
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

RODRIGO MACHADO

Higher-Order Graph Rewriting Systems

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Prof. D. Leila Ribeiro
Advisor

Prof. D. Reiko Heckel
Coadvisor

Porto Alegre, Janeiro de 2012

CIP – CATALOGING-IN-PUBLICATION

Machado, Rodrigo
Higher-Order Graph Rewriting Systems / Rodrigo Machado.

– Porto Alegre: PPGC da UFRGS,
.
180 f.: il.
Thesis (Ph.D.) – Universidade Federal do Rio Grande do

Sul. Programa de Pós-Graduação em Computação, Porto Alegre,
BR–RS,

. Advisor: Leila Ribeiro; Coadvisor: Reiko Heckel.
1. Graph Transformation Systems. 2. Double-Pushout Ap-

proach. 3. Higher-Order Functions. 4. Aspect-Oriented Mod-
elling. 5. Formal Methods. I. Ribeiro, Leila. II. Heckel, Reiko.
III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Dr. Carlos Alexandre Netto
Vice-Reitor: Prof. Dr. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Dr. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Dr. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Dr. Álvaro Freitas Moreira
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Prof. Leila Ribeiro for accepting me as her
student and guiding me through this research effort. Her motivation and example during
the period of this course have been essential for me, specially in the (many) moments
my own doubts were troubling me the most. Thanks to her technical knowledge, ethics,
guidance and (many times) patience, I was able to overcome all the issues that appeared
and complete this work.

I also thank very much Prof. Reiko for accepting to be my co-advisor, and for having
received me for seven months at the University of Leicester. It was a pleasure to be able to
work with him and his students. I must thank Tamim Khan for his friendship and support
(specially in the weekends of work and study), along with Fawad, Niaz, Daniela, and all
other colleagues and friends that I was able to meet during my time at Leicester. I also
thank Prof. Uwe Wolter very much for its helpfulness towards early versions of what has
become my thesis. I was really lucky for being able to meet so many competent and nice
researchers.

I must not forget to thank the professors of the Informatics Institute here at UFRGS,
which I had the pleasure to learn from, as a student, and also to collaborate with, as a
teaching assistant. In special, I would like to thank Profs. Alvaro Moreira, Luis Lamb,
Paulo Blauth, Lucio Duarte, Rafael Bordini, Daltro Nunes and Tiaraju Diverio. I must also
acknowledge the several friends I made here, which helped me so many times during this
course. Starting with Luciana Foss and Simone Costa, for helping me while I was starting
in the area of graph grammars. Also Fernando Rubbo, for the time we we took into grasp-
ing the semantics of AspectJ. For the support and also nice conversations having coffee,
I would like to thank Márcia Cera, Rodrigo Kassick, Marnes Hoff, Clarissa Marquezan,
Karina Roggia, Márcio Dorn, Alysson Machado, Tales Heimfart, Fabiane Dillerburg, Ra-
mon Medrado, Germano Caumo, Cláudio Fuzitaki, among others friends I unfortunately
cannot mention due to the lack of space.

It is essential to acknowledge the governmental agencies that provided me financial
support during those years of study and research. I must thank CAPES, for funding my
initial year during the course and also my scholarship period at Leicester, and CNPq, for
supporting me during the remaining of the course. In particular, I also thank the secretary
of PPGC for being so helpful in finding solutions for problems of bureaucratic nature.

Finally, I need to thank my parents for supporting me all those years, and my friends
and family for understanding my absence so many times. Last but not least, a special
acknowledgement goes to my girlfriend Márcia Bohrer for all her partnership and care, in
particular when I was at Leicester and also during the last year of this project. I extend
this acknowledgement to her parents, which have been equally supportive during all this
time. Thank you all.

CONTENTS

LIST OF SYMBOLS . 7

LIST OF FIGURES . 8

ABSTRACT . 10

RESUMO . 11

1 INTRODUCTION . 12
1.1 Problem statement . 12
1.2 Graph transformation systems . 14
1.3 Higher-order systems . 15
1.4 Example: evolving place-transition net . 16
1.4.1 System execution as graph grammar . 17
1.4.2 Model transformation as graph grammar 18
1.4.3 Inter-level interaction . 19
1.5 Thesis aims . 20
1.6 Methodology and text organization . 21

2 GRAPH TRANSFORMATION . 24
2.1 Basic definitions . 24
2.2 The double-pushout approach . 26
2.3 Conflicts, dependencies and parallelism . 32
2.4 Semantic models for graph grammars . 36
2.5 Rules with negative application conditions 37
2.6 Typed attributed graph grammars . 38
2.7 Tools and analysis techniques . 39
2.8 Critical pair analysis . 41
2.9 Adhesive HLR categories and systems . 43
2.10 Summary . 45

3 HIGHER-ORDER IN LAMBDA-CALCULUS . 46
3.1 Untyped lambda calculus . 46
3.2 Simply typed lambda calculus . 48
3.3 Comparison of beta-reduction and graph transformation 50
3.4 Summary . 53

4 SECOND-ORDER GRAPH REWRITING . 54
4.1 DPO diagrams in the category of graph spans 54
4.2 DPO diagrams in the category of rules . 60
4.3 Rule rewriting correcting rule invalidation 66
4.4 Rule rewriting avoiding rule invalidation 69
4.4.1 Rule invalidation in DPO span rewriting . 69
4.4.2 Span rewriting with negative application conditions 73
4.4.3 Rule preservation by means of span rewriting with NACs 75
4.5 Second-order rewriting . 79
4.6 Conflicts and dependencies in second-order rewriting 82
4.7 Summary . 83

5 SECOND-ORDER GRAPH GRAMMARS . 85
5.1 Some issues with sets of rules . 85
5.2 Coproducts as rule collections . 88
5.3 Graph grammars with coproduct rule collection 92
5.4 Second-order graph grammars . 92
5.4.1 Simple second-order graph grammars . 93
5.4.2 Retyping-aware simple second-order graph grammars 94
5.4.3 Retyping-aware complete second-order graph grammars 100
5.4.4 Create-delete-modify second-order graph grammar 102
5.4.5 Summary of models . 106
5.5 Execution strategies for second-order graph grammars 108
5.6 Model evolution represented by spans . 111
5.6.1 Evolutionary spans for models without retyping 111
5.6.2 Evolutionary spans for models with retyping 114
5.7 Summary . 117

6 INTER-LEVEL INTERACTION . 119
6.1 Inter-level conflicts and dependencies . 119
6.2 Critical pair analysis in second-order graph grammars 123
6.3 Evolution of critical pairs due to model transformation 127
6.4 Summary . 129

7 ASPECT-ORIENTED GRAPH GRAMMARS . 131
7.1 Aspect-oriented programming . 131
7.2 Comparison of aspect weaving and graph transformation 136
7.3 Aspect-oriented graph grammars . 136
7.4 Analysis of aspect-oriented graph grammars 145
7.5 Summary . 148

8 RELATED WORK . 149
8.1 Modification of graph transformation rules 149
8.2 Petri-nets with dynamic structure . 153
8.3 Triple graph grammars . 154
8.4 Aspects and graph rewriting . 154

9 CONCLUSIONS . 156
9.1 Contributions . 157
9.2 Future work . 158

REFERENCES . 160

APPENDIX A – CATEGORY THEORY . 168
A.1 Basic definitions . 168
A.2 Adjunctions . 172

APPENDIX B – RESUMO ESTENDIDO . 175
B.1 Introdução . 175
B.2 Sistemas de transformação de grafos . 175
B.3 Alta ordem em cálculo lambda . 176
B.4 Reescrita de grafos de segunda ordem . 176
B.5 Gramáticas de grafos de segunda ordem 177
B.6 Interação entre as camadas de primeira e segunda ordem 177
B.7 Gramáticas de grafos orientadas a aspectos 178
B.8 Trabalhos relacionados . 178
B.9 Conclusões . 178

LIST OF SYMBOLS

A,B,X,Y, . . . objects in categories (sets, graphs, …)
f ∶ A→ B morphism from A to B, usually function or graph morphism
f = {. . . , x↦ y, . . .} function definition (by elements)
f(a) = expression function definition (by expression)
dom(f) domain/source of the function/morphism f
cod(f) codomain/target of the function/morphism f
img(f) image (range) of function/morphism f
f(x) result of function application on element x
f(X) result of function application on all elements of set or graph X

f(X) = {y ∣ x ∈ X ∧ f(x) = y}
f−1(y) reverse image on y: f−1(y) = {x ∣ x ∈ dom(f) ∧ f(x) = y}
[x]≡ equivalence class of x: [x]≡ = {y ∣ x ≡ y}
p = L l←Ð K rÐ→ R graph rule
α = a f←Ð b

gÐ→ c graph 2-rules
m,n matches (both for rules and 2-rules)
(N,p) graph rule with NACs
(N, α) graph 2-rule with NACs
m ⊧ ν match m satisfies NAC ν
m ⊧ N m match satisfies all NACs in N
G

p,m
Ô⇒ H DPO transformation of graph G into graph H using rule p

and match m
p

α,m
Ô⇒ q DPO span transformation of span p into span q using 2-rule α

and span match m (until Section 4.5). After Section 4.5, it represents
second-order graph rewriting (see Notation 82)

p
α,m
Ô⇒2 q DPO transformation of graph rules avoiding rule invalidation

p
α,m
Ô⇒µ q DPO transformation of graph rules correcting rule invalidation

S(α) calculated minimal rule-preserving set of NACs
D =∐R coproduct of a collection R of objects
D

α,m
⇛ D′ coproduct rewriting

A(D) active injections of coproducts
G0, G1, . . . graph grammars (any kind)
G
(1,g,r,m)
ÔÔÔ⇒ G′ first-order derivation of a second-order graph grammar

G
(2,r,α,m)
ÔÔÔ⇒ G′ second-order derivation of a second-order graph grammar

LIST OF FIGURES

Figure 1.1: Place-transition net. 17
Figure 1.2: Full execution of place-transition net. 17
Figure 1.3: Place-transition net as graph grammar. 18
Figure 1.4: Model transformation as graph grammar. 18
Figure 1.5: Operational semantics (OS) versus model transformation (MT). . . . 19

Figure 2.1: Graph. 25
Figure 2.2: Graph morphism. 25
Figure 2.3: Typed graph. 26
Figure 2.4: Graph transformation rule. 27
Figure 2.5: Pushout in Set. 28
Figure 2.6: Direct derivation representing message passing. 29
Figure 2.7: Graph grammar for clients and servers 30
Figure 2.8: Example of derivation. 31
Figure 2.9: Parallel dependent derivations. 33
Figure 2.10: Sequentially dependent derivations. 34
Figure 2.11: Parallel independence and parallel rule execution in graph rewriting. . 35
Figure 2.12: Rule with negative application condition. 38
Figure 2.13: Typed attributed graph. 39
Figure 2.14: Typed attributed graph grammar. 40
Figure 2.15: Algorithm for calculating critical pairs (conflicts). 42
Figure 2.16: Results from critical pair analysis. 43

Figure 3.1: Analogy between beta-reduction and graph transformation. 52
Figure 3.2: Analogy between beta-reduction and rule transformation. 53

Figure 4.1: Representation of DPO span rewriting in T-Graph. 56
Figure 4.2: Double pushout rewriting of spans. 57
Figure 4.3: Invalid match in DPO span rewriting. 58
Figure 4.4: Double pushout diagram in T-Span . 59
Figure 4.5: Pushout of monic 2-span of rules in T-Span 60
Figure 4.6: Example of application of toRule. 62
Figure 4.7: Pushout in T-Span (1) and in T-Rules (2). 65
Figure 4.8: Two distinct POCs, (1) and (2), for the same diagram in T-Rules. . . 65
Figure 4.9: Rule rewriting with correction. 67
Figure 4.10: Rewriting with null effect due to merging in rule rewriting with cor-

rection. 67

Figure 4.11: Merging of elements affecting local confluence of rewritings with cor-
rection. 68

Figure 4.12: Algorithm for calculating S(α). 77
Figure 4.13: Minimal safety NACs calculated from 2-rule α. 78
Figure 4.14: Possible modifications over a rule L← K→ R by second-order rewriting. 80
Figure 4.15: 2-rule that matches rules preserving or creating a message. 80
Figure 4.16: Negative application condition for affecting only rules creating message. 81
Figure 4.17: Negative application condition to assure unique application of 2-rule. 81
Figure 4.18: Parallel dependent second-order rewritings of 2-rule α. 84

Figure 5.1: Example of coproduct rewriting. 89
Figure 5.2: Creation as coproduct rewriting. 90
Figure 5.3: Deletion as coproduct rewriting. 90
Figure 5.4: Simple second-order graph grammar. 95
Figure 5.5: Second-order rewriting modifying getDATA. 96
Figure 5.6: Place-transition example as RS-SOGG. 99
Figure 5.7: Complete second-order graph grammar adding logging to base grammar.103
Figure 5.8: Create-delete-modify retyping-aware complete second-order graph

grammar correcting issues of the base system. 107
Figure 5.9: Model-transformation derivation of the place-transition system with

log. 110
Figure 5.10: Evolutionary span between coproduct collections of rules D1 and D′1. 113
Figure 5.11: Example of evolutionary span. 117

Figure 6.1: Situations causing inter-level conflicts between first-order and second-
order rewritings. 122

Figure 6.2: Example of dangling extension. 125

Figure 7.1: Code for XML parsing in the Apache Tomcat web server. 132
Figure 7.2: Logging statements in the Apache Tomcat web server. 132
Figure 7.3: Log policy using aspects in the Apache Tomcat web server. 133
Figure 7.4: Aspect weaving. 134
Figure 7.5: Example of aspect weaving in AspectJ. 135
Figure 7.6: Analogy between aspect weaving and graph rewriting. 136
Figure 7.7: Base system. 137
Figure 7.8: Logging aspect. 139
Figure 7.9: Domain aspect. 140
Figure 7.10: Example of weaved graph grammar: base system with logging and

domains. 144
Figure 7.11: Inter-level critical pair of the example aspect-oriented graph grammar. 146
Figure 7.12: Example of evolution of rule match overlap between base and weaved

system. 147

Figure 8.1: Example of meta-rule and hyperrule in Y-notation. 150
Figure 8.2: Modular transformation and global transformation. 151
Figure 8.3: Local modifications: specialization, analogy and inheritance. 152
Figure 8.4: Representation of local modifications using 2-rules. 153

Figure 9.1: Transformation f represented in C and in D. 173

ABSTRACT

Software systems are not static entities: they usually undergo several changes along
their development andmaintenance cycles. Software evolution may be required for several
reasons, such as the inclusion of new functionalities, the correction of errors or even as
part of the system semantics, as it is the case of aspect-oriented systems. However, it is
usually not trivial to foresee how structural changes can affect the system behaviour, since
system components often interact in very complex ways, and even trivial modifications
may introduce new problems.

Graph transformation, also known as graph rewriting, has been used throughout the
years as an important paradigm for systemmodelling and analysis. Models based on graph
transformation, such as graph grammars, allow an intuitive but formal representation of
the system behaviour, allowing the usage of analysis techniques such as model checking
and static analysis of rule interaction. The theory behind graph transformation is quite
general, and has been studied since the 1970s. However, it still lacks a general notion of
higher-order rewriting that would allow a natural definition of model transformations for
graph grammars. The lack of general second-order characterization presents difficulties
for employing graph grammars as targets of model transformations, and studying how
model transformations affect their natural behaviour.

In this thesis we address the problem of modelling and analysing systems undergoing
programmedmodifications in the context of graph grammars. We use the generalization of
the double-pushout approach for graph rewriting as a principle for defining simultaneously
the system semantics and structural modifications. To achieve this, we introduce a notion
of second-order graph rewriting that acts on graph transformation rules. Based on second-
order rewriting we are able to define second-order graph grammars, models equipped with
a first-order layer, representing the original system execution, and a second-order layer,
representing a model transformation. Using second-order graph grammar we can encode
simultaneouslymodel transformations and system execution, allowing us to formally relate
them. Moreover, we propose new techniques to investigate the effect of rule modification
over their effect on graphs. As an application example, we characterize aspect-oriented
constructions for graph grammars, and discuss how to relate the aspect weaving layer with
the base system semantics.

Keywords: Graph Transformation Systems, Double-Pushout Approach, Higher-Order
Functions, Aspect-Oriented Modelling, Formal Methods.

RESUMO

Sistemas de Reescrita de Grafos de Alta Ordem

Programas sofrem diversas modificações ao longo das etapas de desenvolvimento, im-
plantação e manutenção. A evolução de um software pode ter várias causas: correção de
erros, inclusão de novas funcionalidades ou até mesmo, como é o caso de programas ori-
entados a aspecto, transformações estruturais podem fazer parte da semântica do sistema.
Apesar de modificações serem comuns, não é tarefa trivial prever como estas afetam o
comportamento dos programas, já que os componentes de software normalmente intera-
gem de forma complexa, o que faz com que mesmo pequenas alterações possam introduzir
comportamentos indesejados.

Transformação de grafos, também conhecida como reescrita de grafos, é um impor-
tante paradigma para modelagem e análise de sistemas. Modelos baseados em transfor-
mação de grafos, como gramáticas de grafos, permitem uma modelagem ao mesmo tempo
intuitiva e com semântica precisa, permitindo a aplicação de técnicas de análise como ve-
rificação de modelos e análise de par crítico no estudo do comportamento de sistemas.
A teoria por trás de transformação de grafos vem sendo desenvolvida a várias décadas, e
atualmente está descrita de uma forma bastante abstrata. Contudo, ainda não possui uma
definição natural de reescritas de alta ordem, que facilitaria a definição de evolução de
especificações compostas por regras de reescrita de grafo, tais como gramáticas de grafos.

Nesta tese são abordadas a modelagem e a análise de sistemas sob modificações pro-
gramadas no contexto de gramáticas de grafos. A generalização da abordagem de pushout
duplo para reescrita de grafos é utilizada como o princípio geral para descrever, simulta-
neamente, a semântica do sistema e modificações estruturais. Para tal, introduzimos uma
noção de reescrita de segunda ordem para modificar a estrutura de regras de transforma-
ção de grafos, e usando isso, definimos modelos equipados simultaneamente de regras de
primeira e segunda ordem, chamados gramáticas de grafos de segunda ordem. Através
destes modelos podemos representar simultaneamente transformações estruturais e exe-
cução do sistema, e relacionar formalmente ambos tipos de reescrita. Também propomos
novas técnicas para investigar o efeito da modificação de regras sobre a aplicação des-
tas. Finalmente, como um exemplo de aplicação da teoria, caracterizamos construções
de sistemas orientados a aspectos através de gramáticas de grafos de segunda ordem, e
discutimos como utilizar as novas técnicas para estudar o efeito da combinação aspectual
sobre o sistema inicial.

Palavras-chave: Sistemas de Transformação de Grafos, Abordagem de Pushout Duplo,
Funções de Alta Ordem, Modelagem Orientada a Aspectos, Métodos Formais.

12

1 INTRODUCTION

This chapter introduces the two basic ideas behind this thesis: higher-order construc-
tions and graph rewriting. Furthermore, it discusses and provides initial answers to the
following questions:

1. What is the general problem we aim to study?

2. Why use the graph rewriting framework?

3. Which kind of system can wemodel and analyse using graph grammars with higher-
order capabilities?

Finally, it provides an overview of the structure of the text. We start by contextualizing
the overall problem to be addressed.

1.1 Problem statement
Software systems are not static entities: they have a life cycle, undergoing several

changes during its useful life span. Software evolution may occur for several reasons,
such as the inclusion of new functionalities, the correction of errors or even to improve
the system organization. In some contexts, system modifications may be part of the sys-
tem behaviour rather than a component of the software development cycle. This is the
case of Aspect-Oriented Programming (AOP) paradigm (KICZALES et al., 1997), which
advocates that some application requirements (called crosscutting concerns) should be im-
plemented by means of a particular kind of implicit transformation named aspect weaving.
Following this view, aspects may be seen as a compact descriptions of such transforma-
tions. As it is expected from any program transformation, aspect weaving raises concerns
regarding the interaction of the injected code with the original system constructions. It
is well known that, while aspects increase modularity of crosscutting concerns, they also
introduce unintended behaviours. In order to obtain a compromise between power and con-
trol, there is a broad research effort regarding interaction analysis of aspect-oriented weav-
ing (DOUENCE; FRADET; SÜDHOLT, 2004;MEHNER;MONGA; TAENTZER, 2006;
AKSIT; RENSINK; STAIJEN, 2009; DJOKO; DOUENCE; FRADET, 2008; MOSTE-
FAOUI; VACHON, 2007).

We argue that aspect-oriented systems fall into a more general category: systems
equipped with two semantic layers, one describing the normal system behaviour, and other
describing system transformations. We will refer the transformation layer as an “upper” or
“higher-order” layer, and the original behaviour as the “base” or “lower order”. Another
example could be to consider traditional systems undergoing programmed modifications

13

such as refactorings, refinements or other kinds of system evolutions. From now on, we
will generically refer to such systems as “higher-order systems”. An important question
for any kind of system is how modifications in the system (the higher-order layer) affect
the system observed behaviour, i.e. as viewed by an interacting external system. The
behaviour can be either

• Modified: as in error correction;

• Maintained: as in the case of refactorings and the weaving of non-interfering aspects
(log policies, for instance);

• Extended: mainly the addition of new functionalities.

Given a particular system, to be able to predict how the observed behaviour is affected
by higher-order transformations is usually a very complex and in most cases not feasible
task. It involves to relate three quite distinct abstract objects, which may be specified in
very distinct ways:

• The system modification;

• The overall system execution; and

• The observed behaviour of the system (from an external observer, for instance).

As an example of such system, we could consider a web-service implemented in As-
pectJ (KICZALES et al., 2001) – the most popular AOP superset of Java – with obser-
vational behaviour being defined as all sequences of invocations from clients. There are
several difficulties regarding the analysis of such systems:

• Mostly often, general purpose programming languages do not have a complete for-
mal description of its semantics, or they are extremely complex for verification pur-
poses;

• Even provided a convenient formal description of the language semantics, there is
the need to relate the system observation with the system transformation, usually
defined using quite distinct paradigms. For instance, in this particular situation we
would be required to relate the combination semantics of AspectJ with the opera-
tional semantics of Java.

The common practical solution to guarantee that system behaviour ismaintained across
evolution steps is by means of programmed test suites. A given set of test cases witnesses
the response of the system under several situations, and whenever the system changes, the
test suite has to be rerun to assure that non-intended modifications were not introduced.
Testing is very useful in practice, but may not suffice when stronger guarantees regarding
the system behaviour, such as safety or security constraints, are required. This happens
because tests generally do not fully cover the potentially infinite behaviour of the system.

In this thesis we address this problem at an abstract level rather than at code level. This
implies to employ a sufficient expressive systemmodel where the notion of execution, sys-
tem transformation and observation may be naturally and uniformly defined. By working
at specification level, there is the possibility to reduce the inherent complexity of consid-
ering the full-scale system. Furthermore, this kind of approach could be integrated into

14

the Model-Driven Software Engineering (STAHL et al., 2006) approach for system devel-
opment, where system models have central role within the development cycle, serving as
a basis for code generation. In this thesis we use models based on graph transformation
as a formal framework, and the next session discusses why this is an adequate choice for
such context.

1.2 Graph transformation systems
Graph rewriting refers to rule-based modification of graphs. The main advantage of

this principle is that it allows the creation of visual and intuitive models endowed with a
precise semantics. Graph grammars are models based on graph rewriting for which the
initial state is given by a graph, and the dynamics is defined by a set of rewriting rules.
System evolution is determined by applications of rules starting in the initial graph, and
it is guided by the graph topology. Before introducing the basic definitions and concepts
regarding graph grammars, we would like to focus abstractly on some of their interesting
characteristics.

Visual and intuitive representation of states: graphs as data structures have a natural dia-
grammatic representation, from which we may obtain a visual and intuitive understanding
of states with a (potentially) very complex structure.

Typing discipline: Graph grammars usually employ a typing discipline that allow to define
constraints on the structure of graphs bymeans of schema (or type) graphs, in a very similar
fashion as the meta-object facility (MOF) of UML diagrams (OBJECT MANAGEMENT
GROUP, 2005).

Simple semantics: The behaviour of a graph grammar is determined by its set of rewriting
rules and a initial condition represented by a graph. This is a very simple execution model,
if compared with more detailed behavioural models such as UML activity diagrams, for
instance.

Abstract notion of rewriting: The algebraic approach for graph rewriting is generalized in
the sense that the same rewriting theory can be applied uniformly in distinct graph-based
models. This allows an easy lifting of the rewriting mechanism, usually used to describe
base model semantics, to describe higher-order constructions.

Versatility: Rule-based rewriting is a general principle which may be applied to describe
distinct scenarios. For instance, in the context of visual languages we can define language
generation, operational semantics, model transformation and aspect weaving through the
same rewriting mechanism. This allows the usage of analysis techniques for arbitrary
rewriting to be used to relate the distinct scenarios.

Tool support: There are currently several tools for graph rewriting which allow system
representation and analysis. Some famous tools are AGG (TAENTZER, 2000) andGroove
(RENSINK, 2004).

Models based on the graph rewriting principle are popular to describe both model
transformations and operational semantics in the context of visual languages (TAENTZER

15

et al., 2005). In this proposal, we intend to apply graph rewriting to model higher-order
systems, describing simultaneously model transformation and system execution through
sets of rules, and analyze the nature of their interaction. Regarding observation, there
are several semantic models for graph grammars, ranging from very concrete, sequential
models to more abstract ones, where parallelism is explicitly represented. In this sense, a
semantic model may be used as a characterization of the intended observation policy of the
system. Concerning higher-order systems, the abstract descriptions of the rewriting prin-
ciple for graphs serves as a guidance towards the development of a theory of second-order
graph rewriting rules, i.e., (second-order) rules that modify (first-order) graph transforma-
tion rules. Currently analysis techniques focus only on a given level of rewriting. Besides
representing higher-order rewriting, we also explore the extension of currently available
analysis techniques, in particular as critical pair analysis, to compare system transforma-
tion rewriting steps with the system execution steps. Before detailing more of the proposed
approach, let us clarify what we mean by the expression “higher-order”.

1.3 Higher-order systems
Whenever a given system or language is referred to as “of higher-order”, the common

understanding is that it allows the representation andmanipulation of its own constructions
as its data. For instance, higher-order functions are the ones which may receive functions
as arguments or return functions as results. A famous example from the functional pro-
gramming scenario is map, an operation that receives a function f and a list of values l and
returns a list of values obtained by applying f to all elements of l. The abstract definition
of map is shown below:

map(f, [x1, . . . , xn]) = [f(x1), f(x2), . . . , f(xn)]

In Logic, higher-order means to allow predicates to take other predicates as arguments,
and thus can be used to formalize self-referential sentences such as “this sentence has 100
characters” or “the previous sentence is false”. Such ability is particularly important in
meta-logic, since one of its most famous results – Göedel’s incompleteness theorem – re-
lies on an encoding of predicates and their provability as natural numbers and arithmetic
predicates. In Computer Science, the notion of higher-order is usually associated with the
dual relationship between program and data. For example, in the von Neumann architec-
ture, both data and programs are encoded in binary representation and stored in the same
address space. The distinction between a number and an instruction is done only when
these elements are interpreted, and depends on their expected role at the moment they are
accessed.

A popular formalism where terms may represent both data and procedures is the
lambda calculus (BARENDREGT, 1992), a language proposed in the 1930s by Alonzo
Church. Terms in the lambda calculus follow the simple abstract syntax

t ∶∶= x ∣ λx.t ∣ t1 t2

where x ∈ X is a variable name drawn from a countable set X, λx.t is a function where the
formal parameter is x and the expression it calculates is t, and t1 t2 represents a call to t1 as
a function receiving t2 as an argument. The interesting fact about this calculus is that the
role of a given term t0 only depends on the position it occurs within an application: if it
occurs on the left (e.g. in t0 t) it is interpreted as a function; on the right (e.g. in t t0) as data.

16

Hence, the formalism allows to describe several situations involving function manipula-
tion, as, for instance, to declare the self-application t0 t0 of term t0. Lambda calculus serves
as an idealized programming language, and it is the basis of the functional programming
paradigm. In practical programming languages, encoding and decoding of expressions are
handled by operators. For instance, in LISP (STEELE, 1990) the translation between data
and procedures is delegated to the functions quote and eval. The function quote takes
as input an arbitrary expression, and outputs its respective representation as data (i.e. it
stops the evaluation of the term). The function eval takes as input a list of data elements
and returns the result of evaluating it as code, which can be subsequently used. This flex-
ible design make LISP (and derived languages such as Scheme) very adequate to develop
techniques that involve program manipulation, also referred as meta-programming. As-
pect weaving, due to its intrinsic effect of modifying programs, may be seen as a particular
kind of meta-programming. This view is reinforced in (TUCKER; KRISHNAMURTHI,
2002) and (SANJABI; ONG, 2007), where aspects are implemented using higher-order
constructions of the base language.

Although being a powerful mechanism, higher-order constructions in general intro-
duce hardships in system analysis. For example, code analysis techniques such as type
systems or static analysis have their efficiency compromised if we allow dynamic code
loading, requiring the presence of run-time machinery. Similarly, higher order is not easy
to grasp in the context of system modelling and it has not been generally explored apart
from a few particular contexts (such as Petri nets). This has been an issue, for instance, in
the extension of aspect-oriented concepts over UML models. By working with a model
which is simple enough in its execution, such as graph grammars, we are able to overcome
some of the intrinsic complexity introduced by higher-order constructions. We obtained
intuition regarding the representation of higher-order constructions from idealized higher-
order languages, in special lambda calculus.

1.4 Example: evolving place-transition net
In this section we present a small example to illustrate the kind of situation we describe

and analyse in this thesis. In the example, the base system is represented by a place-
transition (PT) net, a model for concurrent systems (see (REISIG; ROZENBERG, 1998)
for precise definitions). The transformation over the base model, implemented by means
of graph rewriting, adds a step counter place to the model. Finally, we try to characterize
how the semantics of the base model is affected by the transformation.

A place-transition net is defined by a set of places, visually depicted as circular nodes,
a set of transitions, represented by means of square nodes, and connections between places
and transitions, represented by edges. Figure 1.1 depicts the place-transition net P, where
{p1,p2,p3,p4} is the set of places and {t1, t2, t3} the set of transitions. Each transition is
connected to a subset of places, named input places and drawn as edges from places to
transitions, and a subset of places, named output places and drawn as edges from transi-
tions to places. For instance, input(t1) = {p1} and output(t1) = {p2,p3}. A state of the
system is a distribution of a finite number of tokens into places. Tokens are graphically
represented as small black circles inside the nodes. The initial state of P contains only two
tokens in place p1.

System execution is given by triggering a transition, i.e. by removing one token in
each of its input places and creating one token in each of its output places. If two or
more transitions are enabled (i.e. all of their input places have tokens), then the choice of

17

...
p1

....

p2

..

p3

..
p4

..
t1..

t2

..

t3

Figure 1.1: Place-transition net.

execution is nondeterministic. The transition system representing all possible sequential
executions of P, one transition triggered each time, is shown in Figure 1.2. We have used
the graph grammar tool Groove (RENSINK, 2004) to obtain this transition system, using
the graph grammar representation of the place-transition net. States are actually multisets
of place names, e.g. s1 = {p1,p2,p3}. The initial state is s0 = {p1,p1}, and the state
s13 = {p4,p4} is said to be final because no transitions can be triggered from it.

..

s0

.

s1

.

s2

.

s3

.
s4

.

s5

.

s6

.

s7

.

s8

.

s9

.

s10

.

s11

.

s12

.

s13

.

t1

.

t1

.

t1

.

t2

.

t3

.

t2

.

t2

.

t3

.

t3

.

t1

.

t3

.

t1

.

t2

.

t2

.

t3

.

t3

.

t2

.

t2

.

t3

.

t1

.

t3

.

t3

.

t2

.

t3

.

t2

.

t2

.

t3

.

t2

Figure 1.2: Full execution of place-transition net.

In the following analysis, we will assume from the reader some familiarity with the
basic concepts regarding graph grammars. We suggest readers uncomfortable with the
language to go through the initial definitions of Chapter 2 before continuing.

1.4.1 System execution as graph grammar
It is part of the folklore of the graph transformation area that place-transition nets can

be seen as a special case of graph grammar. Each place-transition net corresponds to a
graph grammar where the type graph is discrete, i.e., it contains only nodes. Places are
represented as node types and tokens, as instance nodes. Distributions of tokens into places
is given by the typing morphism of the graph being rewritten, and thus the start graph of
the grammar represents the initial token distribution of the net. Transitions are represented
by rules with an empty interface that delete and create nodes according to the respective
input and output places. In Figure 1.3 we have the graph grammar representation of the
place-transition net P shown in Figure 1.1.

18

a:p1 b:p1

p1 p3

p2

p1 p2 p3 p4

p4

p4p3p2

G0

T

t1

Rules t2

t3

Figure 1.3: Place-transition net as graph grammar.

1.4.2 Model transformation as graph grammar
Place-transition nets are visually described by graphs, and thus it is very natural to

consider the implementation of model transformations by means of graph rewriting. A
simple example is the addition of a global step counter for P, i.e., the addition of a place
where all transitions deposit one token every time they are triggered. At the end of the
execution, this place will contain as many tokens as triggered transitions. Figure 1.4 de-
picts a graph grammar G implementing such transformation. Notice that the type graph
T represents the meta-structure of place/transition nets augmented with a “control” edge
type counter, and also that the initial graph G0 encodes the net P together with its initial
token distribution. The rule createPlace creates a single place in the net, being this place
“marked” by counter edge. A negative application condition ensures that createPlace will
be only applied if no other counter place exists in the net. The rule createOutput connects
an already existing transition to the counter place, and likewise, its negative application
condition ensures that each transition will have only one edge targeting the counter.

counter

t3

t1

t2
p2

p3

p4p1

counter

nac lhs rhs

countercounter

T

createPlace:

createOutput:

RulesG0

nac lhs rhs

counter
counter

Figure 1.4: Model transformation as graph grammar.

The execution of this graph grammar applies createPlace once, and then createOutput

19

as many times as there are transitions in the initial graph (exactly three times for P). The
order the output edges are created is not particularly relevant, since all rewritings do not
interfere with each other.

1.4.3 Inter-level interaction
This view of nets as graph grammars allows us to consider the whole setting by means

of a higher-order graph grammar, where the base grammar rules are affected by the upper-
level rewriting. Although small, the scenario comprised by P and the transformation G
allows us to observe some facts:

1. Either the base level which carries tokens, and the model level where the transitions
are modified, can be modelled by the same principle (graph rewriting).

2. In this particular example, both levels of rewriting are terminating.

3. If we consider the complete application of model transformation (MT) rules and
base system operational semantics (OS) in a non-interleaved way, i.e. all rules of
one level are executed before the rules of the other level, we obtain different final
systems, as seen in Figure 1.5. If we allow interleaved execution between levels,
a variable number of tokens in the counter place may be found when the rewriting
process finishes.

..

MT

.

OS

.

OS

.

MT

..

Figure 1.5: Operational semantics (OS) versus model transformation (MT).

Based of the previous observations, we can also inquire about the properties of such
system. Some relevant questions are:

• In which way the model transformation affects the base system execution?

• How conflicts between the two levels of rewriting are characterized?

• Is the observable system behaviour preserved?

Whenever we consider the effect of model transformation over the execution of a base
model, we must keep in mind which particular semantic model we are interested in. If
we consider as semantic model the resulting graph whenever the system terminates, then
the presented model transformation actually modifies the base system semantics. On the

20

other hand, if we consider the “shape” of the transition system representing the execution
of P (as shown in Figure 1.2) as the semantic model, it may be claimed that this model
transformation does not interfere with the semantics, since (intuitively) adding a new out-
put place does not affect the applicability of rules. A precise definition for what constitute
an observable behaviour of the system, or the particular semantic model used to charac-
terize the system behaviour, is a requirement before any characterization of interference.
Provided a particular observational model, we may then ask if it has been maintained,
extended or subtracted. Furthermore, we may wish to obtain more information regarding
what has been updated.

Such questions are starting point of this work. We propose to address them in the con-
text of graph grammars. A notion of higher-order for graph rewriting is required, and to
obtain this, we need to revise the theory of graph transformation, exploring the possibility
of second-order rules transforming first-order rules and (possibly) other components of
the specification such as the initial and type graphs. We extend some techniques available
in graph rewriting, such as critical pair analysis, to address interference between transfor-
mations and operational semantics.

It is worth mentioning that dynamic place-transition systems like the one presented
in the example, i.e. extended with dynamic modifications given by graph rewriting,
have already been vastly studied in the literature (BADOUEL et al., 2003; LLORENS;
OLIVER, 2004; HOFFMANN;MOSSAKOWSKI; PARISI-PRESICCE, 2005; PRANGE
et al., 2008). Moreover, the idea of having rules transforming rules in graph transformation
is not entirely new, since it has appeared previously in some approaches such as (GÖT-
TLER, 1999) and (PARISI-PRESICCE, 2001). However, there is not yet an adequate
characterization of higher-order principles for the DPO approach for graph rewriting in
the literature. We foresee the application of graph grammars with higher-order rules as
a framework in the formal study of graph grammars with aspect-oriented capabilities. In
this direction there are only few proposals such as (WHITTLE; JAYARAMAN, 2007) and
(MEHNER; MONGA; TAENTZER, 2006).

1.5 Thesis aims
The main objective of this thesis is to address the following problem:

How to describe and analyse the interaction between model
transformations and the system semantics in the context of graph
grammars.

We propose to following approach:

1. Employ graph transformation as a basic principle to describe both model transfor-
mation and base model semantics. This requires the development of a notion of
higher-order for graph rewriting;

2. Define an extension of the basic graph grammar model that allows the definition
of both model transformation and base system execution. Model transformations
would make use of higher-order rewriting, while normal system behaviour is given
by first-order rewritings.

3. Define a notion of interference between rules in two distinct rewriting levels. This
provides a notion of “inter-level” conflict, which we use for analysis purposes.

21

4. Apply the previous results in the context of aspect-oriented graph grammars, char-
acterizing the interaction of aspect weaving and base system execution.

Hence, the hypothesis we intend to confirm is

Higher-order principles in the context of graph rewriting can be
adequate in modelling and analysing systems undergoing programmed
modifications.

The study of the interaction between second-order and first-order layers in specifica-
tions may be useful in several contexts, and here we briefly mention some of them:

1. Verification of properties across model transformation;

2. Modelling of aspect-oriented capabilities in visual models;

3. Modelling of adaptive systems, i.e., systems whereas the rules for execution can
change dynamically.

1.6 Methodology and text organization
In this section, we summarize the structure of the remaining chapters, which depicts

the overall structure of this thesis.

Chapters 2 and 3: technical background
These chapters provide a review of the graph transformation and higher-order func-
tions in the lambda calculus formalism. OnChapter 2we focus on theDPO approach
to graph transformation, introducing graph grammars and some important results of
the area such as the characterization of conflicts and dependencies between rewrit-
ing steps, and also important theorems such as local Church Rosser. We mention
the critical pair analysis technique for analysis of specifications.
Chapter 3 presents a very brief review of the untyped and simply typed variations
of the lambda calculus formalism, focusing on the characterization of higher-order
terms and types. The contribution of this chapter is a discussion providing analogies
between higher-order types in the typed lambda calculus setting and rule modifica-
tions in the graph transformation setting.

Chapters 4, 5 and 6: theoretical development
These chapters comprise the main theoretical contributions of this thesis. The main
objective of Chapter 4 is to establish an adequate notion of second-order rewriting.
Roughly speaking, the concept of higher-order rule is defined by the same mecha-
nism employed to define rules from graphs in the DPO approach. First we need to
put graph rules and respective transformations in a categorical context. For such,
we explore two possibilities: the category of arbitrary spans over T-Graph, and
its subcategory T-Rules of graph rules. We define a notion of second-order rules,
which we name 2-rules, formed by the same principle that constructs graph rules

22

from graphs. The following diagram depicts a visualization of a graph, a graph rule
and a graph 2-rule as diagrams in T-Graph:

graph rule 2-rule

G L Koooo // // R L1 L2oooo // // L3

K1
OO

OO

��

��

K2oooo // //
OO

OO

��

��

K3
OO

OO

��

��
R1 R2oooo // // R3

The next step is to ensure that T-Span or T-Rules are suitable for DPO rewriting, in
other words, if they can be characterized as adhesive HLR categories. If this holds,
we can characterize 2-rule-based rewritings of rules as DPO diagrams in the cate-
gory in question, just like rule-based rewritings over graphs are DPO diagrams in
the category T-Graph. We have found that T-Span is adequate for modification of
rules, provided a mechanism to ensure that both morphisms that represent the result-
ing span continue to be injective after the rewriting. To enforce rule-preservation,
we employ the mechanism of span rewriting with negative application conditions,
for which we introduced the notion of minimal rule-preserving set of NACs. One
direct advantage of this approach is that we can represent the two kinds of rewriting
as diagrams in the same category T-Graph, as shown below, which is convenient if
we want to relate both kinds of rewriting for analysis purposes.

L

��

Koooo // //

��

R

��

G Doo // H

a1

��

b1

��

oo // c1

��

a2

__

��

��

b2

``

��

oo // c2
aa

!!

��

a3

��

b3

��

oo // c3

��

L L′oo // L′′

K
``

K′

``

oo // K′′

bb

""
R R′oo // R′′

Chapter 5 discusses how to employ the notion of second-order rewriting to construct
specifications. We address several details of how this realisation, such as how a sin-
gle 2-rule should affects a whole collection of rules, rather than a single one. This
also triggers a discussion regarding how to actually represent collections of rules,
and how collections can be modified through second-order rewriting. Notions such
as creation, deletion and modification of rules are defined for rule collections. Fi-
nally, we discuss how overall modifications in first-order models can be summarized
through the notion of an evolutionary span marking what has been removed, pre-
served and introduced in the whole specification.
Chapter 6 presents how to represent conflicts and dependencies within second-order
graph grammars, and how first-order and second-order derivations interact. Two
conventional DPO rewritings G r,m

Ô⇒ H1 and G
r′,m′
Ô⇒ H2 from the same graph G

23

are said to be conflicting if the execution of one of them forbids the execution of
the other on its resulting graph. In this chapter we extend this notion to evaluate
the interaction between a first-order rewriting δ = G

r,m
Ô⇒ H and a second-order

rewriting δ2 = r
α,m′
Ô⇒ r′′, by using diagrams in T-Graph, as show in the diagram

below:

a1

m2
1

��

b1

��

oo // c1

��

a2

__

��

m2
1

��

b2

``

��

��

oo // c2

aa

!!

��

a3

m2
1

��

b3

��

oo // c3

��

L

m

��

L′oo // L′′

K

``

��

K′
``

oo // K′′
aa

!!
R

��

R′oo // R′′

δ

�#

G
δ2

+3

D
aa

!!
H

We are able to represent this interaction by means of the existence of morphisms
in the diagram satisfying some essential conditions. Besides individual rewritings,
we also analyse the effect of higher-order rules over the critical pairs of the base
system. This means that a higher-order rule may affect the possible dependencies
of the lower system, and thus affect its semantics. Based on such considerations,
we extend the principle of critical pair analysis for second-order graph grammars,
which accounts for first-order critical pairs, second-order critical pairs and inter-
level critical pairs.

Chapter 7: aspect-oriented graph grammars
In Chapter 7 we provide a review of the principal concepts regarding aspect-oriented
programming and aspect-oriented modelling. Then, we compare the main con-
cepts of aspect-orientation and graph transformation, and provide a representation
of aspect-related constructions for first-order systems as a second-order layer. The
notion of aspect weaving is described through second-order rewritings, which al-
lows to employ critical pair analysis for the study of interaction between aspects.
Moreover, given the notion of inter-level critical pair, we can represent directly the
effect of aspect weaving in the semantic of the first-order system.

Chapters 8 and 9: related work and conclusions
Chapter 8 compares our approach with others in the literature. We focus on
some other proposals for modifications of rules and specifications, dynamic place-
transition nets, and approaches combining aspect rewriting and graph transforma-
tion.
Chapter 9 summarizes our results, and discusses future developments.

24

2 GRAPH TRANSFORMATION

The research area of Graph Transformation is a discipline of Computer Science which
begun in the late 1960s as a generalization of term rewriting. Methods, techniques, and
results from the area have already been studied and applied in many fields of Computer
Science, such as formal language theory, pattern recognition and generation, software en-
gineering and the modelling of concurrent and distributed systems. (EHRIG et al., 2005)
The main idea lies in the rule-based transformation of graphs: the system state is rep-
resented by a graph, and the application of transformation rules represent its operational
behaviour. Graph transformation rules are said to be local, i.e. they describe modifications
to be applied over a specific part of the graph. This allows more than one rule to be applied
at the same time, being an adequate model to represent systems with non-deterministic be-
haviour.

There are several approaches in the literature to determine the graph rewriting process.
In this chapter, we focus on the algebraic approach, where rules and rule applications are
defined by means of constructions from Category Theory. Within the algebraic setting,
there are two main variants, namely the double- and the single-pushout approach. We
focus on the double-pushout approach (DPO), which inspired the current generalization
of the theory, referred as adhesive HLR systems (EHRIG et al., 2004).

In this chapter we do not present new ideas, but rather offer an overview of the main
concepts from the graph transformation field. The definitions are taken from standard ref-
erences of the area, particularly (ROZENBERG, 1997; EHRIG et al., 1999, 2005). Initially
we describe basic concepts such as typed graphs and then introduce the DPO approach for
graph rewriting. We describe graph grammars using DPO rules, and characterize situ-
ations of conflict and parallel execution for graph transformation. Then we comment on
semantic models for graph grammars, negative application conditions for rules and the us-
age of attributes in edges and nodes. Finally, we talk about tools, the critical pair analysis
technique and adhesive HLR systems.

2.1 Basic definitions
Agraph is a structure composed by a set of nodeswith binary connections denominated

edges (or arcs). When the connections between nodes do not have orientation, the graph
is called undirected. Otherwise, it is a directed graph or digraph. In this work we will
assume that all graphs are directed.

Definition 1 (Graph). A graph is a tuple G = (V, E, s, t), where V and E are sets of nodes
and edges, and s, t ∶ E→ V associate, respectively, a source and target node to each edge.

Example 2. Figure 2.1 depicts the description of a graph (on the left) together with its

25

respective visual representation (on the right).

V = {a,b, c,d, e}
E = {1,2,3,4,5,6}
s = {1↦ a,2↦ b,3↦ b,4↦ a,5↦ d,6↦ e}
t = {1↦ b,2↦ c,3↦ c,4↦ c,5↦ c,6↦ e}

c

a b

d e

1

2

34

5

6

Figure 2.1: Graph.

Notation 3. We will use the term element or item to indicate either nodes or edges. By
an abuse of language, we write x ∈ (V,E, s, t) meaning x ∈ V or x ∈ E whenever it is not
harmful to do so.

