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“I believe in intuition and inspiration.
Imagination is more important than knowledge.

For knowledge is limited, whereas imagination embraces the entire world,
stimulating progress, giving birth to evolution.

It is, strictly speaking, a real factor in scientific research.”
— ALBERT EINSTEIN





AGRADECIMENTOS

Agradeço minha mãe por seu esforço e pelo apoio nessa jornada da Pós-Graduação,
sendo que dedico este trabalho a ela. Também agradeço a meu pai, a quem pude au-
mentar o grau de contato agora que moramos mais próximos. Não esqueço também da
importância do meu primo (que está mais para irmão) Gustavo, da minha tia Lourdes,
meu tio Luiz, e de todos meus outros familiares. Relembro aqui também de meus grandes
amigos Guilherme, Ramon, Christian e Igor, que, apesar da distância e falta de contato,
são pessoas muito importantes em minha vida.

A meus amigos do GPPD, obrigado pelas dicas, discussões e, não menos importantes,
momentos de descontração durante estes 2 anos de mestrado. Um agradecimento especial
ao professor Navaux pela orientação e oportunidade que me ofereceu. Ressalto também
os amigos que tiveram um contato mais próximo com este trabalho. O Marco pelos con-
selhos e puxões de orelha, o Matthias pela ajuda no desenvolvimento de algumas das
propostas, e o Kassick pelo auxílio na correção.

Aos familiares e amigos que aqui não citei, obrigado por tudo.





CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS . . . . . . . . . . . . . . . . 9

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

RESUMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1 Scope of this research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 Organization of the text . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 THREAD MAPPING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Properties of a thread mapping mechanism . . . . . . . . . . . . . . . . 24
2.2 Static thread mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Static thread mapping based on simulation . . . . . . . . . . . . . . . . . 26
2.2.2 Static thread mapping based on dynamic binary analysis . . . . . . . . . . 28
2.2.3 Static thread mapping based on hardware counters . . . . . . . . . . . . . 28
2.2.4 Static process mapping applied to message passing based applications . . 28
2.3 Dynamic thread mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Dynamic thread mapping using hardware counters . . . . . . . . . . . . . 29
2.3.2 Dynamic data mapping applied to NUMA machines . . . . . . . . . . . . 30
2.3.3 Dynamic process mapping applied to message passing based applications 31
2.4 Summary of the state-of-art . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 PROPOSED METHODS FOR DYNAMIC DETECTION OF THE COM-
MUNICATION PATTERN . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Exploiting Cache Coherence Protocols . . . . . . . . . . . . . . . . . . . 33
3.1.1 Snoop Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Directory protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.3 Properties and procedures common to all cache coherence based mecha-

nisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Exploiting the Translation Lookaside Buffer . . . . . . . . . . . . . . . . 40
3.2.1 Mechanism for Software-Managed TLBs . . . . . . . . . . . . . . . . . . 41
3.2.2 Mechanism for Hardware-Managed TLBs . . . . . . . . . . . . . . . . . 42
3.3 Summary of the proposed methods . . . . . . . . . . . . . . . . . . . . . 43



4 EVALUATION OF THE MECHANISMS FOR DYNAMIC DETECTION
OF THE COMMUNICATION PATTERN . . . . . . . . . . . . . . . . . . 47

4.1 Implementation inside the simulator . . . . . . . . . . . . . . . . . . . . 47
4.2 Thread mapping algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Simulated environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Real machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Validating the proposals using a microbenchmark . . . . . . . . . . . . 52
4.4.1 Communication pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.2 Performance results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.1 Tools used to obtain the communication pattern baseline . . . . . . . . . 54
4.5.2 Communication pattern baseline . . . . . . . . . . . . . . . . . . . . . . 56

5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1 Communication Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Evaluating the Performance using Thread Mapping . . . . . . . . . . . 63
5.3 Overhead of the Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.1 Cache coherence based mechanisms . . . . . . . . . . . . . . . . . . . . 67
5.3.2 TLB based mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . 69

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 APPENDIX - SUMMARY IN PORTUGUESE . . . . . . . . . . . . . . . 77
7.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Mapeamento de Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3 Propostas de mecanismos para mapeamento dinâmico de threads . . . . 79
7.3.1 Mecanismos baseados em coerência de cache . . . . . . . . . . . . . . . 79
7.3.2 Mecanismos baseados em TLB . . . . . . . . . . . . . . . . . . . . . . . 81
7.4 Metodologia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.5 Resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.5.1 Padrões de comunicação . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.5.2 Testes de desempenho . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.6 Conclusão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



LIST OF ABBREVIATIONS AND ACRONYMS

SMP Symmetric Multi-Processor

SMT Simultaneous Multithreading

NUMA Non-Uniform Memory Access

SIMD Single Instruction Multiple Data

SPMD Single Program Multiple Data

ISA Instruction Set Architecture

I/O Input/Output

MIPS Million Instructions per Second

GPU Graphic Processing Unit

NoC Network-on-Chip

DBA Dynamic Binary Analysis





LIST OF FIGURES

Figure 3.1: Snoop based mechanism for private caches. . . . . . . . . . . . . . . 34
Figure 3.2: Snoop based mechanism for shared caches. . . . . . . . . . . . . . . 35
Figure 3.3: Centralized directory based mechanism. . . . . . . . . . . . . . . . . 37
Figure 3.4: Distributed directory based mechanism. . . . . . . . . . . . . . . . . 38
Figure 3.5: Flowcharts for the proposed TLB based mechanisms. . . . . . . . . . 41

Figure 4.1: Communication Matrix and the corresponding Communication Graph. 48
Figure 4.2: The Matching Problem. . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 4.3: Heuristic used to generate new communication graphs from previous

matching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 4.4: Steps when the number of cores sharing a cache is 3. . . . . . . . . . 51
Figure 4.5: The memory hierarchy simulated in Simics. . . . . . . . . . . . . . . 51
Figure 4.6: The real machine used in the performance evaluations. . . . . . . . . 52
Figure 4.7: Communication patterns of the producer-consumer benchmark. . . . 54
Figure 4.8: Performance results with the producer-consumer benchmark. . . . . . 55
Figure 4.9: Amount of memory used by the applications of NPB. . . . . . . . . . 56
Figure 4.10: Amount of memory shared by the threads of NPB. . . . . . . . . . . 57
Figure 4.11: Amount of memory used by the applications of NPB. . . . . . . . . . 57
Figure 4.12: Number of accesses to the shared memory (5 million cycles time win-

dow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 4.13: Number of accesses to the shared memory (50 million cycles time

window) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 5.1: Communication patterns of the applications from NPB discovered
with the software-managed TLB mechanism. . . . . . . . . . . . . . 60

Figure 5.2: Communication patterns of the applications from NPB discovered
with the hardware-managed TLB mechanism. . . . . . . . . . . . . . 60

Figure 5.3: Communication patterns of the applications from NPB discovered
with the snoop coherence mechanism. . . . . . . . . . . . . . . . . . 61

Figure 5.4: Communication patterns of the applications from NPB discovered
with the directory coherence mechanism (32kb L1 cache). . . . . . . 61

Figure 5.5: Communication patterns of the applications from NPB discovered
with the directory coherence mechanism (256kb L1 cache). . . . . . 61

Figure 5.6: Execution time of the applications. . . . . . . . . . . . . . . . . . . . 64
Figure 5.7: Invalidations due to the cache coherence protocol. . . . . . . . . . . 64
Figure 5.8: L2 cache misses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 5.9: Snoop transactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64





LIST OF TABLES

Table 2.1: Summary of the characteristics of current thread mapping mechanisms. 31

Table 3.1: Examples of the snoop based mechanism for private caches. . . . . . 35
Table 3.2: Examples of the snoop based mechanism for shared caches. . . . . . 36
Table 3.3: Examples of the centralized directory based mechanism. . . . . . . . 37
Table 3.4: Examples of the distributed directory based mechanism. . . . . . . . 39
Table 3.5: Comparison between the proposed mechanisms. . . . . . . . . . . . 43

Table 4.1: Configuration of the caches using the original Simics modules. . . . . 50
Table 4.2: Configuration of the caches using Ruby. . . . . . . . . . . . . . . . . 52
Table 4.3: Configuration of the caches of the real machine. . . . . . . . . . . . . 53
Table 4.4: Comparative between tools that can be used to detect the memory

accesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 5.1: Mappings obtained by applying the thread mapping algorithm. . . . . 62
Table 5.2: Execution time and number of invalidations, snoop transactions and

L2 cache misses per second. . . . . . . . . . . . . . . . . . . . . . . 66
Table 5.3: Standard deviations for the performance experiments. . . . . . . . . . 66
Table 5.4: Statistics for the software-managed TLB. . . . . . . . . . . . . . . . 67





ABSTRACT

The threads of parallel applications cooperate in order to fulfill their tasks, thereby
communication is performed among themselves. The communication latency between
the cores in a multiprocessor architecture differs depending on the memory hierarchy and
the interconnections. With the increase in the number of cores per chip and the number
of threads per core, this difference between the communication latencies is increasing.
Therefore, it is important to map the threads of parallel applications taking into account
the communication between them.

In parallel applications based on the shared memory paradigm, the communication is
implicit and occurs through accesses to shared variables, which makes difficult to detect
the communication pattern between the threads. Traditional approaches use simulation
to monitor the memory accesses performed by the application, requiring modifications to
the source code and drastically increasing the overhead.

In this master thesis, we introduce two novel light-weight mechanisms to find the
communication pattern of threads. The first mechanism makes use of the information
about shared cache lines provided by cache coherence protocols. The second mechanism
makes use of the Translation Lookaside Buffer (TLB) to detect which memory pages each
core is accessing. Both our mechanisms rely entirely on hardware features, which makes
the thread mapping transparent to the programmer and allows it to be performed dynami-
cally by the operating system. Moreover, no time consuming task, such as simulation, is
required.

We evaluated our mechanisms with the NAS Parallel Benchmarks (NPB) and obtained
accurate representations of the communication patterns. We generated thread mappings
from the detected communication patterns using a mapping algorithm. Mapping is a
NP-Hard problem. Therefore, in order to achieve a polynomial complexity, we designed
a heuristic method based on the Edmonds graph matching algorithm. Running the ap-
plications with these mappings resulted in performance improvements of up to 15.3%
compared to the original scheduler of the operating system. The number of cache misses,
cache line invalidations and snoop transactions were reduced by up to 31.9%, 41% and
65.4%, respectively.

Keywords: Thread mapping, parallel computer architectures, shared memory, communi-
cation, cache memory, cache coherence protocols, TLB.





RESUMO

Detecção Dinâmica do Padrão de Comunicação em Ambientes de Memória
Compartilhada para o Mapeamento de Threads

As threads de aplicações paralelas cooperam a fim de cumprir suas tarefas, dessa
forma, comunicação é realizada entre elas. A latência de comunicação entre os núcleos
em arquiteturas multiprocessadas diferem dependendo da hierarquia de memória e das
interconexões. Com o aumento do número de núcleos por chip e número de threads por
núcleo, esta diferença entre as latências de comunicação está aumentando. Portanto, é
importante mapear as threads de aplicações paralelas levando em conta a comunicação
entre elas.

Em aplicações paralelas baseadas no paradigma de memória compartilhada, a comu-
nicação é implícita e ocorre através de acessos à variáveis compartilhadas, o que torna
difícil a descoberta do padrão de comunicação entre as threads. Mecanismos tradicionais
usam simulação para monitorar os acessos à memória realizados pela aplicação, reque-
rendo modificações no código fonte e aumentando drasticamente a sobrecarga.

Nesta dissertação de mestrado, são introduzidos dois mecanismos inovadores com
uma baixa sobrecarga para se detectar o padrão de comunicação entre threads. O pri-
meiro mecanismo faz uso de informações sobre linhas compartilhadas de caches providas
por protocolos de coerência de cache. O segundo mecanismo utiliza a Translation Loo-
kaside Buffer (TLB) para detectar quais páginas de memória cada núcleo está acessando.
Ambos os mecanismos dependem totalmente do hardware, o que torna o mapeamento de
threads transparente aos programadores e permite que ele seja realizado dinamicamente
pelo sistema operacional. Além disto, nenhuma tarefa de alta sobrecarga, como simula-
ção, é requerida.

As propostas foram avaliadas com o NAS Parallel Benchmarks (NPB), obtendo re-
presentações precisas dos padrões de comunicação. Mapeamentos para as threads foram
gerados utilizando os padrões de comunicação descobertos e um algoritmo de mapea-
mento. O problema do mapeamento é NP-Difícil. Portanto, de forma a se atingir uma
complexidade polinomial, o algoritmo empregado é heurístico, baseado no algoritmo de
emparelhamento de grafos de Edmonds. Executando as aplicações com o mapeamento
resultou em um ganho de desempenho de até 15, 3%. O número de faltas na cache, inva-
lidações em linhas de cache e transações de espionagem foram reduzidos em até 31, 9%,
41% e 65, 4%, respectivamente.

Palavras-chave: mapeamento de threads, arquiteturas paralelas de computadores, me-
mória compartilhada, comunicação, memória cache, protocolos de coerência de cache,
TLB.
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1 INTRODUCTION

The performance of sequential computing is reaching its limits. The rate of increase
of instruction level parallelism in superscalar architectures is reducing each year, and the
number of pipeline stages became so high that it is difficult to break the execution in more
steps to increase the operation frequency (SHALF; DOSANJH; MORRISON, 2011). Ad-
ditionally, in the past few years, the power consumption of the processors started to play
a big role on the design of new high performance architectures. Aggressive instruction
speculation, out-of-order execution, as well as deep pipelines, require high amounts of
energy. Therefore, high performance architectures focus on thread level parallelism, and
are based on several processor cores executing in parallel. This makes the number of
cores more relevant than the individual performance of each core.

As the industry relies on parallelism, the increase of the number of cores in multicore
architectures is one of the adopted solutions. This makes the memory wall problem (HEN-
NESSY; PATTERSON, 2007) more relevant, since more bandwidth between the cores and
the main memory is required. Currently, memory hierarchies with several levels of cache
memories are employed to overcome this issue. However, with the upcoming increase of
the number of cores, it is expected an aggravation of the memory wall problem. There-
fore, novel solutions are required to allow the performance to scale (COTEUS et al., 2011;
TORRELLAS, 2009).

One of the main concerns regarding multicore architectures is the communication be-
tween threads (ZHAI et al., 2011). Communication implies in data movement among the
cores, leading to performance loss and energy consumption (BORKAR; CHIEN, 2011).
Therefore, it is important to research and develop mechanisms to optimize the commu-
nication. Some studies focus on hardware, suggesting new interconnections and net-
work topologies (STEVENSON; CONN, 2011; AJIMA; SUMIMOTO; SHIMIZU, 2009),
while others focus on software, to improve data locality (RIBEIRO et al., 2010). As the
scope of the problem is wide, there are several ways to deal with it.

1.1 Scope of this research

In multicores architectures, some levels of the memory hierarchy are shared by more
than one core, which causes the communication latency among the cores to be different.
Additionally, in some architectures, there is more than one processor, in which each pro-
cessor has several cores. This increases the number of levels of the memory hierarchy,
since cores of the same processor communicate faster than cores of different processors.
Future interconnections introduced by Network-on-Chip (NoC) (DE MICHELI; BENINI,
2006; FREITAS et al., 2007) are expected to increase the difference in the communication
latencies among the cores. Several levels of memory hierarchy also impose a high over-
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head on cache coherence protocols (CHISHTI; POWELL; VIJAYKUMAR, 2005), which
are responsible to keep the data integrity among all the cache memories.

Thread mapping helps to improve performance by mapping the threads on cores ac-
cording to some policy, such that the usage of the resources is optimized. By mapping
the threads considering the amount of communication between them, the communication
latency is reduced, since threads that communicate are mapped to nearby cores on the
memory hierarchy. The overhead of cache coherence protocols is also reduced, because
the number of cache-to-cache and invalidation transactions is thereby decreased (ALVES;
FREITAS; NAVAUX, 2009).

The level of difficulty to map the threads depends on the parallel programming
paradigm. When the paradigm is messaging passing (RODRIGUES et al., 2009), de-
tecting the communication pattern is rather straightforward, and is accomplished by mon-
itoring the origin and destination fields for each message. However, when the paradigm
is shared memory, the communication between the threads is implicit and it happens ev-
ery time a thread reads or writes data that has been previously accessed by other threads.
Therefore, mapping shared memory based applications is much more challenging. An-
other factor that influences on the difficulty is if the mapping is made statically or dynam-
ically. In static thread mapping, the information on the communication pattern is gathered
by profiling the application in previous executions using controlled environments such as
simulators. In dynamic thread mapping, the information on the communication pattern
must be gathered while running the application, a much more difficult task.

It is important to take into account the viability of the proposed methods. For instance,
architectures such as of the graphic processing units (GPU) provide high performance, but
requires complex software (LIU; ZHANG; SHEN, 2009). Some mechanisms present high
overhead steps of profiling, discouraging their usage (WANG; O’BOYLE, 2009). Other
mechanisms require modifications on the source code of the applications, increasing the
complexity of the programming (IBRAHIM, 2010). Such mechanisms also reduces the
portability of the applications, since the modifications usually depend on the target ar-
chitecture. Furthermore, relying on programmers is not desirable, because inexperienced
programmers may insert wrong annotations.

1.2 Proposal

In this master thesis, we propose two different mechanisms to dynamically detect the
communication pattern among the threads of shared memory based applications. Both
mechanisms allow the thread mapping to be performed dynamically by the operating sys-
tem and do not require simulation or any changes to the source code of the applications.
Our first proposed mechanism makes use of cache coherence protocols. It is based on
two fundamental ideas. First, a cache line that is shared by more than one cache indi-
cates that more than one core is accessing the same memory location, which represents a
communication. Second, cache coherence protocols keep track of shared cache lines. By
adding some minimal extra hardware to the original cache coherence system, we allow
the hardware to count the number of memory accesses to shared cache lines.

Our second proposed mechanism to find the communication pattern consists of look-
ing at the most recently accessed pages by each core. This was done by checking the
content of the Translation Lookaside Buffer (TLB), which is responsible to perform the
translation of virtual addresses to physical addresses and is present in most architectures
that support virtual memory. As there is one TLB per core, the communication pattern
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could be detected by searching all TLBs for matching entries. We developed mechanisms
for both software-managed and hardware-managed TLBs, covering most of the current
architectures.

