
FEDERAL UNIVERSITY OF RIO GRANDE DO SUL

INSTITUTE OF INFORMATICS

LEONARDO HAX DAMIANI

Fine Carrier Synchronization Unit for

a Turbo Synchronization System

Computer Engineering Graduation Work.

Prof. Dr. Alexandre Carissimi

Advisor

Dipl.-Math. Uwe Wasenmüller

Co-advisor

Porto Alegre, june 2012.

FEDERAL UNIVERSITY OF RIO GRANDE DO SUL

Rector: Prof. Carlos Alexandre Netto

Vice-Rector: Prof. Rui Vicente Oppermann

Dean’s office Coordinator: Profa. Valquiria Link Bassani

Institute of Informatics Director: Prof. Flávio Rech Wagner

Computer Engineering Coordinator: Prof. Sérgio Cechin

Librarian of the Institute of Informatics: Beatriz Regina Bastos Haro

Acknowledgments

I would like to express my special thanks of gratitude to my advisor Prof. Dr.

Alexandre Casissimi. Throughout my thesis-writing period, he provided

encouragement, sound advice, good teaching and a lot of virtuous ideas.

I am thankful to Prof. Dr.-Ing. Norbert Wehn and all the researchers from the

Microelectronic Systems Design Research Group from University of Kaiserslautern,

specially my co-advisor Dipl. Math. Uwe Wasenmüller, for his restless guidance,

inspiration and determination in carrying out this project.

The respect to the secretaries, librarians and employees in the Informatics and

Engineering departments of UFRGS and TUKL must be mentioned, for helping the

departments to run smoothly and for assisting me in many different ways.

I wish to thank my entire family and friends for providing a loving and

comprehensive environment for me. Last, and most important, I wish to thank my

parents, Vilmar Damiani and Cleonice Hax Damiani. They bore me, raised me,

supported me, taught me, and loved me.

SUMMARY

LIST OF ABBREVIATIONS AND ACRONYMS ... 6

LIST OF FIGURES .. 7

LIST OF TABLES ... 9

ABSTRACT .. 10

RESUMO .. 11

1 INTRODUCTION ... 12

1.1 Objectives of This Work ... 14
1.1.1 Implementation of New Modules in Software ... 14
1.1.2 Implementation of New Modules in VHDL .. 14
1.1.3 Comparison between Software and VHDL.. 14

1.2 Structure of the work .. 15

2 BASIC CONCEPTS... 16

2.1 Modulation ... 17

2.2 Signal Degradation by Noise... 18

2.3 Channel Capacity .. 22

2.4 Techniques of Detection and Correction of Errors .. 23

2.5 General Considerations .. 27

3 CREONIC SIMULATION ENVIRONMENT - CSE 28

3.1 CSE Architecture .. 29
3.1.1 CSE Modules and Configuration ... 29
3.1.2 CSE Output .. 31
3.1.3 CSE Class Structure ... 32

3.2 Development of New Modules .. 35
3.2.1 Create a Parameter Class for the Module ... 35

3.2.2 Choosing or Writing an Interface Class ... 36
3.2.3 Writing the Module Class Itself ... 37

3.3 General Considerations .. 38

4 IMPLEMENTATION .. 39

4.1 Software.. 42
4.1.1 Fine Carrier Synchronization Module .. 42
4.1.2 Add Offset Module .. 47
4.1.3 Extensions to Statistics Module ... 48

4.2 Hardware ... 50
4.2.1 VHDL Overview.. 50
4.2.2 Fine Carrier Synchronization Unit ... 51
4.2.3 Implementation Details .. 55
4.2.4 Framework Text Report ... 56

4.3 General Considerations .. 58

5 VALIDATION ... 59

5.1 Test Environment .. 59

5.2 Methodology .. 59

5.3 Fine Carrier Synchronization Software Analysis ... 63

5.4 Fine Carrier Synchronization VHDL Analysis ... 67

5.5 Software and VHDL Tests .. 70

5.6 General Considerations .. 71

6 CONCLUSION .. 72

REFERENCES .. 74

ANNEX A <ARTICLE TG1: FINE CARRIER SYNCHRONIZATION UNIT
FOR A TURBO SYNCHRONIZATION SYSTEM> ... 77

ANNEX B < XILINX ISE DESIGN TOOL SYTHESIS REPORT> 90

ANNEX C < RESUMO TG2: UNIDADE DE SINCRONIZAÇÃO FINA DE
PORTADORAS PARA SISTEMAS DE SINCRONIZAÇÃO TURBO > 101

LIST OF ABBREVIATIONS AND ACRONYMS

GSM Global System for Mobile

BER Bit Error Rate

FER Frame Error Rate

SNR Signal to Noise Ratio

QPSK Quadrature Phase Shift Keying

DVB-RCS Digital Video Broadcast – Return Channel via Satellite

CSE Creonic Simulation Environment

VHSIC Very High Speed Integrated Circuits

VHDL VHSIC Hardware Description Language

ASK Amplitude Shift Keying

FSK Frequency Shift Keying

PSK Phase Shift Keying

BPSK Binary PSK

QAM Quadrature Amplitude Modulation

CRC Cyclic Redundancy Check

FEC Forward Error Correction

LDPC Low-Density-Parity-Check

ARQ Automatic Repeat Request

SISO Soft In Soft Out

LLR Log Likelihood Ratio

XML Extensible Markup Language

AWGN Additive White Gaussian Noise

FPGA Field Programmable Gate Array

ASIC Application Specific Integrated Circuit

ROM read-only-memory

IP Intellectual Properties

LIST OF FIGURES

Figure 2.1: Different modulations applied to a digital signal BPSK 17

Figure 2.2: Constellation diagram for BPSK (left) and QPSK (right) with gray coding 18

Figure 2.3: 16-QAM with an acceptable range variation (left – high SNR) and a very

noisy range variation (right – low SNR) .. 19

Figure 2.4: Bit Error Rate (BER) x Channel SNR (in dB) in a QPSK communication . 20

Figure 2.5: Illustration of a frequency offset (f) in a QPSK modulation 21

Figure 2.6: Illustration of phase offset (α) in a QPSK modulation 22

Figure 2.7: Illustration of a not properly sampling rate (left) and a properly sampling

rate (right) accordingly to Nyquist theorem ... 23

Figure 2.8: Hamming code trick to correct burst errors ... 25

Figure 2.9: A generic turbo encoder ... 26

Figure 3.1: Original simulation chain and functional modules connection available on

CSE ... 29

Figure 3.2: Explanation of the <iter> tag ... 30

Figure 3.3: Excerpt of the XML configuration file .. 31

Figure 3.4: Excerpt of the input configuration copied to the XML output file 32

Figure 3.5: Excerpt of the statistical results printed on the XML output file 32

Figure 3.6: Organization of the module classes ... 33

Figure 3.7: Excerpt of the Encoder_Interface file – creation and definition of the

interfaces ... 33

Figure 3.8: Excerpt of the Encoder_Parameter file – creation and definition of the

default parameters values ... 34

Figure 3.9: Code of an empty parameter class for a LDPC decoder 35

Figure 3.10: Excerpt of how to create and define default values to parameters 36

Figure 3.11: Code of a new empty interface class for a LDPC decoder 37

Figure 3.12: Code for a new header file for a LDPC decoder .. 37

Figure 3.13: Code for a new cpp file for a LDPC decoder ... 38

Figure 4.1: Fine Carrier Synchronization Unit Module position regarding the original

simulation chain .. 40

Figure 4.2: Fine Carrier Synchronization Unit Module modularization 40

Figure 4.3: Add Offset and Fine Synchronization Module positions regarding the basic

simulation chain .. 41

Figure 4.4: Implementation of the calculation of the correlation values 43

Figure 4.5: Correlation module class diagram.. 43

Figure 4.6: Implementation of the estimation frequency and phase offset 44

Figure 4.7: Estimation module class diagram .. 44

Figure 4.8: Correction module class diagram ... 45

Figure 4.9: Example of the “Wrap Around Problem” with the wrong interpretation (left)

and the right interpretation (right) .. 46

Figure 4.10: Illustration of accepted range and “out of bounds” areas regarding

frequency and phase estimation .. 46

Figure 4.11: Excerpt of the code used for the normalization of estimated values 47

Figure 4.12: Add Offset module class diagram .. 48

Figure 4.13: Fine Carrier Synchronization Unit in VHDL modularization 52

Figure 4.14: Excerpt of the correlation calculation in VHDL .. 53

Figure 4.15: Excerpt of the calculation .. 53

Figure 4.16: GUI interface of the Xilinx tool Core Generator when creating and editing

the Divider module ... 54

Figure 4.17: Xilinx Core Generator IP Catalog .. 55

Figure 4.18: Excerpt of the VHDL code responsible for truncation of the correlation .. 56

Figure 4.19: Excerpt of the VHDL code responsible for the adjustment of the number of

bits between phase and frequency offset .. 56

Figure 5.1: Original signal until estimated corrections flow .. 60

Figure 5.2: Verification of the reliability of the estimated corrections 60

Figure 5.3: Source_bits Module instantiation and parameters definition 61

Figure 5.4: Excerpt of the code responsible for the detection of small bursts 61

Figure 5.5: Add Offset Module instantiation and parameters definition 61

Figure 5.6: Channel AWGN Module instantiation and parameters definition 62

Figure 5.7: Effect of the addition of phase offset equals 30° on the symbol 63

Figure 5.8: Effect of the correction of the symbol with the estimated phase offset. 64

Figure 5.9: Effect of the addition of frequency offset equals 0.00446429radians on the

symbol .. 65

Figure 5.10: Effect of the correction of the symbols with the estimated frequency offset.

 .. 65

LIST OF TABLES

Table 5.1: Scenarios used to validation of the work .. 62
Table 5.2: Phase offset estimation related values extracted from the XML output file . 63
Table 5.3: Symbol transformation process with phase offset only (software) 64
Table 5.4: Frequency offset estimation related values extracted from the XML output

file ... 66
Table 5.5: Symbol transformation process with frequency offset only (software) 66
Table 5.6: Symbol transformation process with phase and frequency offset (software) 67
Table 5.7: Statistics values from the phase and frequency simulation extracted from

XML output file .. 67
Table 5.8: Comparison between the correlation values from the first burst................... 68
Table 5.9: Average correlation value comparison .. 68
Table 5.10: Estimated and expected phase offset (VHDL) .. 68
Table 5.11: Symbol transformation process with phase offset only for the first symbols

on the burst (VHDL) .. 68
Table 5.12: Estimated and expected frequency offset (VHDL) 69
Table 5.13: Symbol transformation process with frequency offset only (VHDL) 69
Table 5.14: Estimated and expected phase and frequency offset (VHDL) 69
Table 5.15: Symbol transformation process with phase and frequency offset (VHDL) 70
Table 5.16: Analysis with the truncation threshold define as 256 symbols 70
Table 5.17: Estimation of phase and frequency offsets side-by-side 71

ABSTRACT

The popularity of the wireless devices comes from several advantages related to this

type of communication, i.e. mobility, easy installation and less cost for infrastructure.

Hence it is vital to assure a reliable communication where errors can be autonomously

fixed and information responsibly secured. The transmission over wireless channel

results in frequency and phase offsets; additionally the received symbols are corrupted

with noise. Therefore the estimation of the actual frequency and phase offset becomes a

very critical task with high impact on communications performance; synchronization is

a crucial part of each receiver in digital communication systems. In this context,

throughout this work is proposed an implementation of a Fine Carrier Synchronization

Unit that aims a better communication quality and lower its error rate.

Key-words: Wireless Communication, Synchronization, Frequency and Phase offsets.

Unidade de Sincronização Fina de Portadoras para Sistemas de

Sincronização Turbo

RESUMO

A popularidade de equipamentos sem fio decorre de uma série de vantagens

relacionadas a este tipo de comunicação, i.e. mobilidade, fácil instalação e menor custo

para infra-estrutura. Consequentemente é vital garantir-se uma comunicação confiável

onde erros podem ser automaticamente corrigidos e a informação segura. A transmissão

sobre canais sem fio resulta em deslocamentos de frequência e fase; além disso, os

símbolos recebidos podem ser corrompidos com ruído. Portanto, uma estimativa dos

valores de deslocamento reais de frequência e fase se torna uma tarefa fundamental com

grande impacto no desempenho da comunicação. Sincronização é uma parte crucial em

cada receptor em sistemas de comunicação digital. Nesse contexto, ao longo deste

trabalho é proposto a implementação de uma Unidade de Sincronização Fina de

Portadoras que visa melhorar a qualidade da comunicação e diminuir a taxa de erros da

mesma.

Palavras-Chave : Comunicação sem fio, Sincronização, Deslocamentos de

Frequência e Fase.

12

1 INTRODUCTION

With the increase of mobility in our world, there is a rising necessity for

communication and to have access to information, independently of the location of the

individuals or information. Importance is given by the possibility that any phone call

can be essential enough to save a life, close a business deal or provide hours of

entertainment. Each of these examples of mobile communications proposes a challenge

that can only be achieved with an efficient and reliable wireless communication.

Synchronization and channel coding/decoding are vital parts for wireless

communication in every digital receiver– it decreases the errors and allows to reduce the

transmission power respectively aiming for improvements in the performance

[MENGALI, 1997]. With the intensification of devices using wireless data transmission

technologies, it is required that there exist efficient and responsible ways to fix errors

that may happen in this kind of transmission. When using wireless channel the received

data will always be corrupted by some kind of noise – also timing, phase and frequency

offset are introduced and somehow must be taken care of.

Receiver for wireless communication systems are in charge of the synchronization,

decoding and detection [MEYR, 1997]. Detection is the ability to discern between

information-bearing energy patterns and random energy patterns that distract from the

information. Decoding is doing the opposite process of the encoding, in order to retrieve

the original information.

In many coding systems, a decoder additionally produces soft (or side) information

outputs to help another decoder identify and perhaps correct introduced errors. For

example, in a Global System for Mobile (GSM) communication, an inner decoder

comprising an equalizer generates a soft information output derived from path metric

differences and an outer decoder comprising an error control decoder utilizes the output

soft information to detect and correct introduced errors [REDL, 1995]. Soft information

outputs have historically been generated by decoder in conjunction with the selection of

the closest code word and its associated hard information output. Non algebraic

decoders (e.g. Convolutional, Turbo) use also soft input information to increase

decoding performance.

