. J. MC Murry, *Química Orgânica*, Vol.2, Tradução da 6ª ed. Norte-americana, Ed. Pioneira Thomson Learning (2005) São Paulo.
- 64. H. Fiege, Cresols and Xylenols. In: Ullmann's Encyclopedia of Industrial Chemistry, 7th ed, VCH, Weinheim (2005).
- 65. Y. Kong, X. Chen, W. Wang, Z. Chen, Anal. Chim. Acta 688 (2011) 203-207.
- 66. J. Whysner, L. Verna, J. C. English, G. M. Williams, *Regulatory Toxicology and Pharmacology* 21 (1995) 158–176.
- 67. C. B. Hebeda, S. M. D. Macedo, D. M. H. Cavalcanti, J. M. C. Ferreira Jr., G. T. Souza, S. R. Almeida, S. Farsky, *Toxicology Letters 189S (2009) S257–S273.*

- 68. H. Jianhan, Journal of Applied Polymer Science 121 (2011) 3717-3723.
- 69. M. Gomes, A. Gandini, A. J. D. Silvestre, Jornal of Polymer Science Part A-Polymer Chemistry 49 (2011) 3759–3768.
- 70. Mitsui Petrochem Ind co Ltda (MITC-C), Patente nº JP87005416-B2 ; JP56073048-A ; JP87005416-B.
- 71. M. Asmadi, H. Kawamoto, S. Saka, Journal Analytical and Applied Pyrolysis 92 (2011) 76–87.
- 72. R. N. Mirrington, G. I. Feutrill, *Orcinol Monomethyl Ether*, Organic Syntheses Collected Volume 6 (1988).
- 73. C. F. H. Allen, J. W. Gates, Jr., *o-Eugenol*, Organic Syntheses Collected Volume 3 (1955).
- 74. C. J. Emmett, P. A. McNeeley, R. M. Johnson, Neurochem. Int. 30 (1997) 365-474.
- 75. S. A. Al-Bataineh, L. G. Britcher, H. J. Griesser, Surface Science 600 (2006) 952–962.
- L. C. A. Barbosa, C. R. A. Maltha, A. J. Demuner, P. F. Pinheiro, J. O. S. Varejão, R. M. Montanari, N. J. Andrade, *Quim. Nova* 33 (2010) 2020–2026.
- 77. R. Surmont, G. Verniest, N. De Kimpe, J. Org. Chem. 75 (2010) 5750-5753.
- J. A. McKie, S. S. Bhagwat, H. Brady, M. Doubleday, L. Gayo, M. Hickman, R. K. Jalluri, S. Khammungkhune, A. Kois, D. Mortensen, N. Richard, J. Sapienza, G. Shevlin, B. Steinb, M. Sutherland, *Bioorganic & Medicinal Chemistry Letters* 14 (2004) 3407–3410.
- 79. R. Schiller, L. Tichotova, J. Pavlik, V. Buchta, B. Melichar, I. Votruba, J. Kuneš, M. Špulak, M. Pour, *Bioorganic & Medicinal Chemistry Letters* 20 (2010) 7358–7360.
- 80. Ö. Aydogan, E. Bayraktar, Ü. Mehmetoglu, *Journal of Molecular Catalysis B*: *Enzymatic* 72 (2011) 46–52.
- 81. J. A. R. Rodrigues, P. J. S. Moran, Quim. Nova 24 (2001) 893-897.
- 82. T. Diao, S. S. Stahl, J. Am. Chem. Soc. 133 (2011) 14566–14569.
- 83. A. A. Craveiro, D. C. de Queiroz, Quim. Nova 16 (1993) 224-228.
- 84. D. Tin Win, AU J.T. 8 (2005) 185–190.
- 85. P. Lanzafamea, D.M. Temi, S. Perathoner, G. Centi, A. Macario, A. Aloise, G. Giordano, *Catalysis Today* 175 (2011) 435–441.
- 86. Q. Li, L. K. M. Lam, L. Xun, Biodegradation 22 (2011) 1215-1225.
- 87. N. Shirasu, T. Onoder, K. Nagatomo, Y. Shimohigashi, K. Toko, K. Matsumoto, *Analytical Sciences* 25 (2009) 1095–1100.
- 88. Z. Yuan, B. Chen, J. Zhao, Chemical Engineering Science 66 (2011) 5137–5147.
- 89. T. Montagnon, M. Tofi, G. Vassilikogiannakis, Acc. Chem. Res. 41(2008)1001–1011.

- 90. A. Gandini, A. J. D. Silvestre, C. P. Neto, A. F. Sousa, M. J. Gomes, *Polym. Sci., Part A: Polym. Chem.* 47 (2009) 295–298.
- 91. P. A. Peart, J. D. Tovar, *Macromolecules* 42 (2009) 4449–4455.
- 92. T. Umeyama, T. Takamatsu, N. Tezuka, Y. Matano, Y. Araki, T. Wada, O. Yoshikawa, T. Sagawa, S. Yoshikawa, H. Imahori, J. Phys, *Chem. C* 113 (2009) 10798–10806.
- 93 J. Burken, Solubility Parameters: Theory and Application, The American Institute for Conservation, disponível em http://cool.conservation-us.org/coolaic/sg/bpg/annual/v03/bp03-04.html, acessada em 28 de fevereiro de 2012.
- 94. L. J. Fitzpatrick, J. R. Dean, Anal. Chem. 74 (2002) 74-79.
- 95 R. D. Villa, A. P. de Oliveira, R. F. P. Nogueira, Quim. Nova, 34 (2011) 1501-1506.
- 96. C. Reichardt. Solvents and Solvent Effects in Organic Chemistry, 2nd edn. VCH Weinheim, (1990).
- 97. J. L. M. Abboud, R. Notario, *Pure Appl. Chem.* 71 (1999) 645–718.
- 98. A. Barton, *Handbook of Solubility Parameters and Other Cohesion Parameters*, 2⁸ ed. CRC Press: New York (1991) 157–193.
- 99. D.A. De Almeida, S. Lacorte, T. Vinhas, P. Viana, D. Barceló, *J. Chrom. A* 879 (2000) 13–26.

ANEXO A:

TABELAS DE IDENTIFICAÇÃO TENTATIVA DOS COMPOSTOS NOS EXTRATOS OBTIDOS POR DIFERENTES TÉCNICAS DE EXTRAÇÃO

OBSERVAÇÃO: A distribuição dos compostos em classes químicas favorece a identificação e também a comparação entre os diferentes compostos. Entretanto, muitos compostos encontrados apresentam dois ou mais grupos funcionais o que dificulta a sua classificação. Optou-se por considerar a classificação identificada pelo nome encontrado na biblioteca do equipamento. Por exemplo: Hidróxi Metóxi Acetofenona. Este composto apresenta grupo cetona, hidróxi (fenol) e éter (metóxi) entretanto devido ao nome *acetofenona*, foi classificado como **cetona**. Outros casos também geraram algum impasse na classificação:

Furanonas e piranonas: são, na realidade lactonas, mas foram classificadas como **cetonas** pela distribuição no cromatograma (diagrama de cores).

Indanóis: A posição da Oxidrila pode ser no anel aromático ou no anel naftênico, classificando-se como fenóis ou alcoóis. Como a identificação foi apenas tentativa,ou seja sem localizar a posição dos substituintes, optou-se pela classificação como **fenóis**.

As estruturas destes compostos estão apresentadas na Figura abaixo:

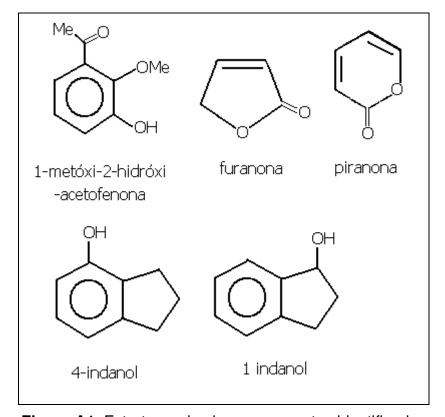


Figura A1. Estruturas de alguns compostos identificados

Tabela A1: Identificação tentativa dos compostos para a amostra LLE/HEX-GC/qMS e semi-quantificação dos mesmos através do percentual de área.

oico	t _R (min)	área	nome	área %	classe
	5,07	788858	n.i.		
1	13,79	231793	C2-fenol	0,95	fenol
2	14,43	504984	C2-fenol	2,07	fenol
3	14,50	195373	C2-fenol	0,80	fenol
4	15,35	1090116	Benzenediol	4,47	fenol
5	15,42	453631	C2-fenol	1,86	fenol
	16,73	226877	n.i.		
6	17,03	1569033	C3-fenol	6,44	fenol
7	17,61	278282	Alil fenol	1,14	fenol
8	17,69	1069115	C1-Benzenediol	4,39	fenol
9	17,78	777489	C3-Fenol	3,19	fenol
10	18,14	182137	C3-Fenol	0,75	fenol
. •	18,24	186182	n.i.		
11	18,65	829685	Indanona	3,40	cetona
12	18,75	1704970	C1-Benzenediol	7,00	fenol
	19,11	173289	n.i.		
	19,19	76130	n.i.		
	19,46	170435	n.i.		
	19,53	305217	n.i.		
13	19,65	373354	Alil fenol	1,53	fenol
14	19,03	545461	Bifurano	2,24	éter
14		273814		2,24	
15	20,09		n.i.		famal
15	20,23	623457	C4-fenol	2,56	fenol
40	20,36	234294	n.i.	4.54	
16	20,53	376118	C2-Benzenediol .	1,54	fenol
47	20,62	590895	n.i.	7.50	
17	20,70	1850907	Indanol	7,59	fenol
	20,93	188766	n.i.		
	21,22	638975	n.i.		
	21,58	140814	n.i.		
18	22,01	3275693	C2-Benzenediol	13,44	fenol
	22,22	344176	n.i.		
40	22,56	523835	n.i.		
19	22,64	749380	Vanilina 	3,07	aldeíd
20	22,75	392609	n.i.	6.00	ا ا ا ا ا ا
20	23,44	1688212	C3-benzaldeído	6,93	aldeíd
	23,80 23,93	391975 405986	n.i. n.i.		
21		583844		2,40	coton
21 22	24,05 25,08	1662205	Benzopiranona C3-Benzenediol	2,40 6,82	cetona fenol
22 23	25,06 25,26	751132	C2-Benzoquinona	3,08	cetona
23 24	25,26 25,53	360390	Acetovanilona	1,48	ceton
2 4 25	25,55 27,87	178595	Vinil metóxi fenol	0,73	fenol
25 26	27,99	776343	Ácido C2 Benzóico	3,19	ácido
_0	28,30	336852	n.i.		
27	29,76	588552	C1-naftol	2,41	fenol
	30,46	444399	C1-naftol	1,82	fenol

29	32,79	151061	C2-naftol		0,62	fenol
30	32,90	219450	C2-naftol		0,90	fenol
31	33,79	288438	C2-benzofuranona		1,18	cetona
área tot	tal (A⊤)		3	0763578		
área tot	tal tentativament	e identificada (A _{Ti})	2	4373599		
% área	tentativamente i	dentificada [(A _{Ti} /A _T).100]		79,23		
% área	ácidos [(ΣA _{ácidos} /	/A _{Ti}).100]		3,19		
% área	aldeídos [(ΣA _{alde}	eídos/A _{Ti}).100]		10,00		
% área	cetonas [(ΣA _{cetor}	nas/A _{Ti}).100]		11,54		
% área	fenóis [(ΣA _{fenóis} /,	A _{Ti}).100]		73,03		
nº de co	ompostos identifi	cados		31		

n.i. = não identificado

Tabela A2: Identificação tentativa dos compostos para a amostra SPE/HEX-GC/qMS e semi-quantificação dos mesmos através do percentual de área.

pico	t _R (min)	área	nome	área %	classe
1	5,14	796499	Ácido Hexanóico	0,39	ácido
2	5,84	3343063	C1-Ciclopentenona	1,64	cetona
	5,96	2377061	n.i.		
3	6,60	200814	Ciclohexenona	0,10	cetona
4	7,43	6608660	C1-Furfural	3,24	aldeído
5	7,49	3385247	C1-Ciclopentenona	1,66	cetona
6	7,55	1510995	C1-Ciclopentenona	0,74	cetona
7	7,64	1296418	Piranona	0,63	cetona
8	7,77	1087042	C1-Ciclopentenona	0,53	cetona
9	7,91	12223204	Fenol	5,98	fenol
	8,38	469225	n.i.		
10	8,53	1165123	C2-Ciclopentenona	0,57	cetona
	9,31	276904	n.i.		
11	9,42	3792735	C2-Hidróxi-Ciclopentenona	1,86	cetona
12	9,65	932189	C2-Ciclopentenona	0,46	cetona
13	9,80	2834378	C2-Ciclopentenona	1,39	cetona
14	9,98	1155150	C1-Furanona	0,57	cetona
15	10,17	1216502	Hidróxi Benzaldeído	0,60	aldeído
16	10,38	11295582	C1-Fenol	5,53	fenol
17	10,91	521000	Acetofenona	0,26	cetona
18	11,15	17660431	C1-Fenol	8,65	fenol
	11,28	1640299	n.i.		
	11,63	752964	n.i.		
	12,01	803117	n.i.		
19	12,33	892440	C2-Fenol	0,44	fenol
20	13,32	1474315	C2-Fenol	0,72	fenol
21	13,78	12694220	C2-Fenol	6,22	fenol
22	13,85	1421675	C2-Fenol	0,70	fenol
23	14,18	967678	Metóxi-Benzaldeído	0,47	aldeído

			Disseriação de	1,1081,666		
24	14,41	6631455	C2-Fenol		3,25	fenol
25	14,47	2114461	C2-Fenol		1,04	fenol
26	14,78	548706	C2-Fenol		0,27	fenol
27	15,39	25429763	Benzenediol		12,45	fenol
28	15,89	935892	C3-Fenol		0,46	fenol
29	16,61	1811545	C3-Fenol		0,89	fenol
30	16,99	8892470	C3-Fenol		4,35	fenol
31	17,18	683376	C3-Fenol		0,33	fenol
32	17,55	1407830	C4-Fenol		0,69	fenol
33	17,66	5565049	C1-Benzenediol		2,72	fenol
34	18	3266812	C3-Fenol		1,60	fenol
35	18,10	893264	C3-Fenol		0,44	fenol
36	18,22	746751	Benzenediol		0,37	fenol
37	18,62	2338535	Indanona		1,15	cetona
38	18,77	17766736	C1-Benzenediol		8,70	fenol
	19,50	1007274		n.i.		
	19,59	1540282		n.i.		
	19,75	715796		n.i.		
39	20,17	1859117	C1-Benzenediol		0,91	fenol
40	20,48	953953	C1-Metóxi-Fenol		0,47	fenol
41	20,65	3598283	Indanol		1,76	fenol
	21,17	1011939		n.i.		
42	21,99	16089654	C2-Benzenediol		7,88	fenol
	22,52	1127540		n.i.		
	22,62	1213638		n.i.		
	22,73	583377		n.i.		
43	22,82	762333	C2-Benzenediol		0,37	fenol
44	23,66	898546	Hidróxi-C1-Benzaldeido		0,44	aldeído
	24,00	875855		n.i.		
45	25,05	8180282	C3-Benzenediol		4,01	fenol
	25,50	895742		n.i.		
	25,62	505436		n.i.		
	26,70	648842		n.i.		
46	27,94	4384112	Ácido C2-Benzóico		2,15	ácido
área total ((A _T)			220679576		
área total t	entativamente	identificada (Aтi)		204234285		
		lentificada [(A⊤;/A		92,55		
	dos [(ΣA _{ácidos} //			2,54		
	eídos [(ΣA _{aldeí}	_		4,74		
	onas [(ΣA _{cetona}			11,54		
	ióis [(ΣA _{fenóis} /A			81,18		
nº de comi	oostos identific	ados		46		

n.i. = não identificado

Tabela A3: Identificação tentativa dos compostos para a amostra LLE/DCM-GC/qMS e semi-quantificação dos mesmos através do percentual de área.