A graph morphism is a mapping of nodes and edges of one graph to, respectively,
nodes and edges of another graph such that the structure of the input graph is preserved,
i.e. the source and target nodes of the translation of one edge are the translations or source
and target nodes of the original edge. Formally speaking:
Definition 4 (Graph morphism). Let G = (V,E, s, t) and G′ = (V′,E′, s′, t′) be graphs.
A graph morphism f ∶ G → G′ is a pair of functions (fV, fE) with types fV ∶ V → V′ and
fE ∶ E→ E′ such that s′ ○ fE = fV ○ s and t′ ○ fE = fV ○ t.
Example 5. Figure 2.2 shows an example of graph morphism f between graphs G1 and
G2. The mapping of nodes is represented by dashed lines, whilst the mapping of edges is
represented by dotted lines. Although there are other graph morphisms between G1 and
G2, notice that there are not morphisms between G2 and G1. This happens because it is
not possible to associate adequately the edge 6 to an edge in G1.

Figure 2.2: Graph morphism.

A graph morphism m ∶ G1 → G2 which is bijective in both source and target mappings
is said to be an isomorphism, in which case the graphsG1 andG2 are said to be isomorphic
to each other. All possible graphs related by graph morphisms constitute a category, which
we call Graph. We assume a basic knowledge from category theory from the reader, and
present all the required concepts in Appendix A.

Whenever we model situations through graphs, a useful technique is to classify both
edges and vertices according to particular kinds or types. The usual approach for typing
graphs is to consider a fixed graph T as a schema graph, where its elements denote the
possible kinds of nodes and edges. Then, the typing of a graph G over T is represented by
means of a morphism tG ∶ G→ T.

26

Definition 6 (Typed Graph). Let T be a fixed graph, called type graph. A T-typed graph
GT = (G, tG) is a graph G together with a total graph morphism tG ∶ G→ T.

Notation 7. Whenever the type graph T is understood from the context, we may refer to
GT as simply G.

Example 8. Figure 2.3 depicts a typed graph GT. Nodes of T represent entities such as
computers (pc), data servers (server), messages (msg) and data packages (data). The edges
represent where the entities are located: data nodes may be directly stored into servers,
computers or embedded in messages. Messages may be located in user computers or in
servers. The nodes and edges of the instance graph G are mapped to elements of T by
means of the type morphism tG (which is depicted implicitly by the use of corresponding
element shapes).

Figure 2.3: Typed graph.

Since the typing morphism classifies the graph elements into types, the notion of mor-
phism between typed graphs has to ensure that each element in the source graph is mapped
to an element with the same type in the target graph.

Definition 9 (Typed Graph Morphisms). A morphism of T-typed graphs f ∶ GT → G′T is a
total graph morphism f ∶ G→ G′ such that tG′ ○ f = tG.

Similarly to untyped graphs, when a type graph T is fixed, the class of all T-typed
graphs and respective typed graph morphisms constitute a category, named T-Graph. The
typing mechanism in particularly interesting because of the natural association between
meta-models (in the UML family of diagrams) and type graphs.

2.2 The double-pushout approach
The double-pushout approach (DPO), introduced by (EHRIG; PFENDER; SCHNEI-

DER, 1973), was the first characterization of graph rewriting by means of categorical con-
structions. In this approach, graph rewriting rules are represented as pairs of typed graph
morphismswith the same origin. It is usual to consider bothmorphisms to be injective, and
we follow this characterization for simplicity. We refer the reader to (HABEL; MÜLLER;
PLUMP, 2001) for a comprehensive analysis of non-injective rules in the double-pushout
approach.

Definition 10 (Span). A span in a given category C is a pair of morphisms (a,b) with the
same source, as shown in the following diagram

A a←Ð X bÐ→ B

27

Dually, a co-span is a pair of morphisms (c,d) having the same target object, as shown
below.

C cÐ→ Y d←Ð D

A (co-)span (a,b) is injective (monic) iff both a and b are injective (monomorphisms).

Definition 11 (Graph rule). A graph rule is an injective span q ∶ L l↢ K r↣ R in the category
T-Graph. The class of all graph rules is denoted T-Rules.

Notation 12. We may denote the rule q ∶ L l↢ K r↣ R by (l, r) if L,K,R are understood
from the context, or by L ← K → R if K = L ∩ R and l,r are inclusions. Graph rules may
also be referred as rules, graph (transformation/rewriting) rules or graph productions.

A rule q ∶ L l↢ K r↣ R describes how to localy modify the target graph. The graph
L, also known as the left-hand side (LHS) of the rule, defines a pattern to be found in the
target. The graph R, also known as the right-hand side (RHS), defines the local state after
rule execution. The interface graph K, which is included in both the LHS (by l) and RHS
(by r), defines the elements that are preserved (read) by the rule application. The elements
in L∖K (i.e. in L but not in l(K)) are said to be deleted, whilst elements in R∖K (in R but
not in r(K)) are said to be created.

Example 13. Figure 2.4 shows a graph rule which deletes the edge a, creates the edge
b and preserves the three nodes x, y and z (both l and r are inclusions). Since edges are
used to specify the location of messages, this production represents the act of sending a
message from a computer to a server.

Figure 2.4: Graph transformation rule.

The application of a graph production p ∶ L ← K → R over a target graph G depends
on finding a match, i.e. an association of elements in L to elements in the target graph G.
A match is defined by means of a graph morphism m ∶ L → G. Once a match is found,
the rewriting of the graph is defined by means of a double pushout diagram in T-Graph.
Before we introduce the formal definition for rule application, we will introduce the con-
cept of pushout in Set, the category of sets and total functions. This is done to illustrate
the construction while avoiding the complete (and rather dense) categorial definition. A
pushout of two functions f ∶ C → A and g ∶ C → B is usually referred as an amalgamated
sum. The intuition is that first we calculate the disjoint union A+B of sets A and B. After
this, elements of A + B are combined into a single element (amalgamation) if and only if
they have a common origin inC. Definition 14 presents the calculation of a pushout in Set,
and Figure 2.5 depicts an example of pushout construction for two particular functions f
and g.

28

Definition 14 (Pushout in Set). Consider the span A
f← C

g→ B, and the following con-
structions:

• the disjoint union A + B = {a0 ∣ a ∈ A} ∪ {b1 ∣ b ∈ B}. The tags 0 and 1 to mark for
each element its original set.

• the least equivalence relation ≡ on A + B such that for all c ∈ C, f(c)0 ≡ g(c)1.

• the quotient set (A + B)/≡ = {[x]≡ ∣ x ∈ A + B}

Then, the co-span A
g∗→ (A + B)/≡ f∗← B, where g∗(a) = [a0]≡ and f∗(b) = [b1]≡ is a

pushout of A
f← C

g→ B.

Figure 2.5: Pushout in Set.

An important remark is that, similarly to other categorial constructions, pushouts are
unique only up-to-isomorphism. This means that we may obtain other pushouts for the
same diagram by taking distinct sets with the same cardinality as (A+B)/≡. For example,
another pushout for the diagram shown in Figure 2.5 is the set {1,2,3,4,5} together with
functions β = {a↦ 1,b↦ 2, c↦ 3} and α = {x↦ 3,a↦ 3, k↦ 4, l↦ 5}.

The same intuition of amalgamated sum holds for pushouts in the context of graphs and
typed graphs, where they have the role of a gluing procedure to compose graphs identified
by common nodes and edges. The definition of one-step rewriting, or direct derivation,
is based on a diagram composed of two simultaneous pushouts in the category of typed
graphs.

Definition 15 (Direct derivation). Given a graph rule q ∶ L l↢ K r↣ R a graph G, and
a match m ∶ L → G, a direct derivation (or direct graph rewriting) from G to H using q
and m exists if and only if the diagram below can be constructed in T-Graph, where both
squares (1) and (2) are pushouts.

L

m

��

K

(1) (2)

ooloo // r //

k

��

R

m∗

��

G D
l∗

oo
r∗

// H

The direct derivation is referred using the notation δ ∶ G
q,m
Ô⇒ H or δ ∶ G

q
Ô⇒ H if we do

not make explicit m.

29

The intuition why this particular kind of diagrammodels the effect of deleting, creating
and preserving elements is as follows. The square (1) is a pushout iff l∗(D) is isomorphic
to G∖m(L∖K), i.e., G without the image (via m) of the elements deleted by the rule. The
square (2) is a pushout iff H is the disjoint union of D and R, amalgamated via K. This
means that H has all elements of D, plus the elements of R that are outside of r(K), i.e.,
the elements created by the rule.
Example 16. Figure 2.6 shows the application of production q (from Figure 2.4) over a
graphG usingmatchm. The image of matchm is represented by a dotted oval region within
G. Notice that there are other two possible matches for this same rule, each covering a
distinct message node.

Figure 2.6: Direct derivation representing message passing.

In the DPO approach, the existence of a match for a rule does not assure the con-
struction of the DPO diagram. The first pushout depends on the existence of a pushout
complement for K l→ L m→ G, i.e. a complementary diagram K k→ D l∗→ G making the
first square a pushout. This complement only exists if two conditions, named application
conditions, are satisfied:

1. identification condition: the match m ∶ L→ G does not map both a deleted item and
a preserved item in L to the same item in G.

2. dangling condition: the match m does not map a deleted node d to a node m(d) ∈ G
if m(d) is connected to an edge outside the image of m.

If any of the two conditions is not satisfied by a match, the rewriting cannot occur. This
is a very particular characteristic of the DPO approach. To constrast, in the single-pushout
(SPO) approach (LÖWE, 1993), the existence of a match suffices to obtain a direct deriva-
tion. On the other hand, application conditions ensure some interesting characteristics to
the rewriting as, for instance, reversibility. A discussion about the differences between
the two approaches is out of our scope, and we refer to (ROZENBERG, 1997) for more on
this subject.

Now that rules and rule rewriting have been introduced, we can talk about systems
built from such concepts. The intuition behind graph transformation systems is to use sets
of graph productions to describe the behaviour of a visual model. Formally:

30

Definition 17 (Graph Transformation System). A graph transformation system (GTS) is a
tuple ⟨T,P, π⟩, where T is a type graph, P is a set of rule names and π ∶ P→ T-Rulesmaps
every rule name to is correspondent production.

Notice that GTSs do not model a particular system, but actualy a set of possible rules
that guide its rewriting. If specific initial conditions need to be considered, we have a
graph grammar.

Definition 18 (Graph Grammar). A graph grammar (GG) is a tuple G = ⟨T,G0,P, π⟩,
where ⟨T,P, π⟩ is a graph transformation system and G0 is a T-typed graph named the
initial graph.

Figure 2.7: Graph grammar for clients and servers

Example 19. Figure 2.7 shows a graph grammar thats models a client-server scenario.
There are four kinds of transitions in this system: clients sending a message to servers
(sendMSG), obtaining data elements from the server (getDATA), servers returning the
messages to the clients (receiveMSG) and clients obtaining data from returned messages
(deleteMSG). The interface of all rules is implicitly considered to be the intersection of the
LHS and the RHS. The starting situation of the system is represented by the initial graph
G0.

A derivation of a graph grammar is defined as a sequence of subsequent direct deriva-
tions using rules in the set P.

31

Definition 20 (Derivation). Given graph grammar G = ⟨T,G0,P, π⟩, a derivation ρ is a
(possibly infinite) sequence of direct derivations δi ∶ Gi

pi,miÔ⇒ Hi, where Gi+1 = Hi and i ≥ 0.
If a derivation ρ ∶ G0

p1,m1Ô⇒ G1
p2,m2Ô⇒ ⋯

pn,mnÔ⇒ Gn is finite, we call Gn the final graph. We
denote the class of all derivations of G by Der(G).

The sequential behaviour of a graph grammar , i.e. its behaviour assuming that only
one rule can be applied at each step, is given by all derivations with rules in P that start
at graph G0. Operationally, the execution of a graph grammar G = ⟨T,G0,P, π⟩ may be
described by the following steps:

1. set the initial graph as the current graph.

2. find in the current graph all possible matches satisfying the application conditions
for all rules in P.

3. if there is no suitable match then STOP. Otherwise, non-deterministically choose a
rule and a match to be applied.

4. delete from G all matched elements that occur in the LHS but not in the RHS. This
will generate a graph D.

5. create inD all matched elements that occur in the RHS but not in the LHS. This will
generate a graph H.

6. set H as the current graph. Return to step 2.

Example 21 (Derivation). Figure 2.8 shows a three-step derivation of the example gram-
mar.

Figure 2.8: Example of derivation.

32

Graph grammars provide a natural and visual way to represent distributed and nonde-
terministic systems. Distribution is naturally represented by the graph topology, since the
semantics of graph grammars is based on production applications. If there are matches for
more than one production in one state (graph), they may all be applied in parallel, provided
that there are no conflicts. Conflicts exist if two (or more) productions try to delete the
same portion of a graph at the same time. In such situation, the choice of which production
will be actually applied is non-deterministic.

Concerning efficiency, the act of finding a match for the LHS of a rule is critical, spe-
cially if the graph being rewritten is very large. This is usually referred as the subgraph ho-
momorphism problem, and it is known for being intractable in the general case (RUDOLF,
2000). In practical situations, however, the search space of the algorithm for finding graph
matches can be reduced by exploring additional information about the graphs, such as the
typing mechanism, or results from previous matches (BERGMANN et al., 2008). Some
implementations of the graph rewriting mechanism such as GrGen.NET (GEIS et al.,
2006) are highly optimized in this sense, obtaining considerable performance in several
graph transformation benchmarks.

2.3 Conflicts, dependencies and parallelism
Nowwe focus on the notions of conflict and dependency in graph rewriting. Moreover,

we review a important result from the graph rewriting theory, regarding confluence and
parallelism. We start by characterizing when two derivations are in conflict. Let δ1 ∶
G

p1,m1Ô⇒ H1 and δ2 ∶ G
p2,m2Ô⇒ H2 be two direct derivations from the same graph G. We say

that δ2 disables δ1 whenever δ2 deletes some graph element that is required by the match
of δ1, i.e. if m2(L2 ∖K2) ∩m1(L1) ≠ ∅. If δ1 disables δ2 or δ2 disables δ1, we say that they
are conflicting or parallel dependent. Notice that if δ2 disables δ1 but not the opposite, i.e.
δ1 does not disable δ2, then the conflict may have an asymmetric nature. If two derivations
δ1 ∶ G

p1,m1Ô⇒ H1 and δ2 ∶ G
p2,m2Ô⇒ H2 are not conflicting, then they can (potentially) be applied

over the graph simultaneously and we say that they are parallel independent or conflict-
free. Equivalently, we can characterized parallel independence for rewritings in T-Graph
by testing the existence of some morphisms, as shown in the next definition.

Definition 22 (Parallel independence). Two derivations δ1 ∶ G
p1,m1Ô⇒ H1 and δ2 ∶ G

p2,m2Ô⇒ H2
are parallel independent iff there are morphisms i ∶ L1 → D2 and j ∶ L2 → D1 such that
i; l′2 = m1 and j; l′1 = m2, as shown in the diagram below.

R1

m′1
��

K1oor1oo // l1 //

k1

��

L1

m1
��

i

''

L2

m2
��

j

ww

K2ool2oo // r2 //

k2

��

R2

m′2
��

H1 D1r′1
oo

l′1
// G D2l′2

oo
r′2

// H2

Example 23. Figure 2.9 depicts a conflict between two rewritings of the rule sendMSG.
Each rewriting disables the other because both attempt to delete the same edge. In this
case, neither morphisms i ∶ L1 → D2 and j ∶ L2 → D1 exist (cf. Definition 22).

Now we focus on the concept of sequential dependence. Given a derivation ρ =
δ1, . . . , δn, sequential dependence occurs between two direct derivations δi and δj whenever
δj is forced to occur after δi. Element-wise, the following situations entail dependencies:

33

Figure 2.9: Parallel dependent derivations.

1. create-delete: an element is created by the first rewriting and deleted by the second
one;

2. create-read: the latter rewriting preserves an element created by the former;

3. read-delete: the first rule preserves and element that is deleted by the second one.

Dependencies play a important role in graph rewriting since they block parallel execution,
and also disallow the exchanging of rewriting steps, i.e. they fix the relative order of exe-
cution between two rewritings within a larger derivation. We say that two rewritings are
sequentially independent iff they are not sequential dependent. Similarly to parallel inde-
pendence, sequential independence can also be characterized by means of the existence of
morphisms.

Definition 24 (sequential independence). Consider two direct derivations G
p1,m1Ô⇒ H and

H
p2,m2Ô⇒ I where p1 = (l1, r1) and p2 = (l2, r2). The derivations are said to be sequential

independent iff there are morphisms i ∶ R1 → D2 and j ∶ L2 → D1 such that m′1 = j; r′1 and
m2 = i; l′2, as shown below:

L1

m1

��

K1ool1oo // r1 //

k1

��

R1

m′1 ��

i

''

L2

m2
��

j

ww

K2ool2oo // r2 //

k2

��

R2

m′2

��

G D1l′1
oo

r′1
// H D2l′2

oo
r′2

// I

Example 25. Figure 2.10 depicts a rewriting of getDATA and a rewriting of receiveMSG
such that they are sequentially dependent. In this case, the dependency arises because
the arrow connecting the message to the server is preserved by the first derivation and
deleted by the second one. Considering the existence of i and j (cf. Definition 24), there
is actually j, since the mentioned arrow has a pre-image along r′1, however there is not i
because there is not a pre-image along l′2 of the same arrow.

The formal characterization of sequential independence follows from the useful obser-
vation that graph rules and rewritings in the DPO approach are invertible. In other words,

34

Figure 2.10: Sequentially dependent derivations.

from rule p ∶ L← K→ R we can obtain the reverse rule p−1 ∶ R← K→ L which has the op-
posite effect of p, i.e. it obtains the LHS from the RHS. The same idea is used for inverting
direct derivations, since double-pushout diagrams can be read from right to left. We have
that δ1 = G

p1,m1Ô⇒ H and δ2 = H
p2,m2Ô⇒ J are sequentially independent iff δ−11 and δ2 are par-

allel independent. There are interesting consequences if two rewritings are independent,
which is assured for conflict-free rewriting through the theorem known as local Church-
Rosser. The name Church-Rosser is a reference to the famous theorem that proves the
confluence of beta-reduction in the untyped lambda-calculus, proved by Alonzo Church
and J. Barkley Rosser. By local it is understood it refers to a context where the scope of
rewritings is restricted, such as graph transformation. Formally, it states that confluence
is obtained from parallel independence:

Theorem 26 (Local Church-Rosser). The following two statements are equivalent descrip-
tions of local confluence in the DPO approach:

1. Let δ1 ∶ G
p1,m1Ô⇒ H1 and δ2 ∶ G

p2,m2Ô⇒ H2 be parallel independent. Hence, there are

two derivations δ∗2 ∶ H1
p2,m∗2Ô⇒ J and δ∗1 ∶ H2

p1,m∗1Ô⇒ J such that (δ1; δ∗2) and (δ2; δ∗1) are
sequentially independent.

2. Let δ1 ∶ G
p1,m1Ô⇒ H1 and δ∗2 ∶ H1

p2,m∗2Ô⇒ G′ be sequentially independent derivations.

Then, there are sequentially independent derivations δ2 ∶ G
p2,m2Ô⇒ H2 and δ∗1 ∶ H2

p1,m∗1Ô⇒
G′ such that the pair (δ1, δ2) is parallel independent.

Gδ1
t|

δ2
"*

H1

δ∗2
!)

H2

δ∗1
u}

G′

The notion of parallel independence leads to the precise definition of parallel rewrit-
ings. Given T-typed graph rules p1 and p2, the parallel rule p1 + p2 may be obtained
component-wise disjoint union of p1 and p2. Parallel rules may be obtained from

35

Figure 2.11: Parallel independence and parallel rule execution in graph rewriting.

the disjoint union of simple rules and/or other parallel rules. Given parallel indepen-
dent derivations δ1 ∶ G

p1,m1Ô⇒ H1 and δ2 ∶ G
p2,m2Ô⇒ H2, the parallel direct derivation

δ1 + δ2 ∶ G
p1+p2,[m1,m2]Ô⇒ G′ is defined as the application of the parallel rule p1+p2 with match

[m1,m2] ∶ L1 + L2 → G, obtained from the superposition of m1 and m2 (technically, this
morphism arises as a unique arrow from the coprodut object L1+L2). Notice that a parallel
rule p1 + p2 is not an atomic entity: it represents the parallel application of two rules and
have both p1 and p2 as components. Generally, parallel rules are not part of the ruleset
P, unless P is infinite and closed under disjoint union of rules. Likewise, parallel direct
derivations are not a subset of the system direct derivations. The parallelism theorem
allows to relate parallel derivations with sequentially independent direct derivations, as
follows.
Theorem 27 (Parallelism). Let p1 and p2 be two (possibly parallel) graph rules. Then,
there is a parallel derivation δ1 + δ2 ∶ G

p1+p2,[m1,m2]Ô⇒ G′ iff there is a sequential independent

pair of rewritings δ1 ∶ G
p1,m1Ô⇒ H1 and δ∗2 ∶ H1

p2,m∗2Ô⇒ G′.

Proofs for both local Church Rosser and the parallelism theorem may be found at
(ROZENBERG, 1997), Chapter 3, Section 3.4.
Example 28. Figure 2.11 describes a situation where parallel independence between
rewritings sendMSG,m1 and sendMSG,m2 entails of sequentially independent two-step
derivations and a parallel rule rewriting. By local Church Rosser, there are rewritings
sendMSG,m1* and sendMSG,m2* converging to G′. By the parallelism theorem, there is
the parallel rewriting sendMSG+sendMSG,[m1,m2].

We have presented the definitions for dependency in more detail because they will be
required in the understanding of the critical pair analysis technique. Now we focus on the

36

observational aspect of graph grammar specifications, i.e. how to formally characterize
their execution.

2.4 Semantic models for graph grammars
In this section we briefly comment on semantic models for graph grammars, distin-

guished by the way they represent nondeterminism and parallelism. Semantic model are
usually categories whose objects represent graphs and morphisms, the respective rewrit-
ings transforming one graph into another. Precise definitions may be found in (ROZEN-
BERG, 1997).

Sequential, concrete semantics: This is arguably the simplest semantic model for graph
grammars. Given a graph grammar G we denote by Der(G) the category whose ob-
jects are T-typed graphs and morphisms f ∶ G → H are arbitrarily sized derivations
G

p1,m1Ô⇒ G′
p2,m2Ô⇒ . . .

pn,mnÔ⇒ H. The composition operation is derivation concatenation, and
the identity of G is the “no-operation” DPO diagram where all morphisms are the identity
of G. To consider the behaviour starting from a particular grahp G0, we simply take the
slice category G0 ↓ Der(G). Besides its inherent simplicity, there are some issues with
such model:

1. too much redundancy: for each typed graph, there are infinite isomorphic graphs,
differing only in the elements of the instance graphs. Moreover, for each direct
derivation δ ∶ G → H, there are infinitely many isomorphic rewritings, differing
only by the concrete elements in each of the graphs. Hence, even for small graphs
G and H we find infinitely many morphisms between them.

2. concurrency is implicit: the model focus mainly on sequential execution. Concur-
rency situations need to be extracted for sequentially independent components of a
bigger derivation. Two distinct serializations of the same collection of rewritings
events are considered distinct because of the order direct derivations occur.

Abstract semantics: This models handles the issue of redundancy in representation: ob-
jects of the category are equivalence classes of isomorphic graphs, and morphisms are
classes of isomorphic derivations. An important consequence of using this model is the
possibility to obtain finite categories as semantic models for terminating graph grammars.
One example is the free category generated from the transition system presented in Fig-
ure 1.2.

Truly concurrent semantics: In this model, derivations that only differ in permutations
of sequentially independent rewritings are said to be shift-equivalent. For instance, if we
have a two-step derivation G

p1,m1Ô⇒ H
p2,m2Ô⇒ J where the direct derivations are sequentially

independent, from local Church Rosser we also have a derivation G
p2,m∗2Ô⇒ H′

p1,m∗1Ô⇒ J for
some H′. In this semantic model, both are considered shift-equivalent derivations, and
hence they are identified as the same morphism.

Abstract, truly concurrent semantics: Combines abstraction and shift-equivalence. This
model is considered equivalent to another notion of concurrent semantics of graph gram-

37

mars named graph processes (CORRADINI; MONTANARI; ROSSI, 1996), although
both models are defined in considerably different ways.

Unfolding semantics: Roughly speaking, the unfolding semantics is a structure which
represents all alternative rewritings of a given graph grammars, marking explicitly the
dependences and conflicts between individual graph rewriting steps. It is inspired on event
structures and was originally defined in (RIBEIRO, 1996) for the single-pushout approach.
Recently, it has been proposed for adhesive HLR sytems in (BALDAN et al., 2009).

Besides such models, it is also usual to extract a labeled transition system (LTS) based
on the execution of a graph grammar, and use it as a semantic model for analysis tools
based onmodel checking. For instance, that was the method in (FERREIRA, 2005), where
the SPIN model checker was used to study object-oriented graph grammar specifications.
Notice, however, that such LTS extraction process needs to address the same kind of issues
considered by the referred semantic models, such as representation nondeterminism and
possibly infinite behaviour. More details regarding verification of graph grammars may be
found in (RENSINK; SCHMIDT; VARRÓ, 2004) and (BALDAN; KÖNIG; RENSINK,
2005).

2.5 Rules with negative application conditions
The presented description of graph grammars using typed graphs and DPO rules is suf-

ficiently powerful to model any system, supported by the fact that graph grammars are (in
most of the variations) Turing-computable models, i.e., we may represent any computable
function. However, being powerful does not necessarily mean being convenient, and the
appeal of being a visual language would fade away if the models became excessively clut-
tered. Ideally, expressiveness should not be obtained in exchange for clarity. There are
several variations of the basic typed graph grammars, making the modelling process more
convenient and themodels clearer. In this section wewill describe the adoption of negative
application conditions for rules.

In the DPO approach, rules are applicable whenever there are valid matches for their
left-hand sides, therefore the existence of a match can be seen as a necessary condition for
the rule application. If we want to extend the requirements for a rule application without
changing its effect, we may simply require it to read more context by adding new preserved
elements representing the additional requirements. On the other hand, we do not have
a direct mechanism to avoid rule application according to the presence of an undesired
context. As an example of the described situation, we could try to represent in our example
grammar the fact that each server has a limit: each server can process only two messages
at a given time. This means that we can only send a new message to a server if it has
at most one message connected. To implement such requirement, we could require the
introduction of new elements, for instance, self-edges in the server as allocation counters
to be read and updated by the rules. However, although straightforward, this solution
creates extra elements only required for control. A reasonably better solution would be
to avoid rule application by stating directly that sendMSG cannot be executed if there are
more than one message in the server. A negative application condition (NAC) for rule
p ∶ L ← K → R is a morphism n ∶ L → N, i.e. a morphism going from the LHS of the rule
to another graph N. A graph rule with NACs is a pair (p,N) where p is a rule and N is a
set of negative application conditions for p.

38

Example 29 (Rule with NAC). Figure 2.12 depicts the sendMSG2 rule, which has a NAC
determining that it cannot be executed if the receiving server already is already processing
two messages.

Figure 2.12: Rule with negative application condition.

The allowed direct derivations for (p,N) are all rewritings G p,m
Ô⇒ H such that there is

nomonomorphism ei ∶ N→ G such that ei○ni = m, for all ni ∈ N, i.e. none of the application
conditions has a monic factorization of the match m. The situation is diagrammatically
shown below.

N
��

Ò
--

��

Ó
--

��

ei

--

L
nioo

m

��

Kooloo // r //

��

R

��

G Doo // H

The restriction that all factorizations ei have to be monomorphisms is important: if it
were not present, the NAC of the example would forbid the execution of the rule if the
server had one message in it, because the factorization morphism would enable to map
the two messages in N to the same message in graph G. In general, negative application
conditions allow for convenient definition of rules that can only be triggered until a given
condition is achieved. For instance, in the place-transition example of Chapter 1, they
were present in the model to assure that a new counter place is created only if it already
does not exist. This situation is an example of the usage of NACs to ensure termination
for rewritings based on non-deleting rules.

One important characteristic of rules with NACs is that they allow a new kind of par-
allel and sequential dependencies. While a conventional rewriting ρ = G

r,m
Ô⇒ H could

forbid the execution of ρ′ = G r′,m′
Ô⇒ H′ only by removing elements from the image of m′,

now we can forbid ρ′ by creating in H′ some element that may allow the existence of a
factorization of some NAC of r′. In later sections, we will present how the definitions for
conflict and dependency must be adapted for the presence of matches. Good references for
this topic are (LAMBERS; EHRIG; OREJAS, 2006; LAMBERS et al., 2008; LAMBERS;
EHRIG; OREJAS, 2008).

2.6 Typed attributed graph grammars
In the typed graph grammar context, encodings are required whenever we need to

specify natural numbers, arithmetic even booleans conditions. Although it is possible
to encode such entities by means of nodes and edges, this is not very convenient, and
thus a mechanism that allows data to be used directly in graphs and graph rewriting is

39

very desirable. This was precisely the motivation for the introduction of typed attributed
graphs (TAG), which allow the association of values to their nodes and edges. For this,
there are special attributing edges, whose source refers to graph element (nodes or edges)
and the target, to data values. Those data values are defined as elements of an algebra
which signature is encoded into the type graph of the specification. In the following, we
will omit the formal definitions, focusing mainly on the intuition.

Example 30. Figure 2.13 shows an example of typed attributed graph to represent mes-
sages. In the type graph T, the node MSG has tree attributing edges: from and to of type
String, and dataID of type Integer. Each node instance of MSG may have associated at-
tributing edges providing a particular value for each attribute type.

Figure 2.13: Typed attributed graph.

To illustrate the usefulness of attributes we remark that, although suitable to illustrate
the basics of graph rewriting, our example graph grammar is too abstract for describing
realistically clients and servers. In the current setting, messages are sent to servers, data
is collected and returned to clients in a totally non-deterministic way: no preferred server,
data or client to return to. In more detailed models, data within messages such as sender
and receiver address should be considered by the rewriting rules. Typed attributed rules
use variables to represent instantiated values in the LHS, and can update attributes by
means of algebraic expressions in the RHS. Moreover, relations between the attributes in
the LHS guide the rewriting as well.

Example 31. Figure 2.14 shows an example of typed attributed graph grammar for the
same scenario of clients and servers. The conventional notation for TAG is used: values
for attributes shown inside nodes, as in object diagrams of UML. Notice that all tran-
sitions require some kind of matching between the information in the message and the
identification of the node, referred by means of variable x.

2.7 Tools and analysis techniques
There are several tools for working with graph grammars, usually implementing cre-

ation, simulation and analysis of models. Here we mention some of the most popular
graph grammar tools, and comment on some analysis techniques implemented by them.

AGG (TAENTZER, 2000) allows one to model and simulate typed attributed graph gram-
mar specifications. The tool supports defining rules with negative and positive application

40

Figure 2.14: Typed attributed graph grammar.

41

conditions, layered rule execution, and integration with user-defined Java methods. Con-
cerning analysis, it implements critical pair analysis for specifications. However, it does
not allow for model checking of the space-state of the model.

Groove (RENSINK, 2004) allows to define and simulate typed graph grammars, with sup-
port for attributes and other extensions for the formalism. The interesting aspect of this
tool is that it allows the generation and model-checking – by means of Computational
Tree Logic (CTL) – of the space-state of the execution of the graph grammar, which is
quite useful from the point of view of understanding the rewriting process. It does not
implement, however, critical pair analysis.

Augur (KÖNIG; KOZIOURA, 2005) is a verification tool that implements the approxi-
mated unfolding analysis technique for the exploration of graph grammar space-state.

There are also important tools such as FUJABA (KLEIN et al., 1999), PROGRESS
(SCHÜRR, 1990) and GREAT (BALASUBRAMANIAN et al., 2006), which employ the
graph rewriting mechanism in the context of model and meta-model transformation in
software engineering scenarios.

2.8 Critical pair analysis
A critical pair is an overlap between components of two rules which makes their ap-

plications conflicting. It is usually referred as a “essential” conflict since it reproduces the
interaction between two rules from the point of view of their matches (or co-matches),
independently of the remaining of the graph. The precise definition will depend on the
usage or not of NACs. A critical pair may refer to parallel dependence if we consider the
LHS of both rules, or sequential dependence, if we take the RHS of the first rule with the
LHS of the second one.

Critical pair analysis (CPA) is a static analysis technique that is used to detect potential
conflicts and dependencies between two graph rewriting rules within the same specifica-
tion. When we say potential, we mean that the conflicting situation may actually not occur
due to particular conditions on the initial graph, but they may occur given a suitable ini-
tial condition. On the other hand, all kinds of conflict that actually occur in a system are
always foreseen by the method. Operationally, the calculation of critical pairs (for rules
without NACs) is done according to the algorithm shown in Figure 2.15.

Initially, we construct all possible pairs of rules. For each pair (a,b), we calculate
all possible overlaps, i.e., all jointly surjective pairs of morphisms f ∶ LHS(a) → X and
g ∶ LHS(b)→ X, as shown below,

LHS(a)

##

LHS(b)

{{
X

representing the possible interactions between the images of matches for both rules. The
function calculateAllOverlaps can be implemented by calculating all possible partitions of
the disjoint union LHS(a)+LHS(b), subjected to constraints on types, edge connectivity,
and application conditions for a and b. After this, each overlap is tested for conflicts, and
the non-conflicting ones are removed from the list. The algorithm returns the collection

42

Input : A graph grammar G = ⟨T,G0,P, π⟩
Output: A list of triples (r1, r2,ol) where r1 and r2 are rule names in P and o is a

conflicting overlap of LHS(r1) and RHS(r2);
begin

// Calculate all pairs of rule names
P← {(r1, r2) ∣ r1 ∈ P, r2 ∈ P};

// Initialize accumulator with the empty list
result ← [];

// Calculate all overlaps
for (a,b) ∈ P do

// Generate all possible superpositions between the LHS of
both rules

overlaps ← calculateAllOverlaps (LHS(a), LHS(b));
// Remove from the list all superpositions that are not

conflicting
criticalPairs ← filter (isConflicting, overlaps);
// Prefix each superposition with the respective rule names
labeledCriticalPairs ← map ((o↦ (a,b,o)), criticalPairs);;
// Accumulate critical pairs for rules a and b
result ← concatenate(result, labeledCriticalPairList);

return result

Figure 2.15: Algorithm for calculating critical pairs (conflicts).

43

of critical pairs of all pairs of rules in the specification, labeled according to their respec-
tive rules. Notice that the same procedure can be used to enlist all potential sequential
dependencies between rules. In this case, the only required modification is need in the
calculation of overlaps, whereas we use RHS(a) and LHS(b). Implementations of CPA
in tools usually present a table counting the number of critical pairs between rules, and
allow to inspect interactively the structure of each one of them.

One of the advantages of CPA is that it provides structural information about what
causes the conflicts between rewritings. Because of the non-deterministic, data-driven
execution model of graph grammars, it is sometimes hard to foresee some interactions
between rules which may be overlooked during the modelling phase of a system.

Example 32. The resulting tables for critical pair analysis (in AGG) for the simple client-
server example of Figure 2.7 (without attributes) are shown in Figure 2.16. Taking a
particular example of critical pair, the table of conflicts shows 2 potential conflicts between
receiveMSG and getDATA. They arise from the situation where the first rule deletes the
edge from message to server, while the other one may be trying to “load” the message
with another data, and thus preserving the same edge. Because AGG tests asymmetric
conflicts (counting a conflict in (a,b) only when a disables b and not when b disables a),
the conflict table is not perfectly symmetric.

Conflicts sendMSG getDATA receiveMSG deleteMSG
sendMSG 2 0 0 2
getData 0 3 0 0

receiveMSG 0 2 6 1
deleteMSG 3 0 1 3

Dependencies sendMSG getDATA receiveMSG deleteMSG
sendMSG 0 1 2 0
getData 0 0 3 0

receiveMSG 2 0 0 2
deleteMSG 3 0 1 3

Figure 2.16: Results from critical pair analysis.

2.9 Adhesive HLR categories and systems
The framework of Adhesive High-Level Replacement (HLR) Systems (EHRIG et al.,

2004) is a generalization of the DPO rewriting approach. It allows to reuse several re-
sults from typed graph rewriting to other contexts, such as typed attributed graphs, place-
transition nets and algebraic specifications. Roughly speaking, it states minimum require-
ments for a given category which are sufficient for it to conform with the theory of DPO
rewriting. A category is adhesive HLR if it has pushouts and pullbacks which are compat-
ible with each other along a special class of monomorphisms M, being those morphisms
in M the ones used to build up rules in the specification. More precisely, the compatibility
condition refers to pushouts along M being Van Kampen squares, as shown in the next
two definitions.

Definition 33 (Van Kampen square). A pushout (1) is a Van Kampen (VK) square if, for

44

any commutative cube (2) with (1) in the bottom and where the back faces are pullbacks,
the following statement holds: the top face is a pushout iff the front faces are pullbacks:

C

n

��

Afoo

m

��
D Bgoo

(1)

C′

c

��

n′
""

A′

a

��

m′
""

f′oo

D′

d

��

B′

b

��

g′oo

C
n

##

A
m

##

foo

D Bgoo

(2)

isVK(f,m,n,g) = isPO(f,m,n,g) ∧ isPB(a,m′,b,m) ∧ isPB(a, f′, c, f) Ô⇒

(isPO(f′,m′,n′,g′) ⇐⇒ isPB(n,d, c,n′) ∧ isPB(g,d,b,g′))

Definition 34. A pushout diagram

C
n
��

Afoo

m
��.

D Bgoo

is said to be along a given class of morphisms M iff either f ∈M or g ∈M.

Definition 35 (adhesive HLR category). A pair (C,M) where C is a category and M is
a class of monomorphisms in C is said to be a adhesive HLR category iff

• M is a class of monomorphisms closed under isomorphisms, composition (f ∶ A →
B ∈M,g ∶ B→ C ∈M⇒ g○ f ∈M) and decomposition (g○ f ∈M,g ∈M⇒ f ∈M)

• C has pushouts and pullbacks along M-morphisms and M-morphisms are closed
under pushouts and pullbacks

• pushouts in C along M-morphisms are VK squares

Although rather cryptic, the notion that all pushouts along M-morphisms are Van
Kampen squares is sufficient to assure that several important pre-requisites for DPO-
related properties hold in the category in question. As examples, wemention the following
properties:

• pushouts along M-morphisms are pullbacks;

• pushout complements for diagrams in the format A ← B ↢ C are unique (up to
isomorphism).

For more details (and the respective proofs) of those facts, we refer the reader to (EHRIG
et al., 2005). Whenever the class M correspond to all monomorphisms in C, we say
that C is an adhesive category. Historically, adhesive categories were defined first in
(LACK; SOBOCIŃSKI, 2003), and adhesive HLR categories (EHRIG et al., 2004) are

45

a generalization of the framework that includes important practical formalisms such as
typed attributed graph grammars. The category Set is the most straightforward example of
adhesive category, and we know that adhesive categories are closed under product, slice,
co-slice and functor construction. Hence, we can deduce that Graph, T-Graph are all
adhesive by construction. Those properties of construction of adhesive categories will be
particularly important for the description of modifications in graph rules, as will become
clear in the next chapters. The equivalent concept of a graph grammar for a given adhesive
HLR category is an adhesive HLR system.

Definition 36 (Adhesive HLR system). An adhesive HLR system AS = (C,M,S,P) con-
sists of an adhesive HLR category (C,M), a start object S and a set of productions P,
where each production p = L l←Ð K rÐ→ R ∈ P is a span in C such that l, r ∈M.

We aim to characterize the second-order rewriting layer as an adhesive HLR system
itself. In this way we obtain a precise notion of critical pair and independence for second-
order rewritings, among other properties. Furthermore, it is particularly helpful to work
with general frameworks if we wish to generalize the results obtained from typed graphs
towards more complex scenarios such, for instance, typed attributed graphs.

2.10 Summary
In this chapter we have sketched some of the main concepts of the graph transformation

area that will be useful in this work. The research area is huge, and large parts of it were
purposely omitted by reasons of space and focus. We started with the basic definitions of
graph grammar and their derivations, then we commented on conflicts and dependencies,
basic properties such as local Church Rosser, semantic models, negative application con-
ditions for rules, attributed graph grammars, tools, analysis techniques, and, finally, the
generalization of the rewriting framework referred as adhesive HLR systems.

For the reader wishing a more detailed vision of the field we recommend the classic
books of the trilogy Handbook of graph grammars and computing by graph transforma-
tion: Volume 1: Foundations (ROZENBERG, 1997), Volume 2: applications, languages
and tools (EHRIG et al., 1999) and Volume 3: concurrency, parallelism, and distribution
(EHRIG et al., 1999). Another great book is Fundamentals of algebraic graph transfor-
mation (EHRIG et al., 2005), which mentions in detail the framework of adhesive HLR
systems.

46

3 HIGHER-ORDER IN LAMBDA-CALCULUS

This chapter elaborates on the concept of higher-order constructions. For this, we re-
vise the lambda-calculus formalism, well-known for being convenient for defining higher-
order functions. The definitions are mostly taken from standard references such as
(BARENDREGT, 1992). Our focus here is not to dive into the vast theory of lambda cal-
culi, but instead build up an intuition of how it represents higher-order functions. Guided
by this intuition, we provide a comparison between lambda-calculus and graph rewriting,
and sketch a characterization of higher-order terms for the context of graph transformation.

3.1 Untyped lambda calculus
The untyped lambda calculus, as introduced by Church, was initially proposed as a

language to formalize the concepts of function definition and function application. Based
on the original untyped description of the calculi, several variations were developed across
the years, specially several typed variations. The basic untyped lambda calculus is Turing-
computable, i.e. it allows to represent all computable functions between natural numbers,
and thus has the same expressiveness as other universal formalisms. The remarkable fact
is that it is minimalistic in its constructions, as shown by the its syntax of terms.

Lambda calculus refer to lambda terms and their transformations. Lambda terms, or
lambda expressions, are constructed as equivalence classes of so-called pre-terms. Pre-
terms are syntactical expressions built from the following grammar

M,N ∶∶= x ∣M N ∣ λx.M

Uppercase letters such as M, N, P and Q refer to arbitrary pre-terms. The set of all pre-
terms is denoted Λ. Pre-terms may be elements from an arbitrary infinite but countable set
X of names, usually referred by lowercase letter such as x and y. Pre-terms in the format
P Q are named applications, and intuitively correspond to the execution of term P as a
function receiving term Q as an argument. An application P Q will be written @(P,Q)
when we want to focus on its representation as an abstract syntax tree. Pre-terms in the
format λx.P and named lambda abstractions and denote an anonymous functions where
the name x is an input parameter and the calculated expression is given by P. Mostly often,
x occurs inside P, describing how the input parameter is processed. The usual syntactical
conventions to avoid an excess of parenthesis say that (i) applications are associative to
the left: x y z = (x y) z ≠ x (y z), (ii) the term inside an abstraction extends to the right
as much as possible: λx.xyz = λx.(x y z) ≠ (λx.x) y z (iii) subsequent abstractions may
be abbreviated as a single λ followed by a sequence of variables: λx.(λy.x) = λx y.x. We

47

present some examples of pre-terms as follows.

x x y (λx.x x)
x (λy.x) (λx.y)(λy.x y) (λx.λy.y x)

Each occurrence of a variable x inside a term Pmay be either bound or free. An occurrence
of x is bound if it is inside a sub-term λx.M. It is free otherwise. For instance, in the term
(λx.x y) y is free but x is bound. Variable occurrences always bind to the innermost λwith
the same name.

Bound variables have the same role as formal parameters in programming languages.
Therefore, two terms structurally equal only differing in the choice of formal parameter
names can be considered essentially the same. This equality is captured by an equiva-
lence relation =α on pre-terms, named α-equivalence and defined as the least congruence
including the equality

λx.M =α λy.M[x ∶= y] (y /∈ FV(M)) (α)

where FV(M) is the set of all variables occurring free in M and M[x ∶= y] means the
substitution of all free occurrences of x in M by y. To exemplify, the identity term corre-
sponds to the equivalence class {λa.a, λb.b, λc.c, . . .}. The collection of all lambda terms
is given by the quotient set Λ/=α. By convention, we will refer to terms by any of its
representatives, chosen smartly to avoid capture of free variables during substitution.

The dynamics of a lambda term is given by function application, formalized by the
beta-reduction relation. A term of the format (λx.P)Q is called a redex (reducible expres-
sion), and its respective contractum is the term P[x ∶= Q], i.e. the term Pwhere all the free
occurrences of x were substituted by Q. Notice that a single term may have several redex
subterms. A term which does not contains any redex is called a normal form. A one-step
reduction, written M →β N, represents the calculation of N by substituting a given redex
in M by its contractum. Formally, it is defined by the following axiom schema

(λx.P) Q→β P[x ∶= Q] (β)

together with adequate contextual extensions: if P→β Q then P M→β QM,M P→β MQ
and λx.P→β λx.Q. The reflexive and transitive closure of the one-step reduction→β is the
beta-reduction relation denoted↠β . Beta-reduction aims to represent evaluation without
changing the intrinsic “value” of the term. The beta-equivalence relation between terms
identifies all terms that converge by beta-reduction: if P↠β M and Q↠β M then P =β Q.
If eventually a term reduces to a normal form, them that normal form assumer the role of
“value” of all the terms that arrive at it.

As a theory, untyped lambda calculus has several interesting properties. One of them
is that beta-reduction is confluent, usually referred as Church-Rosser: if P →β M and
P →β N with M ≠ N, there exists for sure a term Q such that M ↠β Q and N ↠β Q. A
consequence of confluence is the uniqueness of normal forms: it is impossible for a term
reduce to distinct normal forms. Furthermore, as already mentioned, lambda-calculus is
a universal formalism, and therefore it is possible to encode all kinds of data structures
using lambda terms.

Lambda terms may be interpreted as functions and as arguments at the same time.
Furthermore, both function creation and function application may be specified by combi-
nators, i.e. terms without free variables. For instance, the combinator

K = λx.λy.x

48

receives a term a and produces the constant function λy.a. We also have terms that, given
two arguments, define the application of one as argument of the other.

App1 = λx y.x y App2 = λx y.y x

Another interesting fact is that there are combinators that produce fixed-points for any
term (seen as a function). In other words, we have a lambda term Y such that, for every
term M we have

M (Y M) =β Y M

There are actually several of such combinators, where the simplest is referred as the Y
combinator:

Y = λf.(λx.f(x x))(λx.f(x x))

The existence of fixed-points means that, given an abstraction P = λx.M, we can obtain a
term Y P such that P acts as the identity. Another interpretation of is that of a potentially
infinite (in fact finite, but as big as required) sequence of applications of P, as shown below

Y P = P(P(P...)))

The untyped lambda calculus may be also referred as a theory of unityped lambda
calculus, since all the terms are taken as living in the same domain. The models for lambda
calculi are the ones such the setD of terms and the setD→ D of functions modifying terms
are isomorphic: D ≅ D → D. This implies that the cardinality of the model of function
application has to be restricted to a subset of the possible set-theoretical functions between
two sets.

