Autor: Thayner Gomes de Bona Orientador: Rafael Rigão Souza

A fatoração em primos de k!

Introdução

A fatoração em primos de um número natural tem várias finalidades para o estudo da teoria dos números, como por exemplo as funções **T** e **O**. Apesar disso, fatorar números muito grandes em fatores primos ainda é um problema, exceto para certos tipos especiais, tais como os números do tipo k! (k fatorial).

Objetivo

O objetivo deste trabalho não é lidar diretamente com a fatoração em primos de k!, mas sim demonstrar que o método utilizado ao lado sempre funciona. A princípio, este método já é conhecido e já foi demonstrado, porém sua demonstração usual é feita por contagem. Entretanto, neste trabalho apresentaremos uma forma elementar de fazer tal demonstração, usando como ferramentas principais apenas o Princípio da Índução e a divisão euclidiana.

5 Considerações Finais

A demonstração em questão, que é diferente da usada na literatura usual, pode ser entendida sem muitas dificuldades, pois não exige um conhecimento muito aprofundado de matemática.

Como se fatora um número k! em fatores primos?

Para descobrir o expoente de um número primo p na fatoração em primos de k!, basta fazermos a divisão euclidiana de k por p, p², p³, etc. até uma potência p¹ tal que esta seja a maior potência de p que é menor ou igual a k. Em seguida, somamos os quocientes de tais divisões. Para ilustrar este método, vamos fatorar 5!:

$$\left\lfloor \frac{5}{2} \right\rfloor + \left\lfloor \frac{5}{4} \right\rfloor = 2 + 1 = 3$$
 Assim temos $5! = 2^3 \cdot 3 \cdot 5$. Observe que:
$$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5 \cdot 2^2 \cdot 3 \cdot 2 = 2^3 \cdot 3 \cdot 5$$
 realmente é a fatoração em primos de $5!$

Desenvolvimento

Primeiramente, iremos reescrever o método utilizado acima matematicamente:

$$\begin{aligned} \textit{Dado } k \in \mathbb{N}, \textit{ a fatoração em primos de } k! \acute{e} : \\ k! &= p_1^{f(p_1,k)} \cdot p_2^{f(p_2,k)} \cdot p_3^{f(p_3,k)} \cdots p_r^{f(p_r,k)} \\ \textit{onde cada } p_i \acute{e} \textit{ um número primo }, \textit{ e } f\left(p_i,k\right) = \left\lfloor \frac{k}{p_i} \right\rfloor + \left\lfloor \frac{k}{p_i^2} \right\rfloor + \left\lfloor \frac{k}{p_i^3} \right\rfloor + \cdots \end{aligned}$$

A partir daí, começamos a demonstração supondo k=2 como base de indução. Somente então passamos para a passagem de indução, onde será provado que se o teorema é válido para algum número natural, também é válido para o seu sucessor. Dessa forma, a validade do teorema para k=2 implicaria sua validade para k=3, assim como a validade para k=3 implicaria que o teorema é válido para k=4, e assim por diante.