1.3 Organization of the text

The text is organized as follows. Chapter 2 explains how thread mapping works and
presents some related work. Chapter 3 shows our proposed mechanisms for dynamic
detection of the communication pattern. Chapter 4 shows the methodology we adopted to
evaluate our proposals. Chapter 5 contains the results of the experiments. Finally, Chapter
6 draws our conclusions and future work.
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2 THREAD MAPPING

The basic goal of thread mapping is to optimize the usage of the available resources.
When dealing with threads, the parallel programming paradigm used is shared memory, in
which all the communication among the threads is performed by accesses to the memory.
Therefore, memory is the main resource to be considered when mapping the threads of
applications based on this paradigm. As multi-core architectures have memory hierarchies
with several levels of cache memories, some cache lines may be present in more than one
cache. These cache lines are said to be replicated, or shared. Keeping data integrity among
all the caches is responsibility of cache coherence protocols (STALLINGS, 2006). To do
this, cache coherence protocols store information about the state of each cache line, such
as if the line is shared or modified. They also send messages through the interconnections
to the caches when some data is requested or modified.

In snoop protocols (EGGERS; KATZ, 1989), the information about the state is kept
by the caches and messages are exchanged between them. In directory protocols (AGAR-
WAL et al., 1988), the directory is responsible to keep this information and to send the
messages to the caches. However, in both snoop and directory protocols, the overhead
generated by the messages sent through the interconnections is high. For instance, a com-
mon situation in shared-memory programs is to have one thread writing to an area of
memory and another reading from the same area. If the cache coherence protocol is based
on invalidation, such as MESI (STALLINGS, 2006), and the reader and writer do not
share a cache, an invalidation message would be sent to the reader every time the writer
writes the data. As a result, the reader would always receive a cache miss when reading,
thereby requiring more coherence traffic on the interconnections, since the cache of the
reader would have to retrieve the data from the cache of the writer on every access.

One way to reduce this overhead is by mapping the threads that communicate on
cores that are close to each other in the memory hierarchy. In the previous example,
no coherence traffic would be generated if the writer and reader shared a cache. It is
important to note that write operations impact more on performance than read operations,
as all writes to shared cache lines invalidate the corresponding lines on the other caches.
Furthermore, memory accesses to data are more relevant than instruction fetches when
mapping the threads. The reason is that write operations to data occur frequently, while
write operations to instructions only occur when the operating system loads a program
into memory.

As mentioned before, thread mapping reduces the cache misses generated by the inval-
idation messages. This type of cache miss is called invalidation miss. Other side effects
are the reduction of capacity misses and replication misses. Capacity misses are cache
misses that happen when data is accessed for the first time and was not already fetched
from memory. In a shared cache, threads compete for cache lines and evict cache lines
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from each other (ZHOU; CHEN; ZHENG, 2009). By mapping threads that communicate
to shared caches, this competition is reduced. Replication misses are cache misses that
happen due to uncontrolled cache line replication. As stated in CHISHTI; POWELL; VI-
JAYKUMAR (2005), uncontrolled replication leads to a virtual reduction of the effective
size of the caches, as some of their space would be used to store the same cache lines.
By mapping threads that communicate to cores that share a cache, the space wasted with
replicated cache lines is minimized, leading to a reduction of the cache misses.

The mapping can also be applied to processes. Processes, contrary to threads, do not
share memory among themselves by default. In order to communicate, the processes send
and receive messages to each other. This parallel programming paradigm is called mes-
sage passing (SEBESTA, 2009). The discovery of the communication pattern of message
passing based applications is straightforward compared to shared memory based applica-
tions. This happens because the messages keep fields that explicitly identify the source
and destination. We discuss some related work about message passing in Sections 2.2.4
and 2.3.3.

Regarding architectures with non-uniform memory access characteristics (NUMA),
besides thread mapping, data mapping is also important (TERBOVEN et al., 2008;
RIBEIRO et al., 2009). The data mapping is required in NUMA because the access la-
tencies to the memory banks are different among the cores. The cores are divided into
groups, in which each group is a NUMA node. Each NUMA node has its own memory
banks. When a core access memory that is located on the same NUMA node, we call this
type of access local access. When the core access memory located on other NUMA node,
we call the access remote access. We discuss some related work about data mappings for
NUMA architectures in Section 2.3.2.

The mapping techniques, in general, can be divided in two main groups: static and
dynamic. Static mappings are based on information gathered before the execution of the
applications. They require previous analysis of the behavior of the applications to generate
a profile that will guide the mapping. This step to generate a profile usually is a time
consuming task, requiring simulation or other tools, and relies on information provided
by programmers and compilers. On the other hand, dynamic mappings are usually light-
weight and do not require previous profiling of the applications. We discuss some related
work about static and dynamic mapping in Sections 2.2 and 2.3, respectively.

2.1 Properties of a thread mapping mechanism

To be suitable for a real-world environment, a mechanism to find the communication
pattern between threads should present some properties according to CRUZ; DIENER;
NAVAUX (2012) and DIENER et al. (2010). Some of them are:

Detect communication pattern and dynamic behavior during execution – Many
previous approaches rely on finding the communication pattern in a phase before
the actual execution of the workload, for example by using simulation or binary
instrumentation. This is very time-consuming and potentially takes a lot of storage
space to store intermediate data, such as memory traces. Furthermore, some
applications change their behavior and the communication pattern during the
execution. Therefore, the mechanism should be able to detect changes dynamically
and thereby make dynamic mapping possible. Many previous approaches analyze
the application over the whole execution time and provide a static mapping for the
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application. This leads to wrong results when the application exhibits dynamic
behavior.

Low impact on performance – The mechanism should have a very low overhead in or-
der not to interfere with the execution of the application. Some previous approaches
permute the mapping of threads to cores periodically to observe changes in the
cache statistics. As a remapping of threads has an overhead in terms of an increase
of cache misses, this leads a noticeable decrease of performance and hence is less
efficient.

Provide an accurate communication pattern – The detection of the communication
pattern should be as accurate as possible to allow a beneficial mapping to be per-
formed. In the case of shared memory applications, this means that the observation
should happen as directly as possible by monitoring the memory accesses. Ap-
proaches that use hardware counters, for example, only observe the applications
behavior indirectly and provide a less accurate view of the communication between
the threads.

Avoid the false communication problem – False communication can be temporal, as
when two threads access the same address, but at different times during the ex-
ecution. Another scenario of false communication is the classical false sharing
problem, which is a spatial false communication, in which a cache line is present
in more than one cache; however, the cores are accessing different addresses inside
the cache line. Both scenarios should not be considered as communication.

Independence from the implementation of the application – To provide benefits to a
wide number of applications, the mechanism should be transparent to the program-
mer and user and make as few assumptions about the applications as possible. This
has two consequences. First, the mechanism should not depend on a particular par-
allelization API, such as OpenMP and Pthreads. Second, it should not require the
programmer to modify the source code or link to additional libraries.

2.2 Static thread mapping

In this section, we discuss some related work about static mapping. To statically map
an application, it must be executed inside controlled environments so that information
about the communication pattern can be gathered. This information is used in future
executions of the application to map their threads to the cores. There are three main types
of controlled environments used to monitor the memory accesses of the applications:
emulation, simulation and dynamic binary analysis (DBA).

Emulators are programs that implement some particular instruction set (ISA) entirely
by software. They are able to run executable files for the targeted ISA, allowing them to
be executed in any machine. Emulators focus on performance and only guarantee that the
program output for a given input will be the same of the real machine. Some examples
of emulators are Qemu (BELLARD, 2005) and Bochs (SHWARTSMAN; MIHOCKA,
2008). Qemu uses a technique called dynamic binary recompilation, which consists of
translating the executable of the the targeted ISA to a binary code compatible to the host
machine during runtime. Bochs is based on interpretation and hence is much slower than
Qemu. To minimize the high overhead imposed by interpretation, Bochs implements a
cache of decoded instructions. The first time an instruction is executed, the operands and
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the operation are stored in the cache. The future accesses to the same instruction use the
information from the decoded cache.

Simulators are also programs that implement some particular instruction set (ISA) en-
tirely by software. They are able to run executable files for the targeted ISA, allowing
them to be executed in any machine. Simulators, besides generating the same output of
the real machine, also focus on implementing the virtual machine so that the behavior will
be similar to the real machine. One example of simulator is Simics (MAGNUSSON et al.,
2002). Simics is a full system simulator that achieves a good trade-off between realistic
simulation and performance. By doing so, Simics allows real benchmarks to be simulated
with a reasonable accuracy compared to a real machine. It allows the simulation of laten-
cies in some components, which makes it possible to simulate the memory hierarchy and
pipeline stalls.

Dynamic binary analysis tools enable instrumentation of executable files so that their
behavior can be analyzed while running the programs. Some examples of dynamic binary
analysis tools are Valgrind (NETHERCOTE; SEWARD, 2007) and Pin (BACH et al.,
2010). The feature of Valgrind that is most related to our work is the BBV generator.
A Basic Block is a sequence of instructions that contains one entry and one exit points.
A Basic Block Vector (BBV) is the set of all Basic Blocks of an application. The tools
outputs the BBV of an application in a format compatible with the Simpoint simulator
(HAMERLY et al., 2005). Simpoint performs simulation in small steps from different
phases of the application. Then, it estimates the global behavior of the application by
analyzing the BBV and the results given from each phase. This approach is based on the
concept that the behavior of the applications are cyclic.

Valgrind also supports the instrumentation of multi-threaded applications. However,
the thread execution is serialized, thereby the behavior of parallel applications is totally
different from the original, as only one thread will be executing at a time. On the other
hand, Pin does not impose serialization on multi-threaded applications. It provides syn-
chronization primitives, such as locks, so that race conditions can be prevented. The syn-
chronization primitives present high overhead and should be used with precaution. Private
storage for each thread is provided by the thread local storage (TLS), which represents an
efficient method to store data that must be unique to each thread. Furthermore, Pin has
tools to help the analysis of programs based on the most used APIs, such as OpenMP
(OPENMP, 2008) and Threading Building Blocks (REINDERS, 2007).

The tools presented in the previous paragraphs are controlled environments that can
be used to detect the communication patterns of parallel applications. They demand a lot
of computational resources, drastically increasing the overhead of current thread mapping
approaches. In the rest of this section, we present some related work about thread mapping
that use these controlled environments to gather information to map the threads of parallel
applications.

2.2.1 Static thread mapping based on simulation

In BARROW-WILLIAMS; FENSCH; MOORE (2009), a technique to collect the
communication pattern between the threads of parallel applications based on shared mem-
ory is evaluated. Their method consists of two main steps: generation of memory access
traces and the analyses of the traces. To perform the first step, they instrumented Simics to
register all the memory accesses in files. The simulated ISA was the x86. To obtain more
realistic results, a memory hierarchy was also simulated with Simics while generating the
traces. The memory hierarchy had private L1 caches and one large shared L2 cache using
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a coherence protocol. In the second step, the memory traces are analyzed to determine
the communication pattern of the applications.

To consider an access to the memory as communication between the threads, the ac-
cess should fulfill three criteria. The first one is that more than one thread must access the
same address. The second criteria is that when one thread performs several consecutive
writes to the same address, only the last access represents a communication. The third
is that when one thread performs several consecutive reads to the same address, only the
first access represents a communication. These last two criteria are necessary to ignore
the memory access that occurred due to register number constraints. This happens when
several consecutive operations must be performed in one variable, but the architecture
does not provide enough registers to hold all the involved variables.

The authors categorize the memory accesses in three types: read-only, migratory and
producer-consumer. Read-only accesses are the ones that only read accesses are per-
formed after the initialization of the variable. Migratory accesses are represented by
atomic read-write operations. Producer-consumer is a pattern that one data is written
by one thread, the producer, and then is read by another thread, the consumer. However,
as few memory accesses fulfill this definition, the authors used a less strict rule to con-
sider a memory access as a producer-consumer. They extended the definition to allow an
arbitrary number of producers, and to consider a thread as a consumer when the it reads
the data for at least 50% of the performed writes.

The technique was evaluated using the Splash-2 (WOO et al., 1995) and Parsec (BI-
ENIA et al., 2008) benchmarks. These benchmarks were chosen because they cover dif-
ferent targets: Splash-2 is more suitable to evaluate clusters, while Parsec is focused in
multicore architectures. The analysis of the results showed that 1.5% of the read ac-
cesses represent communication. For the write accesses, 4.2% and 20.4%, respectively
for Splash-2 and Parsec, represent communication. As the main goal of the work was just
to characterize the communication pattern, the authors did not ran any performance tests
using the collected data.

The work described in DIENER et al. (2010) also uses Simics to discover the commu-
nication pattern of parallel applications. However, the authors used the collected informa-
tion to map the threads to cores according to the amount of communication. They devel-
oped two algorithms to map the threads. The first one tries every possible mapping and
selects the one that maximizes the amount communication between the threads. The prob-
lem of this approach is that the time complexity is exponential, hence it is viable only for
small number of threads. The second algorithm is a greedy heuristic and presents polyno-
mial time complexity. The applications were also executed using the original scheduling
policy of the operating system.

The authors evaluated their proposal by mapping a subset of the Splash-2 and Parsec
benchmarks on the Intel Nehalem architecture. Performance was improved by up to 45%
when compared to the native scheduler of the Linux operating system. Thread migration
imposed by the Linux scheduler requires context switches, which increases the number
of cache misses and leads to performance degradation when transferring the data to other
caches (MOGUL; BORG, 1991). In CRUZ; ALVES; NAVAUX (2010), it is shown that,
in some situations, thread migration can harm the performance more than any random
thread mapping.
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2.2.2 Static thread mapping based on dynamic binary analysis

The work presented in BIENIA; KUMAR; LI (2008) uses the Pin tool to collect infor-
mation about the applications. They analyze the communication pattern and the distribu-
tion of the instructions of the applications by their type. For the communication pattern,
they evaluate the amount of memory shared by the threads, separating read-only data and
data that suffered rewrites. Furthermore, they counted the number of accesses to regions
of memory that are shared, both write and read accesses. The working set (TANEN-
BAUM, 2007) of the applications were also taken into account. The size of the working
set was estimated by making use of the cache miss rate, since the amount of cache misses
is usually proportional to the size of the working set.

The results show that, even for small cache memories of 1mb, the miss rate is lower
than 1.25% for the Parsec benchmark. To decrease the cache miss to almost 0%, the cache
size was set to 128mb. This indicates that, despite the cache miss rate being proportional
to the size of the working set, the scale is not direct. Another interesting result of the
work was the ratio of write accesses to shared cache lines. This is an important measure
because write operations performed to shared cache lines generate invalidation or update
messages by cache coherence protocols. With the size of current last level caches, which
are around 32mb, less than 6% of the memory accesses result in writes to shared cache
lines. This number rises to around 7.5% when considering a 128mb cache size. As the
goal of the paper was just to analyze the behavior of the applications, no performance tests
were realized. However, these results suggest that obtaining performance improvements
with thread mapping is challenging, since the amount of private data overwhelms the
amount of shared data in current parallel applications.

2.2.3 Static thread mapping based on hardware counters

Hardware counters present on current architectures may also be used to guide the
static thread mapping. In OTT et al. (2008), hardware counters were employed in or-
der to measure the quality of a specific thread mapping. The communication among the
threads of the applications was not considered, since hardware counters present on current
architectures do not provide this kind of information. Instead, they used the million in-
structions per second (MIPS) as metric. This metric indirectly estimates the quality of the
mapping, since it is expected that the value of the MIPS to be higher for better mappings.
Each application was executed with every possible mapping, and the one that outputs the
highest MIPS was chosen.

To evaluate their proposal, they used their mechanism to map applications from the
Spec OMP benchmark (SAITO et al., 2002). The authors claim that their method was
able to find the best mapping for all the applications. However, they did not explain
how they obtained the best mapping. Furthermore, the results are not conclusive and the
manner they were presented lacks organization, which makes them difficult to be inter-
preted. Nevertheless, it is interesting that they used hardware counters, which requires
less computational resources than simulation and dynamic binary analysis and could be
implemented directly on the operating system scheduler.

2.2.4 Static process mapping applied to message passing based applications

As already mentioned, the detection of the communication pattern of message passing
based applications is straightforward compared to shared memory based applications. In
RODRIGUES et al. (2009), a technique to statically map parallel applications based on the
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Message Passing Interface (MPI) (MPI, 2009) is proposed. To detect the communication
pattern, the authors created wrappers to the MPI primitives that monitors the source and
destination fields of each message, as well as the amount of exchanged data between them.
With these information, they generate a complete graph in which the vertices represent
the processes and the edges the amount of communication.

To map the processes on the processing units they used a tool called Scotch (SCOTCH,
2010). Scotch requires as input two graphs: one to describe the application and other to
describe the machine. The graph of the application is generated as explained in the above
paragraph. In the graph of the machine, the vertices represent the processing units and
the edges the bandwidth of the link that connects them, if there is one. Scotch maps
the application graph to the machine graph by applying heuristic algorithms, most of
them based on graph partitioning. The generated mapping tries to minimize the overhead
imposed by the communication while keeping the load balancing. The bandwidth of the
links of the target machines were measured using a ping-pong application, which just
sends messages between all the processing units and reports the time took to transmit
them.

They used the weather forecast program BRAMS (BRAMS, 2009) to evaluate their
proposal. They obtained up to 9% of performance improvement, and a reduction of 20%
on the time spent waiting for messages. The mapping also resulted in a reduction in the
network traffic between the nodes of the cluster. One weak point of this work is that the
only metric tested was the amount of exchanged data. As stated in CHEN et al. (2006),
this metric is appropriate for applications in which the size of the messages far surpass the
number of messages. On the other hand, if the message sizes are too small, the network
latency dominates the transmission time, which makes the number of messages metric
more suitable than the amount of data.

2.3 Dynamic thread mapping

In this section, we discuss some related work about dynamic mapping.

2.3.1 Dynamic thread mapping using hardware counters

The works described at TAM; AZIMI; STUMM (2007a,b); AZIMI et al. (2009) show
that hardware performance counters already present in current processors may be used to
dynamically map parallel applications. They schedule threads by making use of hardware
counters present in the Power5 processor. Four main steps are performed: monitoring,
discovery of the communication pattern, thread clustering and migration. The monitoring
step consists of checking the hardware counter that stores the amount of cycles that the
core was stalled due to accesses to remote cache memories. When the stall time exceeds
a certain threshold, the mapping mechanism is enabled. This threshold is employed to
reduce the overhead.

