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ABSTRACT 

The popularity of the wireless devices comes from several advantages related to this 

type of communication, i.e. mobility, easy installation and less cost for infrastructure. 

Hence it is vital to assure a reliable communication where errors can be autonomously 

fixed and information responsibly secured. The transmission over wireless channel 

results in frequency and phase offsets; additionally the received symbols are corrupted 

with noise. Therefore the estimation of the actual frequency and phase offset becomes a 

very critical task with high impact on communications performance; synchronization is 

a crucial part of each receiver in digital communication systems. In this context, 

throughout this work is proposed an implementation of a Fine Carrier Synchronization 

Unit that aims a better communication quality and lower its error rate.  
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Unidade de Sincronização Fina de Portadoras para Sistemas de 

Sincronização Turbo 

RESUMO 

A popularidade de equipamentos sem fio decorre de uma série de vantagens 

relacionadas a este tipo de comunicação, i.e. mobilidade, fácil instalação e menor custo 

para infra-estrutura. Consequentemente é vital garantir-se uma comunicação confiável 

onde erros podem ser automaticamente corrigidos e a informação segura. A transmissão 

sobre canais sem fio resulta em deslocamentos de frequência e fase; além disso, os 

símbolos recebidos podem ser corrompidos com ruído. Portanto, uma estimativa dos 

valores de deslocamento reais de frequência e fase se torna uma tarefa fundamental com 

grande impacto no desempenho da comunicação. Sincronização é uma parte crucial em 

cada receptor em sistemas de comunicação digital. Nesse contexto, ao longo deste 

trabalho é proposto a implementação de uma Unidade de Sincronização Fina de 

Portadoras que visa melhorar a qualidade da comunicação e diminuir a taxa de erros da 

mesma. 
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1 INTRODUCTION 

With the increase of mobility in our world, there is a rising necessity for 

communication and to have access to information, independently of the location of the 

individuals or information. Importance is given by the possibility that any phone call 

can be essential enough to save a life, close a business deal or provide hours of 

entertainment. Each of these examples of mobile communications proposes a challenge 

that can only be achieved with an efficient and reliable wireless communication. 

Synchronization and channel coding/decoding are vital parts for wireless 

communication in every digital receiver– it decreases the errors and allows to reduce the 

transmission power respectively aiming for improvements in the performance 

[MENGALI, 1997]. With the intensification of devices using wireless data transmission 

technologies, it is required that there exist efficient and responsible ways to fix errors 

that may happen in this kind of transmission. When using wireless channel the received 

data will always be corrupted by some kind of noise – also timing, phase and frequency 

offset are introduced and somehow must be taken care of.  

Receiver for wireless communication systems are in charge of the synchronization, 

decoding and detection [MEYR, 1997]. Detection is the ability to discern between 

information-bearing energy patterns and random energy patterns that distract from the 

information. Decoding is doing the opposite process of the encoding, in order to retrieve 

the original information.  

In many coding systems, a decoder additionally produces soft (or side) information 

outputs to help another decoder identify and perhaps correct introduced errors. For 

example, in a Global System for Mobile (GSM) communication, an inner decoder 

comprising an equalizer generates a soft information output derived from path metric 

differences and an outer decoder comprising an error control decoder utilizes the output 

soft information to detect and correct introduced errors [REDL, 1995]. Soft information 

outputs have historically been generated by decoder in conjunction with the selection of 

the closest code word and its associated hard information output. Non algebraic 

decoders (e.g. Convolutional, Turbo) use also soft input information to increase 

decoding performance. 

The reliability information comprising the soft information output is calculated for 

each individual symbol within the hard information output. The reliability of each 

symbol within the hard information output vector is derived without taking into 

consideration either the remaining symbols within that hard information output vector 

or any other considered code words. This is achieved by comparing the probability of 

the received data given a bit with a logical value of one was transmitted to the 

probability of the received data given a bit with a logical value of zero was transmitted. 
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At this moment, the Turbo codes are introduced with the purpose to improve the 

performance and the quality of the communication. That is only possible because a 

turbo code iteratively exchanges soft information, which will help the task of 

synchronization.  Turbo codes are advanced codes which reduce bit-error-rate (BER) 

and frame-error-rate (FER) in comparison to other codes like convolutional codes or 

algebraic codes (e.g. Hamming and Reed-Solomon). Turbo Synchronization is a 

technique that uses the soft information to estimate the parameters needed to decrease 

the error rate of the communication [NOELS, 2003]. In turbo receivers, synchronization 

is a very challenging task – since they operate at very low signal-to-noise ratio (SNR) 

and therefore classical synchronizers may fail to provide reliable estimated parameters 

[LEHNIGK-EMDEN, 2008)]. Turbo decoders are working iteratively and after each 

iteration produce a soft output; it is important to note that the iterative nature of 

decoding allows to support synchronization.  

Due to the time and purpose of this work, synchronization is the main subject. 

Channel decoding is left aside but it has potential to be a topic for future work. This 

work had as focus the frequency and phase synchronization of bursts with linear 

modulation, i.e. Quadrature Phase Shift Keying (QPSK) modulation. The system aims 

the Digital Video Broadcast – Return Channel via Satellite (DVB-RCS) standard, which 

is an ETSI satellite communication standard [ETSI, 2012].  

Timing synchronization, sampling rate and other problems related to the 

communication are properly carried out before, which means that this work will focus 

only on the frequency and phase offset only. 

It is a known fact that simulations can reduce development time and costs. A project 

was created at the Microelectronic Systems Design Research Group from the Technical 

University of Kaiserslautern, which developed the software Creonic Simulation 

Environment – CSE [MSDRG, 2012]. The purpose of CSE is to allow for the 

integration of complex simulations environments; there can be seen two distinguished 

models that compound CSE: the transmitter part and the receiving part. The simulation 

of the synchronization task for such communication systems has enormous importance 

on the whole project. 

CSE was the starting point for the work developed. New features aiming the Fine 

Carrier Synchronization Unit were developed, tested and introduced into the already 

existing simulation environment – achieving a more powerful and wider software. 

Hardware implementations on Very High Speed Integrated Circuit (VHSIC) Hardware 

Description Language (VHDL) of these new features were also developed. Exactly the 

same functionality was intended in order to allow a complex and reliable comparison 

between both implementations. Therefore, it was possible to evaluate both – software 

and VHDL – according to the theory of communication systems and produce a good 

and complex statistical output. 

  



14 

 

1.1 Objectives of This Work 

This work has as purpose two main objectives: 

1. Implementation of the Fine Carrier Synchronization module in software and its 

integration to the CSE, as well as the implementation of the same module in VHDL. 

2. Analysis, comparison and evaluation of the accuracy of the implemented 

software and its correspondent in VHDL. 

1.1.1 Implementation of New Modules in Software 

To achieve the first goal, the whole functionality of techniques of Synchronization 

for digital receivers was taken into account. Once the behavior was deeply 

comprehended, it became certain that a better and effective approach on the 

implementation of new synchronizations modules for any communications system was 

going to be reached. With the support of the CSE, it was possible to focus exactly on 

what this work proposes: the Fine Carrier Synchronization Unit. The software 

implementation of this unit and the integration with the CSE as a new module was 

aimed. An additional module for the transmitting part of the CSE (called Add Offset 

Module) was developed, which introduces the error of frequency and phase offset in the 

simulation system. This frequency and phase error will be estimated in the receiving 

part. The implementation of a correction module for phase and frequency offset is also 

necessary. To conclude, several upgrades on the Statistics Module of CSE were done in 

order to adapt it to the whole new set of functionalities performed by the CSE. With all 

the extensions of the CSE, it is possible to evaluate the statistical behavior 

(communication performance) of the new Fine Carrier Synchronization Unit. 

1.1.2 Implementation of New Modules in VHDL 

The hardware implementation in VHDL can be defined exclusively based on the 

needs of this work; it is not – so far – part of a bigger project. Xilinx ISE Design Suite 

V13.2 is the used digital system design tool and VHDL is the chosen language. It is a 

powerful and versatile description language, with multiple mechanisms to support 

design hierarchy and multiple levels of abstraction. The module in VHDL was 

implemented aiming exactly the same functionality of the Fine Carrier Synchronization 

Module developed in the software. In order to achieve this goal it was necessary to 

make a deep analysis of how to accomplish in VHDL several functionalities easily 

reached in the software – and to find the perfect approach during this “translation” from 

software to hardware. The VHDL was simulated and synthetized with the same 

framework that was used to its development. 

1.1.3 Comparison between Software and VHDL 

After the first objective of this work was successfully accomplished, the accuracy 

needed to be verified; it is essential that the output software and hardware are of a high 

excellence and properly studied. There is completely no point in developing, spending 

time and effort to analyze a system that does not fulfill the requirements of modern 

communication systems. It was also vital to re-examine new ways to improve processes 

and run them repeatedly - ensuring credibility, quality and functionality. 

Hardware simulations and analysis are known for being extremely time-consuming. 

Taking into account the fact that the evaluation and the testing are extremely necessary 

in order to have a consistent and reasonable implementation; it was really important to 
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find a way to bypass this problem and prove its functionality and reliability accordingly 

to the desired accuracy. Therefore, the idea to improve and optimize the simulations and 

analysis was to have the software to support this task. The hardware and software were 

implemented based on the same study; consequently they both do the exact same 

calculations and produce the same output – designated to different platforms. This way, 

it was intended to have a higher number of test cases on the software than on hardware 

but proceed with both evaluations together – also based on comparisons and exchange 

of information between the two implementations.   

In order to achieve a deep analysis of the developed software and hardware – 

regarding the originals modules included in CSE – some features will be added to the 

Statistics Module with the purpose of statistically analyze the Fine Carrier 

Synchronization Module and its functionality. 

Among the objectives of this work is the implementation of such Fine Carrier 

Synchronization Unit in VHDL. At this point it is crucial to understand some 

differences between the software and the hardware implementation, for example, there 

is completely no use to do the VHDL implementation of the Add Offset Module, which 

is part of the transmit model of CSE. The “real world” is in charge of this task – adding 

some frequency and/or phase offset to the set of bits. By developing exactly the same 

unit as in the software, it is possible to assure that it will have the same functionality. 

Therefore, all efforts must be done on the hardware implementation of the Fine Carrier 

Synchronization Module. Simulations and comparisons between both, the software and 

the hardware implementations, was part of the usual day-to-day work while this project 

was under development. 

1.2 Structure of the work 

The rest of this work is structured as follows. In chapter 2, an overview of the basic 

concepts needed and technical concepts involved on this work. Chapter 3 shows the 

whole functionality and architecture of CSE and advantages conquered by taking it as 

the first step into the development and implementation of the Fine Carrier 

Synchronization Unit. Chapter 4 deals with the software and hardware implementation 

of the new modules, specifically which were the adopted design options and the 

mathematical approach to every new module. In chapter 5, it is discussed how the 

validation was done, explaining the test environments, the scenarios, the methodology 

and the statistical evaluation of the developed software and VHDL. Chapter 6 brings the 

conclusion of this work. Finally, this work contains an annex A, that is the project of 

this work, an annex B, which is the full Xilinx ISE Design Tool Synthesis report, and an 

annex C, which is a summary of the thesis translated to Portuguese. 
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2 BASIC CONCEPTS 

 

At this point, it is important to understand how the information can be transmitted 

from one point to another. By varying one physical property, i.e. voltage or current, the 

information can be transmitted in wires. By representing the value of this voltage or 

current as a function of time, (t), it is possible to model the behavior of the signal and 

analyze it mathematically. 

In the XIX century, Jean-Baptiste Joseph Fourier, a French mathematician and 

physicist, proved that any periodic function, g(t), with period T can be constructed by 

the sum of a number (possibly infinite) of sines and cosines [OPPENHEIM, 1989]. 

 ( )     ∑ (     
   

 
      

   

 
)

 

   
 

Where    and    are the amplitude of the sine and cosine from the n harmonic terms 

and    is a constant – this decomposition is called Fourier series. From this Fourier 

series, the function can be reconstructed; which means that, if the period T is known and 

the amplitudes also given, the original function of time can be found by making the sum 

of the equation 2.1. A data signal with a finite duration can be treated based on the 

premise that it repeats the same pattern; the interval between 0 and T is equal as the one 

between T and 2T – and it follows this configuration towards ∞.  

Communication systems can be classified into two groups depending on the range of 

frequencies they use to transmit information. These communication systems are 

classified into baseband or pass band system. Baseband transmission sends the 

information signal as it is without modulation (without frequency shifting) while pass 

band transmission shifts the signal to be transmitted in frequency to a higher frequency 

and then transmits it, where at the receiver the signal is shifted back to its original 

frequency. 

There are several different ways to accomplish the transmission, each one of them 

has their own bandwidth (difference between the upper and lower frequency – measured 

in Hertz), delay, cost and ease of installation and maintenance. They can be classified 

into guided media (i.e. copper wire and optic fiber) or not guided media (i.e. radio 

waves and laser).  

Unfortunately media are not perfect, therefore the received signal is not the same as 

the transmitted signal – this difference can lead to error. Transmission lines suffer from 

three major problems: attenuation, delay distortion and noise. 

(2.1) 
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These errors are responsible for wrong interpretation of the information transmitted, 

therefore is important to be prepared to deal with errors automatically. At this point the 

Synchronization of the signal fits to the whole system, because it tries to estimate and 

correct all the negative parameters – eliminating the negative effects – before the signal 

is interpreted. 

2.1 Modulation 

Computers are able to manage only binary numbers; it is possible to understand 0’s 

and 1’s, consequently it is necessary to develop some kind of alphabet or pattern to 

enable a proper and, many times, really complex communication with just two types of 

signal. The amplitude, frequency and phase of this signal can be modulated in order to 

transmit information. The amplitude modulation is characterized by the variation of two 

different amplitudes used to represent 0’s and 1’s. The frequency modulation, also 

known by frequency shift keying, are used two or more different tones. The phase 

modulation of the carrier is shifted systematically 0 or 180 degrees in equal periods of 

time. It is important to mention that this work will be restricted to digital modulation 

[TREES, 2001]. 

Modulation means the possibility to change one of the signal’s properties 

(amplitude, frequency or phase) in such a way that different states are possible. Each 

possible state represents one symbol of the alphabet and it works with this “language” – 

the alphabet must be previously defined and known by both sides. Therefore, 

modulation means adding information on amplitude, frequency or phase. Figure 1 

shows different modulations and how they can be represented and characterized to 

transmit a digital signal. In amplitude modulation or amplitude-shift-keying (ASK), two 

different amplitudes are used to represent 0 and 1. In frequency modulation or 

frequency-shift-keying (FSK), two – or more – different tones are used. In phase 

modulation or phase-shift-keying (PSK), the carrier wave is shifted 0 or 180 degrees at 

uniformly spaced intervals – the simplest form of PSK called Binary PSK (BPSK). The 

term keying is also widely used in the industry as a synonym for modulation.  

 
Figure 2.1: Different modulations applied to a digital signal BPSK 

The communication can be represented in a complex plane and, for example, a 

Quadrature Phase Shift Keying (QPSK) has a defined alphabet with 4 symbols (00, 01, 

10 and 11), equally divided on the plane. Consequently, it’s natural to understand that 

for every 90° or π/2, that there will be the area where one symbol will be represented. It 
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is usual to refer this organization of symbols in a complex plane as a constellation 

diagram – Figure 2.1. There are several modulations available and in use nowadays, i.e. 

BPSK, QPSK, 8PSK, 16-Quadrature Amplitude Modulation (QAM), 64-QAM, etc.  

   

Figure 2.2: Constellation diagram for BPSK (left) and QPSK (right) with gray coding 

In order to explain the figure 2.2, it is important to remind that the number of 

symbols (constellation point) per bits respects the formula 2.2, which represents that, for 

example, for every 1 bit, 2 symbols can be represented and for 2 bits, 4 symbols can be 

represented – accordingly to equation 2.2. This means that according to the modulation 

scheme a symbol represents 1, 2, 4 or more bits. 

The modulation would work perfectly if there were no errors, noise and degradation 

of signal. To understand how an error occurs, it is important to note that once something 

went wrong, these symbols are not going to be on the exact expected place. Due to the 

noise, the symbol – the “point” in figure 2.2 – shifts its position in the complex plane 

when compared to the original position. This shifting will not always result in wrong 

interpretation – it can vary certain acceptable range and it will still be considered as the 

right symbol.  

                                     

2.2 Signal Degradation by Noise 

The noise is a random fluctuation in an electrical signal, which can arise in various 

forms. The amount of noise present is measured by the ratio of the signal power to the 

noise power, called signal-to-noise ratio (SNR). The signal power is denoted by S and 

the noise power by N, the signal-to-noise ratio is S/N. Usually, the ratio itself is not 

represented; instead, the quantity            is given. These units are called decibels 

(dB).  

Attenuation is the loss of energy as the signal propagates outward. The loss is 

expressed in decibels per kilometer. The quantity of energy lost depends on the 

frequency. To understand how the frequency affects this signal, imagine that it is not as 

simple wave form but as a component of a Fourier series; which each component has a 

different frequency and amplitude and is attenuated in a different proportion, resulting 

in different Fourier spectrum on the receiver’s side. 

(2.2) 
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To make things even worse, the several components of Fourier also have different 

propagation speed in the wire; this speed difference also leads to distortion of the signal 

received in the other end. 

Another problem is the noise, which consists of an undesirable energy from other 

sources, not the transmitter. The thermal noise exists due to the random motion of 

electrons in the wire, which is inevitable. Crosstalk happens due to the inductive 

coupling between two wires that are close to each other. There is also the impulse noise, 

which happens due to spikes on the power line or other causes. For digital data, impulse 

noise can result in loss of one or more bits. 

Of course a little variation on signal at the receivers side of the transmission is 

expected, the real problem starts when this error is bigger than the range of acceptable 

variation. In a very noisy environment, for matter of explanation, figure 2.3 makes it 

more understandable. 

 

Figure 2.3: 16-QAM with an acceptable range variation (left – high SNR) and a very 

noisy range variation (right – low SNR) 

Figure 2.3 comes with the purpose to illustrate and to remind that there might be 

different levels of noise variation; therefore, the task of classification of the received 

symbols may be affected or not due to the noise of the system – it is possible that some 

noise is harmless to the communication quality. On a high SNR environment the 

symbols do not have massive losses caused by noise (left part of figure 2.3); it is 

possible that the variation may not be enough to disturb and cause errors on the 

interpretation of the symbols. With a low SNR (right part of figure 2.3), the analysis and 

classification of the symbols can be disrupted since the range of variation of different 

symbols have an intersection where two different interpretations for the same coordinate 

is possible – which results in an error of reading the symbol. It is also important to 

remind that figure 2.3 does not represent an instant “picture” of the communication; it 

symbolizes all the possible states of the media. 

SNR is going to define how bad the signal will get after going through the channel. 

It is directly influenced by the noise variation of the channel. Also included in the 

negative parameters of any synchronization are the frequency and phase offset. Figure 

2.3 can be observed also by differentiating the values of SNR: left part of figure 2.3 is 

the representation of a high SNR value; while the right part of figure 2.3 corresponds to 

a low SNR value. 
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The bit error rate (BER), in a digital transmission, is the percentage of bits with 

errors divided by the total number of bits that have been transmitted, received or 

processed over a given time period. The rate is typically expressed as 10 to the negative 

power. For example, four erroneous bits out of         bits transmitted would be 

expressed as         , or the expression          would indicate that three bits were in 

error out of the           transmitted. BER is the digital equivalent of signal-to-noise 

ratio in an analog system.  

As it can be seen in figure 2.4, the relation between BER and SNR in a simulation of 

a communication using QPSK shows that with the increase of the SNR, the BER will 

get lower (important to remind that it will never be errorless). The BER behavior of the 

transmitted signal is the reason for using coding techniques [TAUB, 2008]. 

 

Figure 2.4: Bit Error Rate (BER) x Channel SNR (in dB) in a QPSK communication 

Frequency offset exists as the consequence from the difference between the 

oscillator from the transmitter (TX) and the one from the receiver (RX); the oscillators 

from TX and RX cannot be exactly equal. To comprehend how the frequency offset can 

be observed, it is primordial to understand that they do not come at the exact same 

moment; it is an error that increments its effect while the transmission proceeds. 

For example, figure 2.5 represents the transmission of “10101010” with a frequency 

offset  , which is responsible for adding a constant and incrementally error to every 

symbol. This is the reason why the symbols have a variation from the place identified 

on the figure as “first” and the “last”. Every upcoming symbol will be a bit more 

displaced regarding the original position of the “10” on the complex plane. Due to 

didactic purposes, the whole bit stream is represented on a complex plane as an 

accumulator – if an instantaneous picture were taken of the complex plane, just one 

“10” symbol would be present at a moment and this would not be helpful for the 

comprehension of the concepts [BRACK, 2005b].  
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Figure 2.5: Illustration of a frequency offset (f) in a QPSK modulation 

Frequency offset have a higher impact on symbols as they are more close to the end 

of the burst – the impact of the frequency offset will not be the same for every symbol, 

it is sequentially added to every new symbol [BRACK, 2005a].  On the other hand, the 

phase offset is the same to the whole bit stream – it acts in every symbol exactly in the 

same way. In figure 2.6 is explained how the phase offset works in a QPSK modulation. 

The analysis and classification of each received symbol is a receiver’s task, the 

interpretation of the symbol is qualified in a complex plane. Figure 2.6 a) shows a 

QPSK transmission where a symbol “10” was transmitted with a phase offset (α) – 

assuming that the frequency offset is zero. The classification of this symbol does not 

imply any error in its interpretation; since the QPSK implies that every symbol has a 90 

degrees range, it is possible to have a phase offset with no error on the interpretation of 

the signal. Figure 2.6 a) is important to understand that not every phase offset would 

result in error. 

On the other hand, with figure 2.6 b) it is prominent that the phase offset introduced 

will result in error of the interpretation of this symbol. The symbol was located in a 

quadrant of the complex plane and after the addition of the phase offset it is on a 

different one. This means that its interpretation will result in error, which can be 

corrected with the right estimation of this phase offset and its future correction 

[VITERBI, 1983]. 
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Figure 2.6: Illustration of phase offset (α) in a QPSK modulation 

2.3 Channel Capacity 

Besides the errors, it is mandatory to take into account physical limitations of the 

media. Henry Nyquist has developed studies not just related to channel capacity but also 

to the sampling rate and the comprehension of both is f undamental to proceed. 

Channel capacity is the maximum data transfer which can occur when using the 

communication channel with bandwidth   – channel capacity can be defined with 

equation 2.3 [TANENBAUM, 2003].  

                       

In 1924, Nyquist realized that even a perfect channel has a finite transmission 

capacity. He derived an equation expressing the maximum data rate for a finite 

bandwidth noiseless channel. In 1948, Claude Shannon carried Nyquist’s work further 

and extended it to the case of a channel subject to random (thermodynamic) noise. 

Nyquist proved that if an arbitrary signal with highest frequency component, in 

hertz, is      the sampling rate must be at least        or twice the highest analog 

frequency component. The sampling in an analog-to-digital converter is done by a pulse 

generator (clock). If the sampling rate is less then       , some of the highest 

frequency components in the analog input signal will not be correctly represented in the 

digitized output. When such a digital signal is converted back to analog form by a 

digital-to-analog converter, false frequency components appear that were not in the 

original analog signal. This undesirable condition is a form of distortion called aliasing. 

In equation 2.3, the signal consists of V discrete levels. 

                                                                         

Figure 2.7 shows that a failure on the sampling rate can determine a serious mistake 

on the interpretation; it is the transmission of a code word 010101, by not obeying the 

Nyquist theorem, the interpretation will be 000 (left). By taking a correct sampling rate 

the right information is correctly acquired: 010101(right). 

a) b) 
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Figure 2.7: Illustration of a not properly sampling rate (left) and a properly sampling 

rate (right) accordingly to Nyquist theorem 

Figure 2.7 represents the problem on the task of conversion of an analog-digital 

conversion. It is necessary to get a discrete number of samples in a continuous signal. 