pico	t _R (min)	área	nome	área %	class
	6,03	8510090	n.i.		
1	6,21	8443323	C1-Butenal	0,65	aldeío
2	6,52	6772235	C1 -Furanona	0,52	cetor
	7,72	9983658	n.i.		
3	7,81	9730382	C1-ciclopentenona	0,75	cetor
4	8,07	39857279	Fenol	3,05	fenc
	8,60	3434165	n.i.		
5	9,58	30216515	Hidroxi C1-Ciclopentenona	2,31	cetor
6	9,81	20666303	Hidroxi C1-Ciclopentenona	1,58	cetor
	10,04	15053281	n.i.		
7	10,32	9557159	C4 dihidro furano	0,73	éte
8	10,53	34175446	C1-fenol	2,62	fend
	11,02	6227093	n.i.		
9	11,31	60273779	C1-fenol	4,62	fenc
	11,48	12744505	n.i.		
	11,60	6735793	n.i.		
	11,92	10596243	n.i.		
	12,17	5752275	n.i.		
	12,58	3264085	n.i.		
	12,72	9665478	n.i.		
	12,84	3910013	n.i.		
	12,88	5459708	n.i.		
	13,34	4337370	n.i.		
10	13,44	4325476	C2 fenol	0,33	fend
11	13,65	9185454	maltol (hidroxi metil piranona)	0,70	ceto
12	13,90	27507112	C2 fenol	2,11	fend
12	14,08	5148534	n.i.	Z, 11	
13	14,56	27537005	C2 fenol	2,11	fend
14	14,90	5534905	C2 fenol	0,42	fend
17	15,10	8755597	n.i.	0,42	
15	15,10	306959638	benzenodiol	23,51	fend
13				20,01	16110
	16,70	4373320	n.i.		
	17,05	9022357	n.i.		
16	17,13	12454479	C3 fenol	0,95	fend
17	17,20	6905679	bifurano	0,53	éte
	17,36	4245155	n.i.		
40	17,46	5528255	n.i.		
18	18,03	91159146	C1 benzenodiol	6,98	fend
	18,23	5563660	n.i.		
10	18,50	13535648	n.i.	6.76	
19	19,01	88269632 142441426	C1 benzenodial	6,76 10.01	fend
20 21	19,23 19,33	142441426 43422299	C1 benzenodiol C1 benzenodiol	10,91 3,33	fend fend
۷1	19,33	3931121	n.i.	J,JJ	16110
	19,44	5302774	n.i.		
	19,77	12369393	n.i.		
22	19,96	17309407	hidróxi benzaldeído	1,33	aldeí

Dissertação de Mestrado

			Disseriação de	Mestrado		
	20,20	9124687		n.i.		
	20,29	5281251		n.i.		
	20,54	19365096		n.i.		
23	20,77	11443491	C2 benzenodiol		0,88	fenol
24	20,83	10215387	indanol		0,78	fenol
	21,27	21255429		n.i.		
	21,50	3533794		n.i.		
	21,91	10937445		n.i.		
25	22,15	34355308	C2 benzenodiol		2,63	fenol
26	22,39	96563967	C2 benzenodiol		7,40	fenol
	22,60	6396849		n.i.		
	22,76	8892465		n.i.		
27	22,96	22442480	Vanilina (hidróxi metóxi	benzaldeído)	1,72	aldeído
	23,12	11674702		n.i.		
28	23,17	8924028	C2 benzenodiol		0,68	fenol
	23,35	5631973		n.i.		
	23,56	12556692		n.i.		
	23,70	7151470		n.i.		
29	24,05	13905024	metóxi benzaldeído		1,07	aldeído
	24,13	3818958		n.i.		
	24,26	7910338		n.i.		
	24,45	8268391		n.i.		
	24,67	10190878		n.i.		
	25,10	10387184		n.i.		
30	25,31	34500074	C3 benzenodiol		2,64	fenol
	25,52	4956956		n.i.		
	25,75	11189913		n.i.		
	25,85	6424387		n.i.		
	26,04	5049753		n.i.		
	26,19	10734216		n.i.		
	26,39	5832281		n.i.		
	26,62	7990018		n.i.		
	26,76	5698840		n.i.		
31	26,96	12352473	Ácido C2-benzóico		0,95	ácido
32	27,13	6318357	Ácido C2-benzóico		0,48	ácido
	27,98	4810807		n.i.		
33	28,20	35744550	Ácido C2-benzóico		2,74	ácido
	28,97	11184196		n.i.		
34	29,49	3251440	Furfuril furano		0,25	éter
35	29,97	5443507	Furfuril furano		0,42	éter
36	31,19	7322005	Di hidróxi acetofenona		0,56	cetona
área total (A⊤)				1725184710		
, ,	ativamente ide	entificada (A _{Ti})		1305486170		
		ificada [(A⊤i/A⊤).	1001	75,67		
		- ,	100]			
	$\sum [(\Sigma A_{acidos}/A_{Ti})]$ OS $[(\Sigma A_{alde(dos})/A_{Ti})]$	_		3,85 4,40		
		_				
	is $[(\Sigma A_{\text{cetonas}}/A_{\text{Ti}})]$.	-		5,94 1,78		
	$[(\Sigma A_{\text{fenóis}}/A_{\text{Ti}})]$.	_		84,03		
	cos identificado	-		36		
JO 40 000000-	menuncan	15		30		

Tabela A4: Identificação tentativa dos compostos para a amostra SPE/DCM-GC/qMS e semi-quantificação dos mesmos através do percentual de área.

PICO	t _R (min) á	irea	nome	área %	classe
	1	5,90	761459	C1-Ciclopentenona	0,17	cetona
	2	6,01	6223132	Furanona	1,42	cetona
	3	7,47	5039550	C1-Furfural	1,15	aldeído
	4	7,65	10779896	C1-Ciclopentenona	2,46	cetona
	5	7,99	24500080	Fenol	5,59	fenol
		8,58	700583	n.i.		
	6	9,56	10142370	C1-Hidróxi-Ciclopentenona	2,31	cetona
	7	9,95	3151555	C2-Ciclopentenona	0,72	cetona
	8	10,45	22385665	C1-Fenol	5,10	fenol
		10,96	357989	n.i.		
	9	11,22	37509774	C2-Fenol	8,55	fenol
		11,37	3172201	n.i.		
	10	12,38	920812	C2-Fenol	0,21	fenol
	11	13,38	3127242	C2-Fenol	0,71	fenol
	12	13,85	25457182	C2-Fenol	5,80	fenol
	13	13,91	2430738	C2-Fenol	0,55	fenol
		14,22	751794	n.i.		
		14,33	629544	n.i.		
	14	14,47	13835597	C2-Fenol	3,15	fenol
	15	14,53	4098055	C2-Fenol	0,93	fenol
	16	14,84	1629762	C2-Fenol	0,37	fenol
	17	15,54	83105084	Benzenodiol	18,94	fenol
	18	15,96	1309947	C3-Fenol	0,30	fenol
		16,05	691033	n.i.		
	19	16,67	4021158	C3-Fenol	0,92	fenol
	20	17,06	16950633	C3-Fenol	3,86	fenol
	21	17,23	1693115	C3-Fenol	0,39	fenol
		17,62	2900822	n.i.		
	22	17,76	20571679	C1-Benzenodiol	4,69	fenol
		17,99	1964634	n.i.		
	23	18,15	2143355	C3-Fenol	0,49	fenol
		18,42	3960175	n.i.		
	24	18,73	16420125	C1-Benzenodiol	3,74	fenol
	25	18,91	40276968	C1-Benzenodiol	9,18	fenol
		19,08	698082	n.i.		
		19,58	1135725	n.i.		
		19,65	3187533	n.i.		
		19,83	1598176	n.i.		
	26	20,23	2628787	C4-Fenol	0,60	fenol
	27	20,56	1702594	C2-Benzenodiol	0,39	fenol
	28	20,72	6490874	Indanol	1,49	fenol
		21,23	2071803	n.i.		

29	22,10	37643441	C2-Benzenodiol	8,58	fenol
	22,58	1926334	n.i.		
30	22,72	1884893	Vanilina	0,43	aldeído
	22,83	1411513	n.i.		
31	22,92	2900511	C2-Benzenodiol	0,66	fenol
	23,43	3537959	n.i.		
	23,78	1091161	n.i.		
32	25,13	15568130	C3-Benzenodiol	3,55	fenol
	25,58	1067831	n.i.		
	26,78	2909526	n.i.		
	26,98	698844	n.i.		
33	28,03	11361614	Ácido C2-Benzóico	2,59	ácido
	29,74	1383359	n.i.		
área total (A⊤)			476512398		
área total tentativan	nente identificada	(A _{Ti})	438665777		
% área tentativame	nte identificada [(A	Aті/Ат).100]	92,06		
% área ácidos [(ΣΑ _{ácidos} /Α _{Ti}).100]			2,58		
% área aldeídos [(ΣA _{aldeídos} /A _{Ti}).100]			1,57		
% área cetonas [(Σ	A _{cetonas} /A _{Ti}).100]		7,06		
% área fenóis [(ΣA_f	enóis/ATi).100]		88,47		
nº de compostos ide			33		

n.i. = não identificado

Tabela A5: Identificação tentativa dos compostos para a amostra LLE/HEX-GC×GC/TOFMS e semi-quantificação dos mesmos através do percentual de área.

PICO	¹t _R	² t R	NOME	% ÁREA	FÓRMULA	CLASSE
1	6,00	2,17	C1-Ciclopentenona	0,269	C6H8O	cetona
2	6,17	2,34	Furanona	0,409	C10H14O4	cetona
3	6,33	2,09	C3-Benzeno	0,047	C9H12	hc aro
4	6,33	2,38	Fenol	1,037	C6H6O	fenol
5	6,50	2,54	C1-Ciclopentenona	0,231	C6H8O	cetona
6	6,83	2,58	Benzodioxol	0,161	C7H6O2	eter
7	6,83	3,59	C1-Tetrazol	0,021	C2H4N4	nitrogenado
8	7,00	2,27	C4-Benzeno	0,014	C10H14	hc aro
9	7,17	3,08	C1-Benzoquinona (C1-ciclohexadiendiona)	0,026	C6H6O2	cetona
10	7,17	3,20	Nonanona	0,023	C9H18O	cetona
11	7,50	2,88	C1-Fenol	0,129	C7H8O	fenol
12	7,83	3,17	C2-Ciclopentenona	0,085	C7H10O	cetona
13	8,17	2,52	Nonanal	0,246	C9H18O	aldeído
14	8,50	3,60	Maltol (C1-Hidróxi-Piranona)	0,339	C6H6O3	cetona
15	8,50	3,90	Heptenona	0,026	C7H12O	cetona
16	9,00	3,33	C2-Fenol	0,187	C8H10O	fenol
17	9,17	4,43	Furanil-Propenal	0,033	C7H6O2	aldeído
18	9,33	2,74	Ácido Hexanóico	0,086	C6H12O2	ácido
19	9,33	3,35	C1-Indeno	0,068	C10H10	hc aro
20	9,50	3,46	C2-Fenol	0,944	C8H10O	fenol
21	10,17	2,84	Hidróxi-Metóxi-Acetofenona	0,676	C9H10O3	cetona

			Disseriação de Mesirado			
22	10,17	3,76	C2-Fenol	0,425	C8H10O	fenol
23	10,33	3,96	Benzenediol	4,737	C6H6O2	fenol
24	10,50	3,99	Dihidro-Benzofurano	2,281	C8H8O	éter
25	10,67	4,77	C2-Piranona	0,107	C7H8O2	cetona
26	11,00	3,82	C3-Fenol	0,409	C9H12O	fenol
27	11,33	3,95	C3-Fenol	0,668	C9H12O	fenol
28	11,50		Ácido C1-Benzóico	0,097	C8H8O2	ácido
29	11,67		Ácido C1-Benzóico	0,098	C8H8O2	ácido
30	11,67		Bifurano	1,645	C8H6O2	éter
31	11,83		Indanol	0,642	C9H10O	fenol
32	12,00		C3-Fenol	1,016	C9H12O	fenol
33	12,17		Ácido C1-Benzóico	0,685	C8H8O2	ácido
34	12,17		C1-Benzenediol	2,752	C7H8O2	fenol
35	12,33		C3-Fenol	1,018	C9H12O	fenol
36	12,50		Benzenodiol	0,021	C6H6O2	fenol
37	12,67		C3-Fenol	0,576	C9H12O	fenol
38	12,83		Dihidróxi Acetofenona	1,473	C8H8O3	cetona
39	13,00		C3-Furano	0,092	C7H10O	éter
40	13,00	5,76		1,370	C9H8O	cetona
41	13,17		C1-Benzenediol	5,809	C7H8O2	fenol
42	13,33		C4-Fenol	0,096	C10H14O	fenol
43	13,67		C3-Fenol	0,439	C9H12O	fenol
44	13,83		Indanol	0,615	C9H10O	fenol
45	13,83		Hidróxi Benzaldeído	0,216	C7H6O2	aldeído
46	14,00		C4-Fenol	0,081	C10H14O	fenol
47	14,00		C2-Benzenediol	0,325	C8H10O2	fenol
48	14,00		Bifurano	1,068	C8H6O2	éter
49	14,17		C1-Benzenediol	0,162	C7H8O2	fenol
50	14,17		C1-Hidróxi-Acetofenona	0,071	C9H10O2	cetona
51	14,17		Indanol	0,586	C9H10O	fenol
52	14,17		Benzofuranona	1,696	C8H6O2	cetona
53	14,33		C1-Alil-Fenol	0,416	C10H12O	fenol
54	14,33		C1-indanona	0,104	C10H10O	cetona
55	14,50		C4-Fenol	0,807	C10H14O	fenol
56	14,67		Ácido Benzenepropanóico	0,127	C9H10O2	ácido
57	14,83		Alil-Fenol	0,901	C9H10O	fenol
58	14,83		C1-Benzenediol	0,800	C7H8O2	fenol
59	14,83		C1-Benzofurano	0,334	C9H8O	éter
60	15,00		Indanol	4,408	C9H10O	fenol
61	15,00		C2-Acetofenona	0,326	C10H12O	cetona
62	15,17		Ácido C2-Benzóico	0,085	C9H10O2	ácido
63	15,17	,	C2-Benzenediol	1,305	C8H10O2	fenol
64	15,33		C4-Fenol	0,244	C10H14O	fenol
65	15,33		C1-Hidróxi-Benzofurano (C1-Benzofuranol)	0,636	C9H8O2	fenol
66	15,50		C2-Benzenediol	0,030	C8H10O2	fenol
67	15,50		Benzofuranona	0,744	C8H6O2	cetona
68	15,67		C4-Fenol	0,744	C10H14O	fenol
69	15,67		C1-Hidróxi-Benzofurano	0,396	C9H8O2	éter
70	15,67		Indenol	1,067	C9H8O	fenol
71	15,83		Hidróxi-indanona	0,443	C9H8O2	cetona
72	16,00		C4-Fenol	0,443	C10H14O	fenol
73	16,17		C1-indanol	0,117	C10H12O	fenol
73 74	16,17		C1-Benzenedicarboxaldeído	0,037	C1011120 C9H8O2	aldeído
7 4 75	16,17		Dimetóxi-Fenol	0,118	C8H10O3	fenol
76	16,33		C1-Hidróxi-Acetofenona	0,110	C9H10O3	cetona
70 77	16,50		C1-Dihidróxi-Acetofenona	0,212	C9H10O2	cetona
	10,00	0,00	O I Difficient According to	0,001	03111000	ootona