When the mapping mechanism is enabled, the first procedure is to detect the commu-
nication pattern. This was accomplished by reading a hardware counter of the Power5
that stores the latest address that resulted in a remote cache access. A list of addresses is
kept for each core. After some time, when the size of the lists are large enough, the thread
clustering step is initiated. If the same address is present in more than one list, that means
that this address is shared between the corresponding cores and is used for communica-
tion. Therefore, the thread clustering step consists of searching the lists of addresses of
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each core for matches. Finally, the threads migrate to cores so that the number of remote
access is reduced.

Performance was increased by up to 7% and the number of memory accesses to remote
cache memories was reduced by up to 70%. This work has three main disadvantages. The
first is that the steps of discovering the communication pattern present high overhead, be-
cause it requires too much traps to the kernel. The thread clustering step is also expensive,
but as it is not performed so frequently, it does not have a high impact. The second disad-
vantage is a result of the first one. As two of the steps have high overhead, the mapping
mechanism is enabled occasionally, which reduces the accuracy of the results. The third
disadvantage is that only the remote cache accesses are monitored, hence it is not possible
to detect communication among all the threads.

In BROQUEDIS et al. (2010), a library called ForestGOMP is introduced. This library
integrates into the OpenMP (OPENMP, 2008) runtime environment and gathers informa-
tion about the different parallel sections of the applications from hardware performance
counters. The library generates data and thread mappings for the regions of the applica-
tion. As the library performs data mappings, it focus on NUMA architectures. The library
tries to keep the threads that communicate nearby according to the memory hierarchy, as
well as to place the memory pages in NUMA nodes close to the cores that access the
page. As stated in TERBOVEN et al. (2008), Linux first-touch policy consists of map-
ping a page to the NUMA node of the core that first access the page, and is not efficient
due to the different behavior of parallel applications in different phases of the program.
ForesGOMP adds a next-touch policy, in which the pages migrate to the NUMA node of
the next core that access the page. The library also supports the migration of individual
pages.

They improved performance by up to 11.6% using the NAS parallel benchmarks.
They also evaluated the performance with a benchmark called Stream (STREAM, 2011),
which measures the memory bandwidth, obtaining up to 80% of improvement. This work
has two disadvantages. The first one is that the hardware counters they used to guide the
thread and data mapping only indirectly estimate the communication patterns. The second
major problem is that their work is limited to OpenMP based applications. Applications
based on other APIs, such as Intel TBB or Posix Threads, are not able to benefit from
their library.

2.3.2 Dynamic data mapping applied to NUMA machines

The ForestGOMP library (BROQUEDIS et al., 2010), introduced on the previous sec-
tion (Section 2.3.1), already performs data mappings for NUMA machines. Another inter-
esting work is described at AWASTHI et al. (2010). They have developed page migration
mechanisms that uses the load balancing between the memory controllers and the row-
buffer hit rate as main metrics. The reason for optimizing the load balancing is straight-
forward, as it will cause a better distribution of the memory traffic across the NUMA
nodes. Optimizing the row-buffer hit rates, on the other hand, is very interesting. If you
have high row-buffer hit rates, it suggests that the same data is being re-used. It is not an
accurate information because access to different pages may also result in a row-buffer hit,
but, at least, a miss in the row-buffer only happens if a different page is accessed. As a
result, the row-buffer hit rate indirectly estimates the amount of shared pages between the
cores that are accessing a NUMA node.

Two page migrations mechanisms were developed. The first is called Adaptive First-
Touch and consists of gathering statistics of the memory controller to map the data of the
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Table 2.1: Summary of the characteristics of current thread mapping mechanisms.

Method Detect commu-
nication pattern
and dynamic
behavior during
execution

Impact on per-
formance

Accuracy of the
communication
pattern

Avoid the false
communication
problem

Independent
from the imple-
mentation of the
application

Static, using
simulation

No High High Yes No

Static, using
DBA

No High High Yes Yes

Static, using
hardware
counters

No Low Low No Yes

Dynamic,
using hard-
ware coun-
ters

Yes Low Low No Yes

application in future executions. However, this mechanism fails if the behavior changes
among the different phases of the application. The second mechanism uses the same in-
formation, but allows dynamic page migration during the execution of the application. In
their heuristic, a page must migrate when the row-buffer hit rate drops by 10%. They se-
lect the destination NUMA node considering the difference of the access latency between
the source and destination NUMA nodes, as well as the row-buffer and the load of the
destination memory controller.

Their mechanisms were implemented in the Simics simulator, leading to a perfor-
mance improvement of up to 35%. The major problem of this work is that the information
about the communication pattern between the threads, as well as which data each thread
is using, is unreliable, since it is based only in the row-buffer hit rate. The page to be mi-
grated is randomly chosen, and may lead to an increase on the number of remote accesses.
Additionally, threads that access the same memory pages may be executed on different
NUMA nodes, since they do not map threads that communicate on the same node. This
also leads to an increase of the number of remote accesses.

2.3.3 Dynamic process mapping applied to message passing based applications

In SONNEK et al. (2010), virtual machines running on clusters are migrated among
the different nodes considering the amount of communication between them. They detect
the communication between the virtual machines by monitoring the source and destina-
tion fields of the packets sent on the network. By dynamic migrating the virtual machines
to nearby nodes of the cluster, they improved performance by up to 42% and reduced the
network communication cost by up to 85%.

2.4 Summary of the state-of-art

In this chapter, we presented the state-of-art related to mapping techniques. Thread
mapping, data mapping and process mapping mechanisms were evaluated. One first con-
clusion is that process mapping of parallel applications based on message passing are
rather straightforward, at least from the point of view of the computer architecture. As the
communication pattern is easily discovered by monitoring the source and destination of
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the messages, the problem is reduced to determine which core will execute each process.
This is more of a mathematical and combinatorial optimization problem than a computer
architecture problem. On the other hand, thread mapping of parallel applications based
on shared memory imposes a real challenge on computer architecture, since it is very dif-
ficult to accurately detect the communication pattern without requiring time consuming
tasks such as profiling.

Table 2.1 summarizes the characteristics of current thread mapping mechanisms. We
can categorize current thread mapping mechanisms in two groups: the mechanisms that
impose high overhead, but generate an accurate communication pattern, and the mech-
anisms that are light-weight, but rely on indirect and unreliable information about the
communication. To our knowledge, there is no solution that was able to accurately detect
the communication pattern of shared memory based parallel applications with a low over-
head. Our goal is to fulfill this gap. We developed mechanisms that dynamically generate
accurate communication patterns with a low overhead for parallel applications based on
shared memory. Our mechanisms also allow the thread mapping to be performed dynam-
ically by the operating system during the execution of the applications. Furthermore, they
do not depend on any particular parallel programming library or any kind of modifications
to the source code of the applications.
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3 PROPOSED METHODS FOR DYNAMIC DETECTION
OF THE COMMUNICATION PATTERN

In this chapter, we explain our proposed mechanisms for dynamic detection of the
communication pattern. The proposals can be classified in two main categories: cache
coherence based and TLB based. The communication can be analyzed by grouping dif-
ferent number of threads. To calculate the amount of communication between groups
of threads of any size, the time and space complexity raises exponentially. Therefore, the
communication was evaluated only between pairs of threads, generating a communication
matrix. Although this may decrease the accuracy of the results, it reduces the complex-
ity to Θ(N2), where N is the number of threads, and allows a faster processing of the
information.

3.1 Exploiting Cache Coherence Protocols

Cache coherence protocols are responsible for keeping data integrity in architectures
where more than one cache memory is present, as is common in multicore and multipro-
cessor environments. These protocols keep information about whether a line is private
or shared between two or more caches. This can be exploited in order to estimate the
amount of communication between the threads, since an access to a line shared by two
or more caches represents a communication. Small modifications to the protocols and
the hardware are required to identify communication patterns. We used the MESI pro-
tocol (STALLINGS, 2006) as base for our cache coherence based mechanisms, and they
can be adapted to work with any protocol, such as MOESI.

In MESI based protocols, an invalidation message is sent when a write is performed
in a shared or invalid cache line. However, no message is sent when a read is performed
in a shared cache line. Hence, we detect the communication when the cache lines are
invalidated. Nevertheless, read transactions are considered when an invalidation message
arrives, because cache lines are invalidated regardless of their state. This decision was
taken considering that write operations have a greater impact on performance than read
operations (CHISHTI; POWELL; VIJAYKUMAR, 2005).

There are two main types of cache coherence protocols: snoop and directory. We
propose modifications to both snoop and directory protocols in the rest of the section.
The examples and figures were based on a machine which consists of four cores.

3.1.1 Snoop Protocols

In this section, we explain how to detect the communication pattern in snoop proto-
cols. In these protocols, each cache is responsible for keeping the state of its cache lines.
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Figure 3.1: Snoop based mechanism for private caches.

Since snoop protocols usually do not keep any information about which caches are shar-
ing each line, the coherence messages are broadcasted to all caches (EGGERS; KATZ,
1989). Snoop protocols can be used with caches that are private to one core and with
caches that are shared between two or more cores. We propose different mechanisms for
private and shared caches.

3.1.1.1 Mechanism for Private Caches

Our first approach to detect the communication pattern in snoop protocols is appropri-
ate for private cache memories. We add a matrix to each cache to store the communication
corresponding to the core that is connected to the cache, therefore the matrix consists of
only one column. The number of rows of this matrix is equal to the total number of cores
in the system. From now on, we will call this matrix sub-matrix, since it is part of the
communication matrix. The procedure to obtain the communication matrix is explained
in Section 3.1.3.1. In order to identify which cores are communicating, the id of the core
that sent the coherence message is also required. To provide this information, the id of the
core must be sent along with the message. This scheme is not suitable for shared caches,
since we do not know which of the cores that share the cache have accessed each line.

Figure 3.1 shows how the mechanism works. Table 3.1 presents some examples,
considering that all transactions happens on the same cache line. In the Table, the letters
M, E, S and I represent the coherence state. When a write is performed in a shared cache
line, as in Example 1, we send the invalidation message along with the id of the core that
sent the message in the snoop bus. Those caches that invalidate a line in response to this
message increment their sub-matrix by one in the cell whose row is the core id from the
snoop bus. The same happens when a write is performed in an invalid cache line, as in
Example 2. Example 3 illustrates how read transactions are taken into account when an
invalidation arrives.

The space required to store each sub-matrix is P · C, where P is the number of pro-
cessing cores of the machine and C is the size of each cell of the sub-matrix in bytes. As
there are P caches, the total space used to store the matrices is P 2 · C bytes.
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Table 3.1: Examples of the snoop based mechanism for private caches.

Ex. Core 0
Cache 0

Core 1
Cache 1

Core 2
Cache 2

Core 3
Cache 3

Action

1

S I S S Core 0 Writes
Cache 0 sends invalidation

M I I I Cache 2 updates its sub-matrix in cell 0-0
Cache 3 updates its sub-matrix in cell 0-0

2
I E I I Core 0 Writes

Cache 0 sends invalidation

M I I I Cache 1 updates its sub-matrix in cell 0-0

3

I I I I Core 0 Reads

E I I I Core 2 Reads

S I S I Core 3 Writes
Cache 3 sends invalidation

I I I M Cache 0 updates its sub-matrix in cell 3-0
Cache 2 updates its sub-matrix in cell 3-0
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Figure 3.2: Snoop based mechanism for shared caches.

3.1.1.2 Mechanism for Shared Caches

The previous protocol (Section 3.1.1.1) requires small modifications to the hardware,
but only works for private caches. Its constraint is that it does not determine which core
accessed a given cache line when there is more than one core sharing a cache. The proto-
col described in this section overcomes this issue, but requires more modifications to the
original hardware.

To make it possible to use the mechanism with shared caches, we add one access bit
(A-Bit) per core sharing a cache to every cache line. These access bits show which of the
cores sharing a cache accessed a cache line. We add a sub-matrix to each cache to store
the amount of communication correspoding to the cores that are sharing the cache. The
number of rows of the sub-matrix is equal to the total number of cores, and the number of
columns is equal to the number of cores sharing the cache.

Figure 3.2 shows how the mechanism works, considering that there are 2 cores sharing
each cache. Therefore, 2 A-Bits are added to each cache line, and each sub-matrix has 2
columns. Table 3.2 present examples of the operation of the mechanism. Cx is the coher-
ence state of cache x and Ax is the Access Bit corresponding to core x. It is important to
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Table 3.2: Examples of the snoop based mechanism for shared caches.

Ex.
Core 0-1 Core 2-3

ActionCache 0 Cache 1

C0 A0 A1 C1 A2 A3

1
I 0 0 I 0 0 Core 0 Reads

Cache 0 Sets A0

E 1 0 I 0 0

2

E 1 0 I 0 0 Core 1 Writes
Cache 0 Sets A1
Cache 0 updates its sub-matrix in cell 1-0

M 1 1 I 0 0

3

S 1 0 S 0 1 Core 1 Writes
Cache 0 Sets A1
Cache 0 updates its sub-matrix in cell 1-0
Cache 0 sends invalidation

M 1 1 I 0 0 Cache 1 updates its sub-matrix in cell 1-1

4

S 1 0 S 1 1 Core 1 Writes
Cache 0 Sets A1
Cache 0 updates its sub-matrix in cell 1-0
Cache 0 sends invalidation

M 1 1 I 0 0 Cache 1 updates its sub-matrix in cells 1-0 and 1-1

mention that A2 and A3 point to columns 0 and 1 of the sub-matrix, since each sub-matrix
only stores the communication corresponding to the cores that share them.

When a memory request arrives on the cache, the cache sets the A-Bit corresponding
to the core that initiated the transaction on the requested cache line, as in Example 1. If
a write hit occurs, the sub-matrix of the accessed cache is incremented in the cells whose
row is the id of the core sharing the cache that initiated the transaction, and columns
where the A-Bits are set (Example 2). This is done in order to detect the communication
among the cores that share the cache. Besides, if the write hit happens in a shared cache
line, an invalidation message is broadcasted along with the id of the core that initiated
the transaction. Those caches that invalidate a line in response to this message increment
their sub-matrix by one in the cells whose row is the core id from snoop bus, and columns
where the A-Bits are set, as depicted in Example 3. It is important to note that, when
more than 1 A-Bit is set, more than one cell is updated, as in Example 4. The invalidation
is also broadcasted along with the id of the core when a write is performed in an invalid
cache line.

The space required to store each sub-matrix is P · S · C, where P is the number of
cores of the machine, S is the number of cores sharing the cache and C is the size of each
cell of the sub-matrix in bytes. The overhead of the A-Bits for each cache is B·S

L
bits,

where B is the size of the cache in bytes, L is the size of each cache line in bytes, and S
is the number of cores sharing the cache. As there are P

S
caches, the total space used to

store the matrices is P 2 · C bytes and the total space required for the A-Bits is B·P
L

bits.
Since one byte contains 8 bits, the space complexity is P 2 · C + B·P

8·L bytes.

3.1.2 Directory protocols

In this section, we explain how to detect the communication pattern using directory
cache coherence protocols. In directory protocols, the directory stores the state of the
cache lines of all caches and also keeps track of which caches contain each line. This can
be seen in the Example 1 of Table 3.3. Coherence messages are sent only to the caches
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Figure 3.3: Centralized directory based mechanism.

Table 3.3: Examples of the centralized directory based mechanism.

Ex. Core 0 Core 1 Core 2 Core 3 Directory Action
Cache 0 Cache 1 Cache 2 Cache 3 S0 S1 S2 S3

1

I I I I 0 0 0 0 Core 0 Reads
Directory sets Exclusive to Cache 0

E I I I 1 0 0 0 Core 2 Reads
Directory sets Shared to Cache 2
Directory sets Shared to Cache 0

S I S I 1 0 1 0

2

S I S I 1 0 1 0 Core 1 Writes
Directory sends invalidation to Caches 0 and 2
Directory updates its sub-matrix in cells 1-0 and 1-2

I M I I 0 1 0 0

3

S S S I 1 1 1 0 Core 1 Writes
Directory sends invalidation to Caches 0 and 2
Directory updates its communication matrix in cells
1-0 and 1-2

I M I I 0 1 0 0

that contain the corresponding line, hence there is no need for broadcasts (AGARWAL
et al., 1988). We will refer to the structure that keeps the caches that share a line as
sharers list. Likewise, we will call the caches that are sharing a given cache line as a
sharer of the line.

It is important to note that the directory keeps track of which caches are sharing each
line, not which cores are sharing each line. Therefore, we have to use the information
about the last private cache level to detect if the corresponding core shares some line, since
shared cache levels can be accessed by more than one core. For instance, considering an
architecture with 2 cache levels, and just the L1 cache is private, the directory is not able
to tell which core has accessed each line of the L2 cache. However, the lines present on
the L1 cache were surely accessed by the corresponding core.

Different modifications to the hardware were proposed for centralized and distributed
directories.
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Figure 3.4: Distributed directory based mechanism.

3.1.2.1 Mechanism for Centralized Directories

In centralized directories protocols, there is only one directory. Therefore, all the
coherence information is found on this directory. To allow the detection of the commu-
nication pattern, the main modification required to the hardware is the addition of the
communication matrix to the directory. The number of rows and columns of the commu-
nication matrix are equal to the total number of cores. In the original protocol, when a
core requests a write transaction, if the cache line is shared or invalid, it access the direc-
tory to check which caches are sharing the requested cache line. Then, the directory sends
invalidation messages to all the caches that share the corresponding cache line and clears
the sharers list. After that, the directory set as sharer only the caches that are shared by
the core that requested the write transaction.

Our mechanism is depicted in Figure 3.3. Table 3.3 presents examples of how the
mechanism works, in which Sx is the Sharer Bit corresponding to cache x. To detect
the communication pattern, before clearing the sharers list, our mechanism increment
the cells of the communication matrix whose row is the id of the core that initiated the
transaction, and columns corresponding to the sharers list. Examples 2 and 3 demonstrate
this behavior.

The space required to store the communication matrix is P 2 ·C bytes, where P is the
number of cores of the machine and C is the size of each cell in bytes.

3.1.2.2 Mechanism for Distributed Directories

Distributed directory based protocols can be implemented in different ways. In one
implementation suitable for multi-core architectures, the directory keeps track of which
processors are sharing each line (ZHAO; SHRIRAMAN; DWARKADAS, 2010). The
directory only forwards the request to the processors that have the corresponding cache
line. It is responsibility of each processor to keep track of which caches inside them hold
the requested cache line. Therefore, there are 2 types of sharers list: one that is kept by
the directory and points to processors, and one that is kept by each processor and points to
its caches. The main modification required to the hardware is the addition one sub-matrix
to each processor. The number of rows of the sub-matrix is equal to the total number of
cores, and the number of columns is equal to the number of cores sharing the cache.