The reliability information comprising the soft information output is calculated for

each individual symbol within the hard information output. The reliability of each

symbol within the hard information output vector is derived without taking into

consideration either the remaining symbols within that hard information output vector

or any other considered code words. This is achieved by comparing the probability of

the received data given a bit with a logical value of one was transmitted to the

probability of the received data given a bit with a logical value of zero was transmitted.

13

At this moment, the Turbo codes are introduced with the purpose to improve the

performance and the quality of the communication. That is only possible because a

turbo code iteratively exchanges soft information, which will help the task of

synchronization. Turbo codes are advanced codes which reduce bit-error-rate (BER)

and frame-error-rate (FER) in comparison to other codes like convolutional codes or

algebraic codes (e.g. Hamming and Reed-Solomon). Turbo Synchronization is a

technique that uses the soft information to estimate the parameters needed to decrease

the error rate of the communication [NOELS, 2003]. In turbo receivers, synchronization

is a very challenging task – since they operate at very low signal-to-noise ratio (SNR)

and therefore classical synchronizers may fail to provide reliable estimated parameters

[LEHNIGK-EMDEN, 2008)]. Turbo decoders are working iteratively and after each

iteration produce a soft output; it is important to note that the iterative nature of

decoding allows to support synchronization.

Due to the time and purpose of this work, synchronization is the main subject.

Channel decoding is left aside but it has potential to be a topic for future work. This

work had as focus the frequency and phase synchronization of bursts with linear

modulation, i.e. Quadrature Phase Shift Keying (QPSK) modulation. The system aims

the Digital Video Broadcast – Return Channel via Satellite (DVB-RCS) standard, which

is an ETSI satellite communication standard [ETSI, 2012].

Timing synchronization, sampling rate and other problems related to the

communication are properly carried out before, which means that this work will focus

only on the frequency and phase offset only.

It is a known fact that simulations can reduce development time and costs. A project

was created at the Microelectronic Systems Design Research Group from the Technical

University of Kaiserslautern, which developed the software Creonic Simulation

Environment – CSE [MSDRG, 2012]. The purpose of CSE is to allow for the

integration of complex simulations environments; there can be seen two distinguished

models that compound CSE: the transmitter part and the receiving part. The simulation

of the synchronization task for such communication systems has enormous importance

on the whole project.

CSE was the starting point for the work developed. New features aiming the Fine

Carrier Synchronization Unit were developed, tested and introduced into the already

existing simulation environment – achieving a more powerful and wider software.

Hardware implementations on Very High Speed Integrated Circuit (VHSIC) Hardware

Description Language (VHDL) of these new features were also developed. Exactly the

same functionality was intended in order to allow a complex and reliable comparison

between both implementations. Therefore, it was possible to evaluate both – software

and VHDL – according to the theory of communication systems and produce a good

and complex statistical output.

14

1.1 Objectives of This Work

This work has as purpose two main objectives:

1. Implementation of the Fine Carrier Synchronization module in software and its

integration to the CSE, as well as the implementation of the same module in VHDL.

2. Analysis, comparison and evaluation of the accuracy of the implemented

software and its correspondent in VHDL.

1.1.1 Implementation of New Modules in Software

To achieve the first goal, the whole functionality of techniques of Synchronization

for digital receivers was taken into account. Once the behavior was deeply

comprehended, it became certain that a better and effective approach on the

implementation of new synchronizations modules for any communications system was

going to be reached. With the support of the CSE, it was possible to focus exactly on

what this work proposes: the Fine Carrier Synchronization Unit. The software

implementation of this unit and the integration with the CSE as a new module was

aimed. An additional module for the transmitting part of the CSE (called Add Offset

Module) was developed, which introduces the error of frequency and phase offset in the

simulation system. This frequency and phase error will be estimated in the receiving

part. The implementation of a correction module for phase and frequency offset is also

necessary. To conclude, several upgrades on the Statistics Module of CSE were done in

order to adapt it to the whole new set of functionalities performed by the CSE. With all

the extensions of the CSE, it is possible to evaluate the statistical behavior

(communication performance) of the new Fine Carrier Synchronization Unit.

1.1.2 Implementation of New Modules in VHDL

The hardware implementation in VHDL can be defined exclusively based on the

needs of this work; it is not – so far – part of a bigger project. Xilinx ISE Design Suite

V13.2 is the used digital system design tool and VHDL is the chosen language. It is a

powerful and versatile description language, with multiple mechanisms to support

design hierarchy and multiple levels of abstraction. The module in VHDL was

implemented aiming exactly the same functionality of the Fine Carrier Synchronization

Module developed in the software. In order to achieve this goal it was necessary to

make a deep analysis of how to accomplish in VHDL several functionalities easily

reached in the software – and to find the perfect approach during this “translation” from

software to hardware. The VHDL was simulated and synthetized with the same

framework that was used to its development.

1.1.3 Comparison between Software and VHDL

After the first objective of this work was successfully accomplished, the accuracy

needed to be verified; it is essential that the output software and hardware are of a high

excellence and properly studied. There is completely no point in developing, spending

time and effort to analyze a system that does not fulfill the requirements of modern

communication systems. It was also vital to re-examine new ways to improve processes

and run them repeatedly - ensuring credibility, quality and functionality.

Hardware simulations and analysis are known for being extremely time-consuming.

Taking into account the fact that the evaluation and the testing are extremely necessary

in order to have a consistent and reasonable implementation; it was really important to

15

find a way to bypass this problem and prove its functionality and reliability accordingly

to the desired accuracy. Therefore, the idea to improve and optimize the simulations and

analysis was to have the software to support this task. The hardware and software were

implemented based on the same study; consequently they both do the exact same

calculations and produce the same output – designated to different platforms. This way,

it was intended to have a higher number of test cases on the software than on hardware

but proceed with both evaluations together – also based on comparisons and exchange

of information between the two implementations.

In order to achieve a deep analysis of the developed software and hardware –

regarding the originals modules included in CSE – some features will be added to the

Statistics Module with the purpose of statistically analyze the Fine Carrier

Synchronization Module and its functionality.

Among the objectives of this work is the implementation of such Fine Carrier

Synchronization Unit in VHDL. At this point it is crucial to understand some

differences between the software and the hardware implementation, for example, there

is completely no use to do the VHDL implementation of the Add Offset Module, which

is part of the transmit model of CSE. The “real world” is in charge of this task – adding

some frequency and/or phase offset to the set of bits. By developing exactly the same

unit as in the software, it is possible to assure that it will have the same functionality.

Therefore, all efforts must be done on the hardware implementation of the Fine Carrier

Synchronization Module. Simulations and comparisons between both, the software and

the hardware implementations, was part of the usual day-to-day work while this project

was under development.

1.2 Structure of the work

The rest of this work is structured as follows. In chapter 2, an overview of the basic

concepts needed and technical concepts involved on this work. Chapter 3 shows the

whole functionality and architecture of CSE and advantages conquered by taking it as

the first step into the development and implementation of the Fine Carrier

Synchronization Unit. Chapter 4 deals with the software and hardware implementation

of the new modules, specifically which were the adopted design options and the

mathematical approach to every new module. In chapter 5, it is discussed how the

validation was done, explaining the test environments, the scenarios, the methodology

and the statistical evaluation of the developed software and VHDL. Chapter 6 brings the

conclusion of this work. Finally, this work contains an annex A, that is the project of

this work, an annex B, which is the full Xilinx ISE Design Tool Synthesis report, and an

annex C, which is a summary of the thesis translated to Portuguese.

16

2 BASIC CONCEPTS

At this point, it is important to understand how the information can be transmitted

from one point to another. By varying one physical property, i.e. voltage or current, the

information can be transmitted in wires. By representing the value of this voltage or

current as a function of time, (t), it is possible to model the behavior of the signal and

analyze it mathematically.

In the XIX century, Jean-Baptiste Joseph Fourier, a French mathematician and

physicist, proved that any periodic function, g(t), with period T can be constructed by

the sum of a number (possibly infinite) of sines and cosines [OPPENHEIM, 1989].

 () ∑ (

)

Where and are the amplitude of the sine and cosine from the n harmonic terms

and is a constant – this decomposition is called Fourier series. From this Fourier

series, the function can be reconstructed; which means that, if the period T is known and

the amplitudes also given, the original function of time can be found by making the sum

of the equation 2.1. A data signal with a finite duration can be treated based on the

premise that it repeats the same pattern; the interval between 0 and T is equal as the one

between T and 2T – and it follows this configuration towards ∞.

Communication systems can be classified into two groups depending on the range of

frequencies they use to transmit information. These communication systems are

classified into baseband or pass band system. Baseband transmission sends the

information signal as it is without modulation (without frequency shifting) while pass

band transmission shifts the signal to be transmitted in frequency to a higher frequency

and then transmits it, where at the receiver the signal is shifted back to its original

frequency.

There are several different ways to accomplish the transmission, each one of them

has their own bandwidth (difference between the upper and lower frequency – measured

in Hertz), delay, cost and ease of installation and maintenance. They can be classified

into guided media (i.e. copper wire and optic fiber) or not guided media (i.e. radio

waves and laser).

Unfortunately media are not perfect, therefore the received signal is not the same as

the transmitted signal – this difference can lead to error. Transmission lines suffer from

three major problems: attenuation, delay distortion and noise.

(2.1)

17

These errors are responsible for wrong interpretation of the information transmitted,

therefore is important to be prepared to deal with errors automatically. At this point the

Synchronization of the signal fits to the whole system, because it tries to estimate and

correct all the negative parameters – eliminating the negative effects – before the signal

is interpreted.

2.1 Modulation

Computers are able to manage only binary numbers; it is possible to understand 0’s

and 1’s, consequently it is necessary to develop some kind of alphabet or pattern to

enable a proper and, many times, really complex communication with just two types of

signal. The amplitude, frequency and phase of this signal can be modulated in order to

transmit information. The amplitude modulation is characterized by the variation of two

different amplitudes used to represent 0’s and 1’s. The frequency modulation, also

known by frequency shift keying, are used two or more different tones. The phase

modulation of the carrier is shifted systematically 0 or 180 degrees in equal periods of

time. It is important to mention that this work will be restricted to digital modulation

[TREES, 2001].

Modulation means the possibility to change one of the signal’s properties

(amplitude, frequency or phase) in such a way that different states are possible. Each

possible state represents one symbol of the alphabet and it works with this “language” –

the alphabet must be previously defined and known by both sides. Therefore,

modulation means adding information on amplitude, frequency or phase. Figure 1

shows different modulations and how they can be represented and characterized to

transmit a digital signal. In amplitude modulation or amplitude-shift-keying (ASK), two

different amplitudes are used to represent 0 and 1. In frequency modulation or

frequency-shift-keying (FSK), two – or more – different tones are used. In phase

modulation or phase-shift-keying (PSK), the carrier wave is shifted 0 or 180 degrees at

uniformly spaced intervals – the simplest form of PSK called Binary PSK (BPSK). The

term keying is also widely used in the industry as a synonym for modulation.

Figure 2.1: Different modulations applied to a digital signal BPSK

The communication can be represented in a complex plane and, for example, a

Quadrature Phase Shift Keying (QPSK) has a defined alphabet with 4 symbols (00, 01,

10 and 11), equally divided on the plane. Consequently, it’s natural to understand that

for every 90° or π/2, that there will be the area where one symbol will be represented. It

18

is usual to refer this organization of symbols in a complex plane as a constellation

diagram – Figure 2.1. There are several modulations available and in use nowadays, i.e.

BPSK, QPSK, 8PSK, 16-Quadrature Amplitude Modulation (QAM), 64-QAM, etc.

Figure 2.2: Constellation diagram for BPSK (left) and QPSK (right) with gray coding

In order to explain the figure 2.2, it is important to remind that the number of

symbols (constellation point) per bits respects the formula 2.2, which represents that, for

example, for every 1 bit, 2 symbols can be represented and for 2 bits, 4 symbols can be

represented – accordingly to equation 2.2. This means that according to the modulation

scheme a symbol represents 1, 2, 4 or more bits.

The modulation would work perfectly if there were no errors, noise and degradation

of signal. To understand how an error occurs, it is important to note that once something

went wrong, these symbols are not going to be on the exact expected place. Due to the

noise, the symbol – the “point” in figure 2.2 – shifts its position in the complex plane

when compared to the original position. This shifting will not always result in wrong

interpretation – it can vary certain acceptable range and it will still be considered as the

right symbol.

2.2 Signal Degradation by Noise

The noise is a random fluctuation in an electrical signal, which can arise in various

forms. The amount of noise present is measured by the ratio of the signal power to the

noise power, called signal-to-noise ratio (SNR). The signal power is denoted by S and

the noise power by N, the signal-to-noise ratio is S/N. Usually, the ratio itself is not

represented; instead, the quantity is given. These units are called decibels

(dB).

Attenuation is the loss of energy as the signal propagates outward. The loss is

expressed in decibels per kilometer. The quantity of energy lost depends on the

frequency. To understand how the frequency affects this signal, imagine that it is not as

simple wave form but as a component of a Fourier series; which each component has a

different frequency and amplitude and is attenuated in a different proportion, resulting

in different Fourier spectrum on the receiver’s side.

(2.2)

19

To make things even worse, the several components of Fourier also have different

propagation speed in the wire; this speed difference also leads to distortion of the signal

received in the other end.

Another problem is the noise, which consists of an undesirable energy from other

sources, not the transmitter. The thermal noise exists due to the random motion of

electrons in the wire, which is inevitable. Crosstalk happens due to the inductive

coupling between two wires that are close to each other. There is also the impulse noise,

which happens due to spikes on the power line or other causes. For digital data, impulse

noise can result in loss of one or more bits.

Of course a little variation on signal at the receivers side of the transmission is

expected, the real problem starts when this error is bigger than the range of acceptable

variation. In a very noisy environment, for matter of explanation, figure 2.3 makes it

more understandable.

Figure 2.3: 16-QAM with an acceptable range variation (left – high SNR) and a very

noisy range variation (right – low SNR)

Figure 2.3 comes with the purpose to illustrate and to remind that there might be

different levels of noise variation; therefore, the task of classification of the received

symbols may be affected or not due to the noise of the system – it is possible that some

noise is harmless to the communication quality. On a high SNR environment the

symbols do not have massive losses caused by noise (left part of figure 2.3); it is

possible that the variation may not be enough to disturb and cause errors on the

interpretation of the symbols. With a low SNR (right part of figure 2.3), the analysis and

classification of the symbols can be disrupted since the range of variation of different

symbols have an intersection where two different interpretations for the same coordinate

is possible – which results in an error of reading the symbol. It is also important to

remind that figure 2.3 does not represent an instant “picture” of the communication; it

symbolizes all the possible states of the media.

