CÉLULAS A COMBUSTÍVEL E GERAÇÃO DE HIDROGÊNIO EMPREGANDO LÍQUIDOS IÔNICOS (LI)

PROBIC - FAPERGS: JORDANA NUNES LONGARAY

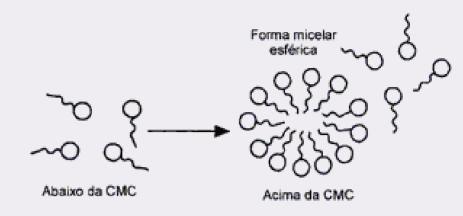
Orientadora: Profa. Michèle Oberson de Souza **Co-orientador: Prof. Fabiano Rodembusch**

Introdução: Caracterização físico-química de soluções aquosas de LI

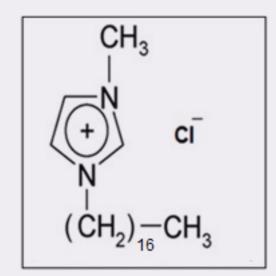
Células a combustível se destacam na busca pela produção de energia limpa. Logo, se faz necessário o estudo de seus constituintes, tal como o eletrólito utilizado na sua fabricação. Os líquidos iônicos são uma boa alternativa como eletrólito, pois apresentam ampla janela eletroquímica, baixa pressão de vapor, não são inflamáveis e têm grande dissociação iônica.

Devido à formação de água durante o funcionamento da célula, é importante estudar a modificação do comportamento do eletrólito em função da concentração de água porque há formação de micelas, o que pode alterar as propriedades de transporte de cargas no eletrólito e também afetar a eficiência das seguintes reações eletrocatalíticas que ocorrem na célula:

Pt / H₂ / H⁺ , OH⁻ / O₂ / Pt Célula (eletrólito LI):

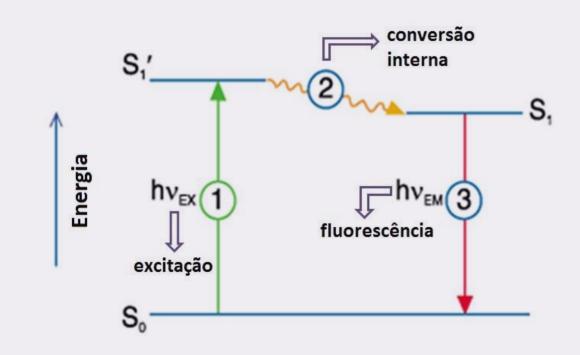

No Ânodo: $H_2 = 2H^+ + 2e^-$

1/2 O₂ + 2H⁺ + 2e⁻ = H₂O No Cátodo:

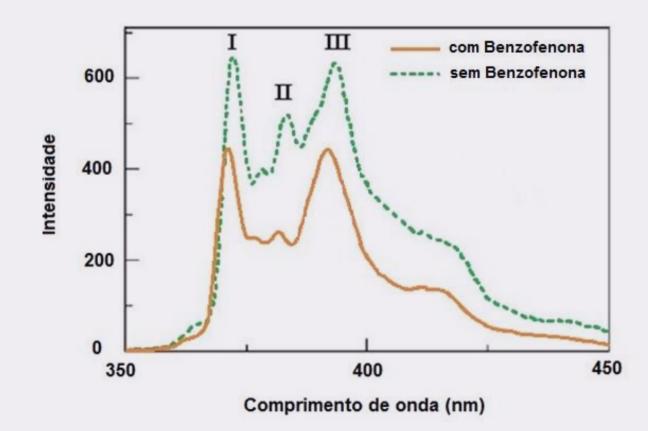

 $H_{2(g)} + \frac{1}{2} O_{2(g)} = H_2 O_{(I)}$ Reação global

Enfoques:

Concentração micelar crítica (cmc): deve haver moléculas suficientes de LI na solução, de modo que seu arranjo possibilite formação micelas. de a


Número de agregação (N_{agg}): número de moléculas de LI formar micela. uma

Cadeia LI C₁₆mimCl


Experimental

Um emissor de fluorescência, o Pireno, foi adicionado a alíquotas de soluções aquosas de líquido iônico. Ele atua da seguinte maneira:

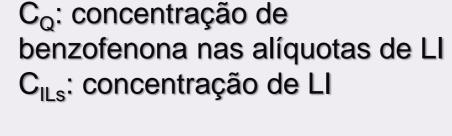
O Pireno migra para a região hidrofóbica das micelas devido ao seu caráter apolar. Quando excitado a 335 nm, gera um espectro com picos de emissão de fluorescência. Os picos analisados são em 373 nm (I) e 384 nm (III).