In the original protocol, when a core requests a write transaction, if the cache line



39

Table 3.4: Examples of the distributed directory based mechanism.

Ex.
Core 0-1
Cache 0

Core 2-3
Cache 1

Directory Action

C0 S0 S1 C1 S2 S3 P0 P1

1

E 1 0 I 0 0 1 0 Core 1 Writes
Cache 0 Sets S1
Cache 0 updates its sub-matrix in cell 1-0

M 1 1 I 0 0 1 0

2

S 1 1 S 1 1 1 1 Core 1 Writes
Cache 0 updates its sub-matrix in cell 1-0
Cache 0 access the directory

M 1 1 S 1 1 1 1 The directory sends an invalidation to Cache 1
The directory clears the bit P1

M 1 1 I 0 0 1 0 Cache 1 updates its sub-matrix in cells 1-0 and 1-1

is shared or invalid, it accesses the directory to check which processors are sharing the
requested cache line. Then, the directory sends invalidation messages to all the processors
that share the corresponding cache line and clears its sharers list. The processors that
receive the invalidation messages check which caches are sharing the corresponding line,
and then forward the invalidations to them. After that, the directory set as sharer only the
processor that requested the write transaction. The processor set as sharer only the caches
that are shared by the core that requested the write transaction.

Our mechanism works as in Figure 3.4 and Table 3.4 contains some examples, con-
sidering that there are 2 cores sharing each cache, and that each pair of cores belong to
different processors. In the Table 3.4, C is the coherence state, Sx is the Sharer Bit corre-
sponding to cache x and Px is the bit that represents if processor x holds the corresponding
line. It is important to mention that S2 points to column 0, and S3 to column 1, since each
sub-matrix only stores the communication relative to the cores that share them. When a
write occurs in an exclusive or modified lines, there is no need for accessing the directory.
In this case, we only update the sub-matrix of the corresponding cache in the cells whose
row is the id of the core that initiated the transaction, and columns corresponding to the
sharers list. This procedure is demonstrated in Example 1.

When the write is performed in a shared or invalid cache line, the cache, besides
updating its own sub-matrix, also has to access the directory. This has to be done in order
to send invalidation messages to the other processors that have the corresponding cache
line. When the invalidation that was forwarded by the directory arrives at the processor,
before forwarding the invalidation to the caches that share the cache line, our mechanism
increment the cells of the communication whose row is the id of the core that initiated the
transaction, and columns corresponding to the sharers list. Example 2 demonstrates this
procedure.

The space required to store each sub-matrix is P · S · C, where P is the number of
cores of the machine, S is the number of cores sharing the cache and C is the size of each
cell in bytes. As there are P

S
caches, the total space used to store the matrices is P 2 · C

bytes.

3.1.3 Properties and procedures common to all cache coherence based mechanisms

In this section, we present properties and procedures that are common to all the pro-
posed cache coherence based mechanisms. First, we explain how to obtain the amount of
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communication between the threads from the matrices kept by our mechanisms. After-
wards, we show the common hardware requirements and the software overhead.

3.1.3.1 Obtaining the amount of communication

For the mechanism based on centralized directories, obtaining the amount of commu-
nication between two threads happens as follows. Considering i and j identifiers of cores,
we only have to add the cells (i, j) and (j, i) of the communication matrix. This addi-
tion is necessary because we want to know the communication between the two threads
regardless of the direction of the communication.

Regarding the other mechanisms, the communication matrix is divided in sub-
matrices attached to the caches. Each sub-matrix contains the amount of communication
corresponding to the cores that are sharing the cache. If we consider that the columns of
all sub-matrices are virtually concatenated, sorted by the corresponding core id, we obtain
a square matrix. This square matrix is the communication matrix, and the procedure to
obtain the amount of communication between two threads is the same as in centralized
directories.

3.1.3.2 Common Hardware Requirements

All mechanisms require one adder unit per matrix to increment its cells. However,
more than one cell of the matrix may be incremented, as it happens when the number of
columns of each sub-matrix is greater than one. In these cases, the number of adder units
per sub-matrix, as well as read and write ports, must be equal to the number of columns
of the sub-matrix to allow the increments to be performed simultaneously. Otherwise, the
increments are serialized. Additionally, instructions must be added to the instruction set
to allow the operating system to read and write to the communication matrix.

3.1.3.3 Software Overhead

The communication pattern is detected entirely by hardware. The only procedure
required from the software is the addition of two cells of the communication matrix, as
explained in Section 3.1.3.1.

3.2 Exploiting the Translation Lookaside Buffer

Virtual memory requires the translation of virtual addresses to physical addresses for
every memory access. To do so, the operating system keeps tables in the main memory
that make this translation possible. These page tables contain the physical address for
each virtual page, and are indexed by the higher bits of the virtual address for quick
translation. However, the memory accesses to the page table impose a high overhead, and
some architectures even require several accesses, in case the page table consists of more
than one level. To overcome these issues, a special cache memory, called the Translation
Lookaside Buffer (TLB), is responsible for storing the page table translation entries for the
most recently accessed pages.

In multicore architectures, each core has its own TLB, which stores the most recently
accessed page table entries by the core. If the same page table entry is present in more
than one TLB, that means that the corresponding cores access shared memory at the page
level granularity. If we iterate over all TLBs and register every time two entries match,
we get the amount of pages shared by the cores as a result. By systematically doing this
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Figure 3.5: Flowcharts for the proposed TLB based mechanisms.

procedure, we get a representation of the communication pattern at the page level granu-
larity. This pattern can be used to map the threads of the applications on modern multicore
architectures, taking advantage of shared cache memories and intra-chip communication.

Current processor architectures manage TLBs in different ways. The two most im-
portant types of management, software-managed and hardware-managed TLBs, require
slightly different methods to discover the communication pattern. Therefore, we describe
our proposed mechanism separately for each of the two TLB management types.

3.2.1 Mechanism for Software-Managed TLBs

In some RISC architectures, such as SPARC (SPARC, 2000) and MIPS (MIPS, 1996),
the processor traps to the operating system when a TLB miss occurs. The operating
system then accesses the page table in the main memory and loads the corresponding entry
into the TLB. This type of TLB is called a software-managed TLB. The main advantages
of this management type is that it simplifies the hardware and is very flexible, since the
operating system can choose how to implement the virtual memory.

To implement a mechanism to detect the communication pattern for the software-
managed TLB, no hardware modification is required. When a TLB miss traps to the
operating system, the kernel can also check all the other TLBs for matches, besides load-
ing the entry from the main memory. Accessing other TLBs could represent a bottleneck.
To overcome this issue, the contents of all TLBs can be mirrored in the main memory.
This would not require much storage space, as the size of the TLB is usually small to
keep access latency low. To further reduce the impact of iterating over the TLBs, the
operating system could treat the TLB as a set associative cache, so that only a few entries
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from each TLB have to be compared for matches. Also, instead of running the search for
every TLB miss, the search could be run for only a fraction of them. This decreases the
accuracy, but reduces the overhead to the same fraction used for sampling.

Our implementation of this proposal for the software-managed TLB is presented in
the flowchart in Figure 3.5(a). When a TLB miss occurs, we compare a counter against
a previously selected threshold. If the counter is below the threshold, we just increment
it and return to the operating system to reduce the overhead imposed by our mechanism.
Otherwise, we set the count to zero and search for the requested address in the other
TLBs of the system, incrementing the communication matrix whenever a match is found.
Finally, we return to the operating system, which fetches the TLB entry and returns control
to the application.

The time complexity to find the communication in a fully associative software-
managed TLB is Θ(P · E), where P , is the number of processing cores and E is the
number of entries of the TLB. The complexity increases linear with P since we have to
check all the other TLBs, and it is also linear with E because all the entries of the TLB are
searched for matches. However, considering a set associative TLB, the time complexity
decreases to Θ(P ), because the associativity is a constant and is much smaller than the
size of the TLB. In this case, it is not necessary to check all the entries of the TLB for
matches, but just the entries that are on the same set. The space complexity to store the
mirrors of the TLBs in the main memory is P · E · T bytes, where T is the size of each
entry of the TLB in bytes. To store the communication matrix, P 2 · C bytes are required,
where C is the size of each cell of the communication matrix in bytes. Therefore, the
space complexity is P · E · T + P 2 · C bytes.

3.2.2 Mechanism for Hardware-Managed TLBs

Architectures such as x86 and x86-64 (INTEL, 2004, 2009; AMD, 2007) use the TLB
only as a cache for the page table entries stored in the main memory. For every memory
access, the TLB is searched for a match. If the corresponding entry is cached in the TLB,
the address is translated and sent to the memory hierarchy. If the entry is not present
in the TLB, the hardware accesses the main memory and loads the corresponding entry
into the TLB. This mechanism is called hardware-managed TLB. The operating system
only keeps the content of the page table in the main memory. The only management
that is performed by the operating system in this type of TLB is invalidating the entries
when the page table is modified. The hardware-managed approach has a low impact on
performance, as it does not require traps and context switches on every TLB miss.

To allow finding the communication pattern, architectures with hardware-managed
TLBs require a minor change to the hardware, as the operating system does not have
access to the contents of the TLB. The modification consists of adding an instruction that
enables the operating system to access the content of the TLB. This way, the kernel could
search the TLBs for matching entries periodically. The accuracy and overhead of this
mechanism depend on the time between searches.

Our implementation of this proposal for the hardware-managed TLB is presented in
the flowchart in Figure 3.5(b). Whenever an interrupt occurs, we subtract a previously
defined threshold from the cycle counter and compare it to the value of the cycle counter
when the last search occurred. The reason for this comparison is to limit the number of
times a search for communication runs, and thereby decrease the overhead of the mech-
anism. If not enough time passed since the last search, we just return to the operating
system. Otherwise, we store the current value of the cycle counter and proceed to search
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Table 3.5: Comparison between the proposed mechanisms.

Proposal Hardware Modifications Time
Complexity Space Complexity Granularity

Snoop
Private

Communication Matrix, Adder unit, and
the addition of an instruction to allow
the operating system to access the com-
munication matrix

Θ(1) P 2 · C bytes Cache Line

Snoop
Shared

A-Bits, Communication Matrix, Adder
Unit and the addition of an instruction
to allow the operating system to access
the communication matrix

Θ(1) P 2 · C + B·P
8·L bytes Cache Line

Centralized
Directory

Communication Matrix, Adder Unit,
and the addition of an instruction to al-
low the operating system to access the
communication matrix

Θ(1) P 2 · C bytes Cache Line

Distributed
Directory

Communication Matrix, Adder Unit,
and the addition of an instruction to al-
low the operating system to access the
communication matrix

Θ(1) P 2 · C bytes Cache Line

Software-
managed
TLB

None Θ(P ) P · E · T + P 2 · C bytes Memory Page

Hardware-
managed
TLB

Addition of an instruction to allow the
operating system to access the TLB

Θ(P 2 · E) P · E · T + P 2 · C bytes Memory Page

P : number of processing cores
E: number of entries of the TLB
C: size of each cell of the communication matrix in bytes
B: size of a cache in bytes
L: size of each cache line in bytes
T : size of each entry of the TLB in bytes

all TLBs for matching addresses, incrementing the communication matrix for each match.
Finally, we return to the operating system.

If the hardware-managed TLB is fully associative, the time complexity for the algo-
rithm to find the communication is Θ(P 2 ·E2), where P is the number of processing cores
and E is the number of entries of the TLB. The complexity is quadratic in P because it
is necessary to compare every possible pair of TLBs. The comparison of all the entries
of the pair of TLBs is quadratic in E. However, if we use a set associative hardware-
managed TLB, the time complexity is decreased to Θ(P 2 ·E), since it is not necessary to
check all the entries of the TLB for matches, but just the entries that are on the same set.
The space complexity to store the mirrors of the TLBs in the main memory is P · E · T
bytes, where T is the size of each entry of the TLB in bytes. To store the communication
matrix, P 2 · C bytes are required, where C is the size of each cell of the communication
matrix in bytes. Therefore, the space complexity is P · E · T + P 2 · C bytes.

3.3 Summary of the proposed methods

In this section, we compare our proposed mechanisms for dynamic discovery of the
communication patterns. As outlined in Section 2.1, a mechanism to discover communi-
cation patterns between threads should have several properties. As our mechanisms are
performed entirely by the hardware and the operating system, they do not depend on the
parallelization API and do not require any modification to the application. Moreover, the
communication pattern is discovered during the execution time of the application. Re-
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garding the dynamic behavior of applications, our mechanisms provide a good solution
for detecting changes in the behavior because the number of possible entries in the TLB
and cache is quite low. Data that is not accessed anymore will have its corresponding
entry overwritten after a short time and will therefore not be counted anymore in the cal-
culation of the communication pattern. Similarly, the impact of false communication is
greatly reduced by the relatively short life of the TLB and cache entries.

Table 3.5 summarizes the characteristics. All mechanisms except the software-
management TLB need modifications to the current hardware. The snoop mechanism
for shared caches is the one that needs more modifications, since it requires the addition
of the A-Bits. The TLB mechanisms are more affected by the false sharing problem than
the cache coherence ones, since the size of the memory page is much bigger than the size
of the cache line. Regarding the time complexity, all the cache coherence based mecha-
nisms execute in Θ(1), since they operate entirely by hardware. On the other hand, the
TLB based mechanisms require the operating system to search for matches among the
TLBs of different cores. Regarding the space complexity, it is more relevant for the cache
coherence based mechanisms, because the data is stored in the cache system, while in the
TLB based mechanisms the data is stored in the main memory.

In our cache coherence based mechanisms, there is one main difference between the
mechanisms based on directory and snoop. In the directory, whenever a cache no longer
holds some cache line, it is mandatory that it leaves the corresponding sharers list in the
directory. This happens because the control of the sharers list is inherent to the directory,
which takes this action to prevent unnecessary invalidation messages. However, in our
snoop based mechanism, the A-Bits are used only by our mechanism, the coherence pro-
tocol does not depend on them. Therefore, we chose to clear the A-Bit corresponding to
some core only when an invalidation arrives. Line evictions due to replacements do not
clear the A-Bits of the corresponding cores on other caches.

We made this decision because some results indicated that, with low cache sizes,
some shared data do not stay enough time on the cache to be considered as shared by the
coherence protocol. For instance, consider a system with 2 levels of cache. The L1 caches
are private, while the L2 caches are shared by two cores. When a core access some data,
the corresponding cache line will be stored by both the L1 and L2 caches of the core. In
directory based protocols, if the L1 cache evicts that same cache line, the corresponding
core will not be considered a sharer of that cache line anymore. However, in our snoop
based mechanism, if the L1 cache evicts some cache line, the A-Bit corresponding to that
core (the L1 cache is private and we know which core is related to it) keeps set on the L2
cache. Since the L1 cache size is expected to be much lower than the L2 cache size, the
directory based protocols are much more sensitive to the cache size than the snoop based
protocols.

Regarding multithreaded cores, such as in simultaneous multithreading
(SMT) (TULLSEN; EGGERS; LEVY, 1995), the cache coherence based approaches
would require more modifications to the hardware than the ones explained in this thesis.
In the snoop based protocols, the A-Bits would have to identify not just the cores, but
the virtual cores that accessed a given cache line. In the directory based protocols, the
sharers list would not provide the information about which virtual core has accessed
each line, since the virtual cores from the same core share even the L1 cache. Therefore,
the directory protocols would require the addition of bits to identify which virtual
core accessed each line of the last private cache level, similarly to the A-Bits of snoop
protocols. However, the TLB based mechanisms would behave the same as explained in
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this thesis, since the TLB already provides ways to identify to which virtual core a TLB
entry belongs, otherwise it would not be possible to execute different processes inside the
same multithreaded core. Hence, the TLB based mechanisms present a better support for
multithreaded cores.
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4 EVALUATION OF THE MECHANISMS FOR DYNAMIC
DETECTION OF THE COMMUNICATION PATTERN

In this chapter, we explain how we evaluated our proposals. We execute the applica-
tions inside a simulator to detect the communication patterns. We use simulation just to
allow the evaluation of our proposals, since most of them require hardware modifications.
If we implemented our mechanisms on a real processor, there would be no need for sim-
ulation. To evaluate the performance, we use the communication patterns obtained in the
simulator to map the threads on a real machine. We still do not migrate the threads while
running the applications. Dynamic migration requires an algorithm to detect when the
communication pattern changes (MA et al., 2009), as well as modifications to the sched-
uler of the operating system. These are beyond the scope of this work, which is to present
mechanisms that dynamically detect the communication patterns.

4.1 Implementation inside the simulator

We implemented all our proposals inside the Simics simulator (MAGNUSSON et al.,
2002). The cache coherence based mechanisms were evaluated with Ultrasparc II sim-
ulated processors. For the snoop mechanisms, we modified the original cache memory
module of Simics, called g-cache. This module implements a set associative cache mem-
ory that uses a MESI based protocol to keep the coherence. To simulate the main memory,
we used the trans-staller module. Simics modules present a reasonable simulation speed.
The accuracy of the results are decreased because they do not consider any kind of compe-
tition between the resources, such as interconnection contention and overloaded input and
output buffers. However, since the memory timings are more influent on the performance
evaluations, there is no significant loss on the accuracy of the communication patterns.

For the directory based mechanisms, we modified protocols from the GEMS/Ruby
project (MARTIN et al., 2005). GEMS is a set of modules for Simics that enables de-
tailed simulation of multiprocessor systems, including Chip-Multiprocessors. There are
two main modules: Opal and Ruby. Opal implements an out-of-order superscalar pipeline
with several features, such as branch predictors and dynamically scheduling of instruc-
tions. Ruby is a timing simulator of a multiprocessor memory system that models caches,
interconnections and memory controllers. We only used Ruby due to simulation speed
constraints. Although Ruby is much more accurate than the original timing modules of
Simics, we implemented only the directory based protocols in Ruby because it does not
provide any snoop based protocols for multicore architectures.

The centralized directory based mechanism used the MOESI_SMP_directory of Ruby
as basis. This protocol assumes that each node consists of a processor, private L1 and L2
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Figure 4.1: Communication Matrix and the corresponding Communication Graph.

caches, and it can be used to model a CMP with private caches. The distributed directory
based mechanism used the MSI_MOSI_CMP_directory of Ruby as basis. This protocol
assumes that each node consists of a processor with private L1 caches and one shared L2
cache. Inclusion is maintained between the L2s and the L1s, and a sharers list is kept in
each L2 cache line.