SNR is going to define how bad the signal will get after going through the channel.

It is directly influenced by the noise variation of the channel. Also included in the

negative parameters of any synchronization are the frequency and phase offset. Figure

2.3 can be observed also by differentiating the values of SNR: left part of figure 2.3 is

the representation of a high SNR value; while the right part of figure 2.3 corresponds to

a low SNR value.

20

The bit error rate (BER), in a digital transmission, is the percentage of bits with

errors divided by the total number of bits that have been transmitted, received or

processed over a given time period. The rate is typically expressed as 10 to the negative

power. For example, four erroneous bits out of bits transmitted would be

expressed as , or the expression would indicate that three bits were in

error out of the transmitted. BER is the digital equivalent of signal-to-noise

ratio in an analog system.

As it can be seen in figure 2.4, the relation between BER and SNR in a simulation of

a communication using QPSK shows that with the increase of the SNR, the BER will

get lower (important to remind that it will never be errorless). The BER behavior of the

transmitted signal is the reason for using coding techniques [TAUB, 2008].

Figure 2.4: Bit Error Rate (BER) x Channel SNR (in dB) in a QPSK communication

Frequency offset exists as the consequence from the difference between the

oscillator from the transmitter (TX) and the one from the receiver (RX); the oscillators

from TX and RX cannot be exactly equal. To comprehend how the frequency offset can

be observed, it is primordial to understand that they do not come at the exact same

moment; it is an error that increments its effect while the transmission proceeds.

For example, figure 2.5 represents the transmission of “10101010” with a frequency

offset , which is responsible for adding a constant and incrementally error to every

symbol. This is the reason why the symbols have a variation from the place identified

on the figure as “first” and the “last”. Every upcoming symbol will be a bit more

displaced regarding the original position of the “10” on the complex plane. Due to

didactic purposes, the whole bit stream is represented on a complex plane as an

accumulator – if an instantaneous picture were taken of the complex plane, just one

“10” symbol would be present at a moment and this would not be helpful for the

comprehension of the concepts [BRACK, 2005b].

21

Figure 2.5: Illustration of a frequency offset (f) in a QPSK modulation

Frequency offset have a higher impact on symbols as they are more close to the end

of the burst – the impact of the frequency offset will not be the same for every symbol,

it is sequentially added to every new symbol [BRACK, 2005a]. On the other hand, the

phase offset is the same to the whole bit stream – it acts in every symbol exactly in the

same way. In figure 2.6 is explained how the phase offset works in a QPSK modulation.

The analysis and classification of each received symbol is a receiver’s task, the

interpretation of the symbol is qualified in a complex plane. Figure 2.6 a) shows a

QPSK transmission where a symbol “10” was transmitted with a phase offset (α) –

assuming that the frequency offset is zero. The classification of this symbol does not

imply any error in its interpretation; since the QPSK implies that every symbol has a 90

degrees range, it is possible to have a phase offset with no error on the interpretation of

the signal. Figure 2.6 a) is important to understand that not every phase offset would

result in error.

On the other hand, with figure 2.6 b) it is prominent that the phase offset introduced

will result in error of the interpretation of this symbol. The symbol was located in a

quadrant of the complex plane and after the addition of the phase offset it is on a

different one. This means that its interpretation will result in error, which can be

corrected with the right estimation of this phase offset and its future correction

[VITERBI, 1983].

22

Figure 2.6: Illustration of phase offset (α) in a QPSK modulation

2.3 Channel Capacity

Besides the errors, it is mandatory to take into account physical limitations of the

media. Henry Nyquist has developed studies not just related to channel capacity but also

to the sampling rate and the comprehension of both is f undamental to proceed.

Channel capacity is the maximum data transfer which can occur when using the

communication channel with bandwidth – channel capacity can be defined with

equation 2.3 [TANENBAUM, 2003].

In 1924, Nyquist realized that even a perfect channel has a finite transmission

capacity. He derived an equation expressing the maximum data rate for a finite

bandwidth noiseless channel. In 1948, Claude Shannon carried Nyquist’s work further

and extended it to the case of a channel subject to random (thermodynamic) noise.

Nyquist proved that if an arbitrary signal with highest frequency component, in

hertz, is the sampling rate must be at least or twice the highest analog

frequency component. The sampling in an analog-to-digital converter is done by a pulse

generator (clock). If the sampling rate is less then , some of the highest

frequency components in the analog input signal will not be correctly represented in the

digitized output. When such a digital signal is converted back to analog form by a

digital-to-analog converter, false frequency components appear that were not in the

original analog signal. This undesirable condition is a form of distortion called aliasing.

In equation 2.3, the signal consists of V discrete levels.

Figure 2.7 shows that a failure on the sampling rate can determine a serious mistake

on the interpretation; it is the transmission of a code word 010101, by not obeying the

Nyquist theorem, the interpretation will be 000 (left). By taking a correct sampling rate

the right information is correctly acquired: 010101(right).

a) b)

23

Figure 2.7: Illustration of a not properly sampling rate (left) and a properly sampling

rate (right) accordingly to Nyquist theorem

Figure 2.7 represents the problem on the task of conversion of an analog-digital

conversion. It is necessary to get a discrete number of samples in a continuous signal.

The main problem is on the sampling/seconds rate that should be taken. A small number

can result in a really poor representation of the signal. At first, the process of sampling

of an analog signal can be thought that always will be losses of the information and that

with the best sampling rate the losses are going to be the smaller possible; however,

Shannon’s theorem shows that this is not always true. Under certain conditions, the

sampling of a signal can transmit precisely all the information contained in the signal.

This means that the signal can be perfectly recovered from samplings without any

decrease on the signal quality.

If random noise is present, the situation deteriorates quickly. Since there is always

random (thermal) noise present due to the motion of the molecules in the system, this

cannot be left aside. Shannon’s major result is that the maximum data rate of a noisy

channel whose bandwidth is , in hertz, and whose signal-to-noise ratio is S/N, is

given in equation 2.4. Shannon’s result was derived from information-theory arguments

and applies to any channel subject to thermal noise.

 (

)

2.4 Techniques of Detection and Correction of Errors

Among the error detecting methods there are Parity Check Method and Cyclic

Redundancy Check (CRC) Method. Parity check method is the method where one

parity check bit is used along with each character code to be transmitted; as a simple

example of an error-detecting code, consider a code in which a single parity bit is

appended to the data. The parity bit is chosen so that the number of 1-bits in the code

word or character code to be transmitted or recorded is even or odd.

 For example, when 10110101 is sent in even parity by adding a bit at the end, it

becomes 101101011, whereas 10110001 become 101100010 with even parity. A code

with a single parity but has a distance 2, since any single-bit error produces a code word

with the wrong parity, it can be used to detect single errors. Two errors cannot be

detected by this scheme as the total number of 1s in the code will remain even after two

bits change. As the probability of more than one error occurring is in practice very

small, this scheme is commonly accepted as sufficient.

 Instead of appending a parity check, which makes the total of 1-bits in the code

even, one may choose to append a parity check bit which makes the number of 1-bits in

24

the code odd. Such parity check is known as an odd parity bit. This scheme also

facilities detection of a single error in a code.

The CRC is wide spread for error detection, which codes are based upon treating bit

steam as a representation of polynomials with co-efficient of zero and one only.

A frame is regarded as the co-efficient list for a polynomial with k terms,

ranging from to x0. Such a polynomial is said to be of degrees the high

order (left most) bit is the coefficient of , the next bit the coefficient of ,

and so on. I.E. 110001 has six bits and thus represents a six-term polynomial with

coefficient 1, 1, 0, 0, 0 and 1: .

When the polynomial code method is employed, the sender and receiver must have

agreed upon a generator polynomial, (), in advance. Both the high-and-low-order

bits of the generator must be 1. To compute the checksum for some frame with m bits,

corresponding to the polynomial (), the frame must be longer than the generator

polynomial.

The idea is to append a checksum to the end of the frame in such a way that

polynomial represent by the check summed frame, it tries dividing by (). If there is a

remainder, there has been a transmission error.

The correction of errors is more difficult than the detection. In error detection, it is

just a system where it just looks to find if any error has occurred. The answer is simple

yes or no. In error correction, it is demanded to know the exact number of bits that are

corrupted and more importantly, their location in the message [CLARK, 1981]. The

number of errors and the size of the message are important factors. Supposing the

correction of one single error in an 8-bit data unit, it is necessary to consider eight

possible error locations; if there were two errors in the same data unit, it is essential to

consider 28 possibilities. Therefore, it is possible to imagine the receiver’s difficulty in

finding 10 errors in a data unit of 1000 bits.

To understand how errors can be handled, it is necessary to look closely at what an

error really is. Normally, a frame consists of m data (i.e., message) bits and r redundant,

or check, bits. Let the total length be n (i.e.,). An n-bit unit containing data

and check bits is often referred to as an n-bit code word.

Given two code words, say, 10001001 and 10110001, it is possible to determine

how many corresponding bits differ. In this case, 3 bits differ. The number of bit

position in which two code words differ is called the Hamming Distance (Hamming,

1950). Its significance is that if two code words are a Hamming distance d apart, it will

require d single-bit errors to convert one into the other.

In most data transmission applications, all possible data messages are legal, but

due to the way the check bits are computed, not all of the possible codewords are

used. Given the algorithm for computing the check bits, it is possible to construct a

complete list of the legal codewords, and from this list find the two code words whose

Hamming distance is minimum. This distance is the Hamming distance of the complete

code.

The error-detecting and error-correcting properties of a code depend on its

Hamming distance. To detect d errors, you need a distance d+1 code because with such

a code there is no way that d single-bit errors can change a valid code word into another

25

valid code word. When the receiver sees an invalid code word, it can tell that a

transmission error has occurred. Similarly, to correct d errors, you need a distance 2d+1

code because that way the legal code words are so far apart that even with d changes,

the original code word is still closer than any other code word, so it can be uniquely

determined.

There is a trick that can be used to permit Hamming codes to correct burst errors.

Sequences of k consecutive code words are arranged as a matrix, one code word per

row. Normally, the data would be transmitted one column at a time, from left to right, as

shown in figure 2.8. To correct burst errors, the data should be transmitted one column

at a time, starting with the leftmost column. When all k bits have been sent, the second

column is send, and so on. When the frame arrives at the receiver, the matrix is

reconstructed, one column at a time. If a burst error of length k occurs, at most 1 bit in

each of the k code words will have been affected, but the Hamming code can correct

one error per code word, so the entire block can be restored. This method uses check

bit to make blocks of data bits immune to a single burst error of length or less.

Where represents the number of verification bits and the number of bits in each

message.

Figure 2.8: Hamming code trick to correct burst errors

It is important to remind that several others forward error correction (FEC) codes are

available now at the academic and industry field, for example Reed-Solomon (RS),

Low-Density-Parity-Check (LDPC), etc [SNIFFIN, 2009].

Also important is to mention a method to recover from errors, Automatic Repeat

Request (ARQ). This method is an error control for data transmission that makes use of

error-detection codes, acknowledgment and/or negative acknowledgment messages, and

timeouts to achieve reliable data transmission. An acknowledgment is a message sent by

the receiver to indicate that it has correctly received a data. Important to keep in mind

that ARQ is not a correction method (it does not correct any wrong information

received) but a recovery method (it recovers the system from wrong information

received).

Unusually, when the transmitter does not receive the acknowledgment before the

timeout occurs (i.e., within a reasonable amount of time after sending the data frame), it

retransmits the frame until it is either correctly received or the error persists beyond a

predetermined number of retransmission.

ARQ is appropriate if the communication channel has varying or unknown capacity,

such as is the case on the Internet. However, ARQ requires the availability of a back

channel, results in possibly increased latency due to retransmissions, and requires the

26

maintenance of buffers and timers for retransmissions, which in the case of network

congestion can put a strain on the server and overall network capacity.

Turbo codes are a development in the field of forward-error-correction channel

coding. Turbo codes make use of three simple ideas: parallel concatenation of codes to

allow simples decoding; interleaving to provide better weight distribution; and soft

decoding to enhance decoder decisions and maximize the gain from decoder interaction

[ALLES, 2007].

A turbo code is formed from the parallel concatenation of two codes separated by an

interleaver. Interleaving is a way to arrange data in a non-contiguous way to increase

performance. A generic design of a turbo code is shown in figure 2.9.

Figure 2.9: A generic turbo encoder

Although the general concept allows for free choice of the encoders and the

interleaver, most designs follow the same ideas:

 The two encoders used are normally identical;

 The code is in a systematic form, i.e. the input bits also occur in the output;

 The interleaver reads the bits in a pseudo-random order.

This serves two purposes. Firstly, if the input to the second encoder is interleaved,

its output is usually quite different from the output of the first encoder. This means that

even if one of the output code words has low weight, the other usually does not, and

there is a smaller chance of producing an output with very low weight. Higher weight is

beneficial for the performance of the decoder. Secondly, since the code is a parallel

concatenation of two codes, the divide-and-conquer strategy can be employed for

decoding. If the input to the second decoder is scrambled, also its output will be

different or “uncorrelated from the output of the first encoder. This means that the

corresponding two decoders will gain more from information exchange.

In the traditional decoding approach, the demodulator makes a “hard” decision of

the received symbol, and passes to the error control decoder a discrete value, either a 0

or a 1. The disadvantage of this approach is that while the value of some bits is

determined with greater certainty than that of others, the decoder cannot make use of

this information.

A soft-in-soft-out (SISO) decoder receives as input a “soft” (i.e. real) value of the

signal. The decoder then outputs for each data an estimate expressing the probability

that the transmitted data bit was equal to one. In the case of turbo codes, there are two

27

decoders for outputs from both encoders. Both decoders provide estimates of the same

set of data bits, but in different order. If all intermediate values in the decoding process

are soft values, the decoders can gain greatly from exchanging information, after

appropriate reordering of values. Information exchange can be iterated a number of

times to enhance performance. At each round, decoders re-evaluate their estimates,

using information from the other decoder, and only in the final stage will hard decisions

be made, i.e. each bit is assigned the value 1 or 0. Such decoders, although more

difficult to implement, are essential in the design of turbo codes.

