AVALIAÇÃO DO EFEITO DE FUNGICIDAS EM TRATAMENTO PROTETOR E ERRADICANTE DE SEMENTES PARA O CONTROLE DE *Fusarium* graminearum DE DIFERENTES QUIMIOTIPOS

Henrique Francisco Bauer, Marcela Santana, Piérri Spolti, Emerson M. Del Ponte

Departamento de Fitossanidade - Faculdade de Agronomia - Universidade Federal do Rio Grande do Sul Email: emerson.delponte@ufrgs.br

INTRODUÇÃO

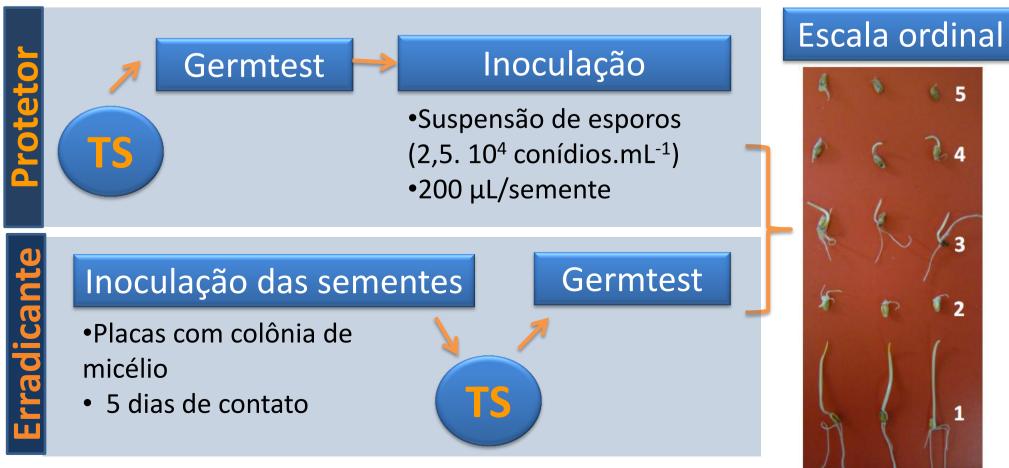
O trigo (*Triticum aestivum* L.) é uma das culturas de grande importância para o sul do Brasil. A giberela, causada por espécies do complexo *Fusarium graminearum* (*Fg*), é uma doença importante por causar reduções na produtividade e danos e contaminação por micotoxinas em grãos. Sementes infectadas, além de fonte de inóculo, podem afetar o estabelecimento da cultura, sendo recomendado o uso de fungicidas para o tratamento de sementes, apesar de não se ter, até o momento, critérios para aplicações.

OBJETIVO

Avaliar a eficiência e modo de ação de fungicidas no tratamento de sementes de trigo, assim como possíveis interações com *F. graminearum* de diferentes genótipos toxigênicos (quimiotipos)

MATERIAL E MÉTODOS

Foram utilizadas sementes da cultivar Raízes tratadas com 9 fungicidas (Tab. 1). Para a inoculação das sementes foram utilizados 14 isolados do complexo *Fusarium graminearum* encontrados no Brasil (Tab. 2).


Tab 1. Fungicidas utilizados no tratamento de sementes (TS) e os respectivos grupo químico, modo de ação e dose utilizada (produto comercial/100Kg de semente).

ID	Principio ativo	Dose (ml p.c/100 kg)	Grupo químico	Modo de ação		
1	Testemunha	-	-	-		
2	Difenoconazole	200	Triazol	Curativo/Erradicante		
3	Fluqinconazole	300	Triazol	Curativo/Erradicante		
4	Triadimenol	270	Triazol	Curativo/Erradicante		
5	Azoxistrobina	12	Estrobilurina	Curativo/Erradicante		
6	Piraclostrobina	30	Estrobilurina	Curativo/Erradicante		
7	Carbendazim	100	Benzimidazol	Curativo/Erradicante		
8	Fludioxinil + Tiram	150	Acilalaninato + Fenilpirrol	Contato		
9	Carboxim + Tiram	250	Carboxina + Dimetilditiocarbamato	Contato		
10	Captana	129	Dicarboximida	Contato		

Tab 2. Espécies filogenéticas do complexo *Fusarium graminearum* inoculadas e os respectivos genótipos tricotecenos (quimiotipo), identificado por método molecular, e número de isolados

Espécie filogenética	Quimiotipo	Isolados
Fusarium graminearum sensu strictu	15-ADON	5
Fusarium graminearum sensu strictu	3-ADON	4
Fusarium meridionale	NIV	5

Efeito protetor: Foi feita suspensão de esporos dos três quimiotipos e da mistura dos mesmos (MIX) para a inoculação das sementes em germtest após o tratamento fungicida. Efeito erradicante: As sementes foram inoculadas previamente em placas com cultivo de cada isolado antes do tratamento fungicida. Avaliação: Após cinco dias de incubação as sementes foram avaliadas com escala ordinal (1 a 5).