The TLB based mechanisms were evaluated with x86 based processors, because Sim-
ics does not provide the source code of the TLB of the Ultrasparc II processor. We
performed two distinct modifications to the x86_tlb module: one to simulate our software-
managed TLB mechanism, and one to simulate our hardware-managed TLB mechanism.
We also used Simics original memory timing modules on the simulations.

4.2 Thread mapping algorithm

After the generation of the communication matrix, it is necessary to map the threads.
The mapping problem is known to be NP-Hard (BOKHARI, 1981), consequently, finding
the optimal solution becomes infeasible when the number of threads grows. Therefore,
heuristic algorithms must be employed to determine the mapping in reasonable time, with
results as similar as possible to the perfect mapping. Methods such as the Dual Recursive
Bipartitioning produces good results and are available on the software Scotch (SCOTCH,
2010). However, for this work, a different method was used to obtain the mapping, based
on the maximum weight perfect matching problem for complete weighted graphs, as pre-
sented in (CRUZ et al., 2011, 2012).

This problem consists of, given a complete weighted graph G = (V,E), it must be
found a subset M of E in which every vertex of V is met by exactly one edge of M , and
the sum of the weights of the edges of M is maximized. According to (OSIAKWAN;
AKL, 1990), this problem can be solved by the Edmonds matching algorithm in poly-
nomial time, and a parallel algorithm can solve the problem with a time complexity of
O(N

3

P
+ N2 lgN), where N is the vertex number and P is the number of processors.

To model thread mapping as a matching problem, the vertices represent the threads
and the edges the amount of communication. A complete graph is obtained directly from
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Figure 4.2: The Matching Problem.

the communication matrix, as exemplified in Figure 4.1. The graph is processed by the
matching algorithm, which outputs the pairs of threads so that the amount of communi-
cation is maximized. This is an extremely relevant information, since, in general, there
are few cores sharing each cache. Figure 4.2 shows the result that the matching algorithm
would produce for the given graph.

On many architectures, there are only 2 cores sharing each L2 cache, therefore, map
threads on them with the matching algorithm is straightforward. However, there are archi-
tectures in which more than 2 cores share each cache, or there are more levels of memory
hierarchy to be exploited. In these cases, the matching algorithm by itself is insufficient.
To overcome this issue, another communication matrix, containing the communication
between pairs of pairs of threads, is given as input and the algorithm is re-executed. We
generated this matrix using the following heuristic function:

H(x,y),(z,k) = M(x,z) + M(x,k) + M(y,z) + M(y,k)

where x, y, z and k are threads, (x, y) and (z, k) are the matchings found at the previ-
ous step, and M(i,j) is the amount of communication between threads i and j. The result
obtained with the heuristic function is represented in Figure 4.3. Although this does not
guarantee that the result will contain the pairs of pairs with the most amount of com-
munication, since the communication matrix does not provide information about groups
with more than 2 threads, it is a reasonable approximation and keeps the time and space
complexity polynomial.

However, the number of cores sharing a cache may not be 2x, where x is an integer. In
this case, the matching algorithm is not able to group all the threads properly. Considering
an architecture with 6 cores and 2 caches, where each cache is shared by 3 cores, for some
given graph, the matching algorithm would produce the result shown in Figure 4.4(a). As
can be seen, the resulting graph contains 3 disconnected graphs, but the target architecture
has only 2 caches. To overcome this issue, we sort the pairs found according to the edge
weight, and group only the ones that maximizes the total amount of communication, as in
Figure 4.4(b). Then, a bipartite graph is generated, as exposed in Figure 4.4(c), and the
matching algorithm can be applied again to group the threads for the target architecture, as
show in Figure 4.4(d). The graph must be bipartite in order to prevent matchings between
threads already grouped, and between threads that were not grouped yet. This procedure
can be modified to map any number of threads.
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Figure 4.3: Heuristic used to generate new communication graphs from previous match-
ing.

4.3 Platform

We have collected the communication pattern inside Simics, while the performance
evaluation was done executing the applications on the real machine.

4.3.1 Simulated environment

Figure 4.5 shows the memory hierarchy of the simulated environment. Tables 4.1
and 4.2 summarize the parameters used in g-cache and Ruby, respectively. As already
mentioned, we used the g-cache in the snoop coherence and TLB based mechanisms,
while Ruby was employed on the directory based mechanisms.

Table 4.1: Configuration of the caches using the original Simics modules.

Parameter L1 Cache L2 Cache

Size 32KB 6MB
Number 8 Inst. + 8 Data 4 (shared by 2 cores)

Line Size 64 Bytes 64 Bytes
Set Associativity 4 Ways 8 Ways

Latency 2 Cycles 8 Cycles
Protocol Write-through Write-back, MESI

4.3.2 Real machine

The real machine used for the performance evaluation consisted of 2 quadcore Intel(R)
Xeon(R) CPU E5405 processors. Figure 4.6 shows the memory hierarchy obtained with
the Hwloc tool (BROQUEDIS et al., 2010). In this machine, there are two levels of the
memory hierarchy to be exploited by thread mapping: the L2 cache and the intrachip
interconnection. Cores that share the L2 cache communicate faster than cores that use
the intrachip interconnection, which communicate faster than cores that are on different
processors.
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Figure 4.4: Steps when the number of cores sharing a cache is 3.

For a better understanding of the performance results, besides the execution time, we
analyzed some events on the real machine. The target architecture allows some events to
be monitored by a set of hardware performance counters (INTEL, 2009). The hardware
performance counters were monitored using the PAPI tool (MOORE; RALPH, 2011).
The evaluated events were:

Invalidation messages – This event is represented by the counter BUS_TRANS_INVAL,
which counts all invalidate transactions on the bus. These invalidate transactions
are generated when a store operation misses the L2 cache or hits a shared line in the
L2 cache.

L2 cache misses – This event is represented by the counter L2_RQSTS.I_STATE, which
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Figure 4.5: The memory hierarchy simulated in Simics.
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Table 4.2: Configuration of the caches using Ruby.

Parameter L1 Cache L2 Cache

Size 256KB 8MB
Number 8 Inst. + 8 Data 4 (shared by 2 cores)

Line Size 64 Bytes 64 Bytes
Set Associativity 4 Ways 8 Ways

Latency 2 Cycles 8 Cycles
Protocol MSI/MOSI MSI/MOSI

System(8001MB)

Socket#0

L2(6144KB)

L1(32KB)

Core#0
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Figure 4.6: The real machine used in the performance evaluations.

counts all requests that miss the L2 cache. This includes L1 data cache reads, writes,
L1 data prefetch requests, and instruction fetches.

Snoop transactions – This event is counted by the counter BUS_HIT_DRV, which
counts the number of bus cycles in which the processor drives the HIT# pin to
signal a hit snoop response. According to INTEL (2008), HIT# (Snoop Hit) convey
transaction snoop operation results, and any front side bus agent may assert HIT#
to indicate that it requires a snoop stall.

4.4 Validating the proposals using a microbenchmark

To validate the mechanisms, a producer-consumer application was written using the
OpenMP API, with one thread being the producer, and the other the consumer. Algorithm
4.1 contains the pseudocode of the producer-consumer developed. There is a vector that
is shared by the producer and consumer threads. Initially, the producer produces the data



53

of the vector. Afterwards, the consumer consumes the vector. This process is repeated
several times.

Algorithm:ProducerConsumer1

begin Producer2
for s from 1 to NumberOfSteps do3

for i from 1 to VectorSize do4
produce Vector[i];5

end6
Warn consumer;7
Wait for consumer signal;8

end9
end10
begin Consumer11

for s from 1 to NumberOfSteps do12
Wait for producer signal;13
for i from 1 to VectorSize do14

consume Vector[i];15
end16
Warn producer;17

end18
end19

Algorithm 4.1: Producer Consumer.

4.4.1 Communication pattern

The communication pattern is shown at Figure 4.7. Darker cells mean more commu-
nication. We only show the results of 1 cache coherence based mechanism and 1 TLB
based mechanism because the other results were very similar. The main difference be-
tween the results from the cache coherence and TLB based mechanism is that threads 0
and 1 communicate more than the other threads in the cache coherence based mechanism
compared to the TLB based mechanism. This difference occurs because there are much
more updates in the communication matrix of the cache coherence based mechanism than
the TLB based mechanism, since invalidation messages are much more frequent than TLB
misses.

4.4.2 Performance results

We have performed experiments with the producer-consumer benchmarks by running
the application with the 4 possible configurations for the target architecture. The config-
urations are: the original operating system scheduler, threads mapped to cores that share

Table 4.3: Configuration of the caches of the real machine.

Parameter L1 Cache L2 Cache

Size 32KB 6MB
Number 8 Inst. + 8 Data 4 (shared by 2 cores)

Line Size 64 Bytes 64 Bytes
Set Associativity 8 Ways 24 Ways
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Figure 4.7: Communication patterns of the producer-consumer benchmark.

the L2 cache, threads mapped to cores that share the same processor, and threads mapped
to cores located on different processors. We configured the size of the vector to fit into the
L2 cache to minimize the noisy from evictions due to line replacement. Figure 4.8 shows
the results.

As expected, the results are better when the threads are mapped to cores which are
nearer in the memory hierarchy. When the threads are mapped to cores that share the
L2 cache, the number of invalidation messages and snoop transactions are null, which is
correct because the cache lines corresponding to the producer consumer are considered
private by the cache coherence protocol. Also, as there is no invalidation message to evict
the cache line from other caches, the vector is almost always found on the cache, dropping
the caches misses to almost zero.

4.5 Workload

In this section, we present the NAS Parallel Benchmark (NPB) workload, used to
evaluate our proposals. The NPB has its applications derived from computational fluid
dynamics (CFD) codes and it is composed by applications and kernels (JIN; FRUMKIN;
YAN, 1999). NPB applications and kernels perform representative computation and data
communication of CFD codes. These characteristics allow us to evaluate the impact of
thread mapping on multi-threaded programs over multi-core machines. NPB has several
standard inputs, and the one used for the evaluation is the W input size, because it is the
most recommended for simulation. We focus on describing the communication patterns
of the applications, since they are the most relevant information for our work and are used
to evaluate the accuracy of our proposals.

4.5.1 Tools used to obtain the communication pattern baseline

Regarding the producer-consumer benchmark, it is easy to verify if the communica-
tion patterns obtained with our proposed mechanism are correct, because the behavior
of the application is straightforward. However, in more complex applications, it may be
difficult to discover an accurate communication pattern by looking at the source code.
Hence, to detect the most accurate communication pattern possible to serve as baseline,
we can use an old fashioned static mechanism. In the technical report CRUZ; NAVAUX
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Figure 4.8: Performance results with the producer-consumer benchmark.

(2010), some tools to monitor the memory access are evaluated. Table 4.4 summarizes
the results.

We chose Simics with the C Module (CRUZ et al., 2011, 2012) to detect the com-
munication pattern baseline because it presents a good trade-off between performance
and accuracy. Simics was instrumented (MAGNUSSON et al., 2002) to register memory
access information such as the moment when the access happened, the identifier of the
thread that generated the access, the memory address, the operation type (read, write or in-
struction fetch) and its size. However, it is necessary to filter the accesses to be registered,
so that only the memory accesses performed by the evaluated application are stored in the
trace file. Although Simics API implements tools to determine which task is running in
each processor, it becomes unstable when the number of processors simulated is high. To
overcome this issue, the Linux kernel inside Simics was modified to warn the simulator
about which task was being scheduled to run. This way, the memory trace module is able
to detect if a memory access was performed by the application being analyzed.

The memory traces alone are not enough to guide the thread mapping. The traces
must be analyzed to discover the communication pattern. For this purpose, a tool was
developed in the C++ language to read the trace files and generate the statistics. The tool
evaluates how much memory each thread uses, both the total and shared memory, how
many access were performed, among other statistics.
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Table 4.4: Comparative between tools that can be used to detect the memory accesses.

Tool Type Performance Simulates
SMP?

Accuracy

Qemu Emulator High No Low

Bochs Emulator Medium Yes Medium
Simics (Python) Simulator Low Yes High

Simics (C Module) Simulator Medium Yes High
Valgrind DBA High No Low

Pin DBA High Yes Medium
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Figure 4.9: Amount of memory used by the applications of NPB.

4.5.2 Communication pattern baseline

For the communication pattern baseline, two metrics were separately considered to
evaluate the communication: the amount of memory shared by the threads and the number
of accesses performed to a block of memory that is shared. The amount of memory shared
by the threads metric is more suitable to applications in which the number of accesses to
the shared memory is insignificant compared to the number of accesses to the private
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Figure 4.12: Number of accesses to the
shared memory (5 million cycles time win-
dow)
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Figure 4.13: Number of accesses to the
shared memory (50 million cycles time
window)
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memory. On the other hand, the amount of accesses to the shared memory metric are
better to describe the behavior of applications that present a huge amount of accesses to
the shared memory.

Figure 4.11 shows the amount of memory used by the benchmarks. Figure 4.9 and
4.10 show the amount of memory shared between the threads. Each cell (i, j) represents
the amount of memory shared between threads i and j. When i equals j, it represents the
amount of memory accessed by thread i. Darker cells represent more memory. We omit
the diagonal in some Figures to enhance the differences between the cells corresponding
to pairs of different threads, thereby the darkest cell does not correspond to the total
amount of memory. Figures 4.12 and 4.13 show the amount of accesses performed to
a block of shared memory considering a 5 million and 50 million cycles time window,
respectively. Each cell (i, j) represents the number of access to a block of memory shared
between threads i and j. Darker cells represent more access to the shared memory.

BT is an application that presents most of its communication between neighboring
threads. This is very common when the application is based on domain decomposition,
where most of the communication happens between neighbors and most of the shared data
is located on the borders of each sub-domain. The domain decomposition pattern is also
present in MG, SP and UA. These 4 applications do not show any significant difference
comparing the matrix of the amount of memory to the matrices of number of accesses to
the shared memory, for both 5 and 50 million cycles time window.

The application LU also presents the domain decomposition pattern, which is more
evident with a 5 million cycles time window. However, when we increase the time window
to 50 million cycles, it also presents huge amount of communication between the most
distant threads. Regarding the amount of shared memory, the communication between
the most distant threads is also clearly identified. IS also presents significant differences
between the matrices. The amount of memory matrix does not define a clear pattern.
However, the number of accesses to the shared memory matrices show traces of a domain
decomposition pattern, especially when we consider a 5 million cycles time window.

The applications CG, EP and FT present homogeneous communication patterns. Ho-
mogeneous means that their communication patterns are expected to present approxi-
mately the same amount of communication among the threads. One key difference from
EP to CG and FT is that the threads of EP almost do not share any memory. This differ-
ence can be seen in Figure 4.9, in which CG and FT share about 5% and 2% of memory,
respectively, while EP shares almost only 0%. On the other hand, heterogeneous pattern
means that the amount of communication among the threads varies, as in BT, LU, MG,
SP and UA. It is expected that applications with heterogeneous communication patterns to
benefit more from thread mapping than applications with homogeneous communication
patterns.
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5 RESULTS

In this chapter, we present the results we obtained by using our proposed mecha-
nisms on the benchmarks. First, we show the communication patterns we discovered and
compare them to the baseline, described in Section 4.5.2. Afterwards, we detail the per-
formance improvements we achieved by mapping the threads using the communication
patterns. For the snoop based mechanisms, we show only the results from the snoop for
shared caches. Regarding the directory based mechanisms, we show only the distributed
directory based mechanism. We omit the other results because the results from the snoop
private caches were very similar to the snoop shared ones, and the results from the cen-
tralized directory were similar to the ones from the distributed directory. From now on,
we will call the approach for the snoop cache coherence SNOOP, the directory cache
coherence DIRECTORY, the software-managed TLB TLB-SM, and the the approach for
hardware-managed TLB TLB-HM.

5.1 Communication Patterns

Figures 5.1 and 5.2 show the communication patterns of the NPB applications for
the TLB-SM and TLB-HM, respectively. The size of the TLBs was 64 entries for both
approaches, with a 4-way set associative. This is the default size of the TLB in UltraSparc,
as well as the size of the Level 1 TLB in the Nehalem architecture. For the TLB-SM, only
in 1% of the TLB misses a search for matches was performed. We also simulated the
TLB-SM monitoring all the TLB misses, but we chose to present the patterns with only
1% of the samples due to the overhead issues mentioned before. TLB-HM was evaluated
with 10 million cycles between each search for matches.

Figure 5.3 shows the communication patterns for the SNOOP. The DIRECTORY is
very sensitive to the cache size, therefore, we evaluate the DIRECTORY with two differ-
ent cache sizes to investigate this behavior. Figures 5.4 and 5.5 show the communication
patterns for DIRECTORY with 32kb and 256kb cache sizes, respectively. We used a 32kb
cache size for DIRECTORY to evaluate the mechanism in architectures in which only the
L1 cache is private, such as in Harpertown (INTEL, 2008). We used a 256kb cache size
for DIRECTORY to evaluate the mechanism in architectures in which the L2 cache is
private, such as in Nehalem (INTEL, 2011). We also simulated the DIRECTORY with
512kb cache size, which is present in architectures such as the AMD 6200 Processors
(AMD, 2011), but we chose not to show the communication patterns because only the SP
application behaved significantly different compared to a 256kb cache size.

The communication patterns were used by our thread mapping algorithm, explained
in Section 4.2, to map the threads on cores according to the amount of communication.
Table 5.1 shows the thread mapping, in which each cell contains the id of the thread.
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Figure 5.1: Communication patterns of the
applications from NPB discovered with the
software-managed TLB mechanism.
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Figure 5.2: Communication patterns of the
applications from NPB discovered with the
hardware-managed TLB mechanism.

BT is an application that presents a domain decomposition communication pattern,
where most of the shared data is located on the borders of each sub-domain and hence
the communication is more evident between neighboring threads. For BT, the TLB-SM,
TLB-HM, SNOOP and DIRECTORY with 256kb mechanisms were able to detect the
communication pattern. TLB-HM detected more communication between thread 7 and all
other threads than the other mechanisms. SNOOP detected less communication between
threads 6 and 7. Furthermore, the communication between neighbors is more expressive
in SNOOP. As a result, the mapping algorithm found an optimal mapping just for TLB-
SM, DIRECTORY with 256kb cache size and SNOOP, while, for TLB-HM, a slightly
worse mapping was found. The DIRECTORY with 32kb cache size was not able to
detect the communication pattern, which degrades the quality of the mapping.