			3			
78	16,67	5,21	C1-Alil-Fenol	0,385	C10H12O	fenol
79	16,83	5,44	C2-Benzenediol	12,540	C8H10O2	fenol
80	16,83	6,44	C3-Benzenometanamina	0,059	C10H15N	nitrogenado
81	17,00	5,50	C2-Acetofenona	0,494	C10H12O	cetona
82	17,00	5,54	C2-Metóxi-fenol	0,863	C9H12O2	fenol
83	17,00	5,81	C1-Indanona	0,033	C10H10O	cetona
84	17,33	6,27	C1-Hidróxi-Benzofurano	0,857	C9H8O2	éter
85	17,33	6,51	Hidróxi Acetofenona	0,444	C8H8O2	cetona
86	17,33	6,54	C1-Indanona	0,614	C10H10O	cetona
87	17,33	7,69	Benzopiranona	1,186	C9H6O2	cetona
88	17,50	7,01	Vanilina (Hidróxi-Metóxi-Benzaldeído)	2,624	C8H8O3	aldeído
89	17,83	6,14	C1-Hidróxi-Benzofurano	0,485	C9H8O2	éter
90	17,83	6,81	C1-Indanona	0,938	C10H10O	cetona
91	18,17	6,93	C1-Indanona	0,767	C10H10O	cetona
92	18,33	5,49	C1-indanol	0,101	C10H12O	fenol
93	18,33	5,86	C1-indanol	1,999	C10H12O	fenol
94	18,33	6,32	C1-Hidróxi-Benzofurano	1,924	C9H8O2	éter
95	18,33	6,41	Furfuril Furano	1,603	C9H8O2	éter
96	18,33	7,63	C1-Benzofuranona	0,257	C9H8O2	cetona
97	18,50	6,79	Benzofuranil Etanona	0,310	C10H8O2	cetona
98	18,83	6,33	C2-Indanona	0,087	C11H12O	cetona
99	19,00	6,04	C2-Benzofuranona	0,378	C10H10O2	cetona
100	19,00	6,11	C1-indanol	0,661	C10H12O	fenol
101	19,00	6,39	C2-Indanona	0,089	C11H12O	cetona
102	19,00	6,74	C1-Hidróxi-benzaldeído	0,523	C8H8O2	aldeído
103	19,17	6,59	C3-Benzenediol	0,030	C9H12O2	fenol
104	19,33		Benzopiranona	1,471	C9H6O2	cetona
105	19,83	5,83	Metóxi-Propenil-Fenol (Eugenol)	0,037	C10H12O2	fenol
106	19,83	6,05	C1-Etóxi-Benzeno	0,096	C9H12O	éter
107	19,83	6,59	C1-Dihidro-Benzopiranona	0,415	C10H10O2	cetona
108	19,83		Acetil-Acetofenona	0,008	C10H10O2	cetona
109	19,83	8,73	Benzopiranona	0,011	C9H6O2	cetona
110	20,33	8,26	C2-benzofuranona	0,031	C10H12O	cetona
111	20,67	5,68	C2-Dihidróxi-Acetofenona	0,026	C10H12O3	cetona
112	20,67	8,42	C2-benzofuranona	0,094	C10H12O	cetona
113	21,00		C3-Benzenediol	3,959	C9H12O2	fenol
114	21,00	6,11	Ácido C2-Benzóico	0,333	C9H10O2	ácido
115	21,00	7,03	Metóxi-Indanona	0,665	C10H10O2	cetona
116	21,00	8,53	C2-benzofuranona	0,013	C10H12O	cetona
117	21,00	9,29	Anidro-Glucopiranose (derivado do Levoglucosano)	0,048	C6H10O5	açucar
118	21,17		C2-Indanona	0,042	C11H12O	cetona
119	21,50	6,71	C2-Benzenedicarboxaldeído	0,060	C10H10O2	aldeído
120	21,50	6,99	C1-Hidróxi-acetofenona	0,111	C9H10O2	cetona
121	21,50	7,20	C2-Benzofuranona	0,197	C10H10O2	cetona
122	21,50	7,52	Hidróxi-Metoxi-Acetofenona (acetovanilona)	1,187	C9H10O3	cetona
123	21,83		C1-indanol	0,109	C10H12O	fenol
124	21,83	6,18	C3-Metóxi-fenol	0,236	C9H12O2	fenol
125	22,00	7,46	Hidróxi-Naftol	0,240	C10H8O2	fenol
126	22,17	6,87	C2-Benzenedicarboxaldeído	0,239	C10H10O2	aldeído
127	22,33	7,25	C2-Indanona	0,110	C11H12O	cetona
128	22,33	8,06	C1-Benzopiranona	0,615	C10H8O2	cetona
129	22,50	7,57	Dihidróxi-Acetofenona	0,009	C8H8O3	cetona
130	22,67		C1-Hidróxi-Acetofenona	0,114	C9H10O2	cetona
131	22,83		C3-Benzenediol	0,077	C9H12O2	fenol
132	22,83		C2-Benzofuranona	0,079	C10H10O2	cetona
133	22,83		Hidróxi-Bifenila (Bifenilol)	0,071	C12H10O	fenol
	•	•	, ,			

			3			
134	23,00	7,15	Dihidróxi-Metóxi-Acetofenona	0,130	C9H10O4	cetona
135	23,00	7,45	C3-Metóxi-Benzeno	0,185	C10H14O	éter
136	23,00	7,84	Fenil-Furano	0,132	C10H8O	éter
137	23,00	8,48	C1-Benzopiranona	0,565	C10H8O2	cetona
138	23,50	8,37	Metoxi-Indanona	0,068	C10H10O2	cetona
139	23,83	6,00		0,020	C10H14O2	fenol
140	25,00	8,83		0,562	C10H8O2	cetona
141	25,17	6,46	•	0,240	C9H10O2	fenol
142	25,33	•	Dimetóxi-Acetofenona	0,028	C10H12O3	cetona
143	25,50		C2-Indanona	0,039	C11H12O	cetona
144	25,83		C1-Etóxi-Benzeno	0,035	C9H12O	éter
145	26,00		C1-Benzopiranona	0,062	C10H8O2	cetona
146	26,17		C2-Benzopiranona	0,042	C11H10O2	cetona
147	26,17	9,04	·	0,023	C10H10O2	cetona
148	26,67	9,60		0,232	C10H8O2	cetona
149	27,17	9,41	Etóxi-Naftaleno	0,080	C12H12O	éter
150	27,67		C1-Naftol	1,352	C11H10O	fenol
151	28,17		C2-Benzopiranona	0,159	C11H10O2	cetona
152	28,83		C1-Hidróxi-Naftalenediona	0,261	C11H8O3	cetona
153	29,33		C1-Hidróxi-Naftalenediona	0,250	C11H8O3	cetona
154	29,50		Etóxi-Naftaleno	0,339	C12H12O	éter
155	29,67		Acenaftilenona	0,013	C12H8O	cetona
156	31,33	•	C2-Naftol	0,013	C12H12O	fenol
157	32,17		Hidróxi-Bifenila (Bifenilol)	0,227	C12H10O	fenol
158	32,50		Hexadecano	0,112	C12H10C	hc sat
159	32,50		Hidróxi-Bifenila (Bifenilol)	0,031	C12H10O	fenol
160	32,50		*	0,230	C12H10O	cetona
161	32,83		C2-Benzopiranona C1-Fenil-Fenol	0,035	C11H10O2	
						fenol
162	32,83	8,58		0,608	C12H12O	fenol
163	33,33	4,14		0,044	C10H20O2	éster
164	33,67		C2-Naftol	0,091	C12H12O	fenol
165	34,17		C2-Naftol	0,224	C12H12O	fenol
166	34,67		C2-Benzofuranona	0,182	C10H10O2	cetona
167	34,67		Hidróxi-Dibenzofurano (DiBenzofuranol)	0,217	C12H8O2	fenol
168	35,17		C2-Naftol	0,024	C12H12O	fenol
169	35,83		C1-Hidróxi-benzaldeído	0,118	C8H8O2	aldeído
170	36,33		C1-Fenil-Fenol	0,159	C13H12O	fenol
171	37,00		Hexadecano	0,012	C16H34	hc sat
172	37,00		C1-Fenil-Fenol	0,107	C13H12O	fenol
173	37,50	•	C1-Fenil-Fenol	0,031	C13H12O	fenol
174	40,67	•	fenoxi Benzaldeído	0,218	C13H10O2	aldeído
175	41,67		Hidróxi-Fluoreno (Fluorenol)	0,093	C13H10O	fenol
176	41,83		Hexadecano	0,015	C16H34	hc sat
177	42,33		Hidróxi-Fluoreno (Fluorenol)	0,215	C13H10O	fenol
178	42,67		Hidróxi-Fluoreno (Fluorenol)	0,374	C13H10O	fenol
179	43,00		Hexadecano	0,047	C27H56	hc sat
180	44,83	3,20		0,044	C27H56	hc sat
181	46,50		Hexadecano	0,034	C20H42	hc sat
182	52,50		Hexadecano	0,018	C27H56	hc sat
183	54,33		Hexadecano	0,008	C20H42	hc sat
184	55,17	3,64	Hexadecano	0,058	C16H34	hc sat
área tot	. ,			172127176		
			e identificada (Aтi)	149466417		
			dentificada [(Aт/Aт).100]	86,83		
			etectados (PT)	279		
Número	total de p	picos id	entificados (PTi)	184		
						

% picos identificados [(PTi/PT).100]	65,95	
% área ácidos [(ΣA _{ácidos} /A _{Ti}).100]	1,51	
% área açúcares [(ΣΑ _{açúcares} /Α _{Ti}).100]	0,05	
% área aldeídos [(ΣA _{aldeídos} /A _{Ti}).100]	4,40	
% área cetonas [(ΣA _{cetonas} /A _{Ti}).100]	22,16	
% área ésteres [(ΣA _{ésteres} /A _{Ti}).100]	0,04	
% área éteres [(ΣA _{éteres} /A _{Ti}).100]	11,71	
% área fenóis [($\Sigma A_{fenóis}/A_{Ti}$).100]	58,61	
% área hidrocarbonetos [(ΣA _{hidrocarbonetos} /A _{Ti}).100]	0,40	
% área nitrogenados [(ΣA _{nitrogenados} /A _{Ti}).100]	0,08	

Tabela A6: Compostos tentativamente identificados na amostra SPE/HEX-GC×GC/TOFMS e semi-quantificação dos mesmos através do percentual de área.

PICO	1 t _R	2 t _R	NOME	% ÁREA	FÓRMULA	CLASSE
1.	6,00	2,18	C1-Ciclopentenona	0,219	C6H8O	cetona
2.	6,17	2,60	Furanona	0,656	C4H4O2	cetona
3.	6,33	2,09	Ácido Hexanóico	0,106	C6H12O2	ácido
4.	6,33	2,47	C1-Furfural	2,425	C6H6O2	aldeído
5.	6,33	2,97	Piranona	1,164	C5H4O2	cetona
6.	6,50	2,58	C1-Ciclopentenona	2,019	C6H8O	cetona
7.	6,50	2,89	Piranona	0,866	C5H4O2	cetona
8.	6,83	2,52	C2-Ciclopentenona	0,160	C7H10O	cetona
9.	7,00		Hidróxi-C1-Piranona	3,058	C6H8O2	cetona
10.	7,17	2,86	C1-fenol	2,855	C7H8O	fenol
11.	7,17	3,00	Benzoquinona (ciclohexadiendiona)	0,448	C6H6O2	cetona
12.	7,33	2,89	C2-Ciclopentenona	3,472	C7H10O	cetona
13.	7,33	2,98	C1-Fenol	7,016	C7H8O	fenol
14.	7,33	3,60	C1-Furanona	0,977	C5H6O2	cetona
15.	7,50	2,40	Ácido Heptanóico	0,044	C7H14O2	ácido
16.	7,50	2,80	C2-Hidróxi-Ciclopentenona	0,658	C7H10O2	cetona
17.	7,67	3,13	Acetofenona	1,082	C8H8O	cetona
18.	7,67	3,46	C2-Furanona	0,737	C6H8O2	cetona
19.	7,83	3,21	C2-Ciclopentenona	1,315	C7H10O	cetona
20.	7,83	3,70	Furanodial	0,509	C6H4O3	aldeído
21.	8,00	3,62	C2-Dihidro-Furanona	0,542	C6H8O2	cetona
22.	8,00	4,21	Ciclohexanodiona	0,025	C6H8O2	cetona
23.	8,33	3,15	C2-fenol	0,389	C8H10O	fenol
24.	8,50	3,49	Furanil-Propenal	0,058	C7H6O2	aldeído
25.	8,50	3,64	Maltol (C1-Hidróxi-Piranona)	0,572	C6H6O3	cetona
26.	8,50	3,92	C2-Furanona	0,346	C6H8O2	cetona
27.	8,50	4,20	Furanodial	0,023	C6H4O3	aldeído
28.	8,67	3,32	C2-fenol	0,334	C8H10O	fenol
29.	8,83	4,54	Dihidro-Acetil-Furanona	0,091	C6H8O3	cetona
30.	9,00	3,37	C2-Fenol	2,709	C8H10O	fenol
31.	9,17	3,92	Octenona	0,370	C8H14O	cetona
32.	9,33		Furanil-Propenal	0,337	C7H6O2	aldeído
33.	9,50		Ácido Octanóico	0,070	C8H16O2	ácido
34.	9,50	3,51	C2-fenol	1,857	C8H10O	fenol
35.	9,50	3,63	C1-Hidróxi-Benzaldeído	0,265	C8H8O2	aldeído
36.	9,50	4,46	C2-Furanona	0,235	C6H8O2	cetona
37.	9,67	3,90	Dihidróxi Benzaldeído	0,325	C7H6O3	aldeído
38.	9,83	3,67	C2-fenol	0,735	C8H10O	fenol
39.	9,83	3,78	C1-Acetofenona	1,623	C9H10O	cetona
40.	10,00		Hidróxi-Metóxi-Acetofenona	0,111	C9H10O3	cetona