3.2 Simply typed lambda calculus
Lambda calculus may be extended with the notion of types, denoting classes of terms

according to their inputs and outputs. Across the typed variations, the simply typed lambda
calculus is (as the name suggests) the simplest. There are twomain approaches, namely the
Curry style (type-free terms) and the Church style (explicit types in lambda abstractions).
In both styles, types are built from the following grammar

σ ∶∶= α ∣ σ → σ

in which α (and other greek letters) represents a type name drawn from a infinite but
countable set Types. Terms in the Church style have type annotations in the arguments,
and thus follow this grammar:

M,N ∶∶= x ∣ λxσ.M ∣MN

A type environment Γ is an association of variables names (in terms) to type names, de-
noted by the following grammar

Γ = ● ∣ Γ; x ∶ σ

where ● represent the empty environment and the Γ; x ∶ σ operator denotes the extension
or updating of Γwith x ∶ σ. Type environments define the types for free variables in terms.
A type judgement Γ ⊢M ∶ σ says that a term M has type α under the type environment Γ.
Type judgments are obtained by the following inference rules

49

x ∶ σ ∈ Γ

Γ ⊢ x ∶ σ
Γ; x ∶ σ ⊢M ∶ τ

Γ ⊢ λx.M ∶ σ → τ

Γ ⊢M ∶ σ → τ N ∶ σ
Γ ⊢M N ∶ τ

Definitions of α-equivalence, β-reduction and β-equivalence are essentially the same
as in the untyped case. Simply typed lambda calculus has different properties in compar-
ison with the untyped variation. Types stratify terms into layers: consider the following
terms

Id1 = ● ⊢ λxα.x ∶ (α → α)
Id2 = ● ⊢ λzα→α.z ∶ (α → α)→ (α → α)

Under the same empty environment, Id2 Id1 is valid and has type (α → α). On the other
hand, even the effect of both terms being the same, the term Id1 Id2 may not be typed due
to incompatibility in the types. Since types are always finite, some terms such as the λx.x x
may not be typed, since x would have to be of type α and α → α at the same time: in this
particular typed language there are no fixed points for the type constructor →.

Simply typed lambda calculus enjoys strong normalization: all typed terms have a ter-
minating and confluent beta-reduction. Concerning expressivenes, the fact that all beta-
reductions terminate says that the halting problem for well-typed lambda terms is decid-
able. This shows that the simply typed lambda calculus is not a Turing computable lan-
guage.

The importance of mentioning types is because we want to explore the hierarchy given
by base types and the → type constructor to characterize higher-order terms. This will
require the definition of a height for a given type. Since we have uniqueness of types for
each term in the simply typed lambda calculi à la Church, a well-typed term has a unique
height.
Definition 37 (Height of a type). The height h(σ) of type σ is defined as

h(α) = 0
h(σ1 → σ2) = max(h(σ1) + 1, h(σ2) + 1)

Notice that this definition of height is not the same as the usual in the literature, where
the return type height is not increased: our definition aims to denote as higher-order terms
both the ones which receive and return functions.
Definition 38 (Higher-order term). A closed term M is a higher-order term iff ⊢ M ∶ σ (it
is well-typed) and h(σ) ≥ 2.

According to this particular characterization, the following terms are higher order:

• K = λxα.λyβ.x ∶ (α → (β → α))

• Id2 = λxα→α.x ∶ (α → α)→ (α → α)

• L = λxα.λβy.y ∶ (α → (β → β))

• App3 = λxα→(β→γ).λyα→β.λzα.(xz)(yz) ∶ (α → (β → γ))→ (α → β)→ (α → γ)

In fact, it is quite difficult to avoid using higher-order terms in typed lambda calculus.
For instance, if we need to represent a numeric function f ∶ σ1 × σ2 . . .× σn → σ with more
than one argument as a lambda term, it is required to convert it into a single-argument
higher-order function f′ ∶ σ1 → (σ2 → . . . (σn → σ) . . .) through the well-known currying
operation.

50

3.3 Comparison of beta-reduction and graph transformation
In this section, we study the similarities and distinctions between beta-reduction in

lambda calculus andDPO graph rewriting. Then, we sketch a notion of a higher-order term
in the graph rewriting setting based on the similarities of the formalisms. The analogies
are not based on the literature, but rather on a critical analysis of the operational semantics
of both models.

Both lambda calculus and the graph grammars are rule-based rewriting mechanisms.
The objects being rewritten by beta-reduction are terms, specific trees built from a par-
ticular syntax and a countable set of variable names, while in graph rewriting we mod-
ify typed graphs. Both the untyped version of lambda calculus and graph grammars are
Turing-complete models, being naturally capable of simulating each other. This simu-
lation is not direct, however, since the nature of the rewriting differs. In the following
discussion, we compare specific points of both kinds of rewriting. For brevity, we will
employ the abbreviations LC, ULC and TLC, to denote, respectively, lambda calculus (in
general), untyped lambda calculus and simply typed lambda calculus. The DPO approach
for graph transformation will be abbreviated as GT. The comparison runs through some
specific criteria, as follows.

Active elements: in LC, the elements representing functions to be applied are lambda
abstractions, terms in the format λx.P. In GT, the equivalent notion corresponds to graph
transformation rules, denoted by injective spans L← K→ R of typed graphs.

Passive elements: in the ULC, any lambda term may be passed as a parameter for an
abstraction, including the abstraction itself. In TLC, this is not the case, since the typing
mechanism ensures that well-typed applications receive terms of the same type as declared
in the lambda abstraction parameter. In the GT scenario, the passive elements are graphs
typed over the same graph as the rule: for this purpose, the typing mechanism for graphs
works in a similar way as in the TLC, ensuring a certain level of compatibility between
active and passive elements.

Opacity of passive elements: within the scope M of a lambda abstraction (λx.M), the
formal parameter x behaves like an atomic black box: its internal structure is unavailable,
and the only possible way of manipulating it is including it in a bigger expression. On the
other hand, graph transformation rules do not act on the graph as a whole, but rather on a
particular region matching its left-hand side, and thus the internal structure of the graph
is visible by definition.

Replication of passive elements: within the scope M of abstraction λx.M, the term x may
be “replicated” and appear an arbitrary number of times. In the DPO approach for graph
rewriting with injective spans, replication is not possible. Although we can copy nodes
and edges by creation, the new elements would always be accounted as distinct from the
old ones, rather than “clones”.

Rewriting process: A given lambda term M may contain n redexes, each implying a par-
ticular one-step beta reduction M →β Nn. The evaluation follows by choosing one redex
i ≤ n, applying it, and repeating the process for the resulting Ni term. Besides the choice of
a particular redex, each one of them are reducible in exactly one way. For a term without
redexes such as (x z), the evaluation is stuck. On the context of GT, a rewriting always

51

depends on finding a particular match for rule q ∶ L ← K → R on graph G. We now intro-
duce the notation@(q,G) and@(P,G) to denote rule q and ruleset P actuating over graph
G, respectively. Considering @(P,G), there are two levels of nondeterminism to account
for:

1. the choice of rule

2. the choice of a particular match for the chosen rule
The distinction we draw between a rule and a ruleset inside @ refers to the extent of its
effect: a ruleset may affect a graph in many ways and in many places, while a rule affects
the graph in a unique way in many places. We can argue that the equivalent notion of
redexes in the GT are all the possible matches for @(P,G). Notice that such matches are
implicit and must be found at each reduction step, unlike redexes in a lambda expressions
which are fixed by the structure of the term. When there is no possible rewriting for any
of the rules in P for a given graph H, the evaluation is considered to be stuck.

Confluence: In LC, we have the Church-Rosser property, assuring the existence of a term
P such that Nn ↠β P, for all n. In GT, we know that graph rewriting is not confluent
in the general case. For the particular case of parallel independent rewritings, one-step
confluence is assured by means of the local Church-Rosser property.

Dynamic transformations: Consider the beta-reduction (λx.M)P →β M[x ∶= P]. One in-
terpretation is that the lambda abstraction (λx.M) is consumed together with its argument
to provide the result. On the ULC, terms may have an infinite reduction by simply recreat-
ing previously consumed redexes: the famous example is the term (λx.x x)(λx.x x), which
always evaluate to itself. Lambda applications may be created dynamically as well: con-
sider the term (λx.λy.x)(λz.z z). It is certainly not an abstraction in the format λx.M, but
it reduces to an abstraction in one step, and thus can be used as a function. As a counter-
point, graph rewriting rules work more or less like catalysts: they are not consumed by the
process of graph rewriting, and can be applied as many times as required, being conserved
by the whole rewriting process.

If we consider the original motivations for both formalisms, it is natural that they differ
in so many points: lambda calculus intends to represent functions and effective compu-
tation, while graph transformation focus on modelling distributed and non-deterministic
systems. However, it is also possible to identify commonalities by drawing analogies be-
tween elements of both languages. We start by identifying redexes in lambda calculus
with@(P,G), i.e, a ruleset P affecting a graph G. This association reflects the intuition of
considering a typed graphs G the equivalent of a typed primitive value v ∶ α and a rule (or
ruleset) with a lambda abstraction λxα.M, where M[x ∶= v] ∶ α. Moreover, a match m may
be associated with the application symbol @ in lambda calculus. This view is portraited
in Figure 3.1.

It needs to be mentioned there are other possible associations. One example is to relate
the β-reduction scheme, for which all redexes are matches, with a graph rule or ruleset
in the graph transformation setting. This way, all possible redexes are all the distinct
matches for the reduction scheme. The argument against this view, however, it that it does
not reflect the common characteristic of graph rewriting rulesets and lambda abstractions
being both programmed transformations, i.e. constructions the programmer or modeller
will manipulate in order to represent a desired behavior.

52

Figure 3.1: Analogy between beta-reduction and graph transformation.

Let us move forward in our analogy by considering the typing of higher-order terms
in the simply typed lambda calculus. We can claim that

(α → α)→ (α → α)

i.e., the type of second-order functions that transformfirst-order functions of type (α → α),
may be associated to the concept of second-order rules modifying graph transformation
rules, as shown in Figure 3.2 by our current analogy. The type

((α → α)→ (α → α))→ ((α → α)→ (α → α))

is associated with third-order rules transforming second-order rules, and so on. That is the
first intuition, and follows from the abstract notion of higher-order modifications. Other
higher-order types, however, may suggest more complex effects in the setting of graph
transformation. For instance,

α → (α → α)
may be associated with the notion of rules for converting graphs into graph transformation
rules; the type

(α → α)→ α

with the opposite operation, rules encoding rules into graphs. Since graph transformation
rules only modify the argument rather than fully consume it and return the output, the
realization of such inter-level terms would require a common graph-based representation
for both graphs and graph transformation rules, as we have in the untyped lambda calculus.
In other words, a unique representation for both (α → α) and α. This, however, will not
be the focus of this work. Another interesting suggestion may be obtained from types such
as

(α → α)→ (β → β)
In this case, since base types such as α and β are associated with typed graphs, a possible
reading is the one of rules retyping other rules, probably through modifications in the type
graph.

For our purposes of representingmodel transformations, we intend to focus on a proper
definition for second-order rules that modify a collection of first-order rules. The intuition
is to have higher-order rules defining model transformations while conventional rules rep-
resent the semantics of the system itself. There are several important details to consider
about this idea:

1. how to generalize the notion of higher-order rules in the DPO approach for graph
transformation.

53

Figure 3.2: Analogy between beta-reduction and rule transformation.

2. given that “rules modifying rules” are provided, how to handle modifications in the
structure of the grammar, such as addition and creation of new rules in the rule
collection? Can modification, creation and deletion be modelled by mean of higher-
order rules, or higher-order collections of rules? Moreover, how to deal with other
components of a specification, such as the initial graph and type graph?

3. how to characterize the interaction between the two levels of rewriting. Is there an
equivalent notion of critical pair between higher-order rules and lower order rules?

In the next chapters we intend to discuss those issues in detail, introducing an adequate
solution to each one of them.

3.4 Summary
This chapter started with a brief review of untyped and simply-typed variations of

lambda calculus, which was done to introduce the notion of higher-order terms in simply-
typed lambda calculus. The original part of this chapter comes from the comparison be-
tween the rewriting principles behind lambda calculus and graph transformation. Based
on this analogy, we sketched how some types of lambda terms suggest some kinds of
higher-order rewriting rules for the graph transformation setting.

54

4 SECOND-ORDER GRAPH REWRITING

This chapter faces the problem of defining a suitable notion of modification for graph
transformation rules, i.e. how to obtain a notion of second-order rule which affect con-
ventional (first-order) rules in a graph grammar specification. We follow the track of gen-
eralizing the algebraic DPO approach: first, we need to fix a category in which rules are
objects and second-order rules are monic spans; then, we attempt to use DPO diagrams
in such categories to describe second-order rewriting. For such, we have considered the
category of arbitrary spans, named T-Span, and also its subcategory of monic spans ob-
jects, named T-Rules, and have identified some issues regarding DPO diagrams in both
cases. We arrive at the conclusion that second-order rule rewriting can be better defined
through DPO rewriting in T-Span with negative application conditions, which we take as
a new notion of second-order rewriting. The original contributions of this chapter are the
following:

• discussion regarding DPO diagrams in T-Span and T-Rules, and their issues;

• precise definition of second-order rules and second-order rewriting;

• determination of the importance of NACs in several aspects of second-order rewrit-
ing;

• characterization of T-Span as an adhesive HLR category with NACs.
We start by defining the category of arbitrary spans of typed graphs.

4.1 DPO diagrams in the category of graph spans
In the DPO approach, graph transformation rules are diagrams in the format

L l←Ð K rÐ→ Rwhere both l and r aremonomorphisms. In the definition of rules, monic spans
are considered instead of arbitrary ones because this simplifies considerably the rewrit-
ing theory. For instance, uniqueness of pushout complements, essential characteristic for
DPO rewriting, holds in adhesive categories only along diagrams with monomorphisms.
Another reason is that we also avoid to consider more complex (although interesting) situ-
ations such as cloning of graph elements – which occurs if l is not mono – and confusion –
which follows from non-monic r. Since monic spans are special cases of arbitrary spans,
we begin defining morphisms between arbitrary spans, and after, consider its subcategory
containing only rules as objects.
Definition 39 (Span morphism). Let p = (lp, rp) and q = (lq, rq) be spans in a category C.
A span morphism f ∶ p→ q is a triple (fL, fK, fR) of morphisms between the objects of both
spans such that the following diagram commutes in C.

55

Lp
fL //

Kp
fK //

lp ��

rp
OO
Rp

fR //

Lq

Kq

lq��

rq
OO
Rq

Observe that every span over C can be seen as a particular functor from the small
category Span, depicted below,

Span = ●�� ●oo //�� ●��

to the category C. Following this view, the presented definition of span morphisms coin-
cides with the definition of natural transformations between functors of Span over C. This
allows us to define the category of spans over C as the category of functors [Span→ C].
Notice that we are talking about concrete spans in opposition to abstract ones, i.e. two
distinct spans with isomorphic central objects are still considered to be distinct. Return-
ing to the context of graphs, it is clear that the category of spans of typed graphs is an
instantiation of this construction.

Definition 40 (Category of spans of typed graphs). The category T-Span of spans over
T-Graph is the category of functors [Span→ T-Graph].

This way of defining T-Span is technically useful because it allows the inheritance of
properties from T-Graph. Monomorphisms and epimorphisms are simply triples of the
monos and epis in T-Graph and limits and colimits are also constructed component-wise.
In particular, we have a suitable category for double-pushout rewriting, because

Proposition 41. T-Span is an adhesive category.

Proof. By construction: it is known that T-Graph is adhesive, Span is a small category
and, as shown in (LACK; SOBOCIŃSKI, 2003), if D is adhesive and C is small, then the
functor category [C → D] is also an adhesive category.

This is a simple but important fact, which allows us to define rewriting of spans in the
most natural way: by taking monic spans (of spans) as rules and double-pushout diagrams
as rewriting steps. In the following, to distinguish between spans of graphs (objects of
T-Span) and spans in T-Span (or spans of spans of graphs), we refer to the latter as 2-
spans. As with graph transformation rules, we consider monic spans as the subset of
rules, which we call 2-rules.

Definition 42 (2-rule). A 2-span SL
l←Ð SK

rÐ→ SR such that SL,SK,SR are graph rules (monic
graph spans) and l, r are monic span morphisms will be called a 2-rule.

Notice that we are also enforcing that all objects in the monic span are actually graph
rules themselves. As we do with graphs, we take DPO diagrams in T-Span as the basis
for the notion of rewriting.

56

Definition 43 (Span rewriting). Given a 2-rule α = S1
l← S2

r→ S3 and a span morphism
m ∶ S1 → S4 (representing a match), we say that the 2-rule α rewrites the span S0 into S6
iff there is a double-pushout diagram in T-Span as shown below.

S1α∶

m

��

S2

..

ooloo // r //

k

��

S3

m∗

��

S4 S5l∗
oo

r∗
// S6

As with graphs, we denote span rewriting by S4
α,m
Ô⇒ S6. We may also refer it as a one-step

span derivation.

An interesting characteristic of span rewriting is that we can visualize a double pushout
in T-Span as a diagram in T-Graph, as shown in Figure 4.1. This allows us to inspect the
rewriting locally over the three graphs that compose the target span.

a1

m1

��

b1

��

l1oo r1 //

. .

c1

��

a2

__

��

m2

��

b2

``

��

��

l2oo r2 //

. .

c2

aa

!!

��

a3

m3

��

b3

��

l3oo r3 //

. .

c3

��

L L′oo // L′′

K

``

K′
``

oo // K′′
aa

!!
R R′oo // R′′

α = a l←Ð b rÐ→ c (in T-Span)

m = (m1,m2,m3)

(L← K→ R)
α,m
Ô⇒ (L′′ ← K′′ → R′′)

Figure 4.1: Representation of DPO span rewriting in T-Graph.

Example 44. In Figure 4.2 we have an example of double-pushout rewriting in T-Span.
For simplicity, we consider the type graph T to be the unitary graph with one node and
no edges. Each span is represented by three shadowed regions, representing (from left
to right, downwards to upwards) the LHS, interface and RHS. The mapping of individual
elements in each span is given by small gray arrows, while span morphisms are denoted
by big, black arrows. In this particular case, the span being rewritten, if interpreted as a
graph rule, has the effect of deleting one element (x) and preserving another one (a,b,c).
The 2-rule (roof of the diagram) affects the original span as follows: i) it converts a pre-
served element (1,2,3) into a deleted-and-recreated one by erasing its representation in
the interface; ii) a new element (4) is introduced into the RHS, increasing the number of
created elements. The match associates 1,2 and 3 to a, b and c, respectively. The resulting
span, interpreted as a graph rule, deletes two nodes (x and a) and creates other two (4 and
c).

As it is natural in the DPO approach, the existence of a pushout complement (POC)
depends on particular conditions. If the POC exists, however, we know it is essentially

57

....................
.3
.2
.. ..1

.
..3
.
.. ..1

.
.4 ..3
.
.. ..1

.

.c

.b

..x ..a

.

..c

.

..x ..a

.

. . ..4 ..c

.

..x ..a

Figure 4.2: Double pushout rewriting of spans.

unique (up to isomorphism), because T-Span is an adhesive category and we defined 2-
rules from monic span morphisms.

Proposition 45 (Application conditions for DPO span rewriting). Given the diagram
G m← T l↢ U in T-Span, there exists a pushout complement G l∗↢ V k← U iff the follow-
ing conditions are satisfied:

1. dangling and identification conditions hold for each component Gi
mi← Ti

li↢ Ui in
T-Graph, for i ∈ {1,2,3} as shown below.

T3

m3

��

U3ool3oo

T2
f

dd

g $$

m2

��

U2

xee

y
%%

ool2oo

T1

m1

��

U1ool1oo

G3

G2
b

dd

a $$
G1

2. (dangling span condition) an element x in G1 (or G3) “deleted” by l1 (or l3) must
have all elements in a−1(x) (or in b−1(x)) also “deleted” by l2. Formally,

(a) ∀x ∈ m1(T1), Del1(x)→ (∀y ∈ a−1(x),Del2(y))

(b) ∀x ∈ m3(T3), Del3(x)→ (∀y ∈ b−1(x),Del2(y))

where Deli(j) = (∃k ∈ Ti, mi(k) = j) ∧ (∄m ∈ Ui, li(m) = k)

Proof. We need to show that the conditions of Definition 45 are sufficient for the existence
of pushout complement in T-Span.

58

T3

m3

��

U3ool3oo

��

T2

dd

$$

m2

��

U2

ee

%%

ool2oo

��

T1

m1

��

U1ool1oo

��

G3 V3oo
l∗3oo

G2
b

dd

a $$

V2

pee

q
%%

oo
l∗2oo

G1 V1oo
l∗1oo

1. the pushout complements containing V1, V2 and V3 are obtained from condition 1 in
Proposition 45.

2. (a) l∗1 is mono, because l1 is mono and pushouts preserve monomorphisms in
T-Graph. Hence, if x ∈ l∗1(V1) then there is a unique y such that l∗1(y) = x,
and we denote l∗−1 ∶ l∗1(V1)→ V1 by l∗−1(x) = y;

(b) condition 2 in Proposition 45 implies that a(G2) ⊆ l∗1(V1). It follows that
a ○ l∗2(V2) ⊆ l∗1(V1);

(c) from facts (a) and (b), we can define ∀x ∈ V2, q(x) = l∗−1 ○ a ○ l∗2(x). We have
a similar definition for p.

..............
.
.
.. ..1 .

.
..
.
.. ..

.
.
.
.. ..

.

.3

.2

. ..1

.

..

.

..

Figure 4.3: Invalid match in DPO span rewriting.

Intuitively, the dangling span condition says that there is not pushout complement if an
element is deleted from the LHS or the RHS of the span without deleting all its pre-images
in K. The following example presents this situation.

Example 46 (Application conditions). Figure 4.3 shows a situation where the rewriting is
not possible because the match does not satisfy the dangling span condition. There would
be no element in the LHS of the POC object to associate the element 2 (out of the match,
and thus maintained by the rewriting).

Given that we have a notion of rule, match, application conditions, and rewriting, the
category T-Span seems very promising as a framework for second-order DPO rewriting.
It remains only to test if DPO diagrams in T-Span preserve the property of the rewritten

59

span being a rule. The next two propositions show that this holds for the leftmost part of
the DPO construction, i.e., the calculation of pushout complements.

Proposition 47. If f ∶ A→ B in T-Span is monic and B is a rule, then A is a rule.

Proof. Consider the following diagram in T-Graph, representing f ∶ A → B. The compo-
sition fK; lB is monic and also is equal to lA; fL. Therefore lA must also be a monomorphism
by decomposition of monic arrows. Similarly, we have that rA is also mono, which entails
A is a rule.

LA // fL //

KA // fK //

lA ��

rA
OO

RA // fR //

LB

KB
��
lB��

OO rB
OO

RB

Proposition 48. Consider a diagram S0
a←Ð S1

b↢ S2 in T-Span such that S0, S1, S2 are
rules and b is monic. Then, the object S3 of the unique pushout complement S0

c←Ð S3
d←Ð S2

is a rule.

Proof. Because T-Span is adhesive, pushouts preserve monomorphisms. Therefore, if b
is mono then c is also mono, and, by Proposition 47, we have that S3 is a rule.

Thus, we can say that the leftmost part of a DPO diagram does preserve rules. Notice
that this is true independently of the match being injective or not. Nowwe need to consider
the rightmost part of the DPO diagram: unfortunately, as shown by the following example,
we do not have rule preservation.

....................
.
.
..1 ..2

.
..
.
..1 ..2

.
. . ..3 ..4
. ..3 ..4
..1 ..2

.

.

.

..1 ..

.

..

.

..1 ..

.

. . ..3 ..4

. ..3 ..4

..1 ..

Figure 4.4: Double pushout diagram in T-Span

Example 49. Figure 4.4 presents a double pushout diagram in the category T-Span, The
2-rule on the roof of the diagram has the effect of enforcing that some elements in the LHS
of the span become “preserved” (by creating respective nodes in the interface and RHS).
Notice that this particular match is not injective, and also that the resulting span cannot
be considered a graph rule since it is not monic.

This example elucidates an important characteristic of pushouts in T-Span: they are
not closed under rules. Formally speaking,

60

Proposition 50. Consider a 2-span s = S1 ← S2 → S3, where S1, S2 and S3 are graph rules.
If we calculate the pushout PO(s) = S1 → S4 ← S3, then it may not be the case that S4 is a
rule.

Proof. For such, we just need a counterexample. One was already presented in Figure 4.4
as the rightmost pushout of the DPO diagram. Another counterexample is introduced in
Figure 4.5: this case is particularly interesting because the diagram consists of a monic
2-span where all three objects are rules, and yet the object of the pushout is a non-rule.
Therefore, injectivity of all morphisms does not suffice to ensure preservation of rules in
pushouts.

..............
..
.
..1 ..

.
. . ..2 .. .
. ..2
..1 .. .

.

.. . ..3 ..

. ..3 ..

..1 ..

.

. . ..2 ..3

. ..2 ..3

..1 ..

Figure 4.5: Pushout of monic 2-span of rules in T-Span

4.2 DPO diagrams in the category of rules
The fact that DPO rewriting of rules in T-Spanmay generate non-rules is a clear prob-

lem: if we change a rule p into a non-rule p′, we may have unpleasant surprises when ap-
plying p′ to modify graphs. For instance, if p′ is not left-linear, which means that l ∶ K→ L
is not mono, we will have a non-deterministic result. In other words, it would be possi-
ble to obtain as result of the rewriting two distinct, non-isomorphic graphs from the same
match of p′. The need to maintaining rules in second-order rewriting motivates the in-
vestigation of a more restricted scenario than T-Span, i.e., a subcategory where we only
consider rules as objects.

Definition 51 (Category of typed graph rules). The category T-Rules is the full subcate-
gory of T-Span such that all objects are monic typed graph spans.

This definition for T-Rules is quite straightforward, and it coincides with the definition
of categoryMSpan in (CORRADINI et al., 1996). Notice that morphisms between objects
do not need to be mono. For our purposes, it is relevant to study the properties of T-Rules,
such as the existence of limits and colimits, and – very important – to check if it is an
adhesive or adhesive HLR category.

A reasonable starting point for studying T-Rules is to focus on its relationship with
T-Span. For instance, one possible question is whether the obvious inclusion functor

incRule ∶ T-Rules→ T-Span

61

has a left or right adjoint, which would give us information about how to construct limits
and colimits in T-Rules. We have found that there is a left-adjoint to incRule, which we
refer as

toRule ∶ T-Span→ T-Rules
Intuitively, toRule is a free functor, which generates canonically a rule from an arbitrary
span. In the following, we will provide its definition in detail and also a proof of the
adjunction. As a technical requirement, we need to introduce choice functions for pushouts
and epi-mono factorization in T-Graph. Choice functions are interesting because they
allow the definition of functions based on non-unique constructions such as pushouts.
Notice this is adequate for our purposes because we are aiming to define a functor adjoint
to incRule, and adjoints are known to be unique only up to a natural isomorphism (i.e. there
are various different isomorphic functors differing only on the particular choice functions
used).
Definition 52 (Choice of pushout). A choice of pushout for a category C is a function PO
which maps every span d = B← A→ C to a fixed cospan PO(d) = B→ D← C.

Definition 53 (Epi-mono factorization). A category C has epi-mono factorization iff ev-
ery morphism f ∶ A → B can be decomposed into a pair e;m where e is epic and m is
mono such that, for all other decompositions e′;m′, (with e′ epic and m′ mono) there is a
unique morphism h ∶ X → X′ making the following diagram commute. Moreover, h is an
isomorphism.

X ((
m

((
h

��

A

e
66 66

e′ ((((

B

X′
66 m′

66

Definition 54 (Choice of factorization). A choice of factorization for a category C (with
epi-mono factorization) is a function EM that maps a given morphism f to a fixed pair of
morphisms (e,m) such that e is epi, m is mono and e;m = f.

The categories Set, Graph and T-Graph are known to have epi-mono factorization
(EHRIG et al., 2005). For the following proof of adjoint situation, we will also require a
derived result from the existence of epi-mono factorization, presented as Proposition 4.4.5
in (BORCEUX, 1994).
Proposition 55. Consider the following diagram in a category with epi-mono factoriza-
tion.

A

f

��

e // // X // m //

k

��

B

g

��
A′

e′
// // X′ //

m′
// B′

There exists a unique morphism k ∶ X→ X′ such that both inner squares commute.

Proof. Consider the epi-mono factorizations EM(f) = A a↠ A′′ b↣ A′, EM(g) = B c↠ B′′ d↣
B′, EM(m; c) = X x↠ Y

y↣ B′′, and EM(b; e′) = A′′ z↠ Z w↣ X′. Since A a;z↠ Z w;m′↣ B′

and A e;x↠ Y
y;d↣ B′ are two epi-mono factorizations for e;m;g, there is a unique morphism

u ∶ Y→ Z. Finally, set k = x;u;w.

62

Choice functions for pushouts and epi-mono factorizations are used directly in the
definition of toRule, as shown.

Definition 56 (toRule function). Given a graph span p = L l← K r→ R, we first perform the
following calculations in T-Graph.

1. the pushout PO(p) = L r′Ð→ P l′←Ð R

2. the arrow k = l; r′ = r; l′

3. the factorization EM(k) = (e,m)

4. the pushout PO(L l←Ð K eÐ→ X) = L αÐ→ A a←Ð X

5. the pushout PO(X e←Ð K rÐ→ R) = X bÐ→ B β←Ð R

as shown in the next diagram, and we finally define toRule(p) = A a←Ð X bÐ→ B.

K

l

{{

r

##

e

����

.

. .
L

r′ 11

α

X
a

}}

b

!!

��

m

		

R
β

~~

l′mm

A B

P

Example 57. The effect of the function toRule can be seen in Figure 4.6. Intuitively, it
combines all elements in the interface graph which are mapped to the same element in the
LHS or in the RHS and then propagates such merging to the LHS and RHS as well.

........

. . ..8 . ..9 ..0

. ..4 ..5 ..6 ..7 .

..1 . ..2 ..3 . .

.

. . ..{8,9} ..{0}

. ..{4,5,6} ..{7} .

..{1,2} ..{3} . .

. toRule

Figure 4.6: Example of application of toRule.

Proposition 58. The toRule function gives raise to a functor T-Span→ T-Rules.

Proof. We need to show that

• A a←Ð X bÐ→ B is a monic span;

• the toRule mapping of objects extend canonically for morphisms.

The first requirement is obtained by analyzing the the diagram of Definition 56, as follows:

1. there is a unique morphism hA ∶ A→ P since (r′,m) is a pre-pushout of (α,a).

63

2. since m is mono and m = a;hA, then we have that a is mono. The same argument
shows that b is mono too.

For the second requirement, we need to consider an arbitrary span morphisms g =
⟨gL,gK,gR⟩ ∶ p1 → p2. Consider we draw the diagram of Definition 56 for p1 and p2,
and add the morphism components.

1. there is a unique morphism hP ∶ P1 → P2 since (r′2 ○ gL, l′2 ○ gR) is a pre-pushout of
(r′1, l

′
1);

2. since gK; e2;m2 = e1;m1;hP and both e1;m1 and e2;m2 are epi-mono factorizations,
then according to Proposition 55 there is a unique morphism hX ∶ X→ X′.

3. there is a unique morphism hA ∶ A1 → A2 since (α2 ○ gL,a2 ○ hX) is a pre-pushout of
(α1,a1).

4. there is a unique morphism hB ∶ B1 → B2 since (b2 ○ hX, β2 ○ gR) is a pre-pushout of
(b1, β1).

From the obtained unique arrows, we set toRule(g) = ⟨hL,hX,hR⟩.

Now, we show that incRule and toRule are actually adjoints. More precisely, toRule is
the left-adjoint, incRule is the right adjoint and the unit µ is obtained from the construction
of toRules, as follows.

Definition 59 (unit µ). For each span s in T-Span, the morphism µs ∶ s→ incRule○ toRule
is the span morphism ⟨α, e, β⟩ as shown in the diagram of Definition 56. The collection of
µs for all objects s ∈ T-Span is the natural transformation µ ∶ T-Span→ incRule ○ toRule.

Proposition 60. For all s ∈ T-Span, µs is an epimorphism.

Proof. We just need to show that all the components of µs are epi in T-Graph. This
follows from inspection on the diagram of Definition 56. The arrow e is obviously epi.
Since pushouts always preserve epi arrows, we have that both α and β are also epi.

Theorem 61. The functor toRule is the left-adjoint of incRule, with µ as unit.

T-Span
toRule //
� T-Rules

incRule
oo

Proof. We need to show that for all f ∶ s → incRule(p), we have a unique morphism
h ∶ toRule(s) → p such that µs; incRule(h) = f. For this, let us draw first the components
of f and µs in T-Graph.

64

Rp
{{

l′p

{{

Rs
fRoo βs //

l′s

��

Bs

z

jj

Pp Kp.
OO
rp

OO

��

lp
��

Yoo
mf

oo Ks

.

.

fK

xx

ef
oooo es // //

rs

OO

ls

��

Xs .33
ms

**
OO
bs

OO

��

as

��

y

ii Ps

h

OO

Lp

cc
r′p

cc

Ls
fLoo αs //

r′s

FF

As

x

jj

Then, we apply the following steps:

1. calculate the pushout PO(p) = Lp
r′pÐ→ Pp

l′p←Ð Rp. Since T-Graph is adhesive, we
have that pushouts preserve monomorphisms. We can then conclude that l′p and r′p
are mono.

2. calculate the pushoutPO(s) = Ls
r′sÐ→ Ps

l′s←Ð Rs. There exist a unique arrow h ∶ Ps → Pp
due to pre-pushout (l′p ○ fR, r′p ○ fL).

3. obtain a factorization EM(fK) = (ef,mf).

4. unique morphism y ∶ Xs → Y due to Proposition 55 and two epi-mono factorizations
es;ms, ef; (mf; rp; l′p) and commutativity es;ms;h = iKs ; ef; (mf; rp; l′p).

5. unique morphism z ∶ Bs → Rp due to pre-pushout (rp ○mf ○ y, fR).

6. unique morphism x ∶ As → Lp due to pre-pushout (lp ○mf ○ y, fL).

Thus, we have a unique span morphism u = ⟨x,mf ○ y, z⟩ such that µs; incRule(u) = f.

Theorem 61 is relevant because it provides us enough information regarding the con-
struction of limits and colimits in T-Rules. For instance, the fact that the faithful inclu-
sion functor incRule has a left adjoint characterizes T-Rules as a reflective subcategory of
T-Span, which entails the following:

• the co-unit ε of the adjunction (incRule, toRule, µ) is a natural isomorphism;

• from the adjunction result, toRule preserves colimits and incRule preserves limits;

• T-Span is closed for limits, i.e., limits in T-Rules are the same as the ones in T-Span
for the same diagram;

• colimits in T-Rules are related to colimits in T-Span, i.e. we can calculate the col-
imit of a diagram in T-Rules by calculating the colimit in T-Span and then applying
the natural transformation µ on the colimit object.

65

.................

..

.

..1 ..
.

. . ..2 .. .

. ..2

..1 .. .
.

.. . ..3 ..

. ..3 ..

..1

.

. . ..2 ..3

. ..2 ..3

..1(1)

.

..{2,3}

.. ..{2,3}

..{1} ..(2)

.

µ

Figure 4.7: Pushout in T-Span (1) and in T-Rules (2).

Example 62. Figure 4.7 shows how to obtain the pushout of a diagram in T-Rules by
calculating the pushout in T-Span first and applying the unit of the adjunction.

Now, given that we know how to calculate limits and colimits in T-Rules, we can
argue about the suitability of the category for DPO rewriting: in other words, if it is ad-
hesive. Unfortunately, the answer to this question is negative, as it is clarified by next two
propositions.

Proposition 63. Given a diagram S m←Ð T l↢ U in T-Rules such that l is mono, we do not
have unique pushout complement.

Proof. By conterexample: Figure 4.8 shows two alternative, non-isomorphic pushout
complements in T-Rules for the same diagram. Notice that one of them reproduces
the effect of “deleting” some elements, while the other “preserves” all the original ele-
ments. This is a consequence of the merging effect caused by the unit morphims µ (in
T-Span).

.................
. . ..3 .. .
. ..2
..1 .. .

.
..
.
..1 ..

.

.. . ..c ..

. ..b ..

..a

.

..

.

..x(1)

.

..z ..

. ..y ..

..x(2)

Figure 4.8: Two distinct POCs, (1) and (2), for the same diagram in T-Rules.

Proposition 64. T-Rules is not adhesive.

66

Proof. By contraposition, since uniqueness of pushout complement for diagrams in the
format A← B↢ C follows from adhesiveness.

The consequence of Proposition 63 is that not all DPO diagrams in T-Rules have the
expected intuitive effect of deletion and creation of graph elements. Although creation
of elements is “correct” because it produces only well-formed graph rules, deletion de-
pends on the choice of pushout complement, which is not unique. This contrasts with
T-Span, where deletion is “well-defined” but creation may generate ill-formed rules. We
observe that neither category offers a context where rule rewriting can be performed using
DPO rewriting in its simplest form. Therefore, we are forced to consider more advanced
mechanisms in order to provide a notion of second-order graph rewriting.

Considering the two defined categories, we can defend that T-Span is a better start-
ing point than T-Rules since it works adequately for arbitrary spans. What remains is to
provide a mechanism to ensure that DPO rewriting of rules generates only rules as result.
The following two sections explore two different approaches to this same issue: the first
approach considers the correction of the resulting span by means of the unit µ. The second
approach goes in the direction of avoiding rewritings which generate non-rules, using for
such purpose the mechanism of negative application conditions.

4.3 Rule rewriting correcting rule invalidation
This section considers the approach of correcting the resulting span in order to enforce

it is a rule. This approach explores the fact that there is a canonical way of converting
arbitrary spans into rules: the unit µ. Since DPO rewriting in T-Span fails to preserve
rules only because of its rightmost part, we could attempt to use the pushout construction
in T-Rules instead, which we know can be obtained in T-Span by applying µ to the object
of the pushout. This way, we would have both well-formed deletion and creation.

Definition 65 (Rule rewriting with correction). Given a monic 2-rule α = S1
l← S2

r→ S3,
a rule S4 and a span morphism m ∶ S1 → S4, we say that the 2-rule α rewrites the rule S4
into S7 with correction iff S4

α,m
Ô⇒ S6 (span rewriting) and cod(µS6) = S7, where µ is the

unit of the adjunction where incRule is a right-adjoint.

S1α∶

m

��

S2

..

ooloo // r //

k

��

S3

m∗

��

S4 S5l∗
oo

r∗
// S6

µ // S7

We denote second-order rule rewriting with correction by S4
α,m
Ô⇒µ S7.

Example 66 (Rule rewriting with correction). Figure 4.9 presents an example of second-
order rewriting for a non-injective match.

Intuitively speaking, this notion of rewriting corresponds to calculating pushout com-
plements in T-Span (for deletion) and a pushout in T-Rules (for creation of elements).
Notice also that it does not correspond to the traditional DPO rewriting, since it contains
and additional morphism µ that introduces some asymmetry, since rule applications are
not always invertible. The main advantage of this approach would be to obtain a precise

67

.......................
.
.
..1 ..2

.
..
.
..1 ..2

.
. . ..3 ..4
. ..3 ..4
..1 ..2

.

.

.

..1 ..

.

..

.

..1 ..

.

. . ..3 ..4

. ..3 ..4

..{1,2}

.

. . ..{3,4}

. ..{3,4}

..{1,2}

...

µ

Figure 4.9: Rule rewriting with correction.

and definite notion of rewriting, based on free creation of rules given canonically by the
adjoint situation between T-Span and T-Rules. However, there are some idiosyncrasies
introduced by the unit µ, being the most remarkable the possibility of merging created and
preserved elements. This has indeed some important consequences, which we illustrate
through examples.

Example 67. Figure 4.10 shows a rule rewriting with correction over a very simple graph
rule which preserves one single node. The 2-rule has the effect of converting a deleted node
and a created node in the graph rule into a preserved node by creating a pre-image in the
interface. However, the 2-rule matches an already preserved element in the graph rule,
creating a redundant pre-image in its interface. By the effect of the unit µ, the original and
the new pre-image are merged into a single node. Thus, the overall rewriting, although
possible, does not change the graph rule at all, even if the 2-rule definition shows one
node being created in the interface. This shows that the notion of correcting may result in
rewritings with null effect from a 2-rule which creates something.

.......................
. . ..3 ..
.
..1 ..

.
..3 ..
.
..1 ..

.
. . ..3 .
. ..2 .
..1 .

.

. . ..3 ..

. ..2 ..

..1 ..

.

..3 ..

. ..2 ..

..1 ..

.

. . ..3 ..

. ..2 ..4

..1

.

. . ..3

. ..{2,4}

..1 ..

...

µ

Figure 4.10: Rewriting with null effect due to merging in rule rewriting with correction.

Example 68. Figure 4.11 shows the consequences of the merging effect over the notion
of parallel independence. We have two 2-rules, α, which changes a deleted-created pair
of nodes into a preserved node, and β, which has the exact opposite effect, deleting the
element from the interface. Below, we see the two possible applications of the 2-rules over
a rules which simply preserves one element. Notice first that the match for both applica-
tions only touches preserved elements in the LHS and the RHS. Moreover, the rewriting
p

α,n
Ô⇒ p′ creates a new element in the interface, which is merged with the current element

68

in p, making p and p′ isomorphic. The rewriting p
β,m
Ô⇒ p′′ removes the node in the inter-

face of p. However, when applying β over p′, we end deleting both the element created by
the previous rewriting and the element in the original rule, since they have been merged.
When applying α over p′′, we end up creating a new node in the interface, since the first β
rewriting only deleted the original interface node. Both rewritings p

α,n
Ô⇒ p′ and p

β,m
Ô⇒ p′′

would be independent if we were performing conventional span rewriting, but they are ac-
tually dependent considering the notion of correction, due to the merging effect of the unit
µ. This means that the test for independence for second-order rewriting with correction
must take into account not only information from the matches, but also elements in the
interface that connected with matched elements in the LHS and RHS of the rule.

α =

...........
. . ..3
.
..1

.
..3
..
..1

.
. . ..3
.. ..4
..1 β =

...........
. . ..3
. ..2 ..
..1

.
..3
..
..1

.
. . ..3
.. ..
..1

.................
. . ..3 ..
. ..2 ..
..1 ..

.

. . ..3 ..

.

..1 ..

.

. . ..3 ..

. ..{2,4} ..

..1 ..

.

. . ..3 ..

. ..4 ..

..1 ..

.

. . ..3 ..

.

..1 ..

.
β

.

µ

.
α

.

µ

.

α

.

µ

.

β

.

µ

.

≠

Figure 4.11: Merging of elements affecting local confluence of rewritings with correction.

Both examples show in detail some issues raised by this notion of correction. One is
the fact that we are required to deal withmerging of nodes and edges, which enables to ob-
tain 2-rules with a non-null effect (i.e. that creates new elements) entailing rewritings that
do not modify at all the structure of the target graph rule. Another consequence refers to
the fact that we need to look beyond the matches in order to test for parallel independence,
since the context may entail merging, and this may create additional dependencies. Those
shortcomings, summed up to the fact of dealing with a non-standard notion of DPO rewrit-
ing, pose serious difficulties to the adoption of this alternative. Its advantage would be to
require minimum modification in rules to provide a safe notion of rewriting. However,
the fact that we are required to probe for the context beyond the matches to characterize
parallel dependencies minimizes such advantages, and points strongly to the next option:
avoidance of problematic rewritings.

69

4.4 Rule rewriting avoiding rule invalidation
Given the issues with the previous approach of correcting the result of rewritings, in

this section we analyse a more standard approach to second-order rewriting, which con-
sists of identifying and marking as invalid the matches which may lead to non-preservation
of rules. In principle, this effect may be obtained by means of a mechanism already com-
monly studied and used in the graph rewriting area: negative application conditions.

To realise this idea, one requires that we have a complete description of all possible
ways in which rule rewritings may create non-rule spans. Then, we may employ NACs
to avoid such situations, allowing only rule-preserving rewritings to occur. Given that
the theory of graph rewriting with NACs has been recently generalized for adhesive HLR
systems in (LAMBERS et al., 2008), we can make use of it and obtain a precise notion of
conflicts and dependencies. This requires, however, that we verify if T-Span satisfies the
requirements of the framework.

4.4.1 Rule invalidation in DPO span rewriting
This subsection focus on finding the precise conditions that generate a non-rule in the

rightmost part of a DPO diagram. That is exactly what the next theorem refers to, focusing
on diagrams that may appear in the rightmost part of a double-pushout construction in
T-Span. First, let us fix an useful auxiliary definition.

Definition 69 (Orphan element). Let f ∶ K → X be a typed graph morphism. We say a
graph element x (node or edge) is orphan along f, namely Of(x), iff x ∈ X ∧ x /∈ f(K) i.e.,
there is not a pre-image element y ∈ K such that f(y) = x. We denote that x is not orphan
along f by Of(x) or ¬Of(x).

The notion of an orphan element is used to refer to non-preserved elements from a
graph rule, i.e. both deleted and created ones. This notation is useful in the following
theorem.

Theorem 70 (Conditions for rule invalidation). Let d = p1
f←Ð p2

g↣ p3 be a diagram in
T-Span where p1,p2,p3 are graph rules and g is a monomorphism. The object p4 of the
pushout PO(d) = p1 → p4 ← p3 is a not a graph rule iff

1. there is x ∈ L2 such that Ol2(x), Ol3(gL(x)) and

(a) Ol1(fL(x)), or

(b) there is y ∈ L2 such that x ≠ y, fL(y) = fL(x) and Ol3(gL(y))

or

2. there is x ∈ R2 such that Or2(x), Or3(gR(x)) and

(a) Or1(fR(x)), or

(b) there is y ∈ R2 such that x ≠ y, fR(y) = fR(x) and Or3(gR(y))

Notice that the definition makes reference to morphisms of the diagram representation in

70

T-Graph of PO(d), as shown below where pi = Li
li←Ð Ki

riÐ→ Ri.

R2

fR

��

// gR // R3

f′R

��

K2
ccr2

cc

##

l2 ##

// gK //

fK

��

K3
dd

r3dd

$$ l3
$$

f′K

��

L2

fL

��

// gL // L3

f′L

��

R1 // g′R // R4

K1
ccr1

cc

##

l1 ##

// g′K // K4

r4dd

l4
$$

L1 // g′L // L4

Proof. (⇒) is given by the following argument:

1. the fact that p4 is not a graph rule means that there are two distinct elementsm,n ∈ K
such that l4(m) = l4(n) = a or r4(m) = r4(n) = b. Those two cases give raise for
conditions 1 and 2 in the theorem, respectively. We present now the reasoning for
case 1, which consider li ∶ Ki → Li, i ∈ {1,2,3,4} pointing that case 2 is symmetric
for ri ∶ Ki → Ri, i ∈ {1,2,3,4}.

2. knowing that K4 is the pushout object of (fK,gK), it can be divided into three disjoint
regions:

I = {x ∣ x ∈ img(g′K) ∧ x /∈ img(f′K)}
II = {x ∣ x ∈ img(g′K) ∧ x ∈ img(f′K)}
III = {x ∣ x /∈ img(g′K) ∧ x ∈ img(f′K)}

According to the placement of m and n into regions I, II and III we obtain distinct
cases.