SNOOP and DIRECTORY with both cache sizes, successfully detected the commu-
nication pattern of MG, resulting in optimal mappings. TLB-SM managed to detect that
thread pairs 4-5 and 6-7 present more communication among them compared to thread
pairs 0-1 and 2-3. Nevertheless, our mapping algorithm was able to map the threads cor-
rectly, because, as similar the patterns of threads 0 to 3 are, there are still differences. It is
important to mention that, when we simulated TLB-SM taking into account all the TLB
misses, the generated pattern clearly identified the communication pattern of MG. TLB-
SM, SNOOP and DIRECTORY with both cache sizes successfully detected the commu-
nication pattern of IS, however, the mapping algorithm found the optimal mapping only
for DIRECTORY with 256kb cache size. It is important to note that the communication
pattern baseline of IS only clearly behaved as domain decomposition when considering a
5 million cycles time window (Figure 4.12(e)).

In IS and MG, TLB-HM detected a large amount of communication between two
of the threads and all the other ones. The reason for this result is the runtime behavior
of the applications, which can present a challenge to TLB-HM. For instance, consider
the case that the sampling is made when the threads 0 and 1 are accessing their shared
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Figure 5.3: Communication patterns of the applications from NPB discovered with the
snoop coherence mechanism.
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Figure 5.4: Communication patterns of the
applications from NPB discovered with the
directory coherence mechanism (32kb L1
cache).
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Figure 5.5: Communication patterns of the
applications from NPB discovered with the
directory coherence mechanism (256kb L1
cache).

data, but at the same time the other threads are working on their private data. As this
situation describes a temporary behavior, it may not characterize the global behavior of the
application. If this happens several times, TLB-HM would detect a lot of communication
between threads 0 and 1, but none for the other threads. This does not imply that the
other threads do not communicate among themselves; it means that the sampling was
performed at an inconvenient time.
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Table 5.1: Mappings obtained by applying the thread mapping algorithm.

App. Mechanism
Processor Processor

L2 Cache L2 Cache L2 Cache L2 Cache

BT

TLB-SM 2 3 0 1 4 5 6 7
TLB-HM 6 7 0 1 2 3 4 5

DIRECTORY-32kb 1 7 3 5 0 6 2 4
DIRECTORY-256kb 2 3 0 1 4 5 6 7

SNOOP 2 3 0 1 4 5 6 7

CG

TLB-SM 5 6 0 7 3 4 1 2
TLB-HM 5 6 2 7 1 4 0 3

DIRECTORY-32kb 0 2 1 5 6 7 3 4
DIRECTORY-256kb 0 1 5 7 3 4 2 6

SNOOP 2 3 4 5 6 7 0 1

EP

TLB-SM 0 3 2 5 4 7 1 6
TLB-HM 1 7 2 5 3 6 0 4

DIRECTORY-32kb 1 2 3 5 0 4 6 7
DIRECTORY-256kb 1 2 0 3 5 7 4 6

SNOOP 0 1 2 3 4 5 6 7

FT

TLB-SM 4 6 2 5 0 1 3 7
TLB-HM 1 4 2 5 6 7 0 3

DIRECTORY-32kb 0 1 2 3 6 7 4 5
DIRECTORY-256kb 0 2 3 6 4 7 1 5

SNOOP 2 3 4 5 0 1 6 7

IS

TLB-SM 1 2 3 4 5 6 0 7
TLB-HM 3 4 5 6 1 2 0 7

DIRECTORY-32kb 6 7 0 1 2 3 4 5
DIRECTORY-256kb 0 1 2 3 6 7 4 5

SNOOP 6 7 0 1 2 3 4 5

LU

TLB-SM 3 4 1 2 5 6 0 7
TLB-HM 6 7 4 5 2 3 0 1

DIRECTORY-32kb 6 7 4 5 2 3 0 1
DIRECTORY-256kb 1 2 0 3 6 7 4 5

SNOOP 2 3 4 5 6 7 0 1

MG

TLB-SM 0 1 2 3 6 7 4 5
TLB-HM 1 5 6 7 2 4 0 3

DIRECTORY-32kb 0 1 2 3 6 7 4 5
DIRECTORY-256kb 0 1 2 3 6 7 4 5

SNOOP 0 1 2 3 6 7 4 5

SP

TLB-SM 0 1 2 3 4 5 6 7
TLB-HM 6 7 0 1 4 5 2 3

DIRECTORY-32kb 6 7 0 1 2 4 3 5
DIRECTORY-256kb 6 7 2 5 0 1 3 4

SNOOP 0 1 2 3 4 5 6 7

UA

TLB-SM 0 1 2 3 4 5 6 7
TLB-HM 0 1 2 3 4 5 6 7

DIRECTORY-32kb 0 1 2 3 4 5 6 7
DIRECTORY-256kb 0 1 2 3 4 5 6 7

SNOOP 0 1 2 3 4 5 6 7

In LU, all the mechanisms detected the domain decomposition pattern. TLB-SM de-
tected that there is also a considerable amount of communication between distant threads.
Only the DIRECTORY approach, with a 256kb cache size, clearly detected the commu-
nication between the most distant threads. In the communication pattern baseline we can
note that the communication between the most distant threads was detected only when
the time window was increased to 50 million cycles. Therefore, this difference between
the behavior of the DIRECTORY with 32kb and 256kb cache sizes is consistent with the
communication pattern baseline, since an increase of the size of the cache represent the
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increase of the time window. The generated mappings differ a little among themselves,
except the ones from TLB-HM and DIRECTORY with a 32kb cache size.

For SP, only the TLB-SM and SNOOP mechanisms were able to accurately identify
the communication pattern and obtain optimal mappings. The DIRECTORY correctly
detected the communication between thread pairs 0-1 and 6-7, but failed for the other
threads. TLB-HM also failed, however, the results obtained by TLB-HM with SP are
much better than the results with IS and MG, as none of the threads presented a large
amount of communication to all others. Due to these reasons, for DIRECTORY and TLB-
HM, a sub-optimal mapping was found. It is important to mention that, considering a
512kb cache size, the DIRECTORY mechanism accurately identified the communication
pattern of SP.

In UA, all mechanisms except TLB-HM clearly exhibit the domain decomposition
pattern. As expected, the DIRECTORY present a more accurate pattern with higher cache
sizes. As in SP, the results obtained by TLB-HM with UA are much better than the results
with IS and MG, as none of the threads presented a large amount of communication to all
others. Furthermore, even though the domain decomposition pattern obtained with TLB-
HM is not as evident as with the other mechanisms, our mapping algorithm was able to
find the optimal mapping. Therefore, all mechanisms resulted in optimal mappings.

SNOOP detected a strong domain decomposition pattern in both CG and FT. CG, with
the TLB-SM mechanism, show traces of a domain decomposition pattern. Nevertheless,
with TLB-SM, it is notable that the proportion of the memory shared by the neighbors in
CG is less expressive compared to BT, IS, LU, SP and UA. With the other mechanisms,
a homogeneous pattern was detected for CG. In FT, all mechanisms except SNOOP pre-
sented homogeneous patterns. EP is the application that almost does not communicate;
hence all the mechanisms presented a homogeneous pattern for EP.

Regarding the TLB mechanisms, in general, the communication pattern detected by
TLB-SM is more accurate. The reason is that the pattern discovery mechanism with
TLB-SM is able to access more samples than TLB-HM, as all the TLB misses are han-
dled by the operating system. TLB-HM, as explained before, suffers from unpredictable
runtime behavior and bad samples. This is reinforced when analyzing CG, EP and FT,
as they presented more homogeneous pattern with TLB-SM than TLB-HM. Regarding
the cache coherence mechanisms, we can note that SNOOP detected stronger domain
decomposition patterns than DIRECTORY. This difference is caused because the A-Bits
are manipulated differently in SNOOP and DIRECTORY (sharers list). Additionally, as
expected, the DIRECTORY is more accurate with higher cache sizes.

5.2 Evaluating the Performance using Thread Mapping

The results presented in this section are average values obtained by executing each
benchmark 100 times. For the DIRECTORY mechanism, we used the communication
patterns obtained considering a 256kb cache size. Figures 5.6, 5.7, 5.9 and 5.8 presents
the execution time, number of invalidations, snoop transactions and L2 cache misses,
respectively. We focused only on the L2 cache misses because the L1 caches are private
and do not benefit from mapping. The results of these graphics are normalized to the
time of the original scheduler of the operating system, denoted by OS. Table 5.2 contains
the absolute values for number of invalidations, snoop transactions and cache misses, all
divided by the execution time. Table 5.3 shows the standard deviations.

The number of invalidations, snoop transactions and cache misses in BT were greatly
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Figure 5.6: Execution time of the applications.
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Figure 5.7: Invalidations due to the cache coherence protocol.
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reduced. The execution time also was reduced, but by a small factor. Except for cache
misses, the results with TLB-SM, DIRECTORY and SNOOP are a little better than TLB-
HM, as the mapping found for them were better. TLB-HM obtained slightly less cache
misses, but the difference is small and presented high standard deviation, which makes
the difference on cache misses negligible. Furthermore, the number of invalidations and
snoop transactions is much more sensitive to thread mapping than cache misses. The
reason is that a better mapping directly influences the number of invalidations and snoop
transactions, while cache misses are also influenced by other factors, such as cache lines
prefetches, competition for cache lines by the cores that share the cache, among others.
Likewise, the number of invalidations and snoop transactions is also more sensitive to
thread mapping than the execution time.

SP presented the best results for execution time and number of cache misses, reduc-
ing them in 15.3% and 31.9%, respectively. TLB-SM and SNOOP performed better than
TLB-HM and DIRECTORY in execution time, number of invalidations and snoop trans-
actions, as only TLB-SM and SNOOP detected the correct communication pattern. For
cache misses, the results were similar for all mechanisms, since we obtained high stan-
dard deviations. UA achieved the best reduction of the number of invalidations (41%).
The improvements in UA were virtually the same for all measures, since the optimal
thread mapping was found for all the mechanisms.

In LU, the performance of all mechanisms was almost the same. However, as the
mappings differ a little among themselves, there is a significant difference in the reduction
of the amount of invalidations and snoop transactions. Although the number of cache
misses was also reduced, the standard deviation is high. It is important to notice that, for
the execution time, we also reduced the standard deviation. This is important because it
indicates that the operating system scheduler maps the threads incorrectly during many
executions.

MG is the benchmark that presented the highest reduction of the number of snoop
transactions (65.4%). TLB-SM, DIRECTORY and SNOOP performed better than TLB-
HM, since the detected communication pattern was more accurate. By looking at the
absolute values of invalidations and snoop transactions for BT, SP, UA, LU and MG,
we see that the proportion between invalidations and snoop transactions in MG is much
lower compared to the others. Additionally, among the benchmarks mentioned in the last
sentence, MG was the one that presented the lowest reduction of the number of invali-
dations. This is the reason that MG, despite having the best relative reduction of snoop
transactions, presented lower reductions of cache misses.

As already stated, thread mapping improves performance by mapping threads that
communicate to cores which are close in the memory hierarchy. If the communication
pattern among the threads is homogeneous, no performance improvement can be achieved
by thread mapping, as in the case of CG, EP and FT. CG and FT also have short execution
times, which makes them more vulnerable to unpredictable behavior during execution,
resulting in high standard deviations for the execution time. In CG, the domain decompo-
sition pattern detected by TLB-SM and SNOOP was able to slightly reduce the number
of invalidations compared to the others. For the other measures of CG, the standard devi-
ations make the small improvements negligible.

EP, besides having a homogeneous communication pattern, does not share data be-
tween the threads, which is the reason that the absolute values for number of invalidations
and snoop transaction are low compared to the other applications. These low values imply
that small unpredictable changes in the runtime behavior alter drastically the normalized
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Table 5.2: Execution time and number of invalidations, snoop transactions and L2 cache
misses per second.

Parameter Map. BT CG EP FT IS LU MG SP UA

Execution
Time

(seconds)

OS 0.74 0.13 0.48 0.1 0.06 2.39 0.23 2.53 2.19
TLB-SM 0.68 0.13 0.47 0.1 0.06 2.27 0.22 2.14 2.06
TLB-HM 0.69 0.13 0.47 0.1 0.06 2.27 0.22 2.25 2.06
DIREC. 0.68 0.13 0.47 0.1 0.06 2.29 0.21 2.31 2.07
SNOOP 0.68 0.13 0.47 0.1 0.06 2.25 0.21 2.16 2.07

Invalidations
/ second

OS 9845216 3831746 121230 16154353 9754232 14457991 35970058 17749230 7361187
TLB-SM 7019908 3624698 103558 16571898 9681120 12395757 35792412 13535357 4609197
TLB-HM 7499308 3747079 105117 16544292 9637287 13745080 35439765 13956912 4600673
DIREC. 7034617 3781271 128025 16510459 9676625 13757114 35392434 14719406 4591157
SNOOP 7035756 3578149 129663 16454333 9758512 12290195 35149772 13374610 4590046

Snoop
Transac-

tions
/ second

OS 7196937 10374266 27870 5172957 11461581 12706165 4093348 10668132 5008487
TLB-SM 3612138 10395271 21560 5288628 11889910 8739948 1519446 5874685 3055559
TLB-HM 4263300 10492865 22666 5298599 11830896 9881274 2482490 6757793 3064284
DIREC. 3634426 10532198 42647 5392707 11918312 10357332 1579034 7695265 3041511
SNOOP 3632095 10277555 40774 5310674 11927062 9187466 1570062 5989416 3042851

L2 Misses
/ second

OS 248962 1144400 3365 460250 1007312 656734 939658 339850 741887
TLB-SM 212403 1169066 3159 473133 914644 575242 924153 276327 610845
TLB-HM 207314 1176111 3240 472221 908205 669864 953271 263512 610188
DIREC. 212748 1170316 3329 471963 907353 684764 930349 289115 606718
SNOOP 213956 1171742 3358 471289 894176 668051 924200 270403 606226

Table 5.3: Standard deviations for the performance experiments.

Parameter Map. BT CG EP FT IS LU MG SP UA

Execution
Time

OS 3.44% 11.35% 5.13% 20.55% 21.26% 6.98% 9.22% 1.35% 1.76%
TLB-SM 4.15% 2.68% 1.98% 6.83% 4.62% 0.2% 2.82% 0.11% 0.25%
TLB-HM 0.79% 4.62% 1.87% 6.13% 11.11% 1.17% 3.11% 0.11% 1.21%
DIREC. 0.41% 1.46% 0.79% 2.08% 2.02% 0.21% 1.03% 0.99% 1.35%
SNOOP 0.45% 1.41% 0.9% 2.02% 2.86% 1.07% 5.74% 5.08% 1.21%

Invalidations

OS 4.68% 1.45% 30.68% 0.88% 1.52% 4.55% 1.64% 4.75% 1.92%
TLB-SM 3.41% 0.92% 22.79% 0.58% 0.68% 0.16% 2.22% 0.42% 0.97%
TLB-HM 5.69% 1.37% 18.89% 0.48% 0.86% 1.29% 1.95% 8.36% 1.3%
DIREC. 3.52% 1.64% 24.56% 1.38% 1.14% 0.46% 1.75% 3.32% 0.76%
SNOOP 3.52% 1.64% 23.14% 0.95% 1.51% 3.04% 2% 0.72% 0.75%

Snoop
Transac-

tions

OS 5.08% 1% 32.53% 1.02% 0.78% 8.45% 7.75% 8.35% 5.79%
TLB-SM 5.72% 0.47% 52.32% 0.73% 0.81% 1.21% 12.03% 1.29% 3.56%
TLB-HM 6.34% 1.13% 44.21% 1.4% 1.01% 2.6% 1.03% 4.6% 3.36%
DIREC. 5.28% 0.58% 64.81% 1.32% 0.95% 1.74% 11.1% 5.28% 4.09%
SNOOP 5.25% 1.45% 66.8% 1.69% 0.99% 0.89% 11.15% 2.36% 4.06%

L2 Misses

OS 25.74% 1.92% 41.1% 5.28% 2.75% 11.32% 4.6% 30.04% 8%
TLB-SM 23.89% 2.37% 38.4% 5.18% 3.3% 26.41% 4.96% 36.94% 15.03%
TLB-HM 22.82% 2.98% 32.14% 5.25% 3.3% 14.94% 7.47% 37.48% 15.12%
DIREC. 23.97% 2.52% 29.69% 5.08% 3.92% 13.07% 4.72% 43.77% 15.06%
SNOOP 23.83% 1.27% 29.15% 5.31% 3.56% 15.28% 4.73% 37.01% 15.04%

results, as depicted in Figures 5.7 and 5.9. Additionally, by looking at the standard de-
viations of EP, we see that they surpass the improvements and losses, showing that no
improvements can be achieved by thread mapping in EP, which is the expected result.

Regarding IS, the communication pattern is not homogeneous. However, the execu-
tion time of IS is very low and, as stated before, the results are influenced by unpredictable
behavior during execution, leading to a high standard deviation for the time measured.
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Table 5.4: Statistics for the software-managed TLB.
App. TLB Miss Rate TLB Misses for which

we run SM Total Overhead

BT 0.01% 0.655% 0.195%
CG 0.015% 0.942% 0.249%
EP 0.002% 0.998% 0.027%
FT 0.007% 0.961% 0.12%
IS 0.333% 0.993% 4.077%
LU 0.026% 0.875% 0.519%
MG 0.008% 0.82% 0.117%
SP 0.032% 0.909% 0.751%
UA 0.005% 0.829% 0.08%

5.3 Overhead of the Mechanisms

In this section, we calculate the overhead of our proposed mechanisms.

5.3.1 Cache coherence based mechanisms

There is no time overhead for the cache coherence based mechanisms. The space
overhead imposed by the snoop based mechanism for shared caches consists of two A-
Bits for every L2 cache line and one sub-matrix per L2 cache. The A-Bits for each
cache require 24576 bytes. Each sub-matrix has 2 columns and 8 rows with 32 bit cells,
requiring 64 bytes. As there are 4 L2 caches, the total space required is 98560 bytes.
There is a total of 24mb of cache memory, hence the size overhead is less than 0.4%. The
L1 cache requires no modification because it is configured with a write-through policy.

Regarding the snoop private and the distributed directory based mechanisms, the space
overhead is one sub-matrix for each L2 cache. Each sub-matrix has 2 columns and 8 rows
with 32 bit cells, requiring 64 bytes. As there are 4 L2 caches, the total space required is
only 256 bytes. For the centralized directory, the space overhead is the communication
matrix attached to the directory. It contains 8 rows and 8 columns with 32 bits cells,
requiring a total of only 256 bytes. Therefore, snoop private and both directory based
mechanisms present a negligible space overhead.