			Disseriação de mestrado			
41.	10,00	3,63	C3-fenol	0,061	C9H12O	fenol
42.	10,00	3,95	C1-Acetofenona	0,030	C9H10O	cetona
43.	10,17	3,60	C3-fenol	0,023	C9H12O	fenol
44.	10,17	3,78	C2-Fenol	1,258	C8H10O	fenol
45.	10,17	3,82	C1-Metóxi-fenol	1,118	C8H10O2	fenol
46.	10,17		Benzenediol	10,564	C6H6O2	fenol
47.	10,67		C2-Piranona	0,115	C7H8O2	cetona
48.	10,67		C1-Metóxi-fenol	0,057	C8H10O2	fenol
49.	10,83		C1-Benzaldeído	0,049	C8H8O	aldeído
50.	10,83		Dianidro-Glucopiranose (Levoglucosano)	0,107	C6H8O4	açúcar
51.	11,00		C3-Fenol	0,079	C9H12O	fenol
52.	11,00		Benzeno Acetaldeído	0,044	C8H8O	aldeído
53.	11,00		Furanil-Propenal	0,211	C7H6O2	aldeído
54.	11,17		C3-fenol	1,152	C9H12O	fenol
55.	11,50		C3-Fenol	2,187	C9H12O	fenol
56.	11,67		Bifurano	0,744	C8H6O2	éter
57.	12,00	4,21	Indanol	0,596	C9H10O	fenol
58.	12,17	,	C1-Benzenediol	2,571	C7H8O2	fenol
59.	12,33		Ácido Nonanóico	0,028	C9H18O2	ácido
60.	12,33	4,93	Metóxi-Benzofurano	0,603	C9H8O2	éter
61.	12,50		C3-Fenol	0,696	C9H12O	fenol
62.	12,50		C2-Acetofenona	0,090	C10H12O	cetona
63.	12,50	4,90	Dihidróxi Acetofenona	0,100	C8H8O3	cetona
		,		0,021		
64.	12,67	5,30	Benzenodiol C4 family		C6H6O2	fenol
65.	12,83		C4-fenol	0,047	C10H14O	fenol
66.	12,83	,	C3-Fenol	0,313	C9H12O	fenol
67.	12,83		C1-Hidróxi-Acetofenona	0,055	C9H10O2	cetona
68.	12,83	4,87	Dihidróxi Acetofenona	0,798	C8H8O3	cetona
69. 	12,83		C1-Etóxi-Benzeno	0,400	C9H12O	éter
70.	13,00		C1-Hidróxi-Acetofenona	0,059	C9H10O2	cetona
71.	13,17	,	C1-Hidróxi-Acetofenona	0,140	C9H10O2	cetona
72.	13,17		C1-Benzenediol	4,965	C7H8O2	fenol
73.	13,33		C4-Fenol	0,150	C10H14O	fenol
74.	13,67	,	C3-Fenol	0,283	C9H12O	fenol
75.	13,67		C1-Metóxi-Benzaldeído	0,057	C9H10O2	aldeído
76.	13,83		C4-fenol	0,097	C10H14O	fenol
77.	13,83	5,51	Hidróxi Benzaldeído	0,277	C7H6O2	aldeído
78.	14,00	4,33	C4-Fenol	0,216	C10H14O	fenol
79.	14,00	,	Alil Fenol	0,365	C9H10O	fenol
80.	14,00	5,03	C2-Benzenediol	0,296	C8H10O2	fenol
81.	14,17	5,57		0,632	C8H6O2	cetona
82.	14,33	4,44	C4-fenol	0,055	C10H14O	fenol
83.	14,33	5,05	C1-Hidróxi-Benzofurano	0,070	C9H8O2	éter
84.	14,33	5,27	Indanol	0,262	C9H10O	fenol
85.	14,50	4,47	C4-Fenol	0,791	C10H14O	fenol
86.	14,50	4,68	C1-Alil-Fenol	0,419	C10H12O	fenol
87.	14,50	5,63	C1-Indanona	0,193	C10H10O	cetona
88.	14,67	6,15	C2-Ciclopentenona	0,021	C7H10O	cetona
89.	14,83	5,65	C1-Benzofurano	0,584	C9H8O	éter
90.	14,83	6,34	Etóxi Benzaldeído	0,022	C9H10O2	aldeído
91.	15,00	5,03	Indanol	0,182	C9H10O	fenol
92.	15,00	5,83	Naftol	0,020	C10H8O	fenol
93.	15,00	6,99	C1-Benzenodiol	0,085	C7H8O2	fenol
94.	15,17	5,11	C2-Benzenodiol	0,451	C8H10O2	fenol
95.	15,17	5,43	Indanol	1,455	C9H10O	fenol
96.	15,17		C2-Benzenediol	0,498	C7H8O2	fenol
	. 2,	3,30		-,		

			Disseriação de mestrado			
97.	15,33	4,68	C4-Fenol	0,139	C10H14O	fenol
98.	15,33	5,50	C1-Benzenedicarboxaldeído	0,186	C9H8O2	aldeído
99.	15,33	5,74	Indenol	0,032	C9H8O	fenol
100.	15,67	5,20	C2-Benzenediol	0,327	C8H10O2	fenol
101.	15,67		Indenol	0,609	C9H8O	fenol
102.	15,67		C1-Hidróxi-Benzofurano	0,066	C9H8O2	éter
103.	15,83		Hidróxi-indanona	0,348	C9H8O2	cetona
104.	15,67		C1-Indanona	0,609	C10H10O	cetona
105.	16,00		C4-Fenol	0,050	C10H14O	fenol
106.	16,17		C2-Benzofuranona	0,044	C10H10O2	cetona
107.	16,17		C1-Metóxi-Benzaldeído	0,129	C9H10O2	aldeído
108.	16,17		C1-Metóxi-fenol	0,126	C8H10O2	fenol
109.	16,17		Hidróxi Benzaldeído	0,085	C7H6O2	aldeído
110.	16,17		Dimetóxi-Fenol	0,062	C8H10O3	fenol
111.	16,17		Ácido Hidróxi C1-Benzóico	0,038	C8H8O3	ácido
112.	16,50		C1-Dihidróxi-Acetofenona	0,084	C9H10O2	cetona
113.	16,67	,	Metóxi-Fenil-Propanona	0,004	C10H12O2	cetona
114.	16,67		C1-Alil-Fenol	0,000	C10H12O2	fenol
115.	16,67		C1-Dihidróxi-Acetofenona	0,137	C9H10O3	cetona
116.	16,67		Di-Hidróxi-Propiofenona	0,136	C9H10O3	cetona
110.	16,83		C1-Alil-Fenol	0,130	C10H12O	fenol
117.	16,83	,		0,341	C10H12O C10H10O2	
			C1-Hidróxi-Indanona			cetona
119.	16,83		Etóxi Fenol	0,010	C8H10O2	fenol
120.	17,00		C2-Benzenodiol	3,806	C8H10O2	fenol
121.	17,00		C2-Metóxi-fenol	0,352	C9H12O2	fenol
122.	17,17		C5-fenol	0,013	C11H16O	fenol
123.	17,17		C1-Hidróxi-Indanona	0,073	C10H10O2	cetona
124.	17,17		Benzofuranil Etanona	0,034	C10H8O2	cetona
125.	17,33		C1-Hidróxi-Benzofurano	0,181	C9H8O2	éter
126.	17,33		C1-Indanona	0,533	C10H10O	cetona
127.	17,50	,	C4-Metóxi-Benzeno	0,035	C11H16O	éter
128.	17,50		Benzopiranona	0,196	C9H6O2	cetona
129.	17,67	,	Dihidróxi Benzaldeído	0,006	C7H6O3	aldeído
130.	17,67		Vanilina (Hidróxi-Metóxi-Benzaldeído)	0,410	C8H8O3	aldeído
131.	17,83		C1-Hidróxi-Benzofurano	0,114	C9H8O2	éter
132.	17,83	6,23	C1-Hidróxi-Benzaldeído	0,073	C8H8O2	aldeído
133.	17,83	7,59	Benzopiranona	0,091	C9H6O2	cetona
134.	18,00		C2-Benzenodiol	0,356	C8H10O2	fenol
135.	18,00	6,51	C1-Hidróxi-Benzaldeído	0,043	C8H8O2	aldeído
136.	18,00	6,78	C1-Indanona	0,281	C10H10O	cetona
137.	18,33	5,50	C1-indanol	0,072	C10H12O	fenol
138.	18,33	5,87	C1-indanol	0,643	C10H12O	fenol
139.	18,33	6,38	C1-Hidróxi-Benzofurano	0,457	C9H8O2	éter
140.	18,33	,	C1-Benzofuranona	0,062	C10H12O	cetona
141.	18,50	6,80	Benzofuranil Etanona	0,107	C10H8O2	cetona
142.	18,67	6,50	C2-Benzenodiol	0,106	C8H10O2	fenol
143.	18,83	5,82	C2-Benzenodiol	0,013	C8H10O2	fenol
144.	19,00	5,57	C2-Metóxi-fenol	0,083	C9H12O2	fenol
145.	19,00	6,11	C1-indanol	0,194	C10H12O	fenol
146.	19,00	6,31	C2-Indanona	0,281	C11H12O	cetona
147.	19,00	6,87	C1-Hidróxi-benzaldeído	0,255	C8H8O2	aldeído
148.	19,00	7,15	Ácido Acetil Benzóico	0,095	C9H8O3	ácido
149.	19,17	7,48	Furfuril Furano	0,048	C9H8O2	éter
150.	19,33	6,97	C4-fenol	0,017	C10H14O	fenol
151.	19,33	8,38	Benzopiranona	0,216	C9H6O2	cetona
152.	19,67		C2-Metóxi-fenol	0,151	C9H12O2	fenol
	•					

			Disseriação de mesir	ши		
153.	19,67	6,99	Hidróxi Acetofenona	0,083	C8H8O2	cetona
154.	19,67		C4-fenol	0,085	C10H14O	fenol
155.	19,83		C4-Acetofenona	0,066	C12H16O	cetona
156.	20,33	5,79	C2-benzofuranona	0,038	C12H18	cetona
157.	20,50		C1-Propiofenona	0,008	C10H12O	cetona
158.	20,67		C2-Metóxi-fenol	0,088	C9H12O2	fenol
159.	20,67		C2-benzofuranona	0,015	C10H12O	cetona
160.	21,00		Ácido C2-Benzóico	0,474	C9H10O2	ácido
161.	21,17	5,86	C3-Benzenodiol	1,747	C9H12O2	fenol
162.	21,17	8,46	C1-Propiofenona	0,040	C10H12O	cetona
163.	21,50	7,21	C2-Benzofuranona	0,207	C10H10O2	cetona
164.	21,67		Hidróxi-Metoxi-Acetofenona (acetovanilona)	0,251	C9H10O3	cetona
165.	22,00		C2-Metóxi-fenol	0,132	C9H12O2	fenol
166.	22,00		Hidróxi-Naftol	0,113	C11H12O	fenol
167.	22,17		C1-Hidróxi-Benzenedicarboxaldeído	0,153	C9H8O3	aldeído
168.	22,33	8,07	C1-Benzopiranona	0,232	C10H8O2	cetona
169.	22,67	7,49	Dihidróxi-Acetofenona	0,054	C8H8O3	cetona
170.	22,83	6,98	Dibenzofurano	0,056	C12H8O	éter
171.	22,83		C1-Hidróxi-Acetofenona	0,269	C9H10O2	cetona
172.	23,00		Dihidróxi-Metóxi-Acetofenona	0,008	C9H10O4	cetona
173.	23,00	7,47		0,125	C10H12O2	cetona
174.	23,17	8,41		0,082	C10H8O2	cetona
175.	23,50		Metoxi-Indanona	0,062	C10H8O2	cetona
176.	23,67		Ácido C2-Benzóico	0,087	C9H10O2	ácido
177.	23,83	6,00	C2-Metóxi-fenol	0,047	C10H14O2	fenol
178.	25,00	8,83	C1-Benzopiranona	0,089	C10H8O2	cetona
179.	25,17	6,47	Metoxi-Vinil-Fenol	0,028	C9H10O2	fenol
180.	25,17	9,40	Hidróxi-Benzopiranona	0,076	C9H6O3	cetona
181.	25,33		Ácido C2-Benzóico	0,939	C9H10O2	ácido
182.	25,33	,	Ácido Hidróxi Metóxi-Benzóico	0,817	C8H8O4	ácido
183.	25,50		Ácido C2-Benzóico	0,170	C9H10O2	ácido
184.	26,17		Hidróxi-Metoxi-Acetofenona (acetovanilona)	0,073	C9H10O3	cetona
185.	26,67	9,60	C1-Benzopiranona	0,025	C10H8O2	cetona
186.	27,33		C1-Benzofuranona	0,053	C9H8O2	cetona
187.	27,67		Ácido C3-Benzóico	0,078	C10H12O2	ácido
188.	27,67	8,61		0,492	C11H10O	fenol
189.	28,00		C1-Benzofuranona	0,127	C9H8O2	cetona
190.	28,83	9,31	C1-Dihidro-Benzopiranona	0,038	C10H10O2	cetona
191.	29,00		C1-Naftol	0,198	C11H10O	fenol
192.	29,00	8,71	C2-Benzopiranona	0,028	C10H10O2	cetona
193.	29,33	8,90	C1-Hidróxi-Naftalenediona	0,047	C11H8O3	cetona
194.	29,83	0,31	Etóxi-Naftaleno	0,027	C12H12O	éter
195.	32,17	8,63	Hidróxi-Bifenila (Bifenilol)	0,017	C12H10O	fenol
196.	32,50	8,94	Hidróxi-Bifenila (Bifenilol)	0,044	C12H10O	fenol
197.	32,83	8,57	C2-Naftol	0,122	C12H12O	fenol
198.	32,83	9,77	C1-Dihidro-Benzopiranona	0,109	C10H10O2	cetona
199.	34,17	9,15	C2-Naftol	0,021	C12H12O	fenol
200.	34,67	9,18	Hidróxi-Dibenzofurano (DiBenzofuranol)	0,036	C12H8O2	éter
201.	35,83	9,17	C2-Naftol	0,018	C12H12O	fenol
202.	36,00	8,68	C1-Hidróxi-Benzaldeído	0,040	C8H8O2	aldeído
203.	39,67		Hidróxi-Dibenzofurano (DiBenzofuranol)	0,014	C12H8O2	éter
204.	41,00		Hidróxi-Fluoreno (Fluorenol)	0,014	C13H10O	fenol
205.	42,33		Hidróxi-Fluoreno (Fluorenol)	0,048	C13H10O	fenol
206.	42,67		Hidróxi-Fluoreno (Fluorenol)	0,097	C13H10O	fenol
área tota	l (A⊤)			2198262916		
	. ,	ente id	entificada (A _{Ti})	1611379073		
			\ <i>\</i>			

Gabriela Pereira da Silva Maciel

% área tentativamente identificada [(A _{Ti} /A _T).100]	73,30	
Número total de picos detectados (PT)	324	
Número total de picos identificados (PTi)	206	
% picos identificados [(PTi/PT).100]	63,58	
% área ácidos [(ΣA _{ácidos} /A _{Ti}).100]	2,95	
% área açúcares [(ΣA _{açúcares} /A _{Ti}).100]	0,11	
% área aldeídos [(ΣA _{aldeídos} /A _{Ti}).100]	5,98	
% área cetonas [(ΣA _{cetonas} /A _{Ti}).100]	28,54	
% área éteres [($\Sigma A_{\text{éteres}}/A_{Ti}$).100]	3,43	
% área fenóis [($\Sigma A_{fenóis}/A_{Ti}$).100]	58,99	

Tabela A7: Compostos tentativamente identificados na amostra LLE/DCM-GC×GC/TOFMS e semi-quantificação dos mesmos através do percentual de área.