The main problem is on the sampling/seconds rate that should be taken. A small number 

can result in a really poor representation of the signal. At first, the process of sampling 

of an analog signal can be thought that always will be losses of the information and that 

with the best sampling rate the losses are going to be the smaller possible; however, 

Shannon’s theorem shows that this is not always true. Under certain conditions, the 

sampling of a signal can transmit precisely all the information contained in the signal. 

This means that the signal can be perfectly recovered from samplings without any 

decrease on the signal quality. 

If random noise is present, the situation deteriorates quickly. Since there is always 

random (thermal) noise present due to the motion of the molecules in the system, this 

cannot be left aside. Shannon’s major result is that the maximum data rate of a noisy 

channel whose bandwidth is     , in hertz, and whose signal-to-noise ratio is S/N, is 

given in equation 2.4. Shannon’s result was derived from information-theory arguments 

and applies to any channel subject to thermal noise. 

                                   (  
 

 
)                             

2.4 Techniques of Detection and Correction of Errors 

Among the error detecting methods there are Parity Check Method and Cyclic 

Redundancy Check (CRC) Method.  Parity check method is the method where one 

parity check bit is used along with each character code to be transmitted; as a simple 

example of an error-detecting code, consider a code in which a single parity bit is 

appended to the data. The parity bit is chosen so that the number of 1-bits in the code 

word or character code to be transmitted or recorded is even or odd. 

 For example, when 10110101 is sent in even parity by adding a bit at the end, it 

becomes 101101011, whereas 10110001 become 101100010 with even parity. A code 

with a single parity but has a distance 2, since any single-bit error produces a code word 

with the wrong parity, it can be used to detect single errors. Two errors cannot be 

detected by this scheme as the total number of 1s in the code will remain even after two 

bits change. As the probability of more than one error occurring is in practice very 

small, this scheme is commonly accepted as sufficient.  

 Instead of appending a parity check, which makes the total of 1-bits in the code 

even, one may choose to append a parity check bit which makes the number of 1-bits in 
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the code odd. Such parity check is known as an odd parity bit. This scheme also 

facilities detection of a single error in a code. 

The CRC is wide spread for error detection, which codes are based upon treating bit 

steam as a representation of polynomials with co-efficient of zero and one only.  

A       frame is regarded as the co-efficient list for a polynomial with k terms, 

ranging from      to x0. Such a polynomial is said to be of degrees     the high 

order (left most) bit is the coefficient of      , the next bit the coefficient of      , 

and so on. I.E. 110001 has six bits and thus represents a six-term polynomial with 

coefficient 1, 1, 0, 0, 0 and 1:          . 

When the polynomial code method is employed, the sender and receiver must have 

agreed upon a generator polynomial,  ( ), in advance. Both the high-and-low-order 

bits of the generator must be 1. To compute the checksum for some frame with m bits, 

corresponding to the polynomial ( ), the frame must be longer than the generator 

polynomial. 

The idea is to append a checksum to the end of the frame in such a way that 

polynomial represent by the check summed frame, it tries dividing by  ( ). If there is a 

remainder, there has been a transmission error. 

The correction of errors is more difficult than the detection. In error detection, it is 

just a system where it just looks to find if any error has occurred. The answer is simple 

yes or no. In error correction, it is demanded to know the exact number of bits that are 

corrupted and more importantly, their location in the message [CLARK, 1981]. The 

number of errors and the size of the message are important factors.  Supposing the 

correction of one single error in an 8-bit data unit, it is necessary to consider eight 

possible error locations; if there were two errors in the same data unit, it is essential to 

consider 28 possibilities. Therefore, it is possible to imagine the receiver’s difficulty in 

finding 10 errors in a data unit of 1000 bits. 

To understand how errors can be handled, it is necessary to look closely at what an 

error really is. Normally, a frame consists of m data (i.e., message) bits and r redundant, 

or check, bits. Let the total length be n (i.e.,      ). An n-bit unit containing data 

and check bits is often referred to as an n-bit code word. 

Given two code words, say, 10001001 and 10110001, it is possible to determine 

how many corresponding bits differ. In this case, 3 bits differ. The number of bit 

position in which two code words differ is called the Hamming Distance (Hamming, 

1950). Its significance is that if two code words are a Hamming distance d apart, it will 

require d single-bit errors to convert one into the other.  

In most data transmission applications, all    possible data messages are legal, but 

due to the way the check bits are computed, not all of the    possible codewords are 

used. Given the algorithm for computing the check bits, it is possible to construct a 

complete list of the legal codewords, and from this list find the two code words whose 

Hamming distance is minimum. This distance is the Hamming distance of the complete 

code. 

The error-detecting and error-correcting properties of a code depend on its 

Hamming distance. To detect d errors, you need a distance d+1 code because with such 

a code there is no way that d single-bit errors can change a valid code word into another 
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valid code word. When the receiver sees an invalid code word, it can tell that a 

transmission error has occurred. Similarly, to correct d errors, you need a distance 2d+1 

code because that way the legal code words are so far apart that even with d changes, 

the original code word is still closer than any other code word, so it can be uniquely 

determined. 

There is a trick that can be used to permit Hamming codes to correct burst errors. 

Sequences of k consecutive code words are arranged as a matrix, one code word per 

row. Normally, the data would be transmitted one column at a time, from left to right, as 

shown in figure 2.8. To correct burst errors, the data should be transmitted one column 

at a time, starting with the leftmost column. When all k bits have been sent, the second 

column is send, and so on. When the frame arrives at the receiver, the matrix is 

reconstructed, one column at a time. If a burst error of length k occurs, at most 1 bit in 

each of the k code words will have been affected, but the Hamming code can correct 

one error per code word, so the entire block can be restored. This method uses    check 

bit to make blocks of    data bits immune to a single burst error of length   or less. 

Where   represents the number of verification bits and   the number of bits in each 

message. 

 

Figure 2.8: Hamming code trick to correct burst errors 

It is important to remind that several others forward error correction (FEC) codes are 

available now at the academic and industry field, for example Reed-Solomon (RS), 

Low-Density-Parity-Check (LDPC), etc [SNIFFIN, 2009].  

Also important is to mention a method to recover from errors, Automatic Repeat 

Request (ARQ). This method is an error control for data transmission that makes use of 

error-detection codes, acknowledgment and/or negative acknowledgment messages, and 

timeouts to achieve reliable data transmission. An acknowledgment is a message sent by 

the receiver to indicate that it has correctly received a data. Important to keep in mind 

that ARQ is not a correction method (it does not correct any wrong information 

received) but a recovery method (it recovers the system from wrong information 

received). 

Unusually, when the transmitter does not receive the acknowledgment before the 

timeout occurs (i.e., within a reasonable amount of time after sending the data frame), it 

retransmits the frame until it is either correctly received or the error persists beyond a 

predetermined number of retransmission. 

ARQ is appropriate if the communication channel has varying or unknown capacity, 

such as is the case on the Internet. However, ARQ requires the availability of a back 

channel, results in possibly increased latency due to retransmissions, and requires the 
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maintenance of buffers and timers for retransmissions, which in the case of network 

congestion can put a strain on the server and overall network capacity. 

Turbo codes are a development in the field of forward-error-correction channel 

coding. Turbo codes make use of three simple ideas: parallel concatenation of codes to 

allow simples decoding; interleaving to provide better weight distribution; and soft 

decoding to enhance decoder decisions and maximize the gain from decoder interaction 

[ALLES, 2007]. 

A turbo code is formed from the parallel concatenation of two codes separated by an 

interleaver. Interleaving is a way to arrange data in a non-contiguous way to increase 

performance. A generic design of a turbo code is shown in figure 2.9.  

 

Figure 2.9: A generic turbo encoder 

Although the general concept allows for free choice of the encoders and the 

interleaver, most designs follow the same ideas: 

 The two encoders used are normally identical; 

 The code is in a systematic form, i.e. the input bits also occur in the output; 

 The interleaver reads the bits in a pseudo-random order. 

This serves two purposes. Firstly, if the input to the second encoder is interleaved, 

its output is usually quite different from the output of the first encoder. This means that 

even if one of the output code words has low weight, the other usually does not, and 

there is a smaller chance of producing an output with very low weight. Higher weight is 

beneficial for the performance of the decoder. Secondly, since the code is a parallel 

concatenation of two codes, the divide-and-conquer strategy can be employed for 

decoding. If the input to the second decoder is scrambled, also its output will be 

different or “uncorrelated from the output of the first encoder. This means that the 

corresponding two decoders will gain more from information exchange. 

In the traditional decoding approach, the demodulator makes a “hard” decision of 

the received symbol, and passes to the error control decoder a discrete value, either a 0 

or a 1. The disadvantage of this approach is that while the value of some bits is 

determined with greater certainty than that of others, the decoder cannot make use of 

this information. 

A soft-in-soft-out (SISO) decoder receives as input a “soft” (i.e. real) value of the 

signal. The decoder then outputs for each data an estimate expressing the probability 

that the transmitted data bit was equal to one. In the case of turbo codes, there are two 
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decoders for outputs from both encoders. Both decoders provide estimates of the same 

set of data bits, but in different order. If all intermediate values in the decoding process 

are soft values, the decoders can gain greatly from exchanging information, after 

appropriate reordering of values. Information exchange can be iterated a number of 

times to enhance performance. At each round, decoders re-evaluate their estimates, 

using information from the other decoder, and only in the final stage will hard decisions 

be made, i.e. each bit is assigned the value 1 or 0. Such decoders, although more 

difficult to implement, are essential in the design of turbo codes. 

2.5 General Considerations 

By comprehending how it can be possible to transmit information over wires and 

wireless systems, and mainly its importance to modern communication systems; it is 

possible to understand why several studies on this topic must be realized - high quality 

systems are demanded throughout the most dynamic range of systems that depends on 

this kind of communication. The system must somehow certify that the way of sending 

information through a channel works and is efficient (modulation), the same system 

must be aware of interferences and it is also important to be able to work independently; 

detecting and correcting possible errors in an autonomous way. 

 As a way of increasing the quality and the utilization of time and resources when 

developing such systems, a simulation environment must be used. In order to enable 

tests, prototyping, education and the statistical analysis of such systems is mandatory. 

The next chapter is dedicated to explain which simulation environment was used during 

this work. This system – Creonic Simulation Environment – is introduced; its 

architecture and design options are presented and discussed, as well as advantages and 

disadvantages. 
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3 CREONIC SIMULATION ENVIRONMENT - CSE 

CSE was developed by the Microelectronic System Design Research Group and 

Dr.-Ing Timo Lehnigk-Emden and Dr.-Ing Matthias Alles – both are now former 

researchers from the Microelectronic System Design Research Group. CSE was one of 

the successful academic projects that had become a company in real world – Creonic IP 

Cores & System Solutions GmbH [CREONIC, 2012]. Creonic is a spin-off of the 

University of Kaiserslautern, founded in 2010. With broad technical knowledge and 

experience of business activities, the founding of Creonic was the logical consequence 

after successful academic projects.  

The main application of the Microelectronic System Design Research Group is 

decoding. The purpose of CSE is to have a simulation environment for decoders – there 

are similar tools commercially available from Synopsys and Cadence. These 

commercial tools provide more features but also require money for licensing and 

normally the use is more complex than CSE.  

The development of communication systems is a very dynamic field with respect to 

technical progress. In this context, Creonic collaborates closely with the 

Microelectronic System Design Research Group, which has an experience in the field of 

communication. This way it is possible to stay up-to-date regarding the state-of-the-art 

of science and technology – the results are the highest performance and at the same time 

low energy consumption.  

Projects with such delicate design and development questions must be highly detail 

oriented. Hence, choices of design have been adopted and respected throughout the 

whole development of the software. For example, fixed interface and configuration 

procedures for functional modules, strict coding and documentation guidelines, and 

fully object oriented design were defined. For the documentation purposes, a 

documentation tool called Doxygen [DOXIGEN, 2012] was used – it generates the 

documentation from a set of documented source files automatically.  

All the CSE project choices were done according to the goal of developing a 

system which can provide reduction of the development time and costs, facilitate the 

use, reusability and extensibility to new applications or standards. 

By defining smart choices in the beginning of the project, i.e. reusability, the 

benefits to the project can be seen during the whole development. Reused software, 

which has been tried and tested in working systems, are more intend not to reveal any 

design and implementation fault. If software exists, there is less uncertainty in the costs 

of reusing that software than in the costs of development – it reduces the margin of error 

in project cost estimation.  
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CSE environment consists mainly of the library directory; which contains all the 

classes of the CSE, and the chains directory; containing some simulation chains, which 

use the library. Requirements to run the CSE are a g++ version 4.x under GNU/Linux, 

MS Windows or MacOS X, Microsoft Visual C++ under MS Windows and CMake – 

tool designed to build, test and package software.  

C++ was the programming language chosen to the implementation of CSE. Which 

is a clever option based on the design choices made by the original developers of the 

software. C++ contains a good and rich standard library, compared to C, and also 

supports both the structured programming and object orientation [DALE, 2004].  

3.1 CSE Architecture 

To completely comprehend the architecture of a complex simulation environment 

like CSE, it is necessary to come up with a specific approach in order not to miss any 

information or leave room for misunderstanding. On section 3.1.1 the class structure of 

any module and how the infrastructure provided by the system helps all the modules 

will be presented. On section 3.1.2 the original CSE modules are presented – they are 

all functional modules ready to enable the user to create new simulation chains. 

3.1.1 CSE Modules and Configuration  

This simulation environment is extremely useful for projects related to 

communication systems; the simulations costs – related to configuration and connection 

– that once used to cost a lot of time, hours or days for the developers, now can be 

easily finished in a few minutes. 

 

Figure 3.1: Original simulation chain and functional modules connection available on 

CSE 

Figure 3.1 shows the simulation chain available on CSE, it represents the whole path 

that the bit stream will make. The source module generates random bit sequences. It is 

responsible for calculating one block of bits and storing them into an output buffer. The 

Encoder module changes the block of data bits (information bits) into a code; the code 

may be optimized for purposes of compressing for transmission or storage, encrypting 

or adding redundancies to the input code. The Mapper module is responsible for 

mapping bits to modulation symbols. The Noise Channel module adds to the simulation 

effects of real life – the impairment to communication is a linear addition of white noise 

with a constant spectral density and a Gaussian distribution of amplitude. The 

Demapper module receives the symbols from the channel and extracts the hard bits, the 

log likelihood ratio (LLR) values (LLR – is a statistical test used to compare the fit of 

two models) and the bit probabilities. The Decoder module will be in charge of the 

reverse operation of the encoder – changing the code into a set of signals and doing the 

estimation of the information bits. The Statistics module is responsible for comparing 

the input bits and the output bits, it takes into account the total amount of bits and how 

many of them are different – in other words, it is to verify how “faithful” is the output 

after passing through the entire simulation chain. Besides it computes this information 

into different statistical parameters.  
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The model used inside the Noise Channel Module to generate the noise is the 

Additive White Gaussian Noise – AWGN. Additive White Gaussian Noise (AWGN) is 

a white noise that is distributed according to the Gaussian distribution curve and a 

constant spectral noise power over the channel bandwidth. The AWGN noise affects the 

useful signal, which is linearly superimposed, hence the term additive. The total signal 

at the channel end corresponds to the addition of the amplitude of the input information 

signal and the amplitude of the noise signal.  

All the configurations of the simulation using CSE are defined in the Extensible 

Markup Language (XML) configuration file, on this file it is possible – and necessary – 

to define all the configurations and parameters to every module instantiate. The XML 

file is used during runtime execution; therefore, it is not necessary to build the library if 

the aim is to build a simulation chain [RAY, 2001]. 

A typical XML configuration file starts with the main tag <cse_chain> that contains 

all other tags. Each module is identified with the <instance_name> tag, which 

corresponds to the <instance_name> parameter that each module contains. By default, 

the instance name corresponds to the class name of the module. An optional <global> 

tag is also available. The purpose of this tag is to spread values to a multiple number of 

modules, without the need to set this value at multiple places of the XML – similar to 

the definition of “#define” in C++. Additional tags are dependent on the Parameter class 

of the module. 

Up to now all the configuration works in a static environment. Therefore, the <iter> 

tag is introduced in the global section in order to define variables which will create a 

static configuration for each value. In case multiple iteration variables exist, the order of 

iteration variable definition is important – it turns several simulations into one with just 

one tag, simplifying a lot the work that has to be done. For example, in figure 3.2 by 

defining <num_bits> inside the <iter> tag, it means that it will vary from 56 to 5600 

with a pace of 100. 

 

Figure 3.2: Explanation of the <iter> tag  

An extra <param_unit> tag exists for configuration of parameter units. The 

<unique_id> attribute allows an automatic instantiation of the parameter unit during 

runtime. Parameter units allow the translation of parameters into other parameters. 

Figure 3.3 shows an excerpt of the typical XML file with global parameters 

definition, parameters definition and the instantiation of three modules and its 

parameters: Mapper, Channel_AWGN and Demapper. 
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Figure 3.3: Excerpt of the XML configuration file 

3.1.2 CSE Output 

The CSE output is organized in a XML file, which brings the information of how the 

simulation chain was built as well as what parameters were used to perform the 

simulation. Besides this, it brings the statistics module output – which is the most 

important part at this moment. In figure 3.4 an excerpt of the simulation configuration 

details present on every XML output file is shown. The actual statistical output values 

are presented on figure 3.5, i.e., error rate bits, error rate blocks, etc.  

All the data created and that goes through the simulation chain is analyzed by the 

statistics module at the end of the simulation – it gathers information at all moments but 

just analyzes in the end of the whole set of bursts since it takes into account not just one 

burst to get a result of what has been going on with the system. This is possible due to 

the fact that it is connected to both, the beginning and the end of the simulation chain. 
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Figure 3.4: Excerpt of the input configuration copied to the XML output file 

 

Figure 3.5: Excerpt of the statistical results printed on the XML output file 

3.1.3 CSE Class Structure 

The simulation environment is composed of functional modules; they work as 

versatile pieces available to be organized together following the needs of the user, i.e. 

noise generator or channel decoder. These functional modules are connected with each 

other providing the possibility to create complex simulation chains. In order to have a 

uniform and constant development of any module, there are implementation concepts 

related to these functional modules that must be respected and preserved. Each module 

is derived from two or three classes that have to be written by the module designer: 

• The interface class, which defines the interface for the input and output of 

data to process. Furthermore, it provides status information, like number of 

used decoder iterations.  
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• The parameter class, which defines the parameters for configuration of the 

module functionality (e.g., chosen algorithm).  

• The share class, which defines functionality that can be shared among 

multiple modules – this class is optional. 

The interface and parameter classes have to be derived from their base classes, 

which are provided by the CSE infrastructure. The base classes (Base_Interface and 

Base_Parameter) are parent of all interfaces and parameters, and therefore of all 

modules of the simulation chain. These classes provide higher level data structures, 

such as lists containing all the parameters or data ports of a functional module. Figure 

3.6 illustrates the functional module concept (relation between classes and how they are 

organized) – it represents the general implementation concepts like derivation structure 

of functional modules. All the classes defined with the subtitle “(infrastructure)” are 

provided by the CSE system and offer to all the system basic facilities, services and 

facilities to the organization of the whole system itself, i.e., list of all input/output ports 

and list of all parameters of each module. All the classes with the subtitle “(user)” are 

the ones that the user can create (or just use if the modules are already on the original 

CSE, i.e., mapper, demapper, encoder, decoder, channel_awgn).  

 

Figure 3.6: Organization of the module classes 

To a better comprehension on how the classes work together, an example will 

follow. A channel encoder gets bits to encode and has as output the corresponding code 

word. These two data interfaces are defined on the interface class of the encoder – as 

can be seen on figure 3.7.  

 

Figure 3.7: Excerpt of the Encoder_Interface file – creation and definition of the 

interfaces 

 The communication between a module and its environment is called “port” – the 

data type for a port is one of the two template classes available within the CSE library: 
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Data_In or Data_Out. Data_In is the input port class of the modules, which will enable 

the possibility to, when instantiating it, define how are the input types and it will also be 

responsible to create and instantiate the buffer to connect with the input port. The data 

are stored in a Buffer class instance. 

The interface classes can be shared easily for a group of similar modules like all 

encoders, because a wide range of encoders have the same data I/O. The name of the 

interface class is the class name of the module with the “_interface” suffix, as 

“encoder_interface” shown in figure 3.7.  

The parameter class defines all parameters that can be changed during run-time to 

adapt the module functionality e.g., defining the number of symbols or defining which 

is the modulation to be used. A parameter is defined to be of type available in the CSE 

library: Param. The parameter class is usually very module specific, because the 

parameters have a low similarity for different modules. The name of the parameter class 

is the class name of the module with the “_parameter” suffix. The reason to split the 

parameter in an extra is that all aspects like definition, default values, and automatic 

configuration over XML of the parameters are concentrated in a single class in one file. 

The Share class contains functionality that can be shared among multiple modules. 

E.g., LDPC decoders can share the check node functionality or mapper and demapper 

use the same constellation points for a given modulation. By putting such functions into 

the share class, a high reuse can be achieved.  In general, the parameters of the encoder, 

as an example, are shown in figure 3.8 – there will be always a value classified as 

“default”, preventing the case when the user does not define what the parameter values 

to use are. 

 

Figure 3.8: Excerpt of the Encoder_Parameter file – creation and definition of the 

default parameters values 

Configuration of the functional module is a challenging task. For a standard-

compliant simulation environment many modules are connected via their data interface. 

In order to perform the correct operation, it is mandatory to configure every single 
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module. Usually a standard provides a header word, defining the current operation of 

the circuit. This header word has to be translated into other parameters, such as 

modulation scheme, coding scheme, polynomials, etc. 

3.2 Development of New Modules 

The CSE goal is to allow the user to create its own simulation environment with a 

rich documentation. It encourages the users to create new simulation chains and also 

new functional modules as well as test them inside the whole system – analyzing the 

results and the performance of the new changes or applications. New simulation chains 

can be made using the existing modules already provided by the CSE (reorganizing 

or/and changing parameters), creating a completely new simulation with brand new 

modules or using new modules with the original CSE modules. 

For writing new modules for the simulation there are some steps that must be done. 

In section 3.2.1 the instructions on how to create a parameter class for the module will 

be presented. Section 3.2.2. will bring the instructions on choose or write an interface 

class. Finally, section 3.2.3. defines the instructions to write the module itself. In these 

sections all the steps are explained in more detail based at the example of a hardware-

compliant LDPC decoder model.  

3.2.1 Create a Parameter Class for the Module 

As a first step, it is necessary to generate the parameter class that corresponds to the 

module intended to implement. This parameter class contains all parameters that are 

needed by the decoder to run. In this example there are things like quantization, 

scheduling, number of iteration, etc. The parameter class – an example is shown in 

figure 3.9 – is derived from the class Base_Parameter. The include’s directives have to 

contain relative paths to any directory for the base and the assistance directories. 

 

Figure 3.9: Code of an empty parameter class for a LDPC decoder 

Parameters for the modules are added to the public part of the class and all 

parameters have to use the container class Param. In order to set appropriate values to 

these parameters, the function Set_Default_Values() is called from within the 
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constructor. The function is defined in the protected. The first value on the function 

gives the default value for the parameter. The second parameter describes the parameter 

by a string which is used for the output and for detection of the parameter in a 

configuration structure like XML. The string is required to be set to the name of the 

variable. The last parameter is a list of object, which is inherently available from the 

parent class Base_Parameter. Registering each parameter in this list enables some 

comfort functionalities like printing all parameters by using the streaming operator (<<) 

on a module object or automatic configuration of the module. The parameter creation, 

definition of default values and registration can be seen in figure 3.10. 