3. one of {m,n} must be necessarily in area III of K4. The proof for this is given by
assuming (for the sake of contradiction) both m,n ∈ g′K(K1). Then, we have that
g′K; l4 is not mono because l4(m) = l4(n). However, the span morphism g′ is mono
because pushouts preserve monic arrows in T-Span, and therefore l1;g′L is mono by
composition. Since g′K; l4 = l1;g′L by commutativity of the bottom face, we have a
contradiction. This means one of the elements, let us say n, must not be in img(g′K),
remaining only to be in region III. From this, we assure the existence of n′ ∈ K3 such
that f′K(n′) = n, and also a′ ∈ L3 such that l3(n′) = a′ and f′L(a′) = a.

4. given that n is known to be located in III, there are essentially three distinct cases
to consider, corresponding to the possible placement of m in I, II or III. We will
show that case m ∈ I corresponds to clause 1.a in Theorem 70, and cases m ∈ II and
m ∈ III, to clause 1.b.

5. case m ∈ I

• There is m′′ ∈ K1 and a′′ ∈ L1 such that g′K(m′′) = m and l1(m′′) = a′′. Since
a′′ and a′ converge to a and L4 is a pushout object, then there is a common
pre-image a∗ ∈ L2 such that gL(a∗) = a′ and fL(a∗) = a′′.

71

• There is no element o ∈ K2 such that l2 = a∗. Suppose there is o for contradic-
tion. This would imply gL ○ l2(o) = a′, and since l3 is mono and l3(n′) = a′,
then consequently gK(o) = n′. By the same kind of reasoning, we would have
fK(o) = m′′. However, this way fK;g′3(o) ≠ gK; f

′
K(o), which contradicts com-

mutativity fK;g′3 = gK; f
′
K .

• By instantiating x = a∗, we have condition 1.a.

..........
..
.
..a∗ ..

.
.n′ .
.
..a′ .. .

.

.. . ..m′′ ..

. . ..

..a′′ ..

.

.m ..n

.

..a ..

6. case m ∈ II

• In this case, we have two pre-images for m, m′ ∈ K3 such that f′K(m′) = m and
m′′ ∈ K1 such that g′K(m′′) = m. Since K4 is a pushout object, then there is a
common pre-image m∗ ∈ K2 such that fK(m∗) = m′′ and gK(m∗) = m′. Because
l3 is mono, there is b′ ∈ L3 such that b′ ≠ a′ and l3(m′) = b′. By commutativity
of the right face, f′L(b′) = f′L(a′) = a. Because L4 is a pushout object, f′L(b′) =
f′L(a′) and gL is mono, it only remains that both b′,a′ ∈ img(gK), there are
b∗,a∗ ∈ L1 such that b∗ ≠ a∗, fL(b∗) = fL(a∗) = a′′ and g′K(a′′) = a. By
commutativity of the top face, l2(m∗) = b∗.

• There is no element o ∈ K2 such that l2 = a∗. Assuming (for contradiction)
there was o, then by commutativity of the top face and the fact that l3 is mono,
gK(o) = n′. By commutativity of the left face and the fact that l1 is mono,
fK(o) = m′′. However, this would imply non-commutativity of the back face
on the element o.

• By instantiating x = a∗ and y = b∗, we have condition 1.b.

..........
..m∗ ..
.
..b∗ ..a∗

.
.m′ ..n′ .
.
..b′ ..a′ .

.

.. . ..m′′ ..

. . ..

..a′′ ..

.

.m ..n

.

..a ..

7. case m ∈ III

• We assure the existence of m′, b′, b∗, a∗ and a′′ as in the previous case. How-
ever, in this case there are no pre-images for both m and n along g′K.

72

• There is no pre-image for a∗ along l2. Assuming (for contradiction) there was
o ∈ K2 such that l2(o) = a∗. By commutativity of the top face and the fact that
l3 is mono, we would have gK(o) = n′. However, since there is no pre-image
for n along g′K, there is no element to map o in K1 maintaining commutativity
of the back face, and we reach a contradiction. The same argument shows that
there is no pre-image for b∗ along l2.

• By instantiating x = a∗ and y = b∗, we have condition 1.b.

..........
..
.
..b∗ ..a∗

.
.m′ ..n′ .
.
..b′ ..a′ .

.

..

. . ..

..a′′ ..

.

.m ..n

.

..a ..

(⇐) is given by simply instantiating x and y, calculating element-wise the respective
pushouts and verifying the injectivity of l4 or r4. The possible situations correspond to the
diagrams of each possible case in the (⇒) part of the proof.

There are essentially two possibilities for making p4 a non-monic span, corresponding
to the subcases (a) and (b) of Theorem 70. Sub-condition (a) occurs when we create a
new pre-image inK for an element x in the LHS (or RHS)while there is already a pre-image
for it in K that is out of the match. This is the case, for instance, of the pushout depicted in
Figure 4.5. Sub-condition (b) refers to the case where, by means of non-injectivity in f, we
identify x (for which we are creating a pre-image in K) with another element y for which
we create or preserve its pre-image in K. This is what happens in the rightmost part of the
DPO diagram depicted in Figure 4.4. The importance of Theorem 70 is that it provides
the confidence of being able to track all cases in which we may have rule invalidation
through DPO span rewriting. For instance, consider 2-rule α = a ↢ b ↣ c, graph rule
p and match m ∶ a → p. As known from Proposition 48, we have that the calculation of
pushout complement p ← p′ ← b of a base diagram p ← a ↢ b, in some sense preserve
graph rules because p′ is known to be a rule. Now, Theorem 70 presents all the possible
ways that a diagram p′ ← b ↣ c will have a pushout p′ → p′′ ← c such that p′′ is not a
graph rule. It only remains to characterize the occurrence of the problematic cases on the
leftmost part of a DPO diagram, i.e., regarding the match a→ p and the 2-rule morphism
b→ a.

Theorem 71. Let c m←Ð a
f↢ b be a diagram in T-Span such that a,b and c are graph rules,

and there is a pushout complement c
f′↢ d m′←Ð b as shown below.

a
m
��

boofoo

m′
��.

c doo
f′

oo

Then the following holds:

73

1. If there is x ∈ LHS(b) such thatOlb(x), then¬Old(m′(x))⇔ ¬Olc(m○f(x))∧Ola(f(x));

2. If there are elements x, y ∈ LHS(b) such that x ≠ y and m′(x) = m′(y), then there are
elements f(x) ≠ f(y) such that m ○ f(x) = mL ○ f(y).

Proof.

1. (⇒)

• Let y ∈ Kd be the element such that ld(y) = m′(x). Then, there is an ele-
ment f′(y) ∈ Kc such that, by commutativity of the bottom square in T-Graph,
lc(f′(y)) = f′ ○m′(x). Thus, ¬Olc(m ○ f(x)).

• Suppose for contradiction that ¬Ola(f(x)). Let us call z ∈ Ka the pre-image
of f(x) along la, and y as in the previous item. By commutativity of the base
and left square, then lc ○ m(z) = lc ○ f′(y). By the fact that lc is injective,
m(z) = f′(y). Neither y ∈ Kd and z ∈ Ka have a common pre-image in Kb,
howeverm(z) = f′(y), which contradicts the fact that we have a pushout square
along Ka,Kb,Kc,Kd. Hence, Ola(f(x)).

(⇐) assume for contradiction that Old(m′(x)). Let us call w ∈ Kc the pre-image
such that lc(w) = m ○ f(x). Because of commutativity of bottom and left faces and
the fact that Ola(f(x)) and Old(m′(x)), there are no pre-images for w along m and
f′. However, this contradicts the fact we have a pushout square along Ka,Kb,Kc,Kd.
Hence, ¬Old(m′(x)).

2. fL(x) ≠ fL(y) is given by injectivity of f, andmL○fL(x) = mL○fL(y) by commutativity
of m ○ f = f′ ○m′ and injectivity of f′.

Theorem 71 tells us how to test in the leftmost part of a DPO diagram conditions for
rule invalidation. Condition 1 tells us that if we obtain m′L(x) with a pre-image along
ld, then we know for sure there is no pre-image along la for fL(x). By taking f to the be
leftmost part of a 2-rule, then we know the possible elements that would trigger condition
1.a in Theorem 70 are the ones for which we do not delete the pre-image in the 2-rule.
Condition 2 shows us that we can track problematic identifications of elements, referring
to condition 1.b in Theorem 70, directly in the match m.

4.4.2 Span rewriting with negative application conditions
The previous section gives us tools to track rule invalidation to the structure of the

2-rule and the match.This section extends the concept of negative application conditions
from the category T-Graph to T-Span. There are essentially no significant changes in
the characterization, and we finish by proving that T-Span fits the framework of adhesive
HLR systems with NACs.

Definition 72 (2-rules with negative application conditions). A negative application con-
dition (NAC) for a 2-rule α = a ↢ b ↣ c is a span morphism η ∶ a → n. A 2-rule with
NACs is a pair αN = (N, α) where α is a 2-rule, and N is a set of NACs for α.

74

Definition 73 (Span rewriting with negative application condition). ConsiderαN = (N, α)
a 2-rule with NACs such that α = a↢ b↣ c, and p a graph rule. We say a match m ∶ a→ p
respects NAC η ∶ a → n, denoted m ⊧ η, iff there is not a monomorphism e ∶ n ↣ p such
that η; e = m. If a match m respect all NACs in set N, we write m ⊧ N. A span rewriting
with NACs p

αN,mÔ⇒ p′ is a span rewriting p
α,m
Ô⇒ p′ such that m ⊧ N.

Now, we inquire about the usual DPO properties in the setting of second-order graph
rewriting. For such, we will verify if T-Span satifies all the requirements to be considered
a adhesive HLR system with NACs. If this holds, as a consequence we obtain a series
of results including a precise notion of conflicts and dependencies. First, we recall the
requirements for negative application conditions in adhesive HLR categories, as presented
in (LAMBERS et al., 2008).

Definition 74 (adhesive HLR category with NACs). An adhesive HLR category with NAC
(C,M,M′, E′,Q) is an adhesive HLR category (C,M) together with two classes of
monomorphisms M′, Q, and a class of pair of morphisms E′, with the following prop-
erties:

1. unique E′-M′ factorization;

2. epi-M factorization;

3. M-M′ PO-PB decomposition property;

4. M-Q PO-PB decomposition property;

5. initial PO over M′-morphisms;

6. M′ is closed under PO’s and PB’s along M-morphisms;

7. Q is closed under PO’s and PB’s along M-morphisms;

8. induced PB-PO property for M and Q;

9. if f ∶ A→ B ∈Q and g ∶ B→ C ∈M′ then g ○ f ∈Q;

10. g ○ f ∈Q and g ∈M′ then f ∈Q;

11. Q is closed under composition and decomposition.

For more details on the requirements, please see (LAMBERS et al., 2008)

Those numerous requirements have a role in individual proofs for DPO-related proper-
ties of rewritings, and they were presented in such way to to keep the maximum generality.
Intuitively, the class Q refers to the factorization monomorphisms that must not factor a
given NAC in order for a rule to be applied. The classes E′ and M′ refer to the E′-M′

factorization, as follows.

Definition 75. Let C be a category with a class E′ of pairs of morphisms with the same
target, and a class M′ of morphisms. We say C has E′-M′ factorization iff for each pair

75

of morphisms A
fÐ→ B

g←Ð C there is an object X and morphisms (f′ ∶ A→ X,g′ ∶ B→ X) ∈ E′

and (m ∶ X→ C) ∈M′ such that f′;m = f and g′;m = g, as shown below.

A
f

&&
f′ ��

X m // C

B
g

88
g′

??

It is known that if a category C has coproducts and epi-mono factorization, we have E′-
M′ factorization where E′ is the class of all jointly surjective pair of morphisms, and M′

the class of all monomorphisms. Given the pair (f ∶ A → C,g ∶ B → C), we calculate the
coproduct (A+B, injA, injB), obtain a unique arrow u ∶ A+B→ C and also the factorization
EM(u) = e;m. Finally, we set f′ = injA; e and g′ = injB; e, as shown below. The morphisms
f′ and g′ are jointly surjective because e is an epimorphism.

A
f

$$

inja

��

f′

��
A + B e //

u
((X m // C

B
g

::

injb

__

g′

CC

Proposition 76. The tuple (T-Span,M,M,E,M) is an adhesive HLR category with NACs,
where M is the class of all monomorphisms in T-Span and E is the class of all jointly
surjective pair of morphisms in T-Span.

Proof. T-Graph meets all requirements if we take M = M′ = Q as the class of all
monomorphisms, and E′ as the class of all jointly surjective graph morphisms (EHRIG
et al., 2005). Because T-Span is built from T-Graph component-wise, we obtain that the
conditions from Definition 74 hold by construction. Conditions 1-2 derive from T-Span
having epi-mono factorization and coproducts and, consequently, E-M factorization. Con-
ditions 3-8 results from M = M = M′ = Q and the fact that (T-Span,M) is an ad-
hesive HLR category. Conditions 9-11 comes from composition and decomposition of
monomorphisms in general categories, since M =M′ =Q.

4.4.3 Rule preservation by means of span rewriting with NACs
Provided that T-Span fits into the adhesive HLR category with NACs framework, we

ask the following: given a 2-rule α, is there a set of NACs for it such that it forbids all
rewritings that invalidate rules, and, at the same time, allows all the other rewritings. If
this set exists, we call it a minimal rule-preservation set of NACs. Formally,

Definition 77 (minimal safety NACs). Let α be a 2-rule. We say that a set N of NACs for
α is a minimal rule-preservation set iff, for any rule p and match m,

• if p
α,m
Ô⇒ p′ and p′ is not a rule, then m /⊧ N, and

• if p
α,m
Ô⇒ p′ and p′ is a rule, then m ⊧ N

76

The set N will also be referred as the collection of minimal safety NACs for α.

The existence of a minimal rule-preservation set for a 2-rules would allow a direct
characterization of second-order graph rewriting using the mechanism of span rewriting
with NACs. Given any 2-rule, we state that there is an algorithm which makes possible
to calculate a minimal rule-preservation set for it, provided the graph components of the
rule are finite. The intuition is basically to pinpoint all potentially problematic elements
in the LHS and RHS, as pointed out by Theorem 70.

Definition 78 (Calculated minimal rule-preservation set). The algorithm shown in Fig-
ure 4.12 calculates a minimal rule-preserving set of NACs for a finite 2-rule given as
input. We denote the minimal rule-preserving set calculated from α by S(α).

Example 79 (Minimal safety NACs). In Figure 4.13, we have a 2-rule together with its
set of calculated minimal safety NACs from the algorithm of Definition 78. The NACs η1
and η2 avoid the creation of redundant pre-images if elements 3 and 4 are matched against
elements already containing pre-images. The NACs η3, η4, η5 and η6 make sure that there
will be no merging of elements in the match resulting in rule invalidation.

Theorem 80. S(α) is a minimal rule-preserving set of NACs for a finite input 2-rule
α = a← b→ c.

Proof. Consider a span rewriting p
α,m
Ô⇒ p′′, where p is a rule, represented by the following DPO

diagram in T-Span.

a

m
��

boo
foo // g //

k
��

c

m∗
��

p p′
f∗

oo
g∗

// p′′

The fact that p′′ is not a rule is equivalent to say that one of the following statements is true, ac-
cording to Theorem 70. In the following, all references to orphan elements consider the morphism
from the interface graph of each rule to the LHS or RHS.

1. ∃x ∈ LHS(b) satisfying (O(x), ¬O(k(x)) and ¬O(g(x)))

2. ∃x′ ∈ RHS(b) satisfying (O(x′), ¬O(k(x′)) and ¬O(g(x′)))

3. ∃c,d ∈ LHS(b) satisfying (c ≠ d, k(c) = k(d), O(c), ¬O(g(c)) and ¬O(g(d)))

4. ∃c′,d′ ∈ RHS(b) satisfying (c′ ≠ d′, k(c′) = k(d′), O(c′), ¬O(g(c′)) and ¬O(g(d′)))

Theorem 71 applies to the leftmost part of the DPO diagram since p,p′,a,b are rules, and
f is monic. The objective is to substitute the parts of the expression which depend on k. From
subcondition (a), we obtain the statements 1 and 2, and from subcondition (b), the statements 3
and 4.

1. ∃f(x) ∈ LHS(a) satisfying (O(x), O(f(x)), ¬O(m ○ f(x)) and ¬O(g(x)))

2. ∃f(x′) ∈ RHS(a) satisfying (O(x′), O(f(x′)), ¬O(m ○ f(x′)) and ¬O(g(x′)))

3. ∃f(c), f(d) ∈ LHS(a) satisfying (c ≠ d, m ○ f(c) = m ○ f(d), O(c), ¬O(g(c)) and ¬O(g(d)))

4. ∃f(c′), f(d′) ∈ RHS(a) satisfying (c′ ≠ d′, m ○ f(c′) = m ○ f(d′), O(c′), ¬O(g(c′)) and
¬O(g(d′)))

77

Input : A finite 2-rule α = a f
←Ð b

g
Ð→ c, represented by the following diagram in T-Graph.

La LboofLoo // gL // Lc

Ka

OO la
OO

��
ra��

KboofKoo // gK //
OO lb
OO

��
rb��

Kc

OO lc
OO

��
rc��

Ra RboofRoo // gR // Rc

Output: A set S(α) of NACs for α.
1 begin

// Initialize N with the empty set

2 N ∶= {};

// Insert NACs to avoid condition (a) in Thm 70

3 ProbL ∶= {fL(x) ∣ x ∈ Lb ∧ Ola(fL(x)) ∧ Olb(x) ∧ ¬Olc(gL(x))};
4 ProbR ∶= {fR(x) ∣ x ∈ Rb ∧ Ora(fR(x)) ∧ Orb(x) ∧ ¬Orc(gR(x))};
5 for x ∈ ProbL do
6 a′ ∶= La

la[x′↦x]
←ÐÐÐÐ Ka ⊎ {x′}

ra[x′↦x′′]
ÐÐÐÐÐ→ Ra ⊎ {x′′};

7 N ∶= N ∪ {a↪ a′};

8 for x ∈ ProbR do
9 a′ ∶= La ⊎ {x′′}

la[x′↦x′′]
←ÐÐÐÐÐ Ka ⊎ {x′}

ra[x′↦x]
ÐÐÐÐ→ Ra;

10 N ∶= N ∪ {a↪ a′};

// Insert NACs to avoid condition (b) in Thm 70

11 PairL ∶= {(fL(x), fL(y)) ∣ x, y ∈ Lb ∧ x ≠ y ∧ Olb(x) ∧ ¬Olc(gL(x)) ∧ ¬Olc(gL(y))};
12 PairR ∶= {(fR(x), fR(y)) ∣ x, y ∈ Rb ∧ x ≠ y ∧ Orb(x) ∧ ¬Orc(gR(x)) ∧ ¬Orc(gR(y))};
13 Epis ∶= calculateAllPartitions(a);
14 for e ∈ Epis do
15 if (eL(a) = eL(b) for some (a,b) ∈ PairL) OR
16 (eR(x) = eR(y) for some (x, y) ∈ PairR) then
17 N ∶= N ∪ {e};

// Return the final set of NACs
18 return N;

Figure 4.12: Algorithm for calculating S(α).

78

α =

...........
. . ..1 ..2
. ..1 ..2
..1 ..2 ..3 ..4

.
. . ..1
. ..1
..1 ..2 ..3 ..4

.
. . ..13 ..4
. ..13 ..4
..1 ..2 ..3 ..4

S(α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

........
. . ..1 ..2
. ..1 ..2
..1 ..2 ..3 ..4

.
. . ..1 ..2 ..3” ..

. ..1 ..2 ..3’ ..

..1 ..2 ..3 ..4

. η1
. . ..1 ..2
. ..1 ..2
..1 ..2 ..3 ..4

.
. . ..1 ..24”

. ..1 ..24’

..1 ..2 ..3 ..4

. η2

........
. . ..1 ..2
. ..1 ..2
..1 ..2 ..3 ..4

.
. . ..1 ..2 ..
. ..1 ..2 ..
..{1,3} ..2 ..4

. η3
. . ..1 ..2
. ..1 ..2
..1 ..2 ..3 ..4

.
. . ..1 ..2 ..
. ..1 ..2 ..
..{1,4} ..2 ..3

. η4

........
. . ..1 ..2
. ..1 ..2
..1 ..2 ..3 ..4

.
. . ..1 ..2 ..
. ..1 ..2 ..
..1 ..2 ..{3,4}

. η5
. . ..1 ..2
. ..1 ..2
..1 ..2 ..3 ..4

.
. . ..1 ..2 ..
. ..1 ..2 ..
..{1,3,4} ..2 .

. η6

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Figure 4.13: Minimal safety NACs calculated from 2-rule α.

79

Notice that those existential conditions depend on on the match m and the 2-rule structure.
Since the 2-rule structure is fixed, what the algorithm does is to create a NAC for each problematic
situation in order to invalidate the matches that trigger one of those conditions. Line 2 initializes an
empty set of NACs. Lines 3-4 initialize the elements in the LHS or RHS that may trigger subcon-
dition (a) in Theorem 70. For each potentially problematic element x, the for-loops in lines 5-10
add an individual NAC to avoid the situation ¬O(m ○ f(x)). Lines 11-12 calculate the potentially
problematic pairs of elements that may trigger subcondition (b) in Theorem 70. Line 13 calculates
all the partitions of the LHS, representing all possible ways of identifying elements in the rule a.
For each partition e of a, lines 14-17 test if it contains a problematic identification. If it does, the
partition is included as a NAC to avoid situation m ○ f(c′) = m ○ f(d′).

Hence, for the rewriting p
α,m
Ô⇒ p′′:

• if p′′ is not a rule, one of the NACs introduced by S(α) will be satisfied.

• if p′′ is a rule, then none of the NACs introduced by S(α) will be satisfied.

Now we can define second-order rewriting avoiding rule invalidation through span
rewriting with NACs. Given a 2-rule with NACs, we augment its set of NACs with the
calculated minimum rule-preserving set, and consider as valid second-order rewritings all
direct derivations whose matches respect the extended NAC collection.

Definition 81. Given a 2-rule with NACs A = (N, α) where α = a↢ b↣ c, a graph rule p
and a match m ∶ a→ p, we say there is a rule rewriting avoiding rule invalidation p A,m

Ô⇒2 p′

iff there is a span rewriting with NACs p
B,m
Ô⇒ p′ where B = (N ∪S(α), α)

We defined the notion of rewriting based on 2-rules with NACs because they sub-
sume conventional 2-rules: whenever the set of NACs is empty, we have conventional
rule rewriting. Moreover, NACs are usually required for other purposes rather than exclu-
sively assuring rule preservation, as the next section will show.

4.5 Second-order rewriting
The previous sections discussed and presented results concerning several ways of ar-

riving at a notion of second-order rewriting for graph transformation rules. This section
studies the possible effects of second-order rewriting on graph rules, and also discusses
other uses for NACs besides ensuring rule preservation.

From the previous discussing, it is reasonable to conclude that rule rewriting avoiding
rule invalidation satisfy good criteria for representing second-order rewriting. The main
reason is that, given a characterization of rule-preservation by means of minimal safety
NACs, we may employ the generalized version of DPO rewriting with NACs (LAMBERS
et al., 2008) almost directly, which allow us to benefit from a plethora of results proved for
such context. Moreover, it allows to discuss the notion of higher-order rewriting in other
contexts, which eases a possible generalization of our results. From here onwards, we
stop discussing alternatives and fix Definition 81 as the standard notion of second-order
rewriting.

Notation 82. From here onwards, we will drop the subscripted 2 when denoting a second-
order rewriting p

αN,mÔ⇒2 p′. To avoid confusion with the notation for conventional DPO
span rewriting, the notation p

α,m
Ô⇒ p′ will mean second-order rewriting, unless explicitly

80

marked as a span rewriting. Notice that the difference is that we do not calculate the
minimal rule-preservation set of NACs for span rewritings.

The table shown in Figure 4.14 presents a comprehensive description of all possible
kinds of modification that are possible to be made over a graph transformation rule by
using second-order rewriting. A particular 2-rule may have as effect any combination of
the depicted kinds of basic modifications.

Modification Rewriting action
increase element consumption add items to L only
decrease element consumption remove elements from L only
increase element creation add elements to R only
decrease element creation remove elements from R only
convert preservation into deletion+creation remove items from K only
convert deletion+creation into preservation add items to K only
convert deletion into preservation add items to K + R
convert creation into preservation add items to L +K
increase context add items to L +K + R
decrease context remove items from L +K + R

Figure 4.14: Possible modifications over a rule L← K→ R by second-order rewriting.

One important issue regarding second-order rewriting is to identify when a given rule
will be triggered. For example, we may want to define that we should modify a rule if it
deletes or creates elements of a given type, which are characterized in DPO rules by the
existence of elements in L or R without a pre-image in K. Span morphisms from the LHS
of the 2-rule may identify the existence of elements in L and R, however they cannot test
the absence of a pre-image for the matched elements. In other words, the left-hand side
of second-order rules cannot be defined to match only on deleted elements, but rather on
deleted or preserved elements (and similarly for created ones). The following example
presents more clearly this issue.
Example 83. The 2-rule depicted in Figure 4.15 intends to match all rules that create a
message. Its effect is to modify the rule by adding a data node to the message instance
in the RHS. However, as it is, the rule matches any rule that either creates a message or
preserves a message, since both have a message node in their RHS.

Figure 4.15: 2-rule that matches rules preserving or creating a message.

It is very plausible to wish distinct modifications for rules depending on the fact they
create, delete or preserve some elements. The straightforward way to obtain such differen-
tiation is to employ a NAC to avoid matching rules that preserve a message. Figure 4.16

81

shows the required NAC that provides the correct behavior for the rule in Figure 4.15. No-
tice that differentiation for 2-rules to match a rule which preserves a given element is not
required, since they naturally do not have matches for rules which delete the same element.

Figure 4.16: Negative application condition for affecting only rules creating message.

Besides ensuring preservation of rule structure and allowing a more refined matching
process, NACs are also useful to assure termination condition for rewritings. One of the
simplest examples occurs when the modeler desires to have a non-deleting 2-rule acting
only once over a given rule. For instance, the 2-rule of Figure 4.15 creates elements with-
out deleting anything, and potentially could be applied to the same rule over and over
again. Since the most common purpose is to add only one new data node to a message,
the modeler can express this by equipping the rule with the NAC shown in Figure 4.17.
Notice that this situation is particularly common in the context of model transformations,
where we are usually interested in the result of the transformation process rather than the
execution of the transformation, and thus it is important that the rewriting process is ter-
minating.

Figure 4.17: Negative application condition to assure unique application of 2-rule.

From the previous discussion, we have identified that negative application conditions
are actually quite important for second-order rewriting, since

1. they may be used to ensure rule preservation;

2. they allow to distinguish between preservation and creation/deletion in matches;

3. they may be used to ensure termination condition for the rewriting of rules.

Notice that, even if we had chosen rule rewriting with correction as the default notion
of second-order rewriting, NACs would still be required for reasons 2 and 3. This is an-
other convenience of our choice, since for the sake of rule preservation we employ of a
mechanism that would be nevertheless required for other purposes.

82

4.6 Conflicts and dependencies in second-order rewriting
The characterization of second-order rewriting and the fact that T-Span fits the frame-

work of adhesive HLR systems with NACs provides us a precise definition for conflicts
and dependencies in second-order rewriting. For such, we instantiate the definitions for
parallel and sequential independence, as presented in (LAMBERS et al., 2008) for the
context of T-Span.
Definition 84 (parallel and sequential independence for span rewriting with NACs). Let
αM = (M, α) and βN = (N, β) be two 2-rules with NACs, where α = a1

l1↢ b1
r1↣ c1,

β = a2
l2↢ b2

r2↣ c2, M = {η1, . . . , ηk} and N = {ν1, . . . , νl}. Two span rewritings p
αM,m1Ô⇒ q1

and p
βN,m2Ô⇒ q2 with NACs are parallel independent iff

∃i ∶ a1 → d2 s.t. (l′2 ○ i = m1 and r′2 ○ i ⊧M)

and
∃j ∶ a2 → d1 s.t. (l′1 ○ j = m2 and r′1 ○ j ⊧ N)

as shown in the following diagram, where η ∈M and ν ∈ N:

n1 n2

c1

m′1

��

b1oor1oo // l1 //

k1

��

a1

η

OO

m1
��

i

''

a2

ν

OO

m2
��

j

ww

b2ool2oo // r2 //

k2

��

c2

m′2

��
q1 d1r′1

oo
l′1

// p d2l′2
oo

r′2
// q2

Negative application conditions are usually defined as morphisms departing from the
LHS, which aim is to pose restrictions on the match. However, NACs can be similarly
defined over the RHS, posing restrictions on the co-match of a given rewriting. The two
ways of defining NACs are equivalent, since we have a process that obtains from a collec-
tion of RHS NACs an equivalent collection of LHS NACs restricting the rewriting in the
opposite direction. This transformation is required for defining the inverse of a 2-rule with
NACs (M, α)−1. which, in turn, is required for the definition of sequential dependence.

Definition 85 (LHS NACs from RHS NACs). Let α = a
f←Ð b

gÐ→ c be a 2-rule, and
N = {νi}i∈I a collection of RHS NACs over α, i.e., a set of span morphisms νi ∶ c → di.
We define the collection N−1 of LHS NACs over α as the least set for which the following
holds:

if νi ∈ N and there is a POC for di
νi←Ð c

g←Ð b , then ν′i ∈ N−1, where ν′i is the comatch of the

span rewriting di
α−1,νiÔ⇒ d′i as shown in the diagram below.

a

ν′i
��

b

. .

oofoo // g //

k
��

c

νi

��

d′i kif′
oo

g′
// di

83

Definition 86 (Inverted rule with NACs). Given αN = (N, α) be a 2-rule with NACs, we
define its reverse rule as as (αN)−1 = (N−1, α−1)

Definition 87. Two span rewritings p
αM,m1Ô⇒ q and q

βN,m2Ô⇒ r are sequential independent iff

q
α−1M ,m′1Ô⇒ p and q

βN,m2Ô⇒ r are parallel independent.

Now that we have established a proper notion of conflict and dependency for span
rewriting with NACs, we can turn to second-order rewriting since the latter is based on the
former.
Definition 88 (Parallel independent second-order rewritings). Let (N1, α) and (N2, β) be
2-rules with NACs, and ρ1 = p

(N1,α),m1ÔÔÔ⇒ p1 and ρ2 = p
(N2,β),m2ÔÔÔ⇒ p2 be two second-order

rewritings. We say that ρ1 and ρ2 are parallel independent iff the span rewritings

p
(N1∪S(α),α),m1ÔÔÔÔÔÔ⇒ p1

and
p
(N2∪S(β),β),m2ÔÔÔÔÔÔ⇒ p2

are parallel independent. Otherwise, they are said to be conflicting or parallel dependent.

In the case of second-order rewriting, dependencies of kind produce-forbid can be
perceived when two rewritings attempt to create a new pre-image to convert a deleted
element into a preserved element. This situation can be better visualized in the following
example.
Example 89 (Parallel dependency in second-order rewriting). Figure 4.18 presents a
second-order rewriting p

α,m
Ô⇒ p′, which converts a deleted element 1 in L into a pre-

served element by creating a corresponding pre-image 2 in K and an element 3 in R. As a
span rewriting, this rewriting does not delete anything, and thus would not be considered
conflicting with itself. However, since we have based the definition of second-order rewrit-
ing of α as the rewriting with NACs of (S(α), α), the second-order rewriting p

α,m
Ô⇒ p′ is

conflicting with itself, since the parallel application of more than one instance of the same
rewriting would result in a non-monic span.

4.7 Summary
In this chapter we took the challenge of creating a notion of rule-based modification of

graph rules. The original analysis suggested us to look for DPO constructions in the cate-
gories T-Span and T-Rules. Since neither category was satisfactory for defining the trans-
formation of rules, we had to consider additional mechanisms either to correct ill-behaved
rewritings, or to avoid them. We defined second-order graph rewriting (rule modification)
by means of span rewritings (DPO in T-Span) that consider an additional collection of
minimal safety NACs, calculated from the structure of each 2-rule. We also showed that
the tuple (T-Span,M,M,E,M), whereM are all monomorphisms and E all jointly surjec-
tive pairs of morphisms, can be characterized as an adhesive HLR category with NACs.
This allows us to import several results fromDPO graph transformation to DPO rule trans-
formation. Based on this, the calculation of conflicts and dependencies for second-order
graph rewriting can be obtained from the respective span rewritings with NACs, as we
have shown in the last section of the chapter.

84

α =

...........
. . ..
.
..1

.
..
..
..1

.
. . ..3
.. ..2
..1 S(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

........
..
..
..1

.
. . ..1”
.. ..1’
..1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

...........
.
.
..1 ..

.

. . ..3 ..

. ..2 ..

..1 ..

.

. . ..3 ..

. ..2 ..

..1 ..

.

α,m

.

α,m

Figure 4.18: Parallel dependent second-order rewritings of 2-rule α.

85

5 SECOND-ORDER GRAPH GRAMMARS

In Chapter 4 we have arrived at a notion of second-order rewriting that allows to de-
scribe transformations in graph rules. Now we discuss how to apply this mechanism to
create specifications with both first-order and second-order rewriting rules. In graph trans-
formation systems, it is usual to not have a unique graph rule, but rather a collection of
rules affecting the target graph. Therefore, we must extend our notion of second-order
rewriting from a single rule to collections of rules. Since we intend to have modifications
in particular rules, the notion of state comprises at least two elements: a current graph
and also a current collection of graph rules. We start this chapter by addressing how to
represent this collection of rules in a convenient way. We identify some issues with con-
ventional sets, and then propose the usage of coproducts in T-Span as rule collections.
Next, based on this notion of coproduct rule collection, we redefine (first-order) graph
grammars and derivations, and introduce second-order graph grammars and their deriva-
tions. Furthermore, we discuss additional components of a second-order specification,
allowing for modifications in the initial graph and type graph. We end up presenting some
examples of second-order specifications and their execution. The original contributions
of this chapter are:

• discussion regarding structures for defining rulesets, and the introduction of the con-
cept of coproduct collections of rules;

• definition of rewriting for coproduct collections ;

• redefinition of first-order graph grammar using coproduct collection,

• several definitions for second-order graph grammars, differing essentially in how
they affect the initial and type graphs;

• the concept of model-transformation derivation, characterizing a terminating
second-order rewriting process followed by the execution of the new evolved first-
order system;

• the notion of evolutionary span representing the overall modifications of a system
that underwent a model transformation.

5.1 Some issues with sets of rules
Whenever we think of collections, one of the first intuitions that arise is the notion of

a set, and it would be expected to have a simple (let us say nameless) set of rules as part
of graph grammar specifications. However, according to Definition 18, the collection of

86

rules of a graph grammar G = (T,G0,P, π) is defined by two components: a set of rule
names P, and a function π ∶ P→ T-Rules associating rule names to the actual spans. Let us
refer to this kind of specification as a named set of rules. Even if not clear at first sight, this
naming scheme has deeper consequences rather than just providing a convenient way of
labelling direct derivations. By allowing the identity of a rule to be associated with a name
rather with a concrete span, we allow two rules p,p′ ∈ P to have the exact same behavior
and still be considered distinct entities. This is the case whenever we map both names
to the exact same span, e.g. π(p) = π(p′), or even to two distinct but isomorphic spans,
e.g. π(p) ≅ π(p′). In other words, named rule collections allow the modeler to represent
multiplicity of behavior, as if we were working with multisets of rules. This approach also
provides a simple way of dealing with the issue of representation non-determinism, i.e.,
the fact that a particular transformation may be characterized by several (in fact, infinitely
many) concrete graph rules that only differ in the name of nodes and edges in their instance
graphs. Through the function π we associate a given name p to a concrete graph rule that
acts as a representative of the actual transformation, and we do not need to explicitly refer
directly to equivalence classes of rules. Those aspects regarding the adoption of simple sets
of spans or named rules are important in their own context, but become even more relevant
when we assume the collection of rules may be modified by second-order rewriting. In the
following, we will define an update operation (based on second-order rewriting) for both
nameless and named versions of rule collections, and then we discuss the advantages and
drawbacks of both definitions.

Definition 90 (Nameless ruleset rewriting). Given a second-order rewriting r α,m
Ô⇒ r′ and

a set of graph rules D, we define the set rewriting operation⇛ as follows.

r
α,m
Ô⇒ r′ r ∈ D

D
α,m
⇛ (D − {r}) ∪ {r′}

The nameless ruleset rewriting operation⇛ extend second-order rewriting in the most
obvious way: it removes the rewritten rule from the set and inserts the resulting rule in
the collection, whilst maintaining the others rules unchanged. The operation is labelled
by the parameters of the direct derivation. Notice that it is not required to specify the
element being modified in the label since it can be obtained from the match m. This way
of defining a rewrite over a set allows a particular 2-rule to affect one, two, all or none of
the rules inD, only depending on the existence of 2-matches for any of the elements of the
ruleset. As we introduced earlier, the usage of sets have to some important consequences.
For example, consider the nameless ruleset rewriting shown below.

r3
α,m
Ô⇒ r2 r3 ∈ {r1, r2, r3}

{r1, r2, r3}
α,m
⇛ {r1, r2}

Since r2 is already in {r1, r2, r3} − {r3} and sets do not permit repeated elements,
the resulting set has one element less than the original one. Due to representation non-
determinism, however, the same 2-rule and 2-match (α,m) also gives rise to a rewriting
r3

α,m
Ô⇒ r′2 such that r2 ≅ r′2 but r2 ≠ r′2. In this case, the resulting set would be {r1, r′2, r3},

and the size of the set would be maintained. We conclude that the size of the resulting set
is non-deterministically dependent on the choice of a concrete rule.

Another question is the lack of indexing for rules. Even if we had chosen to make
use of multisets rather than sets, we still would lack distinction and identity between equal

87

elements. Since we need to consider that rules which are changing may be applied to
graphs in a model with second-order rewriting, it would be important to track individual
rules within all its equivalent or equal other ones, in order to properly identify the precise
effect of each individual rule in the execution of the model. This kind of issue is solved
by the named version of rulesets, i.e. a pair (P, π). We can reproduce the definition for
nameless rulesets for the named case, as follows.

Definition 91 (Named ruleset rewriting). Given a second-order rewriting p
α,m
Ô⇒ p′, a set

of rule names P and a function π ∶ P → T-Rules, we define the named ruleset rewriting
operation⇛ as follows.

r
α,m
Ô⇒ r′ p ∈ P π(p) = r π′ = π[p↦ r′]

(P, π)
α,m
⇛ (P, π′)

In this definition, graph rule names assure that the identity of the rule being modified,
which ismaintained independently of the way the rule is altered. Essentially, this definition
solves the problem of dealing with representation non-determinism and indexing, since
rules names act as the identity for the rule rather than the span itself.

Notice, however, that some changes in specificationmay involve not onlymodifications
in the structure of current rules, but also adding new rules and removing deprecated ones.
Given that this is a natural requirement, we can propose addition and removal operations
for both nameless and named rulesets, as shown in the next definition.

Definition 92 (Addition and deletion in rule collections). Below we define addition and
removal operations for both nameless and named characterizations of sets of rules.

Nameless:

r ∈ D D′ = D − {r}

D −r⇛ D′

r /∈ D D′ = D ∪ {r}

D +r⇛ D′

Named:

p ∈ P P′ = P − {p}
dom(π′) = dom(π) − {p} π′(x) = π(x)

(P, π)
−p
⇛ (P′, π′)

p /∈ D P′ = P ∪ {p} π′ = π[p↦ r]

(P, π)
+(p,r)
⇛ (P′, π′)

Because we work with sets in both nameless and named versions, the addition of a new
element depends on the element being already in the set or not. Hence, it is not possible
to define a generic addition operation that will always add a new rule to a given ruleset,
independently on the rules already in the set. In the named version, the problem is not
in the rule specification itself, but rather in how to obtain a fresh name for each addition.
Another aspect of this definition is that it suggests structural distinctions between addition,
deletion and update (through rewriting). It seems that, for the sake of evolution, you are
required to employ one mechanism for addition (set union), deletion (set difference) and
modification (set difference, set union and second-order rewriting). Although it is not a
problem per-se, we could argue that it would be more elegant if we could represent all
possible modifications over a set of rules through a unique kind of operation, for which
addition, removal and modification were special cases.

88

There comes the question of which structure could we use in order to aggregate rules
dealing adequately with representation non-determinism, multiplicity, indexing and that
would permit a unification of themechanisms of addition, removal andmodification. In the
next section, we discuss the usage of coproducts in the category T-Rules as collections of
rules, and discuss why this choice is adequate regarding the previously mentioned issues.

5.2 Coproducts as rule collections
Coproducts (see Definition 172) can be seen as the categorial generalization of the

disjoint union operation in Set and other set-based categories such as Graph, T-Graph
and T-Span. Given three rules r1, r2 and r3 in T-Span, their coproduct is their disjoint
union r1 + r2 + r3 together with the respective injection morphisms inji → r1 + r2 + r3, for
i ∈ {1,2,3}, as the following diagram shows.

r1

inj1

((

r2

inj2

��

r3

inj3

vv
r1 + r2 + r3

Generically, we refer to a coproduct of a collection of rules {ri}i∈I through the respec-
tive collection of injections, which we will denote as

∐{ri}i∈I = {inji ∶ ri →∑
p∈I

rp}i∈I

for I ⊆ N. Roughly speaking, the images of injections act as a tagging system, identifying
each component of the collection within the amalgamation object ∑p∈I rp. The coproduct
construction has the following interesting properties:

• it is a categorial constructions determined uniquely up-to-isomorphism, and conse-
quently, less sensible to representation non-determinism than most set-based defi-
nitions;

• it allows repetition of elements and indexing through the injection morphisms;

• addition and removal of elements are independent of naming, assuming that we treat
as “names” the injections themselves.

Coproducts, as sets, can also be seen a a collection of all its components, represented by
the indexed collection {r1, . . . , rn} of all domains of injections. Similarly to set rewriting,
we can define our notion of rewriting for coproducts.

Definition 93 (Coproduct rewriting). Let R = {ri}i∈I be an I-indexed collection of graph
rules in T-Span. We denote the coproduct rewriting operation by

injk ∈∐R dom(injk) = r r
α,m
Ô⇒ r′

∐R
injk,α,m⇛ ∐({ri}i≠k ⊎ {r′})

Notice that, in order to keep track of which exact rule we are modifying, we must
record which particular injection “injects” the rewritten element into the coproduct ob-
ject. One of the advantages of this definition is that the whole updating process of the

89

ruleset may be totally described diagrammatically. Suppose, for instance, that we have
a coproduct ∐{r1, r2, r3} and a second-order rewriting r3

α,m
Ô⇒ r′′3 . We may obtain a co-

product rewriting by calculating the coproduct ∐{r1, r2, r′′3} of the modified r′′3 and all
unmodified elements of the original coproduct, i.e., {r1, r2}. Figure 5.1 shows this update
operation as a diagram in T-Span. The problems of representation non-determinism and
indexing are solved because we keep the rewritten injection as part of the label. Intuitively,
coproduct rewriting follows the same principle as set rewriting, but without the issues we
have discussed previously.

α = a

m

��

boo //

��. .

c

��
r1

##
..

r2

��
--

r3

{{

r′3oo // r′′3

��
r1 + r2 + r3 r1 + r2 + r′′3

Figure 5.1: Example of coproduct rewriting.

Regarding creation and deletion of elements, we can obviously achieve them by means
of taking the diagram formed by all domains of injections (i.e., the rules themselves) re-
moving or adding some of them in the diagram, and recalculating the coproduct of the new
diagram. That would be analogous to the addition and removal presented in set. However,
that would lead to a definition distinct in nature to the modification mechanism, and it
would be nice if we could find some uniformity. For inspiration in this issue, we recall a
very basic property of category theory regarding initial objects and coproducts.

Proposition 94. Let C be a category with coproducts and initial object 0. Then, all object
A is isomorphic to A + 0, i.e. A ≅ A + 0.

Proof. Due to initial object property, there is a pre-coproduct A idAÐ→ A !←Ð 0, and hence a
unique arrow k ∶ A+0→ A. Moreover, also due to initial object property, injA○! = inj0, and
hence injA ∶ A→ A + 0 acts as h−1.

A injA //

idA
++

A + 0
h
��

0inj0oo

!
ssA

injA

OO

The practical consequence is that, in a given sense, the initial object 0 acts as an identity
for the coproduct calculation. This means that, although ∐{r1, r2} ≠ ∐{r1, r2,0}, since
they have a distinct number of injections, they both have isomorphic summation objects,
i.e., r1 + r2 ≅ r1 + r2 + 0. If we consider a 2-rule α = 0 ← 0 → r3 and the second-order
rewriting 0 α,id0Ô⇒ r3, it is possible to form the coproduct rewriting ∐{r1, r2,0}

inj3,α,id0⇛
∐{r1, r2, r3} as shown in Figure 5.2. Notice that in this case, the match for the rule α is an

90

0

≅

��

0oo //

��. .

r3

≅

��
r1

##
..

r2

��
--

0

{{

0oo // r3

��
r1 + r2 + 0 r1 + r2 + r3

Figure 5.2: Creation as coproduct rewriting.

isomorphism. Since its left-hand side is empty, it could also be used to include the right-
hand side rule r3 as a part of rules r1 and r2, and the match would not be iso. The intuition
we obtain is that an empty injection, i.e, an injection from the initial object, acts as an
empty slot. This way, we would be inserting elements in a vacant part of the coproduct
object. In contrast, if the same 2-rule acts over an existing rule, let us say r2, then the
second-order rewriting would be modifying the components of an already filled slot. A
nice consequence of this view of addition of elements is that we obtain a dual interpretation
for deletion. For example, the rule α−1 = r3 ← 0 → 0 removes the structure r3 from some
existing rule, or even the whole rule from the collection by transforming it into an empty
slot, as in the rewriting∐{r1, r2, r3}

inj3,α−1,idr3⇛ ∐{r1, r2,0}, shown in Figure 5.3.

r3

≅

��

0oo //

��. .

0

≅

��
r1

##
..

r2

��
--

r3

{{

0oo // 0

��
r1 + r2 + r3 r1 + r2 + 0

Figure 5.3: Deletion as coproduct rewriting.

In both cases, for rules in the format the distinction between modification and creation
or addition depends on the property of the match being an isomorphism or not, and in
T-Span we have that the comatch is iso if the match is iso. The rules that perform these
transformations are actually inverse to each other. Consider the 2-rule α = p← 0→ 0 and
second-order rewritings c = r α,m

Ô⇒ r′ and d = r′ α
−1,m′
Ô⇒ r. We have the following cases when

m and m′ are not isomorphisms:

• creation: since the LHS is empty, the match m will always be mono. Hence, it may
only fail to be iso by not being epi, and this cases characterizes the addition of the
pattern p into the rule r;

• deletion: the match can fail to be iso by being:

– monic, but non-epi: the pattern represented by p is removed from the rule r′;

91

– epi, but non-monic: a rule r′, which is smaller than p, is completely deleted.
This happens because of non-injectivity in the match m′;

– non-monic and non-epi: a sub-pattern of p (due to non-injectivity of thematch)
is removed from r′, but there remains some elements in the resulting rule r since
m′ was not surjective.