2.5 General Considerations

By comprehending how it can be possible to transmit information over wires and

wireless systems, and mainly its importance to modern communication systems; it is

possible to understand why several studies on this topic must be realized - high quality

systems are demanded throughout the most dynamic range of systems that depends on

this kind of communication. The system must somehow certify that the way of sending

information through a channel works and is efficient (modulation), the same system

must be aware of interferences and it is also important to be able to work independently;

detecting and correcting possible errors in an autonomous way.

 As a way of increasing the quality and the utilization of time and resources when

developing such systems, a simulation environment must be used. In order to enable

tests, prototyping, education and the statistical analysis of such systems is mandatory.

The next chapter is dedicated to explain which simulation environment was used during

this work. This system – Creonic Simulation Environment – is introduced; its

architecture and design options are presented and discussed, as well as advantages and

disadvantages.

28

3 CREONIC SIMULATION ENVIRONMENT - CSE

CSE was developed by the Microelectronic System Design Research Group and

Dr.-Ing Timo Lehnigk-Emden and Dr.-Ing Matthias Alles – both are now former

researchers from the Microelectronic System Design Research Group. CSE was one of

the successful academic projects that had become a company in real world – Creonic IP

Cores & System Solutions GmbH [CREONIC, 2012]. Creonic is a spin-off of the

University of Kaiserslautern, founded in 2010. With broad technical knowledge and

experience of business activities, the founding of Creonic was the logical consequence

after successful academic projects.

The main application of the Microelectronic System Design Research Group is

decoding. The purpose of CSE is to have a simulation environment for decoders – there

are similar tools commercially available from Synopsys and Cadence. These

commercial tools provide more features but also require money for licensing and

normally the use is more complex than CSE.

The development of communication systems is a very dynamic field with respect to

technical progress. In this context, Creonic collaborates closely with the

Microelectronic System Design Research Group, which has an experience in the field of

communication. This way it is possible to stay up-to-date regarding the state-of-the-art

of science and technology – the results are the highest performance and at the same time

low energy consumption.

Projects with such delicate design and development questions must be highly detail

oriented. Hence, choices of design have been adopted and respected throughout the

whole development of the software. For example, fixed interface and configuration

procedures for functional modules, strict coding and documentation guidelines, and

fully object oriented design were defined. For the documentation purposes, a

documentation tool called Doxygen [DOXIGEN, 2012] was used – it generates the

documentation from a set of documented source files automatically.

All the CSE project choices were done according to the goal of developing a

system which can provide reduction of the development time and costs, facilitate the

use, reusability and extensibility to new applications or standards.

By defining smart choices in the beginning of the project, i.e. reusability, the

benefits to the project can be seen during the whole development. Reused software,

which has been tried and tested in working systems, are more intend not to reveal any

design and implementation fault. If software exists, there is less uncertainty in the costs

of reusing that software than in the costs of development – it reduces the margin of error

in project cost estimation.

29

CSE environment consists mainly of the library directory; which contains all the

classes of the CSE, and the chains directory; containing some simulation chains, which

use the library. Requirements to run the CSE are a g++ version 4.x under GNU/Linux,

MS Windows or MacOS X, Microsoft Visual C++ under MS Windows and CMake –

tool designed to build, test and package software.

C++ was the programming language chosen to the implementation of CSE. Which

is a clever option based on the design choices made by the original developers of the

software. C++ contains a good and rich standard library, compared to C, and also

supports both the structured programming and object orientation [DALE, 2004].

3.1 CSE Architecture

To completely comprehend the architecture of a complex simulation environment

like CSE, it is necessary to come up with a specific approach in order not to miss any

information or leave room for misunderstanding. On section 3.1.1 the class structure of

any module and how the infrastructure provided by the system helps all the modules

will be presented. On section 3.1.2 the original CSE modules are presented – they are

all functional modules ready to enable the user to create new simulation chains.

3.1.1 CSE Modules and Configuration

This simulation environment is extremely useful for projects related to

communication systems; the simulations costs – related to configuration and connection

– that once used to cost a lot of time, hours or days for the developers, now can be

easily finished in a few minutes.

Figure 3.1: Original simulation chain and functional modules connection available on

CSE

Figure 3.1 shows the simulation chain available on CSE, it represents the whole path

that the bit stream will make. The source module generates random bit sequences. It is

responsible for calculating one block of bits and storing them into an output buffer. The

Encoder module changes the block of data bits (information bits) into a code; the code

may be optimized for purposes of compressing for transmission or storage, encrypting

or adding redundancies to the input code. The Mapper module is responsible for

mapping bits to modulation symbols. The Noise Channel module adds to the simulation

effects of real life – the impairment to communication is a linear addition of white noise

with a constant spectral density and a Gaussian distribution of amplitude. The

Demapper module receives the symbols from the channel and extracts the hard bits, the

log likelihood ratio (LLR) values (LLR – is a statistical test used to compare the fit of

two models) and the bit probabilities. The Decoder module will be in charge of the

reverse operation of the encoder – changing the code into a set of signals and doing the

estimation of the information bits. The Statistics module is responsible for comparing

the input bits and the output bits, it takes into account the total amount of bits and how

many of them are different – in other words, it is to verify how “faithful” is the output

after passing through the entire simulation chain. Besides it computes this information

into different statistical parameters.

30

The model used inside the Noise Channel Module to generate the noise is the

Additive White Gaussian Noise – AWGN. Additive White Gaussian Noise (AWGN) is

a white noise that is distributed according to the Gaussian distribution curve and a

constant spectral noise power over the channel bandwidth. The AWGN noise affects the

useful signal, which is linearly superimposed, hence the term additive. The total signal

at the channel end corresponds to the addition of the amplitude of the input information

signal and the amplitude of the noise signal.

All the configurations of the simulation using CSE are defined in the Extensible

Markup Language (XML) configuration file, on this file it is possible – and necessary –

to define all the configurations and parameters to every module instantiate. The XML

file is used during runtime execution; therefore, it is not necessary to build the library if

the aim is to build a simulation chain [RAY, 2001].

A typical XML configuration file starts with the main tag <cse_chain> that contains

all other tags. Each module is identified with the <instance_name> tag, which

corresponds to the <instance_name> parameter that each module contains. By default,

the instance name corresponds to the class name of the module. An optional <global>

tag is also available. The purpose of this tag is to spread values to a multiple number of

modules, without the need to set this value at multiple places of the XML – similar to

the definition of “#define” in C++. Additional tags are dependent on the Parameter class

of the module.

Up to now all the configuration works in a static environment. Therefore, the <iter>

tag is introduced in the global section in order to define variables which will create a

static configuration for each value. In case multiple iteration variables exist, the order of

iteration variable definition is important – it turns several simulations into one with just

one tag, simplifying a lot the work that has to be done. For example, in figure 3.2 by

defining <num_bits> inside the <iter> tag, it means that it will vary from 56 to 5600

with a pace of 100.

Figure 3.2: Explanation of the <iter> tag

An extra <param_unit> tag exists for configuration of parameter units. The

<unique_id> attribute allows an automatic instantiation of the parameter unit during

runtime. Parameter units allow the translation of parameters into other parameters.

Figure 3.3 shows an excerpt of the typical XML file with global parameters

definition, parameters definition and the instantiation of three modules and its

parameters: Mapper, Channel_AWGN and Demapper.

31

Figure 3.3: Excerpt of the XML configuration file

3.1.2 CSE Output

The CSE output is organized in a XML file, which brings the information of how the

simulation chain was built as well as what parameters were used to perform the

simulation. Besides this, it brings the statistics module output – which is the most

important part at this moment. In figure 3.4 an excerpt of the simulation configuration

details present on every XML output file is shown. The actual statistical output values

are presented on figure 3.5, i.e., error rate bits, error rate blocks, etc.

All the data created and that goes through the simulation chain is analyzed by the

statistics module at the end of the simulation – it gathers information at all moments but

just analyzes in the end of the whole set of bursts since it takes into account not just one

burst to get a result of what has been going on with the system. This is possible due to

the fact that it is connected to both, the beginning and the end of the simulation chain.

32

Figure 3.4: Excerpt of the input configuration copied to the XML output file

Figure 3.5: Excerpt of the statistical results printed on the XML output file

3.1.3 CSE Class Structure

The simulation environment is composed of functional modules; they work as

versatile pieces available to be organized together following the needs of the user, i.e.

noise generator or channel decoder. These functional modules are connected with each

other providing the possibility to create complex simulation chains. In order to have a

uniform and constant development of any module, there are implementation concepts

related to these functional modules that must be respected and preserved. Each module

is derived from two or three classes that have to be written by the module designer:

• The interface class, which defines the interface for the input and output of

data to process. Furthermore, it provides status information, like number of

used decoder iterations.

33

• The parameter class, which defines the parameters for configuration of the

module functionality (e.g., chosen algorithm).

• The share class, which defines functionality that can be shared among

multiple modules – this class is optional.

The interface and parameter classes have to be derived from their base classes,

which are provided by the CSE infrastructure. The base classes (Base_Interface and

Base_Parameter) are parent of all interfaces and parameters, and therefore of all

modules of the simulation chain. These classes provide higher level data structures,

such as lists containing all the parameters or data ports of a functional module. Figure

3.6 illustrates the functional module concept (relation between classes and how they are

organized) – it represents the general implementation concepts like derivation structure

of functional modules. All the classes defined with the subtitle “(infrastructure)” are

provided by the CSE system and offer to all the system basic facilities, services and

facilities to the organization of the whole system itself, i.e., list of all input/output ports

and list of all parameters of each module. All the classes with the subtitle “(user)” are

the ones that the user can create (or just use if the modules are already on the original

CSE, i.e., mapper, demapper, encoder, decoder, channel_awgn).

Figure 3.6: Organization of the module classes

To a better comprehension on how the classes work together, an example will

follow. A channel encoder gets bits to encode and has as output the corresponding code

word. These two data interfaces are defined on the interface class of the encoder – as

can be seen on figure 3.7.

Figure 3.7: Excerpt of the Encoder_Interface file – creation and definition of the

interfaces

 The communication between a module and its environment is called “port” – the

data type for a port is one of the two template classes available within the CSE library:

34

Data_In or Data_Out. Data_In is the input port class of the modules, which will enable

the possibility to, when instantiating it, define how are the input types and it will also be

responsible to create and instantiate the buffer to connect with the input port. The data

are stored in a Buffer class instance.

The interface classes can be shared easily for a group of similar modules like all

encoders, because a wide range of encoders have the same data I/O. The name of the

interface class is the class name of the module with the “_interface” suffix, as

“encoder_interface” shown in figure 3.7.

The parameter class defines all parameters that can be changed during run-time to

adapt the module functionality e.g., defining the number of symbols or defining which

is the modulation to be used. A parameter is defined to be of type available in the CSE

library: Param. The parameter class is usually very module specific, because the

parameters have a low similarity for different modules. The name of the parameter class

is the class name of the module with the “_parameter” suffix. The reason to split the

parameter in an extra is that all aspects like definition, default values, and automatic

configuration over XML of the parameters are concentrated in a single class in one file.

The Share class contains functionality that can be shared among multiple modules.

E.g., LDPC decoders can share the check node functionality or mapper and demapper

use the same constellation points for a given modulation. By putting such functions into

the share class, a high reuse can be achieved. In general, the parameters of the encoder,

as an example, are shown in figure 3.8 – there will be always a value classified as

“default”, preventing the case when the user does not define what the parameter values

to use are.

Figure 3.8: Excerpt of the Encoder_Parameter file – creation and definition of the

default parameters values

Configuration of the functional module is a challenging task. For a standard-

compliant simulation environment many modules are connected via their data interface.

In order to perform the correct operation, it is mandatory to configure every single

35

module. Usually a standard provides a header word, defining the current operation of

the circuit. This header word has to be translated into other parameters, such as

modulation scheme, coding scheme, polynomials, etc.

3.2 Development of New Modules

The CSE goal is to allow the user to create its own simulation environment with a

rich documentation. It encourages the users to create new simulation chains and also

new functional modules as well as test them inside the whole system – analyzing the

results and the performance of the new changes or applications. New simulation chains

can be made using the existing modules already provided by the CSE (reorganizing

or/and changing parameters), creating a completely new simulation with brand new

modules or using new modules with the original CSE modules.

For writing new modules for the simulation there are some steps that must be done.

In section 3.2.1 the instructions on how to create a parameter class for the module will

be presented. Section 3.2.2. will bring the instructions on choose or write an interface

class. Finally, section 3.2.3. defines the instructions to write the module itself. In these

sections all the steps are explained in more detail based at the example of a hardware-

compliant LDPC decoder model.

3.2.1 Create a Parameter Class for the Module

As a first step, it is necessary to generate the parameter class that corresponds to the

module intended to implement. This parameter class contains all parameters that are

needed by the decoder to run. In this example there are things like quantization,

scheduling, number of iteration, etc. The parameter class – an example is shown in

figure 3.9 – is derived from the class Base_Parameter. The include’s directives have to

contain relative paths to any directory for the base and the assistance directories.

Figure 3.9: Code of an empty parameter class for a LDPC decoder

Parameters for the modules are added to the public part of the class and all

parameters have to use the container class Param. In order to set appropriate values to

these parameters, the function Set_Default_Values() is called from within the

36

constructor. The function is defined in the protected. The first value on the function

gives the default value for the parameter. The second parameter describes the parameter

by a string which is used for the output and for detection of the parameter in a

configuration structure like XML. The string is required to be set to the name of the

variable. The last parameter is a list of object, which is inherently available from the

parent class Base_Parameter. Registering each parameter in this list enables some

comfort functionalities like printing all parameters by using the streaming operator (<<)

on a module object or automatic configuration of the module. The parameter creation,

definition of default values and registration can be seen in figure 3.10.

Figure 3.10: Excerpt of how to create and define default values to parameters

3.2.2 Choosing or Writing an Interface Class

The framework provides a lot of interface classes for different types of modules. If

the new module matches one of these types, it is not needed to write a new interface

class. If this is not the case, it is necessary to write a new interface class, but it consists

of only a few lines of code. This class defines the input and output ports with the two

containers Data_In and Data_Out – figure 3.11 shows the new interface class for a

LDPC decoder. Similar to the parameter class, this container provides the “()” operator

to access the data. The input_data_list and the output_data_list hold all data I/O objects.