 

Figure 3.10: Excerpt of how to create and define default values to parameters 

3.2.2 Choosing or Writing an Interface Class 

The framework provides a lot of interface classes for different types of modules. If 

the new module matches one of these types, it is not needed to write a new interface 

class. If this is not the case, it is necessary to write a new interface class, but it consists 

of only a few lines of code. This class defines the input and output ports with the two 

containers Data_In and Data_Out – figure 3.11 shows the new interface class for a 

LDPC decoder. Similar to the parameter class, this container provides the “()” operator 

to access the data. The input_data_list and the output_data_list hold all data I/O objects. 

These lists are necessary for the automatic connection feature of the simulation chain. 

Naming of the ports has to obey few rules regarding certain prefixes and suffixes that 

will help the identification of it – for instance, input_prob is the input port that holds 

probability values or output_bits is the output port that contains information regarding 

singles bits. 
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Figure 3.11: Code of a new empty interface class for a LDPC decoder 

3.2.3 Writing the Module Class Itself 

After it was created the parameter class and made sure that we are able to parse the 

XML file, it is time to write the code for the module. For that it is necessary two files: 

the header file containing the class definition and the cpp file containing the 

functionality of the class.  

Each module is derived from at least two classes: the interface and the parameter 

class. The init() function sets derived parameters, resizes the outputs ports calling 

Aloc_mem(), and performs other tasks that are required by the module before it is save 

to invoke the Run() function. Now class variables and functions can be defined in the 

private part of and the according content of the functions can be included in the body of 

the class. Figure 3.12 shows the header file for a LDPC decoder as an example. 

 

Figure 3.12: Code for a new header file for a LDPC decoder 
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The functions that are part of each module are implemented in the cpp file. A 

minimum template of a module body is presented in figure 3.13. Important to remind 

that the if statement in the Run function is mandatory (it allows for an automatic run of 

the Init function if a parameter or port has changed). 

 

Figure 3.13: Code for a new cpp file for a LDPC decoder 

3.3 General Considerations 

Simulations had become an important ease towards the development of any new 

study (regardless if it is about software or hardware). As first step of this work, it was 

necessary to understand and to study the functionality of the software CSE and its 

whole architecture and the group of dynamic and complex tools in order to be able to 

develop new modules and applications.  

All the information linked to the implementation of the new modules related to this 

work will be presented on chapter 4 – it is important to mention and explain all the 

mathematical models used on each module: how they were developed, how the class 

diagrams are, how the data structure and other details are. The main objective with this 

is to provide the whole information background for a better comprehension of the 

behavior of each module. The development of the VHDL will also be discussed and 

explained. It is important and interesting to realize the several differences between the 

developments of the same module using first C++ and then VHDL.  
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4 IMPLEMENTATION 

The development of new modules is a built-in feature of the CSE. It is a great ease 

towards the development of new simulations, throughout this work the implementation 

of a Fine Carrier Synchronization Unit is proposed– which will be completely 

developed during this work following the method developed on [WASENMÜLLER, 

2009]. With this new module it will be possible to decrease the negative influences from 

noise by calculating the offset parameters – frequency and phase – and correcting. The 

Fine Carrier Synchronization is a technique that impacts the communication positively 

by providing ways to do it more accurately, automatically and aiming minimization of 

errors. 

There is also the necessity to develop the Add Offset module and to do some 

extensions to the Statistics module. The Add Offset module comes with the function to 

stimulate noises on the system – it adds noise to the bit stream according to the input 

provided on the XML configuration file. The purpose of the Add Offset module is to 

check if the Fine Carrier Synchronization module is working properly. The Statistics 

module had to be extended since it must keep up calculating new probabilistic values 

regarding the new environment that it would work on - including the Fine Carrier 

Synchronization and the Add Offset. 

The implementation of the Fine Carrier Synchronization Unit in VHDL is also 

proposed and comes with the idea to provide an embracing approach to the same idea – 

it is possible to have a good and interesting comparison between two implementations 

(when designated to different platforms – C++ and VHDL).  

It is important to remind that a real communication system will have differences 

related to the localization and existence of the modules if compared to the software. All 

the figures developed throughout this work are based on the software disposition of the 

modules. Therefore, the idea at the moment is to make sure that it is understood the 

location of it in a real life system. On real life it will exist, for example, a pre 

amplification module that will be responsible for the empowerment of the signal and the 

decreasing of the jitter, besides that, the synchronization module will work in parallel to 

all modules on the receiver part – providing information during all moments to the 

decoder and the demapper, for example, and not exactly following the linear disposition 

[ROCHOL, 2011]. This figure 4.1 comes with the purpose to take this idea into 

consideration – real location of the synchronization module. 
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Figure 4.1: Real disposition of the Synchronization module 

Due to the software purposes, it will be place in a linear evolution of the 

information. Therefore, it is located right after the noise channel module. The Fine 

Carrier Synchronization reacts to every bit stream used on the simulation environment 

by being located sequentially on the simulation chain path between the Noise Channel 

Module and the Demapper Module – figure 4.2 shows the location of the new module 

and certifies that every upcoming bit stream will go through it. Note that this position is 

valid for test only purposes, in reality this unit is going to be place in reality inside the 

decoder iteration loop – which will provide the soft information necessary for its 

functionality. 

 

 

Figure 4.2: Fine Carrier Synchronization Unit Module position regarding the original 

simulation chain 

A proper implementation of the synchronization module can be simplified if the 

idea of how it is done is divided again into three smaller modules. As shown in figure 

4.3, it is possible to recognize subtasks to achieve the objective of this module. By 

having different and identified subtasks, it is obvious to create sub modules – the 

subtasks can be easily identified, it makes the design of logic simpler and more 

accurate. This way, the implemented software will respect some of its principles – 

reusability, flexibility and object orientation.  

 

 
Figure 4.3: Fine Carrier Synchronization Unit Module modularization 

The Correlation Module will be responsible for the calculation of the correlation – a 

statistical measurement of the relationship between the two bit streams – reference and 
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received symbols. The reference symbols are exactly the same bit stream provided by 

the source module. The received symbols are the bit stream that are being transmitted 

and had been through the others modules – the encoder, the mapper and the noise 

channel. The variable that allows the execution of the correlation calculation are the bit 

streams – the original and the received. Before the Noise Channel module they are 

perfectly correlated, since they are exactly the same. After the addition of the noise, 

they are correlated – not perfectly anymore – once the presence of certain characteristics 

on the original bit stream will react in order to leave traces on the received bit stream. 

As the Correlation Module produces its output, the correlation value, the Estimation 

module can do its part – estimate the frequency and phase offset. This is possible based 

on the average phase of the first and the rear part of the correlation value – when 

calculating the correlation value it will be divided into two parts in order to provide the 

values needed for the estimation of the wanted parameters. 

Once the value of frequency and phase offset are estimated and available for the 

next module, the moment when the last task of the Fine Carrier Synchronization 

Module has come. The Correction module will be responsible for the correction of the 

noisy signal received in order to decrease the error rates.  

For implementation purposes, adaptation and tests of the Fine Carrier 

Synchronization Module, it is needed a way to provide frequency and phase offset 

inputs to CSE. This offset is going to be introduced as the last step before the Noise 

Channel Module. In the end of the simulation it will be possible to compare the values 

on the XML configuration file and the estimated values of these parameters. The Add 

Offset module will model the frequency and phase offset at the transmitter side – which 

means that it will add an error to the bit stream following mathematical background that 

will be studied also on this work. 

During the development of this work, the focus is the implementation of the new 

modules added on figure 4.4 – Add Offset and Fine Carrier Synchronization. The 

models used to define parameters on both modules are available and originally on 

[WASENMÜLLER, 2009]. It is also important to keep in mind that several changes on 

the Statistics module will also be done in order to embrace the new parameters and 

functionalities. 

 

 
Figure 4.4: Add Offset and Fine Synchronization Module positions regarding the basic 

simulation chain 
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This chapter aims to detail the implementation of the new modules for the CSE as 

well as the corresponding VHDL. The development and implementation comprehend 

the integration of several basic components and also the extension for some already 

existing modules.  

4.1 Software 

The implementation of such functionalities will follow the same language chosen by 

the original CSE developers – C++, which is a general-purpose programming language 

with a bias towards system programming that supports efficient low-level computation, 

data abstraction, object-oriented programming, and generic programming. It provides 

powerful and flexible mechanisms for abstraction; that is, language constructs that 

allow the programmer to introduce and use new types of objects that match the concepts 

of an application. Thus, C++ supports styles of programming that rely on fairly direct 

manipulation of hardware resources to deliver a high degree of efficiency plus higher-

level styles of programming that rely on user-defined types to provide a model of 

computation that is closer to human’s view of the task being performed by a computer. 

These higher level styles of programming are often called data abstraction, object-

oriented programming and generic programming. 

4.1.1 Fine Carrier Synchronization Module 

The Fine Carrier Synchronization module requires a deep understanding of how it is 

possible to estimate the parameters and how, once they are known, to perform the 

elimination of the negative effects that were caused. To make the comprehension easy, 

the Fine Carrier Synchronization Module will be divided into three other sub-modules; 

each one of them will be responsible for one task, which will be explained better in the 

following sections.  

By applying modularization it is possible to easily perform changes without 

requiring modifications in different layers. This simplifies validation, debugging and 

any other adjustment; it is also highly efficient because of the direct 

intercommunication between the components. Another benefit of modularization is 

related to security; it is possible to hide and protect the information that is inside one 

module since it works as a black box. There will be an interface available for the other 

modules to communicate with it, not allowing knowing how the functionalities are 

really implemented.  

4.1.1.1 Correlation Module 

The correlation module is responsible for the first step done in the whole process 

performed by the Fine Carrier Synchronization Module. The correlation is one of the 

most common and most useful statistics. A correlation is a single number that describes 

the degree of relationship between two variables. The main interest in obtaining the 

correlation value is to provide the base requirements and parameters to the Estimation 

module. 

  ̃  ∑  ( )     
 ( )

 

 
       

 

 

       
 

 

                    

On equation 4.1 L represents the length of the burst,   represents the received 

sample sequence (provided by the channel module) and    is the transmitted symbol 

sequence (provided by the source module) – both sequences are complex values that 

4.1 
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represent modulated symbols. It is necessary to keep in mind that in reality the    is the 

estimation of the transmitted symbol provided by the decoder – for test purposes it uses 

the transmitted symbol sequence provided by the source module. 

When the correlation value is calculated it is divided into two parts: the front part 

(with    ) and the rear part (with    ), resulting in the values of  ̃       ̃ . 

It is interesting to keep in mind the division of the correlation value in two (front 

part and rear part). This can be seen clearly in figure 4.5, which shows the 

implementation of the correlation values, by the comparison of the iteration index value 

( ) with the length of the burst (           ()       ()).  

 

Figure 4.5: Implementation of the calculation of the correlation values 

The class diagram related to the implementation of the Correlation module is shown 

in figure 4.6. 

 

Figure 4.6: Correlation module class diagram 

4.1.1.2 Estimation Module 

With the  ̃   values available it is possible to proceed with the estimation of the 

frequency and phase offset values. The estimation of the frequency offset can be 

calculated with the equation 4.2 and the phase offset estimation with the equation 4.3. 

  ̃  
   (  ̃    ̃)

    
 

 

(4.2) 
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(4.3)  ̃     (  ̃    ̃)       ̃     

Figure 4.7 shows the implementation of the estimation module based on the values 

of the correlation module (output from equation 4.1). In equation 4.2 the function “arg 

()” returns the phase angle of the multiplication from the two correlation values. 

 

Figure 4.7: Implementation of the estimation frequency and phase offset 

The class diagram related to the implementation of the Estimation module is shown 

in figure 4.8. 

 

Figure 4.8: Estimation module class diagram 
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4.1.1.3 Correction Module 

Once the value of the frequency and phase offset are estimated and available, when 

the burst has come to its end, it is possible to perform the correction itself. 

          ( )    ( )     
(                                      ) (  ) 

The correction will be done according to the equation 4.4, where            

represents the corrected symbols sequence,   represents the original sample sequence 

(the sequence that has been affected by the noise and contains errors),                 

and                      are the respective estimated offsets – coming from estimation 

module and   represents the imaginary term of a complex number. 

The equation 4.4 is responsible for the elimination of the negative effects of phase 

and frequency offset – it is basically the opposite function of what happens in real world 

when these parameters are added to the communication system.  

The class diagram related to the implementation of the Estimation module is shown 

in figure 4.9. 

 

Figure 4.9: Correction module class diagram 

4.1.1.4 Implementation Details 

During the implementation of the Estimation module, the “Wrap Around Problem” 

was faced. This problem happens due to the software interpretation of the borders when 

calculating values of frequency and phase offset to perform the correction and to put 

into the accumulator, which will have central importance in the Statistics Module.  

When calculating probabilistic values related to the estimation of the phase and 

frequency offset, like mean and standard deviation, it is necessary to take a careful 

approach to symbols like 0.1radians and 2π+0.1radians. They are considered completely 

different but they are actually the same. For example, in figure 4.10 nearly the same 

symbol can have different wrong interpretations since the fluctuation of the symbol can 

vary between the upper and lower part of real axis (Re). The wrong interpretation of it 

happens since the software does not take it as a circular unit – therefore the value 2π-0.1 

will be “far” from the 0.1, resulting in several errors when calculating the accumulate 

(4.4) 
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value of offsets and also regarding the statistics values; the mean and standard deviation 

of the estimation will have drastically wrong results. 

           

Figure 4.10: Example of the “Wrap Around Problem” with the wrong interpretation 

(left) and the right interpretation (right) 

Therefore, a normalization of the results that are out of bounds is mandatory after 

every estimation. The range of accepted estimation phase offset goes from [-π,+π] and 

the range of accepted estimation frequency offset from [-0.5,+0.5] – anything out of this 

range must be normalized. The normalization is done by subtracting the expected phase 

or frequency offset from the estimation value. To this new value, 2π (on the phase 

estimation) or 1 (on the frequency estimation) is added, when it is in the negative area 

considered out of bounds (identified by “NEG” in figure 4.11), or subtracted, when it is 

in the positive area considered out of bounds (identified by “POS” in figure 4.11) – this 

can be seen easily with the part of the code responsible for this normalization shown in 

figure 4.12. After doing this, the value is added to the expected phase or frequency 

(which is available from the XML configuration file) – this final value contains the 

normalized estimation of frequency or phase offset. 

 

Figure 4.11: Illustration of accepted range and “out of bounds” areas regarding 

frequency and phase estimation 
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Figure 4.12: Excerpt of the code used for the normalization of estimated values 

4.1.2 Add Offset Module 

The objective is to introduce, in an artificial way, errors on the communication 

system to evaluate and measure the quality and the behavior of the Fine Carrier 

Synchronization module. 

The mathematical model that introduces phase and frequency offset into the burst is 

strategically located before the Channel Module – it is the last step before the burst goes 

into “real world”. 

             ( )    ( )   
(                                  ) ( ) 

The offset will be added according to the equation 4.5, where             ( ) 

represents the symbols with offset,  ( ) represents the original symbol – error free, 

            and                  are the respective offsets which will be introduced 

according to the information on the XML configuration file and   represents the 

imaginary term of a complex number. 

The values of phase and frequency offset that can be defined on the XML input file 

must be within a certain range of acceptable offset values; if the values do not obey 

certain rules it will be impossible to estimate and correct it properly – making the job of 

the Fine Carrier Synchronization Unit impossible. The frequency offset, for example, 

value must respect equation 4.6. The phase offset works in a    complex plane which 

automatically limits the maximal value to the circumference; therefore, adding a phase 

offset of    will be the same as adding  . 

                      (
 

 
) 

  

(4.5) 

(4.6) 
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The class diagram related to the implementation of the Add Offset module is shown 

in figure 4.13. 

 

Figure 4.13: Add Offset module class diagram 

4.1.3 Extensions to Statistics Module 

This module was the only one already presented on the original CSE that was 

changed in order to adapt itself to the new functionalities after the Fine Carrier 

Synchronization Module was included. These changes were necessary once the statistics 

module should be also responsible for several quality measurements and statistics 

calculations regarding the new values and parameters included in the new modules – i.e. 

correlation values and estimation of the frequency and phase offset. 

The first step was to create the several new interfaces; the statistics module now 

needs to receive data values from the Add Offset, Correlation and Estimation modules. 

Important to remind that on the first version of the Statistics module there were just two 

modules submitting input information: the Demapper and the Source Bits.  

The Statistics Module has as part of its job the creation of the XML output file, 

which contains the original configuration of the simulation (it is a transcription of the 

configuration found on the XML input file) and the results of the calculation of the 

statistics themselves.  

On the original XML output file 6 outputs and the configuration used for the 

simulation were available, specifying which modules were used and how the parameters 

were defined. The new Statistics Module has 18 new outputs, which will provide a good 

analysis about data included on the new modules. This means that now the output file 

contains 24 output values, providing information that can easily be analyzed and used 

for aiming improvements in the quality of the software developed. Some of them are 

just conversions between units (radians to degrees and vice versa). 

Among the new statistics module calculations, it is important to keep in mind the 

basic probability equations as the calculation of the frequency and phase estimation and 

the variance/sigma of the phase and frequency (expected and estimated). Several 

equations are going to be omitted here since there are just changes on the data measured 

(for example frequency offset estimation instead of phase offset estimation – as shown 

in equations 4.7 and 4.8). The comprehension of the whole system and analysis of the 
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quality of the new functionalities implemented are based on the understanding of these 

steps – the output of the Statistics Module must be analyzed deeply and interpreted.  

                            

 
 

 
 ∑(                                       )
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In equations 4.7, 4.8 and 4.9,   represents the number of bursts,   represents the 

correlation. The differences between equation 4.7 and 4.8 is that the first takes into 

account the estimation of the frequency offset when estimating the phase offset, while 

the second estimate the phase only based on the correlation of the burst.  

Important to keep in mind that all the calculations done in this module are only 

possible if the “Wrap Around Problem” was successfully corrected, otherwise problems 

with the values of variance and mean will be inevitable.   

The class diagram related to the implementation of the Statistics module is shown in 

figure 4.14. 

 

 

Figure 4.14: Correction module class diagram 

  

(4.9) 
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4.2 Hardware 

The implementation of the Fine Carrier Synchronization Unit in VHDL requires a 

view of the functionalities in a low level of abstraction; it is necessary, for example, to 

organize signals that will be responsible of the read/write of the ROM memory – when 

regarding software development, this kind of control is completely unimportant since it 

is done automatically. On the other hand, some other features, for example, the 

implementation of the Add Offset Module is completely ignored when regarding VHDL 

since the “real world” will be in charge of the Add Offset Module’s function – stimulate 

different – phase or/and frequency – noises on the system’s communication. 

The implementation of such functionalities is done using VHDL – a brief discussion 

about this hardware description language is also introduced in this work to provide a 

basic knowledge about a subject that is of primary importance regarding the evolution 

of this work. Fine Carrier Synchronization Unit was not implemented on a FPGA due to 

resources reasons but once the final developed VHDL is synthesizable – and this is a 

big concern throughout this work – it is possible to implement the hardware with such 

behavior. 

4.2.1 VHDL Overview 

VHDL is a nested acronym that stands for Very High Speed Integrated Circuits 

(VHSIC) Hardware Description Language. VHDL allows a view of a design at various 

levels of abstraction – Simulation gives the waveforms of the circuit inputs and outputs 

and Synthesis gives the possible combination of gates/transistors to achieve the required 

operation [VHDL, 2012].  

In VHDL, any circuit/system is viewed as an entity (or a set of entities). The internal 

working of an entity is called its architecture. For instance, to design a half adder using 

VHDL, the entity would be the half adder itself with its input and output ports and the 

architecture would tell VHDL what happens between the input and the output ports. 

VHDL has libraries that allow the reuse important and frequently used pieces of 

code. All packages contain useful data types and keywords. In VHDL, data can be in 

the form of a Constant, Variable or a Signal – which are also the keywords for declaring 

the same. “File” in VHDL is a sequence of values and hence, is also considered a data 

object. 

Alignment operators are used to assign a value to a data object and there are three 

types: “<=” assigns a value to a signal; “:=” assigns a value to a variable and “=>” used 

to assign values to individual/other vector elements. Logical operators respect the 

Boolean logic; to operate with this logic the data must be of type BIT, STD_LOGIC or 

STD_ULOGIC (or their vector extensions). Arithmetic operators (+, -, *, /, **, MOD, 

REM and ABS), relational operators (=, /=, >, <, <= and >=) and shift operators (sll, slr, 

sla, slr, rol and ror) are also present. 

Another VHDL feature that can be very useful are the Generics, which allow a 

design entity to be described so that, for each use of that component, its structure and 

behavior can be changed by generic values. In general, they are used to construct 

parameterized hardware components and can be of any type. Generic is a great asset 

when the design has slight changes at many places, change in the register sizes, input 

sizes, etc. If the design is very unique then, there is no need to have generic parameters. 
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Unlike the sequential statements in other programming languages, VHDL code is 

concurrent code – which is good enough to build combinational circuits. However, to 

build sequential circuits, we need sequential code. To write concurrent code, use 

WHEN, GENERATE and BLOCK statements and to write sequential code, use the 

PROCESS, FUNCTION and PROCEDURE statements.  

The processing of a VHDL code occurs in three stages: 

 Analysis: compiler checks each design unit for correct syntax and for some 

static semantic errors; if no errors are found, the compiler translates the unit 

into an intermediate form and stores it in a designated library. 

 Elaboration: binds architectures to entities using configuration data. Many 

complex designs are coded in a hierarchical manner. Compiler starts with 

designated top-level component and replaces all instantiates sub-components 

with their architecture bodies to create a single flattened description. 

 Execution: the flattened design is used as input to a simulation or synthesis 

engine. 

Regarding hardware descriptions languages, synthesis is a process where the code is 

compiled and mapped into an implementation technology such as an field-

programmable gate array (FPGA) or an application-specific integrated circuit (ASIC). It 

is important to keep in mind that not all constructs are suitable for synthesis. For 

example, constructs related to timing are valid for simulation but not synthesizable.  

During the implementation of this work, the aim to develop a synthesizable 

hardware at the end of this project was taken as a primary goal.   This was possible with 

the framework used throughout this work, which was Xilinx ISE Design Suite 13.2 

[XILINX, 2012].  It comes with a series of in-built tools allowing that everything can be 

done on the same framework (from design entry, through implementation and 

verification, to device programming from within the unified environment of the ISE 

Design Suite). As alternative synthesis tools available on the market nowadays can be 

mentioned Simplify Pro and Leonardo Spectrum. 

4.2.2 Fine Carrier Synchronization Unit 

The simulator used on the first moment of development was the ModelSim 

Simulator, which is not included on the Xilinx ISE tools [MODELSIM, 2012]. Due to 

reasons such as problems with the compatibility with the several versions of the Xilinx 

ISE Design Suite, the simulator had to be changed. It was then, preceded with the 

simulator included on the framework, already a built-in feature of the Xilinx ISE Design 

Suite, called ISim [XILINX ISIM, 2009].  

The intention at all moments during VHDL development was to implement a 

synthesizable VHDL. By using this term, synthesizable, it refers to the capability of the 

synthesis tool to implement the given program in hardware. With other words, it is 

intended to at the end of the development have something that “can be transformed into 

physical part” by a synthesis tool chosen. Whether a particular VHDL statement is 

synthesizable or not depends on the technology planned to realize the final “physical 

part”.  This work aims the technology family Virtex 6, device XC6VLX75T, package 

FF484 and speed -1. The synthesis tool used is the XST and the simulator used is ISim 

(synthesis and simulator are built-in features of the framework). 
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It is important to understand that now a bottom-up approach will be used to 

comprehend exactly all the modules functionalities. The same idea used before during 

the software development will be taken now: modularization of the whole unit 

accordingly to its tasks; sub-tasks inside sub-modules makes the work easier and less 

impacting.  