5.3.2 TLB based mechanisms

To decrease the overhead of our proposed mechanism, we used set associate software-
managed and hardware-managed TLBs. As stated in Section 3.2, this reduces the time
complexity of the algorithms that detect the communication. The associativity used in our
experiments was 4. We do not present the space overhead, because it is not relevant for
the TLB based mechanisms, as explained in Section 3.3.

Table 5.4 presents statistics for TLB-SM. It shows the TLB miss rate, the percentage
of TLB misses for which we run TLB-SM, and the total overhead of the mechanism.
Since we use sampling, we only executed the search for matches for 1% of the TLB
misses. Additionally, less than 1% of total TLB misses are considered for sampling, as
we are only interested in TLB misses due to data accesses. The reason that we monitor
only the data accesses is explained in Section 2.

We measured the amount of cycles spent on the communication discovery routine
of TLB-SM, and the value obtained was only 231 cycles. Due to this low value, all
applications except IS presented a very low overhead of less than 1% for TLB-SM. Since
the overhead is directly proportional to the amount of TLB Misses and IS has more than
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10 times the number of TLB misses compared to the other applications, it is expected
that IS would present the highest overhead. The second highest overhead is from SP, with
only 0.75% of overhead. The lowest overhead was in EP (0.027%).

The hardware-managed TLB causes the same overhead for all applications.The reason
is that sampling is done with a fixed frequency, in contrast to TLB-SM, which depends on
the number of TLB misses the application causes. The communication discovery routine
for TLB-HM requires 84297 cycles to execute. This large difference between the TLB-
SM and TLB-HM cycles can be explained by the time complexity that we calculated in
Section 3.2. As we performed the sampling only every 10 million cycles, the overhead of
TLB-HM is less than 0.85% for our experiments.
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6 CONCLUSION AND FUTURE WORK

Parallel architectures have become the standard solution to keep the performance of
large scale architectures increasing. One of the main concerns in these architectures is the
communication between the threads, since it implies in data movement among the cores,
leading to performance loss and energy consumption. Additionally, it is expected that the
upcoming increase on the number of cores will aggravate the problem. Therefore, it is
important to research and develop mechanisms to optimize the communication. One of
the mechanisms is called thread mapping, which allows a better usage of the resources by
mapping the threads to specific cores according to some policy. By using the communi-
cation between the threads as policy, the usage of the memory hierarchy is optimized.

The analysis of the state-of-art of thread mapping techniques show that most of the
researches focus on mapping the process of applications based on message passing. These
techniques are straightforward comparing to mapping the threads of applications based on
shared memory, because the communication with message passing is explicit, while with
shared memory it is implicit. Furthermore, current thread mapping mechanisms can be
categorized in two groups: the mechanisms that impose high overhead, but generate an
accurate communication pattern, and the mechanisms that are light-weight, but rely on
indirect and unreliable information about the communication. We note that are few, or
none, solutions that provide an accurate communication pattern with low overhead.

In this master thesis, we presented two new methods to find the communication pat-
terns between threads in shared-memory applications. Our first method is implemented
directly into the cache memory subsystem. It makes use of the information about the
shared cache lines provided by cache coherence protocols. We developed mechanisms
for snoop and directory coherence protocols. Our second method uses the TLB to de-
tect which memory pages each core is accessing. Communication is detected when the
same memory page is found in more than one TLB. We developed mechanisms for both
software-managed and hardware-managed TLBs, covering most of the current architec-
tures. For the software-managed TLB, our method can be used without any modifications
to the hardware. For the hardware-managed TLB, the only modification required is the
addition of an instruction to allow the operating system to access the TLB.

In contrast to traditional approaches, our proposals do not require time consuming
tasks such as simulation or modifications to the source code of the applications. Our
mechanisms presented no time overhead for the cache coherence based mechanisms and a
very low time overhead for both TLB types. They rely on hardware features and allow the
communication patterns to be discovered dynamically by the operating system during the
execution of the application. Furthermore, they are independent from the implementation
of the parallel applications. For these reasons, our mechanisms are suitable in real-world
scenarios.
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We evaluated our proposal using the Simics simulator and applications from the NPB.
We were able to identify the communication patterns for all NPB applications. The di-
rectory cache coherence based mechanisms are more dependent on the cache size than
the snoop ones, since the directory based mechanisms detect the communication using
the last private cache level. Nevertheless, they proved to be very effective with a cache
size of 256kb, common for current L2 private caches. The software-managed TLB based
mechanism presented more accurate results than the hardware-managed one, since the
hardware-managed TLB may suffer from bad sampling.

We used the discovered communication patterns to map the threads and run perfor-
mance experiments. We measured the execution time, number of cache line invalidations,
snoop transactions and cache misses and compared them to the operating system sched-
uler. Performance was improved by up to 15.3%, and the number of cache misses was
reduced by up to 31.9%. Cache line invalidations and snoop transactions were reduced by
up to 41% and 65.4%, respectively. This shows that thread mapping allows a much better
use of the interconnections of current architectures.

In all cases, performance was improved compared to the operating system scheduler.
Additionally, the variability of the results was reduced in most experiments, making the
application performance more predictable. Improvements were dependent on the way the
applications used the shared memory. As expected, applications that communicate more
and present heterogeneous communication patterns showed the greatest improvements.
Applications that have homogeneous communication patterns did not present improve-
ments, which is the expected result, as there is no difference in the communication among
the threads to be exploited.

For the future, we intend to develop a thread migration strategy, so that the mapping
can be changed during execution. We also want to improve the approach for the hardware-
managed TLB.
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7 APPENDIX - SUMMARY IN PORTUGUESE

In this chapter, we present a summary of this master thesis in the portuguese language,
as required by the PPGC Graduate Program in Computing.

Neste capítulo, é apresentado um resumo desta dissertação de mestrado na língua
portuguesa, como requerido pelo Programa de Pós-Graduação em Computação.

7.1 Introdução

A melhoria da capacidade de processamento ocorria tradicionalmente através do au-
mento da frequência de processadores. Entretanto, o consumo de potência e problemas de
atraso do fio, bem como a dificuldade no aumento de estágios do pipeline, têm guiado as
indústrias de microprocessadores de propósito geral a apostarem na integração de múlti-
plos núcleos de processamento dentro do chip (multi-core), sustentando assim a lei de
Moore (OLUKOTUN et al., 1996). Esses processadores focam na extração de paralelismo
no nível de fluxo de execução de múltiplas tarefas, gerando assim um ambiente propício
para o aumento de desempenho de aplicações paralelas.

Dentro da arquitetura desses processadores multi-core, o subsistema de memória se
apresenta como provedor de dados para os diversos núcleos de processamento. Dessa
maneira, a hierarquia de memória cache desses processadores multi-core tem sofrido con-
stantes mudanças para melhor se adaptar às necessidades computacionais, escondendo as-
sim a lacuna de desempenho entre memória e processador (HENNESSY; PATTERSON,
2007). Tal lacuna de desempenho é conhecida por memory wall. Nas arquiteturas de
larga escala, o memory wall é agravado pelo alto número de núcleos de processamento,
fazendo-se necessário soluções inovadoras para que o sistema escale e apresente um custo
energético viável (COTEUS et al., 2011; TORRELLAS, 2009).

Um dos principais problemas encontrados nas arquiteturas de larga escala é a co-
municação entre as tarefas (ZHAI et al., 2011). A comunicação implica na movimen-
tação de dados entre os núcleos de processamento, acarretando perda de desempenho e
gasto e energia (BORKAR; CHIEN, 2011). Nessas arquiteturas de larga escala, há di-
versas camadas de memória cache. A troca de informações entre diferentes threads de
um mesmo programa paralelo pode variar dependendo do núcleo de processamento que
determinada thread está executando. Esta diferença introduzida pela memória cache varia
quando grupo de núcleos de processamento compartilham uma mesma memória cache.
Se forem consideradas ainda as futuras topologias introduzidas pelas NoC (Network-on-
Chip)(DE MICHELI; BENINI, 2006), os custos de troca de informação entre threads
poderá sofrer maiores variações (FREITAS et al., 2007). Nesse dado cenário, o mapea-
mento de threads possibilita um aumento de desempenho ao se mapear as threads levando
em consideração a memória compartilhada entres as threads.
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O objetivo deste trabalho é propor técnicas dinâmicas de mapeamento de threads a
fim de melhorar o desempenho de aplicações paralelas. O mapeamento deverá levar em
consideração a topologia da memória cache e os custos de troca de dados entre proces-
sadores e núcleos de processamento. As propostas foram implementadas no simulador
Simics (MAGNUSSON et al., 2002) e, para avaliação de desempenho, foi utilizado um
ambiente real multiprocessado. Como carga de trabalho, o conjunto de aplicações ci-
entificas paralelas NAS-NPB (JIN; FRUMKIN; YAN, 1999) foi utilizado para comparar
o desempenho do mapeamento automático do sistema operacional com o mapeamento
otimizado fornecido por nossas propostas.

O restante deste capítulo está organizado da seguinte forma. A Seção 7.2 fala sobre o
mapeamento de threads. A Seção 7.3 apresenta as propostas de mecanismos de mapea-
mento dinâmico de threads. A Seção 7.4 mostra a metodologia empregada. A Seção 7.5
apresenta os resultados. Por fim, a Seção 7.6 contém a conclusão e trabalhos futuros.

7.2 Mapeamento de Threads

O mapeamento de threads é uma técnica que possibilita o aumento de desempenho
em aplicações paralelas através de uma alocação mais eficiente dos recursos, neste caso, a
hierarquia de memória. É necessário coletar informações sobre o padrão de comunicação
das aplicações, que tem uma dificuldade variável dependendo do paradigma de progra-
mação paralela adotado. Quando utilizado paradigmas de programação orientados a pas-
sagem de mensagens (RODRIGUES et al., 2009), a descoberta do padrão de comunicação
é trivial, já que a comunicação é explícita. Entretanto, com o uso de programação par-
alela para memória compartilhada em ambientes multiprocessados, a tarefa de descoberta
do padrão de comunicação se torna mais difícil, pois a comunicação é implícita e ocorre
através do acesso a regiões de memória compartilhadas por diferentes threads.

Escalonando as threads que compartilham memória em núcleos que compartilham
uma mesma memória cache propicia um melhor desempenho de que quando nenhuma
memória cache é compartilhada (ALVES; FREITAS; NAVAUX, 2009). Além disso, o
tempo para dois núcleos dentro de um mesmo chip se comunicarem é menor do que
quando as threads encontram-se em processadores separados. Essas diferença no de-
sempenho se devem ao fato de que além de um melhor aproveitamento de espaço nas
memórias cache, um menor número de invalidações deverá ocorrer a cada modificação
dos dados. Dessa forma, apenas os níveis superiores, mais próximos do processador,
devem receber os valores atualizados, reduzindo assim a sobrecarga imposta por proto-
colos de coerência. Dessa forma, as threads que mais compartilham memória devem ser
escalonadas em núcleos mais próximos em relação à hierarquia de memória adotada.

Em relação à arquiteturas com características de acesso não-uniforme à memória
(NUMA), além de mapeamento de thread, também é importante mapear os dados
(RIBEIRO et al., 2009). O mapeamento de dados é necessário em máquinas NUMA
porque a latência de acesso aos bancos de memória são diferentes entre os núcleos. Os
núcleos são divididos em grupos, em que cada grupo é um nó NUMA. Cada nó NUMA
tem seus bancos de memória próprios. Quando um acesso é realizado a um banco de
memória localizado no mesmo nó NUMA, este tipo de acesso é denominado acesso lo-
cal. Quando um acesso é realizado a um banco de memória de outro nó NUMA, o acesso
é denominado remoto.

Um ponto importante a ser levado em consideração é a usabilidade dos modelos pro-
postos. Arquiteturas como as de processamento gráfico apresentam alto desempenho,
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porém sua programação é complexa (LIU; ZHANG; SHEN, 2009), desencorajando seu
uso por parte de muitos desenvolvedores de software. Algumas técnicas exigem etapas
custosas de profiling, desencorajando o uso das mesmas (WANG; O’BOYLE, 2009). Out-
ras necessitam que os programadores das aplicações insiram anotações no código fonte ou
, aumentando a complexidade da programação (IBRAHIM, 2010). Tais técnicas baseadas
em anotações no código-fonte podem diminuir sua portabilidade, já que frequentemente
as anotações são dependentes da arquitetura alvo. Além disso, depender de anotações
no código-fonte diminui a confiabilidade do sistema, pois programadores inexperientes
podem inserir anotações equivocadas.

O mapeamento de threads pode ser estático ou dinâmico. No mapeamento estático,
análises prévias podem ser feitas com a aplicação. Etapas custosas, como simulação,
são necessárias para monitorar os acessos à memória e descobrir o padrão de compar-
tilhamento (CRUZ; ALVES; NAVAUX, 2010). No mapeamento dinâmico, o padrão de
compartilhamento deve ser descoberto durante a execução da aplicação. Ele deve apre-
sentar baixa sobrecarga e não pode interferir no comportamento da aplicação. Técnicas
atuais de mapeamento dinâmico de threads (TAM; AZIMI; STUMM, 2007a,b; AZIMI
et al., 2009; BROQUEDIS et al., 2010) não proveem informações precisas sobre o padrão
de comunicação.

7.3 Propostas de mecanismos para mapeamento dinâmico de threads

Nesta seção, são explicados os mecanismos propostos para o mapeamento dinâmico
de threads. As propostas podem classificados em duas categorias principais: mecanismos
baseados em coerência de cache e mecanismos baseados em TLB.

7.3.1 Mecanismos baseados em coerência de cache

Protocolos de coerência de cache são responsáveis por manter a integridade dos dados
em arquiteturas onde há mais de uma memória cache presente, como é usual em ambientes
multicore ou multiprocessados. Estes protocolos mantêm informações sobre se uma linha
é privada ou compartilhada entre duas ou mais caches. Isto pode ser explorado a fim de
estimar a quantidade de comunicação entre as threads, uma vez que o acesso a uma linha
compartilhada por duas ou mais caches representa uma comunicação. Pequenas modifi-
cações nos protocolos são necessárias para identificar os padrões de compartilhamento de
dados. Neste trabalho, são propostas duas modificações, uma para protocolos baseados
em espionagem e uma para protocolos baseados em diretório.

Ambos os mecanismos baseados em espionagem e diretório partem de um mesmo
princípio, que consiste de que, em protocolos MESI e seus derivados, uma mensagem de
invalidação é transmitida quando uma escrita é feita em uma linha de cache compartilhada
ou inválida. No entanto, nenhuma mensagem é transmitida quando uma leitura é realizada
em uma linha de cache compartilhada. Por isso, apenas as mensagens de invalidação são
monitoradas. A comunicação é detectada quando as linhas de cache que tem seu estado
como compartilhada são invalidadas. Foram desenvolvidos 2 mecanismos baseados em
espionagem e 2 mecanismos baseados em diretório.

7.3.1.1 Mecanismos baseados em espionagem

O primeiro mecanismo baseado em espionagem requer memórias cache privadas. É
adicionado uma matriz para cada cache para armazenar a comunicação em relação ao nú-
cleo que está ligado à cache. O número de linhas dessa matriz é igual ao número total
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de núcleos, e o número de colunas é um. A Figura 3.1 contém um esquemático do fun-
cionamento, e a Tabela 3.1 contém alguns exemplos. Quando uma escrita é feita em uma
linha de cache compartilhada, como no Exemplo 3, é enviada uma mensagem de invali-
dação junto com o ID do núcleo que enviou a mensagem no barramento de espionagem.
As memória caches que invalidam uma linha em resposta a esta mensagem incrementam
sua matriz de comunicação na célula cuja linha é o ID do núcleo que iniciou a transação,
contido no barramento. O mesmo acontece quando uma escrita é feita em uma linha de
cache inválida, como no Exemplo 2.

O protocolo explicado no parágrafo anterior se limita a caches privadas. O segundo
protocolo baseado em espionagem supera este problema, mas requer mais modificações
no hardware. A fim de determinar qual o núcleo acessou uma linha de cache quando
houver mais de um núcleo compartilhando uma mesma cache, é adicionado um bit de
acesso (A-Bit) por núcleo que compartilha a cache em cada linha de cache. Estes bits
de acesso mostram quais dos núcleos acessaram cada linha de cache. É adicionado uma
matriz para cada cache, com número de linhas da matriz igual ao número total de núcleos,
e número de colunas igual ao número de núcleos compartilhando a cache. A Figura 3.2
mostra um esquemático do segundo mecanismo baseado em espionagem, e a Tabela 3.2
contém alguns exemplos.

Quando qualquer solicitação chega na cache, a cache seta o bit A-Bit referente ao
núcleo que iniciou a operação na linha de cache solicitada, como no Exemplo 1. Se um
acerto de escrita ocorre, a matriz de comunicação da cache é atualizada nas células cuja
linha é o ID do núcleo que iniciou a transação, e colunas onde o A-Bits são definidos
(Exemplo 2). Isto é feito para detectar a comunicação entre os núcleos que compartilham
a cache. Além disso, se um acerto de escrita acontece em uma linha de cache compartil-
hada, uma mensagem de invalidação é transmitida junto com o ID do núcleo que iniciou a
transação. As caches que invalidam uma linha em resposta a esta mensagem incrementam
suas matrizes de comunicação nas células cuja linha é o ID do núcleo contido no barra-
mento, e colunas cujos A-Bits estão setados, que é detalhado no Exemplo 3. É importante
notar que, quando mais de 1 A-Bit está setado, mais de uma célula é atualizada, como no
Exemplo 4. A invalidação também é transmitido junto com o ID do núcleo quando uma
escrita é feita em uma linha de cache inválida.

7.3.1.2 Protocolos baseados em diretório

Em protocolos de coerência de cache baseados em diretório, o diretório já mantém
informações sobre quais caches estão compartilhando cada linha de cache, que pode ser
visto no Exemplo 1 da Tabela 3.3. A única modificação necessária para o hardware é a
adição de uma matriz para cada diretório. O número de linhas e colunas da matriz é igual
ao número total de núcleos.

É importante mencionar que o diretório mantém informações de quais caches estão
compartilhando cada linha, não quais núcleos estão compartilhando cada linha. Portanto,
tem-se que usar as informações sobre o último nível privado de cache para detectar se um
núcleo está acessando determinada linha de cache, uma vez que os níveis compartilhados
de cache podem ser acessado por mais de um núcleo. Por exemplo, considerando uma
arquitetura com 2 níveis de cache, e apenas acache L1 é privada, não é possível inferir
qual núcleo acessou cada linha da cache L2. No entanto, as linhas presentes no cache L1
foram certamente acessada pelo núcleo correspondente.