Delineamento e análise estatística

Inteiramente casualizado com três repetições. Médias dos índices de doença discriminadas pela DMS após análise com um modelo linear generalizado misto GLIMMIX (SAS).

RESULTADOS

Efeito protetor

Houve efeito significativo dos tratamentos com fungicida na proteção das sementes contra *Fg* e diferença entre os quimiotipos inoculados (P<0,001), mas não para a interação fungicida x quimiotipo (P=0,19).

O índice de doença variou de 2,05, em sementes inoculadas com quimiotipo 3-ADON, a 2,59 em sementes inoculadas com NIV (*P* < 0,05) (**Fig. 1**).

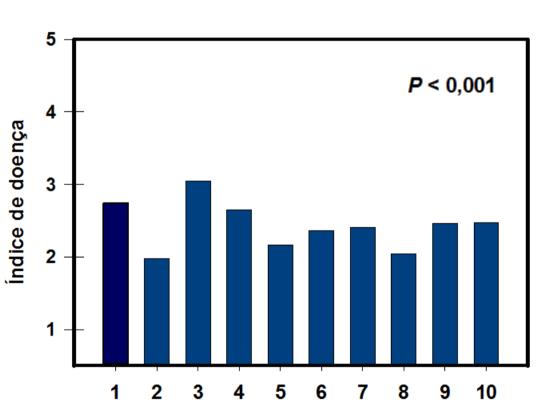
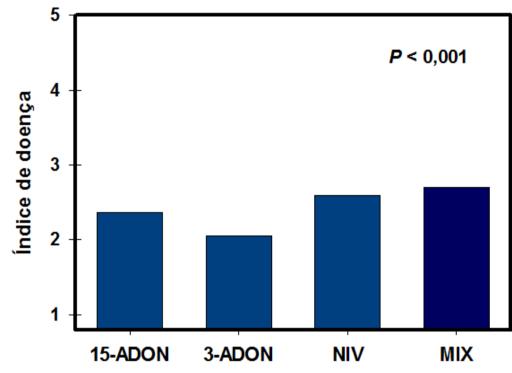



Fig 2. Índice de doença na semente com os diferentes tratamentos fungicidas (2 a 9) e testemunha (1).

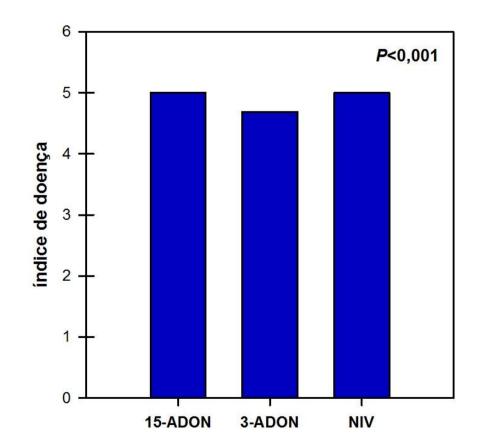


Fig 1. Índice de doença das sementes tratadas com fungicidas e inoculadas com os três quimiotipos e a mistura dos mesmos (MIX).

 O índice de doença na testemunha foi de 2,74 enquanto nas sementes tratadas com fungicidas variou de 1,98 (difenoconazole - 2) a 3,05 (fluquiconazole - 3) (Fig 2).

Efeito erradicante

 Não foi observado efeito erradicativo/curativo para nenhum dos fungicidas testados, talvez pelo longo tempo de contato das sementes com o micélio (cinco dias). Houve diferença entre os genótipos, sendo 3-ADON ≥NIV>15-ADON em agressividade (Fig 3).

Fig 3. Índice de doença das sementes inoculadas com os três quimiotipos após 5 dias tratadas com os fungicidas.

CONCLUSÕES

O uso de fungicidas tem eficiência variável na proteção de sementes de trigo à *Fusarium graminearum*. Isso mostra a importância de maiores estudos para que se tenha o uso criterioso de fungicidas no tratamento de sementes. Tratamentos erradicantes não foram eficientes, o que pode indicar que sementes provenientes de campos com alta intensidade de giberela, mesmo tratadas com fungicidas, não devem ser utilizadas.