This analysis shows that 2-rules with the shape 0 ← 0 → r and r ← 0 → 0 are quite
versatile. If we ensure that the match is isomorphic, they can be used to delete and cre-
ate rules in a collection by converting them into the empty rule or from the empty rule,
respectively. Notice that this only works as we intend to if somehow we could identify
a coproduct ∐{r1, r2} with ∐{r1, r2,0}, i.e., if injections from 0 would act as a neutral
element of coproduct operation. The next definitions address this issue.
Definition 95 (Active injections of coproducts). Let C be a category with coproducts and
initial object 0. Given a coproduct c = ∐R in C, we denote by A(c) the subcollection
A ⊆ N of injections such that their domain are not initial in C. Formally,

A(c) = {inj ∣ inj ∈ c ∧ dom(inj) /≅ 0}

Definition 96 (Coproduct collection of rules). Let c =∐R be a coproduct in T-Span. We
say that c is a coproduct collection of rules (alternatively, coproduct rule collection) iff

1. c is countably infinite;

2. A(c) is finite;

3. for all inj ∈ A(c), dom(inj) is finite.

A coproduct rule collection correspond to a coproduct for a diagram composed of a
finite number of non-empty rules, and an infinite number of empty rules, as depicted below.

r1 + 0 + 0 + r2 + r3 + 0 + 0 + 0 + 0 + 0 + 0 . . .

The intuition is that we have an infinite number of empty slots, representing possible addi-
tions to the collection of rules, and a finite number of occupied slots for rules, represented
by the active indices. The infinite collection of injections from 0 solves the problem of
finding new names for the addition of rules, since we consider the indexed collection of
active injections as the representation of named rules. We can employ this same pattern
to describe collections in other categories as the next definition shows.
Definition 97 (Coproduct collection of typed graphs). Let c = ∐R be a coproduct in
T-Graph. We say that c is a coproduct collection of typed graphs (alternatively, coproduct
typed graph collection) iff c is countably infinite, A(c) is finite and for all inj ∈ A(c),
dom(inj) is finite.

The final step is to include rewriting of rules with negative application conditions in
our notion of coproduct rewriting.
Definition 98 (Coproduct rewriting with NACs). Let R = {ri}i∈I be an I-indexed collection
of graph rules in T-Span and (N, α) a 2-rule with NACs. We denote coproduct rewriting
with NACs by the following rule

injk ∈∐R dom(injk) = r r
(N,α),m
ÔÔÔ⇒ r′

∐R
injk,(N,α),m⇛ ∐({ri}i≠k ⊎ {r′})

92

Now, we recall the traditional definition for graph grammars and modify it in order to
use coproduct collections.

5.3 Graph grammars with coproduct rule collection
This section redefines the basic definitions for graph grammarmodels, in order to adapt

them towards the usage of coproduct rulesets. This way, we may obtain a better basis
before adding a higher-order layer to the specifications. The modifications are basically
technical, and do not modify the original intuition behind graph grammar specifications.

Definition 99 (Graph grammar). A (first-order) graph grammar is a tuple (T,D0,D1)
where T is a type graph, D0 is a coproduct collection of graphs in T-Graph and D1 is
a coproduct collection of graph rules in T-Span.

Notice that we are considering the initial graph to be a coproduct collection of graphs.
This generalizes the situation of a unique initial graph, and will provide a convenient uni-
formity between rewriting levels. In practice, however, all our examples will comprise of
a unique graph. This choice requires that we adapt the notion of direct derivation in order
to tag in the label not only the injection for rule and match, but also the injection of the
target.

Definition 100 (Derivation). Let (T,D0,D1) be a graph grammar (cf. Definition 99). We
define a direct derivation by the following rule

D0
g,dom(r),m
⇛ D′0 g ∈ A(D0) r ∈ A(D1)

D0
g,r,m
Ô⇒ D′0

Notice that we are using the injections of the chosen graph and rule as names in the
label of the transformation step. This accounts for identifying precisely which rule we are
referring to, even if there is repetition in the coproduct rule collection. We set as label the
triple (g, r,m) where g is the injection of the target graph, r is the injection of the rule and
m ∶ dom(r) → dom(g) is the match. Finally, we require that the rewriting does not use an
empty rule over an empty graph. Because coproducts collections of rules have an infinite
number of copies of the empty rule 0, we wish to avoid applying one of them.

However, there is one important consequence of this particular definition for derivation
that differs from the traditional one. It refers to the fact we are requiring the graph being
rewritten not to be empty, by means of condition g ∈ A(D0). This is required because
in our modelling an empty graph injection represents an empty slot within a collection.
This restriction, however, does not affect most of the scenarios, and we can always use a
non-empty encoding avoiding to become empty during execution.

5.4 Second-order graph grammars
In this section, we discuss how to add a second-order transformation layer over a first-

order graph grammar. We start by the most simple example, where the second-order layer
only changes the collection of rules by means of a collection of two rules. Later, we
consider more complex specifications that also modify the initial graph and the type graph
of the initial system. Before entering in the details of the models, we are required to
establish a category to describe collections of 2-rules, which we call T-Span2.

93

Definition 101. T-Span2 is the functor category [Span→ T-Span].

Proposition 102. T-Span2 is adhesive and finitely co-complete.

Proof. (Sketch) T-Graph is a topos. Hence, the functor category [C → T-Graph] is a
topos if C is small. We know Span is small, hence T-Span and T-Span2 are toposes as
well. All toposes are adhesive (LACK; SOBOCINSKI, 2006) and finitely co-complete
(GOLDBLATT, 2006).

5.4.1 Simple second-order graph grammars
We start by defining what we call a simple second-order graph grammar. We call

this definition “simple” because the only novelty in comparison with a first-order graph
grammar is the introduction a collectionD2 of 2-rules together with a function η2 assigning
respective NACs to each active rule index. The new collection of 2-rules affects only the
underlying collection of rules, and thus do not have a direct impact over the initial graph
or type graph.

Definition 103 (Simple second-order graph grammar). A simple second-order graph
grammar (S-SOGG) is a tuple (T,D0,D1,D2, η2) where

• (T,D0,D1) is a first-order graph grammar (cf. Definition 99);

• D2 is a coproduct collection of 2-rules in T-Span2;

• η2 is a total function mapping active rule injections inj ∈ A(D2) to a collection of
NACs for rule dom(inj).

The state of the graph grammar is not just the graph, but also the collection of rules.
Regarding the grammar execution, we have two kinds of possible evolutions: the first one
is given by the interaction of D1 and D0, generating a new current graph collection, and
the other comes from the interaction of D2 and D1, providing an updated rule collection.
The following diagram presents visually those interactions.

(D2, η2)

2
��

T D0 D11oo

Definition 104 (Derivation of a S-SOGG). A direct derivation of a S-SOGG G =
(T,D0,D1,D2, η2) is given by the following rules.

D0
g,dom(r),m
⇛ D′0 g ∈ A(D0) r ∈ A(D1)

(T,D0,D1)
(1,g,r,m)
ÔÔÔ⇒ (T,D′0,D1)

(1)

94

D1
r,(η2(α),dom(α)),m⇛ D′1 r ∈ A(D1) α ∈ A(D2)

(T,D0,D1)
(2,r,α,m)
ÔÔÔ⇒ (T,D0,D′1)

(2)

Direct derivations of kind (1) and (2) are referred as, respectively, first-order and
second-order, and are tagged accordingly. A derivation is an arbitrary sequence

G0
(w1,x1,y1,z1)ÔÔÔÔ⇒ G1

(w2,x2,y2,z2)ÔÔÔÔ⇒ G2
(w3,x3,y3,z3)ÔÔÔÔ⇒ . . .

(wn,xn,yn,zn)ÔÔÔÔ⇒ Gn

of direct derivations starting with G0 = (T,D0,D1).

Example 105. As an example of a simple SOGG, we use the graph grammar of Figure 2.7,
connecting clients and servers, as the initial state. We introduce a 2-rule collection con-
sisting of a single 2-rule α, as shown in Figure 5.4. Since we do not have the set of names
P, we use the names of rules, 2-rules and graph as the injection indices inji. The unique
2-rule implements a model transformation that modifies the reading policy of data. In the
original system, the reading operation removes the message from the server. The 2-rule α
modifies this aspect in the following way: it matches all rules that move a data away from
servers, augmenting their RHS by creating a fresh copy of the data token in the server.
The 2-rule α contains a NAC that makes it to be executed only once over a given rule.
The only rule in the original specification affected by α is getData, and the second-order
rewriting that modifies it can be seen in Figure 5.5. This second-order rewriting gives rise
to the following second-order derivation:

(T, D0, {sendMSG, getDATA, receiveMSG, deleteMSG})
(2,getDATA,α,m)
ÔÔÔÔÔÔ⇒

(T, D0, {sendMSG, getDATA’, receiveMSG, deleteMSG})

5.4.2 Retyping-aware simple second-order graph grammars
Although the main innovation regarding second-order graph grammar comes from

modifications in rules, some changes in other components of the specification, such as type
graphs, may still be required. One clear example refers to the proposed model transforma-
tion of Chapter 1, depicted in Figure 1.4. While the addition of a place in that represen-
tation meant to add a node in the instance graph, in the interpretation of a place-transition
system as a graph grammar, places are represented by means of node types. Therefore, in
order to add or remove a place, we are required to modify the type graph and adjust the
instance graphs accordingly. We can say that rule-based rewriting may not be as effective
for untyped graphs than it is for typed graphs, since most of the rule structure is guided
by the typing information. Because of this, we intend to consider for typed graph modi-
fications based on spans across types, which have been vastly explored in the context of
graph grammar morphisms.

Essentially, those mechanisms define how to adapt typed graph instances due to re-
moval and inclusion of elements in the type graph. The straightforward way of retyping
instances is induced by a span T ← T′ → T′′ between two type graphs. Instances of T are
converted into instances of T′′ through a combination of the reverse pullback functor and
direct composition functor between particular comma categories T-Graph and T′′-Graph.
These constructions are traditional in the area of graph transformation, and we recall them
in the following definitions.

95

Figure 5.4: Simple second-order graph grammar.

96

Figure 5.5: Second-order rewriting modifying getDATA.

Definition 106 (Reverse retyping functor). Let PB be a fixed choice of pullback inGraph.
Each arrow f ∶ T′ → T allows to define a reverse pullback functor f⊲ ∶ T-Graph →
T′-Graph, defined by f ⊲Obj(g ∶ G → T) = g′ ∶ PB(f,g) → T′, and f ⊲Mor(m ∶ G → H) is the
unique arrow from pre-pullback (PB(f,g),g′, f′g;m) to PB(f,h), as shown in the diagram
below.

T′ f // T

PB(f,g)
g′

88

f′g //

m′
%%

G

g
@@

m
��

PB(f,h)

h′

OO

f′h // H

h

OO

Definition 107 (Direct retyping functor). Each arrow f ∶ T′ → T′′ induces a functor f ⊳ ∶
T′-Graph → T′′-Graph defined by f ⊳Obj(g) = f ○ g and f ⊳Mor(m) = m, as shown in the
following diagram.

G

m

��

g
��

f○g

))T′ f // T′′

H

h

??

f○h

55

Definition 108 (Span retyping functor). Each span s = T a←Ð T′ bÐ→ T′′ in T-Graph induces
a functor s⊲⊳ ∶ T-Graph→ T′′-Graph defined by s⊲⊳ = b⊳ ○ a⊲.

Now, we investigate in under which conditions monomorphisms are preserved across
both the reverse and direct retyping functors.
Proposition 109. If a ∶ T′ → T is mono, then a⊲ ∶ T-Graph → T′-Graph preserves
monomorphisms.

Proof. Suppose a monomorphism m ∶ g → h in T-Graph. We then calculate f⊲(m) = m′
as shown below

T′ // a // T

PB(f,g)

g′
88

// a′g //

m′
%%

G

g
@@

��

m
��

PB(f,h)

h′

OO

// a′h // H

h

OO

97

Because pullbacks preserve monomorphisms in all categories and a is mono we have that
a′g and a′h are mono. Because a′g;m = m′;a′h, and both a′g;m and a′h are mono, so it ism′.

Proposition 110. For any b ∶ T′ → T′′, b⊳ ∶ T′-Graph → T′′-Graph preserves monomor-
phisms.

Proof. b⊳(m) = m, and all mono in T-Graph are also mono in Graph.

Proposition 111. Given a graph span s = T a←Ð T′ bÐ→ T′′ such that a is mono, then s⊲⊳
preserves rules and 2-rules.

Proof. Both rules and 2-rules, respectively, may be seen as the following commutative
diagrams in Graph

L

K

��

oooo // // R

~~
T

Ra

��

Rb

��

oooo // // Rc

}}

Ka

��

??
??

��
��

Kb

��

>>
>>

~~
~~

oooo // // Kc

||

@@
@@

��
��

La

##

Lb

		

oooo // // Lc

zzT

rule r 2-rule α

where the top arrows are all monomorphisms. Since a is mono, we have that a⊲ preserves
monos by Proposition 109. By Proposition 110, b⊳ preserves monos, and therefore s⊲⊳ also
preserves mono. Hence, s⊲⊳(r) and s⊲⊳(α) are commutative diagram inGraph where the
top is composed of all monos and the lower vertice is T′′, comprising of valid rules and
2-rules, respectively, in T′′-Graph and T′′-Span.

We will represent by the same name s⊲⊳ the rewriting functors s⊲⊳ ∶ (T-Graph →
T′′-Graph) and s⊲⊳ ∶ (T-Span → T′′-Span), induced by the same s. By retyping the
diagrams representing the current graph and graph rules according to s⊲⊳, we can convert
a whole T-typed graph grammar (T,D0,D1) into a well-formed T′′-typed graph grammar
(T′′,D′′0 ,D′′1).

In our examples, all rewritings layers have to be typed over the same graph, which
leads to the notion that T must contain all types required for all elements of the specifica-
tion. However, it may be common that lower-order layers use just a subset of all possible
elements in the type graph, while higher-order layers employ additional types. For in-
stance, in the example of Chapter 1, we have to increase in exact one element the type
graph, representing a new place. Moreover, the rewriting rules need to add one instance
of this new kind to the RHS of all existing rules. It may also be the case that we may wish
to delete some elements from the type graph, as, for instance, removing some places from
the example place-transition system. Therefore, we propose to represent retyping as an
operation affecting the first-order layer of the specification, which leads to the following
definition:

Definition 112 (Retyping-aware simple second-order graph grammar). A retyping-aware
simple second-order graph grammar (RS-SOGG) consists of a tuple (T,D0,D1,RT,D2, η2)
where

98

• (T,D0,D1) is a first-order graph grammar.

• RT = T a↢ T′ b↣ T′′ is a monic span in Graph.

• D2 is a coproduct collection of 2-rules in T′′-Span2.

• η2 is a total function mapping an active rule injection r ∈ A(D2) to a set of NACs
for its domain dom(r).

This definition has the intuition of providing the second-order layer its own type graph
T′′, while recording through the span RT the notion of evolution of the type graph T. The
RT-induced retyping operation affects all first-order structures: both initial graphs and
rules. The following diagram depicts how some elements of the specification affect others,
where r stands for retyping, 1 for first-order rewriting and 2 for second-order rewriting.

RT

r
��

r

r

((

(D2, η2)

2
��

T D0 D11oo

Definition 113 (Retyped RS-SOGG). Given a RS-SOGG G = (T,D0,D1,RT,D2, η2), we
define its respective retyped grammar, written GRT, as the S-SOGG

GRT = (T′′,D′′0 ,D′′1 ,D2, η2)

where RT⊲⊳(D0) = D′′0 and RT⊲⊳(D1) = D′′1 .

The S-SOGG associated with the RS-SOGG is given by retyping all first-order struc-
tures according to the RT component. Notice in Definition 113 that, because D2 was
already typed over T′′, it is maintained unchanged in its respective retyped S-SOGG. The
retyped grammar defines the behavior of the RS-SOGG specification.

Definition 114 (Derivation of RS-SOGG). The derivations of a RS-SOGG G =
(T,D0,D1,RT,D2, η2) are the derivations of its retyped graph grammar GRT.

Example 115 (Place-transition system as S-SOGG). Figure 5.6 shows a characterization
of the place-transition example of Chapter 1 as a retyping-aware S-SOGG. The first-order
layer (T,D0,D1) represents the graph grammar view of the original place-transition sys-
tem. The retyping span creates an additional place in the specification as a new node in
the type graph. The unique 2-rule modifies all the existing rules, creating new nodes of
the new type on their RHS. The 2-rule only acts once on each rule due to the existence of
a NAC ensuring that new places will only be created if they do not exist already.

99

a:p1 b:p1

p1

p4

p3 p4

p2

p3p2

t1

D1 t2

t3

p1 p2 p3 p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p5

g0

RT

D2,η2

D0T

p5

addLog

p5

nac1

Figure 5.6: Place-transition example as RS-SOGG.

100

5.4.3 Retyping-aware complete second-order graph grammars
A retyping-aware S-SOGG allows to define modifications in the type graph, which

affects all first-order structures, and also in the collection of rules, through second-order
rewriting. Notice, however, that there are settings where modifications in rules may also
require additional adjustments in the initial graph. One example is to think of a log policy
similar to the one from the place-transition system, but in the client and server scenario.

For example, suppose there should be a global log object responsible for a execution
trace the system, and that the structure must be read and updated by every rule in the
specification. We notice that the creation of additional structures in rules can be done by
means of 2-rules. However if we do not create at least one instance of the global log object
in the initial graph, all modified rules will have no match. Hence, we propose a definition
for what we call a “complete” second-order graph grammar, where besides a collection of
2-rules, we also include a collection of graph rules whose purpose is to update the initial
graph of the specification.

Definition 116 (Complete second-order graph grammar). A complete second-order graph
grammar (C-SOGG) is a tuple (T,D0,D1,D2

0,D2
1, η

2
0, η

2
1) where

• (T,D0,D1) is a first-order graph grammar (cf. Definition 99)

• D2
0 is a coproduct collection of rules in T-Span

• D2
1 is a coproduct collection of 2-rules in T-Span2

• η20 associates a collection of NACs to each active injection of D2
0

• η21 associates a collection of NACs to each active injection of D2
1

Notice that there are two rule collections affecting the initial graph: the original D1
and the new D2

0. Although both are objects of the same kind, their purposes are distinct:
D1 represents the execution for the model, while D2

0 represents a model-transformation
modification that prepares initial conditions. Therefore, in order to distinguish their role,
their tags in derivations are distinct, according to the following scheme.

(D2
0, η

2
0)

2
��

(D2
1, η

2
1)

2
��

T D0 D11oo

Definition 117 (Derivation of C-SOGG). A direct derivation of a C-SOGG
(T,D0,D1,D2

0,D2
1, η

2
0, η

2
1) is given by the following rules.

D0
g,dom(r),m
⇛ D′0 g ∈ A(D0) r ∈ A(D1)

(T,D0,D1)
(1,g,r,m)
ÔÔÔ⇒ (T,D′0,D1)

(1)

101

D0
g,(η2

0(r),dom(r)),m⇛ D′0 g ∈ A(D0) r ∈ A(D2
0)

(T,D0,D1)
(2,g,r,m)
ÔÔÔ⇒ (T,D′0,D1)

(2)

D1
r,(η2

1(α),dom(α)),m⇛ D′1 r ∈ A(D1) α ∈ A(D2
1)

(T,D0,D1)
(2,r,α,m)
ÔÔÔ⇒ (T,D0,D′1)

(3)

A derivation of a C-SOGG is an arbitrary sequence

G0
(w1,x1,y1,z1)ÔÔÔÔ⇒ G1

(w2,x2,y2,z2)ÔÔÔÔ⇒ G2
(w3,x3,y3,z3)ÔÔÔÔ⇒ . . .

(wn,xn,yn,zn)ÔÔÔÔ⇒ Gn

of direct derivations starting with G0 = (T,D0,D1).

The important thing to notice is that an update of the initial graph, although being
a first-order rewriting, has the same tag as an second-order rewriting. This accounts for
the definition of the second-order layer (or model transformation layer) comprising both a
first-order component (D2

0, η
2
0) and a second-order component (D2

1, η
2
1). Provided that we

may wish to allow modifications also in the type graph as in a RS-SOGG, we also define
a retyping-aware version of a C-SOGG.

Definition 118 (Retyping-aware complete second-order graph grammar). A
retyping-aware complete second-order graph grammar (RC-SOGG) is a tuple
(T,D0,D1,RT,D2

0,D2
1, η

2
0, η

2
1) where

• (T,D0,D1) is a first-order graph grammar (cf. Definition 99)

• RT = T↢ T′ ↣ T′′ is a monic span in Graph

• D2
0 is a coproduct collection of rules in T′′-Span

• D2
1 is a coproduct collection of 2-rules in T′′-Span2

• η20 associates a collection of NACs to each active injection of D2
0

• η21 associates a collection of NACs to each active injection of D2
1

Within a RC-SOGG, the affect of each component of the second-order layer over the
first-order components can be observed in the following diagram.

RT

r
��

r

''

r

++

(D2
0, η

2
0)

2
��

(D2
1, η

2
1)

2
��

T D0 D11oo

As it would be expected, derivations in RC-SOGG are given by their respective retyped
C-SOGG.

102

Definition 119 (Retyped C-SOGG). Given a RC-SOGG G =
(T,D0,D1,RT,D2

0,D2
1, η

2
0, η

2
1), we define its respective retyped C-SOGG as

GRT = (T′′,D′′0 ,D′′1 ,D2
0,D2

1, η
2
0, η

2
1)

where RT = T a↢ T′ bÐ→ T′′, RT⊲⊳(D0) = D′′0 and RT⊲⊳(D1) = D′′1 .

Example 120 (Clients and servers with logging). Now we consider a log policy for rule
execution in the client-server scenario. According to this policy, we have a particular
node in the specification that acts as step-counter of the whole system execution. Each
rule application must update the global log object by increasing a linked-list structure at
each rule application. This system, modelled as a RC-SOGG, can be seen in Figure 5.7.
The retyping component adds a new “log” node type, and a new edge type for connecting
log nodes. The unique rule initLog in D2

0 creates a single node of type log with a self-edge
into the initial graph, assuring that all the modified rules will be able to execute. The
modification in rules is given by the 2-rule addLog, which modifies the current rules in the
following way: the rules must reads the log node, deletes the self-edge and create a new
node with its own self-edge, connected to the previous one by means of a new arrow. The
modified rules actually are augmenting a linked list. At the end of a n-step derivation, the
log linked-list structure will contain n + 1 nodes.

5.4.4 Create-delete-modify second-order graph grammar
We have defined the coproduct rewriting operation⇛ that allows us to represent both

modification, creation and deletion of active rules. However, creation and deletion require
special conditions: 2-rules in the format 0 ← 0 → r and r ← 0 → 0 (in T-Span) and also
the guarantee that the match is an isomorphism. In our present definition of coproduct
rewriting, we have considered a important restriction: both the involved 2-rule and rule
must be active, i.e., non-empty. The restriction of active 2-rules represent the fact that
empty injections only mean empty slots, and thus are not meant to be executed. The re-
striction on targets of second-order rewriting emphasize that we are meaning to represent
modifications in current rules rather than creation of new ones. Notice that deletion of
rules is still possible under these circumstances, either by single or successive modifica-
tions that end up removing all elements from a particular rule. The issue that arises if we
remove the restriction on targets is the fact that a 2-rule of shape 0 ← 0 → r, when used
with the purpose of creating a new rule, would always allow an infinite chain of rewrit-
ings. It is reasonable to consider that the inclusion or removal of rules of a specification
should be controlled operations that must be executed a finite number of times for a given
model transformation. Since coproduct collections have an infinite number of empty in-
jections, we arrive at an important issue: there is no way to avoid an infinite sequence
of rule creations. Negative application conditions can be used to enforce that 2-rules of
kind 0 ← 0 → r behave exclusively for creation purposes, but not the opposite, i.e., to en-
sure only modification of existing rules but not creation of new ones. Hence, although we
can represent both creation and deletion as a rewriting between two coproduct collections,
both operations seem to require a special scheduling policy that would create and delete
rules only once and by means of isomorphic matches. That is the purpose of the model
we name create-delete-modify simple second-order graph grammar. We start by defining
a creation-deletion sequence.

103

Figure 5.7: Complete second-order graph grammar adding logging to base grammar.

104

Definition 121 (Create-delete statement). A (T-typed) create-delete statement is a pair

s = (op, r)

such that op ∈ {+,−} and r is a graph rule in T-Span. A create-delete sequence is a
(possibly empty) finite sequence

s1, s2, . . . , sn

of create-delete statements.

From a create-delete statement, we define a coproduct rewriting associated with it by
means of second-order rewriting, as follows.

Definition 122 (Create-delete rewriting). Given a first-order grammar G = (T,D0,D1)
and a create-delete statement s = (op, r), we define a create-delete rewriting by the fol-
lowing rules.

s = (+, r) α = 0← 0→ r D1
i,α,m
⇛ D′1 m is iso

(T,D0,D1)
(2,i,s,m)
ÔÔÔ⇒ (T,D0,D′1)

(1)

s = (−, r) α = r← 0→ 0 ∃m, (D1
i,α,m
⇛ D′1 ∧ m is iso)

(T,D0,D1)
(2,i,s,m)
ÔÔÔ⇒ (T,D0,D′1)

(2)

s = (−, r) α = r← 0→ 0 /∃ m, (D1
i,α,m
⇛ D′1 ∧ m is iso)

(T,D0,D1)
(2,i,s,m)
ÔÔÔ⇒ (T,D0,D1)

(3)

Rule (1) handles creation of rules. Notice that operations of kind (+, r) are always
possible for any D1, since coproduct collections have an infinite number of empty slots.
Rules (2) and (3) handle deletion of rules. For a statement (−, r), there may exist or not
a rule isomorphic to r in D1. If there is an isomorphic match m, then the matched rule
is deleted by means of a second-order rewriting. Otherwise, the rewriting behaves like a
no-operation, and D1 is kept unchanged. We have tagged with the number 3 all operations
that modify the cardinality of the active rules in D1 to distinguish them from rule modi-
fications induced by second-order rewriting. Another distinct is that, instead of marking
the rewriting by means of the respective 2-rule, we keep the create-delete statement in its
place. This is without loss of generality, since the creation or deletion 2-rule is totally
defined by the respective rewriting statement.

Definition 123 (Create-delete rewriting sequence). Given a create-delete sequence s =
s1, s2, . . . , sn and a starting first-order grammar G0, we define a create-delete rewriting
sequence induced by s over G, written CD(G0, s), as

G0
2,i1,s1,m1ÔÔÔ⇒ G1

2,i2,s2,m2ÔÔÔ⇒ G2
2,i3,s3,m3ÔÔÔ⇒ G3 ⋯ Gn−1

2,in,sn,mnÔÔÔ⇒ Gn

Create-delete rewriting sequences allow the representation of a finite number of mod-
ifications on coproduct collections. From this, we introduce create-delete-modify simple
second-order graph grammars, as follows.

105

Definition 124 (Create-delete-modify simple second-order graph grammar). A create-
delete-modify simple second-order graph grammar (CDM-S-SOGG) is a tuple
(T,D0,D1,D2, η2,C2) where

• (T,D0,D1,D2, η2) is a S-SOGG,

• C2 is a T-typed create-delete sequence.

Definition 125 (Derivation of CDM-S-SOGG). Let G2 be a CDM-S-SOGG
(T,D0,D1,D2, η2,C2) such that

G0 = (T,D0,D1)

,
CD(G0,C2) = G0

2,i1,s1,m1ÔÔÔ⇒ G1
2,i2,s2,m2ÔÔÔ⇒ G2

2,i3,s3,m3ÔÔÔ⇒ G3 ⋯ Gn−1
2,in,sn,mnÔÔÔ⇒ Gn

and
Gn = (T,D0,D′1)

We define the derivations of G2 to be all derivations of the S-SOGG (T,D0,D′1,D2, η2) (i.e.,
same second-order layer (D2, η2) but starting with the first-order grammar Gn) prefixed
by the derivation CD(G0,C2).

The previous definitions account for specifications with an extra sequence C2 contain-
ing creation and deletion statements. Those creations and deletions are to be executed
before the application of any 2-rule in D2. This idea allows us to introduce and remove
rules in the first-order specification (T,D0,D1). We can also integrate this idea with other
models, giving rise, for instance, to CDM version of C-SOGGs (we omit this definition
because they can straightforwardly derived from the previous one). We can introduce re-
typing for models with create-delete sequences in the same way as before: we just need to
be careful to specify that create-delete sequences are to be executed after retyping, i.e., in
the associated retyped CDM-S-SOGG or CDM-C-SOGG. For the last example, we will
consider a full CDM-RC-SOGG model (i.e., create-delete-modify retyping-aware com-
plete second-order graph grammar). In this model, the affect of the second-order layer
over the first-order components can be represented in the following diagram (where C2

1
represents the create-delete sequence).

RT

r
��

r

''

r

++

(D2
0, η

2
0)

2
��

(D2
1, η

2
1)

2
��

C2
1

2
||

T D0 D11oo

Example 126 (CDM-RC-SOGG). The first-order system we are considering in our exam-
ples up to now, depicted originally in Figure 2.7, has some issues regarding the deletion of
messages. The first is that is possible for the rule getDATA to be applied more than once,
loading several data items on the same message node. When this message is sent back to
the client by means of receiveMSG, it is impossible to delete it with deleteMSG because of

106

the extra data items connected to the message node and the DPO dangling condition. The
second point is that, once the message returns to the client, there is nothing that forbids
it to be sent again to collect more data, instead of unloading its data and being erased.
In order to correct those issues, we can design a second-order layer that performs the
following actions:

1. create a new self-edge type, to mark new messages that have not been sent to servers
yet, and add one self-edge of this type to each message in the initial graph. These
edges must be deleted by the application of rule sendMSG.

2. add a new rule that would transfer the data from a received message into the client,
without deleting the message. This new rule, named unloadMSG, transfers to the
client all but the last data node of the message, allowing deleteMSG to handle the
last one.

The corrections may be represented by a create-delete-modify retyping-aware com-
plete second-order graph grammar (CDM-RC-SOGG). The specification is shown if Fig-
ure 5.8. The retyping span adds a new self-edge type to message nodes. The only rule
addMark in the initial graph preparation layer (D2

0, η
2
0) adds a self-edge instance to ev-

ery message node instance. The only 2-rule addMarkSend in the rule modification layer
(D2

1, η
2
1) modifies the first-order rule sendMSG to make it test and delete message self-

edges. Finally, there is a unique operation in the create-delete layer C2
1 specifying that

unloadMSG must be added to the collection of first-order rules. The corrected system only
sends messages once, but allow them to collect an arbitrary number of data items.

This last example presents all kinds of modifications we can do simultaneously over
a first-order specification: we are changing its type graph, the initial condition, and the
collection of rules (both by adding a new rule and modifying existing ones). By a matter of
design, modifications in both graph and rules are performed through rule-based rewriting.

5.4.5 Summary of models
In this section we have arrived at several so-called second-order models that differ

mainly in how they affect the first-order components. The names of the models attempt
to be descriptive, and in order to summarize their characteristics we present them in the
following table:

Models / Modifications Retype(D0) D0 Retype(D1) D1 Cardinality(D1)
S-SOGG √

C-SOGG √ √

RS-SOGG √ √ √

RC-SOGG √ √ √ √

CDM+ = = = = +
√

Roughly speaking, simple models are the ones which only modify the rules but not
the initial graph(s), while complete models affect both the initial graph(s) and the collec-
tion of rules. Retyping-aware are the models that allow modifications in the type graph,
and retyping has a conservative effect: it deletes all instances of the deleted types, but
does not add instances of the created types. This notion of retyping is traditional in the
graph transformation area. Finally, create-delete-modify models are equiped with a fixed

107

Figure 5.8: Create-delete-modify retyping-aware complete second-order graph grammar
correcting issues of the base system.

108

sequence of deletion and creation of first-order rules, modifying the cardinality of the
original collection of rules of the first-order system. The most generic model would be a
create-delete-modify retyping-aware complete second-order graph grammar, abbreviated
as CDM-RC-SOGG, for which all other models are special cases. We can see an example
of such system in Figure 5.8.

5.5 Execution strategies for second-order graph grammars
Now that we have defined several kinds of second-order graph grammars and their

respective derivations, we can discuss their respective execution model. As with the orig-
inal graph grammar models, we can take their collection of (concrete) derivations as the
simplest semantic model of a SOGG. Notice, however, that there are now distinct kinds
of one-step derivations, tagged by the first number n of their label (n, x, y, z).

The simplest execution model of a conventional graph grammar comprises of a non-
deterministic choice of all possible rewritings available at a given state. Since the state in
SOGGs is a whole first-order system G = (T,D0,D1), there may be derivations tagged by 1
or 2 from it, and we need to specify if non-deterministic choice is applied uniformly across
both tags, or if there will be some sorte of priority between them. This choice may depend
on the intended use of the model. For instance, if we consider the 2 layer to represent a
model transformation over the initial first-order system, we expect that 2-tagged rewriting
steps have priority over any 1-tagged derivation. Additionally, in this case it is important
that the 2-tagged possible rewritings terminate. On the other hand, if we are modelling
a system with dynamic self-modifying rules, interleaving between 1-tagged and 2-tagged
derivations are actually desired. A third possible case would be to only apply 2-tagged
derivations if there are no possible 1-tagged derivations possible. In this case, the second-
order layer would represent some kind of recovery modification on rules that would restore
the system to a working status in case for some reason its execution gets stuck.

Because our main application scenario is the representation of model transformations
by means of 2-tagged derivations, the notion of priority comes naturally.

Definition 127 (Scheduling of SOGGs). Let G2 be a SOGG graph grammar (any of the
varitions). We define the following scheduling types:

Non-deterministic: no priority between 1-tagged and 2-tagged derivations.

Priority: 2-tagged derivations have priority over 1-tagged ones.

Reverse priority: 1-tagged derivations have priority over 2-tagged ones.

In the models of the previous section we have defined that retyping is performed before
any derivation, and creation-deletion statements are always executed before any modifica-
tion statements. Due to this choice, if we assume priority scheduling for the execution of
a given model, we arrive at the following scheme, where the highest elements have higher
priority.

109

retyping

��
create-delete statement

uu ((
initial graph modification

))

rule modification

vv
graph modification

However, we will not fix any of the possible scheduling as definitive since, as men-
tioned before, SOGGs may be used to model distinct scenarios requiring distinct schedul-
ing policies. Regarding the derivation layer tags, one of the advantages of their use is
that we can characterize very straightforwardly which derivations correspond to model
transformations, as shown in the next definition.

Definition 128 (Model-transformation derivation). Let G2 be a SOGG (any of the models),
and let ρ be a (possibly infinite) derivation

G0
(n0,x0,y0,z0)ÔÔÔÔ⇒ G1

(n1,x1,y1,z1)ÔÔÔÔ⇒ G2
(n2,x2,y2,z2)ÔÔÔÔ⇒ . . .

of G2. We say ρ is a model-transformation derivation iff

1. for all i ∈ N, ni ≥ ni+1 and

2. there is a state Gk ∈ ρ such that, for all possible derivations Gk
(j,xk,yk,zk)ÔÔÔ⇒ G′) we have

j = 1 (they are all 1-tagged).

We name Gk the evolved system of ρ.

Model-transformation derivations correspond to the execution of a programmed trans-
formation over a first-order system immediately followed by the execution of the resulting
system. Note that the definition of model-transformation derivation is independent of the
scheduling of the model, although all model-transformation derivations respect the order-
ing of the priority scheduling.

Example 129. We show in Figure 5.9 a model transformation derivation

ρ = G0
(2,t1,addLog,m1)
ÔÔÔÔÔÔ⇒ G1

(2,t3,addLog,m2)
ÔÔÔÔÔÔ⇒ G2

(2,t2,addLog,m3)
ÔÔÔÔÔÔ⇒ G3

(1,g0,t1,m4)
ÔÔÔÔ⇒ G4

(1,g0,t2,m5)
ÔÔÔÔ⇒ G5

of the RS-SOGG depicted in Figure 5.6 (place-transition net example as second-order
graph grammar). We have three 2-tagged derivations, representing the execution of 2-
rule addLog to each of the original rules of the grammar. The evolved system of ρ is G3,
because due to application conditions we cannot apply addLog any more. We have yet two
1-tagged derivations at the end of ρ representing two initial execution steps of the evolved
system G3.

110

p1 p3 p4p3p2

a:p1

b:p1

p1

p2 p3

p4
p2 p4

p5

p1 p4p3p2

a:p1

b:p1

p1

p2 p3

p4
p2 p4

p5

p1 p3 p4p3p2

a:p1

b:p1

p1

p2 p3

p4
p2 p4

p5

p1 p3 p4p3p2

a:p1

b:p1

p1

p2 p3

p4
p2 p4

p5

p5

p5

p5

p3

p5

p5 p5

p1 p3 p4p3p2

p1

p2 p3

p4
p2 p4

p5

p5 p5 p5

p1 p3 p4p3p2

p1

p2 p3

p4
p2 p4

p5

p5 p5 p5

b:p1

y:p3x:p2

w:p5

b:p1

w:p5

y:p3

z:p5

RulesG0T

t1 t3 t2

RulesG0T

t1 t3 t2

RulesG0T

t1 t3 t2

RulesG0T

t1 t3 t2

RulesG0T

t1 t3 t2

RulesG0T

t1 t3 t2

(2,t3,addLog,m2)

(1,g0,t1,m4)

(1,g0,t2,m5)

(2,t1,addLog,m1)

(2,t2,addLog,m3)

Figure 5.9: Model-transformation derivation of the place-transition system with log.

111

5.6 Model evolution represented by spans
One of the characteristics of the DPO approach for graph rewriting is that there is an

explicit interface graph in rules, i.e., within each graph rule L ← K → R the graph K
denotes the matched elements that are not modified by the rule application. Considering
an application of the rule as the DPO diagram shown below, where we notice that between
graphs G and H there is a span s = G l∗←Ð D r∗Ð→ H.

L

m

��

K

. .

ooloo // r //

k

��

R

m∗

��

G D
l∗

oo
r∗

// H

The graph D consists of all elements maintained by the rule application, either by being
left out of the match m (i.e., out of the region m(L) in G) or by being preserved by the rule
(within l ○m(K) in G). This span represents the overall evolution of the graph G into H,
without referring to the particular rule that induced this evolution. For instance, given only
swe could not know the rule that produced it, sinceK could be either empty, isomorphic to
D or some graph in between. The span s records precisely what has been removed from G
(represented by (G− l∗(D))) and what has been added to D (represented by (H− r∗(D)))
by the rule application. In order to specify what has been added and deleted by a whole
derivation composed of a series of subsequent rewritings, we need to recall the standard
categorial notion of span composition.

Definition 130 (Span composition). Let s1 = A
a1←Ð S1

b1Ð→ B and s2 = B
a2←Ð S2

b2Ð→ C be two
spans in a category C with pullbacks. The composition span s1 ⋆ s2 of the two spans is
obtained by calculating the pullback of b1 and a2 and taking s1 ⋆ s2 = A

x;a1←ÐÐ S1,2
y;b2ÐÐ→ C,

as shown in the diagram below.

S1,2
x

~~

y

.

S1
a1

��

b1

!!

S2
a2

}}

b2

��
A B C

Since pullback calculation is associative, from a sequence of consecutive spans t =
s1; s2; . . . ; sn where n ≥ 2, we obtain a composition of the whole sequence as

⋆(t) = (. . . ((s1 ⋆ s2) ⋆ s3) . . . ⋆ sn)

5.6.1 Evolutionary spans for models without retyping

Suppose we have a sequence of graph rewritings G0
p1,m1Ô⇒ G1

p2,m2Ô⇒ G2 . . .Gn from
which we obtain the spans s1 = G0

l∗1←Ð D1
r∗1Ð→ G1 , s2 = G1

l∗2←Ð D2
r∗2Ð→ G2, …, sn = Gn−1

l∗n←Ð
Dn

r∗nÐ→ Gn taking the base of each DPO diagram. By means of span composition we obtain
a final span ⋆(s1; . . . ; sn) = G0 ← S1,...,n → Gn representing the overall modification from a
derivation (of any length) betweenG0 andGn. That is the intuition for our next definitions,

112

with the distinction that, instead of graphs, we will consider first-order graph grammars
as objects. Given a model-transformation derivation, we will be able to track what has
been removed, maintained and added to the original system in the same way as the case
of graphs. For such, we need to extend the notion of span representing evolution from
plain graphs towards a complete first-order graph grammar G = (T,D0,D1). For reason of
simplicity, we will define evolution initially for the S-SOGG model, keeping in mind that
definitions for the other models that are not retyping-aware can be obtained by extension.

Definition 131 (Span between coproduct collections). Let c1 = {ik}k∈N and c2 = {jk}k∈N
be coproduct collections in a category C. A coproduct collection span is a collection of
spans {sk ∶ dom(ik) ← dk → dom(jk)}k∈N in C. An identity coproduct collection span is
a coproduct collection span where all morphisms of all component spans sk are identi-
ties in C. Composition of coproduct collection spans is also written ⋆ and it is given by
component-wise composition of the spans between the domains of injections.

Definition 132 (Span between first-order graph grammars). Let G1 = (T,D0,D1) and G2 =
(T,D′0,D′1) be first-order graph grammars. A first-order graph grammar span is a pair
(s0, s1) where

• s0 is a coproduct collection span between D0 and D′0;

• s1 is a coproduct collection span between D1 and D′1;

An identity (first-order) graph grammar span is a pair (s0, s1) where both components are
identity coproduct collection spans. Composition of graph grammar spans is also denoted
by ⋆ and it is defined by component-wise composition of the two coproduct collection
spans.

Now that we have defined what means a span between coproduct collections and graph
grammars, we can state how to obtain an evolutionary span from second-order rewritings,
coproduct rewritings and S-SOGG derivations.

Definition 133 (Evolutionary span from one-step rewriting). We define how to obtain evo-
lutionary spans from the following kinds of rewriting:

first-order rewriting G1
p,m
Ô⇒ G2: we take the base of the DPO diagram in T-Graph as

the evolutionary span.

second-order rewriting p1
α,m
Ô⇒ p2: we take the base of the DPO diagram in T-Span as

the evolutionary span.

coproduct collection rewriting Dx
injk,r,m⇛ D′x (in some category C): the evolutionary

span is {sk}k∈N where

• if n = k, then sn is the base of the DPO diagram dom(injn)
r,m
Ô⇒ a (which

induced the coproduct collection rewriting)

• if n ≠ k, the sn is the identity span dom(injn)
id←Ð dom(injn)

idÐ→ dom(injn).

As an example, given the coproduct rewriting D1
inj2,α,m⇛ D′1 such that dom(inj2) = r2,

A(D1) = {r1, r2} and A(D′1) = {r1, r′′2}, we can see in the diagram of Figure 5.10 a
representation of its evolutionary span together with the rewriting that induced it.

113

⋮ ⋮ ⋮

0 0idoo id // 0

a
m

vv

α= bloo r //

��

c

((r2 r′2l∗oo r∗ // r′′2

0 0idoo id // 0

r1 r1idoo id // r1

dom(D1) dom(D′1)

Figure 5.10: Evolutionary span between coproduct collections of rules D1 and D′1.

one-step derivation of S-SOGG G1
(n,x,y,z)
ÔÔÔ⇒ G2, where G1 = (T,D0,D1) and G2 =

(T,D′0,D′1): the respective evolutionary span (s0, s1) between G1 and G2 is

• case n = 1 (first-order): s0 is the evolutionary span induced by the coproduct
rewriting D0

x,dom(y),z
⇛ D′0, and s1 is the identity span.

• case n = 2 (second-order): s0 is the identity span and s1 is the evolutionary
span induced by the coproduct rewriting D1

x,dom(y),z
⇛ D′1.

This last definition states how to construct an evolutionary span from a given one-step
derivation G1

(n,x,y,z)
ÔÔÔ⇒ G2 of a simple second-order graph grammar. Given a larger deriva-

tion, we can calculate the overall evolutionary span by graph grammar span composition,
which is obtained component-wise. This way we arrive at a single span between graph
grammars representing the evolution of the whole derivation.
Definition 134 (Evolutionary span of S-SOGG derivations). Let

ρ = G1
(n1,x1,y1,z1)ÔÔÔÔ⇒ G2

(n2,x2,y2,z2)ÔÔÔÔ⇒ G3
(n3,x3,y3,z3)ÔÔÔÔ⇒ . . . Gn

be a finite derivation of a given S-SOGG, and let t be the sequence of graph grammar
spans

D1

~~

D2

~~

Dn−1

{{ !!
t = G1 G2 G3 . . . Gn−1 Gn

induced, respectively, by each one-step derivation of ρ. We name the graph grammar span
G1

m←Ð D
nÐ→ Gn resulting from ⋆(t) the evolutionary span of ρ.

114

If ρ is a model-transformation derivation, we have an evolved system Gk for some k ≤ n.
By calculating the evolutionary span between the original first-order system G1 and Gk,
we have a formal and precise account of everything that has been maintained, removed
and added by the subderivation

G1
(n1,x1,y1,z1)ÔÔÔÔ⇒ G2

(n2,x2,y2,z2)ÔÔÔÔ⇒ G3 . . . Gk

This procedure for calculating evolutionary spans applies to models S-SOGG, C-
SOGG, CDM-S-SOGG and CDM-C-SOGG. Notice that we do not require any modifica-
tion in the definition to obtain evolutionary spans from derivations of create-delete-modify
models because of the characterization of creation and deletion of rules as particular cases
of coproduct rewriting. However, retyping is not being covered by this notion of evolu-
tion, since the derivations of a retyping-aware model are the ones of the respective retyped
model, which start with the retyped version of the original first-order system. Because re-
typing may delete instances, we want to consider those possible deletions in our notion of
evolutionary span, as the next section details.

5.6.2 Evolutionary spans for models with retyping

This section deals with the calculation of evolutionary spans for models with retyping.
As before, we will trace a parallel with a similar situation with conventional graphs, and
then generalize towards first-order graph grammars. We take the model RS-SOGG as an
example, for which suitable definitions for the other models may be directly derived.

Recalling the previous sections, we can represent the retyping operation induced by
the span s = T a←Ð T′ bÐ→ T′′ over the T-typed graph tg1 ∶ G → T, by the following diagram
in the category Graph

G

tg1

��

G′a∗oo

tg2

##

tg∗1

��

.

T T′aoo b // T′′

generating the T′′-typed graph tg2 ∶ G′ → T′′. In the retyping-aware models, this principle
is used to modify the initial collection of graphs and rules in order to fit them into the type
T′′. The problem now is how to relate tg1 with tg2, since the first lies in T-Graph and the
second, in T′′-Graph. Moreover, the retyping of tg1 may have deleted some elements ofG
during the calculation ofG′, which is represented in the diagram by the morphism a∗. One
solution for those issues is to calculate the pushout of the span s = T a←Ð T′ bÐ→ T′′, which
creates a type T● consisting of the elements of T′ together with the additions represented
by both a and b. Using the extended type graph T●, we can define the evolutionary span
of the retyping induced by s.

Definition 135 (Evolutionary span from graph retyping). Let tg1 ∶ G → T be an T-typed
graph, and s = T a←Ð T′ bÐ→ T′′ be a monic span in Graph. We define the respective
evolutionary span from graph retyping by the T●-typed span t = tg1;d

a∗←Ð tg∗1 ; c
idÐ→ tg2; e

115

shown in the diagram below in the category Graph.