Em alguns protocolos baseados em diretório, o diretório mantém informações de quais
processadores estão compartilhando cada linha (ZHAO; SHRIRAMAN; DWARKADAS,
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2010). O diretório apenas encaminha os pedidos para os processadores que tem a linha de
cache correspondente. É responsabilidade de cada processador manter informações sobre
quais caches internas ao mesmo compartilham cada linha de cache. A única modificação
necessária para o hardware é a adição uma matriz para cada cache. O número de linhas
da matriz é igual ao número total de núcleos, e o número de colunas é igual ao número de
núcleos compartilhando a cache.

Em geral, os mecanismos baseados em diretório funcionam da mesma maneira que os
de espionagem. A diferença mais relevante é que os baseados em espionagem detectam
a comunicação nos broadcasts de mensagens de invalidação, já os baseados em diretório
detectam a comunicação quando o diretório é acessado para se descobrir quais caches
partilham a linha correspondente.

7.3.2 Mecanismos baseados em TLB

A memória virtual exige a tradução de endereços virtuais para endereços físicos em
cada acesso à memória. Para isso, o sistema operacional mantém tabelas na memória
principal que fazem essa tradução possível. Estas tabelas de tradução contêm o endereço
físico para cada página virtual, e são indexados pelos bits superiores do endereço virtual
para tradução rápida. No entanto, os acessos à memória realizados na tabela de tradução
impõe uma sobrecarga alta, e algumas arquiteturas ainda exigem vários acessos, no caso
da tabela de tradução ser composta por mais de um nível. Para superar esses problemas,
uma memória cache especial, chamada Transation Lookaside Buffer (TLB), é responsável
por armazenar as entradas da tabela de tradução mais acessadas recentemente.

Em arquiteturas multicore, cada núcleo tem sua própria TLB, que armazena as en-
tradas da tabela mais recentemente acessadas pelo núcleo. Se uma determinada entrada
da tabela está presente em mais de uma TLB, significa que os núcleos correspondentes
acessaram uma região de memória compartilhada, pelo menos na granularidade de nível
de página. Se todas as TLBs forem varridas e registradas cada vez que uma entrada é
partilhada por mais de uma TLB, temos a quantidade de páginas compartilhadas pelos
núcleos como resultado. Sistematicamente fazendo este procedimento, obtemos uma rep-
resentação do padrão de comunicação na granularidade de nível de página. Esse padrão
pode ser usado para mapear as threads das aplicações em arquiteturas multicore.

Arquiteturas atuais de processadores gerenciam a TLB de diferentes maneiras. Os
dois tipos mais importantes de gerência requerem métodos ligeiramente diferentes para
descobrir o padrão de comunicação.

7.3.2.1 TLBs gerenciadas via software

Em algumas arquiteturas RISC, como na SPARC (SPARC, 2000), o processador
desvia para o sistema operacional quando uma falta ocorre na TLB. O sistema opera-
cional acessa a tabela da página na memória principal e carrega a entrada correspondente
na TLB. Este tipo de TLB é chamado de TLB gerenciada via software. As principais
vantagens deste tipo de gestão é que ele simplifica o hardware e é muito flexível, já que o
sistema operacional pode escolher a forma de implementar a memória virtual.

Para implementar um mecanismo para detectar o padrão de comunicação usando a
TLB gerenciada via software, nenhuma modificação de hardware é necessária. Quando
uma falta na TLB gera um desvio para o sistema operacional, o kernel pode também
verificar todas as TLBs para procurar por entradas iguais, além de carregar a entrada da
memória principal. Acessar a TLB de outros núcleos pode representar um gargalo. Para
superar este problema, o conteúdo de todas as TLBs pode ser espelhado na memória
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principal. Isso não exigiria muito espaço de armazenamento, pois o tamanho da TLB é
geralmente pequeno para manter a latência de acesso de baixo. Para reduzir ainda mais o
impacto da iteração sobre as TLBs, o sistema operacional poderia tratar a TLB como uma
cache associativa por conjuntos, de modo que apenas algumas entradas de cada TLB têm
de ser comparados. Além disso, em vez de correr a busca em todas as faltas na TLB, a
busca pode ser executado em apenas uma fração deles. Isso diminui a precisão, mas reduz
a sobrecarga pela mesma fração utilizada para a amostragem.

7.3.2.2 TLBs gerenciadas via hardware

Arquiteturas como a x86 e x86-64 (INTEL, 2009) mantêm a TLB como um cache
para as entradas de tabela de página armazenados na memória principal. Para cada acesso
à memória, a TLB é pesquisada. Se a entrada correspondente está na TLB, o endereço é
traduzido e enviado para a hierarquia de memória. Se a entrada não está presente na TLB,
o hardware acessa a memória principal e carrega a entrada correspondente na TLB. Este
mecanismo é chamado TLB gerenciada via hardware. O sistema operacional só mantém
o conteúdo da tabela de página na memória principal. A única operação que é realizada
pelo sistema operacional neste tipo de TLB é invalidar as entradas quando a tabela da
página é modificada. A gerência via hardware tem um baixo impacto no desempenho,
pois não requer desvios e trocas de contexto em cada falta na TLB.

Para permitir encontrar o padrão de comunicação, arquiteturas com TLB gerenciada
via hardware requerem uma pequena alteração no hardware, já que o sistema operacional
não tem acesso ao conteúdo da TLB. A modificação consiste em adicionar uma instrução
que permite ao sistema operacional acessar o conteúdo da TLB. Desta forma, o kernel
pode varrer as TLBs para encontrar entradas correspondentes periodicamente. A precisão
e sobrecarga desse mecanismo depende do tempo entre as pesquisas.

7.4 Metodologia

As aplicações são executadas dentro do simulador para detectar os padrões de comu-
nicação. Foi utilizado o simulador Simics (MAGNUSSON et al., 2002) e o modelo de
memória GEMS/Ruby (MARTIN et al., 2005). Para avaliar o desempenho, usamos o
padrão de comunicação obtidos no simulador para mapear as threads em uma máquina
real. É importante notar que as threads ainda não são migradas durante a execução das
aplicações. A migração dinâmica requer um algoritmo para detectar quando o padrão
muda de comunicação (MA et al., 2009), bem como modificações no escalonador do
sistema operacional. Estes pontos estão fora do escopo deste trabalho, que é apresentar
mecanismos que dinamicamente detectar os padrões de comunicação. As máquina uti-
lizadas nos experimentos contém 2 processadores, cada um com 4 núcleos, totalizando
8 núcleos de execução, sendo que a memória cache L2 é compartilhada por cada par de
núcleos.

O algoritmo utilizado para mapear as threads nos núcleos da máquina real se ba-
seia na teoria dos grafos. O mapeamento é modelado como um problema de emparel-
hamento máximo de custo mínimo em grafos. Tal problema consiste de: dado um grafo
G = (V,E), deseja-se achar um subconjunto M de E no qual todos os vértices v ∈ V
incidem em no máximo um elemento de M e que as somas dos pesos das arestas seja
mínimo. O grafo pode ser montado diretamente a partir da matriz de compartilhamento,
basta considerar cada thread um vértice e a quantidade de memória compartilhada o peso
da aresta, gerando um grafo completo. Em (OSIAKWAN; AKL, 1990), é descrito um al-
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goritmo paralelo para se encontrar emparelhamentos perfeitos de custo máximo em grafos
valorados completos que possui uma complexidade temporal de O(N

3

P
+ N2 lgN), onde

N é o número de vértices (threads) e P é o número de processadores.
Para um melhor entendimento do desempenho, além do tempo de execução, foram

medido alguns eventos na máquina real através de contadores de hardware (INTEL,
2009). Foram contados o número de mensagens de invalidação, faltas na cache L2 e
o número de transações de espionagem. Para acessar os contadores de hardware, a bib-
lioteca PAPI (MOORE; RALPH, 2011) foi empregada.

As aplicações utilizadas nos experimentos fazem parte da carga de trabalho Numerical
Aerodynamic Simulation Parallel Benchmark (NAS-NPB) versão 3.3.1, paralelizada com
OpenMP. Essa carga de trabalho é formada por diversas aplicações relacionadas a méto-
dos numéricos de simulações aerodinâmicas para computação científica. Esses aplicativos
foram projetados para comparar o desempenho de computadores paralelos, sendo forma-
dos por kernels e problemas de simulação de dinâmica de fluídos computacionais (JIN;
FRUMKIN; YAN, 1999). O NAS-NPB conta com diversos tamanhos de entrada para os
problemas, sendo que para este trabalho foi utilizado o tamanho W, que é o mais indicado
para simulações.

7.5 Resultados

Nesta seção, apresentamos os resultados obtidos pelos mecanismos propostos sobre
utilizando benchmarks. Primeiro, são mostrados os padrões de comunicação descobertos,
que são comparados à linha de base, descrita na Seção 4.5.2. Depois, são mostrados testes
de desempenho mapeando as threads utilizando os padrões de comunicação. A partir de
agora, a abordagem baseada em espionagem será denominada por SNOOP, a baseada em
diretório DIRECTORY, a baseada em TLB gerenciada via software SM, e a abordagem
baseada em TLB gerenciada via hardware HM.

7.5.1 Padrões de comunicação

As Figuras 5.1 e 5.2 mostram os padrões de comunicação das aplicações do NPB para
o SM e HM, respectivamente. Para o SM, em apenas 1% das faltas na TLB foi realizado
o procedimento de detectar a comunicação de forma a se minimizar a sobrecarga. O HM
foi avaliado utilizando-se um tempo de 10 milhões de ciclos entre cada chamada ao pro-
cedimento de detectar a comunicação. A Figura 5.3 mostra o padrão de comunicação da
SNOOP. O DIRECTORY foi avaliado com dois tamanhos de cache diferentes para inves-
tigar a hipótese de que o mesmo é muito sensível ao tamanho da cache. As Figuras 5.4
e 5.5 mostram o padrão de comunicação do DIRECTORY com caches de 32kb e 256kb,
respectivamente.

As aplicações BT, IS, LU, MG, SP e UA apresentaram, na maioria dos mecanismos,
um padrão heterogêneo de comunicação. Heterogêneo significa que há diferenças entre a
quantidade de comunicação entre as threads. O padrão predominante detectado foi o de
decomposição de domínio, muito comum em aplicações paralelas, no qual as threads di-
videm os dados de entrada entre si, se comunicando nas bordas de cada subdomínio. Isto
fica evidente porque a maior parte das comunicações são feitas entre as threads vizinhas.
A aplicação LU se diferencia por também apresentar comunicação entre as threads mais
distantes, apesar de nem todos os mecanismos terem detectado isto. Nas aplicações CG,
EP e FT, a comunicação é mais homogênea, isto é, as threads apresentam aproximada-
mente a mesma quantidade de comunicação entre si. Aplicações com padrão heterogêneo
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de comunicação possuem um maior potencial de ganho de desempenho através do ma-
peamento que as aplicações homogêneas.

Sobre os mecanismos baseado em TLB, em geral, os padrões de comunicação detecta-
dos pelo SM é mais preciso. A razão é que o mecanismo de descoberta de padrões é capaz
de acessar mais amostras do que o HM, já que todas as faltas TLB são tratadas pelo sis-
tema operacional. O HM sofre com o comportamento imprevisível de tempo de execução
e amostras ruim. Por exemplo, considerando o caso de que a amostragem é feita quando as
threads 0 e 1 estão acessando seus dados compartilhados, mas ao mesmo tempo, as outras
threads estão trabalhando em seus dados privados. Esta situação descreve um comporta-
mento temporário, mas não pode caracterizar o comportamento global da aplicação. Se
isso acontecer várias vezes, o HM poderia detectar muita comunicação entre as threads
0 e 1, mas nenhuma comunicação entre as outras threads. Isto não implica que as outras
threads não se comunicam entre si, isso significa que a amostragem foi realizada em uma
hora inconveniente.

Sobre os mecanismos de coerência cache, pode-se notar que o SNOOP detectou
padrões de decomposição de domínio mais expressivos que o DIRECTORY. Esta difer-
ença é causada porque os Bits de acesso são manipulados de forma diferente entre o
SNOOP e DIRECTORY. Além disso, como esperado, o diretório é mais preciso com
tamanhos maiores cache.

7.5.2 Testes de desempenho

Os resultados apresentados nesta seção são valores médios obtidos por 100 execuções.
Para o mecanismo de DIRECTORY, foram utilizados os padrões de comunicação obtidos
considerando um tamanho de cache de 256kb. As Figuras 5.6, 5.7, 5.9 e 5.8 apresentam o
tempo de execução, número de invalidações, transações de espionagem e faltas na cache
L2, respectivamente. Os resultados destes gráficos são normalizados para o tempo do
escalonador original do sistema operacional, denotado por OS. A Tabela 5.2 contém os
valores absolutos para o número de invalidações, transações de espionagem e faltas na
cache, todos divididos pelo tempo de execução. A Tabela 5.3 mostra os desvios padrões.

Em todos os casos, o desempenho foi melhor em comparação com o programador do
sistema operacional. O tempo de execução foi melhorado em até 15,3%, e o número de
faltas na cache cache foi reduzido em até 31,9%. As invalidações em linhas de cache e
transações de espionagem foram reduzidas em até 41% e 65,4%, respectivamente. Isso
mostra que o mapeamento de threads permite um uso muito melhor das interconexões de
arquiteturas atuais. Além disso, a variabilidade dos resultados foi reduzida na maioria dos
experimentos, tornando o desempenho dos aplicativo mais previsível.

As melhorias foram dependentes da forma como as aplicações utilizam a memória
compartilhada. Como esperado, os aplicativos que mais se comunicam e apresentam
padrões de comunicação heterogênea mostraram as maiores melhorias, sendo elas a BT,
LU, MG, SP e UA. Aplicações que têm padrões de comunicação homogêneos quase não
apresentaram melhorias, que é o resultado esperado, já que não há diferença na comuni-
cação entre as threads a serem exploradas, como no CG, EP e FT. Em relação ao IS, a
matriz de comunicação não é homogênea. No entanto, o tempo de execução da IS é muito
baixo e, apresentando desvios padrões elevados.

Os resultados também mostram que o número de invalidações e transações de es-
pionagem é muito mais sensível ao mapeamento de threads que o número de faltas na
cache, já que este último apresentou desvios padrões bem mais acentuados. A razão é que
um melhor mapeamento influencia diretamente o número de invalidações e transações
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de espionagem, enquanto que o número de faltas na cache são influenciados por outros
fatores, tais como pré-buscas de linhas de cache, a concorrência pelas linhas de cache
pelos núcleos que compartilham a cache, entre outros. Da mesma forma, o número de
invalidações e transações de espionagem também é mais sensível para o mapeamento de
threads o tempo de execução.

7.6 Conclusão

Nesta dissertação de mestrado, apresentamos dois novos métodos para encontrar os
padrões de comunicação entre as threads de aplicações paralelas baseadas em memória
compartilhada. O primeiro método é implementado diretamente no subsistema de
memória cache. Ele faz uso de informações de compartilhamento das linhas de cache
fornecidas pelo sistema de coerência de cache. Foram desenvolvidos mecanismos para
protocolos de coerência baseados em espionagem e diretório. O segundo método usa a
TLB para detectar quais páginas de memória cada núcleo está acessando. A comuni-
cação é detectada quando uma mesma página de memória é encontrada em mais de uma
TLB. Foram desenvolvidos mecanismos para TLBs gerenciadas tanto via software quanto
hardware. Dessa forma, foram cobertas a maior parte das arquiteturas atuais.

Em contraste com as abordagens tradicionais, as propostas realizadas neste trabalho
não exigem tarefas demoradas, como a simulação ou modificações ao código fonte das
aplicações. Os mecanismos baseados em coerência de cache apresentaram nenhuma so-
brecarga de tempo. Os mecanismos baseados em TLB apresentaram uma sobrecarga de
tempo muito baixa para ambos os tipos TLB. Eles dependem recursos de hardware e per-
mitem que os padrões de comunicação a serem descobertos dinamicamente pelo sistema
operacional durante a execução da aplicação. Além disso, eles são independentes da im-
plementação das aplicações paralelas. Por estas razões, os mecanismos propostos são
adequados em cenários do mundo real.

As propostas foram utilizando o simulador Simics e aplicações do NPB, e foram ca-
pazes de identificar os padrões de comunicação para todas as aplicações NPB. Os mecan-
ismos baseados em coerência de cache de diretório são mais dependentes do tamanho do
cache do que os baseados em espionagem, uma vez que os mecanismos de diretório de-
tectam a comunicação usando o último nível privado de cache. No entanto, eles provaram
ser muito eficazes com um tamanho de cache de 256kb, comum para caches L2 atuais
privadas. O mecanismo baseado em TLB gerenciada via software apresentou resultados
mais precisos do que o baseado em TLB gerenciada via hardware, pois o segundo pode
sofrer de amostragens ruins.

Os padrões de comunicação descobertos foram usados para mapear as threads e re-
alizar experimentos de desempenho. Foram medidos o tempo de execução, número de
invalidações das linhas de cache, transações de espionagem e faltas na cache, sendo que
os resultados foram comparados ao escalonador original do sistema operacional. O tempo
de execução foi melhorado em até 15,3%, e o número de faltas na cache foi reduzido em
até 31,9%. As invalidações em linhas de cache e transações de espionagem foram re-
duzidas em até 41% e 65,4%, respectivamente. Isso mostra que o mapeamento threads
permite um uso muito melhor das interconexões de arquiteturas atuais.

Em todos os casos, o desempenho foi melhorado em comparação com o programador
do sistema operacional. Além disso, a variabilidade dos resultados foi reduzida na maioria
dos experimentos, tornando o desempenho do aplicativo mais previsível. Melhorias foram
dependentes da forma como as aplicações utilizam a memória compartilhada. Como es-
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perado, os aplicativos que mais se comunicam e apresentam padrões de comunicação
heterogênea mostraram as maiores melhorias. Aplicações que têm padrões de comuni-
cação homogêneos quase não apresentaram melhorias, que é o resultado esperado, já que
não há diferença na comunicação entre as threads a serem exploradas.

Para o futuro, pretende-se desenvolver uma estratégia de migração de threads, para
que o mapeamento possa ser alterado em diferentes fases da execução. Objetiva-se tam-
bém melhorar a precisão do mecanismo baseado em TLB de hardware.