PICO	1 t R	² t R	NOME	% ÁREA	FÓRMULA	CLASSE
1	6	2,18	C1-ciclopentenona	0,347	C6H8O	cetona
2	6,16667	2,6	C0-furanona	1,268	C4H4O2	cetona
3	6,33333	2,42	C0-fenol	3,616	C6H6O	fenol
4	6,5	2,3	ácido furanóico	0,033	C5H4O3	acido
5	6,5	2,56	C1-ciclopentenona	1,662	C6H8O	cetona
6	6,5	2,87	C0-piranona	2,059	C5H4O2	cetona
7	6,83333	2,58	benzodioxole	0,476	C7H6O2	eter
8	6,83333	2,93	C1-dihidro piranona	3,851	C6H8O2	cetona
9	7	3,21	ciclohexanona	0,319	C6H10O	cetona
10	7	3,58	C1-ciclopentenona	0,466	C6H10O	cetona
11	7,16667	3,6	dihidro piranona	0,466	C5H6O2	cetona
12	7,33333	2,78	C1-fenol	1,152	C7H8O	fenol
13	7,33333		C2-ciclopentenona	5,591	C7H10O	cetona
14	7,33333		nonanona	2,684	C9H18O	cetona
15	7,33333	3,57	C1-furanona	1,678	C5H6O2	cetona
16	7,5	2,81	ácido furanóico	0,320	C5H4O3	acido
17	7,5	2,9	C1-fenol	2,972	C7H8O	fenol
18	7,5	3,74	tetrahidro furanona	0,200	C5H8O2	cetona
19	7,66667	3,44	C2-furanona	0,870	C6H8O2	cetona
20	7,83333	3,18	C2-ciclopentenona	0,590	C7H10O	cetona
21	7,83333	3,44	ciclohexenodiona	0,302	C6H6O2	cetona
22	7,83333	3,69	Furandicarboxaldeido	0,848	C6H4O3	aldeído
23	7,83333	4,24	ciclohexanodiona	0,037	C6H8O2	cetona
24	8	3,35	C1-furoato	0,366	C6H6O3	ester
25	8	4,21	ciclohexanodiona	0,080	C6H8O2	cetona
26	8,16667	3,83	C1-furano	0,282	C5H6O	eter
27	8,33333	2,83	C1-fenol	0,038	C7H8O	fenol
28	8,5		C2-hidroxi ciclopentenona	0,254	C7H10O2	cetona
29	8,5		maltol	1,070	C6H6O3	cetona
30	8,5		C2-furanona	0,595	C6H8O2	cetona
31	8,5	4,2	Furandicarboxaldeido	0,051	C6H4O3	aldeído
32	8,66667	4,58	acetil dihidro furanona	0,305	C6H8O3	cetona
33	8,83333	3,24	C2-fenol	0,228	C8H10O	fenol
34	8,83333	3,79	C1-hidroxi piranona	0,117	C6H6O3	cetona
35	8,83333	3,93	C2-furano	0,012	C6H8O	eter
36	9		C2-fenol	1,400	C8H10O	fenol
37	9	3,9	C2-furano	0,365	C6H8O	eter
38	9,16667		ciclohexil etanona	0,274	C8H14O	cetona
39	9,33333		ácido benzóico	0,627	C7H6O2	acido

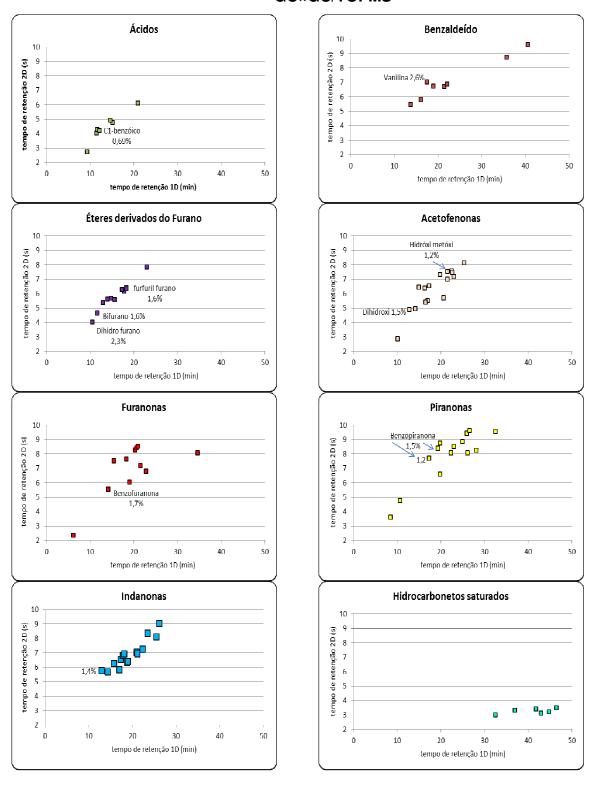
			D isseriação			
40	9,33333	4,49	dihidro piranocarboxialdeído	0,100	C6H8O2	aldeído
41	9,5	3,47	C2-fenol	1,034	C8H10O	fenol
42	9,66667	3,91	dihidroxi benzaldeido	0,155	C7H6O3	aldeído
43	9,83333	3,66	C2-fenol	0,172	C8H10O	fenol
44	10	3,9	C1-dihidroxi piranona	0,012	C6H6O4	cetona
45	10,1667	2,86	hidroxi metoxi acetofenona	1,451	C9H10O3	cetona
46	10,1667		C2-fenol	0,238	C8H10O	fenol
47	10,3333		C0-benzenodiol	20,721	C6H6O2	fenol
48	10,5		C3-fenol	0,011	C9H12O	fenol
49	10,5		dihidro benzofurano	9,073	C8H8O	eter
50	10,5		C2-hidroxi piranona	0,027	C7H8O3	cetona
51	10,5		C2-ciclohexanodiona	0,048	C8H10O	cetona
52	10,6667		C2-piranona	0,052	C7H8O2	cetona
53	10,8333		metoxi fenol	0,018	C7H8O2	fenol
54	11		furanil propenal	0,242	C7H6O2	aldeído
55	11,1667		C3-fenol	1,038	C9H12O	fenol
56	11,1667		C1-hidroxi furancarboxialdeido	0,338	C6H6O3	aldeído
57	11,3333		isopropoxi fenol	0,271	C9H12O2	fenol
58	11,5		C4-fenol	0,426	C9H12O	fenol
59	11,5		C2-hidroxi piranona	0,060	C7H8O3	cetona
60	11,6667		bifurano	0,480	C8H6O2	eter
61	11,8333		indanol	0,020	C9H10O	fenol
62	11,8333		C2-furano	0,029	C6H8O	eter
63	12,1667		C1-benzenodiol	2,938	C7H8O2	fenol
64	12,3333		C3-fenol	0,055	C9H12O	fenol
65	12,5		C0-benzenodiol	0,274	C6H6O2	fenol
66	12,8333		dihidroxi acetofenona	2,506	C8H8O3	cetona
67	12,8333		vinil ciclopentil acetato	0,060	C9H14O2	ester
68	13		C2-hidroxi metoxi benzaldeido	0,193	C10H12O3	aldeído
69	13		C1-benzenodiol	2,475	C7H8O2	fenol
70	13		C0-indanona	0,468	C9H8O	cetona
71 70	13,1667		C1-benzenodiol	10,057	C7H8O2	fenol
72 73	13,5		ácido C2-benzóico	0,075	C9H10O2	acido
73 74	13,8333		indanol	0,019	C9H10O C7H6O2	fenol aldeído
	13,8333 14		hidroxi benzaldeido	0,239		
75 76		5,61	bifurano C3-benzaldeido	0,239	C8H6O2 C10H12O	eter aldeído
76 77	14,3333 14,3333		butoxi fenol	0,011	C10H12O C10H14O2	
7 <i>1</i> 78	•		C1-indanona	0,037 0,001	C10H14O2	fenol cetona
76 79	14,3333 14,6667		C1-pentenil metoxi benzeno	0,053	C10H10O	eter
80	14,6667		C1-benzenodiol	0,033	C7H8O2	fenol
81	14,6667		C1-benzofurano	0,010	C9H8O	eter
82	15		C0-indanol	0,207	C9H10O	fenol
83	15,1667	5,1	C1-metoxi fenol	0,210	C8H10O2	fenol
84	15,1667		C1-benzenodiol	0,276	C7H8O2	fenol
85	15,3333		C1-hidroxi benzofurano	0,002	C9H8O2	eter
86	15,5		C2-benzenodiol	0,033	C8H10O2	fenol
87	15,5		C0-benzofuranona	0,054	C8H6O2	cetona
88	15,6667		C0-indenol	0,103	C9H8O	fenol
89	15,6667	7,23	C1-ciclopentanodiona	0,101	C6H8O2	cetona
90	16	6,2	hidroxi benzaldeido	0,080	C7H6O2	aldeído
91	16,6667	3,68	ácido acetil metóxi benzóico	0,137	C10H10O4	acido
92	16,6667	5,41	dihidroxi propiofenona	0,205	C9H10O3	cetona
93	16,8333		C2-benzenodiol	3,531	C8H10O2	fenol
94	17		dihidro benzopiranona	0,019	C9H8O2	cetona
95	17,3333		C1-hidroxi benzaldeido	0,020	C8H8O2	aldeído
	,5555	-,		0,020	30002	5.55100

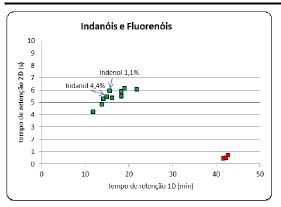
96	17,5	7	vanilina	0,355	C8H8O3	aldeído
97	17,8333	5,78	C2-benzenodiol	0,139	C8H10O2	fenol
98	17,8333	6,81	C1-indanona	0,009	C10H10O	cetona
99	18,1667	6,47	C2-benzenodiol	0,072	C8H10O2	fenol
100	18,1667	6,94	C1-indanona	0,008	C10H10O	cetona
101	18,3333	5,87	C1-indanol	0,040	C10H12O	fenol
102	18,6667	6,5	C2-benzenodiol	0,055	C8H10O2	fenol
103	18,8333	7,19	C2-hidroxi acetofenona	0,012	C10H12O2	cetona
104	18,8333	8,22	C2-dihidro carboxialdeido	0,071	C8H12O2	aldeído
105	19	6,42	vinil fenil etanona	0,027	C10H10O	cetona
106	19	6,78	C1-hidroxi benzaldeido	0,088	C8H8O2	aldeído
107	19,3333	8,39	dihidro naftalenona	0,008	C10H10O	cetona
108	19,8333	7,23	C4-fenol	0,075	C10H14O	fenol
109	21	5,83	C3-benzenodiol	0,384	C9H12O2	fenol
área total	(A _T)			286946247		
área total	tentativament	e identif	ficada (Aтi)	233253950		
% área te	ntativamente	dentifica	ada [(Aт/Aт).100]	81,29		
Número to	otal de picos o	letectad	os (PT)	294		
Número to	otal de picos i	dentifica	idos (PTi)	109		
% picos id	dentificados [(l	PTi/PT).	100]	37,07		
% área ác	cidos [(ΣA _{ácidos}	/A _{Ti}).100	0]	1,19		
% área ald	deídos [(ΣA _{ald}	eídos/ATi)	.100]	2,79		
% área ce	etonas [(ΣA _{ceto}	nas/A _{Ti}).1	100]	30,15		
% área és	steres [(ΣA _{éster}	es/A _{Ti}).1	00]	0,43		
% área ét	eres [(ΣA _{éteres} ,	/Aті).100)]	11,02		
% área fe	nóis [(Σ A $_{fenóis}$ /	Aті).100]	54,41		
					•	

Tabela A8: Compostos tentativamente identificados na amostra SPE/DCM-GC×GC/TOFMS e semi-quantificação dos mesmos através do percentual de área.

PICO	1 t _R	²t _R	NOME	% ÁREA	FÓRMULA	CLASSE
1.	5,83	5,34	Ácido Butanóico	0,016	C4H8O2	ácidos
2.	5,83	5,37	Pentenona	0,011	C5H8O	cetonas
3.	6,00	2,17	C1-Ciclopentenona	0,170	C6H8O	cetonas
4.	6,17	2,58	Furanona	3,901	C4H4O2	cetonas
5.	6,33	2,05	Ácido Pentanóico	0,176	C5H10O2	ácidos
6.	6,33	2,46	C1-Furancarboxaldeído	5,487	C6H6O2	aldeídos
7.	6,33	2,09	C3-Benzeno	0,101	C23H40	HC aro
8.	6,33	2,49	C3-Triazol	2,515	C5H9N3	nitrogenados
9.	6,50	2,55	C1-Ciclopentenona	4,504	C6H8O	cetonas
10.	6,50	2,84	C1-Furanona	2,684	C5H6O2	cetonas
11.	6,50	2,86	Piranona	1,636	C5H4O2	cetonas
12.	6,50	2,39	fenol	6,586	C6H6O	fenóis
13.	6,83	2,76	Heptenona	1,185	C7H12O	cetonas
14.	7,00	2,78	C1-Ciclopentanodiona	4,483	C6H8O2	cetonas
15.	7,00	2,90	C1-Dihidro-piranona	0,544	C6H8O2	cetonas
16.	7,17	2,97	Ciclohexenodiona	0,260	C6H6O2	cetonas
17.	7,17	3,58	Dihidro-piranona	0,176	C5H6O2	cetonas
18.	7,33	3,18	nonanona	1,077	C9H18O	cetonas
19.	7,33	2,85	C2-Ciclopentenona	6,254	C7H10O	cetonas
20.	7,33	3,06	C1-Benzoquinona (C1-ciclohexadiendiona)	0,217	C7H6O2	cetonas
21.	7,33	3,54	C1-Furanona	1,016	C5H6O2	cetonas