A adição de Benzofenona, um supressor de fluorescência, provoca a diminuição da intensidade dos picos.

1) Concentração micelar crítica:

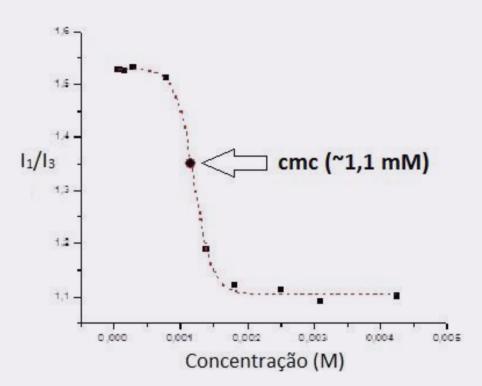
A alíquotas 3mL de soluções aquosas com diferentes concentrações de LI (acima, próximo e abaixo da cmc – baseadas em [1]) foram adicionados 100 µL de solução 4,35 µM de pireno.

• C₁₆MImCI: 0,078mM a 4,25 mM


2) Número de agregação^[1]:

Foram adicionados 100 μL de solução aquosa de Pireno 8,4 μM a alíquotas de 3mL de soluções de 1,81 mM do LI C₁₆MImCl e medidas suas emissões de fluorescência (I₀). Então foram feitas sucessivas adições de 50 μL da solução aquosa de Benzofenona 5,76 μM (I).

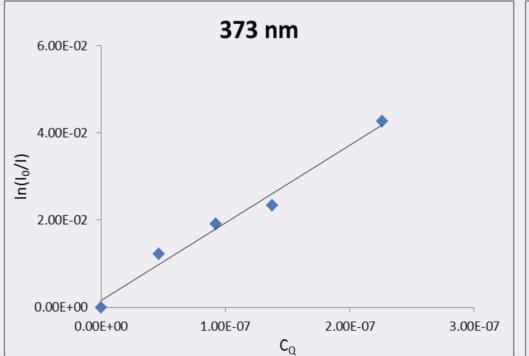
Equação utilizada para determinar o número de agregação micelar:

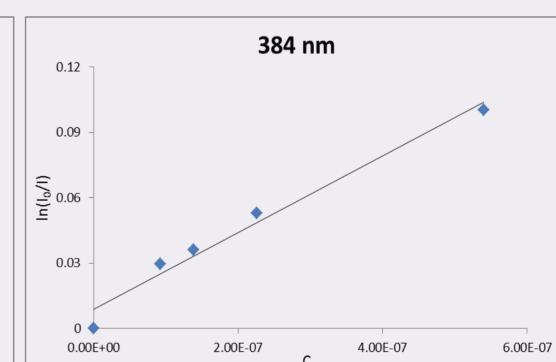

$$ln\left(\frac{I_0}{I}\right) = \frac{N_{agg}}{C_{ILS}-cmc}C_Q \quad \begin{array}{l} \text{C}_{\text{Q}: concentração de} \\ \text{benzofenona nas alíquotas de LI} \\ \text{C}_{\text{ILs}: concentração de LI} \end{array}$$

f(x)

Resultados e Discussão

1) Concentração micelar crítica:




• C₁₆MImCI: 1,1 mM

Valor coerente com o encontrado na literatura referente ao contra-íon Bromo. Referência [1] para C₁₆MImBr : 0,84 mM.

Discute-se a influência do tamanho do íon Cloro, bem como sua polarizabilidade na molécula de LI.

2) Número de Agregação:

• C₁₆MImCl

- 373 nm: Y = 178661X+ 0,0015; N_{agg} = 127 moléculas de LI
- 384 nm: Y = 209761X + 0,00871; N_{agg} = 155 moléculas de LI

Referência [1] para $C_{16}MImBr : N_{aqq} = 64 \text{ moléculas de LI}$

Conclusões

contra-ion constituinte do LI influencia nas características das micelas formadas, tais como cmc e número de agregação.

Os valores encontrados para cmc e número de agregação são coerentes com os correspondentes na literatura para o contra-íon Bromo.

Agradecimentos

- FAPERGS
- Laboratório de Reatividade e Catálise
- LNMO

Referência:

[1] Dong, B.; Zhao, X.Y.; Zheng, L.Q.; Zhang, J.; Li, N.; Inoue, T. Colloid Surf. A Physicochem. Eng. Asp. 2008, 317, 666-672.