 

Figure 4.15: Fine Carrier Synchronization Unit in VHDL modularization 

Fine Carrier Synchronization implementation in VHDL was organized keeping in 

mind the same approach adopted when implementing the software, modularization and 

division of tasks – this is shown in figure 4.15. Several modules were necessary – each 

one has a specific and well defined function. This set of modules need to communicate 

with each other at all moments during the execution. Important to mention that there are 

three kind of modules used during this work: completely implemented during this work, 

implemented by co-researchers and generated with a Xilinx ISE Design Suite in-built 

tool called Core Generator.  

Calc_phase_offset_estimation module is responsible to perform the calculation of 

the correlation. The basic of the correlation calculation is a multiplication between the 

two sets of complex values, which is not a trivial task in VHDL. Figure 4.16 shows the 

main function of this module – two accumulators were created to hold the results of the 

complex multiplication and a selector to define whether it belongs to the front or the 

rear part of the burst. Calc_phase_offset_estimation was completely developed during 

this work. 
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Figure 4.16: Excerpt of the correlation calculation in VHDL 

FSM_for_fine_synchronization module is a finite state machine which takes the 

responsibility over signal that controls the “correction module”. It will wait until both 

frequency and phase offset estimation values are ready and available and then send the 

“start” signal for the correction. It is basically the trigger for the correction itself of the 

symbols. FSM_for_fine_synchronization was completely developed during this work. 

Frequency_corrector module adjusts the correction value after every iteration during 

the whole burst – the frequency offset must be added after every iteration (this will 

correspond to the multiplication by the number of symbols, represented in equation 4.4 

by  ). During the development of this module a problem was faced - the original phase 

and frequency offset were made with a different bit width since the frequency offset has 

a fractional part – it was necessary, therefore, to create a fractional part for the phase 

estimation (always defined with zero as its value) to add values with the same number 

of bits. Frequency_corrector was completely developed during this work. 

Frequency_phase_estimation module is in charge of the validation of the phase and 

frequency estimation values. Since the divider module takes a bit longer than others to 

produce its output it is necessary that others module wait for it, once the result of the 

division entails directly on further computations – as it can be seen on figure 4.17. 

Frequency_phase_estimation it was also completely developed during this work.  

 

Figure 4.17: Excerpt of the calculation 

Phase_corrector module is responsible for the correction itself, this module will 

receive the phase and frequency estimated offset and do the multiplication. This is 

improved by using a look up table containing the values for sines and cosines created 

with Core Generator from Xilinx – since the calculation of sin and cosine in VHDL is 

quite complicated to be done, it was chosen to use a look up table to speed up the whole 
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process. Phase_corrector module was developed by Robert Drachenberg and Uwe 

Wasenmüller. 

The Romshift module is performing the function that provide as output an 

approximated scaled radiance in 9 bit length for complex input of generic length. This 

module has two sub modules inside it: the first is a read-only-memory (ROM) contain 

the instantiation of an array for 4096 angles for 12 bit complex numbers (6 bit real part 

and 6 bit imaginary part); the second is a sub module responsible for to round complex 

signals with the user defined length to a wanted length (Smartscale_generic_shift). All 

the parts of this module were developed by Paul Salzmann, Harald Schenk and Uwe 

Wasenmüller. 

Rot_memory module is a memory for the storage of symbols while the calculations 

are being done. The rot_memory is also responsible for re-sending the burst after the 

whole calculation is done; during the calculation of the estimation it just stand by and 

when everything is ready to start the correction this module re-sends the received 

symbols at the same order that they were received. This module was created using the 

Xilinx tool Core Generator [XILINX CORE, 2012].  

Divider module implements the division on VHDL – which is necessary in order to 

estimate the frequency offset that was introduced to the symbols. Division in VHDL is a 

topic with a very complicated approach; therefore, to assure reliability on this task and 

not to spend time reworking on something, this module was created also using the Core 

Generator. The interface this tool used for creating and editing the details of the module 

can be seen on figure 4.18. 

 

Figure 4.18: GUI interface of the Xilinx tool Core Generator when creating and editing 

the Divider module 
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4.2.3 Implementation Details 

A Xilinx tool known as Core Generator (already included on the design suite ISE 

13.2) was used during the development of the modules divider and rot_symbols. This 

tool was used aiming specially for the advantage given by the acceleration of the design 

time on the access provided to highly parameterized Intellectual Properties (IP), which 

means in other words, by using modules that are built and can be configured 

accordingly to the needs of the project with this tool. Core Generator provides a catalog 

of architecture specific, domain-specific and market specific IP. These user-

customizable IP functions range in complexity from commonly used functions, such as 

memories to system-level building blocks, such as filters and transforms. Using these IP 

blocks can save days to months of design time and the range of applications is really 

impressive, as shown in figure 4.19. The IP blocks are already developed and they are 

completely configurable – which will fit probably to 100% of the user cases. 

 

Figure 4.19: Xilinx Core Generator IP Catalog 

During the implementation of the work, an important feature of VHDL - Generics - 

was used. Generics allow a design entity to be described so that, for each use of that 

component, its structure and behavior can be changed by generic values. In general, 

they are used to construct parameterized hardware components and can be of any type. 

Generic is a great asset when the design has slight changes at many places, change in 

the register sizes, input sizes, etc. On this work there are two main generics: 

G_NUM_BITS_CONCATENATE (number of bits necessary to contain the value of the 

correlation, intimate connected with the burst length) and G_SYM_WIDTH (bit width 

of the symbols). If the design is very unique then, there is no need to have generic 

parameters.  

Among the difficulties of translating software to VHDL, the completely different 

architecture brings different ideas regarding data structure, organization of the code and 

how to behave with pipelined structures. Small differences on the result values between 

software and VHDL are expected due to the rounding techniques – rounding occurs 

when a more precise number (i.e. more fractional bits) with a less precise number (i.e. 

fewer fractional bits) is wanted to approximate. On this work, the technique adopted 

was truncation, also known by chopping. It is basically just the discard of a number of 

less significant bits – since the number of bits gets really large it is possible to “throw 

away” some of the bits and work with the rest of the bits without losing much on the 

quality.  

Truncation is performed on the Calc_estimate_phase_offset module. However, it is 

not just a simple truncation; it uses a multiplexer to define when to truncate or not. 

Truncation will not be done when working with small bursts – it means that the 
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correlation value will not need so many bits for its representation and therefore the 

truncation would discard the value itself. Several tests and comparisons between the 

VHDL and the software were done in order to have a good definition of what is a small 

burst or not. Excerpt of the truncation code is illustrated in figure 4.20, where it can be 

seen that when there is a short burst detected the multiplication will take into account 

the whole bit width; if the short burst was not detected the bit width goes from “22 

downto 5”: throwing away the 5 (“4 downto 0”) less significant bits of the symbol. 

 

Figure 4.20: Excerpt of the VHDL code responsible for truncation of the correlation 

Another implementation detail that is worth being mentioned is the relation between 

number of bits from the phase and frequency offset coming from the module. The 

frequency offset is a result of a division; therefore, it comes with an integer and a 

fractional part. Hence, the phase offset must be transformed into the same pattern as the 

frequency – the VHDL operation responsible for this can be seen in figure 4.21 – and 

after that at the frequency offset value will be added.  

 

 

Figure 4.21: Excerpt of the VHDL code responsible for the adjustment of the number of 

bits between phase and frequency offset 

4.2.4 Framework Text Report  

Xilinx ISE Design Suite provides at the end of the Synthesis process a wide and 

complete text report about several characteristics of the several procedures done during 

the process. The comprehension and analysis of the quality of the VHDL code and its 

synthesis must go through the examination of a set of the tests given on the figure 4.22. 
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Figure 4.22: Text Report from Xilinx Design Tool 

It is important to analyze that the implementation of the Fine Carrier 

Synchronization Unit when compared to the resources available on the specific target is 

using an negligible amount of them – for example 4% of number of DSP48E1’s, 2% of 

the number of Slice Registers and 3% of the number of Slice LUTS. On figure 4.22 is 

given the exact number of components that it needs to be assembled. It is possible to 

realize that the developed VHDL could really become an equipment to be used in the 

communications systems nowadays.  

By analyzing the timing summary, it is possible to conclude that inside the design 

there are clocked processes implemented with flip-flops – this explains why there is no 
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combinational path founds, since in the design there are no path that go from an input 

pin to the output pin without going through a flip-flop; therefore, there is no maximum 

combinational path. It is necessary to keep in mind that every flip-flop has an input 

setup time, meaning that the D input must be stable this long before the active (usually 

rising) edge of the clock.  It also has a clock to output delay measured from the rising 

edge of the clock to the Q output. This is useful when trying to understand the meaning 

of Minimum input arrival time before clock and Maximum output required time after 

clock – any input must be stable at least 5.938ns before the active edge of the clock (as 

it enters the FPGA) and that outputs will be valid no more than 0.783ns after the active 

edge of the clock.  The minimum clock period –  that must not be shorter than 5.109ns – 

is calculated using the worst case (longest) path from an internal flip-flop Q output to an 

internal flip-flop D input plus the setup and clock to output times. 

4.3 General Considerations 

Chapter 4 was written with the purpose of providing information about the 

implementation details both in C++ and VHDL; detailed explanation on how several 

tasks were performed and several particularities between the implementation of the 

same unit designed using different tools were shown. Also, it is important to take into 

account the mathematical background exposed throughout this chapter; which works as 

a ground, supporting the whole theoretical background of the synchronization system. 

Section 4.1 and 4.4 are interesting to compare with the idea in mind that they both 

implement actually the exact same functional unit; therefore, it is possible to improve 

the quality of the work by comparing values of signals and variables and the output 

results. The comparison was done at several moments during the development – 

especially during the truncation implementation, it was a key to the success to assure 

that this was not leading to any mistake. 

 The next step – which will be the subject of chapter 5 - is the validation of the 

developed work. Validation means to submit both implementations under a wide and 

exhaustive set of tests and compare its results. This is necessary in order to prove that 

they fit to the requirements of functionality and performance of acceptable software’s 

and VHDL’s developed nowadays. 
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5 VALIDATION 

This chapter describes the tests that were made over the implementation developed 

through this work. The tests have the objective to validate the mathematical background 

as well as proving that the Fine Carrier Synchronization Unit is working on both 

implementations – C++ and VHDL. 

5.1 Test Environment 

The system used to perform validations was a Intel Core i5 520M 2,5GHz, 4GB 

DDR3 533MHz. It was used two different operating systems during development, 

debugging and tests. The C++ software implementation, compilation and analysis were 

done using a Linux Ubuntu release 10.10 with kernel 2.6.35.28 and GNU Compiler 

Collection (gcc) version 4.4.5 [GCC, 2012]. The hardware was developed, compiled, 

synthesized and simulated with Xilinx ISE Design Suite 13.2 running on Windows 7 

Home Premium Service Pack 1 (64-bit operating system).  

5.2 Methodology 

Since it would be impractical to perform validation for all the possible knowledge 

conditions (the number of possible and thinkable conditions is close to infinite), it was 

chosen to simulate conditions where there was something extreme – where it is possible 

to believe that something was leaning to go wrong, i.e. invalid inputs and boundaries 

conditions. 

The entry criteria for the validation are to make scenarios to identify failures whose 

removal raises the software quality by increasing the reliability [PATTON, 2005]. 

Which means validating the software and hardware by testing them with several 

different kinds of inputs: at boundaries conditions (limits) and with invalid entries.

  

In a simplified view, the testing is basically the introduction of a noise – which is a 

phase or/and frequency offset – into the original signal and verifying the correction 

done on the other end of the chain. Figure 5.1 illustrates this flow. 
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Figure 5.1: Original signal until estimated corrections flow 

Once the estimated corrections are available, it is time to verify if the received signal 

when adopting such estimation approximates itself from the original signal. Figure 5.2 

shows the idea to reconstruct the original signal and verify the reliability of the 

estimations done. 

 

Figure 5.2: Verification of the reliability of the estimated corrections  

It is important to keep in mind that all the tests, validation methods and criteria 

adopted are valid for C++ and VHDL as well. This is possible since the VHDL takes as 

input the received symbols (extracted from the software) which will contain several 

definitions and perform his work: calculating the correlation, estimating the parameters 

and performing the correction of these symbols – therefore, all the definitions of SNR, 

number of symbols, phase and frequency offsets are done in C++ but are also the same 

for the VHDL.  

The methods and criteria of testing are traditionally divided into structural and 

functional aspects. Structural testing criteria, i.e. criteria which take into account an 

internal structure of the program, are in turn divided into data-flow and control-flow 

criteria. Data-flow criteria are based on the investigation of the ways in which values 

are associated with variables and how these associations can affect the execution of the 

program. Control-flow criteria examine logical expressions, which determine the branch 

and loop structure of the program. 

In order to have a perfect and consistent analysis of the developed software and 

VHDL, it is mandatory that the noise which will be introduced is correctly configured 

and smartly chosen. It directly limits the detection and processing of all information.  

The noises discussed at this moment are the one introduced by the new module in 

software, called Add Offset Module, and the one from the Channel_AWGN module; it 

is known that the AWGN noise refers to the fact that noise eventually combines with 

the desired signal and is a major limiting factor in the transmission of information. 

The choice of the noise that was introduced is based on the power efficiency 

(depending on the SNR for a specific error probability); on the bandwidth efficiency 

(the data rate per unit bandwidth); and implementation cost and complexity.  

The pillars to the introduction of errors on the system are basically the parameters of 

the modules in charge of adding the noise: Add Offset Module and Channel_AWGN. 
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The Add Offset Module has two parameters: phase offset and frequency offset. It is also 

important to remind that another possible variation is the burst length and bit width of 

the symbols, which can be defined directly on the instantiation of the Source_bits 

Module on the XML input file – figure 5.3.  

 

Figure 5.3: Source_bits Module instantiation and parameters definition 

The burst length is defined by the parameter “num_bits” on the Source_bits Module. 

Since QPSK is being used, the burst length corresponds to half of the number of bits. 

For example, by defining the num_bits equal to 112; the burst length is, therefore, 56. 

The valid burst length range for this communication pattern are 56, for minimal burst 

length, and 2592 for maximal burst length; which implies that the minimal number of 

bits is 112 and 5184, respectively. These values for minimum/maximum burst length 

are defined by the FEC frame size maximum code rate, details can be found on [ETSI-

REFERENCE, 2012] 

It is important at this moment, to remind that there was defined a threshold value for 

bursts with length bellow and over 256 symbols. Bursts that contain from 56 to 256 

symbols are considered small bursts – this will imply in a truncation over the value of 

the correlation (already discussed before on this work). The threshold value is important 

to be well defined and it is one point where great time and effort must be spent in order 

to guarantee a correct functionality – this is done applying several boundaries tests and 

comparing results with software and VHDL implementation. The detection of small 

bursts is shown in figure 5.4. 

 

Figure 5.4: Excerpt of the code responsible for the detection of small bursts 

The instantiation of the Add Offset Module and its parameters (included on the 

XML input file) can be seen in figure 5.5.   

 

Figure 5.5: Add Offset Module instantiation and parameters definition 
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The Channel AWGN Module also has heavy influence on the final result of the 

noise added to the communication system. The SNR can be set with its parameters. This 

can be seen on figure 5.6. 

 

Figure 5.6: Channel AWGN Module instantiation and parameters definition 

The definition of the SNR on the Channel AWGN is possible through the definition 

of the noise variance of the channel. For example, a noise variance equals to 

0.251188643 defines a SNR equals to 6dB. The relation between noise variance and 

SNR is defined on equation 5.1.  

               
 

  
   
  

 

With the complete understanding of how the noise is introduced and how parameters 

impact the simulation tests scenarios, that are believed to comprehend all the important 

test cases, were defined. It is important to remember that the number of bursts can be 

easily defined on the XML input file – it is clear that the number of bursts will have a 

great impact on every statistic calculation (as more bursts are available a better 

approximation can be done). 

The scenarios chosen – and shown in table 5.1 – are basically trying to embrace the 

whole implementation and it is done by parts. The first scenario only varies the phase 

offset. The second scenario only varies the frequency offset. The third, and last, 

scenario varies phase and frequency offset.  

Table 5.1: Scenarios used to validation of the work 

Scenarios Variation Range 

1
st
 Phase Only [-π,+π] 

2
nd

 Frequency Only [-0.5,+0.5] 

3
rd

 Phase and Frequency [-π,+π] and [-0.5,+0.5] 

 

The SNR is constantly set to be 20dB during the three scenarios in order to mitigate 

the influence on the simulation of the noise from the Chanel_AWGN module and obtain 

an error-free transmission. With this SNR value the transmission happens practically on 

an ideal channel and makes possible the evaluation the errors of phase and frequency 

offsets introduced by the Add Offset module. 

  

5.1 
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5.3 Fine Carrier Synchronization Software Analysis 

The first unit test was chosen to be the verification of the calculation of the 

correlation value; it is the first step of the whole Fine Carrier Synchronization Unit 

process, therefore, it is mandatory that it is correct – once this is satisfied, it is possible 

to proceed with the verification of the further modules.  

To verify the quality of the error estimation, it is possible to use just one value 

within the possible range of variation. If the module does the estimation correctly to this 

value, it will be correctly done to all the values in the range; therefore, there is no reason 

to repeat to   values. The values, which were chosen randomly, are 30° for the phase 

offset and                   for the frequency offset. 

The first scenario is intended to check the addition, estimation and correction of the 

phase offset only. With this approach it is possible to analyze and understand exactly 

how and if the addition and estimation of the phase offset is acting on the system. 

Figure 5.7 is the example of a graphic representation of an introduction of a phase offset 

equal to 30° – it is possible to examine perfectly that the symbol suffered a rotation of 

approximately 30° counter-clockwise. The original symbol is represented by “Y” (with 

the coordinates 45, 45) while the received symbol by “X” (with the coordinates 15, 66). 

 

Figure 5.7: Effect of the addition of phase offset equals 30° on the symbol 

It is interesting to analyze the XML output file – it contains the estimation offset 

values, average of the estimation, mean and variance. The important values are shown 

in table 5.2. 

Table 5.2: Phase offset estimation related values extracted from the XML output file 

 Estimated Values Expected Values 

Phase Offset Estimation Average (°) 30.3255 30 

Variance (°)² 9.52743e-06 4.04695e-05 

Standard Deviation (°) 0.00308665 0.00636156 

 

The next step is to check the correction of the symbols, the estimated offset is now 

used to perform the correction of such values – on the way to make the understanding 

easier; figure 5.8 contains now the corrected symbol “Z” as well as the original and the 
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received symbol. Important to keep in mind that figure 5.8 contains an example – this 

possibly varies if a different symbol were taken.   

 

Figure 5.8: Effect of the correction of the symbol with the estimated phase offset. 

Table 5.3 comes with the purpose to give the exact symbol values to the figure 5.8 

and exemplifies the process that the symbols are suffering – note that this is an example.  

Table 5.3: Symbol transformation process with phase offset only (software) 

Symbol Position on 

the burst 
Original Value 

Received 

Value 

Corrected 

Value 

1
st
 (45,45) (15,66) (46,49) 

2
nd

 (45,45) (18,60) (45,42) 

3
rd

 (45,45) (16,60) (44,43) 

... ... ... … 

54
th

 (45,45) (17,61) (45,44) 

55
th

 (45,45) (17,62) (46,44) 

56
th

 (45,45) (17,61) (45,44) 

 

The second scenario proposes the verification of the introduction, estimation and 

correction of the frequency offset only. This is done following the same idea – to have a 

complete idea of what is going on when trying to add, estimate and correct itself, 

without any other external influence. During the second test scenario the frequency 

offset is set to be 0.00446429 radians. This value represents the maximal frequency 

offset possible in a 56 symbol’s burst, respecting the maximal frequency possible to this 

burst and allowing a good visualization of the frequency offset effect on the symbols. 

Figure 5.9 shows the original symbols position – represented by “Y” – and the 

received position – represented by “X”. All the original symbols from this burst are on 

the “Y” position (there are 56 symbols on the exact position represented by “Y”). Due 

to the frequency offset they progressively “slide” through the complex plane and appear 

in different places.  
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Figure 5.9: Effect of the addition of frequency offset equals 0.00446429radians on the 

symbol 

With the proper estimation and correction, the symbols are brought back to a 

position more approximated to the original symbols “Y” (leading to a correct 

interpretation of the same) – the positions of the corrected symbols are represented by 

“Z”. As can be seen on the figure 5.10, the positions of “Z” are the possible position for 

the 56 received symbols after the correction – the symbols that were previously 

scattered in positions represented by “X”, now are concentrated in the positions 

represented by “Z”. The correction Figure 5.10 contains now the corrected symbols 

(“Z”) as well as the original (“Y”) and the received symbols (“X”). 

 

Figure 5.10: Effect of the correction of the symbols with the estimated frequency offset. 

It is interesting to analyze the XML output file – it contains the estimation offset 

values, average of the estimation, mean and variance. The important values are shown 

in table 5.4 – the average was calculated from a 100000 bursts. 
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Table 5.4: Frequency offset estimation related values extracted from the XML output 

file 

 
Estimated 

Values 

Expected 

Values 

Frequency Offset Estimation Average 

(rad) 
0.00441108 0.00446429 

Variance (rad²) 1.94578e-05 1.99255e-05 

Standard Deviation (rad) 0.0044111 0.0044638 

 

The same approach done with the phase offset only is now done with the frequency 

offset. The transformation that the symbols are suffering is explicit on table 5.5 – it was 

taken the first three and the last three symbols as an example. 

Table 5.5: Symbol transformation process with frequency offset only (software) 

Symbol Position 

on the burst 
Original Value Received Value Corrected Value 

1st (45,45) (43,50)   (43,50) 

2nd (45,45)  (46,45) (47,43) 

3rd (45,45)  (42,46) (44,43) 

… .. ..  ..  

54
th

  (45,45)  (-42,47) (43,46) 

55
th

  (45,45)  (-41,45)  (42,43) 

56
th

  (45,45)  (-44,44) (42,45)  

 

The third scenario proposes the mutual effects of testing phase and frequency offset 

together. The same values proposed separately are now combined, keeping in mind that 

these values are sample values, it is possible to take any value within the acceptable 

range. Table 5.6 shows the transformation that the symbols are suffering when the 

simulation with phase equals to 30° and frequency offset equals to 0.00446429 radians 

was executed. Table 5.7 brings the statistics data regarding that simulation – which are 

found on the XML output file. 
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Table 5.6: Symbol transformation process with phase and frequency offset 

(software) 

Symbol Position 

on the burst 
Original Value Received Value Corrected Value 

1st (45,45) (15,66) (45,50) 

2nd (45,45) (17,61) (45,43) 

3rd (45,45) (13,61) (43,44) 

… … … … 

54th (45,45) (-61,19) (43,47) 

55th (45,45) (-59,17) (41,45) 

56th (45,45) (-62,16) (43,46) 

 

Table 5.7: Statistics values from the phase and frequency simulation extracted from 

XML output file 

 
Estimated 

Values 

Expected 

Values 

Phase Offset Estimation Average (°) 29.0027 30 

Phase Offset Variance (°)² 0.256225 0.274141 

Phase Offset Standard Deviation (°) 0.506187 0.523585 

Frequency Offset Estimation Average (rad) 0.00442111 0.00446429 

Frequency Offset Variance (rad²) 1.96029e-05 1.99834e-05 

Frequency Offset Standard Deviation (rad) 0.00442751 0.00447027 

5.4 Fine Carrier Synchronization VHDL Analysis 

It is important to keep in mind that the evaluation on VHDL is way more 

complicated than the one in software – all the statistics calculations done by the 

Statistics module are not performed in VHDL which implies in the manual calculation. 

Due to simplicity purposes, as well as during the software validation, first only the 

phase offset will be checked and then only frequency offset – it is important to mention 

that the SNR is 20dB during the VHDL evaluation.  