22. 7,33 2,76 C1-fenol 2,346 C7HBO fenól 23. 7,50 2,35 Ácido Pentanóico 0,036 CSH1002 acido 24. 7,50 3,71 Tetrahídro-piranona 0,035 CSH802 cetor 25. 7,67 2,80 C3-Ciclopentenona 9,307 C8H120 cetor 26. 7,67 2,80 C3-Ciclopentenona 0,159 CSH602 cetor 28. 7,67 2,87 C1-fenol 6,141 C7H80 fenól 29. 7,83 3,17 C2-Hidróxi-Ciclopentenona 0,838 C7H100 cetor 30. 8,00 3,00 Ciclohexanopropanol 0,113 C9H800 sete 31. 8,00 3,24 Urbidoxanopropanol 0,113 C9H800 sete 32. 8,00 4,20 Ciclohexanodiona 0,046 C6H802 cetor 33. 8,00 2,24 C1-Findacionna 0,058 CSH802 <td< th=""></td<>
24. 7,50 3,71 Tetrahidro-piranona 0,035 C5H8O2 cetor 25. 7,67 2,75 Decenal 0,041 C10H18O aldei 26. 7,67 2,80 2,3-Ciclopentenona 9,307 C8H12O cetor 27. 7,67 3,51 C1-Furanona 0,159 C5H6O2 cetor 28. 7,67 2,87 C1-fenol 6,141 C7H8O fenó 29. 7,83 3,17 C2-Hidróxi-Ciclopentenona 0,838 C7H10O cetor 31. 8,00 3,00 Ciclohexanodiona 0,113 C9H18O dloc 31. 8,00 3,30 Ciclohexanodiona 0,046 C6H8O2 cetor 33. 8,00 2,34 C1-Finol 0,167 C7H8O fenó 34. 8,17 3,82 C1-Piridazinona 0,058 C5H6N2O nitro 35. 8,17 3,18 Metoxi-fenol 0,058 C5H6N2O etor
25. 7,67 2,75 Decenal 0,041 C10H18O aldei 26. 7,67 2,80 C3-Ciclopentenona 9,307 C8H12C cetor 27. 7,67 2,81 C1-Fernol 6,141 C7H8O fendi 28. 7,67 2,87 C1-fernol 6,141 C7H8O fendi 29. 7,83 3,17 C2-Hidróxi-Ciclopentenona 0,838 C7H10O cetor 30. 8,00 3,00 Ciclohexanopropanol 0,113 C9H18O deloca 31. 8,00 3,24 Furoato de Metita 0,253 C6H6O3 ester 32. 8,00 4,20 Ciclohexanodiona 0,046 C6H8O2 cetor 33. 8,00 4,20 Ciclohexanodiona 0,046 C6H8O2 cetor 34. 8,17 3,31 Metoxidenol 0,305 C7H8O2 feroi 35. 8,17 3,31 Metoxidenol 0,305 C7H8O2 feroi <
26. 7,67 2,80 C3-Ciclopentenona 9,307 C8H12O cetor 27. 7,67 2,87 C1-Furanona 0,159 CSH602 cetor 28. 7,67 2,87 C1-Ifanol 6,141 C7H8O fenó 29. 7,83 3,17 C2-Hidróxi-Ciclopentenona 0,838 C7H10O cetor 30. 8,00 3,00 Ciclohexanodiona 0,113 C9H18O dico 31. 8,00 4,20 Ciclohexanodiona 0,046 C6H6O3 ester 32. 8,00 4,20 Ciclohexanodiona 0,046 C6H6O3 ester 33. 8,00 2,84 C1-fenol 0,157 C7H8O fenó 34. 8,17 3,13 Medioxi-fenol 0,058 C5H6N2O nitro 35. 8,17 3,13 Medioxi-fenol 0,058 C5H6N2O etor 36. 8,50 3,41 Purandicarboxaldeido 0,001 C6H4O3 aldei
27. 7,67 3,51 C1-Furanona 0,159 C5H6O2 cetor 28. 7,67 2,87 C1-fenol 6,141 C7H8O fenól 29. 7,83 3,17 C2-Hidróxi-Ciclopentenona 0,838 C7H10O cetor 30. 8,00 3,00 Ciclohexanopropanol 0,113 C9H18O alcor 31. 8,00 3,34 Furoato de Metila 0,253 C6H6O3 ester 32. 8,00 4,20 Ciclohexanodiona 0,046 C6H8O2 cetor 33. 8,00 2,84 C1-fenol 0,167 C7H8O fenó 34. 8,17 3,82 C1-Piridazinona 0,058 C5H6N2O nitro 35. 8,17 3,13 Metoxi-fenol 0,305 C7H8O2 fenó 36. 8,50 3,90 Heptenona 0,001 C6H4O3 aldei 38. 8,50 3,60 Malto (C1-kidróxi-Piranona) 0,426 C8H6O3 cetor
28. 7,67 2,87 C1-fenol 6,141 C7H8O fenói 29. 7,83 3,17 C2-Hidróxi-Ciclopentenona 0,838 C7H10O cetor 30. 8,00 3,00 Ciclohexanopropanol 0,113 C9H18O alcoa 31. 8,00 3,34 Furoato de Metila 0,253 C6H6O3 ester 32. 8,00 2,84 C1-fenol 0,167 C7H8O fenói 33. 8,00 2,84 C1-fenol 0,167 C7H8O fenói 34. 8,17 3,82 C1-Piridazinona 0,058 C5H6N2O nitro 35. 8,17 3,13 Metoxi-fenol 0,005 C7H8O2 fenói 36. 8,50 3,49 Heptenona 0,192 C7H12O cetor 38. 8,50 3,47 C1-Berzoquinona (C1-ciclohexadiendiona) 0,009 C7H6O2 cetor 38. 8,50 3,47 C1-Berzoquinona (C1-ciclohexadiendiona) 0,009
29. 7,83 3,17 C2-Hidróxi-Ciclopentenona 0,838 C7H10O cetor 30. 8,00 3,00 Ciclohexanopropanol 0,113 C9H18O alcox 31. 8,00 3,34 Furoato de Metila 0,253 C8H603 estet 32. 8,00 4,20 Ciclohexanociona 0,046 C6H8O2 cetor 33. 8,00 2,84 C1-fenol 0,167 C7H8O fenói 34. 8,17 3,82 C1-Piridazinona 0,058 C5H6N2O nitro 35. 8,17 3,13 Metoxi-fenol 0,305 C7H8O2 fenói 36. 8,50 4,19 Furandicarboxaldeído 0,001 C6H4O3 aldei 37. 8,50 3,90 Heptenona 0,192 C7H1CO cetor 38. 8,50 3,47 C1-Benzoquinona (C1-ciclohexadiendiona) 0,009 C7H6O2 cetor 40. 8,67 3,27 C2-Ciclohexenona 0,215 C
30. 8,00 3,00 Ciclohexanopropanol 0,113 C9H18O álcoz 31. 8,00 3,34 Furoato de Metila 0,253 C6H6O3 ester 32. 8,00 4,20 Ciclohexanodiona 0,046 C6H8O2 cetor 33. 8,00 2,84 C1-fenol 0,167 C7H8O fenó 34. 8,17 3,82 C1-Piridazinona 0,058 C5H6N2O nitro 35. 8,17 3,13 Metoxi-fenol 0,305 C7H8O2 fenó 36. 8,50 3,99 Heptenona 0,192 C7H1CO ceto 38. 8,50 3,47 C1-Benzoquinona (C1-ciclohexadiendiona) 0,009 C7H6O2 cetor 40. 8,67 3,27 C2-Ciclopentenona 0,215 C7H10O2 cetor 41. 8,83 3,22 C2-Ciclopentenona 0,215 C7H10O2 ceto 42. 8,83 3,22 C2-Fenol 0,151 C10H14 <t< td=""></t<>
31. 8,00 3,34 Furoato de Metila 0,253 C6H6O3 ester 32. 8,00 4,20 Ciclohexanodiona 0,046 C6H8O2 cetor 33. 8,00 4,20 Ciclohexanodiona 0,167 C7H8O fenó 34. 8,17 3,82 C1-Piridazinona 0,058 C5H6N2O nitro 35. 8,17 3,13 Metoxi-fenol 0,305 C7H8O2 fenó 36. 8,50 4,19 Furandicarboxaldeido 0,001 C6H4O3 aldei 37. 8,50 3,90 Heptenona 0,192 C7H1O2 cetor 38. 8,50 3,60 Maltol (C1-Hidróxi-Piranona) 0,426 C6H6O3 cetor 40. 8,67 3,27 C2-Ciclopentenona 0,215 C7H10O2 cetor 41. 8,83 3,23 C2-Fenol 0,462 C8H10O fenó 42. 8,83 3,23 C2-Fenol 0,155 C6H8O3 cetor
32. 8,00 4,20 Ciclohexanodiona 0,046 C6H8O2 cetor 33. 8,00 2,84 C1-Finol 0,167 C7H8O fenói 34. 8,17 3,82 C1-Piridazinona 0,058 C5H6N2O nitro 36. 8,50 4,19 Furandicarboxaldeído 0,001 C6H4O3 aldei 37. 8,50 3,90 Heptenona 0,192 C7H12O cetor 38. 8,50 3,47 C1-Benzoquinona (C1-ciclohexadiendiona) 0,009 C7H6O2 cetor 40. 8,67 3,27 C2-Ciclopentenona 0,215 C7H10O2 cetor 41. 8,83 3,23 C2-Genol 0,462 C8H10O fenói 42. 8,83 3,23 C2-Furano 0,125 C6H8O étere 43. 9,00 3,80 C2-Furano 0,125 C6H8O étere 44. 9,00 3,80 C2-Fenol 0,026 C8H10O fenói <
33. 8,00 2,84 C1-fenol 0,167 C7H8O fenói 34. 8,17 3,82 C1-Piridazinona 0,058 C5H6N2O nitro 35. 8,17 3,13 Metoxi-fenol 0,305 C7H8O2 fenói 36. 8,50 4,19 Furandicarboxaldeido 0,001 C6H6O3 aldei 37. 8,50 3,90 Heptenona 0,192 C7H12O cetor 38. 8,50 3,60 Maltol (C1-Hidróxi-Piranona) 0,426 C6H6O3 cetor 40. 8,67 3,27 C2-Giolopentenona 0,151 C1H10O2 cetor 41. 8,83 3,23 C2-fenol 0,462 C8H10O fenói 42. 8,83 3,23 C2-fenol 0,125 C6H8O étere 44. 9,00 3,80 C1-Hidróxi-Piranona 0,126 C6H6O3 cetor 45. 9,00 3,80 C1-Hidróxi-Piranona 0,126 C6H6O3 cetor
34. 8,17 3,82 C1-Piridazinona 0,058 C5H6N2O nitrog 35. 8,17 3,13 Metoxi-fenol 0,305 C7H8O2 fenól 36. 8,50 4,19 Furandicarboxaldeído 0,001 C6H4O3 aldei 37. 8,50 3,90 Heptenona 0,192 C7H12O cetor 38. 8,50 3,60 Maltol (C1-Hidróxi-Piranona) 0,426 C6H6O3 cetor 40. 8,67 3,27 C2-Ciclopentenona 0,215 C7H10O2 cetor 41. 8,83 3,23 C2-fenol 0,151 C10H14 HCa 42. 8,83 3,23 C2-fenol 0,125 C6H8O cetor 43. 9,00 3,80 C2-Furano 0,125 C6H8O cetor 44. 9,00 3,80 C2-Furano 0,126 C6H0O3 cetor 45. 9,00 3,84 C2-fenol 4,065 C8H10O fenói
35. 8,17 3,13 Metoxi-fenol 0,305 C7H802 fenó 36. 8,50 4,19 Furandicarboxaldeído 0,001 C6H4O3 aldei 37. 8,50 3,90 Heptenona 0,192 C7H12O cetor 38. 8,50 3,60 Maltol (C1-Hidróxi-Piranona) 0,009 C7H6O2 cetor 39. 8,50 3,60 Maltol (C1-Hidróxi-Piranona) 0,426 C6H6O3 cetor 40. 8,67 3,27 C2-Ciclopentenona 0,215 C7H10O2 cetor 41. 8,83 3,23 C2-Fenol 0,462 C8H10O fenó 42. 8,83 3,23 C2-Furano 0,125 C6H8O3 cetor 44. 9,00 3,89 C2-Furano 0,126 C6H6O3 cetor 44. 9,00 3,34 C2-fenol 4,065 C8H10O fenó 45. 9,00 3,34 C2-fenol 0,126 C6H6O3 cetor
36. 8,50 4,19 Furandicarboxaldeído 0,001 C6H4O3 aldeí 37. 8,50 3,90 Heptenona 0,192 C7H12O cetor 38. 8,50 3,47 C1-Benzoquinona (C1-ciclohexadiendiona) 0,009 C7H6O2 cetor 40. 8,67 3,27 C2-Ciclopentenona 0,215 C7H10O2 cetor 41. 8,83 3,52 C4-Benzeno 0,151 C10H14 HC a 42. 8,83 3,23 C2-fenol 0,462 C8H10O fenói 43. 9,00 3,89 C2-Furano 0,125 C6H6O3 cetor 44. 9,00 3,80 C1-Hidróxi-Piranona 0,126 C6H6O3 cetor 45. 9,00 3,80 C1-Hidróxi-Piranona 0,126 C8H10O fenói 46. 9,17 3,85 Hexadienol 0,105 C6H0O3 cetor 47. 9,17 4,43 Furanii Propenal 0,114 C7H6O2 <
37. 8,50 3,90 Heptenona 0,192 C7H12O cetor 38. 8,50 3,47 C1-Benzoquinona (C1-ciclohexadiendiona) 0,009 C7H6O2 cetor 39. 8,50 3,60 Maltol (C1-Hidróxi-Piranona) 0,426 C6H6O3 cetor 40. 8,67 3,27 C2-Ciclopentenona 0,151 C7H10O2 cetor 41. 8,83 3,52 C4-Benzeno 0,151 C10H14 HCc 42. 8,83 3,23 C2-fenol 0,462 C8H10O fenói 43. 9,00 3,89 C2-Furano 0,125 C6H8O étere 44. 9,00 3,80 C2-Fienol 4,065 C8H10O fenói 45. 9,00 3,84 C2-fenol 4,055 C8H10O fenói 46. 9,17 3,35 C4-fenol 0,114 C7H6O2 aldei 48. 9,17 4,33 C2-fenol 0,114 C7H6O2 aldei
38. 8,50 3,47 C1-Benzoquinona (C1-ciclohexadiendiona) 0,009 C7H6O2 cetor 39. 8,50 3,60 Maltol (C1-Hidróxi-Piranona) 0,426 C6H6O3 cetor 40. 8,67 3,27 C2-Ciclopentenona 0,215 C7H10O2 cetor 41. 8,83 3,22 C2-Fenol 0,151 C10H14 HC a 42. 8,83 3,23 C2-Fenol 0,462 C8H10O fenól 43. 9,00 3,89 C2-Furano 0,125 C6H8O étere 44. 9,00 3,80 C1-Hidróxi-Piranona 0,126 C6H6O3 cetor 45. 9,00 3,34 C2-fenol 4,065 C8H10O fenól 46. 9,17 3,85 Hexadienol 0,105 C6H10O álcoc 47. 9,17 4,43 Furanil Propenal 0,114 C7H6O2 aldei 48. 9,17 3,35 C2-fenol 0,212 C8H12O ceto
39. 8,50 3,60 Maltol (C1-Hidróxi-Piranona) 0,426 C6H6O3 cetor 40. 8,67 3,27 C2-Ciclopentenona 0,215 C7H10O2 cetor 41. 8,83 3,25 C2-Enclo 0,151 C10H14 HC at 42. 8,83 3,23 C2-Fenol 0,462 C8H10O fenói 43. 9,00 3,89 C2-Furano 0,126 C6H8O étere 44. 9,00 3,80 C1-Hidróxi-Piranona 0,126 C6H6O3 cetor 45. 9,00 3,80 C1-Hidróxi-Piranona 0,126 C6H10O álcor 46. 9,17 3,85 Hexadienol 0,105 C6H10O álcor 47. 9,17 4,43 Furanil Propenal 0,114 C7H6O2 aldei 48. 9,17 3,35 C2-Fenol 0,212 C8H12O cetor 49. 9,17 3,35 C2-Fenol 0,252 C25H38B2O2S fenói
40. 8,67 3,27 C2-Ciclopentenona 0,215 C7H1002 cetor 41. 8,83 3,52 C4-Benzeno 0,151 C10H14 HC a 42. 8,83 3,23 C2-fenol 0,462 C8H100 fenói 43. 9,00 3,89 C2-Furano 0,125 C6H8O étere 44. 9,00 3,80 C1-Hidróxi-Piranona 0,126 C6H6O3 cetor 45. 9,00 3,84 C2-fenol 4,065 C8H100 fenói 46. 9,17 3,85 Hexadienol 0,1105 C6H10O álcoc 47. 9,17 4,43 Furanil Propenal 0,1105 C6H10O álcoc 48. 9,17 4,30 C2-Ciclohexenona 0,212 C8H12O cetor 49. 9,17 3,35 C2-fenol 1,525 C25H38B2O2S fenói 50. 9,33 2,73 Ácido Hexanóico 0,082 C6H12O2 ácido 51. 9,33 3,61 C1 Hidróxi Benzaldeído 0,066 C8H8O2
41. 8,83 3,52 C4-Benzeno 0,151 C10H14 HC a 42. 8,83 3,23 C2-fenol 0,462 C8H10O fenói 43. 9,00 3,89 C2-Furano 0,125 C6H8O étere 44. 9,00 3,80 C1-Hidróxi-Piranona 0,126 C6H6O3 cetor 45. 9,00 3,34 C2-fenol 4,065 C8H10O fenói 46. 9,17 3,85 Hexadienol 0,105 C6H10O álcoc 47. 9,17 4,43 Furanil Propenal 0,114 C7H6O2 aldei 48. 9,17 4,30 C2-Ciclohexenona 0,212 C8H12O cetor 49. 9,17 3,35 C2-fenol 1,525 C25H38B2O2S fenói 50. 9,33 2,73 Ácido Hexanóico 0,082 C6H12O2 ácido 51. 9,33 3,26 C4-Ciclohexenona 0,052 C10H16O cetor 52. 9,50 3,61 C1 Hidróxi Benzaldeído 0,066 C8H8O2 <
42. 8,83 3,23 C2-fenol 0,462 C8H10O fenói 43. 9,00 3,89 C2-Furano 0,125 C6H8O étere 44. 9,00 3,80 C1-Hidróxi-Piranona 0,126 C6H6O3 cetor 45. 9,00 3,34 C2-fenol 4,065 C8H10O fenói 46. 9,17 3,85 Hexadienol 0,105 C6H10O álcoc 47. 9,17 4,43 Furanil Propenal 0,114 C7H6O2 aldei 48. 9,17 4,30 C2-Ciclohexenona 0,212 C8H12O cetor 49. 9,17 3,35 C2-fenol 1,525 C25H38B2O2S fenói 50. 9,33 2,73 Ácido Hexanóico 0,082 C6H12O2 ácido 51. 9,33 3,26 C4-Ciclohexenona 0,052 C10H16O cetor 52. 9,50 3,61 C1 Hidróxi Benzaldeído 0,066 C8H8O2 aldei 53. 9,50 3,45 C2-fenol 0,196 C9H12O <t< td=""></t<>
43. 9,00 3,89 C2-Furano 0,125 C6H8O éteres 44. 9,00 3,80 C1-Hidróxi-Piranona 0,126 C6H6O3 cetor 45. 9,00 3,34 C2-fenol 4,065 C8H10O fenói 46. 9,17 3,85 Hexadienol 0,105 C6H10O álcoc 47. 9,17 4,43 Furanil Propenal 0,114 C7H6O2 aldei 48. 9,17 4,30 C2-Giclohexenona 0,212 C8H12O cetor 49. 9,17 3,35 C2-fenol 1,525 C25H38B2O2S fenói 50. 9,33 2,73 Ácido Hexanóico 0,082 C6H12O2 ácido 51. 9,33 3,26 C4-Ciclohexenona 0,052 C10H16O cetor 52. 9,50 3,61 C2-fenol 0,052 C10H16O cetor 53. 9,50 3,45 C2-fenol 0,196 C9H12O álcoc 54. 9,67 3,81 C2-fenol 0,196 C9H12O álcoc
44. 9,00 3,80 C1-Hidróxi-Piranona 0,126 C6H6O3 cetor 45. 9,00 3,34 C2-fenol 4,065 C8H10O fenói 46. 9,17 3,85 Hexadienol 0,105 C6H10O álcoc 47. 9,17 4,43 Furanil Propenal 0,114 C7H6O2 aldei 48. 9,17 4,30 C2-Ciclohexenona 0,212 C8H12O cetor 49. 9,17 3,35 C2-fenol 1,525 C25H38B2O2S fenói 50. 9,33 2,73 Ácido Hexanóico 0,082 C6H12O2 ácido 51. 9,33 3,26 C4-Ciclohexenona 0,052 C10H16O cetor 52. 9,50 3,61 C1 Hidróxi Benzaldeído 0,066 C8H8O2 aldei 53. 9,50 3,45 C2-fenol 2,637 C8H10O fenói 54. 9,67 3,81 C2-Benzenometanol 0,196 C9H12O álcoc 55. 9,67 3,84 C2-fenol 0,151 C8H10O
45. 9,00 3,34 C2-fenol 4,065 C8H10O fenói 46. 9,17 3,85 Hexadienol 0,105 C6H10O álcoc 47. 9,17 4,43 Furanil Propenal 0,114 C7H6O2 aldei 48. 9,17 4,30 C2-Ciclohexenona 0,212 C8H12O cetor 49. 9,17 3,35 C2-fenol 1,525 C25H38B2O2S fenói 50. 9,33 2,73 Ácido Hexanóico 0,082 C6H12O2 ácido 51. 9,33 3,26 C4-Ciclohexenona 0,052 C10H16O cetor 52. 9,50 3,61 C1 Hidróxi Benzaldeído 0,066 C8H8O2 aldei 53. 9,50 3,45 C2-fenol 2,637 C8H10O fenói 54. 9,67 3,81 C2-Benzenometanol 0,196 C9H12O álcoc 55. 9,67 3,89 Di Hidróxi benzaldeído 0,028 C7H6O3 aldei 56. 9,67 3,44 C2-fenol 0,151 C8H10O </td
46. 9,17 3,85 Hexadienol 0,105 C6H10O álcoc 47. 9,17 4,43 Furanil Propenal 0,114 C7H6O2 aldei 48. 9,17 4,30 C2-Ciclohexenona 0,212 C8H12O cetor 49. 9,17 3,35 C2-fenol 1,525 C25H38B2O2S fenói 50. 9,33 2,73 Ácido Hexanóico 0,082 C6H12O2 ácido 51. 9,33 3,26 C4-Ciclohexenona 0,052 C10H16O cetor 52. 9,50 3,61 C1 Hidróxi Benzaldeído 0,066 C8H8O2 aldei 53. 9,50 3,45 C2-fenol 2,637 C8H10O fenói 54. 9,67 3,81 C2-Benzenometanol 0,196 C9H12O álcoc 55. 9,67 3,89 Di Hidróxi benzaldeído 0,028 C7H6O3 aldei 56. 9,67 3,44 C2-fenol 0,151 C8H10O fenói 57. 9,83 3,64 C2-fenol 0,273 C8H10O </td
47. 9,17 4,43 Furanil Propenal 0,114 C7H6O2 alded 48. 9,17 4,30 C2-Ciclohexenona 0,212 C8H12O cetor 49. 9,17 3,35 C2-fenol 1,525 C25H38B2O2S fenói 50. 9,33 2,73 Ácido Hexanóico 0,082 C6H12O2 ácido 51. 9,33 3,26 C4-Ciclohexenona 0,052 C10H16O cetor 52. 9,50 3,61 C1 Hidróxi Benzaldeído 0,066 C8H8O2 aldei 53. 9,50 3,45 C2-fenol 2,637 C8H10O fenói 54. 9,67 3,81 C2-Benzenometanol 0,196 C9H12O álcoc 55. 9,67 3,89 Di Hidróxi benzaldeído 0,028 C7H6O3 aldeí 56. 9,67 3,44 C2-fenol 0,151 C8H10O fenói 57. 9,83 3,64 C2-fenol 0,273 C8H10O fenói 58. 10,00 2,25 Propóxi Benzeno 0,120 C9
48. 9,17 4,30 C2-Ciclohexenona 0,212 C8H12O cetor 49. 9,17 3,35 C2-fenol 1,525 C25H38B2O2S fenói 50. 9,33 2,73 Ácido Hexanóico 0,082 C6H12O2 ácido 51. 9,33 3,26 C4-Ciclohexenona 0,052 C10H16O cetor 52. 9,50 3,61 C1 Hidróxi Benzaldeído 0,066 C8H8O2 aldeí 53. 9,50 3,45 C2-fenol 2,637 C8H10O fenói 54. 9,67 3,81 C2-Benzenometanol 0,196 C9H12O álcoc 55. 9,67 3,89 Di Hidróxi benzaldeído 0,028 C7H6O3 aldeí 56. 9,67 3,44 C2-fenol 0,151 C8H10O fenói 57. 9,83 3,64 C2-fenol 0,273 C8H10O fenói 58. 10,00 2,25 Propóxi Benzeno 0,120 C9H12O étere 59. 10,17 2,84 Hidróxi Metoxi Acetofenona 0,951
49. 9,17 3,35 C2-fenol 1,525 C25H38B2O2S fenói 50. 9,33 2,73 Ácido Hexanóico 0,082 C6H12O2 ácido 51. 9,33 3,26 C4-Ciclohexenona 0,052 C10H16O cetor 52. 9,50 3,61 C1 Hidróxi Benzaldeído 0,066 C8H8O2 aldeí 53. 9,50 3,45 C2-fenol 2,637 C8H10O fenói 54. 9,67 3,81 C2-Benzenometanol 0,196 C9H12O álcoc 55. 9,67 3,89 Di Hidróxi benzaldeído 0,028 C7H6O3 aldeí 56. 9,67 3,44 C2-fenol 0,151 C8H10O fenói 57. 9,83 3,64 C2-fenol 0,273 C8H10O fenói 58. 10,00 2,25 Propóxi Benzeno 0,120 C9H12O étere 59. 10,17 2,84 Hidróxi Metoxi Acetofenona 0,951 C9H10O3 cetor 60. 10,17 4,42 nonanona 0,000 <
50. 9,33 2,73 Ácido Hexanóico 0,082 C6H12O2 ácido 51. 9,33 3,26 C4-Ciclohexenona 0,052 C10H16O cetor 52. 9,50 3,61 C1 Hidróxi Benzaldeído 0,066 C8H8O2 aldeí 53. 9,50 3,45 C2-fenol 2,637 C8H10O fenói 54. 9,67 3,81 C2-Benzenometanol 0,196 C9H12O álcoc 55. 9,67 3,89 Di Hidróxi benzaldeído 0,028 C7H6O3 aldeí 56. 9,67 3,44 C2-fenol 0,151 C8H10O fenói 57. 9,83 3,64 C2-fenol 0,273 C8H10O fenói 58. 10,00 2,25 Propóxi Benzeno 0,120 C9H12O étere 59. 10,17 2,84 Hidróxi Metoxi Acetofenona 0,951 C9H10O3 cetor 60. 10,17 4,42 nonanona 0,000 C9H16O cetor 61. 10,17 3,81 C1-Metoxi-fenol 0,418
51. 9,33 3,26 C4-Ciclohexenona 0,052 C10H16O cetor 52. 9,50 3,61 C1 Hidróxi Benzaldeído 0,066 C8H8O2 aldeí 53. 9,50 3,45 C2-fenol 2,637 C8H10O fenói 54. 9,67 3,81 C2-Benzenometanol 0,196 C9H12O álcoc 55. 9,67 3,89 Di Hidróxi benzaldeído 0,028 C7H6O3 aldeí 56. 9,67 3,44 C2-fenol 0,151 C8H10O fenói 57. 9,83 3,64 C2-fenol 0,273 C8H10O fenói 58. 10,00 2,25 Propóxi Benzeno 0,120 C9H12O étere 59. 10,17 2,84 Hidróxi Metoxi Acetofenona 0,951 C9H10O3 cetor 60. 10,17 4,42 nonanona 0,000 C9H16O cetor 61. 10,17 3,81 C1-Metoxi-fenol 0,418 C8H10O2 fenói 62. 10,173 3,81 C1-Metoxi-fenol 0,149
52. 9,50 3,61 C1 Hidróxi Benzaldeído 0,066 C8H8O2 aldeí 53. 9,50 3,45 C2-fenol 2,637 C8H10O fenói 54. 9,67 3,81 C2-Benzenometanol 0,196 C9H12O álcoc 55. 9,67 3,89 Di Hidróxi benzaldeído 0,028 C7H6O3 aldeí 56. 9,67 3,44 C2-fenol 0,151 C8H10O fenói 57. 9,83 3,64 C2-fenol 0,273 C8H10O fenói 58. 10,00 2,25 Propóxi Benzeno 0,120 C9H12O étere 59. 10,17 2,84 Hidróxi Metoxi Acetofenona 0,951 C9H10O3 cetor 60. 10,17 4,42 nonanona 0,000 C9H16O cetor 61. 10,17 3,76 C2-fenol 0,525 C8H10O fenói 62. 10,17 3,81 C1-Metoxi-fenol 0,418 C8H10O2 fenói 63. 10,50 3,75 C2-fenol 0,149 C9H12O </td
53. 9,50 3,45 C2-fenol 2,637 C8H10O fenói 54. 9,67 3,81 C2-Benzenometanol 0,196 C9H12O álcoc 55. 9,67 3,89 Di Hidróxi benzaldeído 0,028 C7H6O3 aldeí 56. 9,67 3,44 C2-fenol 0,151 C8H10O fenói 57. 9,83 3,64 C2-fenol 0,273 C8H10O fenói 58. 10,00 2,25 Propóxi Benzeno 0,120 C9H12O étere 59. 10,17 2,84 Hidróxi Metoxi Acetofenona 0,951 C9H10O3 cetor 60. 10,17 4,42 nonanona 0,000 C9H16O cetor 61. 10,17 3,76 C2-fenol 0,525 C8H10O fenói 62. 10,17 3,81 C1-Metoxi-fenol 0,418 C8H10O2 fenói 63. 10,50 3,75 C2-fenol 0,149 C9H12O fenói
54. 9,67 3,81 C2-Benzenometanol 0,196 C9H12O álcod 55. 9,67 3,89 Di Hidróxi benzaldeído 0,028 C7H6O3 aldeí 56. 9,67 3,44 C2-fenol 0,151 C8H10O fenói 57. 9,83 3,64 C2-fenol 0,273 C8H10O fenói 58. 10,00 2,25 Propóxi Benzeno 0,120 C9H12O étere 59. 10,17 2,84 Hidróxi Metoxi Acetofenona 0,951 C9H10O3 cetor 60. 10,17 4,42 nonanona 0,000 C9H16O cetor 61. 10,17 3,76 C2-fenol 0,525 C8H10O fenói 62. 10,17 3,81 C1-Metoxi-fenol 0,418 C8H10O2 fenói 63. 10,50 3,75 C2-fenol 0,149 C9H12O fenói
55. 9,67 3,89 Di Hidróxi benzaldeído 0,028 C7H6O3 aldeí 56. 9,67 3,44 C2-fenol 0,151 C8H10O fenói 57. 9,83 3,64 C2-fenol 0,273 C8H10O fenói 58. 10,00 2,25 Propóxi Benzeno 0,120 C9H12O étere 59. 10,17 2,84 Hidróxi Metoxi Acetofenona 0,951 C9H10O3 cetor 60. 10,17 4,42 nonanona 0,000 C9H16O cetor 61. 10,17 3,76 C2-fenol 0,525 C8H10O fenói 62. 10,17 3,81 C1-Metoxi-fenol 0,418 C8H10O2 fenói 63. 10,50 3,75 C2-fenol 0,149 C9H12O fenói
56. 9,67 3,44 C2-fenol 0,151 C8H10O fenói 57. 9,83 3,64 C2-fenol 0,273 C8H10O fenói 58. 10,00 2,25 Propóxi Benzeno 0,120 C9H12O étere 59. 10,17 2,84 Hidróxi Metoxi Acetofenona 0,951 C9H10O3 cetor 60. 10,17 4,42 nonanona 0,000 C9H16O cetor 61. 10,17 3,76 C2-fenol 0,525 C8H10O fenói 62. 10,17 3,81 C1-Metoxi-fenol 0,418 C8H10O2 fenói 63. 10,50 3,75 C2-fenol 0,149 C9H12O fenói
57. 9,83 3,64 C2-fenol 0,273 C8H10O fenói 58. 10,00 2,25 Propóxi Benzeno 0,120 C9H12O étere 59. 10,17 2,84 Hidróxi Metoxi Acetofenona 0,951 C9H10O3 cetor 60. 10,17 4,42 nonanona 0,000 C9H16O cetor 61. 10,17 3,76 C2-fenol 0,525 C8H10O fenói 62. 10,17 3,81 C1-Metoxi-fenol 0,418 C8H10O2 fenói 63. 10,50 3,75 C2-fenol 0,149 C9H12O fenói
58. 10,00 2,25 Propóxi Benzeno 0,120 C9H12O étere 59. 10,17 2,84 Hidróxi Metoxi Acetofenona 0,951 C9H10O3 cetor 60. 10,17 4,42 nonanona 0,000 C9H16O cetor 61. 10,17 3,76 C2-fenol 0,525 C8H10O fenói 62. 10,17 3,81 C1-Metoxi-fenol 0,418 C8H10O2 fenói 63. 10,50 3,75 C2-fenol 0,149 C9H12O fenói
59. 10,17 2,84 Hidróxi Metoxi Acetofenona 0,951 C9H10O3 cetor 60. 10,17 4,42 nonanona 0,000 C9H16O cetor 61. 10,17 3,76 C2-fenol 0,525 C8H10O fenói 62. 10,17 3,81 C1-Metoxi-fenol 0,418 C8H10O2 fenói 63. 10,50 3,75 C2-fenol 0,149 C9H12O fenói
60. 10,17 4,42 nonanona 0,000 C9H16O cetor 61. 10,17 3,76 C2-fenol 0,525 C8H10O fenói 62. 10,17 3,81 C1-Metoxi-fenol 0,418 C8H10O2 fenói 63. 10,50 3,75 C2-fenol 0,149 C9H12O fenói
61. 10,17 3,76 C2-fenol 0,525 C8H10O fenói 62. 10,17 3,81 C1-Metoxi-fenol 0,418 C8H10O2 fenói 63. 10,50 3,75 C2-fenol 0,149 C9H12O fenói
62. 10,17 3,81 C1-Metoxi-fenol 0,418 C8H10O2 fenói 63. 10,50 3,75 C2-fenol 0,149 C9H12O fenói
63. 10,50 3,75 C2-fenol 0,149 C9H12O fenói
64 10 E0 2 22 C2 fond 1 110 C 1110 C 1110 C
64. 10,50 3,33 C3-fenol 0,039 C8H10O fenói
65. 10,50 3,93 Benzenodiol 11,021 C6H6O2 fenói
66. 10,67 4,76 C2-Piranona 0,010 C7H8O2 cetor
67. 10,67 5,15 Dianidro-Glucopiranose (derivado do Levoglucosano) 0,062 C6H8O4 açúc
68. 10,83 3,73 C3-fenol 0,026 C9H12O fenói
69. 11,00 5,37 Furanil Propenal 0,068 C7H6O2 aldei
70. 11,17 3,80 C3-fenol 0,784 C9H12O fenói
71. 11,33 4,61 C2-fenol 0,008 C8H10O fenói
72. 11,50 3,93 C3-fenol 1,521 C9H12O fenói
73. 11,67 4,64 Bifurano 0,238 C8H6O2 étere
74. 11,83 4,22 Indanol 0,140 C9H10O fenói
75. 12,00 4,04 C3-fenol 0,486 C9H12O fenói
76. 12,17 4,25 Hidróxi-Acetofenona 0,036 C8H8O2 cetor 77. 12,33 4,92 Metoxi-Benzofurano 0,186 C9H8O2 étere