These lists are necessary for the automatic connection feature of the simulation chain.

Naming of the ports has to obey few rules regarding certain prefixes and suffixes that

will help the identification of it – for instance, input_prob is the input port that holds

probability values or output_bits is the output port that contains information regarding

singles bits.

37

Figure 3.11: Code of a new empty interface class for a LDPC decoder

3.2.3 Writing the Module Class Itself

After it was created the parameter class and made sure that we are able to parse the

XML file, it is time to write the code for the module. For that it is necessary two files:

the header file containing the class definition and the cpp file containing the

functionality of the class.

Each module is derived from at least two classes: the interface and the parameter

class. The init() function sets derived parameters, resizes the outputs ports calling

Aloc_mem(), and performs other tasks that are required by the module before it is save

to invoke the Run() function. Now class variables and functions can be defined in the

private part of and the according content of the functions can be included in the body of

the class. Figure 3.12 shows the header file for a LDPC decoder as an example.

Figure 3.12: Code for a new header file for a LDPC decoder

38

The functions that are part of each module are implemented in the cpp file. A

minimum template of a module body is presented in figure 3.13. Important to remind

that the if statement in the Run function is mandatory (it allows for an automatic run of

the Init function if a parameter or port has changed).

Figure 3.13: Code for a new cpp file for a LDPC decoder

3.3 General Considerations

Simulations had become an important ease towards the development of any new

study (regardless if it is about software or hardware). As first step of this work, it was

necessary to understand and to study the functionality of the software CSE and its

whole architecture and the group of dynamic and complex tools in order to be able to

develop new modules and applications.

All the information linked to the implementation of the new modules related to this

work will be presented on chapter 4 – it is important to mention and explain all the

mathematical models used on each module: how they were developed, how the class

diagrams are, how the data structure and other details are. The main objective with this

is to provide the whole information background for a better comprehension of the

behavior of each module. The development of the VHDL will also be discussed and

explained. It is important and interesting to realize the several differences between the

developments of the same module using first C++ and then VHDL.

39

4 IMPLEMENTATION

The development of new modules is a built-in feature of the CSE. It is a great ease

towards the development of new simulations, throughout this work the implementation

of a Fine Carrier Synchronization Unit is proposed– which will be completely

developed during this work following the method developed on [WASENMÜLLER,

2009]. With this new module it will be possible to decrease the negative influences from

noise by calculating the offset parameters – frequency and phase – and correcting. The

Fine Carrier Synchronization is a technique that impacts the communication positively

by providing ways to do it more accurately, automatically and aiming minimization of

errors.

There is also the necessity to develop the Add Offset module and to do some

extensions to the Statistics module. The Add Offset module comes with the function to

stimulate noises on the system – it adds noise to the bit stream according to the input

provided on the XML configuration file. The purpose of the Add Offset module is to

check if the Fine Carrier Synchronization module is working properly. The Statistics

module had to be extended since it must keep up calculating new probabilistic values

regarding the new environment that it would work on - including the Fine Carrier

Synchronization and the Add Offset.

The implementation of the Fine Carrier Synchronization Unit in VHDL is also

proposed and comes with the idea to provide an embracing approach to the same idea –

it is possible to have a good and interesting comparison between two implementations

(when designated to different platforms – C++ and VHDL).

It is important to remind that a real communication system will have differences

related to the localization and existence of the modules if compared to the software. All

the figures developed throughout this work are based on the software disposition of the

modules. Therefore, the idea at the moment is to make sure that it is understood the

location of it in a real life system. On real life it will exist, for example, a pre

amplification module that will be responsible for the empowerment of the signal and the

decreasing of the jitter, besides that, the synchronization module will work in parallel to

all modules on the receiver part – providing information during all moments to the

decoder and the demapper, for example, and not exactly following the linear disposition

[ROCHOL, 2011]. This figure 4.1 comes with the purpose to take this idea into

consideration – real location of the synchronization module.

40

Figure 4.1: Real disposition of the Synchronization module

Due to the software purposes, it will be place in a linear evolution of the

information. Therefore, it is located right after the noise channel module. The Fine

Carrier Synchronization reacts to every bit stream used on the simulation environment

by being located sequentially on the simulation chain path between the Noise Channel

Module and the Demapper Module – figure 4.2 shows the location of the new module

and certifies that every upcoming bit stream will go through it. Note that this position is

valid for test only purposes, in reality this unit is going to be place in reality inside the

decoder iteration loop – which will provide the soft information necessary for its

functionality.

Figure 4.2: Fine Carrier Synchronization Unit Module position regarding the original

simulation chain

A proper implementation of the synchronization module can be simplified if the

idea of how it is done is divided again into three smaller modules. As shown in figure

4.3, it is possible to recognize subtasks to achieve the objective of this module. By

having different and identified subtasks, it is obvious to create sub modules – the

subtasks can be easily identified, it makes the design of logic simpler and more

accurate. This way, the implemented software will respect some of its principles –

reusability, flexibility and object orientation.

Figure 4.3: Fine Carrier Synchronization Unit Module modularization

The Correlation Module will be responsible for the calculation of the correlation – a

statistical measurement of the relationship between the two bit streams – reference and

41

received symbols. The reference symbols are exactly the same bit stream provided by

the source module. The received symbols are the bit stream that are being transmitted

and had been through the others modules – the encoder, the mapper and the noise

channel. The variable that allows the execution of the correlation calculation are the bit

streams – the original and the received. Before the Noise Channel module they are

perfectly correlated, since they are exactly the same. After the addition of the noise,

they are correlated – not perfectly anymore – once the presence of certain characteristics

on the original bit stream will react in order to leave traces on the received bit stream.

As the Correlation Module produces its output, the correlation value, the Estimation

module can do its part – estimate the frequency and phase offset. This is possible based

on the average phase of the first and the rear part of the correlation value – when

calculating the correlation value it will be divided into two parts in order to provide the

values needed for the estimation of the wanted parameters.

Once the value of frequency and phase offset are estimated and available for the

next module, the moment when the last task of the Fine Carrier Synchronization

Module has come. The Correction module will be responsible for the correction of the

noisy signal received in order to decrease the error rates.

For implementation purposes, adaptation and tests of the Fine Carrier

Synchronization Module, it is needed a way to provide frequency and phase offset

inputs to CSE. This offset is going to be introduced as the last step before the Noise

Channel Module. In the end of the simulation it will be possible to compare the values

on the XML configuration file and the estimated values of these parameters. The Add

Offset module will model the frequency and phase offset at the transmitter side – which

means that it will add an error to the bit stream following mathematical background that

will be studied also on this work.

During the development of this work, the focus is the implementation of the new

modules added on figure 4.4 – Add Offset and Fine Carrier Synchronization. The

models used to define parameters on both modules are available and originally on

[WASENMÜLLER, 2009]. It is also important to keep in mind that several changes on

the Statistics module will also be done in order to embrace the new parameters and

functionalities.

Figure 4.4: Add Offset and Fine Synchronization Module positions regarding the basic

simulation chain

42

This chapter aims to detail the implementation of the new modules for the CSE as

well as the corresponding VHDL. The development and implementation comprehend

the integration of several basic components and also the extension for some already

existing modules.

4.1 Software

The implementation of such functionalities will follow the same language chosen by

the original CSE developers – C++, which is a general-purpose programming language

with a bias towards system programming that supports efficient low-level computation,

data abstraction, object-oriented programming, and generic programming. It provides

powerful and flexible mechanisms for abstraction; that is, language constructs that

allow the programmer to introduce and use new types of objects that match the concepts

of an application. Thus, C++ supports styles of programming that rely on fairly direct

manipulation of hardware resources to deliver a high degree of efficiency plus higher-

level styles of programming that rely on user-defined types to provide a model of

computation that is closer to human’s view of the task being performed by a computer.

These higher level styles of programming are often called data abstraction, object-

oriented programming and generic programming.

4.1.1 Fine Carrier Synchronization Module

The Fine Carrier Synchronization module requires a deep understanding of how it is

possible to estimate the parameters and how, once they are known, to perform the

elimination of the negative effects that were caused. To make the comprehension easy,

the Fine Carrier Synchronization Module will be divided into three other sub-modules;

each one of them will be responsible for one task, which will be explained better in the

following sections.

By applying modularization it is possible to easily perform changes without

requiring modifications in different layers. This simplifies validation, debugging and

any other adjustment; it is also highly efficient because of the direct

intercommunication between the components. Another benefit of modularization is

related to security; it is possible to hide and protect the information that is inside one

module since it works as a black box. There will be an interface available for the other

modules to communicate with it, not allowing knowing how the functionalities are

really implemented.

4.1.1.1 Correlation Module

The correlation module is responsible for the first step done in the whole process

performed by the Fine Carrier Synchronization Module. The correlation is one of the

most common and most useful statistics. A correlation is a single number that describes

the degree of relationship between two variables. The main interest in obtaining the

correlation value is to provide the base requirements and parameters to the Estimation

module.

 ̃ ∑ ()
 ()

On equation 4.1 L represents the length of the burst, represents the received

sample sequence (provided by the channel module) and is the transmitted symbol

sequence (provided by the source module) – both sequences are complex values that

4.1

43

represent modulated symbols. It is necessary to keep in mind that in reality the is the

estimation of the transmitted symbol provided by the decoder – for test purposes it uses

the transmitted symbol sequence provided by the source module.

When the correlation value is calculated it is divided into two parts: the front part

(with) and the rear part (with), resulting in the values of ̃ ̃ .

It is interesting to keep in mind the division of the correlation value in two (front

part and rear part). This can be seen clearly in figure 4.5, which shows the

implementation of the correlation values, by the comparison of the iteration index value

() with the length of the burst (() ()).

Figure 4.5: Implementation of the calculation of the correlation values

The class diagram related to the implementation of the Correlation module is shown

in figure 4.6.

Figure 4.6: Correlation module class diagram

4.1.1.2 Estimation Module

With the ̃ values available it is possible to proceed with the estimation of the

frequency and phase offset values. The estimation of the frequency offset can be

calculated with the equation 4.2 and the phase offset estimation with the equation 4.3.

 ̃
 (̃ ̃)

(4.2)

44

(4.3) ̃ (̃ ̃) ̃

Figure 4.7 shows the implementation of the estimation module based on the values

of the correlation module (output from equation 4.1). In equation 4.2 the function “arg

()” returns the phase angle of the multiplication from the two correlation values.

Figure 4.7: Implementation of the estimation frequency and phase offset

The class diagram related to the implementation of the Estimation module is shown

in figure 4.8.

Figure 4.8: Estimation module class diagram

45

4.1.1.3 Correction Module

Once the value of the frequency and phase offset are estimated and available, when

the burst has come to its end, it is possible to perform the correction itself.

 () ()
() ()

The correction will be done according to the equation 4.4, where

represents the corrected symbols sequence, represents the original sample sequence

(the sequence that has been affected by the noise and contains errors),

and are the respective estimated offsets – coming from estimation

module and represents the imaginary term of a complex number.

The equation 4.4 is responsible for the elimination of the negative effects of phase

and frequency offset – it is basically the opposite function of what happens in real world

when these parameters are added to the communication system.

The class diagram related to the implementation of the Estimation module is shown

in figure 4.9.

Figure 4.9: Correction module class diagram

4.1.1.4 Implementation Details

During the implementation of the Estimation module, the “Wrap Around Problem”

was faced. This problem happens due to the software interpretation of the borders when

calculating values of frequency and phase offset to perform the correction and to put

into the accumulator, which will have central importance in the Statistics Module.

When calculating probabilistic values related to the estimation of the phase and

frequency offset, like mean and standard deviation, it is necessary to take a careful

approach to symbols like 0.1radians and 2π+0.1radians. They are considered completely

different but they are actually the same. For example, in figure 4.10 nearly the same

symbol can have different wrong interpretations since the fluctuation of the symbol can

vary between the upper and lower part of real axis (Re). The wrong interpretation of it

happens since the software does not take it as a circular unit – therefore the value 2π-0.1

will be “far” from the 0.1, resulting in several errors when calculating the accumulate

(4.4)

46

value of offsets and also regarding the statistics values; the mean and standard deviation

of the estimation will have drastically wrong results.

Figure 4.10: Example of the “Wrap Around Problem” with the wrong interpretation

(left) and the right interpretation (right)

Therefore, a normalization of the results that are out of bounds is mandatory after

every estimation. The range of accepted estimation phase offset goes from [-π,+π] and

the range of accepted estimation frequency offset from [-0.5,+0.5] – anything out of this

range must be normalized. The normalization is done by subtracting the expected phase

or frequency offset from the estimation value. To this new value, 2π (on the phase

estimation) or 1 (on the frequency estimation) is added, when it is in the negative area

considered out of bounds (identified by “NEG” in figure 4.11), or subtracted, when it is

in the positive area considered out of bounds (identified by “POS” in figure 4.11) – this

can be seen easily with the part of the code responsible for this normalization shown in

figure 4.12. After doing this, the value is added to the expected phase or frequency

(which is available from the XML configuration file) – this final value contains the

normalized estimation of frequency or phase offset.

Figure 4.11: Illustration of accepted range and “out of bounds” areas regarding

frequency and phase estimation

47

Figure 4.12: Excerpt of the code used for the normalization of estimated values

4.1.2 Add Offset Module

The objective is to introduce, in an artificial way, errors on the communication

system to evaluate and measure the quality and the behavior of the Fine Carrier

Synchronization module.

The mathematical model that introduces phase and frequency offset into the burst is

strategically located before the Channel Module – it is the last step before the burst goes

into “real world”.

 () ()
() ()

The offset will be added according to the equation 4.5, where ()

represents the symbols with offset, () represents the original symbol – error free,

 and are the respective offsets which will be introduced

according to the information on the XML configuration file and represents the

imaginary term of a complex number.

The values of phase and frequency offset that can be defined on the XML input file

must be within a certain range of acceptable offset values; if the values do not obey

certain rules it will be impossible to estimate and correct it properly – making the job of

the Fine Carrier Synchronization Unit impossible. The frequency offset, for example,

value must respect equation 4.6. The phase offset works in a complex plane which

automatically limits the maximal value to the circumference; therefore, adding a phase

offset of will be the same as adding .