G

tg1

��

G′a∗oo

tg∗1

��

.
id // G′

tg2

��
T

d
##

T′aoo b //

. c

��

T′′

e

{{
T●

where PO(s) = T dÐ→ T● e←Ð T′′.

We can define a similar notion of evolutionary span from rule retyping by considering
monic graph span instead of graphs in the definition.

Definition 136 (Evolutionary span from rule retyping). Let p1 = L← K→ R be an T-typed
graph rule, and s = T a←Ð T′ bÐ→ T′′ be a monic span in Graph. We define the respective
evolutionary span from rule retyping by the T●-typed span of rules d⊳(p1)

a∗←Ð c⊳(p′1)
idÐ→

erhd(p2) as shown in the diagram below in the category Graph,

R

��

R′a∗Roo

��

idR′ //
.

R′

��

K

��

yy

88

K′a∗Koo

��

.
idK′ //

xx

88

K′

��

xx

88

L

%%

L′a∗Loo

&&

idL′ //
. L′

&&
T

d

''

T′aoo b //

. c

��

T′′

e

wwT●

where PO(s) = T dÐ→ T● e←Ð T′′, p′1 is a T
′-typed graph rule with graph instances L′ ← K′ →

R′ and p2 is a T′′-typed graph rule with graph instances L′ ← K′ → R′.

We can extend the notion of evolutionary span from graph retyping and rule retyping
towards coproduct collections of graphs and rules in a component-wise way. It is known
that retyping functors induced by graph spans preserve colimits, and, consequently, co-
products. This means that if we have a coproduct collection c over type T, s⊲⊳(c) is still a
coproduct collection over type T′′.

Now, let us return to the case of graphs for the sake of the example. Let us suppose we
have a T′′-typed evolutionary span u = tg2

x←Ð tg
yÐ→ tg3 obtained from a derivation ρ. If we

116

retype this span using the functor e⊳ ∶ T′′-Graph→ T●-Graph as shown below,

G′

tg2

Dxoo y //

tg

��

G′′

tg3
~~

T′′

e

��
T●

we obtain a T●-typed span that may be composed with the evolutionary span obtained from
retyping. By composing both the retyping evolutionary span and the rewriting evolution-
ary span, we end up with a span representing the overall modification that we are applying
over the original first-order structure. This operation is depicted in the diagram below.

X

x

{{

id

##

.

G

tg1

��

G′a∗oo

tg∗1

��

.
id // G′

tg2

��

Dxoo y //

tg

{{

G′′

tg3ppT

d
##

T′aoo b //

. c

��

T′′

e

{{
T●

The base for calculating evolutionary spans for retyping-aware models is based on this
particular situation with graphs, but generalized towards graph grammar spans.

Definition 137 (Evolutionary span of RS-SOGG derivations). Consider a RS-SOGG R =
(T,D0,D1,RT,D2, η2) such that RT = T

a←Ð T′ bÐ→ T′′ and the respective retyped S-SOGG is
RRT = (T′′,D′′0 ,D′′1 ,D2, η2). Let us name G0 = (T,D0,D1) and G1 = (T′′,D′′0 ,D′′1). Given a
T′′-typed finite derivation

ρ = G1
(n1,x1,y1,z1)ÔÔÔÔ⇒ G2

(n2,x2,y2,z2)ÔÔÔÔ⇒ G3
(n3,x3,y3,z3)ÔÔÔÔ⇒ . . . Gn

of RRT, we execute the following steps to obtain a final evolutionary span:

1. calculate the pushout PO(s) = T dÐ→ T● e←Ð T′′;

2. calculate the T●-typed evolutionary span from retyping of G0 into G1, and name it
u;

3. calculate the T′′-typed evolutionary span from derivation ρ, and name it v0.

4. calculate the T●-typed evolutionary span v = e⊳(v0)

The resulting evolutionary span of R is the composition of T●-typed graph grammar spans
u ⋆ v.

117

This last definition tell us how to compose the span obtained from a given derivation
in the retyped model with the possible changes induced by the rewriting process. This
process calculates the evolutionary spans for models RS-SOGG, RC-SOGG, CDM-RS-
SOGG and CDM-RC-SOGG.

Example 138 (Evolutionary span). In Figure 5.11 we present the evolutionary span calcu-
lated from the derivation depicted in Figure 5.9. Because the derivation only adds elements
to the specification, the interface of the span corresponds to the initial graph grammar G0.
The right-hand side corresponds to the final first-order system, namely G3 in the original
derivation. Notice that the type graph of evolutionary span is the pushout of the retyping
span of the original specification, which contains the node type p5.

p1 p4p3p2

a:p1

b:p1

p1

p2 p3

p4
p2 p4p3

RulesG0T

t1 t3 t2

p1 p4p3p2

a:p1

b:p1

p1

p2 p3

p4
p2 p4p3

p5

p5

p1 p3 p4p3p2

a:p1

b:p1

p1

p2 p3

p4
p2 p4

G3 =

G0 =

G0 =

RulesG0T

t1 t3 t2

RulesG0T

t1 t3 t2

p5

p5 p5 p5

Figure 5.11: Example of evolutionary span.

5.7 Summary
The objective of this chapter is the definition of graph grammar specifications based

on both first- and second-order graph rewriting. We started with a discussion about how to
represent collections of rules, and how to modify the rule collection based on the applica-
tion of a given 2-rule. This discussion gave rise to the notion of coproduct collection and
coproduct rewriting. Based on this representation, we redefined first-order graph gram-
mar, since they will comprise the state to be modified in second-order graph grammars.
Then we introduced several kinds of second-order graph grammars, which differ mainly

118

on the ability to affect specific parts of the first-order system. After the presentation of
the models, we discuss their operational semantics focusing on the presence or absence
of priority between derivations of higher or lower order. We also defined what we have
called model-transformation derivations, which represents a terminating model transfor-
mation followed by the execution of the evolved system. Finally, we introduced the notion
of evolutionary span that registers what exactly has been added, removed and preserved
from a given specification by means of 2-tagged derivations.

119

6 INTER-LEVEL INTERACTION

In Chapter 5 we have defined visual models equipped with two levels of rewriting:
first-order and second-order. One of the advantages of our approach is the fact that we
can represent both first-order and second-order rewritings in the same context, i.e, as as
diagrams in the same category T-Graph. This allows us to represent their interaction by
means of elements (morphisms) in this category. This chapters deals particularly with a
notion of conflict and dependence between second-order and first-order rewritings. Based
on this definitions, we propose an extension of critical pair analysis for second-order graph
grammars. Finally, given a particular model-transformation, represented by a derivation,
we discuss how to relate first-order critical pairs of the original system with first-order
critical pairs of the modified system. This relationship allows us to foresee the effect of
the model transformation over conflicts and dependencies of the original specification,
which affect decisively its semantics. Hence, the original contributions of this chapter are
the following:

• definition of a notion of conflict between first-order and second-order rewritings,
and its extension to derivations of second-order graph grammars.

• an extension of the critical pair analysis technique for second-order graph grammars.

• determination of the evolution of critical pairs of the base system due to model
transformations.

6.1 Inter-level conflicts and dependencies
In this section we determine how to describe conflicts and dependencies between

second-order and first-order rewritings of a second-order specification. By the sake of sim-
plicity, we will consider our analysis on simple second-order graph grammars (S-SOGG).
We claim that results for the remaining models can be easily extrapolated from the inter-
actions we foresee in this case.

We start considering a S-SOGG (T,D0,D1,D2, η2) and an arbitrary state of it, i.e., a
first-order graph grammar G = (T,D′0,D′1). If we take two arbitrary one-step derivations
departing from G, we can have the following combinations.

1. two first-order rewritings: G1
(1,g1,r1,m1)⇐ÔÔÔÔ G

(1,g2,r2,m2)ÔÔÔÔ⇒ G2

2. two second-order rewritings: G1
(2,r1,α1,m1)⇐ÔÔÔÔ G

(2,r2,α2,m2)ÔÔÔÔ⇒ G2

3. one first-order, one second-order rewriting: G1
(1,g1,r1,m1)⇐ÔÔÔÔ G

(2,r2,α2,m2)ÔÔÔÔ⇒ G2

120

For each case, we will obtain a distinct characterization of conflict. In the two first
cases, the notion of conflict is derived from conflicts of graph rewriting and span rewriting
(with NACs), respectively. The third case is new, and requires us to ponder about what
exactly means a conflict between a second-order and a first-order modification. We will
address this issue now, and later we will provide a complete description for conflicts in all
three cases.

Initially, we observe that there is a intrinsic hierarchy between the two levels of rewrit-
ing. Since first-order rewritings do not modify the collection of rules in any sense, it is
quite obvious that they cannot interfere in the execution of any second-order rewritings.
This causes the nature of possible inter-level conflicts to be, by definition, asymmetric:
from higher-order to lower-order. A second observation refers to what a conflict repre-
sents. Consider that we are in the third case (one first-order and one second-order deriva-
tion) and we have r1 = r2. This means that the rule dom(r1) being used to modify g1 is
the same one being modified by 2-rule dom(α2). Since conflicts are defined by one of the
derivations disabling the other, we may say that there is a conflict between G

(1,g1,r1,m1)ÔÔÔÔ⇒ G1

and G
(2,r2,α2,m2)ÔÔÔÔ⇒ G2 if the latter in some way forbids the application of the former, given

that we maintain as much as possible the instantiation provided by the match m1. In other
words, the notion of conflict between higher-order and lower-order refers to preservation
of applicability for a given rule dom(r1) and match m1 after the possible modifications
done by dom(α2) and m2. Representing the situation diagrammatically, we arrive at the
following definition of independence.

Definition 139 (Inter-level parallel independence). Let ρ = G
r,m0Ô⇒ H and ρ2 = r

α,m
Ô⇒ r′′

(where m = (m1,m2,m3), r = L
l←Ð K rÐ→ R and r′′ = L′′ l′′←Ð K′′ r′′Ð→ R′′) be, respectively, a

first-order derivation and a second-order derivation, shown as diagrams in T-Graph as
follows.

a3

m3

��

b3

��

oo // c3

��

a2

__

��

m2

��

b2

__

��

oo // c2

aa

!!

��

a1

m1

��

b1

��

oo // c1

��

R

��

R′oo // R′′

K
r
``

l

��

K′
``

oo // K′′
r′′aa

l′′
!!

L

m0

��

L′fLoo gL // L′′

m′′0mm

[c

ρ

H
ρ2

+3

D
aa

!!
G

We say that ρ and ρ2 are (inter-level) parallel independent iff exists m′′0 ∶ L
′′ → G such

that

1. fL;m0 = gL;m′′0

2. m′′0 satisfies application conditions for L′′ l′′←Ð K′′ r′′Ð→ R′′

121

The existence of m′′0 in Definition 139 reflects the case where the elements added in
the graph L by the second-order rewriting can be matched also inG, provided we maintain
the instantiations induced by m0. It is required we test m′′0 for application conditions along
l′′ because only the existence of a match is not enough to ensure rule application in the
DPO approach.

Definition 140 (Inter-level conflict). A first-order rewriting G
r,m0Ô⇒ H and a second-order

rewriting r
α,m
Ô⇒ r′′ are conflicting iff they are not inter-level parallel independent.

Summarizing, we have a conflict between two derivations in distinct levels if either
the second-order rule makes the new rule fail to have a suitable match for G “compatible”
with the original match m0, or all compatible matches harm some application condition of
the modified rule. To provide a better sense for what is a conflict of this kind, we provide
some examples as follows.

Example 141 (Inter-level conflict). Figure 6.1 depicts four situations that cause inter-level
conflicts. Each one focus on some part of the diagram shown in Definition 139.

(a) here the original rule deletes a node and its self-edge. By means of second-order
deletion, we modify the rule to make it delete only the node. Notice that there is
an obvious match m0; fl for rule r′ = L′ l′←Ð K′ r′Ð→ R′, which, however, cannot be
applied because the edge dangling condition is harmed. This problem may be prop-
agated towards rule r′′ ∶ L′′ l′′←Ð K′′ r′′Ð→ R′′ (and match m′′0) because by condition 1 in
Definition 139 we must have fL;m0 = gL;m′′0 .

(b) in this case, two nodes p1 and p2 are mapped to the same node x1. In the original
rule, both p1 and p2 are preserved. The second-order rewriting deletes the pre-
image of p1 in the interface, changing preservation into deletion. The rule r′ cannot
be applied with match fL;m0 because this harms the identification condition. This
problem may also propagate to the final rewritten rule r′′, as in the previous case.

(c) this situation is somewhat symmetric to condition (b), because it involves non injec-
tivity of the match and changes only in the interface graph. However, the problem
happens in the rightmost part of the second-order rewriting (creation of elements)
and affects two elements that were originally deleted by the rule. Although there
exists a match m′′0 ∶ L

′′ → G, the second-order rewriting converts deletion of p1 into
preservation, and this causes the match m′′0 to harm the identification condition.

(d) this last situation is somehow more obvious than the previous ones, and refers to the
second-order rewriting augmenting the LHS of the rule in such a way it fails to have
a match for G. In the particular case, a self-edge for node p1 is created in graph L′′
although there are no edges in G.

Based on this relationship between rewritings, we can now define a notion of indepen-
dence between rewritings of first-order specifications, shown in the next definition.

Definition 142 (Parallel independence for S-SOGG derivations). Given a a S-SOGG
(T,D0,D1,D2, η2), we have parallel independence for two rewritings departing from
G = (T,D′0,D′1) iff (by cases)

122

x1

p1 p1p2 p2

x1

p1 p1p2

p2p1 p2

p2

p1

K’ K’’

x1

p1 p1

p1

L

K

p1

L’

K’

x1

gK

gL

l’’

G

L’

K’ K’’

L’’

fL;m0

m0

fK

fL

l’l

G

L

K K’

L’

(a)
(b)

(c) (d)

gK

gL

l’’l’

G

L’ L’’

l’

fL;m0

m0

fK

fL

l’l

G

Figure 6.1: Situations causing inter-level conflicts between first-order and second-order
rewritings.

123

1. two first-order rewritings (G1
1,g1,r1,m1⇐ÔÔÔ G

1,g2,r2,m2ÔÔÔ⇒ G2):

g1 ≠ g2 or (g1 = g2 and G1
dom(r1),m1⇐ÔÔÔÔ dom(g1)

dom(r2),m2ÔÔÔÔ⇒ G2

are parallel independent graph rewritings)

2. two second-order rewritings (G1
2,r1,α1,m1⇐ÔÔÔ G

2,r2,α2,m2ÔÔÔ⇒ G2):

r1 ≠ r2 or (r1 = r2 and p1
(η2(α1),dom(α1)),m1⇐ÔÔÔÔÔÔÔÔ dom(r1)

(η2(α2),dom(α2)),m2ÔÔÔÔÔÔÔÔ⇒ p2
are parallel independent second-order rewritings)

3. one first-order, one second-order rewriting (G1
1,g1,r1,m1⇐ÔÔÔ G

2,r2,α2,m2ÔÔÔ⇒ G2):

r1 ≠ r2 or (r1 = r2 and (G1
dom(r1),m1ÔÔÔÔ⇒ G2,dom(r1)

(η2(α2),dom(α2)),m2ÔÔÔÔÔÔÔÔ⇒ r′)
are inter-level parallel independent rewritings)

Notice that, in the definition, g1, g2, r1 and r2 are injections indexing graphs and rules
in coproduct collections. Sub-condition g1 ≠ g2 and r1 ≠ r2 states that are independent all
pairs of derivations affecting distinct injections. When both derivations affect the same
injection, they are independent iff the rewritings on the injection domain are, respectively,
parallel independent graph rewritings, parallel independent second-order rewritings or
inter-level parallel independent rewritings.

Regarding dependencies, we also are required to ponder about their actual meaning.
As with conflicts, they are essentially asymmetric, since first-order rewritings do not in-
terfere in any aspect with the applicability of a posterior second-order rewriting. On the
other hand, a second-order rewriting modifying a rule can make an originally impossi-
ble application feasible. For instance, consider the reverse of the situation (d) depicted in
Figure 6.1: the removal of a self-edge over a node in the LHS. Clearly, this modification
in the rule makes the existence of a match for the depicted graph G possible, allowing
the respective first-order rewriting. Moreover, a second-order rewriting could fix appli-
cation conditions of an invalid match. This reasoning suggests that the adequate notion
of inter-level dependency may be seen as a conflict between the inverse of the second-
order rewriting and the respective first-order rewriting, confirming that the symmetry we
observe between conflicts and dependencies in traditional DPO graph rewritings extends
toward the inter-level scenario.

Definition 143 (Inter-level sequential dependencies). Let ρ1 = r′′
(N,α),m
ÔÔÔ⇒ r be a second-

order derivation with NACs and ρ2 = G
r,m0Ô⇒ H be a first-order derivation. We say that ρ1

and ρ2 are inter-level sequential dependent iff ρ−11 and ρ2 are inter-level parallel indepen-
dent.

Based on the symmetry of conflicts and dependecies, notice that it is straightforward
to replicate definition 139 to define sequential dependence of S-SOGG derivations.

6.2 Critical pair analysis in second-order graph grammars
In the previous section we have defined a proper notion of conflict and dependency for

derivations of S-SOGGs. Based on those notions, we propose an extension of the critical
pair analysis algorithm that handles the specificities of S-SOGGs.

124

The critical pairs of a specification are the collection of essential conflicts that may
potentially occur during its execution. The relevant distinction between a conventional
graph grammar and a S-SOGG that affect the calculation of critical pairs is the fact that,
when forming a pair of active elements to test for potential conflicts, we have the combina-
tions (rule,rule), (2-rule,2-rule) and (rule,2-rule). Themain challenge lies in the inter-level
case, for which we must provide a way of calculating all possible conflicts between them.
In the context of graph transformation, we obtain the collection of critical pairs between
two rules p1 = L ← K → R and p2 = L′ ← K′ → R′ (without NACs) by calculating all
possible overlaps between L and L′. Each overlap represents a possible intersection of a
match m1 of p1 and a match m2 of p2. When considering NACs, however, the case gets
slightly more complicated because now we cannot test only the identification of elements
in the LHS of rules, but also contextual information which lies out of the match. We refer
the reader to (LAMBERS et al., 2008) for specific details about how to calculate critical
pairs on adhesive HLR systems with NACs. Notice that is the case of span rewriting with
NACs, which accounts for the case of (2-rule,2-rule).

In our inter-level scenario, we have a 2-rule α = a ← b → c and a rule p = L ← K → R,
and we want to find all possible situations that result in inter-level conflict. Inter-level
interaction requires a graph rewriting induced by p and a modification of p by α. The
search for all possible modifications of p by α is straightforward, since we only have to
find all matches (in T-Span) between a and p, and select the ones satisfying application
conditions for second-order rewriting. We obtain a rewritten rule p′′ = L′′ ← K′′ → R′′
from each of those valid matches. To find all graph rewritings induced by p that could be
inter-level conflicting with the calculated second-order rewritings is slightly more difficult.
This happens because we cannot simply calculate all partitions of L and use them as the
target graph G. If we did this, we would miss some conflicting situations. For example,
suppose our second-order rewriting increases the LHS of the rule, i.e., the left-hand side
graph L′′ of p′′ is bigger than L. It is possible to have a target graph G which is big enough
to provide a unique match m′′0 ∶ L

′′ → G, however, it may not be the case that m′′0 satisfy
the DPO dangling condition. This is clearly a critical pair, and our algorithm should be
able to construct it. But since dangling conditions depend on extra elements out of the
image of match m′′0 , we need extra elements in G that are not present in L to characterize
this conflict. This is the motivation for the following definition, which we name dangling
extension. The idea is to extend the LHS of a grah rule in order to capture possible conflicts
that arise from harming dangling conditions.

Definition 144 (Dangling extension). Let p = L l←Ð K rÐ→ R be a T-typed graph rule,
where tL ∶ L → T is the typing morphism (in Graph) of the left-hand side L. Consider the
following constructions:

1. let us write LD = {x ∣ x ∈ Nodes(L) ∧ Ol(x)} the collection of all nodes in L deleted
by the application of p.

2. let us write DangT(x) = {e ∣ e ∈ Edges(T) ∧ (src(e) = tL(x) ∨ tgt(e) = tL(x)} the
collection of all edge types in T that are connected to the node type tL(x).

We define the dangling extension of L, written L+, the graph obtained by creating, for each
deleted node x ∈ LD, one instance edge for each type edge in DangT(x). For edges that
are not self-loops, new instance nodes to serve as targets of sources are also created. We
write dextL ∶ L↪ L+ the obvious inclusion of L into its dangling extension L+.

125

4:A

 B

 A

 C

E

FD

4:A1:A 2:C 3:C

L

2:C

3:C

4:A

1:A 5:B

6:C

7:A

8:A

L+

10:D

9:E

11:F

12:F

13:F

l

K

tL

Figure 6.2: Example of dangling extension.

Example 145 (Dangling extension). Figure 6.2 presents an example of the operation
named dangling extension. The left-hand side graph L contains four nodes, from which
some are being deleted (1,2 and 3) and one is being preserved (4). To the right, we see the
resulting dangling extension, which creates new edge instances based on the connectivity
of the type of each node. Note that nodes 5,6,7 and 8 had to be created as sources or
targets of the new edges.
Definition 146 (Inter-level critical pair calculation). Given a 2-rule α = a ← b → c and a
rule p = L← K→ R, the following steps calculate all possible inter-level critical pairs.

1. Calculate all second-order matches m ∶ a → p satisfying application conditions for
second-order rewriting, and collect them in the set M△.

2. For each second-order match m ∈M△, we execute the following steps:

(a) execute the second-order rewriting p
α,m
Ô⇒ p′′, obtaining an intermediate rule

p′ = L′ ← K′ → R′ and a final rule p′′ = L′′ ← K′′ → R′′.

(b) calculate the pushout of diagram L
fL←Ð L′

gL;dextL′′ÐÐÐÐ→ (L′′)+, as shown in the
diagram below

L′
gL //

fL

�� .

L′′
dextL′′ // (L′′)+

��
L aL⋆

// L⋆

(c) calculate the set of all subgraphs of L⋆ containing the graph L (via aL⋆). In
other words, the set

Testm = {X ∣ aL⋆(L) ⊆ X ⊆ L⋆}
Let us call aX the arrow from L to each X ∈ Testm that factors through aL⋆ , as
shown below.

L // aX //
&&

aL⋆

88X � � // L⋆

126

(d) for each graph X ∈ Testm we calculate the set Par(X) of all partitions of X.
Notice that each partition P ∈ Par(X) can be represented (up to isomorphism)
by an epimorphism eP ∶ X↠ P.

(e) for each partition P ∈ Par(X) of each graph X ∈ Testm, calculate the arrow
aX; eP ∶ L→ P. Test each arrow for application conditions with respect to rule
p, and collect all valid matches in the set Mm

▽.

3. for each pair (m,m0) where m ∶ a → p ∈ M△ and m0 ∶ L → G ∈ Mm
▽, calculate

all factorizations m′′0 ∶ L′′ → G such that fL;m0 = gL;m′′0 , and collect them in set
Fact(m,m0).

L

m0

��

L′
gL //fLoo L′′

m′′0
ppG

If Fact(m,m0) = ∅ or all y ∈ Fact(m,m0) harm some application condition for p′′,
then (m,m0) is a critical pair.

4. Return the collection of all pairs (m,m0) which are critical pairs.

The essence of the algorithm is fairly simple: initially calculate all second-order rewrit-
ings, then calculate a number of candidate first-order rewritings and finally test for inter-
level conflicts between pairs of first-order and second-order rewritings. Step 1 calculates
all valid second-order matches between the given 2-rule and rule, and collect them into
a single set. For each second-order match, we calculate a collection of candidate first-
order rewritings in step 2. The complex part is the generation of candidates for first-order
rewritings, since we must care to obtain all possible conflicts for p′′, which may be caused
by

• non-existence of match for p′′: the graph G does not contain enough elements to
allow a match for p′′ consistent with fL;m0.

• problem with identification condition in p′′:, m′′0 exists but it identifies deleted ele-
ments with preserved ones.

• problem with dangling condition in p′′: m′′0 tries to delete some node that has a
connected edge which is out of m′′0 (L′′). In order to capture those situations, we
were forced to introduce the notion of dangling extension.

Step 2.a executes the second-order rewriting, obtaining the modified rule p′′. Step 2.b
obtains the graph L⋆, obtained from the amalgamated sum of the dangling extension of L′′
and the elements in L which are not in L′. The graphs L and L⋆, respectively, contains the
least number of elements and the maximum number of elements for the candidate target
graphs. Actual tests for matches are partitions of graphs “in between” L and L⋆, calculated
in steps 2.c, 2.d and 2.e. Step 3 basically runs over all the previously calculated second-
order and first-order rewritings and tests for conflicts following Definition 140, and step 4
returns the results.

Although having a simplemechanics, this algorithm for finding critical pairs is not very
efficient in several stages because the calculation of partitions, subgraphs and morphism

127

factorizations are usually quite expensive. Although they are feasible considering small
typed graphs, where the typing mechanism reduces considerably the search space, those
computational steps may be quite restrictive when considering examples with few types
and large graph instances. Moreover, although our intuition says we are accounting for all
kinds of conflicting situations, it still remains as future work to prove that this algorithm
is complete in the sense it captures all existing critical pairs between rule p and 2-rule α.
To improve its efficiency is also an interesting problem to solve. Assuming there are no
problems with the algorithm, we can fit it in our definition of second-order critical pair
analysis for C-SOGGs as follows.

Definition 147 (Second-order critical pair analysis for C-SOGG). Let
(T,D0,D1,D2

0,D2
1, η

2
0, η

2
1) be a complete SOGG. The following steps calculate all of

its critical pairs (conflicts).

• for all pairs (p1,p2) such that p1,p2 ∈ A(D1), calculate all critical pairs between
graph rules dom(p1) and dom(p2).

• for all pairs (p1,p2) such that p1,p2 ∈ A(D2
0), calculate all critical pairs between

graph rules with NACs (η20(p1),dom(p1)) and (η20(p2),dom(p2)).

• for all pairs (α1, α2) such that α1, α2 ∈ A(D2
1), calculate all critical pairs between

the 2-rule dom(α1) with NACs (η21(α1) ∪ S(dom(α1)) and 2-rule dom(α2) with
NACs (η21(α2)∪S(dom(α2)). For such, use the algorithm described in (LAMBERS
et al., 2008).

• for all pairs (α,p) such that p ∈ A(D1) and α ∈ A(D2), calculate all inter-level
critical pairs between dom(α) and dom(p), using the method described in Defini-
tion 146.

We name this method second-order critical pair analysis (SO-CPA).

In Definition 147 we are essentially distinguishing four cases, for which we employ
distinct methods that are adequate for each situation. The calculation of dependencies
is essentially the same, considering the reverse rule of the first component of the pair.
Second-order critical pair analysis of retyping-aware models is obtained from the SO-
CPA on their respective retyped models, and for CDM+ models we consider the resulting
D0 and D1 after rule deletion and creation for the calculation of critical pairs.

6.3 Evolution of critical pairs due to model transformation
One of the goals of defining SOGGs was to be able to study formally model transfor-

mations over first-order graph grammars. For such, we have introduced the concepts of
model-transformation derivation, evolved graph grammar and also the construction of a
evolutionary span comparing the initial graph grammar with the evolved one. However,
we have not yet considered how to use them to foresee the effect of model transforma-
tions over the behavior of the first-order system. This problem is not easy at all: mostly
often graph grammar have infinite behaviors, and thus it is (in general) not possible to
represent all possible derivations in a single structure as we have done with the simple
place-transition system in the first chapter. Moreover, the notion of behavior may change
if we consider parallelism, for instance. In the general case, it is not possible to make non-
trivial predictions about the effect of changes in graph grammars due to their expressive

128

power. Still, it is possible to gain some insight about the effect of the model transformation
by focusing on how it affects the interaction between pairs of rules in both the original and
evolved system. In this session we explore this idea, for which we trace the modifications
caused by the model evolution over the critical pairs of the original system and of the new
system. From this, we may discover that the model transformation has added, removed or
maintained conflicts and dependencies.

We start by recalling how to calculate critical pairs for (first-order) graph grammars
without NACs. For each pair of rules (p1,p2) where p1 = L1 ← K1 → R1 and p2 = L2 ←
K2 → R2, we calculate the disjoint union G = L1 + L2. This graph represents the situation
where the image of both matches are totally disconnected. By calculating the set Part(G)
of all partitions of G, we represent all possible overlaps between matches of both rules.
From Part(G), we remove overlaps that do not satisfy application conditions for p1 or p2,
and we end up with a collection of candidate rule match overlaps for with we can classify
into conflicting (critical pairs) or non-conflicting (common overlaps).

Definition 148 (Rule match overlap). Let p1 = L1 ← K1 → R1 and p2 = L2 ← K2 → R2
be graph rules without NACs. A rule match overlap for p1 and p2 is a pair (m1,m2) of
jointly surjective graph morphisms m1 ∶ L1 → X and m2 ∶ L2 → X such that m1 satisfies
application conditions for p1 and m2 satisfies application conditions for p2. The collection
of all match overlaps for a pair of rules (p1,p2) is denoted Overlaps(p1,p2).

Now, consider that by means of model transformation we have modified both rules p1
and p2 into, respectively, p′′1 and p′′2 , and, moreover, we have their respective evolutionary
spans p1 ← p′1 → p′′1 and p2 ← p′2 → p′′2 . We can see both spans by their components in the
following diagrams in T-Graph.

p1 R1 K1 //oo L1 L2 K2 //oo R2 p2

p′1

OO

��

= R′1

OO

��

K′1

OO

��

//oo L′1

OO

��

L′2

OO

��

K′2

OO

��

//oo R′2

OO

��

p′2

OO

��

=

p′′1 R′′1 K′′1 //oo L′′1 L′′2 K′′2 //oo R′′2 p′′2

Notice that the diagrams can be read either vertically or horizontally, representing
2-rules in both cases. Based on the evolution of both rules, we can calculate how the
match overlaps of the original pair (p1,p2) relate to match overlaps of the evolved pair
(p′′1 ,p′′2). We achieve this by calculating all possible evolutionary spans of match overlaps
as described by the following definition.

Definition 149 (Evolutionary span of match overlaps). Let

e1 = p1 ← p′1 → p′′1

and
e2 = p2 ← p′2 → p′′2

be two evolutionary spans of graph rules. An evolutionary span of match overlaps for e1
and e2 is a pair (f,g) of jointly surjective graph span morphisms

f ∶ (L1 ← L′1 → L′′1)→ (X← X′ → X′′)

129

and
g ∶ (L2 ← L′2 → L′′2)→ (X← X′ → X′′)

as shown in the following diagram in category T-Graph

L1
fL

&&

L2
gL

xxL′1
fL′

&&

OO

��

X L′2
gL′

xx

OO

��
L′′1

fL′′

&&

X′

OO

��

L′′2
gL′′

xx
X′′

such that

1. (X← X′ → X′′) is an injective graph span.

2. (fL,gL) is a match overlap for (p1,p2).

3. (fL′′ ,gL′′) is a match overlap for (p′′1 ,p′′2).

We write OverlapEvolution(e1, e2) to denote the collection of all candidate overlaps be-
tween e1 and e2.

Each evolutionary span of match overlap represents a connection between a match
overlap of the original pair (p1,p2) and a match overlap of the evolved pair (p′′1 ,p′′2). By
calculating OverlapEvolution(e1, e2), we can define a formal relation between the collec-
tions Overlaps(p1,p2) and Overlaps(p′′1 ,p′′2).

Definition 150 (Evolution relation between overlaps). Let e1 = p1 ← p′1 → p′′1 and e2 =
p2 ← p′2 → p′′2 be two evolutionary spans of graph rules. We define the evolution relation
R ⊆ Overlaps(p1,p2) ×Overlaps(p′′1 ,p′′2) by

aRb iff ∃c(a← c→ b ∈ OverlapEvolution(e1, e2))

Since each candidate overlap of (p1,p2) and of (p′′1 ,p′′2) can be either conflict-free or a
critical pair, by means of Rwe can trace the effect of the overall evolution of rules in terms
of increasing or decreasing the level of parallelism of the system. If a conflict-free overlap
of the original system is related through R to a critical pair of the evolved system, the
software evolution may have (potentially) reduced the ability to parallel execution. On the
other hand, if a critical pair in the original system is only related to conflict-free overlaps
in the evolved system, we may have increased the potential for parallelism of the system.
We name critical pair evolution (CPE) this method of detecting the changes in critical
pairs of the first-order layer through the relation R.

6.4 Summary
This chapter dealt with the problem of defining an adequate notion of conflict between

first-order and second-order derivations in SOGGs. We started with the notions of inter-
level parallel independence and inter-level conflict. Then, we have proposed two analysis

130

techniques based on the interaction of the two execution layers. The first is an extension of
the critical pair analysis for second-order graph grammars, which we named second-order
critical pair analysis. The second method, called critical pair evolution, defines formally
how rule match overlaps of the original system relate to rule match overlaps of the evolved
system. This can be used to identify if a model evolution is increasing or decreasing the
parallelism of the base system.

131

7 ASPECT-ORIENTED GRAPH GRAMMARS

Aspect-oriented programming (AOP) (KICZALES et al., 1997) is a paradigm which
aims to solve the code entanglement problem in object-oriented software. For this, it em-
ploys a rule-based, invasive code combination process known as aspect weaving. There
are similarities between aspect-oriented concepts and the principle of graph transforma-
tion, which may be explored in some ways, such as, for instance, using analysis techniques
from the graph rewriting area to study models with aspects. Based on those similarities
we propose a characterization of aspect-oriented concepts for first-order graph grammars,
arriving at the model we name aspect-oriented graph grammars. This characterization
involves second-order constructions that have been introduced in previous chapters.

This chapter is organized as follows: initially we revise the basic notions behind aspect-
oriented programming and aspect-oriented modelling. Then, we discuss the similarities
between aspect-oriented languages and models based on graph rewriting. Finally we de-
fine the aspect-oriented graph grammar model by means of second-order rewriting prin-
ciples, and discuss how to analyse them using the techniques discussed in the previous
chapter. The original contributions of this chapter are the following:

• the definition of aspect-oriented concepts for graph grammars through the frame-
work of second-order graph grammars.

• the usage of analysis techniques developed relating model transformation and base
system rewriting to study aspect-oriented constructions.

7.1 Aspect-oriented programming
Several characteristics of the object oriented paradigm favor good practices in software

development. Restriction permissions for components, such as the private modifier in
Java and C++, help to improve the encapsulation of objects. The inheritance mechanism
for classes encourages the reuse of code, an so on. However, it is known that the im-
plementation of a given family of requirements may not be properly modularized by the
abstractions of the object-oriented paradigm.

To illustrate the main idea, we will refer to Figure 7.1, which shows the source code
for the Apache Tomcat Web Server (KERSTEN, 2002). In the picture, each column rep-
resents a class, while the length of the column accounts for the amount of lines of code
within it. The shadowed portion within the class refers to the lines devoted to implement
XML parsing, a functionality which is properly contained. Possible changes in the struc-
ture of XML parsing cause only local adjustments, which implies that this implementation
requirement is properly modularized. Now consider the statements for logging in the same
application, shown by Figure 7.2. Hypothetically, suppose that the log policy is “register

132

Figure 7.1: Code for XML parsing in the Apache Tomcat web server.

all operations involving opening and closing connections”. This policy may be imple-
mented by inserting method calls throughout the code whenever another statement reads
or modifies connection handlers. Notice that this insertion of statements depends on how
the handlers are accessed within method bodies. As a consequence, changes in the log-
ging policy may require manual adjustments throughout several classes, which is usually
an error-prone and time consuming task. Moreover, if there are other requirements be-
sides logging that also depend on such code patterns, the bodies of methods may become
excessively cluttered due to the excess of extra statements, hiding their original purposes.

Figure 7.2: Logging statements in the Apache Tomcat web server.

This effect of code scattering happens not only to logging requirements, but also to
session handling, security policies, distributed object management, among others poli-
cies. Such implementation requirements are commonly referred as crosscutting concerns.
Roughly speaking, what the aspect-oriented paradigm proposes is the creation of new ab-
stractions to implementmodularly crosscutting concerns. For instance, in the logging case,
there should be a unique application module, called an aspect, where all the conditions,
rules and statements for logging should be specified, as depicted in Figure 7.3. Notice that
there are no log-related statements within other systemmodules. According to (FILMAN;
FRIEDMAN, 2000), AOP is characterized by quantification and obliviousness. Quantifi-

133

cation refers to the ability to range over the structure of the application selecting interesting
points of combination. Obliviousness refers to the fact that aspects are weaved to other
system modules implicitly. The module developer is oblivious about the effect of aspects
over its own code. Aspect-oriented languages must provide new language constructions
to reason about the own language structures, and combination patterns to determine how
they should be transformed. The main abstractions of the aspect-oriented paradigm are
the following:

Figure 7.3: Log policy using aspects in the Apache Tomcat web server.

• join points: a subset of the language transitions steps that can be affected by aspects.
Inmost object-oriented languages, join points refer to transition such asmethod calls
(before dispatch), method executions (after dispatch), field accesses, field modifica-
tions, constructor calls, exception throws, etc. Notice that may be some transitions,
such as iterations of for loops, that may not be join points. The definition of join
points depends on the language structure, and may be also affected by the language
implementation.

• pointcuts: a particular set of join points, used to determine a crosscutting pattern.
An example of pointcut may be “all method calls where result is of type int”. AOP
languages define an pointcut expression language to determine pointcuts. For in-
stance, the previous pointcut is written in AspectJ as "int *.*(..)".

• advices: code modification rules. Advices have the format pointcut → effect.
The effect describes some kind of code modification to be executed when in the
join points of the specified pointcut. In AspectJ, the effect is specified by a tuple
(type,code), where type may be before, after or around, while code refers
to Java statements. The aspect weaver inserts the given code, before, after or in
replacement of the join point code.

• inter-type declarations: are extensions to the static structure of the system, normally
new methods, fields or subclass relationships which are introduced implicitly by
aspects. These modifications over the structure of the application are usually needed
by code inserted by advices.

134

• aspects: modules grouping all definitions of pointcuts, advices and inter-type dec-
larations that deal with one specific crosscutting concern.

The AOP paradigm also relies on an operation named aspect weaving to combine as-
pect specifications with the rest of the application, resulting in the final system, as shown
in Figure 7.4.

Aspect
Code

Base
Code

Aspect weaving Final
Code

← aspect specification

Figure 7.4: Aspect weaving.

The aspect weaving operation can be done at compile-time, load-time or at run-time,
according to the implementation of the aspect weaver (the aspect combination module
of the language). As a simple example of weaving, consider the AspectJ source code de-
picted in Figure 7.5 (AspectJ is the most popular AOP extension for the Java programming
language). The AspectJ weaver receives both the base code and the aspect code. Then,
it applies the advices within the aspect, merging the code in advices every time it finds a
match for their pointcuts in the base code. In the example of Figure 7.5, the aspects sim-
ply introduces a print command right before the start of the execution of join point. The
pointcut selects any method without parameters sent to an object of class A. Although the
result of the combination is shown as a source-code transformation, the weaver actually
performs the code combination in bytecode level.

Despite the advantages of the paradigm, the implicit way aspects are composed with
other system modules may lead to some problems. Since aspects may modify the body
of methods in every class of the application, the encapsulation provided by the object-
oriented paradigm is harmed. Moreover, there are also no guarantees that the weaving
of two aspects may lead to the same system independently of the order they are com-
bined. As the number of aspects grows, it may be very difficult to reason about the pro-
gram, specially due to interactions between the original code and the inserted one for
each aspect. To overcome some of those problems and be able to understand the sys-
tem behavior, the developer needs both adequate development tools and reasoning mod-
els for aspect-oriented languages and diagrams. On the implementation side, integrated
development environments such as Eclipse already offer views to expose the aspect in-
terference in the source code. On the formal perspective, several calculi have been pro-
posed to define aspect weaving over programming languages (MASUHARA; KICZA-
LES; DUTCHYN, 2002; JAGADEESAN; JEFFREY; RIELY, 2003; WAND; KICZA-
LES; DUTCHYN, 2004; JAGADEESAN; JEFFREY; RIELY, 2006; CLIFTON; LEAV-
ENS, 2006; HUI; RIELY, 2007; FRAINE; SÜDHOLT; JONCKERS, 2008). The purpose
of those approaches is to provide a precise semantics for aspect-oriented constructions
over well-established object-oriented or functional core languages. In most of the cases,
they specify an operational semantics and type system for dynamic advice weaving, re-
producing the behavior of some actual aspect-oriented language such as AspectJ.

135

Base code:
pub l i c c l a s s A {

void a () { . . . body of a . . . }
void b () { . . . body of b . . . }
void c (i n t x) { . . . body of c . . . }

}

+

Aspect:
pub l i c a spec t LogA{

be fore () : execu t i on (* A . * ()) {
System . ou t . p r i n t l n (”Method␣ w i t h ou t ␣ p a r ame t e r s \ n”) ;

}
}

⇓

Weaved code
pub l i c c l a s s A {

void a () {
System . ou t . p r i n t l n (”Method␣ w i t h ou t ␣ p a r ame t e r s \ n”) ;
. . . body of a . . . }

void b () {
System . ou t . p r i n t l n (”Method␣ w i t h ou t ␣ p a r ame t e r s \ n”) ;
. . . body of b . . . }

void c (i n t x) { . . . body of c . . . }
}

Figure 7.5: Example of aspect weaving in AspectJ.

In order to identify and characterize aspects in thewhole software development cycle, it
is required to represent concepts such as advices and pointcuts in class diagrams, sequence
diagrams and other related models. Aspect-oriented modeling refers to the identification
and representation of aspect-oriented constructions in the context of system modeling. As
shown in (SCHAUERHUBER et al., 2006), there are several approaches. Some of them,
such as (ALDAWUD; ELRAD; BADER, 2003; ZHANG, 2005; FUENTES; SÁNCHEZ,
2006, 2007; JÚNIOR; CAMARGO; CHAVEZ, 2009), represent aspects using the meta-
object facility (MOF) mechanism of UML. There are approches, such as (EVERMANN,
2007), which provide a detailed embedding of some aspect-oriented language within UML
diagrams, referring to the weaving semantics of the language. Finally, there are some
graph-transformation approaches, such as (WHITTLE et al., 2009; MEHNER; MONGA;
TAENTZER, 2006), where the aspect weaving process is given by means of graph rewrit-
ing.

136

7.2 Comparison of aspect weaving and graph transformation
In this section we compare the main concepts from both aspect-orientation and graph

rewriting. One of the first (if not the first) reference to the similarities of both approaches
is given by (ASSMANN; LUDWIG, 1999), just after the name aspect-orientation became
known. One common point is that aspect weaving manipulates programs, which in turn
may be seen as abstract syntax trees, and, consequently, also as graphs. Advices are pro-
gram rewriting rules to be applied over a base program, aiming to affect all join points
matching the advice pointcut. From this, the analogy to be drawn becomes fairly straight-
forward, as it is show in Figure 7.6.

Concept AOP Graph rewriting
base system abstract syntax tree graph
place of combination join points region of a graph
pattern to be found pointcut graph (LHS of rule)
matching ∈ graph morphism
rewriting rule advice graph transformation rule
typing extensions inter-type declarations type graph extension
aspects collection of advices and type graph extension

inter-type declarations and a collection of graph rules
combination aspect weaving graph rewriting

Figure 7.6: Analogy between aspect weaving and graph rewriting.

The same analogy is explored in (WHITTLE et al., 2009) and (MEHNER; MONGA;
TAENTZER, 2006), which propose to implement aspect weaving for UML-like models
through graph rewriting. Both approaches employ the critical pair analysis technique for
ensuring that there are no conflicts among aspects affecting the same model. We can say
that our proposed approach follows the same general lines. However, the difference lies in
the fact that we intend to work with higher-order graph grammars, i.e. to consider graph
grammars as base systems. Models such as UML activity diagrams have to be properly
formalized before attempting to address its semantics with the one for the weaving layer,
possibly with a distinct principle than graph rewriting. By considering graph grammars
themselves as a model, we have the same principle for describing both the underlying
model and also aspect weaving process, which makes possible to relate them using in the
same context. As examples, we can refer to the notion of inter-level conflict, that relates a
second-order rewriting with a first-order one, and also the notion of critical pair evolution.

7.3 Aspect-oriented graph grammars
This section describes how to use second-order graph grammars to represent aspect-

oriented concepts over graph grammar models. Roughly speaking, we characterize an
aspects as a second-order layer over an initial first-order graph grammar G. We also de-
scribe how to combine several aspects simultaneously. The final weaved graph grammar
is associated with the evolved grammar of a model-transformation derivation. If the as-
pect weaving process is confluent, then the evolved grammar is unique. We then use the
developed techniques of second-order critical pair analysis, and critical pair evolution to
study the effect of the aspects over the base system.

Example 151 (Base system). Figure 7.7 introduces the base system used as a working

137

example. It is essentially a version of the client-server system with self-loops in messages
to ensure only one data node will be loaded for each message.

Figure 7.7: Base system.

The main purpose of the aspect-oriented paradigm is to solve the problem of lack of
modularity for the code that handles crosscutting concerns. In order to illustrate cross-
cutting concerns in the context of graph grammars, we propose two simple modifications
to the system of Figure 7.7 the inclusion of a logging object (to log executions) and of a
domain policy for server access.

Logging: Suppose we want to register every execution step within the system in order to
have access to the execution history. For instance, it is very common that servers
store information about the start and the end of each client connection, both for
profiling and security reasons. In the context of graph grammars, this would mean
that we have to record each production application, or derivation step.

Domain policy: Let us suppose that, due to a large number of clients and servers, the
modeler wishes to divide the traffic into regions (or domains). This means that
message passing will only occur within the bounds of a group of servers and client
within the same domain. We need to represent domains using nodes and edges,
and also enforce the restriction of only sending messages across elements within the
same domain to all rules that transfer messages between clients and servers.

Notice that those requirements involve modifications in an arbitrary number of rules
of the first-order system. In the first case (logging), all rules should be modified; in the
second case (domains), we must modify all rules that satisfy a given criteria, in the case

138

the ones that transfer messages. If we consider that the first-order system may be distinct
and may have a quite large number of rules, we may think of these transformations as
crosscutting concerns to be applied over the whole base system. Apart frommodifications
in rules, we also require extension to the type graph and to the initial graph. Note also
that those modifications are the ones we can represent by means of a second-order layer.
One of them, the logging policy, has been already implemented in the second-order graph
grammar of Figure 5.7. The introduction of domains for sending and receiving messages
can also be implemented in a similar way. From this observation, we define an aspect for
a given first-order graph grammars as a second-order layer over it, which implements a
model-transformation.

Definition 152 (Graph grammar aspect). Let G = (T,D0,D1) be a first-order graph gram-
mar. An aspect A for G is a tuple

A = (RT,D2
0,D2

1, η
2
0, η

2
1,C2

1)

such that (T,D0,D1,RT,D2
0,D2

1, η
2
0, η

2
1,C

2
1) is a CDM-RC-SOGG specification. We will

also use the notation (G,A) to represent this CDM-RC-SOGG.

Referring to the elements of Definition 152, we establish the following nomenclature to
match the concepts of aspect-oriented programming with the terminology of second-order
graph grammars.