Before testing the VHDL under the three scenarios already described, the 

verification of the calculation of the correlation is done and shown with table 5.8. The 

purpose of Table 5.8 is to verify if the manual complex multiplication is being done 

properly in VHDL – software and VHDL values are putted side-by-side. Table 5.9 

brings the comparison between the correlation average correlation value for 10 bursts – 

due to timing and difficulties of providing inputs and analyzing the outputs of the 

VHDL the number of bursts is considerably smaller if compared to software. 
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Table 5.8: Comparison between the correlation values from the first burst 

 VHDL Values Software Values 

Correlation First Half (96975,56925) (96975,56925) 

Correlation Second Half (96840,56970) (96840,56970) 

Correlation Total (193815, 113895) (193815, 113895) 

 

Table 5.9: Average correlation value comparison 

  VHDL Value (10 

bursts) 

Software Value (100000 

bursts) 

Correlation 

Average 
(194052,116096) (195005,114037) 

 

The phase offset – estimated and expected – are shown on table 5.10 and a sample 

with some symbols and the process that they suffered is shown on Table 5.11. It is 

possible to analyze perfectly how the correction acts on the received values – during 

this simulation the frequency offset is defined to be zero.  

Table 5.10: Estimated and expected phase offset (VHDL) 

 Estimated Value Expected Value 

Phase offset (°) 30,234375 30 

 

Table 5.11: Symbol transformation process with phase offset only for the first symbols 

on the burst (VHDL) 

Symbol Position 

on the burst 
Original Value Received Value Corrected Value 

1
st
  (45,45) (15,66) (46,50) 

2
nd

  (45,45) (18,60) (46,43) 

3
rd

  (45,45) (16,60) (44,44) 

... ...     ... … 

54
th

  (45,45) (17,61) (45,44) 

55
th

  (45,45) (17,62) (46,45) 

56
th

  (45,45) (17,61) (45,44) 

 

Table 5.12 shows the frequency offset – estimated and expected – regarding the 

simulation with frequency offset only – the phase offset was defined to be zero in order 
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to verify the correct functionality of the frequency correction. Table 5.13 brings the 

symbols from the simulation with frequency offset equals to 0.00446429 radians. The 

analysis of table 5.13 helps understanding the exact transformation that every symbol 

suffers – first the symbol’s original value, then the received value and finally its 

corrected value. The objective of this analysis is to get a better idea of the process that 

happens to the symbols and its mutation values during the process that occurs inside the 

Fine Carrier Synchronization Unit.  

Table 5.12: Estimated and expected frequency offset (VHDL) 

 Estimated Value Expected Value 

Frequency offset (rad) 0,0044060733 0.00446429 

 

Table 5.13: Symbol transformation process with frequency offset only (VHDL) 

Symbol Position 

on the burst 
Original Value Received Value Corrected Value 

1
st
 (45,45) (43,50) (43,50) 

2
nd

 (45,45) (46,45) (47,44) 

3
rd

 (45,45) (42,46) (44,44) 

... … ... … 

54
th

 (45,45) (-42,47) (43,46) 

55
th

 (45,45) (-41,45) (42,44) 

56
th

 (45,45) (-44,44) (42,46) 

 

Table 5.14 shows the estimated offsets next to the expected offset values. Table 5.15 

contains the results of the combination of phase offset equals to 30° and frequency 

offset equals to 0.00446429radians. 

Table 5.14: Estimated and expected phase and frequency offset (VHDL) 

 Estimated Value Expected Value 

Phase offset (°) 28,828125 30 

Frequency offset (rad) 0,0044060733 0.00446429 

 

  



70 

 

Table 5.15: Symbol transformation process with phase and frequency offset (VHDL) 

Symbol Position 

on the burst 
Original Value Received Value Corrected Value 

1
st
 (45,45) (15,66) (45,50) 

2
nd

 (45,45) (17,61) (45,44) 

3
rd

 (45,45) (13,61) (43,45) 

... … … … 

54
th

 (45,45) (-61,19) (42,48) 

55
th

 (45,45) (-59,17) (41,46) 

56
th

 (45,45) (-62,16) (42,48) 

5.5 Software and VHDL Tests 

The implementation in VHDL introduces rounding errors according to the way that 

the module does the truncation of the values. The objective of this section is to verify 

the impact of this rounding error on the VHDL results. With this goal, it was executed 

simulations in software (CSE) and the software results were compared with the VHDL 

results. 

Several burst lengths (63, 64, 127, 128, 255 and 256) were tested with different 

average symbol values (30, 45 and 255) to verify which value would fit to the system 

needs and not result in errors. The values tested to become the truncation threshold were 

64, 128 and 256. On table 5.18 exposes the reasons which made it impossible the use of 

the values 64 and 128 – several others problems were found with different 

configurations, the one disposed on table 5.18 act as an example. With truncation 

threshold defined as 256 symbols there were no error found. 

Table 5.16: Analysis with the truncation threshold define as 256 symbols 

 Not truncating 

Truncating 

with a 

multiplexer 

Coarse 

Truncating 

Number of symbols 128 128 128 

Received Symbols average |30| |30| |30| 

Reference Symbols Average |30| |30| |30| 

Multiplication of the 

correlation values (real part) 
37725750000 8975 8975 

Multiplication of the 

correlation values 

(imaginary part) 

-3280500000 -760 -760 

Estimated Final offset (°) -21.09375 -23.9 -23.9 
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In order to provide a better understanding and a deeper analysis of how the two 

implementations are working when facing different phase offsets, several different 

phase offsets were introduced on purpose – it is interesting analyze side-by-side the 

results from software and VHDL. Table 5.21 shows the estimation phase and frequency 

offset side-by-side – with SNR equals to 3dB. By changing the SNR value to 3dB 

instead of 20dB a better approximation with real world is achieved – since there is more 

noise coming from the environment.  

Table 5.17: Estimation of phase and frequency offsets side-by-side 

phase offset input 
software phase 

offset (°) 

software 

frequency offset 

vhdl phase 

offset (°) 

vhdl 

frequency 

offset 

0° 0.00278 5.43432e-06 0° 0 

5° 5.08928 -8.49855e-06 4,921875° 0 

10° 10.1226 -9.65789e-06 9,140625° 0 

15° 15.1694 -1.07359e-05 14,765625° 0 

20° 20.2232 -1.17073e-05 21,796875° 0 

60° 59.6884 -1.52645e-05 61,171875° 0 

90° 90.0924 -1.32207e-05 92,109375° 0 

135° 135.002 -2.86087e-06 131,484375° 0 

5.6 General Considerations 

In general, the validation identifies failures whose removal rises the software quality 

by increasing the software’s and VHDL’s potential reliability. The testing is the 

measurement of the quality provided by the software and VHDL – it is possible to 

analyze if the original idea was achieved and/or possible. 

By performing several tests on the software and VHDL and, after that, analyzing the 

results, it is possible to realize that the development and the whole motivation for the 

creation of a Fine Carrier Synchronization Unit was based on grounded studies that 

provide a real and concrete subject of study to nowadays communication systems. 

Once the validation of the developed software and VHDL is finished there must be a 

critical look at the results, an analysis to check if the final result has fulfilled the 

expectations and if there are any point where the performance can be improved – this is 

the topic of the chapter 6.  
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6 CONCLUSION 

This work provides both software and VHDL implementation of a Fine Carrier 

Synchronization Unit which has the purpose of increasing the quality of turbo 

synchronization systems. The Fine Carrier Synchronization Unit is intended to raise the 

quality of turbo synchronization systems by increasing its accuracy and the precision - 

as nowadays communication systems require. It is also an important goal to implement 

a dynamic and useful tool which will be ready to be introduced into any production 

chain or work as an academic didactic tool for other students to help the understanding 

of synchronization systems. Besides, it must be also mentioned here that by 

implementing the Fine Carrier Synchronization the approach of the CSE for new 

modules is validated. 

The implementation of the Fine Carrier Synchronization Unit in software and the 

integration of the new modules into the already existing Creonic Simulation 

Environment is the first step successfully done. As would be expected, the first task of 

this work requested more effort and also more implementation time if compared with 

other parts of this project; a whole study about the simulation environment was 

necessary, which is the base for the future work as well as for a better understanding 

and comprehension of the basic concepts. The integration and the interfaces that were 

about to be used and the definition of types between such different modules had been 

deeply studied in order to not bring any errors during the further implementation of 

modules and their execution.  

Since the Fine Carrier Synchronization Unit has been implemented and functional in 

software, the focus was the development of the VHDL module, which was expected to 

correspond exactly and behave on the same way as the software. The VHDL 

implementation was positively accomplished and tricky, since several software 

functions (for instance, complex multiplication) do not exist or are not synthesizable 

when regarding hardware description languages. Therefore, if these functions are 

required, it is mandatory that the programmer create them with the available functions 

or import them from a design tool. On the other hand, since the whole idea, approach 

and functionality of the Fine Carrier Synchronization Unit had been already studied 

exhaustively when doing the software development, there was enough time to dedicate 

into the creation of such functions and other challenges that emerged – for example, the 

VHDL initialization of several signals necessary to work with one burst after another 

and the management of the memory to deal with several bursts.  

Once the implementation of both software and VHDL are effectively finished, the 

new objective, as important as their implementation, is to test, analyze, compare, and 

measure the quality and accuracy of the results provided. Possibly at this stage of the 

project any problem could appear that was undistinguished until this point of the work. 
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Fortunately the results are positive when both implementations were hit by a series of 

tests – it was notable that they both have nearly the same results with the same inputs. 

These slight differences found are the result of approximation loss regarding VHDL 

precision – which are acceptable and totally not influence on the result.  

The implementation of a Fine Carrier Synchronization Unit shows the possibility of 

the developed work to operate as an important tool aiming improvements on 

communication systems by introducing an accurate technique of estimation and 

correction of offset parameters. Besides, it functions as well to validate the work 

developed on [WASENMÜLLER, 2009] – the whole mathematical background 

necessary to the development of the Fine Carrier Synchronization Unit comes from this 

work. 

Due to reasons, like time and purpose, there are still some points along this work 

where there are enhancements to be done. For instance, the truncation of the correlation 

value – it is a really delicate topic since it is mandatory that this happens due to the wide 

range that the correlation value can assume when dealing with bursts with 56 symbols 

or when dealing with bursts with 2592 symbols. If this is not done, it applies a low 

frequency due to the bit width necessary – which would classify the Fine Carrier 

Synchronization Unit really outside of the commercial standards of today. Another 

point which may be mentioned here with the potential for improvements is the 

interaction between software and VHDL – the test bench files for the VHDL simulation 

is done altogether manually and it is quite time consuming. The idea for further works is 

to implement an extra embedded module inside the CSE that will be responsible for the 

automatic creation of VHDL test bench files. 

The Fine Carrier Synchronization uses the Creonic Simulation Environment as its 

environment to achieve such functionality – therefore, the results are the proof that the 

Fine Carrier Synchronization Unit is working as expected and verified by the Creonic 

Simulation Environment and the VHDL simulations.  

The work developed throughout this project contributes to the Creonic Simulation 

Environment – by introducing techniques which provide a wider approach to modern 

communication system’s problems – and to the consolidation and validation of the 

theory that was the base for the implementation of it. 
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Abstract. The popularity of the wireless devices comes from several 

advantages related to this type of communication, i.e. mobility, easy 

installation and less cost for infrastructure. Hence it is vital to assure a 

reliable communication where errors can be autonomously fixed and 

information responsibly secured. The transmission over wireless channel 

results in frequency and phase offsets; additionally the received symbols are 

corrupted with noise. Therefore the estimation of the actual frequency and 

phase offset becomes a very critical task with high impact on communications 

performance; synchronization is a crucial part of each receiver in digital 

communication systems. In this context, throughout this work is proposed an 

implementation of a Fine Carrier Synchronization Unit that aims a better 

communication quality and lower its error rate. 

Resumo. A popularidade de equipamentos sem fio decorre de uma série de 

vantagens relacionadas a este tipo de comunição, i.e. mobilidade, fácil 

instalação e menor custo para infraestrutura. Consequentemente é vital 

garantir-se uma comunicação confiável onde erros podem ser 

automaticamente corrigidos e a informação responsavelmente segura. A 

transmissão sobre canais sem fio resulta em deslocamentos de frequência e 

fase; além disso, os símbolos recebidos podem ser corrompidos com ruído. 

Portanto uma estimativa dos valores de deslocamento reais de frequência e 

fase se torna uma tarefa fundamental com grande impacto no desempenho da 

comunicação; sincronização é uma parte crucial em cada receptor em 

sistemas de comunicação digital. Nesse contexto, ao longo deste trabalho é 

proposto a implementação de uma Unidade de Sincronização Fina de 

Portadoras que visa melhorar a qualidade da comunicação e diminuir a taxa 

de erros da mesma. 

1 Introduction  

With the increase of the mobility in our world, there is a rising necessity for people to 

communicate with each other and have access to information independently of the 
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location of individuals or the information. Importance is giving by the possibility that 

any phone call can be essential enough to save a life, close a business deal or provide 

hours of leisure. Each of these examples of mobile communications proposes a 

challenge that can only be achieved with an efficient and reliable wireless 

communication. 

 Synchronization and channel coding/decoding are vital parts in every digital 

receiver for wireless communication – it reduces the errors and allows to reduce the 

transmit power respectively. With the increase of devices using wireless data 

transmission technologies, it is essential that exists efficient and responsible ways to fix 

errors that may happen in this kind of transmission. When using wireless channel is 

usual that the received data had been corrupted with some kind of noise – also timing, 

phase and frequency offset are introduced and somehow must be taken care of. The task 

of synchronization is to present data bits to the channel decoder, where the negative 

influences of timing, frequency and phase offset are eliminated. 

 In addition to detection and decoding, a receiver has also to perform 

synchronization i.e. to estimate a number of parameters like the carrier phase or the 

maximum likelihood ratio. In turbo receivers synchronization is a very challenging task 

– since they operate at very low signal-to-noise ratio (SNR) and therefore classical 

synchronizers may fail to provide reliable estimated parameters. Turbo Synchronization 

is the idea of taking benefits from the soft information available in turbo receivers in 

order to improve the quality of the estimated delivered by the synchronizer [1].  

 Due to reasons as time and purpose of this work, synchronization will be the 

main subject. Channel decoding will be left aside but it has also potential to be topic of 

a future work. This paper will be focused on the frequency and phase synchronization of 

bursts with linear modulation, i.e. Quadrature Phase Shift Keying (QPSK) modulation. 

Timing synchronization – i.e. the optimal sampling time is properly carried out before. 

The system aims the Digital Video Broadcast – Return Channel via Satellite (DVB-

RCS) standard, which is an ETSI satellite communication standard [2].  

 It is a known fact that simulations can reduce development time and costs. A 

project was created at the Microelectronic Systems Design Research Group from the 

Technical University of Kaiserslautern, which developed the software Creonic 

Simulation Environment – CSE. The purpose of CSE is to allow for the integration of 

complex simulations environments. The simulation of the synchronization task for such 

communication systems has enormous importance on the whole project. 

 CSE will be the starting point for the work which is about to be developed. New 

features aiming the Fine Carrier Synchronization Unit will be developed, tested and 

introduced into the already existing simulation environment. Hardware implementations 

on VHDL of these new features are also intended. Further on this work, will be possible 
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to evaluate both – software and hardware – according to theory of communication 

systems and a good statistical output will be available. 

 The rest of this paper is structured as follows. In section 2, a brief overview of 

the basic concepts needed and technical concepts involved in this work. Section 3 

shows the whole functionality of CSE and advantages of taking it as the first step into 

the Fine Carrier Synchronization Unit. Section 4 deals with the objectives and 

methodology adopted, how it is going to be done the implementation, which 

development environments are going to be used and also how it will treat the question 

of evaluation of the precision. Finally, Section 5 brings the schedule related to the 

implementation of this work. 

2 Basic Concepts 

At this point, it is important to understand what exactly involves synchronizations 

systems, why and how errors happen. Synchronization consists of the estimation of 

unknown parameters of frequency and phase offset, and the removal of all possible 

damaging effects introduced by these parameters.  

 In every communication transmission there will be a mapper, which is 

responsible to convert the binary bit stream into modulated symbols. Modulated means 

that the bits are going to be organized into an alphabet, which defines how many 

symbols are available and how they work in this “language” that they communicate 

with – this alphabet must be previously defined and known by both ends. The 

communication can be represented in a complex plane and, for example, a Quadrature 

Phase Shift Keying (QPSK) has a defined alphabet with 4 symbols, equally divided on 

the plane. Consequently, it’s natural to understand that for every 90° or π/2, will be the 

area where one symbol will be represented. It is usual to refer this organization of 

symbols in a complex plane as constellation diagram (Figure 1). There are several 

modulations available and in use nowadays, i.e. BPSK, QPSK, 8PSK, 16-QAM, 64-

QAM, etc [3]. 
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Figure 1. Constellation diagram for BPSK (left) and QPSK (right) with gray 

coding 

 The modulation would work perfectly if were not errors, noise and degradation 

of signal. To understand how an error occurs, it is important to note that once something 

went wrong these symbols are not going to be on the exact expected place.  Due to 

the noise the symbol – the “point” in figure 1 – shifts its position in the complex plane 

when compared to the original position. This shifting will not always result in wrong 

interpretation – it can vary certain acceptable range and it will still be considered as the 

right symbol. 

 In order to explain the figure 1, it is remarkable to remind that the number of 

symbols per bits respects the formula 1, which represents that, for example, for every 1 

bit, 2 symbols can be represented and for 2 bits, 4 symbols can be represented. 

                                     

 The problem starts when the error is bigger than the range of acceptable 

variation. In a very noisy environment, for matter of explanation, figure 2 makes it more 

understandable. 

 

Figure 2. 16-QAM with an acceptable range variation (left – high SNR) and 

a very noisy range variation (right – low SNR) 

 Analyzing figure 2, it is easy to see that many of the symbols were read and 

classified wrongly since the noise was really important and there is no way to define 

which symbol belongs to which region on the complex plane. In figure 2, it is easy to 

realize that the symbols from each quadrant can suffer with high noise and transform 

themselves into a region where it is impossible to distinguish where it is originally from 

– the result is an error of the interpretation of the signal. 

 There is one parameter known in communication systems as Signal-to-Noise 

Ratio – SNR – which represents the ratio between the energy of the signal and the 

energy of the noise. SNR is going to define how bad the signal will get after going 

(1) 
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through the channel. It is directly influenced by the noise variation of the channel. Also 

included in the negative parameters of any synchronization are the frequency and phase 

offset.  

 Figure 2 can be observed also by differentiating the values of SNR: left part of 

figure 2 is the representation of a high SNR value; while the right part of figure 2 

corresponds to a low SNR value. 

 Frequency offset exists as consequence from the difference between the 

oscillator from the transmitter (TX) and the one from the receiver (RX); oscillators from 

TX and RX cannot be exactly equal. In figure 3 all the symbols of a burst are 

represented on the same complex plane. To comprehend properly how the frequency 

offset can be observed, it is primordial to understand that they come not at the same 

exactly moment; but for teaching purposes this view of the complex plane makes it easy 

– figure 1 shows a QPSK example where there is no frequency offset. Frequency offset 

can be easily understood by taking into account the differences among figure 1 and 

figure 3. The frequency offset will add a constant and incrementally error to every 

received symbol, which is the reason why the symbols on figure 3 have a variation from 

the first to the last received symbol, as can be seen, for example, on symbol “10”. 

 

Figure 3. Illustration of a frequency offset ( ) in a QPSK modulation 

 In figure 4 is shown how the phase offset acts related to the QPSK, it is a main 

key to understand that the phase offset is well defined to the whole bit stream – it will 

act in every symbol exactly in the same way. On the other hand, when related to 

frequency offset, it will have a higher impact as the bit stream reaches the end – the 

impact of the frequency offset will not be the same for every symbol.  

 Since the complex plane is equally divided, in QPSK, for example, by four 

known symbols, figure 4 show that there is no error on the interpretation of each 

symbol, on this case the symbols are still recognized as the expected even though there 

is a phase offset (α) introduced. Figure 4 comes with the purpose to show that not every 

phase offset would result in error.  



83 

 

 

 

Figure 4. Illustration of an error free phase offset (α) in a QPSK 

modulation 

  

 

Figure 5. Illustration of an error by phase offset (α) in a QPSK modulation 

 On the other hand, with figure 5 it is prominent – and also emphasized on by not 

solid circles – that the phase offset introduced add an error to the interpretation of this 

communication. The symbols – represented by a solid black circle – were located in a 

quadrant of the complex plane and after the addition of the phase offset, they are on a 

different one – represented by a not solid circle. This means that the interpretation of 

them will result in an error, which can be corrected with a right estimation of this phase 

offset and the future correction of it.  

3 Creonic Simulation Environment - CSE 

 CSE is the simulation environment that provides a set of tools and functionalities 

needed to simulate real world communications [4]. It offers the possibility to reduce 

development time and costs – a well-known problem to every project. Other goals of 

CSE are the ease of use, reusability and the extensibility to new applications and 
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standards – it was designed with the goal to provide a simulation environment where 

users would be able to improve their experience with the software by developing new 

features and applications.  

 CSE was developed by the Microelectronic System Design Research Group  

especially Dr.-Ing Timo Lehnigk-Emden and Dr.-Ing Matthias Alles – both are now 

former researchers from the Microelectronic System Design Research Group. Projects 

with such delicate design and development questions must be highly detail oriented. 

Hence choices of design have been adopted and respected throughout the whole 

development of the software. As for example, was defined a fixed interface and 

configuration procedures for functional modules, strict coding and documentation 

guidelines, and also fully object oriented design. For the documentation purposes, it was 

used a documentation tool called Doxygen [5] – it generates automatically the 

documentation from a set of documented source files. 

 C++ was the programming language chosen to the implementation of CSE. 

Which is a clever option based on the design choices made by the original developers of 

the software. C++ contains a good and richer standard library, if compared to C, and 

also support to both the structured programming and object orientation. Therefore, the 

new modules that are about to be implemented and integrated to the system must also 

follow the same language. It will be used the GCC as compiler – it is the native 

compiler included on the GNU/Linux system. 

 The simulation environment is composed of functional modules; they work as 

versatile pieces available to be organized together following the needs of the user, i.e. 

noise generator or channel decoder. These functional modules are connected with each 

other providing the possibility to create complex simulation chains. It is important to 

emphasize that this functionality is only possible due to the design choices made before. 

This simulation environment is extremely useful for projects related to communication 

systems, once the simulations costs – related to configuration and connection – used to 

cost a lot of time, hours or days, for the developers, now can be easily finished in a few 

minutes. 

 

Figure 6. Basic simulation chain and functional modules connection 

available on CSE 

 In figure 6 is shown the basic simulation chain available on CSE, it represents 

the whole path that the bit stream will make. The source module generates random bit 

sequences, it is responsible for calculate one block of bits and store them into the output 

buffer. The Encoder module changes a signal or any other data into a code; code may 

optimize for purposes of compressing for transmission or storage, encrypting or adding 
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redundancies to the input code. The Mapper module is responsible for mapping bits to 

modulation symbols. The Noise Channel module adds to the simulation effects of real 

life – the impairment to communication is a linear addition of white noise with a 

constant spectral density and a Gaussian distribution of amplitude. The Demapper 

module receives the symbols from the channel and extracts the hard bits, the LLR 

values (log likelihood ratio – is a statistical test used to compare the fit of two models) 

and the bit probabilities. The Decoder module will be in charge of the reverse operation 

of the encoder – changing the code into a set of signals. The Statistics module is 

responsible for comparing the input bits and the output bits, it takes into account the 

total amount of bits and how many of them are different. Besides it computes this 

information into different statistical parameters. 