 (

)

(4.5)

(4.6)

48

The class diagram related to the implementation of the Add Offset module is shown

in figure 4.13.

Figure 4.13: Add Offset module class diagram

4.1.3 Extensions to Statistics Module

This module was the only one already presented on the original CSE that was

changed in order to adapt itself to the new functionalities after the Fine Carrier

Synchronization Module was included. These changes were necessary once the statistics

module should be also responsible for several quality measurements and statistics

calculations regarding the new values and parameters included in the new modules – i.e.

correlation values and estimation of the frequency and phase offset.

The first step was to create the several new interfaces; the statistics module now

needs to receive data values from the Add Offset, Correlation and Estimation modules.

Important to remind that on the first version of the Statistics module there were just two

modules submitting input information: the Demapper and the Source Bits.

The Statistics Module has as part of its job the creation of the XML output file,

which contains the original configuration of the simulation (it is a transcription of the

configuration found on the XML input file) and the results of the calculation of the

statistics themselves.

On the original XML output file 6 outputs and the configuration used for the

simulation were available, specifying which modules were used and how the parameters

were defined. The new Statistics Module has 18 new outputs, which will provide a good

analysis about data included on the new modules. This means that now the output file

contains 24 output values, providing information that can easily be analyzed and used

for aiming improvements in the quality of the software developed. Some of them are

just conversions between units (radians to degrees and vice versa).

Among the new statistics module calculations, it is important to keep in mind the

basic probability equations as the calculation of the frequency and phase estimation and

the variance/sigma of the phase and frequency (expected and estimated). Several

equations are going to be omitted here since there are just changes on the data measured

(for example frequency offset estimation instead of phase offset estimation – as shown

in equations 4.7 and 4.8). The comprehension of the whole system and analysis of the

49

quality of the new functionalities implemented are based on the understanding of these

steps – the output of the Statistics Module must be analyzed deeply and interpreted.

 ∑()

 ()

∑()

 ()

Where

 (

)

In equations 4.7, 4.8 and 4.9, represents the number of bursts, represents the

correlation. The differences between equation 4.7 and 4.8 is that the first takes into

account the estimation of the frequency offset when estimating the phase offset, while

the second estimate the phase only based on the correlation of the burst.

Important to keep in mind that all the calculations done in this module are only

possible if the “Wrap Around Problem” was successfully corrected, otherwise problems

with the values of variance and mean will be inevitable.

The class diagram related to the implementation of the Statistics module is shown in

figure 4.14.

Figure 4.14: Correction module class diagram

(4.9)

50

4.2 Hardware

The implementation of the Fine Carrier Synchronization Unit in VHDL requires a

view of the functionalities in a low level of abstraction; it is necessary, for example, to

organize signals that will be responsible of the read/write of the ROM memory – when

regarding software development, this kind of control is completely unimportant since it

is done automatically. On the other hand, some other features, for example, the

implementation of the Add Offset Module is completely ignored when regarding VHDL

since the “real world” will be in charge of the Add Offset Module’s function – stimulate

different – phase or/and frequency – noises on the system’s communication.

The implementation of such functionalities is done using VHDL – a brief discussion

about this hardware description language is also introduced in this work to provide a

basic knowledge about a subject that is of primary importance regarding the evolution

of this work. Fine Carrier Synchronization Unit was not implemented on a FPGA due to

resources reasons but once the final developed VHDL is synthesizable – and this is a

big concern throughout this work – it is possible to implement the hardware with such

behavior.

4.2.1 VHDL Overview

VHDL is a nested acronym that stands for Very High Speed Integrated Circuits

(VHSIC) Hardware Description Language. VHDL allows a view of a design at various

levels of abstraction – Simulation gives the waveforms of the circuit inputs and outputs

and Synthesis gives the possible combination of gates/transistors to achieve the required

operation [VHDL, 2012].

In VHDL, any circuit/system is viewed as an entity (or a set of entities). The internal

working of an entity is called its architecture. For instance, to design a half adder using

VHDL, the entity would be the half adder itself with its input and output ports and the

architecture would tell VHDL what happens between the input and the output ports.

VHDL has libraries that allow the reuse important and frequently used pieces of

code. All packages contain useful data types and keywords. In VHDL, data can be in

the form of a Constant, Variable or a Signal – which are also the keywords for declaring

the same. “File” in VHDL is a sequence of values and hence, is also considered a data

object.

Alignment operators are used to assign a value to a data object and there are three

types: “<=” assigns a value to a signal; “:=” assigns a value to a variable and “=>” used

to assign values to individual/other vector elements. Logical operators respect the

Boolean logic; to operate with this logic the data must be of type BIT, STD_LOGIC or

STD_ULOGIC (or their vector extensions). Arithmetic operators (+, -, *, /, **, MOD,

REM and ABS), relational operators (=, /=, >, <, <= and >=) and shift operators (sll, slr,

sla, slr, rol and ror) are also present.

Another VHDL feature that can be very useful are the Generics, which allow a

design entity to be described so that, for each use of that component, its structure and

behavior can be changed by generic values. In general, they are used to construct

parameterized hardware components and can be of any type. Generic is a great asset

when the design has slight changes at many places, change in the register sizes, input

sizes, etc. If the design is very unique then, there is no need to have generic parameters.

51

Unlike the sequential statements in other programming languages, VHDL code is

concurrent code – which is good enough to build combinational circuits. However, to

build sequential circuits, we need sequential code. To write concurrent code, use

WHEN, GENERATE and BLOCK statements and to write sequential code, use the

PROCESS, FUNCTION and PROCEDURE statements.

The processing of a VHDL code occurs in three stages:

 Analysis: compiler checks each design unit for correct syntax and for some

static semantic errors; if no errors are found, the compiler translates the unit

into an intermediate form and stores it in a designated library.

 Elaboration: binds architectures to entities using configuration data. Many

complex designs are coded in a hierarchical manner. Compiler starts with

designated top-level component and replaces all instantiates sub-components

with their architecture bodies to create a single flattened description.

 Execution: the flattened design is used as input to a simulation or synthesis

engine.

Regarding hardware descriptions languages, synthesis is a process where the code is

compiled and mapped into an implementation technology such as an field-

programmable gate array (FPGA) or an application-specific integrated circuit (ASIC). It

is important to keep in mind that not all constructs are suitable for synthesis. For

example, constructs related to timing are valid for simulation but not synthesizable.

During the implementation of this work, the aim to develop a synthesizable

hardware at the end of this project was taken as a primary goal. This was possible with

the framework used throughout this work, which was Xilinx ISE Design Suite 13.2

[XILINX, 2012]. It comes with a series of in-built tools allowing that everything can be

done on the same framework (from design entry, through implementation and

verification, to device programming from within the unified environment of the ISE

Design Suite). As alternative synthesis tools available on the market nowadays can be

mentioned Simplify Pro and Leonardo Spectrum.

4.2.2 Fine Carrier Synchronization Unit

The simulator used on the first moment of development was the ModelSim

Simulator, which is not included on the Xilinx ISE tools [MODELSIM, 2012]. Due to

reasons such as problems with the compatibility with the several versions of the Xilinx

ISE Design Suite, the simulator had to be changed. It was then, preceded with the

simulator included on the framework, already a built-in feature of the Xilinx ISE Design

Suite, called ISim [XILINX ISIM, 2009].

The intention at all moments during VHDL development was to implement a

synthesizable VHDL. By using this term, synthesizable, it refers to the capability of the

synthesis tool to implement the given program in hardware. With other words, it is

intended to at the end of the development have something that “can be transformed into

physical part” by a synthesis tool chosen. Whether a particular VHDL statement is

synthesizable or not depends on the technology planned to realize the final “physical

part”. This work aims the technology family Virtex 6, device XC6VLX75T, package

FF484 and speed -1. The synthesis tool used is the XST and the simulator used is ISim

(synthesis and simulator are built-in features of the framework).

52

It is important to understand that now a bottom-up approach will be used to

comprehend exactly all the modules functionalities. The same idea used before during

the software development will be taken now: modularization of the whole unit

accordingly to its tasks; sub-tasks inside sub-modules makes the work easier and less

impacting.

Figure 4.15: Fine Carrier Synchronization Unit in VHDL modularization

Fine Carrier Synchronization implementation in VHDL was organized keeping in

mind the same approach adopted when implementing the software, modularization and

division of tasks – this is shown in figure 4.15. Several modules were necessary – each

one has a specific and well defined function. This set of modules need to communicate

with each other at all moments during the execution. Important to mention that there are

three kind of modules used during this work: completely implemented during this work,

implemented by co-researchers and generated with a Xilinx ISE Design Suite in-built

tool called Core Generator.

Calc_phase_offset_estimation module is responsible to perform the calculation of

the correlation. The basic of the correlation calculation is a multiplication between the

two sets of complex values, which is not a trivial task in VHDL. Figure 4.16 shows the

main function of this module – two accumulators were created to hold the results of the

complex multiplication and a selector to define whether it belongs to the front or the

rear part of the burst. Calc_phase_offset_estimation was completely developed during

this work.

53

Figure 4.16: Excerpt of the correlation calculation in VHDL

FSM_for_fine_synchronization module is a finite state machine which takes the

responsibility over signal that controls the “correction module”. It will wait until both

frequency and phase offset estimation values are ready and available and then send the

“start” signal for the correction. It is basically the trigger for the correction itself of the

symbols. FSM_for_fine_synchronization was completely developed during this work.

Frequency_corrector module adjusts the correction value after every iteration during

the whole burst – the frequency offset must be added after every iteration (this will

correspond to the multiplication by the number of symbols, represented in equation 4.4

by). During the development of this module a problem was faced - the original phase

and frequency offset were made with a different bit width since the frequency offset has

a fractional part – it was necessary, therefore, to create a fractional part for the phase

estimation (always defined with zero as its value) to add values with the same number

of bits. Frequency_corrector was completely developed during this work.

Frequency_phase_estimation module is in charge of the validation of the phase and

frequency estimation values. Since the divider module takes a bit longer than others to

produce its output it is necessary that others module wait for it, once the result of the

division entails directly on further computations – as it can be seen on figure 4.17.

Frequency_phase_estimation it was also completely developed during this work.

Figure 4.17: Excerpt of the calculation

Phase_corrector module is responsible for the correction itself, this module will

receive the phase and frequency estimated offset and do the multiplication. This is

improved by using a look up table containing the values for sines and cosines created

with Core Generator from Xilinx – since the calculation of sin and cosine in VHDL is

quite complicated to be done, it was chosen to use a look up table to speed up the whole

54

process. Phase_corrector module was developed by Robert Drachenberg and Uwe

Wasenmüller.

The Romshift module is performing the function that provide as output an

approximated scaled radiance in 9 bit length for complex input of generic length. This

module has two sub modules inside it: the first is a read-only-memory (ROM) contain

the instantiation of an array for 4096 angles for 12 bit complex numbers (6 bit real part

and 6 bit imaginary part); the second is a sub module responsible for to round complex

signals with the user defined length to a wanted length (Smartscale_generic_shift). All

the parts of this module were developed by Paul Salzmann, Harald Schenk and Uwe

Wasenmüller.

Rot_memory module is a memory for the storage of symbols while the calculations

are being done. The rot_memory is also responsible for re-sending the burst after the

whole calculation is done; during the calculation of the estimation it just stand by and

when everything is ready to start the correction this module re-sends the received

symbols at the same order that they were received. This module was created using the

Xilinx tool Core Generator [XILINX CORE, 2012].

Divider module implements the division on VHDL – which is necessary in order to

estimate the frequency offset that was introduced to the symbols. Division in VHDL is a

topic with a very complicated approach; therefore, to assure reliability on this task and

not to spend time reworking on something, this module was created also using the Core

Generator. The interface this tool used for creating and editing the details of the module

can be seen on figure 4.18.

Figure 4.18: GUI interface of the Xilinx tool Core Generator when creating and editing

the Divider module

55

4.2.3 Implementation Details

A Xilinx tool known as Core Generator (already included on the design suite ISE

13.2) was used during the development of the modules divider and rot_symbols. This

tool was used aiming specially for the advantage given by the acceleration of the design

time on the access provided to highly parameterized Intellectual Properties (IP), which

means in other words, by using modules that are built and can be configured

accordingly to the needs of the project with this tool. Core Generator provides a catalog

of architecture specific, domain-specific and market specific IP. These user-

customizable IP functions range in complexity from commonly used functions, such as

memories to system-level building blocks, such as filters and transforms. Using these IP

blocks can save days to months of design time and the range of applications is really

impressive, as shown in figure 4.19. The IP blocks are already developed and they are

completely configurable – which will fit probably to 100% of the user cases.

Figure 4.19: Xilinx Core Generator IP Catalog

During the implementation of the work, an important feature of VHDL - Generics -

was used. Generics allow a design entity to be described so that, for each use of that

component, its structure and behavior can be changed by generic values. In general,

they are used to construct parameterized hardware components and can be of any type.

Generic is a great asset when the design has slight changes at many places, change in

the register sizes, input sizes, etc. On this work there are two main generics:

G_NUM_BITS_CONCATENATE (number of bits necessary to contain the value of the

correlation, intimate connected with the burst length) and G_SYM_WIDTH (bit width

of the symbols). If the design is very unique then, there is no need to have generic

parameters.

Among the difficulties of translating software to VHDL, the completely different

architecture brings different ideas regarding data structure, organization of the code and

how to behave with pipelined structures. Small differences on the result values between

software and VHDL are expected due to the rounding techniques – rounding occurs

when a more precise number (i.e. more fractional bits) with a less precise number (i.e.

fewer fractional bits) is wanted to approximate. On this work, the technique adopted

was truncation, also known by chopping. It is basically just the discard of a number of

less significant bits – since the number of bits gets really large it is possible to “throw

away” some of the bits and work with the rest of the bits without losing much on the

quality.

Truncation is performed on the Calc_estimate_phase_offset module. However, it is

not just a simple truncation; it uses a multiplexer to define when to truncate or not.

Truncation will not be done when working with small bursts – it means that the

56

correlation value will not need so many bits for its representation and therefore the

truncation would discard the value itself. Several tests and comparisons between the

VHDL and the software were done in order to have a good definition of what is a small

burst or not. Excerpt of the truncation code is illustrated in figure 4.20, where it can be

seen that when there is a short burst detected the multiplication will take into account

the whole bit width; if the short burst was not detected the bit width goes from “22

downto 5”: throwing away the 5 (“4 downto 0”) less significant bits of the symbol.

