

Determinação de Arsênio em Minério de Fosfato via Fluorescência de Raios X-FRX

Aluno: Alberto Afonso Pompeo Orientadores: Meise Pricila Paiva e Jorge Rubio

Laboratório de Tecnologia Mineral e Ambiental PPGEM-EE-Departamento de Engenharia de Minas

Home Page: http://www.ufras.br/ltm

INTRODUÇÃO

O arsênio é um comum traço constituinte de rochas fosfáticas limitando sua utilização em certas áreas. Pouco tem sido publicado sobre a forma da ocorrência do As em fosfatos (apatitas, sais de Ca), se na forma de espécies mineralógicas ou como íon arseniato substituindo o fósforo na apatita (principalmente $Ca_5[PO_4]_2[OH, Cl, F]$, e, portanto associado ao conteúdo de fósforo. Outros estudos afirmam que o enriquecimento de As em fosfatos pode ser dependente da matéria orgânica existente na rocha, da associação de As com óxidos de ferro, e da presença de minerais de As. A apatita é um insumo muito utilizado nas indústrias de fertilizantes e de ração animal, sendo importante a quantificação de impurezas. O objetivo do trabalho foi avaliar e desenvolver uma técnica para determinação semi-quantitativa de As, como método rápido de avaliação de processos de beneficiamento de minérios de fosfato. Para a determinação deste elemento foram comparadas as técnicas de espectrometria AAS-GF, ICP-HG e FRX. A técnica de AAS-GF, mostrou-se ineficaz na quantificação do As devido às condições ambientais do laboratório, o tipo de aquecimento do forno e por apresentar interferentes, como o fósforo presente na matriz da amostra. A técnica de ICP-HG foi eficiente na quantificação de arsênio em amostras de minério digeridas, apresentando concentrações variadas de 30 a 200 mg.kg⁻¹. Este estudo mostra resultados da confecção de padrões para a elaboração de uma curva de calibração para a técnica de FRX, baseados nos valores obtidos no ICP-HG. Este método fornece resultados para diversos elementos em tempos curtos, indispensável na caracterização rápida e semi-quantitativa de rochas em minerações. Os valores obtidos são discutidos em termos da forma de obtenção dos padrões e da qualidade dos dados.

OBJETIVOS

- Avaliar e desenvolver uma técnica para a determinação de Arsênio em minérios de Fosfato;
- Comparar as técnicas de espectrometria AAS-GF, ICP-HG e FRX para a determinação de As em minérios.

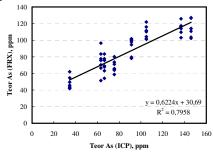
METODOLOGIA

RESULTADOS E DISCUSSÃO

A tabela abaixo mostra a comparação dos valores de As determinados pelas técnicas de ICP-HG e AA-GF. Os resultados encontrados pela técnica AA-GF mostraram-se demasiadamente elevados devido aos interferentes.

Amostra	Teores ICP-HG, ppm		Teores AA-GF, ppm	
	Concentrado	Rejeito	Concentrado	Rejeito
EE22	126,0	25,1	1302,2	793,5
EE24	124,0	49,8	956,9	492,0
EE25	122,0	63,5	1009,9	426,5

Trabalhos Futuros


- Avaliar a utilização de amostras prensadas;
- Realizar um ensaio inter-laboratorial com empresas de fertilizantes;
- •- Otimizar as curvas para a análise de As.

RESULTADOS E DISCUSSÃO

A tabela abaixo mostra a relação entre os valores calculados canalisados das alimentações dos ensaios de concentração de Fosfato.

Amostra	Produtos As, ppm		Alimentação As, ppm	
	Conc.	Rej.	Calc.	Anal.
EE44	126	98	103	105
EE45	107	89	93	105
EE46	113	81	95	105
EE47	123	80	98	105
EE69	113	115	115	105
EE71	128	123	123	105
EE74	122	94	96	105
EE75	120	120	120	105
EE76	119	107	108	105
EE77	115	91	93	105
EE78	128	104	106	105
EE83	116	92	97	93
EE84	113	85	95	113
EE85	119	82	94	98
EE86	125	83	93	93
EE87	134	89	102	113
EE88	127	93	102	98
EE89	123	104	107	105
EE90	111	87	91	105

Correlação entre o teor de As entre as técnicas de FRX e ICP-HG.

CONCLUSÕES

- A técnica de FRX mostrou ser eficaz para a determinação semiquantitativa de As na faixa de concentração de 40 a 140 ppm, que pode ser verificado pela pequena variação entre os dados de alimentação calculado e analisado;
- A técnica de AA-GF mostrou-se inadequada para a análise de As, devido aos interferentes e condições ambientais do laboratório;
- Devido a variação dos valores de As entre as análises de FRX e ICP-HG, novas condições devem ser testadas, a fim de otimizar a curva de calibração.

AGRADECIMENTOS

Às Instituições que apoiam a pesquisa, o desenvolvimento e a inovação no Brasil.