 The software objective is to allow the user to create its own simulation 

environment and also with a rich documentation it encourages to create new functional 

modules and test them inside the whole system – analyzing the results and the 

performance of the new changes or applications. This feature of the software is a great 

ease towards the development of any new module, on this work is proposed the 

implementation of a Fine Carrier Synchronization Unit. The new module will be 

completely developed during this work following the method developed on [5] and it is 

located between the Noise Channel Module and the Demapper Module for test purposes 

– this means that it will be exactly the “first” part at the receiver’s end. In a real system 

communication it will work iteratively after the decoder. The model used to generating 

the noise is the Additive White Gaussian Noise – AWGN. 

  In this context of CSE, the Fine Carrier Synchronization is a technique that 

impacts the communication positively by providing ways to do it more accurately, 

automatically and aiming minimization of errors. With this new module it will be 

possible to decrease the negative influences from noise by calculating the offset 

parameters – frequency and phase – and correcting. The Fine Carrier Synchronization 

reacts to every bit stream used on the simulation environment by being located 

sequentially on the simulation chain – figure 7. 

 

Figure 7. Fine Carrier Synchronization Unit Module position regarding the 

basic simulation chain 
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 A proper implementation of the synchronization module can be simplified if the 

idea of how it is done is divided again into three smaller modules. As shown in figure 8, 

it is possible to recognize subtasks to achieve the objective of this module. By having 

different and identified subtasks it is obvious to create sub modules - the subtasks can 

be easily identified, it makes the design of logic simpler and more accurate. This way, 

the implemented software will respect some of its principles – reusability, flexibility 

and object orientation.  

 

Figure 8. Fine Carrier Synchronization Unit Module modularization  

 The Correlation Module will be responsible for the calculation of the correlation 

– a statistical measurement of the relationship between the two bit streams – reference 

and received symbols. The reference symbols are exactly the same bit stream provided 

by the source module. The received symbols are bit stream that are being transmitted 

and had been through the others modules – encoder, mapper and noise channel. The 

variable that allows the execution of the correlation calculation are the bit stream – 

original and received. Before the Noise Channel module they are perfectly correlated, 

since they are exactly the same. After the addiction of the noise, they are correlated – 

not perfectly anymore – once the presence of certain characteristics on the original bit 

stream will react in order to left a sort of trace of these characteristics on the received bit 

stream. 

 As the Correlation Module produces its output, the correlation value, the 

Estimation module can do its part – estimate the frequency and phase offset. This is 

possible based on the average phase of the first and the rear part of the correlation value 

– when calculating the correlation value it will be divided into two parts in order to 

provide the values needed for the estimation of the wanted parameters. 

 Once the value of frequency and phase offset are estimated and available for the 

next module, the moment when the last task of the Fine Carrier Synchronization 

Module has come. The Correction module will be responsible for the correction of the 

noisy signal received in order to decrease the error rates.  

  For sake of implementation, adaptation and tests of the Fine Carrier 

Synchronization Module, it is needed a way to provide frequency and phase offset 

inputs to CSE. This offset is going to be introduced as the last step before the Noise 

Channel Module and its only purpose is to check if the Fine Carrier Synchronization 

Module is working properly. Therefore, it will be possible to define a frequency and/or 
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phase offset input and analyze the estimation of these values and the proper correction 

of the symbols transmitted. The Add Offset module will model the frequency and phase 

offset at the transmitter side – which means that it will include an error to the bit stream. 

 During the development of this work, the focus is the implementation of the new 

modules added on figure 9 – Add Offset and Fine Carrier Synchronization. The model 

used to define parameters on both modules is available on [7]. It is also important to 

keep in mind that several changes on the Statistics module will also be done in order to 

embrace the new parameters and functionalities.  

 

Figure 9. Add Offset and Fine Synchronization Module positions regarding 

the basic simulation chain 

4 Objectives and Methodology 

This work has as purpose two main objectives: 

1. Implementation of the Fine Carrier Synchronization module in software and 

integrate it to the CSE, as well as the implementation of the same module in 

VHDL. 

2. Analysis, comparison and evaluation of the accuracy of the implemented 

software and its correspondent in VHDL. 

 To achieve the first goal, it will be taken into account the whole functionality of 

techniques of Synchronization for digital receivers. Once comprehended deeply the 

behavior, it is a certain that a better and effective approach on the implementation of 

new synchronizations modules for any communications system will be reached [8, 9]. 

With the support of the CSE, is possible to focus exactly where this work proposes: 

Fine Carrier Synchronization Unit. It is aimed the software implementation and the 

integration with the CSE as a new module. 

 The hardware implementation, in VHDL, can be defined exclusively based on 

the needs of this work; it is not – so far – part of a bigger project. The digital system 

design tool that will be used is the Xilinx ISE Design Suite V13.2 and the chosen 

language is VHDL [10, 11]. It is a powerful and versatile description language, with 
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multiple mechanisms to support design hierarchy and support for multiple levels of 

abstraction.  

 As soon as the first objective of this work is successfully accomplished, it is the 

moment when the accuracy needs to be verified; is essential that the output software and 

hardware are with a high excellence to move further with this work. There is completely 

no point in developing, spending time and effort to analyze a system that does not fulfill 

the requirements of nowadays communication systems. At this specific moment is also 

vital to re-examine new ways to improve processes and run them repeatedly - ensuring 

credibility, quality and functionality. 

 Hardware simulations and analysis are known by being extremely time-

consuming. Taking into account the fact that the evaluation and test of it are necessary 

in order to have a reliable and reasonable implementation; it must be  found a way 

to bypass this problem and prove its functionality and reliability. Therefore, the idea, to 

improve and optimize the simulations and analysis, is to have the support on this task 

with the software. The hardware and software will be implemented based on the same 

study; consequently they will be doing the exact same calculations in the end – of 

course designated to different platforms. This way, it is intended to have a higher 

number of cases on the software then on hardware but proceed with both evaluations 

together – also based on comparisons and exchange of information between the two 

implementations.  The VHDL is intended to be simulated and synthetized with the same 

framework that will be used to its development. 

 In order to achieve a deep analysis of the developed software and hardware – 

regarding the Statistical module originally included on CSE – some features will be 

added to this module with the purpose of statistically analyze the Fine Carrier 

Synchronization Module and its functionality. 

 Among the objectives of this work is the implementation of such Fine Carrier 

Synchronization Unit in hardware. At this point it is crucial to understand some 

differences between the software to the hardware implementation, for example, there is 

completely no use to the implementation of the Add Offset Module. The “real world” 

will be in charge of this task – adding some frequency and/or phase offset to the set of 

bits. By developing the exactly same thing as in software, it is possible to assure that it 

will have the same functionality; this way, all efforts must be done on the hardware 

implementation of the Fine Carrier Synchronization Module. Simulations and 

comparisons between both software and hardware implementations will make part of 

the usual day-to-day while this project is under development.  

5 Schedule 

For the TG2, which is going to be done during the subsequent months, it was defined 

five activities to be developed, implemented and analyzed between March of 2012 and 
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July 2012. The table 1 shows exactly how the schedule is defined and how it will 

proceed. 

 

Activities March April May June July 

Implementation of the Fine  Carrier 

Synchronization Unit (Software) 
X X    

Implementation of the Fine Carrier 

Synchronization Unit (VHDL) 
 X X   

Analysis, comparison and 

evaluation of the implemented 

software and VHDL 

  X X  

Writing  
  X X  

Presentation 
    X 

Table 1. Schedule for the second part of this work.  
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ANNEX B < XILINX ISE DESIGN TOOL SYTHESIS 

REPORT> 

Release 13.2 - xst O.61xd (nt64) 

Copyright (c) 1995-2011 Xilinx, Inc.  All rights reserved. 

--> Parameter TMPDIR set to xst/projnav.tmp 
  

 

Total REAL time to Xst completion: 1.00 secs 
Total CPU time to Xst completion: 0.67 secs 

 

 
========================================================================= 

*                      Synthesis Options Summary                        * 

========================================================================= 
---- Source Parameters 

Input File Name                     : "phase_estimation.prj" 

Input Format                        : mixed 
Ignore Synthesis Constraint File  : NO 

 

---- Target Parameters 
Output File Name                    : "phase_estimation" 

Output Format                       : NGC 

Target Device                       : xc6vlx75t-1-ff484 
 

---- Source Options 

Top Module Name                     : phase_estimation 
Automatic FSM Extraction          : YES 

FSM Encoding Algorithm           : Auto 

Safe Implementation                 : No 
FSM Style                           : LUT 

RAM Extraction                  : Yes 

RAM Style                           : Auto 
ROM Extraction                      : Yes 

Shift Register Extraction           : YES 

ROM Style                           : Auto 
Resource Sharing                    : YES 

Asynchronous To Synchronous   : NO 

Shift Register Minimum Size      : 2 
Use DSP Block                       : Auto 

Automatic Register Balancing     : No 

 
---- Target Options 

LUT Combining                       : Auto 

Reduce Control Sets                 : Auto 
Add IO Buffers                      : YES 

Global Maximum Fanout             : 100000 

Add Generic Clock Buffer(BUFG): 32 
Register Duplication                : YES 

Optimize Instantiated Primitives : NO 
Use Clock Enable                    : Auto 

Use Synchronous Set                 : Auto 

Use Synchronous Reset               : Auto 
Pack IO Registers into IOBs        : Auto 

Equivalent register Removal        : YES 

 

---- General Options 

Optimization Goal                   : Speed 

Optimization Effort                 : 1 
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Power Reduction                     : NO 

Keep Hierarchy                      : No 
Netlist Hierarchy                   : As_Optimized 

RTL Output                          : Yes 

Global Optimization                 : AllClockNets 
Read Cores                          : YES 

Write Timing Constraints            : NO 

Cross Clock Analysis                : NO 
Hierarchy Separator                 : / 

Bus Delimiter                       : <> 

Case Specifier                      : Maintain 
Slice Utilization Ratio             : 100 

BRAM Utilization Ratio              : 100 

DSP48 Utilization Ratio             : 100 
Auto BRAM Packing                   : NO 

Slice Utilization Ratio Delta       : 5 

 
---- Other Options 

Cores Search Directories           : {"ipcore_dir"  } 

 
========================================================================= 

 

 
========================================================================= 

*                           HDL Synthesis                               * 

========================================================================= 
 

Synthesizing Unit <phase_estimation>. 

    Summary: 
 no macro. 

Unit <phase_estimation> synthesized. 

 
Synthesizing Unit <calc_estimate_phase_offset>. 

    Summary: 

 inferred   8 Multiplier(s). 
 inferred  19 Adder/Subtractor(s). 

 inferred 660 D-type flip-flop(s). 

 inferred   4 Comparator(s). 
 inferred  16 Multiplexer(s). 

Unit <calc_estimate_phase_offset> synthesized. 

 
Synthesizing Unit <romshift2_1>. 

    Summary: 

 inferred  22 D-type flip-flop(s). 
 inferred   1 Multiplexer(s). 

 inferred   1 Finite State Machine(s). 

Unit <romshift2_1> synthesized. 
 

Synthesizing Unit <rom>. 
    Summary: 

 inferred   1 RAM(s). 

 inferred  12 D-type flip-flop(s). 

Unit <rom> synthesized. 

 

Synthesizing Unit <smartscale_generic_shift_1_1>. 
    Summary: 

 inferred   3 Adder/Subtractor(s). 

 inferred  79 D-type flip-flop(s). 
 inferred   1 Comparator(s). 

 inferred   6 Multiplexer(s). 

Unit <smartscale_generic_shift_1_1> synthesized. 
 

Synthesizing Unit <romshift2_2>. 

    Summary: 
 inferred  22 D-type flip-flop(s). 

 inferred   1 Multiplexer(s). 

 inferred   1 Finite State Machine(s). 
Unit <romshift2_2> synthesized. 

 

Synthesizing Unit <smartscale_generic_shift_1_2>. 

    Summary: 

 inferred   3 Adder/Subtractor(s). 

 inferred  96 D-type flip-flop(s). 
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 inferred   1 Comparator(s). 

 inferred   6 Multiplexer(s). 
Unit <smartscale_generic_shift_1_2> synthesized. 

 

Synthesizing Unit <frequency_phase_estimation>. 
    Summary: 

 inferred   1 Adder/Subtractor(s). 

 inferred  37 D-type flip-flop(s). 
 inferred   8 Multiplexer(s). 

Unit <frequency_phase_estimation> synthesized. 

 
Synthesizing Unit <FSM_for_fine_synchronization>. 

    Summary: 

 inferred   1 Adder/Subtractor(s). 
 inferred   9 D-type flip-flop(s). 

 inferred   2 Multiplexer(s). 

Unit <FSM_for_fine_synchronization> synthesized. 
 

Synthesizing Unit <rot_memory>. 

    Summary: 
 inferred   3 Adder/Subtractor(s). 

 inferred  55 D-type flip-flop(s). 

 inferred  11 Multiplexer(s). 
Unit <rot_memory> synthesized. 

 

Synthesizing Unit <frequency_corrector>. 
    Summary: 

 inferred   2 Adder/Subtractor(s). 

 inferred  77 D-type flip-flop(s). 
 inferred   2 Comparator(s). 

 inferred   9 Multiplexer(s). 

Unit <frequency_corrector> synthesized. 
 

Synthesizing Unit <phase_corrector>. 

    Summary: 
 inferred   4 Multiplier(s). 

 inferred   4 Adder/Subtractor(s). 

 inferred 233 D-type flip-flop(s). 
 inferred   2 Multiplexer(s). 

Unit <phase_corrector> synthesized. 

 
========================================================================= 

HDL Synthesis Report 

 
Macro Statistics 

# RAMs                                                   : 2 

 4096x9-bit single-port Read Only RAM                   : 2 
# Multipliers                                            : 12 

 18x18-bit multiplier                                    : 4 
 9x9-bit multiplier                                      : 8 

# Adders/Subtractors                                     : 36 

 10-bit adder                                            : 2 

 12-bit adder                                            : 1 

 12-bit addsub                                           : 1 

 13-bit adder                                            : 2 
 13-bit addsub                                           : 1 

 13-bit subtractor                                       : 2 

 19-bit adder                                            : 1 
 19-bit subtractor                                       : 1 

 23-bit adder                                            : 1 

 29-bit adder                                            : 10 
 29-bit subtractor                                       : 2 

 30-bit adder                                            : 2 

 38-bit adder                                            : 1 
 38-bit subtractor                                       : 1 

 5-bit adder                                             : 1 

 5-bit subtractor                                        : 1 
 6-bit subtractor                                        : 1 

 7-bit adder                                             : 4 

 9-bit subtractor                                        : 1 

# Registers                                              : 99 

 1-bit register                                          : 31 

 10-bit register                                         : 1 
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 12-bit register                                         : 6 

 13-bit register                                         : 7 
 18-bit register                                         : 6 

 19-bit register                                         : 2 

 23-bit register                                         : 2 
 29-bit register                                         : 12 

 30-bit register                                         : 4 

 36-bit register                                         : 4 
 38-bit register                                         : 4 

 5-bit register                                          : 2 

 6-bit register                                          : 6 
 9-bit register                                          : 12 

# Comparators                                            : 8 

 13-bit comparator greater                              : 2 
 13-bit comparator lessequal                            : 3 

 13-bit comparator not equal                            : 1 

 5-bit comparator greater                                : 1 
 6-bit comparator greater                                : 1 

# Multiplexers                                           : 62 

 1-bit 2-to-1 multiplexer                                : 26 
 10-bit 2-to-1 multiplexer                               : 2 

 12-bit 2-to-1 multiplexer                               : 2 

 13-bit 2-to-1 multiplexer                               : 8 
 18-bit 2-to-1 multiplexer                               : 8 

 23-bit 2-to-1 multiplexer                               : 3 

 30-bit 2-to-1 multiplexer                               : 2 
 38-bit 2-to-1 multiplexer                               : 2 

 5-bit 2-to-1 multiplexer                                : 3 

 6-bit 2-to-1 multiplexer                                : 6 
# FSMs                                                 : 2 

# Xors                                                   : 4 

 1-bit xor2                                              : 4 
 

========================================================================= 

INFO:Xst:1767 - HDL ADVISOR - Resource sharing has identified that some arithmetic operations in this design can share the 
same physical resources for reduced device utilization. For improved clock frequency you may try to disable resource sharing. 

 

========================================================================= 
*                       Advanced HDL Synthesis                          * 

========================================================================= 

 
Reading core <ipcore_dir/divider.ngc>. 

Reading core <ipcore_dir/Rot_symbols.ngc>. 

Reading core <ipcore_dir/SCL_LUT_9.ngc>. 
Loading core <divider> for timing and area information for instance <part8>. 

Loading core <Rot_symbols> for timing and area information for instance <part11>. 

Loading core <SCL_LUT_9> for timing and area information for instance <dds>. 
 

Synthesizing (advanced) Unit <FSM_for_fine_synchronization>. 
The following registers are absorbed into counter <pipe>: 1 register on signal <pipe>. 

Unit <FSM_for_fine_synchronization> synthesized (advanced). 

 

Synthesizing (advanced) Unit <calc_estimate_phase_offset>. 

The following registers are absorbed into counter <index>: 1 register on signal <index>. 

The following registers are absorbed into accumulator <ac_0>: 1 register on signal <ac_0>. 
The following registers are absorbed into accumulator <bd_0>: 1 register on signal <bd_0>. 

The following registers are absorbed into accumulator <ad_0>: 1 register on signal <ad_0>. 

The following registers are absorbed into accumulator <ac_1>: 1 register on signal <ac_1>. 
The following registers are absorbed into accumulator <bc_0>: 1 register on signal <bc_0>. 

The following registers are absorbed into accumulator <bd_1>: 1 register on signal <bd_1>. 

The following registers are absorbed into accumulator <ad_1>: 1 register on signal <ad_1>. 
The following registers are absorbed into accumulator <bc_1>: 1 register on signal <bc_1>. 

Unit <calc_estimate_phase_offset> synthesized (advanced). 

 
Synthesizing (advanced) Unit <frequency_corrector>. 

The following registers are absorbed into counter <index>: 1 register on signal <index>. 

Unit <frequency_corrector> synthesized (advanced). 
 

Synthesizing (advanced) Unit <phase_corrector>. 

 Multiplier <Mmult_r_im_reg[2][8]_cos_reg[8]_MuLt_2_OUT> in block <phase_corrector> and adder/subtractor 

<Madd_im_temp1[17]_im_temp2_reg[17]_add_7_OUT> in block <phase_corrector> are combined into a 

MAC<Maddsub_r_im_reg[2][8]_cos_reg[8]_MuLt_2_OUT>. 
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 The following registers are also absorbed by the MAC: <im_temp1> in block <phase_corrector>, <r_im_out_s1> in 

block <phase_corrector>. 
 Multiplier <Mmult_r_re_reg[2][8]_cos_reg[8]_MuLt_4_OUT> in block <phase_corrector> and adder/subtractor 

<Msub_re_temp1[17]_re_temp2_reg[17]_sub_7_OUT<18:0>> in block <phase_corrector> are combined into a 

MAC<Maddsub_r_re_reg[2][8]_cos_reg[8]_MuLt_4_OUT>. 
 

 The following registers are also absorbed by the MAC: <re_temp1> in block <phase_corrector>, <r_re_out_s1> in block 

<phase_corrector>. 
 Found pipelined multiplier on signal <r_im_reg[1][8]_sin_value[8]_MuLt_5_OUT>: 

  - 2 pipeline level(s) found in a register connected to the multiplier macro output. 

  Pushing register(s) into the multiplier macro. 
 Found pipelined multiplier on signal <r_re_reg[1][8]_sin_value[8]_MuLt_3_OUT>: 

  - 2 pipeline level(s) found in a register connected to the multiplier macro output. 

  Pushing register(s) into the multiplier macro. 
Unit <phase_corrector> synthesized (advanced). 

 

Synthesizing (advanced) Unit <romshift2_1>. 
INFO:Xst:3226 - The RAM <part4/Mram_douta> will be implemented as a BLOCK RAM, absorbing the following register(s): 

<scaled_radiance> 

    ----------------------------------------------------------------------- 
    | ram_type           | Block                                 |          | 

    ----------------------------------------------------------------------- 

    | Port A                                                                | 
    |     aspect ratio   | 4096-word x 9-bit                     |          | 

    |     mode             | write-first                           |          | 

    |     clkA              | connected to signal <clk>            | rise   | 
    |     enA               | connected to internal node            | high  | 

    |     weA              | connected to signal <GND>           | high  | 

    |     addrA            | connected to signal <part4/r_addra>  |          | 
    |     diA                | connected to signal <GND>            |          | 

    |     doA               | connected to signal <scaled_radiance>  |          | 

    |     dorstA           | connected to signal <srst>            | high  | 
    | reset value         | 000000000                                      | 

    ----------------------------------------------------------------------- 

    | optimization       | speed                                 |          | 
    ----------------------------------------------------------------------- 

Unit <romshift2_1> synthesized (advanced). 

 
Synthesizing (advanced) Unit <romshift2_2>. 

INFO:Xst:3226 - The RAM <part4/Mram_douta> will be implemented as a BLOCK RAM, absorbing the following register(s): 

<scaled_radiance> 
    ----------------------------------------------------------------------- 

    | ram_type           | Block                                 |          | 

    ----------------------------------------------------------------------- 
    | Port A                                                                | 

    |     aspect ratio    | 4096-word x 9-bit                     |          | 

    |     mode            | write-first                          |          | 
    |     clkA            | connected to signal <clk>            | rise   | 

    |     enA             | connected to internal node           | high  | 
    |     weA             | connected to signal <GND>            | high  | 

    |     addrA           | connected to signal <part4/r_addra>  |          | 

    |     diA            | connected to signal <GND>            |          | 

    |     doA             | connected to signal <scaled_radiance>  |          | 

    |     dorstA          | connected to signal <srst>           | high  | 

    | reset value         | 000000000                                       | 
    ----------------------------------------------------------------------- 

    | optimization       | speed                                 |          | 

    ----------------------------------------------------------------------- 
Unit <romshift2_2> synthesized (advanced). 

 

Synthesizing (advanced) Unit <rot_memory>. 
The following registers are absorbed into counter <addrb_sig>: 1 register on signal <addrb_sig>. 

The following registers are absorbed into counter <addra_sig>: 1 register on signal <addra_sig>. 

Unit <rot_memory> synthesized (advanced). 
 

========================================================================= 

Advanced HDL Synthesis Report 
 

Macro Statistics 

# RAMs                                                   : 2 

 4096x9-bit single-port block Read Only RAM             : 2 

# MACs                                                   : 2 

 9x9-to-19-bit MAC                                       : 2 
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# Multipliers                                            : 10 

 18x18-bit multiplier                                    : 4 
 9x9-bit multiplier                                      : 4 

 9x9-bit registered multiplier                          : 2 

# Adders/Subtractors                                     : 21 
 10-bit adder                                            : 2 

 13-bit addsub                                           : 1 

 13-bit subtractor                                       : 2 
 23-bit adder                                            : 1 

 29-bit adder                                            : 2 

 29-bit subtractor                                       : 2 
 30-bit adder                                            : 2 

 38-bit adder                                            : 1 

 38-bit subtractor                                       : 1 
 5-bit subtractor                                        : 1 

 6-bit subtractor                                        : 1 

 7-bit adder                                             : 4 
 9-bit subtractor                                        : 1 

# Counters                                               : 5 

 12-bit up counter                                       : 1 
 12-bit updown counter                                   : 1 

 13-bit up counter                                       : 2 

 5-bit up counter                                        : 1 
# Accumulators                                           : 8 

 29-bit up accumulator                                   : 8 

# Registers                                              : 863 
 Flip-Flops                                              : 863 

# Comparators                                            : 8 

 13-bit comparator greater                              : 2 
 13-bit comparator lessequal                            : 3 

 13-bit comparator not equal                            : 1 

 5-bit comparator greater                                : 1 
 6-bit comparator greater                                : 1 

# Multiplexers                                           : 67 

 1-bit 2-to-1 multiplexer                                : 37 
 10-bit 2-to-1 multiplexer                               : 2 

 13-bit 2-to-1 multiplexer                               : 5 

 18-bit 2-to-1 multiplexer                               : 8 
 23-bit 2-to-1 multiplexer                               : 3 

 30-bit 2-to-1 multiplexer                               : 2 

 38-bit 2-to-1 multiplexer                               : 2 
 5-bit 2-to-1 multiplexer                                : 2 

 6-bit 2-to-1 multiplexer                                : 6 

# FSMs                                                   : 2 
# Xors                                                   : 4 

 1-bit xor2                                              : 4 

 
========================================================================= 

 
========================================================================= 

*                         Low Level Synthesis                           * 

========================================================================= 

WARNING:Xst:1710 - FF/Latch <frequency_offset_real_0> (without init value) has a constant value of 0 in block 

<frequency_phase_estimation>. This FF/Latch will be trimmed during the optimization process. 