• the retyping span RT is the inter-type declaration of A.

• the graph rules described by (D2
0, η

2
0) are the first-order advices. For each first-order

advice, the LHS graph is the respective pointcut.

• the 2-rules described by (D2
1, η

2
1) are the second-order advices. Their respective

LHS rules are the pointcuts. Creation and deletion rules of kind 0 ← 0 → r and
r ← 0 → 0, induced by create-delete statements in C2

1, are also considered second-
order advices.

Now we describe implementations of both logging and domain policies for the base
system.

Example 153 (Logging aspect). Figure 7.8 depicts the definition of the logging aspect for
the base system.

Example 154 (Domain aspect). Figure 7.9 depicts an aspect that implements domain re-
striction on message sending. The type graph is extended with a type D, representing a
domain type, and edges from both client and server type towards it. Clearly, a server or
client belongs to a particular domain instance if there is an edge instance connecting them.
There three rules, named newDomain, addClient and addServer, that create a domain di-
vision between the elements of the initial graph. Rule newDomain creates a domain node
connecting a particular server and client. Then, rules addClient and addServer add a new
stray client or server, respectively, to a domain. Negative application conditions for these
three rules assure they only connect to domains servers and clients that are not already
connected. Notice also that the creation of domains and connection of clients and servers
occur in a non-deterministic way, and will depend on the execution of those creation rules.

139

Figure 7.8: Logging aspect.

140

Figure 7.9: Domain aspect.

141

If we were using numerical attributes, we could establish a more orderly procedure, divid-
ing servers and clients using a numerical expression involving the identification of each
node. Because we are working with the simplest model without attributes, this charac-
terization will simply put all clients and servers into exactly one domain each, but the
number of domains and their correpondent clients and servers is non-deterministic. For
the second-order part of the transformation, we have two 2-rules: changeClientServer and
changeServerClient. The pointcut of changeClientServermatches against rules that remove
a message from a client and put it into a server, represented by the deletion and creation
of edges. NACs nac1 and nac2 assure that we do not match against rules that preserve
the edges, while NAC nac3 ensure that the modification should be run only once for each
matched rule. The other rule changeServerClientworks similarly, but for rules transferring
messages from servers to clients.

Now that we have defined what a graph grammar aspect is, we can construct a base
system together with a collection of aspects, each one handling one particular requirement.
We name this model an aspect-oriented graph grammar.

Definition 155 (Aspect-oriented graph grammar). An aspect-oriented graph grammar
(AOGG) is a tuple (G,∆) where G is a first-order graph grammar and ∆ is a sequence
A1, . . . ,An of aspects for G.

Example 156 (Aspect-oriented graph grammar). We have an AOGG (G, [A1,A2]) formed
by the base system of Figure 7.7 together with the logging aspect A1 of Figure 7.8 and the
domain aspect A2 of Figure 7.9.

This definition of an AOGG quite straightforward. However, we do not have an execu-
tion model from which we obtain a weaved first-order graph grammar. The next definition
shows how to merge a sequence of aspects into a single aspect. By combining the first-
order systemwith the aspect to create a CDM-RC-SOGG, we can use the notion of evolved
graph grammar to describe the result of the aspect weaving process.

Definition 157 (Merging of two graph grammar aspects). Let G = (T,D0,D1) a first-order
graph grammar and A1,A2 be aspects for G such that

A1 = (ST,E2
0,E2

1, θ
2
0, θ

2
1,F2

1)

and
A2 = (VT,H2

0,H2
1, ζ

2
0 , ζ

2
1 , J21)

We define the merged aspect A1 ⊕ A2 for G as the tuple

(RT,D2
0,D2

1, η
2
0, η

2
1,C2

1)

calculated as follows.

• RT = T ← T− → T+ is obtained from ST = T ← T′ → T′′ and VT = T ← T∗ → T∗∗ by

142

the following steps.

T

(1)

.
T′

>>

~~
(2)

T∗

``

!!
(3)T′′ T−

`` >>

~~
(4)

. .

.

T∗∗

Ta

``

Tb

==

~~
T+

1. calculate the pullback of T′ → T← T∗ (1)
2. calculate the pushout complement of T′′ ← T′ ← T− (2)
3. calculate the pushout complement of T∗∗ ← T∗ ← T− (3)
4. calculate the pushout of Ta ← T− → Tb (4)
5. the morphisms of RT are the diagonals of squares (1) and (4).

From this calculation, we obtain the spans a = T′′ ← Ta → T+ and b = T∗∗ ← Tb →
T+.

• calculate the retypings

a⊲⊳(E2
0,E2

1, θ
2
0, θ

2
1,F2

1) = (E2
0,E2

1, θ
2
0, θ

2
1,F

2
1)

and
b⊲⊳(H2

0,H2
1, ζ

2
0 , ζ

2
1 , J21) = (H2

0,H2
1, ζ

2
0 , ζ

2
1 , J

2
1)

converting all constructions to the same type T+. The object A +B of the coproduct
collection D2

0 is obtained by calculating the coproduct of the vertices A of E2
0 and B

of H2
0 in category T+-Graph. The injections of D2

0 are obtained by post-composition
with injA (for injections of E2

0), and by post-composition with injB (for injections of
H2

0, as shown in the following diagram.

r1

��

r2

��

0

��

. . .

ww

rx

��

ry

��

0

��

. . .

xxA
injA

''

E2
0 B

injB
uu

H2
0

A + B

The calculation of D2
1 proceeds in the same way in category T+-Span by calculating

the coproducts of vertices of E2
1 and H2

1. The domains of functions η20 = θ20 + ζ20 and
η21 = θ21 + ζ21 are updated in the same way.

143

• C2
1 = F2

1; J21, i.e., the concatenation of the retyped create-delete sequences F2
1 and J21.

The first stage of merging two aspect is to fit their types. The procedure described
above obtains a span that represents removing all the type elements deleted either by the
first of the second span, and adding the elements introduced by both. Notice that the
pushout complements calculated in squares (2) and (3) are always possible: identification
conditions hold because all arrows in the diagram are mono, and dangling conditions hold
because we cannot represent by T′ → T or T⋆ → T the removal of a node without removing
all incident edges. The coproduct collection of the final system is obtained by calculating
the coproduct of the retyped collections involved. The retyped sequence of create-delete
statements of both aspects is concatenated to compose the create-delete sequence of the
final system. Now we can extend the notion of aspect merging towards a sequence of
aspects.

Definition 158 (Merging of a sequence of aspects). Let [A1,A2, . . . ,An] be a non-empty
sequence of aspects for G. The merged aspect from the sequence is given by

(. . . ((A1 ⊕ A2)⊕ A3) . . .⊕ An)

The notion of merging a sequence of aspects over the same graph grammar is simply
the subsequent application of binary merging. When we have a single aspect A (possibly
the result of merging several other aspects) acting over a single base system G, we can
use the underlying CDM-RC-SOGG (G,A) to provide an execution model for the rule
transformation induced by A, and to obtain an weaved graph grammar. In other words,
the aspect weaving operation for AOGGs is given by obtaining the evolved gramar from
model-transformation derivations of the respective CDM-RC-SOGG.

Definition 159 (Weaved graph grammar). Consider a single aspect A for graph grammar
G. We say the first-order G′′ is a weaved first-order graph grammar of A over G iff G′′ is
an evolved grammar from some model-transformation derivation of the CDM-RC-SOGG
(G,A).

Example 160 (Weaved graph grammar). Consider the AOGG (G0, [A1,A2]) formed by
the base system of Figure 7.7 together with the logging aspect A1 of Figure 7.8 and the
domain aspect A2 of Figure 7.9. The CDM-RC-SOGG (G,A1 ⊕ A2) has the following
model-transformation derivation

G0
(2,g0,newDomain,m1)ÔÔÔÔÔÔÔ⇒ G1

(2,sendMSG,changeClientServer,m2)ÔÔÔÔÔÔÔÔÔÔÔÔÔ⇒ G2
(2,g0,newDomain,m3)ÔÔÔÔÔÔÔ⇒

G3
(2,receiveMSG,addLog,m4)ÔÔÔÔÔÔÔÔÔ⇒ G4

(2,receiveMSG,changeServerClient,m5)ÔÔÔÔÔÔÔÔÔÔÔÔÔ⇒ G5
(2,sendMSG,addLog,m6)ÔÔÔÔÔÔÔÔ⇒

G6
(2,getDATA,addLog,m7)ÔÔÔÔÔÔÔÔ⇒ G7

(2,deleteMSG,addLog,m8)ÔÔÔÔÔÔÔÔÔ⇒ G8

from which the evolved graph grammar is G8. Therefore, the grammar G8, shown in Fig-
ure 7.10, is a weaved graph grammar for AOGG (G0, [A1,A2]).

Notice that weaved graph grammars may not be unique. If the 2-tagged rewritings
are not confluent, the we may have several distinct weaved graph grammars for the same
AOGG. For instance, in the logging and domain AOGG, the domain preparation of the
initial graph is non-confluent, and therefore the initial conditions of the weaved system
will depend on a particular application of rules newDomain, addClient and addServer.

144

Figure 7.10: Example of weaved graph grammar: base system with logging and domains.

145

7.4 Analysis of aspect-oriented graph grammars
The characterization of aspects for graph grammars, and aspect-weaving through 2-

tagged derivations allows us to study the aspect weaving process by the same techniques
used for second-order graph grammars. We will use as running example the AOGG of the
base system with logging and domains, for which the associated CDM-RC-SOGG is

(G0,A1 ⊕ A2) = (T,D0,D1,T← T→ T+,D2
0,D2

1, η
2
0, η

2
1, ε)

Although we do not present full results from second-order critical pair analysis (SO-CPA)
and critical pair evolution (CPE), in this section we explain how they can be use to foresee
the behaviour of the model transformation and its effect on the first-order semantics. The
following topics may be analysed:

Confluence of aspect weaving: because the aspect weaving comes from model-
transformation derivations, we can test for confluence by checking the lack of conflicts be-
tween elements of (D2

0, η
2
0), that implement modifications in the initial graph, and (D2

1, η
2
0),

that implement modifications in the first-order rule collection. Both analysis are calcu-
lated in second-order critical pair analysis. If we have a merged aspect and keep track of
the origin of a given advice, SO-CPA results may show potential conflicts between ad-
vices of distinct aspects and also between advices from the same aspect. In our example,
an easy inspection shows that there are no conflicts between changeServerClient, change-
ClientServer and addLog (not considering the same rule twice). Thus, the rewriting of the
second-order advices is confluent due to local Church Rosser. However, there are conflicts
of kind produce-forbid between newDomain, addClient and addServer, which are first-
order advices from the domain aspect. This points to possibility of not having confluence
in the rewritings of the domain aspect. On the other hand, there are no conflicts between
initLog and any of the first-order advices of the domain aspect, and thus the aspects are
not conflicting. The conclusion is that the aspect weaving process of the example is not
confluent due to internal conflicts of the domain aspect, but the logging and domain as-
pects as a whole do not interfere with each other because there are not conflicts across their
advices.

Reduction or increase in first-order rewriting possibilities: modifications in rules may
affect the possibilities of rewriting. For instance, if we increase the LHS in such a way that
there is not a match any longer for a given graph, we forbid a rewriting. On the other hand,
if we remove some elements of the LHS, we may allow a rewriting that would otherwise
fail to have a match. The first situation would be represented by means of an inter-level
conflict, and the other, by an inter-level dependency. By using SO-CPA, we can calculate
all inter-level critical pairs between a rule in D1 and a 2-rule in D2

1, and foresee those
situations that affect the shape of the execution of the first-order system. For instance,
let us consider the rule sendMSG of the base system and the 2-rule changeClientServer.
There is a possible second-order rewriting involving them that adds a domain node and
two edges to the LHS, RHS and interface of sendMSG. This way, a rewriting that was once
possible across a server and a message is not possible if they do not belong to the same
domain. This interaction would be perceived by the existence of the critical pair shown in
Figure 7.11, calculated from the inter-level critical pair analysis procedure.

Reduction or increase in parallelism: another way that 2-rules may affect the first-order
system is by reducing or increasing the possibility of parallel execution. We have an exam-

146

Figure 7.11: Inter-level critical pair of the example aspect-oriented graph grammar.

ple of such situation in the logging aspect: every modified rule deletes a self-edge of a log
node, and creates a new log node with a self-edge, connected through another (new) edge
to the original node. In the original system, there were no possible conflicts between the
application of sendMSG and receiveMSG, which would always allow rewritings induced
by both rules to occur simultaneously. This was the case because neither of the possi-
ble overlaps of their matches are critical pairs. In the evolved system, however, we have
a potential conflict between both rules since both may try to delete the same self-edge.
By means of relation R, we obtain for each overlap in the original system both conflicting
and non-conflicting overlap in the evolved system, as shown in Figure 7.12. If we consider
the additional information that only one self-edge in loops occurs in the initial conditions,
and that all rules delete and re-create this unique self-edge, we arrive at the conclusion
that the non-conflicting overlap shown in Figure 7.12 is not possible, and therefore it only
remains that all rewritings induced by sendMSG” and receiveMSG” in the evolved system
are conflicting. More than this, this implementation of logging has a drastic serializing
effect on the whole specification, making impossible simultaneous execution of any two
first-order rules. This effect would appear only when considering the event structure of
the resulting graph grammar, but, as we have shown, we can foresee it from critical pair
evolution (CPE) together with information from the initial conditions.

This list of possibilities for analysis is, of course, not extensive. Due to the character-
ization of the second-order rewriting by means of adhesive HLR system with NACs, any
available technique for this context could be used in order to test for other properties – ter-
mination, for instance. It would also be possible to think about adapting techniques such
as model-checking from graph grammars towards second-order graph grammars, since the
execution model of the former has been properly defined and it is possible to extract the
required LTS in the same way we do when exploring the space state of conventional graph
grammars.

147

Figure 7.12: Example of evolution of rule match overlap between base and weaved system.

148

7.5 Summary
This chapter connected the concepts of aspect-oriented programming and graph gram-

mars. It began by reviewing the main components of aspect-oriented systems, and then
provided an analogy between aspect weaving and graph transformation. Later, we have
introduced the notion of aspects for graph grammars, which gave rise to the notion of
aspect-oriented graph grammars. In those models, the weaving process is characterized
and a second-order layer acting over a first-order specification. The combination of several
aspects into a single one is properly defined, as it is the result of aspect weaving by means
of the notions of model-derivation transformation and evolved graph grammar. Finally,
we briefly discussed how analysis techniques envisioned for second-order graph gram-
mars could be explored to study properties of the model transformation induced by aspect
weaving, and their interaction with the base system semantics.

149

8 RELATED WORK

In this chapter we present a set of proposals in the literature that are related to this
thesis, and discuss both their similarities and distinctions. We start by comparing our
approach to other proposals that define rule-based modification of rules. Subsequently,
we discuss some proposals for higher-order concepts over place-transition nets. Then,
we talk about the formalism known as triple graph grammar that uses triple rules that
are similar in structure to our 2-rules. Finally, we present some proposals that relate the
areas of aspect-oriented programming and graph transformation, either by using graph
transformation as an aspect weaving mechanism or by using graph transformation tools to
model and study idealized aspect-oriented languages.

8.1 Modification of graph transformation rules
Because higher-order has not been extensively studied in the context of graph transfor-

mation systems, there are few proposals to compare our approach to. This does not mean
we do not find a taste of higher-order ideas in the field: concepts such as meta-modelling
and rule schema strongly suggest a notion of models that affect the structure of other mod-
els. However, only few approaches treat directly the notion of rule-based modification of
rules, and those are the ones we discuss in this section.

One of the first references we find in the literature is (GÖTTLER, 1999), that defines
a model called two-level graph grammars. The intuition is the same of our second-order
graph grammars: there aremeta-rules, which are the ones that modify parts of other rules,
and also hyperrules, representing the rules being modified. In our nomenclature, meta-
rules would correspond to 2-rules, and hyperrules, to normal rules. In Göttler’s work,
hyperrules are said to differ from actual rules because they cannot be applied until all mod-
ifications of meta-rules are applied. That represents, in our setting, the notion of priority of
second-order modifications over first-order modifications. The similarities, however, end
in the intuitive aspect of both proposals. Göttler presents and algorithmic approach based
on set theory to describe the graph rewriting approach. His approach does not correspond
directly neither to the DPO approach nor to the SPO approach directly, because it mixes
characteristics of both (deletion in unknown context and explicit notion of preservation).
Moreover, it also presents a peculiar way of representing graph transformation rules by
means of a single graph divided into region representing the left-hand side, right-hand
side and connection information (in fact, two representations are introduced: Y notation
and X notation). The way it rewrites rules is as follows: it encodes hyperrules as a graph in
Y notation. Meta-rules, also represented by Y notation using a slight distinct mark (dou-
ble lines), affect the hyperrules as they would affect conventional graphs. Once no more
modifications are possible, hyperrules may be considered rules and be applied to graphs.

150

To illustrate the approach let us consider the elements depicted in Figure 8.1, adapted
from (GÖTTLER, 1999). In the upper, left part of the picture we find an example of
a meta-rule that deletes a node of kind A (leftmost part of the Y diagram), creates two
nodes of kind b connected by an edge (rightmost part of the Y diagram) and updates the
connections according to the following policy (uppermost part of the Y diagram): edges
from the deleted A to other A become pairs of arrows between the non-deleted a and one
of the new bs, and arrows from A to c become arrows from c to the other b. In the upper,
rightmost part of the picture, we have a representation of a hyperrule h, which deletes two
nodes and an edge of a graph and adds three nodes c, d and e, connected in a triangular
way. There are two occurrences of A-typed nodes in this hyperrule: in the left-hand side
region (marked as 1), and in the connectivity part (marked as 2). Hence, those are the two
places in which the meta-rule m can modify h. The result of both rewritings are shown in
the lower part of the picture, where in the left we have the result of applying m over the
node 1 and in the right, the result of applying m over the node 2.

The difficulties of adopting the notions introduced by Göttler for the DPO approach
come from its notion of rewriting, which does not match the categorical description of the
rewriting process. Moreover, the notion of higher-order is obtained by means of encoding
rules as graphs, and the rewriting may occur in any region of the encoded rule. In the ex-
ample, the same meta-rule affected the left-hand side and in the connectivity description.
This contrast with our approach using 2-rules, where modifications for each component
of the rule (left-hand side, interface or right-hand side) are specified in a separated way.
Moreover, we use the abstract and vastly studied generalization of the double-pushout
approach, the framework of adhesive HLR system with NACs. This gives us several theo-
retical results regarding the second-order layer of rewriting that would have to be verified
under the Göttler’s notion of rewriting.

A

bc c d

eb

Ac c d

e

b b

c

A

b bA

A

Ac c d

e

2

meta−rule m hyperrule h

1

application of m
over node 1 of h over node 2 of h

application of m

Figure 8.1: Example of meta-rule and hyperrule in Y-notation.

151

Parisi-Presicce (2001) also discusses modifications in graph rules and in graph gram-
mar specifications. His work is based on the generalization of the DPO approach known as
High-Level Replacement systems, which specified a series of properties a category should
respect to allow the application of the DPO rewriting approach and the respective theory.
Later, it was discovered that all HLR axioms could be deduced from adhesive categories,
and thus the latter became the framework of choice for generalizing DPO rewriting. A
HLR system is defined as a tuple (C,M,P, π) where C is a category satisfying a set
of so-called HLR axioms, M is a collection of monomorphisms in C (used to construct
rules), P is a set of rule names and π is a function associating rule names to actual rule
spans. Essentially, such systems consist of a context (C,M) and a named collection
of rules. In this work, Parisi-Presicce discusses some ways of modifying HLR systems,
which he divides in three groups:

(i) modular transformation,

(ii) global transformations and

(iii) local transformations.
Parisi-Presicce defines a notion of morphism between HLR systems that essentially con-
sists of two elements: (i) a functor between the categories of the two systems and (ii) a
mapping of rules names compatible with the functor. Based on this notion of morphism
we obtain a category of HLR systems, that is used to define the two first kinds of modi-
fications. Modular transformations compose two HLR systems H1 and H2 by means of a
common interface H0 through a pushout calculation of the diagram H1 ← H0 → H2. The
idea is to combine the rules of both systems without replicating the interfaceH0, as shown
in diagram (a) of Figure 8.2. Global transformations follow the same idea, but they also
account for the deletion of rules. This is achieved by considering DPO diagrams in the
category of HLR systems as a rewriting step, as shown in diagram (b) of Figure 8.2.

H0

zz $$
H1

$$

H2

zz
HFINAL

HL

��

HK

��

oo // HR

��
HINITIAL HDoo // HFINAL

(a) (b)

Figure 8.2: Modular transformation and global transformation.

Local transformations are of distinct nature, since they focus on modifications in the
structure of rules within a given specification. Although Parisi-Presicce does not define a
notion of 2-rule, he proposes to employ conventional graph rewritings over parts of another
rule to modify it. He identifies three kinds of local modifications:

• specialization: each rewriting G
p1,mÔ⇒ H where p1 = L1 ← K1 → R1 produces a

base span p2 = G ← D → H where both arrows are in M due to HLR properties.
This span, if seen as a rule, deletes and create the same elements as p, however, it
requires a greater context (G) to execute. We can name p2 as an specialization of p1,
as shown in the diagram (a) of of Figure 8.3.

152

• analogy: this case occurs when we provide a rewriting of the interface of a rule,
removing some elements and replacing them for others. Given a base rule p1 =
L1 ← K1 → R1, and a rewriting K1

p,m
Ô⇒ K2 on its interface where p = L ← K → R,

we obtain a rule p2 = L2 ← K2 → R2, as show in diagram (b) of Figure 8.3.

• inheritance: this case corresponds to a rule L ← K → R modifying the RHS of an
original rule p1 = L1 ← K1 → R1, from which we calculate the pullback PB(K1 →
R1 ← D) = K1 ← K2 → D and obtain the rule p2 = L2 ← K2 → R2 as shown in
diagram (c) of Figure 8.3.

L1

��

K1

. .

ooloo // r //

��

R1

��

L2 K2oo // R2

L

��

K

. .

ooloo // r //

��

R

��

K1

��

~~
KDoo //

��

}}
K2

��

~~
L1 LDoo // L2

R1 RDoo // R2

L

��

K

. .

ooloo // r //

��

R

��

R1 Doo // R2

K1

OO

��

K2oo

OO

.

L1 = L2
(a) (b) (c)

Figure 8.3: Local modifications: specialization, analogy and inheritance.

Parisi-Presicce’s global and modular transformation affect essentially the collection of
rules, adding or removing them without modifying their structure in any sense. In con-
trast, local modifications act directly over the rule structure, without mentioning how to
handle sets of rules. In his approach he does not define how to combine both kinds of
modification into a single framework. In our approach, both what he defines as local mod-
ifications and global modifications are simultaneously achieved by the notion and coprod-
uct collection rewriting, which in turn makes use of second-order rewriting. Addition and
removal of rules is possible through special 2-rules in CDM models, and local modifica-
tions are carried out by conventional 2-rules. From the three kinds of local modifications
Parisi-Presicce mentions, two are directly translated into 2-rules notation: specialization
and analogy. Inheritance, however, cannot be represented generically, since calculation of
what must be deleted from K1 to obtain K2 depends on the match m ∶ L → R1. In 2-rules,
the amount to be deleted from the interface graph is fixed. Figure 8.4 depicts a representa-
tion for representing specialization (a) and analogy (b) as 2-rules. In diagram (c) we have
a schema representing the problematic graphs (marked by “?”), that cannot be defined in
advance in order to represent the modification induced by inheritance as a single 2-rule.

In Fernandez et al. (2007), a higher-order calculus to describe first-order rewriting
systems such as graph grammars is proposed. However, their higher-order syntax refers
to an external calculus, and not a higher-order version of graph rewriting as in our work.
This approach is rather generic and allows representing other kinds of first-order rewriting
models such as term graph rewriting.

153

L1 L1oooo // // L2

K1

��

OO

K1oo //

��

OO

K2

��

OO

R1 R1oo // R2

L Koooo // // R

L

��

OO

Koo //

��

OO

R

��

OO

L Koo // R

L Koooo // // R

?

��

OO

?oo //

��

OO

?

��

OO

? ?oo // ?

(a) (b) (c)

Figure 8.4: Representation of local modifications using 2-rules.

8.2 Petri-nets with dynamic structure
In the area of place-transition nets, the notion of dynamic changes in the structure has

been subject of study for quite a long time. One of the first characterizations is the model
known as self-modifying nets (VALK, 1978), where the main idea is to make the behaviour
of transitions depend on the currentmarking. Another variation of place transition nets that
allow variation in its structure is shown in (ASPERTI; BUSI, 2009). Here, concepts from
lambda-calculus such as variables and scope were introduced to represent the structural
variability of the model.

A model that shares similarities with SOGGs is called reconfigurable nets
(BADOUEL; OLIVER, 1998, 1999; BADOUEL et al., 2003; LLORENS; OLIVER,
2004). This model consists of a base place-transition system equipped with a set of rules
R that, when triggered, modify the structure of the net. The evolution of the system may
be given either by triggering transitions or by applying rules. Notice that this is exactly the
kind of situation we model with our SOGGs, where both structural modifications (second-
order rewritings) and base system execution (first-order rewritings) are possible from a
given state. Both the transition triggering and rule application are described using set-
based terminology, as it is conventional for place-transition nets. Hence, it cannot be
directly generalized for DPO graph rewriting.

There are approaches such as (HOFFMANN;MOSSAKOWSKI; PARISI-PRESICCE,
2005; EHRIG; HOFFMANN; PADBERG, 2006) that employ graph transformation to de-
scribe modifications in place-transition systems. This way we may maintain the semantics
of the base system by relying on an external set of graph rules to perform modifications
on system structure. For example, that is exactly what we have considered for the place-
transition net shown in the introduction. Following this idea, reconfigurable nets were
given a algebraic foundation through the framework of (weak) adhesive HLR rewriting
systems in (PRANGE et al., 2008). Later, negative application conditions for rules trans-
forming the net structure were considered (REIN et al., 2008) by means of the framework
of (weak) adhesive HLR rewriting systems with NACs (LAMBERS et al., 2008). This
characterization imported several results such as Local Church Rosser, Parallelism Theo-
rem and others to the theory of reconfigurable nets. Notice that this the same framework
we have used to substantiate our notion of second-order rewriting. The important differ-
ence of our approach is that, although place-transition nets can be represented as special
kinds of graph grammars, there is not a straightforward graph-based representation of a
graph grammar as it is the case for place-transition nets. In some way, what we have
achieved by introducing the notion of coproduct collections is a representation for a col-

154

lection of rules or graphs based on their disjoint union (coproduct). Notice that rewritings
induced by coproduct rewriting occur within the limit of a particular injection, forbidding
situations where a given rewriting would affect parts of two distinct rules in the collection.
Furthermore, since our approach is based exclusively on the algebraic DPO approach for
both the first-order and second-order levels, it is easier to relate both levels as we have
done, for instance, in our definition of inter-level conflict.

8.3 Triple graph grammars
Triple graph grammars were originally proposed in (SCHÜRR, 1995) to address the

problem of keeping consistency across changes in two models A and B that are related in a
known way. For example, we can consider A to be a UML class diagram and B a relational
entity-relationship diagram, where the correspondence associates classes with entities, at-
tributes with relationship, and so on. Whenever occurs a rule-based modification in model
A, we have to modify model B accordingly in order to preserve their correspondence. For
such, triple graph rules are defined to be spans of spans (just like our 2-rules) for which
the lower part correspond to a transformation in model A, the higher part correspond to a
transformation in model B and the central part acts as an interface K between the models,
as shown below.

Triple graph rule:

LB KBoo // RB

LK

��

OO

KKoo //

��

OO

RK

��

OO

LA KAoo // RA

From the point of view of structure, triple graph rules and 2-rules are very similar.
However, because the spans being rewritten in triple graph grammars are not interpreted
as graph rules but rather correspondences between two models, they have different con-
straints. For example, the question of maintenance of injectivity of the span being rewrit-
ten is not mandatory for rewritings in triple graph grammars, unlike rule rewriting where
it is so central it was necessary to develop the notion of minimum rule-preserving set of
NACs to enforce it in second-order rewritings. A broader vision of the area of triple graph
grammars can be found in (KINDLER; WAGNER, 2007; SCHÜRR; KLAR, 2008; HER-
MANN et al., 2010).

8.4 Aspects and graph rewriting
As we have mentioned previously, there have been recent approaches relating aspect-

oriented concepts and the principle of graph transformation. Both (MEHNER; MONGA;
TAENTZER, 2006) and (WHITTLE et al., 2009) propose to model the base system as
UML diagram encoded as a graph, and aspects over it as sets of graph rules. They also
propose to use of critical pair analysis to study aspect weaving: if there are conflicts be-
tween rewriting rules, the rewriting may not be confluent and thus the order aspects are
combined may matter. Because of this, the modeller must ensure that distinct advices
do not contain conflicts. Due to local Church Rosser, the absence of conflicts suffices
to ensure confluence of the aspect weaving process. Because these proposals deal with

155

UML models, for which formal semantic is only recently being standardized (OBJECT
MANAGEMENT GROUP, 2011), it is not easy to relate transitions of the first-order se-
mantics with the modifications introduced by the application of advices. In our approach,
since DPO rewriting is used in both levels, we managed to achieve a notion of interaction
between rewriting in both levels naturally.

A different kind of interaction between aspects and graph rewriting comes from (AK-
SIT; RENSINK; STAIJEN, 2009), where graph rewriting is used to implement the execu-
tion rules of an idealized aspect-oriented calculus. Then, the graph rewriting tool Groove
(RENSINK, 2004) is employed to generate the space-state of the rewriting, from which
the aspect weaving is studied under the shape of a labelled transition system.

156

9 CONCLUSIONS

This thesis addresses the problem of representing the interaction between model trans-
formation and system execution in the context of graph grammars. For such, we have
employed the algebraic DPO rewriting principle to represent both modifications in graphs
(first-order) and modifications in graph rules (second-order). Following this principle,
we have tested some alternatives and fixed a notion of second-order rewriting to modify
graph rules based on span rewriting with negative application conditions. Furthermore,
we proposed a family of second-order graph grammar models, and introduced a notion of
conflict between first-order and second order rewritings through the algebraic framework.
Two analysis techniques for second-order graph grammars were proposed: the first con-
sists of an extension of critical pair analysis, and the second consists on tracing the effect
of evolution on the critical pairs of the base system.

The hypothesis we have been considering is that higher-order principles can be ef-
fective in the modelling and analysis of systems undergoing programmed modifications.
Since we have proposed working with the graph transformation framework, we had to de-
velop a new notion of second-order rewriting for the DPO approach, and based on this
notion, construct second-order models. Only then we could test if such second-order sys-
tems may represent transformations adequately, and how we may study their behaviour.
Here are some observations obtained from the development process of this thesis:

• Modelling: the proposed second-order graph grammars are quite flexible, allowing
modifications of the type graph, the initial graph and also the collection of first-
order rules. This is done both by performing local modifications in existing rules
and by adding/removing rules to/from the rule collection. Throughout the thesis
we have presented several examples of transformations such as introduction of log-
ging, introduction of domains for message sending and even the implementation of
corrections on the base system that were successfully represented as a second-order
layer. It was not hard to introduce the concepts of model-transformation derivation
and evolutionary span to capture the notion of model transformation over the first-
order system, induced exclusively by the second-order layer of the grammar. The
straightforward way that aspect-oriented constructions were represented by means
of second-order graph grammars is another indication of the convenience of second-
order graph grammars.

• Analysis: the fact we have used the same rewriting principle for both rewriting levels
allowed us to achieve a notion of inter-level conflicts and dependencies in a rather
natural way, representing the effect of second-order rewritings over first-order ones.
Based on this, two static analysis techniques were proposed: one is the extension

157

of critical pair analysis for second-order graph grammars, and the other traces how
critical pairs of the original base system relate to critical pairs of the modified sys-
tem. Their expected results have been presented in the examples of the chapter that
discussed aspect-oriented graph grammars.

Based on this argumentation, we claim that higher-order concepts are indeed helpful to
themodelling and analysis of systems undergoing programmedmodifications. By creating
this notion of second-order transformation for the vastly studied DPO approach, we started
a theoretical investigation of “inter-level” situations. For instance, we may investigate how
to build third-order or forth-order systems, or whether the idea of higher-order as we have
defined can be generalized. Those are some of the topics we foresee as future work.

9.1 Contributions
Although the notion of higher-order is pervasive in computer science, as shown by the

relevance of higher-order terms in lambda calculus, historically it has not been treated in
the same way within the graph transformation literature. We can find traces of it in con-
cepts such as meta-models, rule schemes, and even direct rule-based modification of rules
in restricted settings. However, the investigation of higher-order for the graph transforma-
tion paradigm is certainly not as mature such as other concepts such as, for example, the
notion of conflict, application conditions for rules or the usage of attributed graphs. This
fact contrasts with the literature on place-transition nets, for instance, where higher-order
models have been vastly explored throughout the years. We believe this thesis, through
a characterization of both second-order rewriting, second-order specification and interac-
tion between first- and second-order rewritings, has contributed to a better understanding
of higher-order constructions in the context of graph rewriting. Its usefulness has been
demonstrated through the application of the proposed analysis techniques for a represen-
tation of aspects using graph grammars. Here we present a more detailed account of the
original contributions proposed by thesis:

1. Discussion regarding DPO rewriting of rules in the categories T-Span and T-Rules,
and definition of second-order rewriting correcting and avoiding rule invalidation.

2. Characterization of second-order rewriting by means of span rewriting with NACs,
implemented through the notion of minimal rule preservation set of NACs, and the
algorithm for calculating them based on the 2-rule structure.

3. Characterization of span rewriting with NACs in the framework of adhesive HLR
systems with NACs, providing the application of standard results from DPO graph
transformation to the context of second-order rewriting.

4. A notion of coproduct collections and coproduct collection rewriting to model mod-
ifiable collections of rules in first-order graph grammars.

5. Definition of a family of second-order graph grammars, comprising changes in the
type graph and initial graph, and their respective operational semantics.

6. Definition of a notion of model-transformation derivation and evolutionary span to
summarize changes in the whole model due to higher-order rewritings.

158

7. A notion of conflict between first-order and second-order graph rewritings, and two
analysis techniques for second-order systems: second-order critical pair analysis
and critical pair evolution.

8. A representation of aspects over first-order graph grammars as second-order layers,
and the aspect weaving process by means of model-transformation derivations.

9.2 Future work
There are several questions that emerged from the development of this research and

that could not be properly investigated within the limits of this text. Those topics relate
to the basic framework introduced by this thesis, and range from clarifications on some
particular topics to extrapolations of the second-order characterization to other contexts.
The open topics that we conceived as future work are the following ones:

• Negative application conditions in the first-order layer: one of the assumptions we
have been working with is that the rules of the first-order grammars do not have
negative application conditions. The presence of application conditions in graph
rules would trigger a series of questions:

1. how to represent a collection of rules with NACs in a compatible way with
coproduct rewriting?

2. should we be able to match against rules depending on the their NACs? How
could this be done?

3. how to update first-order NACs to conform them to an arbitrary rule rewriting?
4. how do NACs would affect the proposed analysis techniques?

Since our notion of second-order rewriting relies heavily on on NACs, this is an
interesting theoretical research track to pursue.

• Models of third or higher order: through the text we have focused mainly in second-
order systems, since those suffice for representing model transformations of interest.
However, we may consider re-using the principles we have defined to define 3-rules
that would modify 2-rules, 4-rules modifying 3-rules and so on. How those layers
would interact? What would be distinct from from the known situation between the
first and second layers?

• Proof of correctness of the inter-level critical pair algorithm: although we have
provided an algorithm for calculating inter-level critical pairs, we have not proved
it actually captures all possible conflicting situations between a second-order and a
first-order rewriting. Besides this, improvements in the efficiency of the algorithm
would also be very desirable.

• Implementation of a second-order graph grammar tool: the investigation of higher-
order in graph transformation has provided models and techniques of practical rele-
vance since they can represent simultaneously system execution and model transfor-
mation. To perform practical experiments in large scenarios, it would be required a
tool to specify, run and verify second-order graph grammars. Initial work has begun
in implementing a system with those characteristics using the functional program-
ming language Haskell. The interpreter, however, is still in early stages, and it is

159

not suitable for general use yet. Such implementation, when finished, would allow
practical modelling and verification experiments that are not possible at themoment.

• Investigation of SOGGs in the modelling of dynamic systems. The main interpreta-
tion for the 2-tagged layer in this thesis was that it represented a model transforma-
tion over the base. That is why the focus has been given to model-transformation
derivations and evolutionary spans. However, the non-deterministic nature of
SOGGs also allow the modelling and execution of dynamic systems where rules
transformations occur simultaneously with graph transformation. I would be an in-
teresting scenario to explore practical situations of dynamic systems using SOGGs
and apply our analysis techniques in such contexts.

• Generalization of second-order for arbitrary adhesive HLR systems: in this thesis
we have worked mainly within the scope of typed graphs and typed graph rules. A
natural sequence to this first attempt of providing higher-order is to generalize the
requirements to investigate if the principles that guided us in the construction of a
second-order layer for graph grammars can be reused for other scenarios that fit the
framework of adhesive HLR systems, such as attributed graph grammars.

• Second-order constructions in other algebraic approaches for graph rewriting: all
the formal investigation of this thesis was within the limits of the DPO approach
for graph rewriting and its generalization. There comes the question if this same
notions could be reproduced in other algebraic characterizations of graph rewritings,
such as the single-pushout approach (LÖWE, 1993) or the sesqui-pushout approach
(CORRADINI et al., 2006). Which results would still hold? Which ones would
have to be modified or could not hold at all due to some particular characteristic of
the rewriting mechanism?

160

REFERENCES

AKSIT, M.; RENSINK, A.; STAIJEN, T. A graph-transformation-based simulation ap-
proach for analysing aspect interference on shared join points. In: ACM INTERNA-
TIONAL CONFERENCE ON ASPECT-ORIENTED SOFTWARE DEVELOPMENT
(AOSD 09), 8., New York, NY, USA. Proceedings… ACM, 2009. p.39–50.

ALDAWUD, O.; ELRAD, T.; BADER, A. UML profile for aspect-oriented software de-
velopment. In: INTERNATIONAL WORKSHOP ON ASPECT-ORIENTED MODEL-
ING WITH UML (AOM 03), 3., Boston, USA. Proceedings… [S.l.: s.n.], 2003.

ASPERTI, A.; BUSI, N. Mobile petri nets. Mathematical Structures in Computer Sci-
ence, New York, NY, USA, v.19, p.1265–1278, 2009.

ASSMANN, U.; LUDWIG, A. Aspect weaving by graph rewriting. In: INTERNA-
TIONAL CONFERENCE ON GENERATIVE COMPONENT-BASED SOFTWARE
ENGINEERING (GCSE 99), 3., Erfurt. Proceedings… Springer, 1999. (Lecture Notes
in Computer Science, v.1799).

BADOUEL, E. et al. Modeling concurrent systems: reconfigurable nets. In: INTER-
NATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING
TECHNIQUES AND APPLICATIONS (PDPTA 03). Proceedings… CSREA Press,
2003. p.1568–1574.

BADOUEL, E.; OLIVER, J. Reconfigurable Nets, a Class of High Level Petri Nets
Supporting Dynamic Changes. [S.l.]: INRIA, 1998. Research Report. (PI-1163).

BADOUEL, E.; OLIVER, J. Dynamic Changes in Concurrent Systems: modelling and
verification. [S.l.]: INRIA, 1999. Research Report. (RR-3708).

BALASUBRAMANIAN, D. et al. The graph rewriting and transformation language:
GReAT. Electronic Communications of the EASST, [S.l.], v.1, 2006.

BALDAN, P. et al. Unfolding grammars in adhesive categories. In: INTERNATIONAL
CONFERENCE ON ALGEBRA AND COALGEBRA IN COMPUTER SCIENCE
(CALCO 09), 3., Berlin, Heidelberg. Proceedings… Springer, 2009. p.350–366.

BALDAN, P.; KÖNIG, B.; RENSINK, A. Graph grammar verification through abstrac-
tion. In: GRAPH TRANSFORMATIONS AND PROCESS ALGEBRAS FOR MODEL-
ING DISTRIBUTED AND MOBILE SYSTEMS. Proceedings… [S.l.: s.n.], 2005.

161

BARENDREGT, H. P. Lambda calculi with types. In: ABRAMSKY, S.; GABBAY,
D. M.; MAIBAUM, T. S. E. (Ed.). Handbook of Logic in Computer Science: Vol 2.
Background: Computational Structures. Oxford, UK: Oxford University Press, 1992.
p.117–309.

BERGMANN, G. et al. Incremental pattern matching in the VIATRA model transforma-
tion system. In: INTERNATIONAL WORKSHOP ON GRAPH AND MODEL TRANS-
FORMATIONS, New York, NY, USA. Proceedings… ACM, 2008. p.25–32.

BORCEUX, F.Handbook of Categorical Algebra. Cambridge, UK: Cambridge Univer-
sity Press, 1994. v.1.

CLIFTON, C.; LEAVENS, G. T. MiniMAO1: an imperative core language for study-
ing aspect-oriented reasonings. Science of Computer Programming, Amsterdam, The
Netherlands, v.63, n.3, p.321–374, 2006.

CORRADINI, A. et al. The category of typed graph grammars and its adjunctions with cat-
egories of derivations. In: INTERNATIONALWORKSHOP ONGRAPHGRAMMARS
AND THEIR APPLICATION TO COMPUTER SCIENCE, 5., London, UK. Proceed-
ings… Springer, 1996. p.56–74. (Lecture Notes in Computer Science, v.1073).

CORRADINI, A. et al. Sesqui-pushout rewriting. In: INTERNATIONAL CONFER-
ENCE ON GRAPH TRANSFORMATION (ICGT 06), 3., Natal, Rio Grande do Norte,
Brazil. Proceedings… Springer, 2006. p.30–45. (Lecture Notes in Computer Science,
v.4178).

CORRADINI, A.; MONTANARI, U.; ROSSI, F. Graph processes. Fundamenta Infor-
maticae, Amsterdam, The Netherlands, v.26, n.3-4, p.241–265, 1996.

DJOKO, S. D.; DOUENCE, R.; FRADET, P. Aspects preserving properties. In: ACM
SIGPLAN SYMPOSIUM ON PARTIAL EVALUATION AND SEMANTICS-BASED
PROGRAM MANIPULATION, New York, NY, USA. Proceedings… ACM, 2008.
p.135–145.

DOUENCE, R.; FRADET, P.; SÜDHOLT,M. Composition, reuse and interaction analysis
of stateful aspects. In: INTERNATIONAL CONFERENCE ON ASPECT-ORIENTED
SOFTWARE DEVELOPMENT (AOSD 04), 3., New York, NY, USA. Proceedings…
ACM, 2004. p.141–150.

EHRIG, H. et al. Adhesive high-level replacement categories and systems. In: INTER-
NATIONAL CONFERENCE ON GRAPH TRANSFORMATION (ICGT 04), 2., Rome,
Italy. Proceedings… Springer, 2004. v.3256.

EHRIG, H. et al. Fundamentals of Algebraic Graph Transformation. Berlin, Germany:
Springer, 2005. (Monographs in theoretical computer science, an EATCS series).

EHRIG, H. et al. (Ed.). Handbook of Graph Grammars and Computing by Graph
Transformation: Vol. 3: Concurrency, Parallelism, and Distribution. River Edge, NJ,
USA: World Scientific Publishing Co., Inc., 1999.

EHRIG, H. et al. (Ed.). Handbook of Graph Grammars and Computing by Graph
Transformation: Vol. 2: Applications, Languages, and Tools. River Edge, NJ, USA:
World Scientific Publishing Co., Inc., 1999.

162

EHRIG, H.; HOFFMANN, K.; PADBERG, J. Transformations of Petri nets. Electronic
Notes in Theoretical Computer Science, [S.l.], v.148, n.1, p.151–172, 2006.

EHRIG, H.; PFENDER, M.; SCHNEIDER, H. J. Graph-grammars: an algebraic ap-
proach. In: ANNUAL SYMPOSIUM ON SWITCHING AND AUTOMATA THEORY,
14. Proceedings… [S.l.: s.n.], 1973. p.167–180.

ELLERMAN, D. A theory of adjoint functors–with some thoughts about their philosoph-
ical significance. arXiv, [S.l.], v.math/0511367v1, Nov 2005.

EVERMANN, J. A meta-level specification and profile for AspectJ in UML. In: INTER-
NATIONALWORKSHOPONASPECT-ORIENTEDMODELING (AOM07), 10., New
York, NY, USA. Proceedings… ACM, 2007. p.21–27.

FERNÁNDEZ, M.; MACKIE, I.; PINTO, J. S. A higher-order calculus for graph transfor-
mation. Electronic Notes in Theoretical Computer Science, [S.l.], v.72, n.1, p.45–58,
2007.

FERREIRA, A. P. L. Object-Oriented Graph Grammars. 2005. Tese (Doutorado em
Ciência da Computação) — Instituto de Informática - UFRGS.

FILMAN, R. E.; FRIEDMAN, D. P. Aspect-Oriented Programming is Quantifica-
tion and Obliviousness. [S.l.]: Research Institute for Advanced Computer Science, 2000.
Technical Report.

FRAINE, B. D.; SÜDHOLT, M.; JONCKERS, V. StrongAspectJ: flexible and safe point-
cut/advice bindings. In: INTERNATIONAL CONFERENCE ON ASPECT-ORIENTED
SOFTWARE DEVELOPMENT (AOSD 08), 7., New York, NY, USA. Proceedings…
ACM, 2008. p.60–71.

FUENTES, L.; SÁNCHEZ, P. A generic MOF metamodel for aspect-oriented modelling.
In: JOINT MEETING OF THE FOURTH WORKSHOP ON MODEL-BASED DEVEL-
OPMENT OF COMPUTER-BASED SYSTEMS AND THE THIRD INTERNATIONAL
WORKSHOP ONMODEL-BASEDMETHODOLOGIES FOR PERVASIVE AND EM-
BEDDED SOFTWARE (MBD/MOMPES 06), Potsdam, Germany. Proceedings… IEEE,
2006. p.10 pp.–124.

FUENTES, L.; SÁNCHEZ, P. Towards executable aspect-oriented UML models. In: IN-
TERNATIONALWORKSHOPONASPECT-ORIENTEDMODELING, 10., NewYork,
NY, USA. Proceedings… ACM, 2007. p.28–34.

GEIS, R. et al. GrGen: a fast SPO-based graph rewriting tool. In: INTERNATIONAL
CONFERENCE ON GRAPH TRANSFORMATION (ICGT 06), 3., Natal, Brasil. Pro-
ceedings… Springer, 2006. p.383 – 397. (Lecture Notes in Computer Science, v.4178).

GOLDBLATT, R. Topoi, the Categorial Analysis of Logic. Mineola, NY, USA: Dover
Publication, Inc., 2006. 486p.

GÖTTLER, H. Deriving productions from productions with an application to Picasso’s
œuvre. In: Handbook of Graph Grammars and Computing by Graph Transforma-
tion: Vol. 2: Applications, Languages, and Tools. River Edge, NJ, USA: World Scien-
tific Publishing Co., Inc., 1999. p.459–484.