			Disseriação de mestrado			
78.	12,33	4,24	C3-fenol	0,176	C9H12O	fenóis
79.	12,33	4,49	C1-Benzenodiol	0,810	C7H8O2	fenóis
80.	12,33	4,98	Metoxi-fenol	0,088	C7H8O2	fenóis
81.	12,67	5,22	Benzenodiol	0,030	C6H6O2	fenóis
82.	12,83	4,86	Dihidróxi-Acetofenona	0,225	C8H8O3	cetonas
83.	12,83	4,20	C4-fenol	0,006	C10H14O	fenóis
84.	13,00	4,67	C1-Hidróxi-Acetofenona	0,185	C9H10O2	cetonas
85.	13,00	5,74	Indanona	0,539	C9H8O	cetonas
86.	13,17	4,71	C1-Benzenodiol	2,750	C7H8O2	fenóis
87.	13,50	4,98	C4-fenol	0,066	C10H14O	fenóis
88.	13,67	4,71	C3-fenol	0,023	C9H12O	fenóis
89.	13,83	5,46	Hidróxi Benzaldeído	0,042	C7H6O2	aldeídos
90.	13,83	4,81	Indanol	0,078	C9H10O	fenóis
91.	14,00		Benzeno Acetaldeído	0,104	C8H8O	aldeídos
92.	14,00		Bifurano	0,149	C8H6O2	éteres
93.	14,00	,	C1-Indanona	0,056	C10H10O	cetonas
94.	14,00		C4-fenol	0,093	C10H14O	fenóis
95.	14,00	,	C2-Benzenodiol	0,013	C8H10O2	fenóis
96.	14,17		Indanol	0,060	C9H10O	fenóis
97.	14,33		C1-Indanona	0,022	C10H10O	cetonas
98.	14,33		Quinolinol	0,023	C16H17NO2	nitrogenados
99.	14,33		C1-Allil- fenol	0,092	C10H12O	fenóis
100.	14,50	,	C3 Metóxi Benzeno	0,351	C10H14O	éteres
101.	14,83		C1-Benzofurano	0,016	C9H8O	éteres
102.	14,83		C1-Benzenodiol	0,027	C7H8O2	fenóis
103.	14,83	,	Indanol	0,019	C9H10O	fenóis
104.	15,00		Indanol	0,347	C9H10O	fenóis
105.	15,17		C2-Benzenodiol	0,055	C8H10O2	fenóis
106.	15,33		C1-Benzenodiol	0,026	C7H8O2	fenóis
107.	15,50	,	Benzofuranona	0,012	C8H6O2	cetonas
108.	15,67		C1-Benzofurano	0,108	C9H8O	éteres
109.	15,67		C2-Indano	0,118	C11H14	HC aro
110.	15,67		C1-Ciclohexanona	0,051	C7H12O	cetonas
111.	15,67		C2-Indazol	0,118	C9H10N2	fenol
112.	15,83		Hidróxi-indanona	0,057	C9H8O2	cetonas
113.	16,00	5,55	Metoxi-C1-benzofurano	0,018	C10H10O2	éteres
114.	16,83	,	C2-Benzenodiol	1,306	C8H10O2	fenóis
115.	17,00		C2-Acetofenona	0,021	C10H12O	cetonas
116.	17,00	7,41		0,022	C9H8O2	cetonas
117.	17,33	,	C2-Indano	0,054	C11H14	HC aro
118.	17,33		Benzopiranona	0,021	C9H6O2	cetonas
119.	17,50		Vanilina	0,155	C8H8O3	aldeídos
120.	17,83		C1-Hidróxibenzofurano	0,133	C9H8O2	éteres
121.	17,83		C2-Benzenodiol	0,043	C8H10O2	fenóis
122.	18,17	,	C1-Indanona	0,069	C10H10O	cetonas
123.	18,33		C1-Hidróxibenzofurano	0,003	C9H8O2	éteres
124.	18,33		C1-Indoorbenzordrand	0,000	C10H12O	fenol
125.	19,00	,	C1 Hidróxi Benzaldeído	0,102	C8H8O2	aldeídos
126.	19,00		C1-indanol	0,003	C10H12O	fenóis
120. 127.	19,00	8,34		0,007	C10H12O C9H6O2	
		5,80	•		C9H6O2 C8H8O4	cetonas ácidos
128.	21,00	,		0,123		
129. 130	22,00	5,52		0,025	C9H12O2	fenóis fonóis
130.	22,00	2,75	·	0,008	C9H12O2 C9H8O3	fenóis
131.	22,17	7,75	•	0,042		cetonas
132.	22,33		Benzofuranilacetaldeído	0,015	C10H8O2	aldeídos fonéis
133.	27,67	0,58	C1-Naftol	0,006	C11H10O	fenóis