WARNING:Xst:1426 - The value init of the FF/Latch last hinder the constant cleaning in the block rot_memory. 
   You should achieve better results by setting this init to 1. 

Analyzing FSM <MFsm> for best encoding. 

Optimizing FSM <part3/FSM_0> on signal <cs[1:2]> with user encoding. 
-------------------- 

 State   | Encoding 

-------------------- 
 ready   | 00 

 shift   | 01 

 angle   | 10 
 output  | 11 

-------------------- 

Analyzing FSM <MFsm> for best encoding. 
Optimizing FSM <part6/FSM_1> on signal <cs[1:2]> with user encoding. 

-------------------- 

 State   | Encoding 

-------------------- 

 ready   | 00 

 shift  | 01 
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 angle   | 10 

 output  | 11 
-------------------- 

 

Optimizing unit <phase_estimation> ... 
 

Optimizing unit <calc_estimate_phase_offset> ... 

 
Optimizing unit <frequency_phase_estimation> ... 

 

Optimizing unit <rot_memory> ... 
 

Optimizing unit <frequency_corrector> ... 

 
Optimizing unit <romshift2_1> ... 

 

Optimizing unit <smartscale_generic_shift_1_1> ... 
 

Optimizing unit <romshift2_2> ... 

 
Optimizing unit <smartscale_generic_shift_1_2> ... 

 

Optimizing unit <phase_corrector> ... 
WARNING:Xst:2677 - Node <part12/total_sum_22> of sequential type is unconnected in block <phase_estimation>. 

WARNING:Xst:2677 - Node <part12/total_sum_12> of sequential type is unconnected in block <phase_estimation>. 

WARNING:Xst:2677 - Node <part12/total_sum_11> of sequential type is unconnected in block <phase_estimation>. 
WARNING:Xst:2677 - Node <part12/total_sum_10> of sequential type is unconnected in block <phase_estimation>. 

WARNING:Xst:2677 - Node <part12/total_sum_9> of sequential type is unconnected in block <phase_estimation>. 

WARNING:Xst:2677 - Node <part12/total_sum_8> of sequential type is unconnected in block <phase_estimation>. 
WARNING:Xst:2677 - Node <part12/total_sum_7> of sequential type is unconnected in block <phase_estimation>. 

WARNING:Xst:2677 - Node <part12/total_sum_6> of sequential type is unconnected in block <phase_estimation>. 

WARNING:Xst:2677 - Node <part12/total_sum_5> of sequential type is unconnected in block <phase_estimation>. 
WARNING:Xst:2677 - Node <part12/total_sum_4> of sequential type is unconnected in block <phase_estimation>. 

WARNING:Xst:2677 - Node <part12/total_sum_3> of sequential type is unconnected in block <phase_estimation>. 

WARNING:Xst:2677 - Node <part12/total_sum_2> of sequential type is unconnected in block <phase_estimation>. 
WARNING:Xst:2677 - Node <part12/total_sum_1> of sequential type is unconnected in block <phase_estimation>. 

WARNING:Xst:2677 - Node <part12/total_sum_0> of sequential type is unconnected in block <phase_estimation>. 

WARNING:Xst:2677 - Node <part12/total_sum_sig_22> of sequential type is unconnected in block <phase_estimation>. 
WARNING:Xst:1710 - FF/Latch <part12/index_12> (without init value) has a constant value of 0 in block <phase_estimation>. 

This FF/Latch will be trimmed during the optimization process. 

INFO:Xst:2261 - The FF/Latch <part9/phase_valid_bit> in Unit <phase_estimation> is equivalent to the following FF/Latch, which 
will be removed : <part9/freq_valid_bit>  

INFO:Xst:2261 - The FF/Latch <part12/valid_estimation_output> in Unit <phase_estimation> is equivalent to the following 

FF/Latch, which will be removed : <part12/pipe>  
INFO:Xst:2261 - The FF/Latch <part7/division_ready> in Unit <phase_estimation> is equivalent to the following 2 FFs/Latches, 

which will be removed : <part7/frequency_offset_estimation_valid> <part7/phase_offset_estimation_valid>  

 
Mapping all equations... 

Building and optimizing final netlist ... 
Found area constraint ratio of 100 (+ 5) on block phase_estimation, actual ratio is 3. 

WARNING:Xst:1426 - The value init of the FF/Latch part11/last hinder the constant cleaning in the block phase_estimation. 

   You should achieve better results by setting this init to 1. 

 

Final Macro Processing ... 

 
Processing Unit <phase_estimation> : 

INFO:Xst:741 - HDL ADVISOR - A 6-bit shift register was found for signal <part13/data_v_in_s_5> and currently occupies 6 logic 

cells (3 slices). Removing the set/reset logic would take advantage of SRL32 (and derived) primitives and reduce this to 1 logic cells 
(1 slices). Evaluate if the set/reset can be removed for this simple shift register. The majority of simple pipeline structures do not 

need to be set/reset operationally. 

Unit <phase_estimation> processed. 
 

========================================================================= 

Final Register Report 
 

Macro Statistics 

# Registers                                            : 941 
 Flip-Flops                                            : 941 

 

========================================================================= 

 

========================================================================= 

*                           Partition Report                            * 
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========================================================================= 

 
Partition Implementation Status 

------------------------------- 

 
  No Partitions were found in this design. 

 

------------------------------- 
 

========================================================================= 

*                            Design Summary                             * 
========================================================================= 

 

Top Level Output File Name         : phase_estimation.ngc 
 

Primitive and Black Box Usage: 

------------------------------ 
# BELS                              : 3454 

#      GND                          : 4 

#      INV                         : 82 
#      LUT1                         : 8 

#      LUT2                         : 678 

#      LUT3                         : 551 
#      LUT4                         : 89 

#      LUT5                         : 48 

#      LUT6                         : 55 
#      MULT_AND                     : 11 

#      MUXCY                        : 965 

#      VCC                          : 4 
#      XORCY                        : 959 

# FlipFlops/Latches                 : 1943 

#      FD                           : 986 
#      FDE                          : 51 

#      FDR                          : 96 

#      FDRE                         : 808 
#      FDS                          : 2 

# RAMS                              : 5 

#      RAMB18E1                     : 1 
#      RAMB36E1                     : 4 

# Shift Registers                   : 25 

#      SRLC16E                      : 23 
#      SRLC32E                      : 2 

# Clock Buffers                     : 1 

#      BUFGP                        : 1 
# IO Buffers                        : 103 

#      IBUF                         : 52 

#      OBUF                         : 51 
# DSPs                              : 12 

#      DSP48E1                      : 12 
 

Device utilization summary: 

--------------------------- 

 

Selected Device : 6vlx75tff484-1  

 
 

Slice Logic Utilization:  

 
 Number of Slice Registers:             1943  out of  93120     2%   

 Number of Slice LUTs:                  1536  out of  46560     3%   

    Number used as Logic:               1511  out of  46560     3%   
    Number used as Memory:                25  out of  16720     0%   

       Number used as SRL:                25 

 
Slice Logic Distribution:  

 Number of LUT Flip Flop pairs used:    2349 

   Number with an unused Flip Flop:      406  out of   2349    17%   
   Number with an unused LUT:            813  out of   2349    34%   

   Number of fully used LUT-FF pairs:   1130  out of   2349    48%   

   Number of unique control sets:         30 

 

IO Utilization:  

 Number of IOs:                           104 
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 Number of bonded IOBs:                  104  out of    240    43%   

 
Specific Feature Utilization: 

 Number of Block RAM/FIFO:                 5  out of    156     3%   

    Number using Block RAM only:           5 
 Number of BUFG/BUFGCTRLs:                1  out of     32     3%   

 Number of DSP48E1s:                      12  out of    288     4%   

 
--------------------------- 

Partition Resource Summary: 

--------------------------- 
 

  No Partitions were found in this design. 

 
--------------------------- 

 

 
========================================================================= 

Timing Report 

 
Clock Information: 

------------------ 

-----------------------------------+------------------------+-------+ 
Clock Signal                       | Clock buffer(FF name)   | Load  | 

-----------------------------------+------------------------+-------+ 

clk                                 | BUFGP                    | 1981  | 
-----------------------------------+------------------------+-------+ 

 

Timing Summary: 
--------------- 

Speed Grade: -1 

 
   Minimum period: 5.109ns (Maximum Frequency: 195.733MHz) 

   Minimum input arrival time before clock: 5.938ns 

   Maximum output required time after clock: 0.783ns 
   Maximum combinational path delay: No path found 

 

Timing Details: 
--------------- 

All values displayed in nanoseconds (ns) 

 
========================================================================= 

Timing constraint: Default period analysis for Clock 'clk' 

  Clock period: 5.109ns (frequency: 195.733MHz) 
  Total number of paths / destination ports: 100385 / 3805 

------------------------------------------------------------------------- 

Delay:               5.109ns (Levels of Logic = 1) 
  Source:            part1/phase_offset_estimation_1_imag_22 (FF) 

  Destination:       part1/Mmux_phase_offset_estimation_0_real[22]_phase_offset_estimation_0_real[28]_mux_49_OUT_rs (DSP) 
  Source Clock:      clk rising 

  Destination Clock: clk rising 

 

  Data Path: part1/phase_offset_estimation_1_imag_22 to 

part1/Mmux_phase_offset_estimation_0_real[22]_phase_offset_estimation_0_real[28]_mux_49_OUT_rs 

                                Gate     Net 
    Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 

    ----------------------------------------  ------------ 

     FDRE:C->Q             3   0.375   0.595  part1/phase_offset_estimation_1_imag_22 (part1/phase_offset_estimation_1_imag_22) 
     LUT3:I0->O           16   0.068   0.497  

part1/Mmux_phase_offset_estimation_0_imag[22]_phase_offset_estimation_0_imag[28]_mux_47_OUT_rs_B<28>1 

(part1/Mmux_phase_offset_estimation_0_imag[22]_phase_offset_estimation_0_imag[28]_mux_47_OUT_rs_B<28>) 
     DSP48E1:A17               3.574          

part1/Mmux_phase_offset_estimation_0_imag[22]_phase_offset_estimation_0_imag[28]_mux_47_OUT_rs 

    ---------------------------------------- 
    Total                      5.109ns (4.017ns logic, 1.092ns route) 

                                       (78.6% logic, 21.4% route) 

 
========================================================================= 

Timing constraint: Default OFFSET IN BEFORE for Clock 'clk' 

  Total number of paths / destination ports: 171576 / 1824 

------------------------------------------------------------------------- 

Offset:              5.938ns (Levels of Logic = 32) 

  Source:            reference_symb_real<8> (PAD) 
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  Destination:       part1/bc_1_28 (FF) 

  Destination Clock: clk rising 
 

  Data Path: reference_symb_real<8> to part1/bc_1_28 

                                Gate     Net 
    Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 

    ----------------------------------------  ------------ 

     IBUF:I->O            34   0.003   0.552  reference_symb_real_8_IBUF (reference_symb_real_8_IBUF) 
     DSP48E1:A8->P0        2   3.826   0.423  part1/Mmult_received_symb_real[8]_reference_symb_real[8]_MuLt_3_OUT 

(part1/received_symb_real[8]_reference_symb_real[8]_MuLt_3_OUT<0>) 

     LUT2:I1->O            1   0.068   0.000  part1/Maccum_ac_0_lut<0> (part1/Maccum_ac_0_lut<0>) 
     MUXCY:S->O            1   0.290   0.000  part1/Maccum_ac_0_cy<0> (part1/Maccum_ac_0_cy<0>) 

     MUXCY:CI->O           1   0.020   0.000  part1/Maccum_ac_0_cy<1> (part1/Maccum_ac_0_cy<1>) 

     MUXCY:CI->O           1   0.020   0.000  part1/Maccum_ac_0_cy<2> (part1/Maccum_ac_0_cy<2>) 
     MUXCY:CI->O           1   0.020   0.000  part1/Maccum_ac_0_cy<3> (part1/Maccum_ac_0_cy<3>) 

     MUXCY:CI->O           1   0.020   0.000  part1/Maccum_ac_0_cy<4> (part1/Maccum_ac_0_cy<4>) 

     MUXCY:CI->O           1   0.020   0.000  part1/Maccum_ac_0_cy<5> (part1/Maccum_ac_0_cy<5>) 
     MUXCY:CI->O           1   0.020   0.000  part1/Maccum_ac_0_cy<6> (part1/Maccum_ac_0_cy<6>) 

     MUXCY:CI->O           1   0.020   0.000  part1/Maccum_ac_0_cy<7> (part1/Maccum_ac_0_cy<7>) 

     MUXCY:CI->O           1   0.020   0.000  part1/Maccum_ac_0_cy<8> (part1/Maccum_ac_0_cy<8>) 
     MUXCY:CI->O           1   0.020   0.000  part1/Maccum_ac_0_cy<9> (part1/Maccum_ac_0_cy<9>) 

     MUXCY:CI->O           1   0.020   0.000  part1/Maccum_ac_0_cy<10> (part1/Maccum_ac_0_cy<10>) 

     MUXCY:CI->O           1   0.020   0.000  part1/Maccum_ac_0_cy<11> (part1/Maccum_ac_0_cy<11>) 
     MUXCY:CI->O           1   0.020   0.000  part1/Maccum_ac_0_cy<12> (part1/Maccum_ac_0_cy<12>) 

     MUXCY:CI->O           1   0.020   0.000  part1/Maccum_ac_0_cy<13> (part1/Maccum_ac_0_cy<13>) 

     MUXCY:CI->O           1   0.020   0.000  part1/Maccum_ac_0_cy<14> (part1/Maccum_ac_0_cy<14>) 
     MUXCY:CI->O           1   0.020   0.000  part1/Maccum_ac_0_cy<15> (part1/Maccum_ac_0_cy<15>) 

     MUXCY:CI->O           1   0.019   0.000  part1/Maccum_ac_0_cy<16> (part1/Maccum_ac_0_cy<16>) 

     MUXCY:CI->O           1   0.019   0.000  part1/Maccum_ac_0_cy<17> (part1/Maccum_ac_0_cy<17>) 
     MUXCY:CI->O           1   0.019   0.000  part1/Maccum_ac_0_cy<18> (part1/Maccum_ac_0_cy<18>) 

     MUXCY:CI->O           1   0.019   0.000  part1/Maccum_ac_0_cy<19> (part1/Maccum_ac_0_cy<19>) 

     MUXCY:CI->O           1   0.019   0.000  part1/Maccum_ac_0_cy<20> (part1/Maccum_ac_0_cy<20>) 
     MUXCY:CI->O           1   0.019   0.000  part1/Maccum_ac_0_cy<21> (part1/Maccum_ac_0_cy<21>) 

     MUXCY:CI->O           1   0.019   0.000  part1/Maccum_ac_0_cy<22> (part1/Maccum_ac_0_cy<22>) 

     MUXCY:CI->O           1   0.019   0.000  part1/Maccum_ac_0_cy<23> (part1/Maccum_ac_0_cy<23>) 
     MUXCY:CI->O           1   0.019   0.000  part1/Maccum_ac_0_cy<24> (part1/Maccum_ac_0_cy<24>) 

     MUXCY:CI->O           1   0.019   0.000  part1/Maccum_ac_0_cy<25> (part1/Maccum_ac_0_cy<25>) 

     MUXCY:CI->O           1   0.019   0.000  part1/Maccum_ac_0_cy<26> (part1/Maccum_ac_0_cy<26>) 
     MUXCY:CI->O           0   0.019   0.000  part1/Maccum_ac_0_cy<27> (part1/Maccum_ac_0_cy<27>) 

     XORCY:CI->O           1   0.239   0.000  part1/Maccum_ac_0_xor<28> (part1/Result<28>1) 

     FDRE:D                    0.011          part1/ac_0_28 
    ---------------------------------------- 

    Total                      5.938ns (4.963ns logic, 0.975ns route) 

                                       (83.6% logic, 16.4% route) 
 

========================================================================= 

Timing constraint: Default OFFSET OUT AFTER for Clock 'clk' 
  Total number of paths / destination ports: 51 / 51 

------------------------------------------------------------------------- 
Offset:              0.783ns (Levels of Logic = 2) 

  Source:            part8/blk00000003/blk00000668 (FF) 

  Destination:       frequency_quotient_offset_real_output<8> (PAD) 

  Source Clock:      clk rising 

 

  Data Path: part8/blk00000003/blk00000668 to frequency_quotient_offset_real_output<8> 
                                Gate     Net 

    Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 

    ----------------------------------------  ------------ 
     FD:C->Q               2   0.375   0.405  blk00000668 (quotient(8)) 

     end scope: 'part8/blk00000003:quotient(8)' 

     end scope: 'part8:quotient<8>' 
     OBUF:I->O                 0.003          frequency_quotient_offset_real_output_8_OBUF (frequency_quotient_offset_real_output<8>) 

    ---------------------------------------- 

    Total                      0.783ns (0.378ns logic, 0.405ns route) 
                                       (48.3% logic, 51.7% route) 

 

Total REAL time to Xst completion: 53.00 secs 
Total CPU time to Xst completion: 52.72 secs 

  

-->  

 

Total memory usage is 323104 kilobytes 
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Number of errors   :    0 (   0 filtered) 

Number of warnings :   60 (   0 filtered) 
Number of infos    :   10 (   0 filtered) 
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ANNEX C < RESUMO TG2:  UNIDADE DE 

SINCRONIZAÇÃO FINA DE PORTADORAS PARA 

SISTEMAS DE SINCRONIZAÇÃO TURBO > 
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Unidade de Sincronização Fina de Portadoras para 

Sistemas de Sincronização Turbo 

Leonardo Hax Damiani, Uwe Wasenmüller (co-advisor),                                                      

Alexandre Carissimi (advisor) 

Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS) 

Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brasil 
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Abstract. The popularity of the wireless devices comes from several 

advantages related to this type of communication, i.e. mobility, easy 

installation and less cost for infrastructure. Hence it is vital to assure a 

reliable communication where errors can be autonomously fixed and 

information responsibly secured. The transmission over wireless channel 

results in frequency and phase offsets; additionally the received symbols are 

corrupted with noise. Therefore the estimation of the actual frequency and 

phase offset becomes a very critical task with high impact on communications 

performance; synchronization is a crucial part of each receiver in digital 

communication systems. In this context, throughout this work is proposed an 

implementation of a Fine Carrier Synchronization Unit that aims a better 

communication quality and lower its error rate. 

Resumo. A popularidade de equipamentos sem fio decorre de uma série de 

vantagens relacionadas a este tipo de comunicação, i.e. mobilidade, fácil 

instalação e menor custo para infra-estrutura. Consequentemente é vital 

garantir-se uma comunicação confiável onde erros podem ser 

automaticamente corrigidos e a informação responsavelmente segura. A 

transmissão sobre canais sem fio resulta em deslocamentos de frequência e 

fase; além disso, os símbolos recebidos podem ser corrompidos com ruído. 

Portanto uma estimativa dos valores de deslocamento reais de frequência e 

fase se torna uma tarefa fundamental com grande impacto no desempenho da 

comunicação; sincronização é uma parte crucial em cada receptor em 

sistemas de comunicação digital. Nesse contexto, ao longo deste trabalho é 

proposto a implementação de uma Unidade de Sincronização Fina de 

Portadoras que visa melhorar a qualidade da comunicação e diminuir a taxa 

de erros da mesma. 
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1 Introdução  

Com o aumento da mobilidade, existe uma crescente necessidade das pessoas em se 

comunicar e ter acesso à informação independentemente da localização pessoal ou da 

informação. Tamanha importância é devido a possibilidade de que qualquer ligação 

telefônica pode ser essencial o suficiente para salvar uma vida, fechar um acordo 

empresarial ou prover horas de lazer. Cada um desses exemplos de comunicação móveis 

propõe desafios que somente podem ser atingidos com um eficiente e confiável sistema 

de comunicação sem fio. 

 A sincronização e codificação/decodificação de canal de são partes vitais em 

todos receptores digitais para comunicação sem fio – através destas técnicas é possível 

reduzir os erros e diminuir a potência de transmissão [MENGALI, 1997].. A 

popularização de dispositivos que utilizam tecnologias sem fio de transmissão de dados 

exige maneiras eficientes e responsáveis para corrigir erros que ocorrem neste tipo de 

transmissão. Ao usar o canal sem fio é normal que os dados recebidos estejam 

corrompidos com desvios de tempo e deslocamentos de fase e frequência, entretanto, 

para se atingir uma comunicação de qualidade estes erros devem ser corrigidos. A tarefa 

de sincronização é juntamente com o decodificador de canal, eliminar as influências 

negativas do desvio de tempo e deslocamento de fase e frequência [MEYR, 1997]. 

 Em adição à detecção e decodificação, um receptor tem também que executar a 

sincronização; isto é, estimar parâmetros como a fase da portadora e a taxa de 

probabilidade máxima (maximum likelihood ratio). A sincronização é uma tarefa muito 

desafiadora em receptores turbo – uma vez que eles operam com baixa relação sinal-

ruído (SNR) e, portanto, sincronizadores clássicos podem falhar no momento de 

fornecer parâmetros estimados confiáveis. A sincronização turbo baseia-se no 

beneficiamento a partir da informação disponível em receptores turbo a fim de melhorar 

a qualidade de estimações entregues pelo sincronizador [REDL, 1995]. 

 Este trabalho será focado na sincronização de frequência e fase com modulação 

linear, ou seja, modulação por deslocamento de fase (Quadrature Phase Shift Keying – 

QPSK). Considera-se que a sincronização de tempo é adequadamente realizada antes. O 

sistema visa o padrão Digital Video Broadcast – Return Channel via satélite (DVB-

RCS), que é um padrão de satélite de comunicação ETSI [ETSI, 2012]. 

 O software Creonic Simulation Environment – CSE foi desenvolvido dentro de 

um projeto do Grupo de Pesquisa em Sistemas de Microeletrônica da Universidade 

Técnica de Kaiserslautern. O objetivo do CSE é permitir a integração de ambientes 

complexos e simulações, focado principalmente em decodificadores. A simulação e 

implementação da tarefa de sincronização para sistemas de comunicação têm 

importância vital em todo o projeto, além do fato conhecido de redução do tempo e 

custo de desenvolvimento. 
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 O CSE é o ponto de partida para o desnevolvimento deste trabalho. Novas 

características destinadas a Unidade de Sincronização Fina de Portadores serão 

desenvolvidas, testadas e introduzidas no ambiente de simulação já existente. 

Implementações de hardware em Very High Speed Integrated Circuit (VHSIC) 

Hardware Description Language (VHDL) [VHDL, 2012] desses novos recursos 

também são metas desse trabalho. Será possível avaliar ambos – software e hardware – 

de acordo com a teoria dos sistemas de comunicação e ter uma análise completa e de 

qualidade de ambos. 

 Portanto, este trabalho objetiva a implementação de uma Unidade de 

Sincronização Fina de Portadoras em software e integrá-la ao CSE, e paralelamente a 

implementacão da mesma unidade em VHDL. Além disso, uma análise, comparação e 

avaliação da qualidade e precisão do software e VHDL desenvolvidos.  

