Mêmora Giovana Schmidt de Bitencourt¹, Armando Martins dos Santos², Miguel Dall'Agnol³

1 Estudante de Agronomia da UFRGS, Bolsista CNPq e-mail: meminha@gmail.com 2 Estudante de Pós-Graduação em Zootecnia, Faculdade de Agronomia da UFRGS e-mail: martinsarm@gmail.com 3 Eng. Agr., PhD., Professor Adjunto, Faculdade de Agronomia, UFRGS, Porto Alegre - RS e-mail: migueld@ufrgs.br

Os estresses ambientais estão entre os fatores limitantes à produção de pastagens. A acidez do solo destaca-se neste cenário, sendo um importante fator limitante à produtividade de forrageiras na região sul do Brasil. A toxidez por Al é o primeiro fator limitante da produção vegetal nestas situações. Em condições de pH do solo abaixo de 5,5, formas tóxicas de Al são solubilizadas na solução do solo, inibindo o crescimento radicular e, consequentemente, reduzindo a capacidade de absorção de nutrientes e água (Samac e Tesfaye, 2003).

Esse trabalho teve como objetivo selecionar genótipos de *Lotus corniculatus* com respostas contrastantes ao Al tóxico, bem como a caracterização agronômica destes genótipos selecionados e dos germoplasmas que lhes deram origem.

Foram semeadas 2.000 sementes de cinco germoplasmas (São Gabriel, San Gabriel, Draco, La Estanzuela e UFRGS) de *L. corniculatus*, em bandejas com capacidade para 8 quilos de solo com saturação por Al na CTC do solo em níveis de 34,4% e 32,5%. Após um período de 60 dias, foi realizada a seleção dos germoplasmas originais (pressão de seleção de 1%), baseando-se no vigor e desenvolvimento da parte aérea, obtendo-se genótipos denominados tolerantes e sensíveis respectivamente. Cada grupo selecionado foi cruzado manualmente e as sementes obtidas (F₁ tolerantes e sensíveis) passaram pelo segundo processo de seleção, sendo cruzadas posteriormente para a obtenção das plantas F₂ sensíveis e tolerantes.

Figura 1: Seleção e Formação das Populações

Figura 2: Cruzamentos

Figura 3: Caracterização Agronômica em Solos Ácidos

Os resultados mostraram que a seleção visando tolerância ao Al aumentou a tolerância de todos os genótipos utilizados neste processo, indicando alta variabilidade desta característica em todos os genótipos. Já a seleção visando sensibilidade resultou em plantas de baixo vigor, uma vez que estes genótipos foram inferiores aos germoplasmas originais mesmo em situações com ausência de Al tóxico.

TRATAMENTOS (%SATURAÇÃO POR AL)											
Genótipos	41,9		25,1		20,1		4,8		0		MÉDIA
UFRGS	18,07	BC c	32,92	B b	30,67	BC b	45,80	C a	45,25	Ca	34,54
UFRGS T	32,33	A b	39,27	A b	36,93	Bb	66,80	A a	61,35	Ва	47,34
UFRGS S	15,07	BC b	18,00	CD ab	13,57	Db	13,27	E b	25,20	Da	17,02
SG	14,87	Сс	12,53	Dc	27,73	C b	43,73	C a	46,23	C a	29,02
SG T	25,78	AB b	26,72	BC b	46,53	A a	44,73	C a	55,67	Ва	39,89
sg s	9,20	CD b	12,32	D b	22,80	CD a	16,93	E ab	24,07	Da	17,06
SAN	22,73	BC c	41,67	A b	29,93	BC c	59,87	Ва	59,25	Ва	42,69
SAN S	11,17	Сс	24,30	BC b	18,93	D bc	24,53	D b	61,27	Ва	28,04
EST	13,57	Сс	22,53	C b	32,97	Ва	38,07	CD a	37,80	CD a	28,99
EST T	19,00	BC c	31,67	B b	49,47	A a	58,73	Ва	51,64	Ва	42,10
EST S	9,29	CD c	26,05	BC b	24,20	Cb	48,13	C a	50,25	Ва	31,58
DRACO	13,47	Сс	12,42	Dc	37,07	Вb	68,00	A a	69,25	Ва	40,04
DRACO T	20,80	BC c	30,60	B b	37,00	Вb	71,07	A a	67,93	Ва	45,48
DRACO S	9,92	CD c	11,00	D b	14,47	D bc	20,27	DE ab	25,40	D a	16,21
ALFAFA	3,70	De	16,27	CD d	41,73	Ac	52,13	C b	143,48	A a	51,46
MÉDIA	15,93		23,88		30,93		44,80		54,94		34,10

Tabela 1: MSPA de cinco germoplasmas de *L. corniculatus* e 9 populações contrastantes em relação a tolerância ao Al. Porto Alegre, 2009.

Dentre os genótipos selecionados, destacou-se o UFRGS selecionado para tolerância, que apresentou elevada produção de matéria seca, sendo superior a todos os demais genótipos. A realização de testes a campo e a multiplicação de sementes destes genótipos para posterior uso em áreas que apresentem esta limitação se faz necessária, particularmente para a população UFRGS selecionada para tolerância ao Al.

SAMAC, D.A.; TESFAYE, M. Plant improvement for tolerance to aluminum in acid soils – a review. **Plant Cell, Tissue and Organ Culture**, v.75, p.189 – 207, 2003.