Dissertação de Mestrado

área total (A _T)	116178218	
área total tentativamente identificada (A _{Ti})	105728666	
% área tentativamente identificada [(A _{Ti} /A _T).100]	91,01	
Número total de picos detectados (P _T)	175	
Número total de picos identificados (P _{Ti})	133	
% picos identificados [(P _T /P _T).100]	76,00	
% área ácidos [(ΣA _{ácidos} /A _{Ti}).100]	0,43	
% área açúcares [(ΣA _{açúcares} /A _{Ti}).100]	0,06	
% área alcoóis [(ΣA _{alcoóis} /A _{Ti}).100]	0,41	
% área aldeídos [(\(\Sigma A_{\text{aldeidos}}/A_{\text{Ti}}\)).100]	6,15	
% área cetonas [(ΣA _{cetonas} /A _{Ti}).100]	42,06	
% área ésteres $[(\Sigma A_{\text{ésteres}}/A_{\text{Ti}}).100]$	0,25	
% área éteres [(\(\Sigma A_{\text{\tinte\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	1,44	
% área fenóis [(\(\Sigma A_{fenóis}/A_{Ti}\).100]	46,05	
% área hidrocarbonetos [(ΣA _{hidrocarbonetos} /A _{Ti}).100]	0,42	
% área nitrogenados [(ΣĀ _{nitrogenados} /A _{Ti}).100]	2,71	

ANEXO B:

GRÁFICOS DE DISPERSÃO PARA AS SUB-AMOSTRAS ANALISADAS POR GC×GC/TOFMS

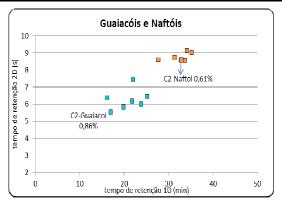
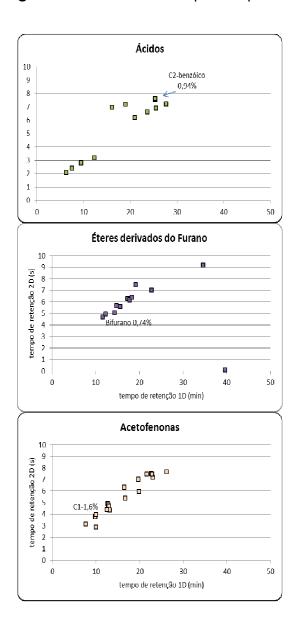
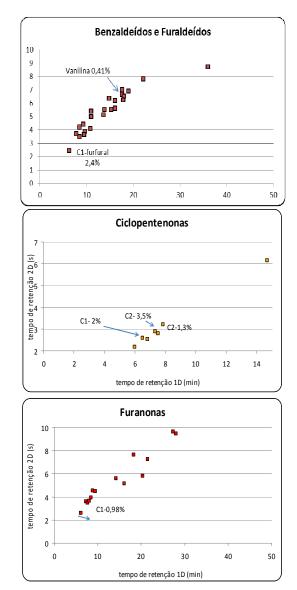




Figura B1: Gráficos de dispersão para os constituintes da sub-amostra LLE/HEX GC×GC

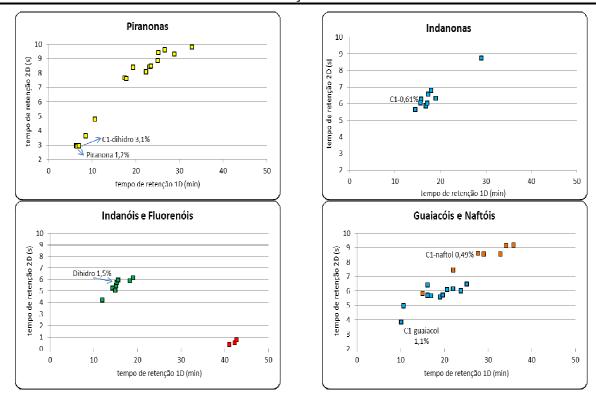
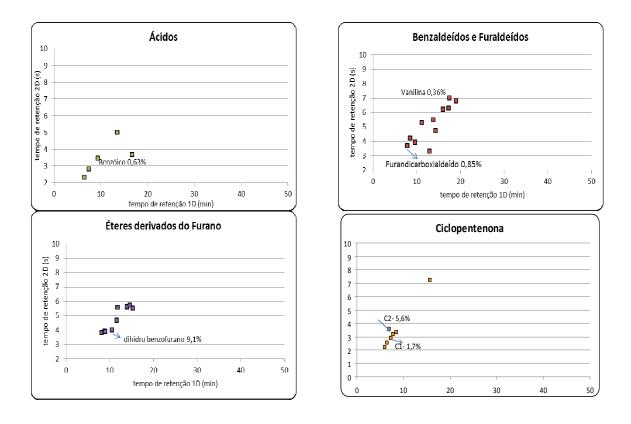
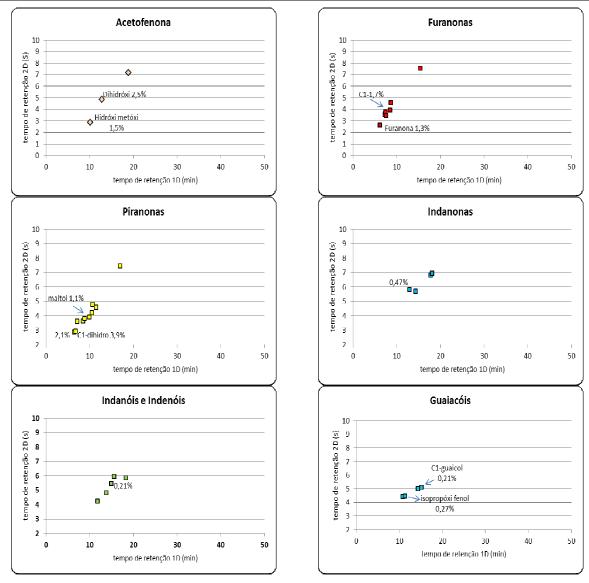
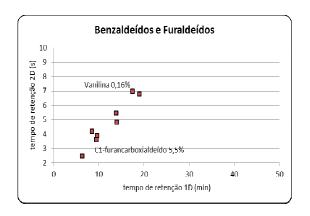
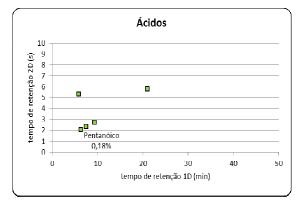
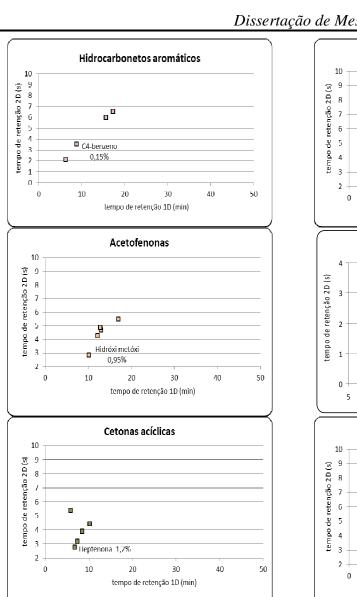
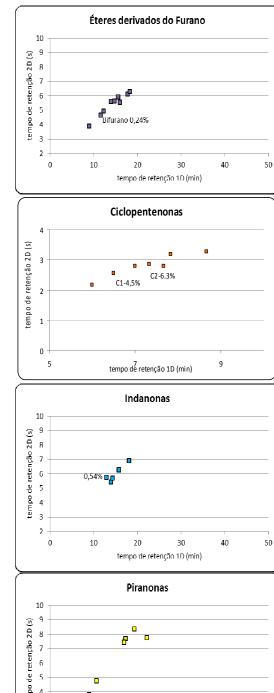
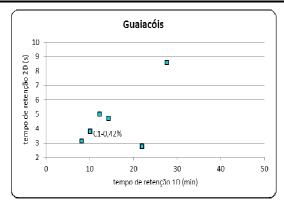



Figura B2: Gráficos de dispersão para os constituintes da sub-amostra SPE/HEX GC×GC


Figura B3: Gráficos de dispersão para os constituintes da sub-amostra LLE/DCM GC×GC

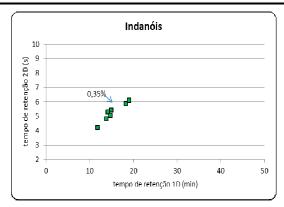


Figura B4: Gráficos de dispersão para os constituintes da sub-amostra SPE/DCM GC×GC.