Figure 4.20: Excerpt of the VHDL code responsible for truncation of the correlation

Another implementation detail that is worth being mentioned is the relation between

number of bits from the phase and frequency offset coming from the module. The

frequency offset is a result of a division; therefore, it comes with an integer and a

fractional part. Hence, the phase offset must be transformed into the same pattern as the

frequency – the VHDL operation responsible for this can be seen in figure 4.21 – and

after that at the frequency offset value will be added.

Figure 4.21: Excerpt of the VHDL code responsible for the adjustment of the number of

bits between phase and frequency offset

4.2.4 Framework Text Report

Xilinx ISE Design Suite provides at the end of the Synthesis process a wide and

complete text report about several characteristics of the several procedures done during

the process. The comprehension and analysis of the quality of the VHDL code and its

synthesis must go through the examination of a set of the tests given on the figure 4.22.

57

Figure 4.22: Text Report from Xilinx Design Tool

It is important to analyze that the implementation of the Fine Carrier

Synchronization Unit when compared to the resources available on the specific target is

using an negligible amount of them – for example 4% of number of DSP48E1’s, 2% of

the number of Slice Registers and 3% of the number of Slice LUTS. On figure 4.22 is

given the exact number of components that it needs to be assembled. It is possible to

realize that the developed VHDL could really become an equipment to be used in the

communications systems nowadays.

By analyzing the timing summary, it is possible to conclude that inside the design

there are clocked processes implemented with flip-flops – this explains why there is no

58

combinational path founds, since in the design there are no path that go from an input

pin to the output pin without going through a flip-flop; therefore, there is no maximum

combinational path. It is necessary to keep in mind that every flip-flop has an input

setup time, meaning that the D input must be stable this long before the active (usually

rising) edge of the clock. It also has a clock to output delay measured from the rising

edge of the clock to the Q output. This is useful when trying to understand the meaning

of Minimum input arrival time before clock and Maximum output required time after

clock – any input must be stable at least 5.938ns before the active edge of the clock (as

it enters the FPGA) and that outputs will be valid no more than 0.783ns after the active

edge of the clock. The minimum clock period – that must not be shorter than 5.109ns –

is calculated using the worst case (longest) path from an internal flip-flop Q output to an

internal flip-flop D input plus the setup and clock to output times.

4.3 General Considerations

Chapter 4 was written with the purpose of providing information about the

implementation details both in C++ and VHDL; detailed explanation on how several

tasks were performed and several particularities between the implementation of the

same unit designed using different tools were shown. Also, it is important to take into

account the mathematical background exposed throughout this chapter; which works as

a ground, supporting the whole theoretical background of the synchronization system.

Section 4.1 and 4.4 are interesting to compare with the idea in mind that they both

implement actually the exact same functional unit; therefore, it is possible to improve

the quality of the work by comparing values of signals and variables and the output

results. The comparison was done at several moments during the development –

especially during the truncation implementation, it was a key to the success to assure

that this was not leading to any mistake.

 The next step – which will be the subject of chapter 5 - is the validation of the

developed work. Validation means to submit both implementations under a wide and

exhaustive set of tests and compare its results. This is necessary in order to prove that

they fit to the requirements of functionality and performance of acceptable software’s

and VHDL’s developed nowadays.

59

5 VALIDATION

This chapter describes the tests that were made over the implementation developed

through this work. The tests have the objective to validate the mathematical background

as well as proving that the Fine Carrier Synchronization Unit is working on both

implementations – C++ and VHDL.

5.1 Test Environment

The system used to perform validations was a Intel Core i5 520M 2,5GHz, 4GB

DDR3 533MHz. It was used two different operating systems during development,

debugging and tests. The C++ software implementation, compilation and analysis were

done using a Linux Ubuntu release 10.10 with kernel 2.6.35.28 and GNU Compiler

Collection (gcc) version 4.4.5 [GCC, 2012]. The hardware was developed, compiled,

synthesized and simulated with Xilinx ISE Design Suite 13.2 running on Windows 7

Home Premium Service Pack 1 (64-bit operating system).

5.2 Methodology

Since it would be impractical to perform validation for all the possible knowledge

conditions (the number of possible and thinkable conditions is close to infinite), it was

chosen to simulate conditions where there was something extreme – where it is possible

to believe that something was leaning to go wrong, i.e. invalid inputs and boundaries

conditions.

The entry criteria for the validation are to make scenarios to identify failures whose

removal raises the software quality by increasing the reliability [PATTON, 2005].

Which means validating the software and hardware by testing them with several

different kinds of inputs: at boundaries conditions (limits) and with invalid entries.

In a simplified view, the testing is basically the introduction of a noise – which is a

phase or/and frequency offset – into the original signal and verifying the correction

done on the other end of the chain. Figure 5.1 illustrates this flow.

60

Figure 5.1: Original signal until estimated corrections flow

Once the estimated corrections are available, it is time to verify if the received signal

when adopting such estimation approximates itself from the original signal. Figure 5.2

shows the idea to reconstruct the original signal and verify the reliability of the

estimations done.

Figure 5.2: Verification of the reliability of the estimated corrections

It is important to keep in mind that all the tests, validation methods and criteria

adopted are valid for C++ and VHDL as well. This is possible since the VHDL takes as

input the received symbols (extracted from the software) which will contain several

definitions and perform his work: calculating the correlation, estimating the parameters

and performing the correction of these symbols – therefore, all the definitions of SNR,

number of symbols, phase and frequency offsets are done in C++ but are also the same

for the VHDL.

The methods and criteria of testing are traditionally divided into structural and

functional aspects. Structural testing criteria, i.e. criteria which take into account an

internal structure of the program, are in turn divided into data-flow and control-flow

criteria. Data-flow criteria are based on the investigation of the ways in which values

are associated with variables and how these associations can affect the execution of the

program. Control-flow criteria examine logical expressions, which determine the branch

and loop structure of the program.

In order to have a perfect and consistent analysis of the developed software and

VHDL, it is mandatory that the noise which will be introduced is correctly configured

and smartly chosen. It directly limits the detection and processing of all information.

The noises discussed at this moment are the one introduced by the new module in

software, called Add Offset Module, and the one from the Channel_AWGN module; it

is known that the AWGN noise refers to the fact that noise eventually combines with

the desired signal and is a major limiting factor in the transmission of information.

The choice of the noise that was introduced is based on the power efficiency

(depending on the SNR for a specific error probability); on the bandwidth efficiency

(the data rate per unit bandwidth); and implementation cost and complexity.

The pillars to the introduction of errors on the system are basically the parameters of

the modules in charge of adding the noise: Add Offset Module and Channel_AWGN.

61

The Add Offset Module has two parameters: phase offset and frequency offset. It is also

important to remind that another possible variation is the burst length and bit width of

the symbols, which can be defined directly on the instantiation of the Source_bits

Module on the XML input file – figure 5.3.

Figure 5.3: Source_bits Module instantiation and parameters definition

The burst length is defined by the parameter “num_bits” on the Source_bits Module.

Since QPSK is being used, the burst length corresponds to half of the number of bits.

For example, by defining the num_bits equal to 112; the burst length is, therefore, 56.

The valid burst length range for this communication pattern are 56, for minimal burst

length, and 2592 for maximal burst length; which implies that the minimal number of

bits is 112 and 5184, respectively. These values for minimum/maximum burst length

are defined by the FEC frame size maximum code rate, details can be found on [ETSI-

REFERENCE, 2012]

It is important at this moment, to remind that there was defined a threshold value for

bursts with length bellow and over 256 symbols. Bursts that contain from 56 to 256

symbols are considered small bursts – this will imply in a truncation over the value of

the correlation (already discussed before on this work). The threshold value is important

to be well defined and it is one point where great time and effort must be spent in order

to guarantee a correct functionality – this is done applying several boundaries tests and

comparing results with software and VHDL implementation. The detection of small

bursts is shown in figure 5.4.

Figure 5.4: Excerpt of the code responsible for the detection of small bursts

The instantiation of the Add Offset Module and its parameters (included on the

XML input file) can be seen in figure 5.5.

Figure 5.5: Add Offset Module instantiation and parameters definition

62

The Channel AWGN Module also has heavy influence on the final result of the

noise added to the communication system. The SNR can be set with its parameters. This

can be seen on figure 5.6.

Figure 5.6: Channel AWGN Module instantiation and parameters definition

The definition of the SNR on the Channel AWGN is possible through the definition

of the noise variance of the channel. For example, a noise variance equals to

0.251188643 defines a SNR equals to 6dB. The relation between noise variance and

SNR is defined on equation 5.1.

With the complete understanding of how the noise is introduced and how parameters

impact the simulation tests scenarios, that are believed to comprehend all the important

test cases, were defined. It is important to remember that the number of bursts can be

easily defined on the XML input file – it is clear that the number of bursts will have a

great impact on every statistic calculation (as more bursts are available a better

approximation can be done).

The scenarios chosen – and shown in table 5.1 – are basically trying to embrace the

whole implementation and it is done by parts. The first scenario only varies the phase

offset. The second scenario only varies the frequency offset. The third, and last,

scenario varies phase and frequency offset.

Table 5.1: Scenarios used to validation of the work

Scenarios Variation Range

1
st
 Phase Only [-π,+π]

2
nd

 Frequency Only [-0.5,+0.5]

3
rd

 Phase and Frequency [-π,+π] and [-0.5,+0.5]

The SNR is constantly set to be 20dB during the three scenarios in order to mitigate

the influence on the simulation of the noise from the Chanel_AWGN module and obtain

an error-free transmission. With this SNR value the transmission happens practically on

an ideal channel and makes possible the evaluation the errors of phase and frequency

offsets introduced by the Add Offset module.

5.1

63

5.3 Fine Carrier Synchronization Software Analysis

The first unit test was chosen to be the verification of the calculation of the

correlation value; it is the first step of the whole Fine Carrier Synchronization Unit

process, therefore, it is mandatory that it is correct – once this is satisfied, it is possible

to proceed with the verification of the further modules.

To verify the quality of the error estimation, it is possible to use just one value

within the possible range of variation. If the module does the estimation correctly to this

value, it will be correctly done to all the values in the range; therefore, there is no reason

to repeat to values. The values, which were chosen randomly, are 30° for the phase

offset and for the frequency offset.

The first scenario is intended to check the addition, estimation and correction of the

phase offset only. With this approach it is possible to analyze and understand exactly

how and if the addition and estimation of the phase offset is acting on the system.

Figure 5.7 is the example of a graphic representation of an introduction of a phase offset

equal to 30° – it is possible to examine perfectly that the symbol suffered a rotation of

approximately 30° counter-clockwise. The original symbol is represented by “Y” (with

the coordinates 45, 45) while the received symbol by “X” (with the coordinates 15, 66).

Figure 5.7: Effect of the addition of phase offset equals 30° on the symbol

It is interesting to analyze the XML output file – it contains the estimation offset

values, average of the estimation, mean and variance. The important values are shown

in table 5.2.

Table 5.2: Phase offset estimation related values extracted from the XML output file

 Estimated Values Expected Values

Phase Offset Estimation Average (°) 30.3255 30

Variance (°)² 9.52743e-06 4.04695e-05

Standard Deviation (°) 0.00308665 0.00636156

The next step is to check the correction of the symbols, the estimated offset is now

used to perform the correction of such values – on the way to make the understanding

easier; figure 5.8 contains now the corrected symbol “Z” as well as the original and the

64

received symbol. Important to keep in mind that figure 5.8 contains an example – this

possibly varies if a different symbol were taken.

Figure 5.8: Effect of the correction of the symbol with the estimated phase offset.

Table 5.3 comes with the purpose to give the exact symbol values to the figure 5.8

and exemplifies the process that the symbols are suffering – note that this is an example.

Table 5.3: Symbol transformation process with phase offset only (software)

Symbol Position on

the burst
Original Value

Received

Value

Corrected

Value

1
st
 (45,45) (15,66) (46,49)

2
nd

 (45,45) (18,60) (45,42)

3
rd

 (45,45) (16,60) (44,43)

... …

54
th

 (45,45) (17,61) (45,44)

55
th

 (45,45) (17,62) (46,44)

56
th

 (45,45) (17,61) (45,44)

The second scenario proposes the verification of the introduction, estimation and

correction of the frequency offset only. This is done following the same idea – to have a

complete idea of what is going on when trying to add, estimate and correct itself,

without any other external influence. During the second test scenario the frequency

offset is set to be 0.00446429 radians. This value represents the maximal frequency

offset possible in a 56 symbol’s burst, respecting the maximal frequency possible to this

burst and allowing a good visualization of the frequency offset effect on the symbols.

Figure 5.9 shows the original symbols position – represented by “Y” – and the

received position – represented by “X”. All the original symbols from this burst are on

the “Y” position (there are 56 symbols on the exact position represented by “Y”). Due

to the frequency offset they progressively “slide” through the complex plane and appear

in different places.

65

Figure 5.9: Effect of the addition of frequency offset equals 0.00446429radians on the

symbol

With the proper estimation and correction, the symbols are brought back to a

position more approximated to the original symbols “Y” (leading to a correct

interpretation of the same) – the positions of the corrected symbols are represented by

“Z”. As can be seen on the figure 5.10, the positions of “Z” are the possible position for

the 56 received symbols after the correction – the symbols that were previously

scattered in positions represented by “X”, now are concentrated in the positions

represented by “Z”. The correction Figure 5.10 contains now the corrected symbols

(“Z”) as well as the original (“Y”) and the received symbols (“X”).

Figure 5.10: Effect of the correction of the symbols with the estimated frequency offset.

It is interesting to analyze the XML output file – it contains the estimation offset

values, average of the estimation, mean and variance. The important values are shown

in table 5.4 – the average was calculated from a 100000 bursts.

66

Table 5.4: Frequency offset estimation related values extracted from the XML output

file

Estimated

Values

Expected

Values

Frequency Offset Estimation Average

(rad)
0.00441108 0.00446429

Variance (rad²) 1.94578e-05 1.99255e-05

Standard Deviation (rad) 0.0044111 0.0044638

The same approach done with the phase offset only is now done with the frequency

offset. The transformation that the symbols are suffering is explicit on table 5.5 – it was

taken the first three and the last three symbols as an example.