163

HABEL, A.; MÜLLER, J.; PLUMP, D. Double-pushout graph transformation revis-
ited. Mathematical Structures in Computer Science, New York, NY, USA, v.11, n.5,
p.637–688, 2001.

HERMANN, F. et al. Formal analysis of functional behaviour for model transformations
based on triple graph grammars. In: INTERNATIONAL CONFERENCE ON GRAPH
TRANSFORMATION (ICGT 10), 5.Proceedings… Springer, 2010. p.155–170. (Lecture
Notes in Computer Science, v.6372).

HOFFMANN, K.; MOSSAKOWSKI, T.; PARISI-PRESICCE, F. Higher-order nets for
mobile policies. Electronic Notes in Theoretical Computer Science, [S.l.], v.127,
p.87–105, 2005.

HUI, P.; RIELY, J. Typing for a minimal aspect language: preliminary report. In: WORK-
SHOP ON FOUNDATIONS OF ASPECT-ORIENTED LANGUAGES (FOAL 07), 6.,
New York, NY, USA. Proceedings… ACM, 2007. p.15–22.

JAGADEESAN, R.; JEFFREY, A.; RIELY, J. A calculus of untyped aspect-oriented pro-
grams. In: EUROPEAN CONFERENCE ON OBJECT-ORIENTED PROGRAMMING
(ECOOP 03), Darmstadt, Germany. Proceedings… Springer, 2003. p.54–73. (Lecture
Notes in Computer Science, v.2743).

JAGADEESAN, R.; JEFFREY, A.; RIELY, J. Typed parametric polymorphism for as-
pects. Science of Computer Programming, Amsterdam, The Netherlands, v.63, n.3,
p.267–296, 2006.

JÚNIOR, J. U.; CAMARGO, V. V.; CHAVEZ, C. V. F. UML-AOF: a profile for modeling
aspect-oriented frameworks. In: WORKSHOP ON ASPECT-ORIENTED MODELING
(AOM 09), 13., New York, NY, USA. Proceedings… ACM, 2009. p.1–6.

KERSTEN,M.AOTools: state of the (AspectJ™) art and open problems. Presented in
the AOSD Tools Workshop in OOPSLA 2002. Available online at <http://kerstens.
org/mik/publications/aoTools-ooplsa2002.pdf>. Access in January, 2012.

KICZALES, G. et al. Aspect-Oriented Programming. In: EUROPEAN CONFERENCE
ONOBJECT-ORIENTED PROGRAMMING (ECOOP 97), 11. Proceedings… Springer,
1997. p.220–242. (Lecture Notes in Computer Science, v.1241).

KICZALES, G. et al. An overview of AspectJ. In: EUROPEAN CONFERENCE ON
OBJECT-ORIENTED PROGRAMMING (ECOOP 01). Proceedings… Springer, 2001.
p.327–353. (Lecture Notes in Computer Science, v.2072).

KINDLER, E.; WAGNER, R. Triple Graph Grammars: concepts, extensions, imple-
mentations, and application scenarios. Paderborn, Germany: Department of Computer
Science, University of Paderborn, 2007. Technical Report. (D-33098).

KLEIN, T. et al. From UML to Java And Back Again. Paderborn, Germany: University
of Paderbon, 1999. Technical Report.

KÖNIG, B.; KOZIOURA, V. Augur – a tool for the analysis of graph transformation sys-
tems. Bulletin of the European Association for Theoretical Computer Science, [S.l.],
v.87, p.125–137, 2005.

164

LACK, S.; SOBOCIŃSKI, P. Adhesive Categories. Department of Computer Science,
University of Aarhus: BRICS, 2003. Research Series, 25 pp. (RS-03-31).

LACK, S.; SOBOCINSKI, P. Toposes are adhesive. In: INTERNATIONAL CONFER-
ENCE ON GRAPH TRANSFORMATION (ICGT 06), 3., Natal, Brasil. Proceedings…
Springer, 2006. p.184–198. (Lecture Notes in Computer Science, v.4178).

LAMBERS, L.; EHRIG, H.; OREJAS, F. Conflict detection for graph transformation with
negative application conditions. In: INTERNATIONAL CONFERENCE ON GRAPH
TRANSFORMATION (ICGT 06), 3., Natal, Brazil. Proceedings… Springer, 2006.
p.61–76. (Lecture Notes in Computer Science, v.4178).

LAMBERS, L.; EHRIG, H.; OREJAS, F. Efficient conflict detection in graph transfor-
mation systems by essential critical pairs. Electronic Notes in Theoretical Computer
Science, Amsterdam, The Netherlands, v.211, p.17–26, 2008.

LAMBERS, L. et al. Parallelism and concurrency in adhesive high-level replacement sys-
tems with negative application conditions. Electronic Notes in Theoretical Computer
Science, Amsterdam, The Netherlands, v.203, n.6, p.43–66, 2008.

LLORENS, M.; OLIVER, J. Structural and dynamic changes in concurrent systems: re-
configurable petri nets. IEEE Transactions on Computers, [S.l.], v.53, n.9, p.1147 –
1158, sept. 2004.

LÖWE, M. Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science, Essex, UK, v.109, n.1-2, p.181–224, 1993.

MACHADO, R.; FOSS, L.; RIBEIRO, L. Aspects for graph grammars. In: INTERNA-
TIONAL WORKSHOP ON GRAPH TRANSFORMATION AND VISUAL MODEL-
ING TECHNIQUES (GT-VMT 09), 8., York, UK. Proceedings… ECEASST, 2009.

MACHADO, R.; HECKEL, R.; RIBEIRO, L. Modeling and reasoning over distributed
systems using aspect-oriented graph grammars. In: INTERNATIONAL WORKSHOP
ON RULE-BASED PROGRAMMING (RULE 09), 10., Brasília, Brazil. Proceedings…
Open Publishing Association, 2010. p.39–50. (Electronic Proceedings in Theoretical
Computer Science, v.21).

MACLANE, S. Categories for the Working Mathematician. New York, NY, USA:
Springer, 1998. (Graduate Texts in Mathematics).

MASUHARA, H.; KICZALES, G.; DUTCHYN, C. Compilation semantics of aspect-
oriented programs. In: WORKSHOP ON FOUNDATIONS OF ASPECT-ORIENTED
LANGUAGES (FOAL 02), 1., Enschede, The Netherlands. Proceedings… Department
of Computer Science: Iowa State University, 2002. v.02-06 (Technical Report).

MEHNER, K.; MONGA, M.; TAENTZER, G. Interaction analysis in aspect-oriented
models. In: IEEE INTERNATIONAL CONFERENCE ON REQUIREMENTS ENGI-
NEERING, 14. Proceedings… [S.l.: s.n.], 2006. p.69–78.

MENEZES, P. B.; HAEUSLER, E. H. Teoria das Categorias para Ciência da Com-
putação. Porto Alegre, Brasil: Bookman, 2006. (Série Livros Didáticos – Instituto de
Informática / UFRGS).

165

MOSTEFAOUI, F.; VACHON, J. Verification of Aspect-UML models using Alloy. In:
INTERNATIONAL WORKSHOP ON ASPECT-ORIENTED MODELING (AOM 07),
10., New York, NY, USA. Proceedings… ACM, 2007. p.41–48.

OBJECT MANAGEMENT GROUP. Unified Modeling Language Version 2.0. Avail-
able online at <http://www.omg.org/spec/UML/2.0/>. Access in January, 2012.

OBJECT MANAGEMENT GROUP. Semantics of a Foundational Subset for Exe-
cutable UML Models (FUML). Avaliable online at <http://www.omg.org/spec/
FUML/>. Access in January, 2012.

PARISI-PRESICCE, F. On modifying high level replacement systems. Electronic Notes
in Theoretical Computer Science, [S.l.], v.44, n.4, p.16 – 27, 2001.

PIERCE, B. C. Basic Category Theory for Computer Scientists. 1.ed. Cambridge, MA,
USA: The MIT Press, 1991. (Foundations of Computing).

PRANGE, U. et al. Transformations in reconfigurable place/transition systems. In:
DEGANO, P.; NICOLA, R. D.; MESEGUER, J. (Ed.). Concurrency, Graphs andMod-
els. [S.l.]: Springer, 2008. p.96–113.

REIN, A. et al. Negative application conditions for reconfigurable place/transition sys-
tems. In: INTERNATIONAL WORKSHOP ON GRAPH TRANSFORMATION AND
VISUAL MODELING TECHNIQUES (GT-VMT 08), 7., Budapest, Hungary. Proceed-
ings… ECEASST, 2008. v.10.

REISIG, W.; ROZENBERG, G. (Ed.). Lectures on Petri Nets I: Basic Models. 1.ed.
Berlin, Germany: Springer, 1998. (Lecture Notes in Computer Science, v.1491).

RENSINK, A. The GROOVE simulator: a tool for state space generation. In: INTERNA-
TION SYMPOSIUM ON APPLICATIONS OF GRAPH TRANSFORMATIONS WITH
INDUSTRIALRELEVANCE (AGTIVE 03), 2., Charlottesville, Virginia, USA.Proceed-
ings… Springer, 2004. p.479–485. (Lecture Notes in Computer Science, v.3062).

RENSINK, A.; SCHMIDT, A.; VARRÓ, D. Model checking graph transformations: a
comparison of two approaches. In: INTERNATIONAL CONFERENCE ON GRAPH
TRANSFORMATION (ICGT 04), 2., Rome, Italy. Proceedings… Springer, 2004.
p.226–241. (Lecture Notes in Computer Science, v.3256).

RIBEIRO, L. Parallel Composition and Unfolding Semantics of Graph Grammars.
1996. Tese (Doutorado em Ciência da Computação) — Technischen Universitat Berlin.
vom Fachbereich 13 - Informatik,Berlin, de.

ROZENBERG, G. (Ed.). Handbook of Graph Grammars and Computing by Graph
Transformation: Vol. 1: Foundations. River Edge, NJ, USA: World Scientific Publish-
ing Co., Inc., 1997.

RUDOLF,M. Utilizing constraint satisfaction techniques for efficient graph patternmatch-
ing. In: INTERNATIONAL WORKSHOP ON THEORY AND APPLICATION OF
GRAPH TRANSFORMATIONS (TAGT 98), 6., Paderborn, Germany. Proceedings…
Springer, 2000. p.238–251. (Lecture Notes in Computer Science, v.1764).

166

SANJABI, S. B.; ONG, C.-H. L. Fully abstract semantics of additive aspects by trans-
lation. In: INTERNATIONAL CONFERENCE ON ASPECT-ORIENTED SOFTWARE
DEVELOPMENT (AOSD 07), 6., New York, NY, USA. Proceedings… ACM, 2007.
p.135–148.

SCHAUERHUBER, A. et al.A Survey on Aspect-OrientedModeling Approaches. Vi-
enna, Austria: Vienna University of Technology, 2006. Technical Report.

SCHÜRR, A. Introduction to PROGRESS, an attribute graph grammar based specifica-
tion language. In: INTERNATIONAL WORKSHOP ON GRAPH-THEORETIC CON-
CEPTS IN COMPUTER SCIENCE, 15., Castle Rolduc, the Netherlands. Proceedings…
Springer, 1990. p.151–165. (Lecture Notes in Computer Science, v.411).

SCHÜRR, A. Specification of graph translators with triple graph grammars. In: INTER-
NATIONAL WORKSHOP ON GRAPH-THEORETIC CONCEPTS IN COMPUTER
SCIENCE, 20., Herrsching, Germany. Proceedings… Springer, 1995. (Lecture Notes in
Computer Science, v.903).

SCHÜRR, A.; KLAR, F. 15 Years of Triple Graph Grammars. In: EHRIG, H. et al. (Ed.).
Graph Transformations. Berlin, Germany: Springer, 2008. p.411–425. (Lecture Notes
in Computer Science, v.5214).

STAHL, T. et al. Model-Driven Software Development - Technology, Engineering,
Management. 1.ed. [S.l.]: Wiley, 2006. 444p. (Wiley Software Patterns Series).

STEELE, G. L. Common LISP: the Language. 2.ed. Newton, MA, USA: Digital Press,
1990.

TAENTZER, G. AGG: a tool environment for algebraic graph transformation. In: INTER-
NATIONAL WORKSHOP ON APPLICATIONS OF GRAPH TRANSFORMATIONS
WITH INDUSTRIAL RELEVANCE (AGTIVE 99), Kerkrade, The Netherlands. Pro-
ceedings… Springer, 2000. p.481–488. (Lecture Notes in Computer Science, v.1779).

TAENTZER, G. et al. Model transformations by graph transformations: a comparative
study. In: MODEL TRANSFORMATIONS IN PRACTICE WORKSHOP AT MODELS
2005, Montego Bay, Jamaica. Proceedings… Springer, 2005. p.05. (Lecture Notes in
Computer Science, v.3713).

TUCKER, D. B.; KRISHNAMURTHI, S. A Semantics for Pointcuts and Advice in
Higher-Order Languages. Providence, Rhode Island, USA: Department of Computer
Science, Brown University, 2002. Technical Report. (CS-02-13).

VALK, R. Self-modifying nets, a natural extension of Petri nets. In: COLLOQUIUM ON
AUTOMATA, LANGUAGES AND PROGRAMMING, 5., Udine, Italy. Proceedings…
Springer, 1978. p.464–476. (Lecture Notes in Computer Science, v.62).

WAND, M.; KICZALES, G.; DUTCHYN, C. A semantics for advice and dynamic join
points in aspect-oriented programming. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), New York, NY, USA, v.26, n.5, p.890–910, 2004.

WHITTLE, J. et al. MATA: a unified approach for composing UML aspect models based
on graph transformation. Transactions on Aspect-Oriented Software Development,
[S.l.], v.6, p.191–237, 2009. (Lecture Notes in Computer Science, v.5560).

167

WHITTLE, J.; JAYARAMAN, P. K. MATA: a tool for aspect-oriented modeling based on
graph transformation. In: INTERNATIONAL WORKSHOP ON ASPECT-ORIENTED
MODELING (AOM 07), 11., Nashville, TN, USA. Proceedings… Springer, 2007.
p.16–27. (Lecture Notes in Computer Science, v.5002).

ZHANG, G. Towards Aspect-Oriented Class Diagrams. In: ASIA-PACIFIC SOFTWARE
ENGINEERING CONFERENCE, 12., Washington, DC, USA. Proceedings… IEEE
Computer Society, 2005. p.763–768.

168

APPENDIX A – CATEGORY THEORY

Categories, morphisms and related concepts are used by the algebraic approach to
graph transformation as a common language. Because of this, we provide in this ap-
pendix a reference for categorical concepts required for reading this work. A category
is a mathematical structure that contains objects, i.e. mathematical entities such as sets,
numbers and graphs equipped with a notion of morphism. Intuitively, morphisms can be
seen as structure preserving transformations: functions, relations, graph homomorphisms,
etc. The theory focus mainly in the morphisms and their relationship, being very useful
to describe, characterize and study mathematical constructions in a generic and abstract
way, independent of the internal object structure. It has a large influence in areas of Com-
puter Science such as type theory, logic, functional programming languages, concurrency
models and graph transformation. For an intuitive introduction to the subject, we suggest
(PIERCE, 1991) and (MENEZES; HAEUSLER, 2006). A comprehensive presentation of
the area given by the classic reference (MACLANE, 1998).

A.1 Basic definitions
Definition 161 (Category). A category C is a tuple ⟨O,M, ∂0, ∂1, i, ○⟩, where

• O is a collection of objects;

• M is a collection of morphisms (or arrows) between objects;

• ∂0 ∶M→ O is a total function taking each morphism to its source object;

• ∂1 ∶M→ O is a total function taking each morphism to its target object;

• i ∶ O→M defines an identity iA to each object A ∈ O;

• ○ ∶M ×M⇁M is a partial binary operation named morphism composition.

such that the following holds:

1. composition is closed for compatible maps

∂1(f) = ∂0(g)⇐⇒ g ○ f ∈M

and it is associative
(h ○ g) ○ f = h ○ (g ○ f)

2. identities are neutral elements of the composition:

f ○ iA = f = iB ○ f

169

Notation 162. We may write both g ○ f ∶ A → C or f;g ∶ A → C to denote the composition
of arrows f ∶ A → B and g ∶ B → C. The syntax C[A,B] denotes the collection of all
morphisms from A to B in category C.

Example 163 (Set-based categories). The categories below are constructed using sets or
structured sets.

• Set ∶ sets as objects, total functions as arrows.

• Pfn ∶ sets as objects, partial functions as arrows.

• Poset ∶ partially ordered sets as objects, monotonic functions as arrows.

• Mon ∶ monoids as objects, monoid homomorphisms as arrows.

Some properties of functions such as being injective, surjective or bijective are gener-
alized in Category Theory by the concepts of monomorphisms, epimorphisms and isomor-
phism, which are respectively analog to the original properties in the category Set. In the
graph categories we address in this work the analogy also holds, however, it is important
to remark that there are categories where this is not the case. As an example, we cite that
epimorphisms in Mon are not necessarily surjective.

Definition 164 (Monomorphism). A C-morphism f ∶ A → B is mono, also called a
monomorphism, iff ∀g,h ∶ X→ A, f ○ g = f ○ h→ g = h

X
g //

h
// A f // B

Definition 165 (Epimorphism). A C-morphism f ∶ A → B is epi, also called an epimor-
phism, iff ∀g,h ∶ B→ X, g ○ f = h ○ f→ g = h

A f // B
g //

h
// X

Notation 166. In diagrams, mono arrows are drawn with a tail: A↣ B and epi arrows are
drawn with a double head: A↠ B.

Definition 167 (Isomorphism). A C-morphism f ∶ A → B is iso, also called an isomor-
phism, iff ∃f−1 ∶ B → A such that f ○ f−1 = iB and f−1 ○ f = iA. If there is an isomorphism
between A and B, we say that they are isomorphic objects.

The definition of isomorphism rely on the existence of an inverse morphism. It is
know that, if this inverse transformation exists, it is unique. Notice that if an arrow is iso
it implies that it is both mono and epi. The converse, i.e. being mono and epi implies
iso, does not hold in general categories, although it is known to be true in some categories
such as Set.

In Category Theory, operations are specified by means of limits and colimits of dia-
grams, which can be seen as particular cases of universal arrows. The following definitions
introduce the most common limits and colimits used throughout the text.

Definition 168 (Terminal object). An C-object A is terminal iff ∀X ∈ C,∃!f ∶ X→ A.

Definition 169 (Initial object). An C-object A is initial iff ∀X ∈ C,∃!f ∶ A→ X

170

Notation 170. In diagrams, unique arrows are written with dashed line: A⇢ B. The initial
object is usually denoted 1, and the initial object is usually denoted 0.

Notice that terminal and initial objects in a category do not need to be unique. However,
if there are several terminal objects, all of them are isomorphic, and the same holds for
initial objects. Because of this, we say that terminal and initial objects are unique up-to-
isomorphism. As an example, all singletons in Set are terminal. On the other hand, there
is a unique initial object in Set: the empty set ∅.

Definition 171 (Product). Let A and B be objects of C. Every object K together with
morphisms kA ∶ K → A and kB ∶ K → B is a pre-product of A and B. A product is a
pre-product ⟨A×B, π0, π1⟩ such that for all pre-product ⟨K, kA, kB⟩ there is a unique arrow
h ∶ K → A × B such that π0 ○ h = kA and π1 ○ h = kB. This can be seen by the following
diagram:

K
kA

||

kB

""
h
��

A A × Bπ0
oo

π1
// B

Definition 172 (Coproduct). Let A and B be objects of C. Every object K together with
morphisms kA ∶ A → K and kB ∶ K → B is a pre-coproduct of A and B. A coproduct is a
pre-product ⟨A + B, ι0, ι1⟩ such that for all pre-product ⟨K, kA, kB⟩ there is a unique arrow
h ∶ A + B → K such that h ○ ι0 = kA and h ○ ι1 = kB. This can be seen by the following
diagram:

A

kA ""

ι0 // A + B
h
��

B

kB||

ι1oo

K

Definition 173 (Product and coproduct of arrows). Given two morphisms f ∶ A → C and
g ∶ B→ D, the arrow product of f and g is defined as the unique arrow f×g ∶ A×B→ C×D
between the products of domains and codomains. Conversely, the arrow coproduct of f
and g is defined as the unique arrow f + g ∶ A + B→ C +D.

Definition 174 (Pullback). Let f ∶ A → C and g ∶ B → C be morphisms of C. Every object
K together with morphisms kA ∶ K → A and kB ∶ K → B such that f ○ kA = g ○ kB is a pre-
pullback of A

f→ C
g← B. A pullback is a pre-pullback ⟨A ×C B,p0,p1⟩ such that for each

pre-pullback ⟨K, kA, kB⟩ there is a unique arrow h ∶ K → A ×C B such that p0 ○ h = kA and
p1 ○ h = kB, as shown in the following diagram:

K

kA

##

kB

""
h
##
A ×C B p0

//

p1

��

B

g

��
A

f
// C

Definition 175 (Pushout). Let f ∶ C → A and g ∶ C → A be morphisms of C. An object K
together with morphisms kA ∶ A→ K and kB ∶ B→ K such that kA○f = kB○g is a pre-pushout

171

of A
f← C

g→ B. A pushout is a pre-pushout ⟨A +C B,q0,q1⟩ such that for each pre-pushout
⟨K, kA, kB⟩ there is a unique arrow h ∶ A +C B → K such that p0 ○ h = kA and p1 ○ h = kB, as
shown in the following diagram:

C

f

��

g // B

q1

��
kB

��

A

kA
11

q0 // A +C B
h

##
K

It is know that limits and colimits, if existent, are unique up-to-isomorphism, i.e. if
they are not unique, at least all candidates have isomorphic objects.
Definition 176 (Functor). Let C = ⟨O,M, ∂0, ∂1, i, ●⟩ and D = ⟨O′,M′, ∂′0, ∂′1, i

′, ●′⟩ be
categories. A functor f ∶ C → D is a pair (fO, fM) of total functions fO ∶ O → O′ and
fM ∶M→M′ such that

1. sources and targets are preserved: ∂′0 ○ fM = fO ○ ∂0 and ∂′1 ○ fM = fO ○ ∂1

2. identities are preserved: i′ ○ fO = fM ○ i

3. morphism composition is preserved: fM(g ● f) = fM(g) ●′ fM(f)
Definition 177 (Natural transformation). Let F,G ∶ C → D be functors. A natural trans-
formation η ∶ F → G is a collection of D-arrows ηX ∶ F(X) → G(X) (one arrow for each
C-object X) such that the following diagram commutes for each C-morphism f ∶ X→ Y.

F(X) ηX //

F(f)
��

G(X)
G(f)
��

F(Y) ηY
// G(Y)

If all ηX are isomorphisms in C, we call η a natural isomorphism.

Definition 178 (Functor category). Let C and D be categories. The functor category
[C → D] is defined by taking as objects all functors between C and D, and as morphisms
all natural transformations between functors.

Definition 179 (Slice Category). Let A be an object of category C. The slice category
C ↓ A is formed as follows:

• objects of C ↓ A are arrows x ∶ X→ A from some object X ∈ C towards object A;

• an arrow between two objects x ∶ X → A and y ∶ Y → A is an arrow f ∶ X → Y ∈ C
such that the following diagram commutes:

X f //

x ��

Y

y��
A

• identity of x ∶ X→ A is idX;

• composition in C ↓ A follows from composition in C.

172

A.2 Adjunctions
Adjunctions are said by many authors to be the most profound contribution of category

theory to mathematics in general. This is due to the fact that adjunctions generalize a great
extent of other constructions, and thus can be seen in practically every situation involving
limits. For being so abstract, it is also difficult to explain the intuition behind adjunctions,
since there is not one single interpretation of the concept. A possible interpretation lies
in the idea of “naturally inverse” transformations between categories. Let us try to clarify
this last statement by a more detailed explanation, whose main ideas were taken from
(ELLERMAN, 2005).

Initially, consider two categories, C and D. Each category consists of a “world” of
objects that have a specific structure or property, and the morphisms can be seen as trans-
formations of some kind that preserve such structure. For instance, in categories in which
objects are sets with some structure, such as Poset and Mon, morphisms are transforma-
tions between the carrier sets of the objects that preserve their structure (also known as
homomorphisms). According to this view, category theory can be seen as a theory of
structure-preserving maps. A functor F ∶ C → D is a transformation between elements
of C (objects and morphisms) that preserve the categorical structure of C, i.e. identities,
composition, sources and targets of morphisms. By means of functors, one can define
transformations between categories that do not hurt the property of being a category. How-
ever, there is no categorical construction that allows us to directly define a map f ∶ c→ d if
c and d are in different categories, (c ∈ C and d ∈ D, for example). On the other hand there
may be a way to project f over a category, allowing us to describe f as a homomorphism,
and, by doing so, to employ the categorical machinery on it. This idea can be implemented
in more than one way:

• transform both C and D by means of functors to a more general category (usually
Set), and describe f there.

• transform d to C by means of a functor G, and then represent f by a function from c
to G(d);

• transform c to D by means of a functor F, and then represent f by a function from
F(c) to d.

Let c be a C-object, d a D-object, F ∶ C → D and G ∶ D → C functors. The functors
F and G are said to be adjoints from C to D iff every morphism f ∶ c → d has a unique
representation in both C and D. The representation of f in C is an arrow fD ∶ c→ G(d) and,
in D, an arrow fC ∶ F(f) → d. One can see the two transformations F and G as “inverses”
from the perspective of such morphisms, i.e. one can uniquely define f by taking its source
to D and using fD, or, alternatively, by taking its target to C and using fC. The diagram
shown in Figure 9.1 presents this correspondence.

Since arrows like f do not “exist directly” as morphisms in the sense that they do not
belong to C neither to D, they can be represented by both functors F and G and by the
bijection that associates the projection fC to the projection fD. These three elements define
and adjunction (or adjoint situation) between the categories C and D, or, alternatively,
the F functor is said to be the left-adjoint of G, and G is the right-adjoint of F. It is also
important to note that this characterization occurs in a specific direction, from C to D. It
is possible to exist adjunctions from D to C, but this would be another situation and may
involve other functors.

173

C D

c F //

fC

��

f

((

F(c)

fD

��
G(d) dG

oo

Figure 9.1: Transformation f represented in C and in D.

The bijection between fC and fD can be described inmore than oneway: over a common
base-category (case 1); over the category C (case 2); or over the category D (case 3).
Consequently, there are three different (but equivalent) definitions of adjunction.

Definition 180 (Adjunction – version 1). An adjunction is a triple (F,G, ψ) ,where

• F ∶ C → D is a functor from category C to category D

• G ∶ D→ C is a functor from category D to category C

• ψ ∶ Hom(F_,_) ≃ Hom(_,G_) is a natural isomorphism in Set

This first definition of adjunction can be seen as closer to the presented intuition since
the bijection is characterized by an isomorphism in Set. However, it relies on the existence
of Hom functors1 Hom(F_,_) ∶ Dop × D → Set and Hom(_,G_) ∶ Cop × C → Set, that
only exists for locally-small categories. The following two characterizations of adjunction
are less-intuitive, but also more general since they hold for categories whose collections
of arrows between two objects may not constitute sets.

Definition 181 (Adjunction – version 2). An adjunction is a triple (F,G, ϕ), where

• F ∶ C → D is a functor from category C to category D

• G ∶ D→ C is a functor from category D to category C

• ϕ ∶ IC → G ○ F is a natural transformation from the identity functor of category C
to the composition of F and G. The natural transformation ϕ is called the unit of
the adjunction.

such that, for every C-morphism f ∶ c → G(d), there exists only one D-morphism g ∶
F(c)→ d that makes the following diagram commute

c ϕ //

f

!!

GFc
Gg
��

Fc
g
��

Gd d

Definition 182 (Adjunction – version 3). An adjunction is a triple (F,G, ε), where
1In a locally-small category C, the functor Hom(a,b) ∶ C → Set takes the set of arrows from a to b

into their representation in Set. For the precise definition of Hom-functors, natural transformations, natural
isomorphisms and universality, we recommended (MACLANE, 1998).

174

• F ∶ C → D is a functor from category C to category D

• G ∶ D→ C is a functor from category D to category C

• ε ∶ F ○G → ID is a natural transformation from the composition of G and F to the
identity functor of category D. The natural transformation ε is called the co-unit of
the adjunction.

such that, for every D-morphism g ∶ F(c) → d, there exists only one C-morphism f ∶ c →
G(d) that makes the following diagram commute

c
f
��

Fc
Ff

��

g

!!
Gd FGd ε // d

These two alternative definitions are based in two natural transformations, ϕ and ε,
which are called unit and co-unit, respectively. Moreover, for all c ∈ C and d ∈ D, the
transformation ϕ ∶ c → G ○ F(c) is universal from c to G and, dually, the co-unit ε ∶
F ○ G(d) → d is co-universal from F to d. This universality is what allows the unit and
co-unit to be interpreted as the projections of the bijection between arrows fC and fD in,
respectively, C and D. Moreover, they define each other up to isomorphism, i.e. one can
calculate the co-unit from the unit, and vice-versa. The expression F ⊣ G is normally used
to represent adjunctions, where the side of the dash always points to the left adjoint. This
notation can also be used in diagrams, as shown below.

C
F

))� D
G

ii

Adjunctions can be classified according to properties of the unit and co-unit. When
comparing models, two kinds of adjunction are of special interest: reflections and co-
reflections.

Definition 183 (Reflection). A reflection is an adjunction (F ⊣ G, ϕ, ε) from C to Dwhere
the co-unit ε is a natural isomorphism.

Definition 184 (Co-Reflection). A co-reflection is an adjunction (F ⊣ G, ϕ, ε) where the
unit ϕ is a natural isomorphism.

If an adjunction F ⊣ G from C to D is a reflection, it means that the functor G is a full
embedding, i.e. it is full and faithfull. In other words, the category D is equivalent to a
full subcategory of C. If it is a co-reflection, the inverse holds: F is a full embedding and
C is equivalent to a full subcategory of D. If the adjunction is both a reflection and a co-
reflection, it is fact an equivalence of categories, i.e. both C and D are two representations
for essentially the same universe. One important characteristic of adjoint functors is the
preservation of universals across the involved categories. Left adjoints preserve colimits,
while right adjoints preserve limits. This is a very useful property, since it allows us to
reuse limits from known models directly in more obscure and complicated ones by simply
finding a suitable adjunction between their categories. Other good characteristic is that
adjunctions are composable, meaning that we have transitivity in such preservation of
universals.

175

APPENDIX B – RESUMO ESTENDIDO

Este capítulo apresenta um resumo em português dos tópicos abordados ao longo desta
tese. Para cada capítulo, apresentamos uma seção descrevendo as principais ideias e con-
tribuições.

B.1 Introdução
O Capítulo 1 introduz o tema geral desta tese, que se refere à modelagem e análise

de sistemas sob evolução programada, O ponto central é identificar como modificações
estruturais afetam o comportamento de umdadomodelo de sistema. Propomos a utilização
do paradigma de transformação de grafos, muito usado para especificar linguagens visuais,
para representar simultaneamente a execução e a evolução do sistema base. Desta forma,
podemos utilizar o mesmo arcabouço formal, no caso a abordagem de reescrita de grafos
por pushout duplo, para estudar como a evolução e a execução interagem. A hipótese
que consideramos é que modelos baseados em reescrita de grafos com alta ordem são
adequados para modelagem e análise de sistemas sob evolução programada.

B.2 Sistemas de transformação de grafos
O Capítulo 2 faz uma revisão dos principais conceitos da área de transformação de

grafos. Modelos baseados em regras de transformação de grafos são bastante usados para
descrever a sintaxe e a semântica de linguagens visuais, i.e., baseadas em diagramas. A
teoria que fundamenta a abordagem algébrica para transformação de grafos é bastante
desenvolvida, utilizando construções de teoria das categorias para descrever tanto as re-
gras de transformação quanto a aplicação destas. A vantagem desta abordagem é que os
principais resultados teóricos se tornam gerais, sendo válidos para uma vasta gama de
modelos relacionados que manipulam grafos simples, grafos tipados, grafos com atribu-
tos, entre outros. Dentro da abordagem algébrica, existem variações que diferem essen-
cialmente pela forma de representar as regras e o processo de reescrita. Por exemplo, na
variação de pushout duplo, regras são spans de grafos formados por homomorfismos in-
jetores (Definição 11), o match de uma regra a um grafo é dado por um homomorfismo e
a aplicação de regras é representado por um diagrama categorial contendo dois pushouts
(Definição 15). Gramáticas de grafos são modelos formais compostos por um grafo ini-
cial e um conjunto de regras de reescrita de grafos (Definição 18). O comportamento de
uma gramática de grafos é definido pela aplicação de regras de reescrita, determinada pela
presença ou não de matches para as regras (Definição 20). Gramáticas de grafos são mod-
elos bastante úteis na modelagem de sistemas com paralelismo e não determinismo, já
que noções intuitivas como conflitos entre aplicações de regras e aplicação paralela pos-

176

suem definições precisas neste arcabouço formal (Seção 2.3). Osmodelos semânticos para
gramáticas de grafos variam essencialmente na forma com a qual tratam questões como
concorrência e representação concreta de transformações de grafos (Seção 2.4). Dentre
os possíves métodos para análise de gramáticas de grafos, a análise de par crítico permite
que se obtenha uma previsão de todos os potenciais conflitos e dependências entre duas
regras da especificação (Seção 2.8). A abordagem de pushout duplo, que é a variação
mais antiga da abordagem algébrica, está atualmente generalizada através do arcabouço
conhecido por Sistemas Adesivos de Substituição de Alto Nível (Adhesive High-Level Re-
placement Systems) (Definição 2.9). Portanto, resultados teóricos desta abordagem como a
caracterização de conflitos e definição de paralelismo estão representados em um alto nível
de abstração. Apesar disto, não há atualmente na área de transformação de grafos uma rep-
resentação padrão de transformações de alta ordem, isto é, regras de mais alto nível que
modificam regras de reescrita de grafos. Esta ausência dificulta a utilização de gramáticas
de grafos como modelo-base a ser evoluído. O primeiro passo então para definir trans-
formações programadas sobre tais regras é desenvolver a ideia de transformação de alta
ordem para tais modelos. Para tal, buscamos inspiração em outros formalismos onde alta
ordem é comum, em especial cálculo-lambda.

B.3 Alta ordem em cálculo lambda
No Capítulo 3, revisamos os principais conceitos de cálculo-lambda, formalismo pro-

posto por Alonzo Church com o intuito de formalizar a definição e aplicação de funções.
Apesar da sua simplicidade e concisão, cálculo-lambda é um formalismo muito expres-
sivo, sendo equivalente a outros modelos universais como máquinas de Turing. Além da
versão original, há variações do cálculo onde classificamos os termos em tipos, sendo que
o mecanismo de tipagem garante a compatibilidade dos argumentos passados para uma
aplicação de função. No contexto de cálculo lambda tipado, podemos caracterizar termos
de alta ordem com base na altura do seu tipo (Definição 37). Em função disto, apresen-
tamos uma analogia entre reescrita de grafos e avaliação de termos em cálculo lambda
tipado, a fim de obter intuição sobre como definir termos de alta ordem no contexto de
transformação de grafos (Seção 3.3).

B.4 Reescrita de grafos de segunda ordem
O Capítulo 4 aborda a questão de como definir regras de segunda ordem, isto é, regras

que transformam regras de transformação de grafos, utilizando o mecanismo de pushout
duplo. Para tal, devemos estabelecer uma categoria onde regras sejam objetos e morfis-
mos sejam transformações de regras. Testamos inicialmente a categoria T-Span, formada
por spans arbitrários de grafos e respectivos morfismos. Definimos regras de segunda
ordem, a qual nomeamos 2-regras, como spans em T-Span onde os objetos são regras e
ambos os morfismos são injetores (Definição 42). Por construção, T-Span é uma cate-
goria adesiva, permitindo a aplicação direta do mecanismo de pushout duplo e a teoria
associada (Proposição 41). Contudo, reescrita de regras pelo mecanismo de pushout du-
plo em T-Span permite que transformemos uma regra em um span onde um dos morphis-
mos é não-injetor. Tal característica é indesejável, pois a injetividade das regras é funda-
mental para garantir o determinismo da reescrita dentro da teoria de categorias adesivas.
Desta forma, consideramos a subcategoria de T-Span contendo somente spans que são re-
gras, a qual chamamos T-Rules (Definição 51). Provamos uma situação de adjunção entre

177

T-Span e T-Rules, o que permite caracterizar corretamente limites e colimites de T-Rules
a partir das mesmas construções em T-Span. Contudo, T-Rules falha em ser adesiva
(Proposição 64). A conclusão é que não é possível obter com ambas as categorias uma car-
acterização direta de reescrita de regras que permita a aplicação do mecanismo de pushout
duplo e, ao mesmo tempo, não gere regras inválidas. São consideradas duas possíveis for-
mas de contornar este problema: a primeira consiste de corrigir a regra inválida após a ree-
scrita utilizando a unidade da adjunção entre T-Span e T-Rules (Definição 65); a segunda
consiste de evitar reescritas problemáticas através do mecanismo de condições negativas
de aplicação para 2-regras (Definição 81). Como a primeira abordagem apresenta algu-
mas características indesejáveis, definimos a segunda abordagem como a definição padrão
de reescrita de segunda ordem (Seção 4.5). Outra vantagem desta escolha é que a teoria de
categorias adesivas, na qual T-Span se enquadra, foi recentemente generalizada para en-
globar resultados envolvendo condições negativas de aplicação. Isto faz com que reescrita
de segunda ordem se enquadre naturalmente no arcabouço formal atualmente utilizado na
área de transformação de grafos. Finalmente, enumeramos as modificações possíveis de
aplicar sobre regras usando reescrita de segunda ordem, e instanciamos a caracterização
de conflito entre reescritas de segunda ordem.

B.5 Gramáticas de grafos de segunda ordem
O Capítulo 5 introduz gramáticas de grafos de segunda ordem, isto é, especificações

contendo tanto regras quanto 2-regras. Antes de definir a especificação em si, tratamos
do problema de como representar coleções de regras adequadamente de forma que pos-
samos definir uma noção de reescrita de coleções. Verificamos os problemas de considerar
conjuntos para representar coleções de regras, e introduzimos a ideia de utilizar para tal
propósito coprodutos de regras com infinitas injeções da regra vazia (Definição 96). Esta
escolha permite descrever uma forma de reescrita que pode modelar tanto modificação
de regras quanto adição e remoção de regras na coleção (Definição 93). Utilizando co-
produtos como coleções, redefinimos gramáticas de grafos convencionais (Definição 99),
visto que estas são os estados da execução de gramáticas de grafos de segunda ordem.
Posteriomente definimos gramáticas de grafos de segunda ordem simples, composta de
uma gramática de primeira ordem inicial e uma coleção de 2-regras (Definição 103). A
execução pode se dar tanto por uma reescrita interna da gramática-estado, quanto de uma
reescrita de segunda ordem modificando a gramática-estado (Definição 104). De forma
similar, definimos variações de gramáticas de segunda ordem descrevendo como modi-
ficar o grafo tipo (Definições 112), o grafo inicial (Definição 116) ou o número de regras
da especificação (Definição 124). Após revisarmos os modelos apresentados, definimos
as condições para uma derivação representar uma transformação de modelos (Definição
128), e apresentamos como obter o que foi preservado, adicionado e removido por uma
transformação de modelo via spans sobre gramáticas de grafos (Definição 137).

B.6 Interação entre as camadas de primeira e segunda ordem
No Capítulo 6 tratamos da interação entre reescritas de primeira e segunda ordem

durante a execução de gramáticas de grafos de segunda ordem. Iniciamos definindo as
noções de independência paralela e conflito (Definição 140). A partir disto, estendemos
estas noções para derivações de gramáticas de segunda ordem (Definição 142). Posterior-
mente, apresentamos uma extensão do método de cálculo de pares críticos para gramáticas

178

de segunda ordem (Seção 6.2). Finalmente, definimos como relacionar pares críticos do
sistema original com pares críticos do sistema após uma derivação representando trans-
formação de modelos (Seção 6.3).

B.7 Gramáticas de grafos orientadas a aspectos
No Capítulo 7, gramáticas de grafos de segunda ordem são utilizadas para descrever

abstrações de orientação a aspectos sobre gramáticas de grafos, definindo o modelo con-
hecido como gramática de grafos orientadas a aspectos (Definição 155). Aspectos sobre
uma gramática de grafos são representados através de uma camada de segunda ordem
implementando transformações estruturais. Definimos como combinar diversos aspectos
sobre a mesma gramatica em um único aspecto composto (Definição 158), o que per-
mite representar o processo de combinação aspectual através da execução de uma única
gramática de segunda ordem. Definimos a gramática combinada como o resultado de uma
transformação de modelo sobre a gramática com aspecto composto (Definição 159). Fi-
nalmente, discutimos como os métodos de análise apresentados no Capítulo 7 podem ser
utilizados para estudar a o efeito da combinação aspectual sobre a semântica da gramática
base.

B.8 Trabalhos relacionados
O Capítulo 8 apresenta alguns trabalhos da literatura relacionados à nossa proposta.

Inicialmente, falamos de resultados preliminares sobre a modificação de regras de trans-
formação de grafos. Após, comentamos sobre redes de Petri com suporte a modificação
dinâmica de regras. Depois apresentamos gramáticas de grafos triplas, modelos cuja es-
trutura de regra é similar a 2-regras, porém possuem um propósito diferente destas. Fi-
nalmente, mencionamos alguns trabalhos que associam transformações de grafos a con-
struções de orientação a aspectos.

B.9 Conclusões
No Capítulo 9, conclui-se a apresentação desta tese através da revisão das principais

contribuições e apontamento de trabalhos futuros. Em linhas gerais, discutiu-se a inter-
ação entre transformações de modelo e a execução destes no contexto de gramáticas de
grafos. Para tal, tomamos como base teórica a teoria de transformação de grafos através
do mecanismo de pushout duplo, e a aplicamos tanto para implementar transformações de
modelo quanto para representar a execução do sistema base. Foi necessário definir uma
teoria de transformações de segunda ordem para descrever regras que modificam regras
(ou 2-regras). Para garantir a preservação da estrutura de regra após a reescrita, utilizou-se
o mecanismo de condições negativas de aplicação. Após, propusemos diversos tipos de
gramáticas de grafos de segunda ordem, compostas de uma especificação inicial (grafo
inicial mais regras de reescrita) e uma camada de segunda ordem (2-regras, regras para
atualização do grafo inicial, retipagem), promovendo modificações sobre o modelo origi-
nal. A noção de coleção baseada em coproduto foi introduzida com o objetivo de servir de
estrutura para a definição de reescrita sobre coleções de regras. Finalmente, propusemos
uma noção de conflito entre derivações de primeira e segunda ordem em gramáticas de
grafos de segunda ordem, e discutimos como esta noção pode ser usada no estudo da inter-
ação entre a evolução do sistema e a sua execução. A hipótese na qual esta tese se baseou é

179

que princípios de alta ordem no contexto de gramáticas de grafos podem ser úteis na mode-
lagem e análise de sistemas sofrendo modificações programadas. As seguintes conclusões
puderam ser obtidas a partir do processo de desenvolvimento desta tese:

• Modelagem: Os modelos propostos de gramáticas de grafos de segunda ordem são
bastante flexíveis, permitindo que representemos tanto modificações no grafo tipo,
no grafo inicial e na coleção de regras de primeira ordem (via alteração, inclusão e
remoção de regras). Ao longo do texto apresentamos diversos exemplos de trans-
formações passíveis de serem implementadas nestes modelos, incluindo adição de
registro de log, domínios para envio e recepção demensagem e até mesmo correções
do sistema original, todas representadas através de uma camada de segunda ordem.
Além disto, foi natural introduzir os conceitos de derivação representando trans-
formação de modelos e span de evolução para capturar as transformações induzidas
sobre o modelo original através da execução da camada de segunda ordem sobre ele.
A forma direta pela qual aspectos sobre gramáticas de grafos foram implementados
utilizando camadas de segunda ordem são uma evidência da conveniência de termos
construções de alta ordem em especificações.

• Análise: O fato de termos utilizado o mesmo princípio (pushout duplo) para ambos
os níveis de reescrita permitiu que obtivéssemos uma noção de conflito inter-nível
de forma natural, representando as possíveis interferências de reescritas de segunda
ordem sobre as reescritas do sistema de primeira ordem. Com base nesta noção
de conflito, foram sugeridos duas técnicas para estudar o comportamento de tais
especificações: uma sendo a extensão natural de análise de par crítico para gramáti-
cas de grafos com segunda ordem, e outra que, dada uma derivação representando
uma transformação de modelos, identifica como pares críticos no modelo original
se relacionam a pares críticos no modelo evoluído. Discutimos também como as
informações obtidas por ambas técnicas podem ser úteis no estudo de gramáticas de
grafos com aspectos.

Baseado nesta argumentação, defendemos que sim, conceitos de alta ordem são úteis
na modelagem e análise de sistemas sob transformações programadas. Adicionalmente,
ao criar uma noção de transformação de segunda ordem para a abordagem baseada em
pushout duplo, iniciamos uma investigação teórica de situações inter-nível em gramáticas
de grafos de alta ordem. Por exemplo, a partir deste ponto podemos investigar a construção
de modelos de terceira ou quarta ordem, ou então se a ideia de construção de segunda
ordem que introduzimos pode ser generalizada para categorias adesivas em geral.

Apesar de construções de alta ordem surgirem naturalmente e diversos campos da
Ciência da Computação, não há atualmente uma teoria geralizada de transformação de alta
ordem disponível para a abordagem de pushout duplo. Como contraste, podemos citar a
literatura de redes de Petri, onde a representação do modelo como grafo é mais direta e há
diversosmodelos que suportam transformações de alta ordem. Apesar de estar presente em
noções comometa-modelagem e esquemas de regras, a noção de evolução para gramáticas
de grafos não é tão madura como, por exemplo, a formalização de conflitos entre reescritas
e a definição de modelos semânticos. Acreditamos que esta tese, através da definição das
noções de reescrita de segunda ordem, introdução do modelo de gramáticas de grafos de
segunda ordem, e da noção de conflito inter-nível, fornece um passo inicial importante para
compreender alta ordem no contexto de reescrita de grafos. Além disso, diversos aspectos
como a questão da utilização de coprodutos para representar de coleções de regras, também

180

são considerados ao longo do texto. A aplicação prática dos conceitos introduzidos foi
exemplificada através da modelagem de conceitos de programação orientada a aspectos
sobre gramáticas de grafos, e da discussão sobre como utilizar algumas técnicas de análise
para obter informação sobre a evolução do sistema combinado.

Naturalmente, por questão de escopo, algumas questões originadas ao longo do pro-
cesso de pesquisa não puderam ser exploradas em profundidade nesta tese. Como tra-
balhos futuros, citamos: extensões ao modelos propostos, tais como considerar que re-
gras de primeira ordem podem conter condições negativas de aplicação; investigações
formais, como a generalização do mecanismo de reescrita de segunda ordem para englo-
bar reescritas de ordem arbitrária; ou a implementação do mecanismo de alta ordem em
ferramentas de transformação de grafos, o que permitiria a realização de experimentos de
modelagem e análise sobre cenários de interesse.