 O restante do trabalho está estruturado da maneira que segue. Na seção 2 uma 

breve revisão dos conceitos necessários para compreensão do trabalho. A seção 3 

apresenta o software CSE, suas funcionalidades, vantagens de tomá-lo como base para o 

trabalho e também como e onde a Unidade de Sincronização Fina de Portadoras se 

encaixa dentro do CSE. A seção 4 apresenta detalhes de implementação, bem como a 

metodologia utilizada durante a mesma. A seção 5 mostra a parte de validação referente 

aquilo que foi implementado anteriormente e desafios encontrados durante a mesma. A 

seção 6 abrange as conclusões atingidas após a realização do trabalho e aborda também 

possíveis futuros trabalhos.  

2 Conceitos Básicos 

 Neste momento, é importante compreender exatamente o que envolve sistemas 

de sincronização, o porquê e a causa pelas quais erros acontecem. Sincronização 

consiste na estimativa de parâmetros desconhecidos de desvios de frequência e fase, e a 

remoção de todos os possíveis efeitos prejudiciais introduzidos por estes parâmetros. 

 Em toda transmissão haverá um mapeador, que é responsável por converter o 

fluxo de bits binários em símbolos modulados. Modulados significa dizer que os bits 

vão ser organizados em um alfabeto, que define quantos símbolos estão disponíveis e 

como eles funcionam neste "idioma" em que se comunicam – este alfabeto deve ser 

previamente definido e conhecido por ambas as extremidades. A comunicação pode ser 

representada em um plano complexo e, por exemplo, uma modulação por deslocamento 

de fase em quadratura (Quadrature Phase Shift Keying – QPSK) tem um alfabeto 

definido com 4 símbolos (00, 01, 10 e 11), igualmente divididas no plano. 

Consequentemente, é natural entender que para cada 90° ou π/2 um símbolo será 

representado. É comum se referir a esta organização de símbolos em um plano 

complexo como diagrama de constelação (Figura 1). Existem várias modulações 

disponíveis para uso atualmente, por exemplo, BPSK, QPSK, 8PSK, 16-QAM, 64-

QAM, etc [TANENBAUM, 2003]. 



105 

 

 

 

Figura 1. Diagrama de constelação para BPSK (esquerda) e QPSK (direita) utilizando 

codificação gray 

 A modulação funcionaria perfeitamente se não existissem erros, ruídos e 

degradação de sinal. Para entender como os erros ocorrem é importante ressaltar que 

com os erros esses símbolos não irão se encontrar no local esperado. Devido aos ruídos, 

os símbolos, identificados por pontos da figura 1, deslocam sua posição no plano 

complexo se comparada a posição original. Este deslocamento nem sempre acarretará 

falhas na comunicação – se o deslocamento estiver dentro de um limite aceitável ele 

continua resultando em uma correta interpretação do mesmo e, portanto, sem defeitos. 

 O problema se agrava quando este deslocamento é maior que a faixa de variação 

aceitável. A comparação entre ambientes com ruído aceitável (esquerda) e um além do 

aceitável (direita) é apresentada na figura 2. É facilmente perceptível que muitos 

símbolos foram erroneamente classificados, na parte direita da figura, uma vez que o 

ruído foi além da faixa aceitável de variação e acabou ficando impossível a 

identificação exata de tais símbolos – o que resultará possivelmente em um erro na 

interpretação do símbolo. 

 

Figure 2: 16-QAM com uma variação pequena de ruído (esquerda – alto SNR) e com 

uma variação grande de ruído (direita – baixo SNR) 



106 

 

 Existe um parâmetro conhecido em sistemas de comunicação como Relação 

sinal-ruído (SNR), o qual representa a relação entre a energia do sinal e a energia do 

ruído. Quanto maior o SNR melhor a qualidade do sinal. Dentre os parâmetros 

negativos de sistemas de sincronização estão também, os deslocamentos de frequência e 

de fase. 

 O deslocamento de frequência existe como consequência da diferença entre o 

oscilador do transmissor (TX) e do receptor (RX); osciladores de TX e RX não são 

exatamente iguais. É primordial entender que os símbolos representados na figura 3 não 

coexistem no mesmo instante, mas representam todos os símbolos de uma transmissão. 

Por exemplo, para transmissão da seqüência binária “10101010” com deslocamento de 

frequência f (responsável por adicionar um erro constante e incremental durante a 

transmissão). Esta é a razão pela qual os símbolos têm uma variação a partir do local 

identificado na figura como "first" até o local "last". Cada símbolo seguinte será um 

pouco mais deslocado em relação à posição original do "10" inicial no plano complexo. 

Devido a fins didáticos, todo o fluxo de bits é representado em um único plano 

complexo como se fosse um acumulador – caso uma foto instantânea do plano 

complexo fosse tirada, seria encontrado apenas um símbolo "10" a cada momento, e 

isso não seria útil para a compreensão do conceito de deslocamento de frequência. 

 

Figura 3: Ilustração do deslocamento de frequência ( ) em uma modulação QPSK 

 O deslocamento de frequência impacta mais aqueles que estiverem perto do fim 

do conjunto de símbolos – o mesmo é sequencialmente adicionado a cada novo 

símbolo. Em contrapartida, na figura 4 é mostrado como o deslocamento de fase atua 

em uma modulação QPSK. É fundamental que se entenda que o deslocamento de fase 

atuará igualmente aplicando o mesmo erro a todos os símbolos pertencentes à rajada.  

 A Figura 4a mostra uma transmissão QPSK cujo símbolo "10" foi transmitido 

com um deslocamento de fase (α). A classificação deste símbolo não implica qualquer 

erro sobre a interpretação do mesmo, uma vez que o QPSK postula 90 graus para cada 

símbolo variar. É possível ter um deslocamento de fase sem erro sobre a interpretação 
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do sinal. A Figura 4a é importante para compreender que nem todo deslocamento de 

fase resultará em erro. 

 Por outro lado, com a figura 4b é proeminente que o deslocamento de fase 

introduzido irá resultar em erros de interpretação do símbolo. O símbolo era 

originalmente localizado em um quadrante do plano complexo e após a adição do 

deslocamento de fase encontra-se em um quadrante diferente. Isto significa que a 

interpretação irá resultar em um erro, o qual pode, e deve, ser corrigido com uma 

estimativa correta deste deslocamento de fase e da futura correção do mesmo. 

 

 

Figura 4 Ilustração do deslocamento de fase com modulação QPSK 

3 Creonic Simulation Environment – CSE 

 O CSE foi desenvolvido pelo Grupo de Pesquisa em Design de Sistemas 

Microeletrônicos da Universidade Técnica de Kaiserslautern e Dr.-Ing Timo Lehnigk-

Emden e Dr.-Ing Matthias Alles – ambos, são agora, ex-pesquisadores do grupo. O CSE 

é um dentre os projetos bem-sucedidos acadêmicos deste grupo de pesquisa que se 

tornou uma empresa – Creonic IP Cores & System Solutions GmbH [CREONIC, 2012].  

 O CSE é um ambiente de simulação que fornece um conjunto de ferramentas e 

funcionalidades necessárias para simular as comunicações do mundo real de uma 

maneira prática e amigável. Ele oferece a possibilidade de reduzir o tempo de 

desenvolvimento e o custo – um problema bem conhecido na concretização de projetos. 

Outros objetivos do CSE são a facilidade de reutilização, o uso e a extensão para novas 

aplicações e padrões – ele foi projetado com o objetivo de proporcionar um ambiente de 

simulação onde os usuários seriam capazes de melhorar a sua experiência com o 

software através do desenvolvimento de novas funcionalidades e aplicações. 
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 O C++ foi a linguagem de programação escolhida para a implementação do CSE 

– uma opção inteligente com base nas escolhas de projeto feitas pelos desenvolvedores 

originais do software. O C++ contém uma biblioteca de classes padrão ampla, suporte a 

interfaces e multi-thread. Além disso, permite tanto a programação estruturada quanto a 

programação orientada a objetos. 

 O ambiente de simulação é composto de módulos funcionais, os quais atuam 

como peças versáteis disponíveis para serem organizadas em conjunto seguindo as 

necessidades do usuário. Como exemplo, pode ser citado o modulo gerador de ruído e o 

modulo decodificador de canal. Estes módulos funcionais estão ligados uns aos outros 

proporcionando a criacão de cadeias de simulações. Este ambiente de simulação é 

extremamente útil para projetos ligados a sistemas de comunicação, uma vez que os 

custos de simulações – relacionado à configuração e à conexão – que normalmente 

levavam horas ou dias agora pode ser facilmente concluído em poucos minutos. 

 

Figure 5: Cadeia de simulação básica e conexão dos módulos funcionais disponíveis no 

CSE 

 Na figura 5 é ilustrado a cadeia de simulação básica disponível no CSE, a qual 

representa todo o caminho que o fluxo de bits irá percorrer. O módulo fonte (source 

module) gera seqüências de bits aleatórios e é responsável por calcular um bloco de bits 

e armazená-lo para o buffer de saída. O módulo codificador (encoder module) 

transforma o sinal em código; essa transformação (codificação) otimiza a compressão 

para transmissão ou armazenamento. O módulo mapeador (mapper module) é 

responsável pelo mapeamento de bits para símbolos de modulação. O módulo canal de 

ruído (noise channel module) acrescenta os efeitos de simulação de vida real – o 

prejuízo adicionado à comunicação é do tipo linear com ruído branco e densidade 

espectral constante e uma distribuição de amplitude gaussiana. O módulo demapeador 

(demapper module) recebe os símbolos do canal e extrai o valor dos bits e do LLR (log 

likelihood ratio – teste estatístico utilizado para comparar o ajuste de dois modelos) e as 

probabilidades de bits. O módulo decodificador (decoder module) será responsável pela 

operação inversa do codificador – mudar o código em um conjunto de sinais. O módulo 

de estatísticas é responsável pela comparação dos bits de entrada e os bits de saída, que 

leva em conta a quantidade total de bits e quantos deles são diferentes.  

 O objetivo do software é permitir ao usuário criar um próprio ambiente de 

simulação; o CSE conta com uma rica documentação que incentiva criação de novos 

módulos funcionais e testes dos mesmos dentro do sistema. A análise dos resultados e 

do desempenho das novas mudanças ou aplicações também é um atrativo à criação de 

novos módulos. Este trabalho propõe a implementação de uma Unidade de 

Sincronização Fina de Portadoras. Esse novo módulo será completamente desenvolvido 
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neste trabalho e será localizado entre o módulo canal de ruído (noise channel module) e 

o módulo demapeador (demapper module) para fins de teste. Isto significa que ele vai 

ser exatamente a "primeira" parte no lado do receptor. Em um sistema de comunicação 

real, tal unidade será posicionada dentro do laço de iteração do decodificador. O modelo 

de ruído utilizado em tal ambiente de simulação é o ruído branco aditivo gaussiano 

(Additive White Gaussian Noise – AWGN). 

 Nesse contexto do CSE, a Unidade de Sincronização Fina de Portadoras é uma 

técnica que impacta a comunicação positivamente por proporcionar maneiras de fazer 

um processo de forma mais precisa, automática e visando a minimização de erros. Com 

esse novo módulo será possível diminuir a influência negativa do ruído a partir do 

cálculo dos deslocamentos de fase e frequência e da correção dos mesmos 

[WASENMÜLLER, 2009]. Tal unidade estará localizada exatamente no fluxo dos 

dados, trabalhando da mesma maneira durante todo o fluxo, visto que, estará 

posicionada sequencialmente dentro da cadeia – conforme pode ser observado na figura 

6. 

 

Figura 6: Posição da Unidade de Sincronização Fina de Portadoras em relação à cadeia 

de simulação do CSE.  

 A implementação adequada do módulo de sincronização pode ser simplificada 

se a idéia inerente a sua funcionalidade for dividida novamente em três módulos 

menores. Conforme ilustrado na figura 7, é possível reconhecer sub tarefas para atingir 

o objetivo final deste módulo. Por existirem sub tarefas distintas e bem definidas fica 

claro a criação de sub módulos – isso torna a concepção da lógica mais simples e 

precisa. Desta forma, o software final implementado vai respeitar os princípios originais 

do CSE – flexibilidade, reutilização e orientação a objetos. 

 

Figura 7: Sub modularização dentro da Unidade de Sincronização Fina de Portadoras 
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 O módulo de correlação (correlation module) é responsável pelo cálculo da 

correlação – uma medida estatística que representa a fidelidade entre os dois fluxos de 

símbolos (de referência e os recebidos). Os símbolos de referência são exatamente o 

mesmo fluxo de bits fornecidos pelo módulo fonte. Os símbolos recebidos são o fluxo 

de bits que está sendo transmitido e está percorrendo todos os módulos da cadeia. Antes 

do módulo canal de ruído ambas variáveis encontram-se perfeitamente correlacionadas, 

uma vez que são exatamente iguais. Os símbolos recebidos, mesmo com a adição de 

ruído, terão características remanescentes dos símbolos originais. 

 Quando o módulo de correlação (correlation module) produz sua saída, o valor 

da correlação, o módulo de estimação (estimation module) pode, então, efetuar seu 

trabalho – estimar o deslocamento de fase e frequência. Uma vez que os valores de 

deslocamento de frequência e fase estão estimados é chegado a última subtarefa da 

Unidade de Sincronização Fina de Portadoras. O módulo de correção (correction 

module) é responsável pela correção dos símbolos com ruídos visando, dessa maneira, 

diminuir a taxa de erro encontrada na transmissão. 

 A fim de implementar, adaptar e testar a Unidade de Sincronização Fina de 

Portadoras, se faz necessário uma maneira de introduzir deslocamentos de frequência e 

fase à transmissão do CSE. Esse deslocamento será introduzido através da criação de 

um outro módulo extra, chamado adição de deslocamento (add offset module). A função 

desse módulo é simplesmente introduzir falhas para a verificação do correto 

funcionamento da Unidade de Sincronização Fina de Portadoras. Portanto, com o 

módulo adição de deslocamento será possível definir deslocamentos de fase e/ou 

frequência e analisar as estimativas e as correções que serão feitas.  

 Durante o desenvolvimento deste trabalho, o foco foi a implementação dos 

módulos adicionais a cadeia de simulação original do CSE destacados na figura 8 – 

Adição de deslocamento (Add Offset Module) e Unidade de Sincronização Fina de 

Portadoras (Fine Carrier Synchronization Unit). É importante ressaltar que diversas 

novas funcionalidades foram acrescentadas ao módulo de estatísticas (statistics module) 

do CSE visando abranger os dois módulos novos e fornecer cálculos probabilísticos a 

respeito dos mesmos. 
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Figure 8: Módulo de Adição de deslocamento (Add Offset Module) e Módulo da 

Unidade de Sincronização Fina de Portadoras (Fine Carrier Synchronization Unit) 

adicionados a cadeia do CSE 

4 Implementação 

 A implementação das determinadas funcionalidades segue a mesma linguagem 

já escolhida pelos desenvolvedores originais do CSE (C++), a qual é uma linguagem de 

programação de propósitos gerais com suporte eficiente a computação de baixo nível, 

abstração de dados e programação orientada a objetos. Ela fornece mecanismos 

poderosos e flexíveis para abstração; o que quer dizer que tal linguagem permite que o 

programador introduza e utilize novos tipos de objetos que combinem com os conceitos 

das suas aplicações. Portanto, C++ suporta tanto estilo de programação que manipula 

diretamente os recursos de hardware quanto a programação de alto nível baseada em 

definições de tipo criadas pelo usuário [DALE, 2004].  

 A implementação da Unidade de Sincronização Fina de Portadoras em VHDL 

exige uma visão das funcionalidades em baixo nível de abstração; é necessário, por 

exemplo, controlar sinais que sejam responsáveis pela leitura/escrita na memória ROM. 

No momento em que se refere à implementação do software esse tipo de controle é 

completamente ignorado e não importante, uma vez que é feito automaticamente. Em 

contrapartida, outras características, como por exemplo, a implementação do módulo 

responsável pela introdução do erro é desnecessária no VHDL pois ele é conseqüência 

natural dos sistemas de comunicação hoje em dia. O ISE Xilinx Design Tools 13.2 

[XILINX, 2012] é o framework utilizado para tal desenvolvimento – o qual 

disponibiliza ferramentas disponíveis para desenvolvimento, compilação, simulação e 

sintetização. 

 A implementação de tal hardware em um Fully Programable Gate Array 

(FPGA) não foi efetuada devido aos recursos disponíveis; contudo, a criação de um 

hardware com tal comportamento é possível pois o VHDL encontra-se finalizado e 

sintetizável – uma grande preocupação durante todo o trabalho. É possível notar na 

figura 9 as características do VHDL sintetizado relacionadas às propriedades temporais. 
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Com eles pode-se verificar que os valores obtidos encontram-se de acordo com os 

requisitos de produção exigidos pelo mercado atualmente. Ressalta-se a presença de 

flip-flops e processos dependentes do clock – isto explica o motivo da não existência de 

um atraso máximo do caminho combinacional (maximum combination path delay).  

 

 

Figura 9: Propriedades temporais do VHDL desenvolvido 

 É importante salientar que a implementação da Unidade de Sincronização Fina 

de Portadoras foi desenvolvida visando uma tecnologia Virtex 6. Uma vez que a síntese 

foi concluída, é possível ter uma análise dos recursos necessários para implementação 

da mesma em uma FPGA – nota-se que este trabalho utilizou, por exemplo, 2% do 

número de Registradores e 3% do número de Look-Up Tables (LUT). Percebe-se, então, 

que o trabalho desenvolvido pode efetivamente vir a ser um equipamento utilizado em 

sistemas de comunicação hoje em dia. 

5 Validação 

 Esta seção descreve os testes que foram feitos sobre a implementação 

desenvolvida ao longo deste trabalho. Os testes têm o objetivo de validar tanto os 

modelos matemáticos em que este trabalho se baseou como provar que a Unidade de 

Sincronização Fina de Portadoras possui a funcionalidade esperada em ambas as 

implementações – C++ e VHDL. 

 Isso quer dizer que a validação de software e hardware irá abordar diversos tipos 

de estímulos: entradas nas condições limites e entradas inválidas [PATTON, 2005]. Em 

uma visão simplificada, o teste é basicamente a introdução de um ruído – que é um 

deslocamento de fase e/ou frequência – no sinal original e a verificação da correção na 

outra extremidade da cadeia. A figura 10 ilustra esse fluxo. 

 

 

Figura 10: Fluxo que sinal original passa até a estimação das correções 



113 

 

 

 Com as estimativas disponíveis verifica-se quão bom é a aproximação do sinal 

recebido quando adotam-se tais correções. A figura 11 representa esse ciclo inverso de 

reconstrução do sinal original e verifica a confiabilidade e qualidade das estimativas 

feitas. 

  

Figura 11: Verificação da confiabilidade e qualidade das correções estimadas  

É importante lembrar que todos os testes, validações, métodos e critérios adotados 

valem tanto para C++ quanto para VHDL. Isto é possível uma vez que o VHDL recebe 

como entrada o sinal recebido (extraído do software), o qual irá conter as definições 

vindas do software. Portanto, todas as definições (valor do SNR, número de símbolos, 

deslocamentos de fase e frequência) serão feitas no software porém irão manter-se 

válidas para o VHDL.  

Os cenários escolhidos – e mostrados na tabela 1 – estão basicamente tentando 

abranger todos os detalhes das implementações e são feitos por partes. O primeiro 

cenário adota somente um deslocamento de fase. O segundo cenário adota somente um 

deslocamento de frequência. O terceiro e último cenário adota um deslocamento de fase 

e frequência. 

Tabela 1: Cenários utilizados para validação do trabalho 

Cenário Variação Limites 

1  Somente Fase [-π,+π] 

2  Somente Frequência [-0.5,+0.5] 

3  Fase e Frequência [-π,+π] e [-0.5,+0.5] 

 

Para eliminar a influência na simulação do ruído proveniente do módulo AWGN e 

obter-se uma transmissão livre de ruídos, se empregou um SNR de 20dB. Com esse 

valor a transmissão ocorre praticamente em um canal ideal e isso possibilita a avaliação 

apenas dos erros introduzidos pela variação de fase e/ou frequência do módulo de 

adição de deslocamento. 

Uma ótima aproximação foi atingida para todos os cenários testados. Além das 

estimativas, observa-se também o desempenho do módulo estatístico, o qual provê 

variância e desvio padrão para as estimativas (figura 12). 
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Figura 12: Resultado dos cenários de teste 

 Após ter certeza de que o software estava comportando-se da maneira esperada, 

partiu-se para a simulação em VHDL e analisou-se os resultados lado a lado, conforme 

mostra a tabela 2, para possibilitar uma comparação entre os mesmos. Conclui-se que o 

VHDL também encontra-se funcionando de acordo com o esperado e com uma 

aproximação dentro do limite aceitável.  

Tabela 2: Estimativas de software e VHDL lado a lado 

phase offset 

input(°) 

software phase 

offset (°) 

software 

frequency offset 

VHDL 

phase offset 

(°) 

VHDL 

frequency 

offset 

0  0.00278 5.43432e-06 0 0 

5 5.08928 -8.49855e-06 4,921875 0 

10 10.1226 -9.65789e-06 9,140625 0 

15 15.1694 -1.07359e-05 14,765625 0 

20 20.2232 -1.17073e-05 21,796875 0 

60 59.6884 -1.52645e-05 61,171875 0 

90 90.0924 -1.32207e-05 92,109375 0 

135 135.002 -2.86087e-06 131,484375 0 
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6 Conclusão 

 Este trabalho descreve a implementação de uma Unidade de Sincronização Fina 

de Portadoras em software e em VHDL e a comparação de resultados provenientes 

desta implementação; atingindo, então, os objetivos propostos.  

 A Unidade de Sincronização Fina de Portadoras destina-se a aumentar a 

qualidade e a precisão dos sistemas de sincronização turbo – exigidos em sistemas de 

comunicação modernos. A implementação de uma ferramenta dinâmica, útil e de 

qualidade foi uma grande preocupação durante todo o projeto. 

 A implementação da Unidade de Sincronização Fina de Portadoras mostra a 

possibilidade do trabalho desenvolvido funcionar como uma importante ferramenta 

visando melhorias nos sistemas de comunicação através da introdução de uma técnica 

apurada de estimação e correção dos parâmetros de deslocamento. Serve ainda, para 

validar todo o embasamento teórico e matemático necessário para o desenvolvimento 

deste trabalho. 

 Devido ao objetivo inicial deste trabalho, restaram pontos onde existem 

possíveis melhorias a serem efetuadas. Por exemplo, uma melhor integração entre o 

CSE e o simulador de VHDL. A simulação de VHDL é feita com arquivos de 

configuração criados manualmente (test benchs) com dados extraídos do CSE, portanto, 

uma automação deste processo viria a reduzir o tempo necessário para simulação do 

VHDL significativamente. 

 A Unidade de Sincronização Fina para Portadoras usa o CSE como uma 

ferramenta para atingir a sua funcionalidade final; os resultados, portanto, são prova de 

que tal implementação encontra-se funcionando conforme o comportamento esperado e 

também verificado pelo CSE e pelas simulações em VHDL. 

 O trabalho desenvolvido contribui através da implementação de um novo 

módulo para o CSE que estará pronto para ser utilizado como uma ferramenta didática 

acadêmica, para ajudar outros alunos na compreensão de sistemas de sincronização. 

Além disso, deve ser mencionado que esta mesma unidade implementada está apta a ser 

utilizada em cadeias de produção. Outra contribuição marcante é a implementação e 

validação de modelos matemáticas que suportam todo o desenvolvimento da Unidade 

de Sincronização Fina de Portadoras. Além disso, a integração dos novos módulos com 

o CSE ratifica os princípios adotados no projeto anterior, como expansibilidade, 

flexibilidade e modularidade. 