Table 5.5: Symbol transformation process with frequency offset only (software)

Symbol Position

on the burst
Original Value Received Value Corrected Value

1st (45,45) (43,50) (43,50)

2nd (45,45) (46,45) (47,43)

3rd (45,45) (42,46) (44,43)

…

54
th

 (45,45) (-42,47) (43,46)

55
th

 (45,45) (-41,45) (42,43)

56
th

 (45,45) (-44,44) (42,45)

The third scenario proposes the mutual effects of testing phase and frequency offset

together. The same values proposed separately are now combined, keeping in mind that

these values are sample values, it is possible to take any value within the acceptable

range. Table 5.6 shows the transformation that the symbols are suffering when the

simulation with phase equals to 30° and frequency offset equals to 0.00446429 radians

was executed. Table 5.7 brings the statistics data regarding that simulation – which are

found on the XML output file.

67

Table 5.6: Symbol transformation process with phase and frequency offset

(software)

Symbol Position

on the burst
Original Value Received Value Corrected Value

1st (45,45) (15,66) (45,50)

2nd (45,45) (17,61) (45,43)

3rd (45,45) (13,61) (43,44)

… … … …

54th (45,45) (-61,19) (43,47)

55th (45,45) (-59,17) (41,45)

56th (45,45) (-62,16) (43,46)

Table 5.7: Statistics values from the phase and frequency simulation extracted from

XML output file

Estimated

Values

Expected

Values

Phase Offset Estimation Average (°) 29.0027 30

Phase Offset Variance (°)² 0.256225 0.274141

Phase Offset Standard Deviation (°) 0.506187 0.523585

Frequency Offset Estimation Average (rad) 0.00442111 0.00446429

Frequency Offset Variance (rad²) 1.96029e-05 1.99834e-05

Frequency Offset Standard Deviation (rad) 0.00442751 0.00447027

5.4 Fine Carrier Synchronization VHDL Analysis

It is important to keep in mind that the evaluation on VHDL is way more

complicated than the one in software – all the statistics calculations done by the

Statistics module are not performed in VHDL which implies in the manual calculation.

Due to simplicity purposes, as well as during the software validation, first only the

phase offset will be checked and then only frequency offset – it is important to mention

that the SNR is 20dB during the VHDL evaluation.

Before testing the VHDL under the three scenarios already described, the

verification of the calculation of the correlation is done and shown with table 5.8. The

purpose of Table 5.8 is to verify if the manual complex multiplication is being done

properly in VHDL – software and VHDL values are putted side-by-side. Table 5.9

brings the comparison between the correlation average correlation value for 10 bursts –

due to timing and difficulties of providing inputs and analyzing the outputs of the

VHDL the number of bursts is considerably smaller if compared to software.

68

Table 5.8: Comparison between the correlation values from the first burst

 VHDL Values Software Values

Correlation First Half (96975,56925) (96975,56925)

Correlation Second Half (96840,56970) (96840,56970)

Correlation Total (193815, 113895) (193815, 113895)

Table 5.9: Average correlation value comparison

 VHDL Value (10

bursts)

Software Value (100000

bursts)

Correlation

Average
(194052,116096) (195005,114037)

The phase offset – estimated and expected – are shown on table 5.10 and a sample

with some symbols and the process that they suffered is shown on Table 5.11. It is

possible to analyze perfectly how the correction acts on the received values – during

this simulation the frequency offset is defined to be zero.

Table 5.10: Estimated and expected phase offset (VHDL)

 Estimated Value Expected Value

Phase offset (°) 30,234375 30

Table 5.11: Symbol transformation process with phase offset only for the first symbols

on the burst (VHDL)

Symbol Position

on the burst
Original Value Received Value Corrected Value

1
st
 (45,45) (15,66) (46,50)

2
nd

 (45,45) (18,60) (46,43)

3
rd

 (45,45) (16,60) (44,44)

... …

54
th

 (45,45) (17,61) (45,44)

55
th

 (45,45) (17,62) (46,45)

56
th

 (45,45) (17,61) (45,44)

Table 5.12 shows the frequency offset – estimated and expected – regarding the

simulation with frequency offset only – the phase offset was defined to be zero in order

69

to verify the correct functionality of the frequency correction. Table 5.13 brings the

symbols from the simulation with frequency offset equals to 0.00446429 radians. The

analysis of table 5.13 helps understanding the exact transformation that every symbol

suffers – first the symbol’s original value, then the received value and finally its

corrected value. The objective of this analysis is to get a better idea of the process that

happens to the symbols and its mutation values during the process that occurs inside the

Fine Carrier Synchronization Unit.

Table 5.12: Estimated and expected frequency offset (VHDL)

 Estimated Value Expected Value

Frequency offset (rad) 0,0044060733 0.00446429

Table 5.13: Symbol transformation process with frequency offset only (VHDL)

Symbol Position

on the burst
Original Value Received Value Corrected Value

1
st
 (45,45) (43,50) (43,50)

2
nd

 (45,45) (46,45) (47,44)

3
rd

 (45,45) (42,46) (44,44)

... … ... …

54
th

 (45,45) (-42,47) (43,46)

55
th

 (45,45) (-41,45) (42,44)

56
th

 (45,45) (-44,44) (42,46)

Table 5.14 shows the estimated offsets next to the expected offset values. Table 5.15

contains the results of the combination of phase offset equals to 30° and frequency

offset equals to 0.00446429radians.

Table 5.14: Estimated and expected phase and frequency offset (VHDL)

 Estimated Value Expected Value

Phase offset (°) 28,828125 30

Frequency offset (rad) 0,0044060733 0.00446429

70

Table 5.15: Symbol transformation process with phase and frequency offset (VHDL)

Symbol Position

on the burst
Original Value Received Value Corrected Value

1
st
 (45,45) (15,66) (45,50)

2
nd

 (45,45) (17,61) (45,44)

3
rd

 (45,45) (13,61) (43,45)

... … … …

54
th

 (45,45) (-61,19) (42,48)

55
th

 (45,45) (-59,17) (41,46)

56
th

 (45,45) (-62,16) (42,48)

5.5 Software and VHDL Tests

The implementation in VHDL introduces rounding errors according to the way that

the module does the truncation of the values. The objective of this section is to verify

the impact of this rounding error on the VHDL results. With this goal, it was executed

simulations in software (CSE) and the software results were compared with the VHDL

results.

Several burst lengths (63, 64, 127, 128, 255 and 256) were tested with different

average symbol values (30, 45 and 255) to verify which value would fit to the system

needs and not result in errors. The values tested to become the truncation threshold were

64, 128 and 256. On table 5.18 exposes the reasons which made it impossible the use of

the values 64 and 128 – several others problems were found with different

configurations, the one disposed on table 5.18 act as an example. With truncation

threshold defined as 256 symbols there were no error found.

Table 5.16: Analysis with the truncation threshold define as 256 symbols

 Not truncating

Truncating

with a

multiplexer

Coarse

Truncating

Number of symbols 128 128 128

Received Symbols average |30| |30| |30|

Reference Symbols Average |30| |30| |30|

Multiplication of the

correlation values (real part)
37725750000 8975 8975

Multiplication of the

correlation values

(imaginary part)

-3280500000 -760 -760

Estimated Final offset (°) -21.09375 -23.9 -23.9

71

In order to provide a better understanding and a deeper analysis of how the two

implementations are working when facing different phase offsets, several different

phase offsets were introduced on purpose – it is interesting analyze side-by-side the

results from software and VHDL. Table 5.21 shows the estimation phase and frequency

offset side-by-side – with SNR equals to 3dB. By changing the SNR value to 3dB

instead of 20dB a better approximation with real world is achieved – since there is more

noise coming from the environment.

Table 5.17: Estimation of phase and frequency offsets side-by-side

phase offset input
software phase

offset (°)

software

frequency offset

vhdl phase

offset (°)

vhdl

frequency

offset

0° 0.00278 5.43432e-06 0° 0

5° 5.08928 -8.49855e-06 4,921875° 0

10° 10.1226 -9.65789e-06 9,140625° 0

15° 15.1694 -1.07359e-05 14,765625° 0

20° 20.2232 -1.17073e-05 21,796875° 0

60° 59.6884 -1.52645e-05 61,171875° 0

90° 90.0924 -1.32207e-05 92,109375° 0

135° 135.002 -2.86087e-06 131,484375° 0

5.6 General Considerations

In general, the validation identifies failures whose removal rises the software quality

by increasing the software’s and VHDL’s potential reliability. The testing is the

measurement of the quality provided by the software and VHDL – it is possible to

analyze if the original idea was achieved and/or possible.

By performing several tests on the software and VHDL and, after that, analyzing the

results, it is possible to realize that the development and the whole motivation for the

creation of a Fine Carrier Synchronization Unit was based on grounded studies that

provide a real and concrete subject of study to nowadays communication systems.

Once the validation of the developed software and VHDL is finished there must be a

critical look at the results, an analysis to check if the final result has fulfilled the

expectations and if there are any point where the performance can be improved – this is

the topic of the chapter 6.

72

6 CONCLUSION

This work provides both software and VHDL implementation of a Fine Carrier

Synchronization Unit which has the purpose of increasing the quality of turbo

synchronization systems. The Fine Carrier Synchronization Unit is intended to raise the

quality of turbo synchronization systems by increasing its accuracy and the precision -

as nowadays communication systems require. It is also an important goal to implement

a dynamic and useful tool which will be ready to be introduced into any production

chain or work as an academic didactic tool for other students to help the understanding

of synchronization systems. Besides, it must be also mentioned here that by

implementing the Fine Carrier Synchronization the approach of the CSE for new

modules is validated.

The implementation of the Fine Carrier Synchronization Unit in software and the

integration of the new modules into the already existing Creonic Simulation

Environment is the first step successfully done. As would be expected, the first task of

this work requested more effort and also more implementation time if compared with

other parts of this project; a whole study about the simulation environment was

necessary, which is the base for the future work as well as for a better understanding

and comprehension of the basic concepts. The integration and the interfaces that were

about to be used and the definition of types between such different modules had been

deeply studied in order to not bring any errors during the further implementation of

modules and their execution.

Since the Fine Carrier Synchronization Unit has been implemented and functional in

software, the focus was the development of the VHDL module, which was expected to

correspond exactly and behave on the same way as the software. The VHDL

implementation was positively accomplished and tricky, since several software

functions (for instance, complex multiplication) do not exist or are not synthesizable

when regarding hardware description languages. Therefore, if these functions are

required, it is mandatory that the programmer create them with the available functions

or import them from a design tool. On the other hand, since the whole idea, approach

and functionality of the Fine Carrier Synchronization Unit had been already studied

exhaustively when doing the software development, there was enough time to dedicate

into the creation of such functions and other challenges that emerged – for example, the

VHDL initialization of several signals necessary to work with one burst after another

and the management of the memory to deal with several bursts.

Once the implementation of both software and VHDL are effectively finished, the

new objective, as important as their implementation, is to test, analyze, compare, and

measure the quality and accuracy of the results provided. Possibly at this stage of the

project any problem could appear that was undistinguished until this point of the work.

73

Fortunately the results are positive when both implementations were hit by a series of

tests – it was notable that they both have nearly the same results with the same inputs.

These slight differences found are the result of approximation loss regarding VHDL

precision – which are acceptable and totally not influence on the result.

The implementation of a Fine Carrier Synchronization Unit shows the possibility of

the developed work to operate as an important tool aiming improvements on

communication systems by introducing an accurate technique of estimation and

correction of offset parameters. Besides, it functions as well to validate the work

developed on [WASENMÜLLER, 2009] – the whole mathematical background

necessary to the development of the Fine Carrier Synchronization Unit comes from this

work.

Due to reasons, like time and purpose, there are still some points along this work

where there are enhancements to be done. For instance, the truncation of the correlation

value – it is a really delicate topic since it is mandatory that this happens due to the wide

range that the correlation value can assume when dealing with bursts with 56 symbols

or when dealing with bursts with 2592 symbols. If this is not done, it applies a low

frequency due to the bit width necessary – which would classify the Fine Carrier

Synchronization Unit really outside of the commercial standards of today. Another

point which may be mentioned here with the potential for improvements is the

interaction between software and VHDL – the test bench files for the VHDL simulation

is done altogether manually and it is quite time consuming. The idea for further works is

to implement an extra embedded module inside the CSE that will be responsible for the

automatic creation of VHDL test bench files.

The Fine Carrier Synchronization uses the Creonic Simulation Environment as its

environment to achieve such functionality – therefore, the results are the proof that the

Fine Carrier Synchronization Unit is working as expected and verified by the Creonic

Simulation Environment and the VHDL simulations.

The work developed throughout this project contributes to the Creonic Simulation

Environment – by introducing techniques which provide a wider approach to modern

communication system’s problems – and to the consolidation and validation of the

theory that was the base for the implementation of it.

74

REFERENCES

 [ALLES, 2007] Alles, Matthias, Timo Lehnigk-Emden, Uwe Wasenmüller, and

Norbert Wehn. "Implementation Issues of Turbo Synchronization with Duo-

Binary Turbo Decoding." Invited paper, In Proc. 18th Annual IEEE

International Symposium on Personal, Indoor and Mobile Radio

Communications (PIMRC). Athens, 2007.

[BRACK, 2005a] Brack, Toren, Uwe Wasenmüller, and Norbert Wehn. "A

Configurable IP Core for Combined Blind Frequency and Phase

Synchronization of MPSK Bursts." In Proc. 14th IST Mobile and Wireless

Communications Summit. Dresden, 2005.

[BRACK, 2005b] Brack, Toren, Uwe Wasenmüller, Daniel Schmidt, and Norbert

Wehn. "Design Space Exploration for Frequency Synchronization of

BPSK/QPSK Bursts." Advances in Radio Science, 2005.

[CLARK, 1981] Clark Jr., George C. , and J. Bibb Cain. Error-Correction Coding for

Digital Communications (Applications of Communications Theory). 1981.

[CREONIC, 2012] CREONIC. <available at http://www.creonic.com>: last access: june

2012.

[DALE, 2004] Dale, Nell B. Programming and problem solving with C++. Jones &

Bartlett Publishers, 2004.

[DOXIGEN, 2012] DOXIGEN. <available at http://www.doxygen.org>: last access:

june 2012.

[ETSI, 2012]ETSI. <available at http://www.etsi.org/WebSite/homepage.aspx>: last

access: june 2012.

[ETSI-REFERENCE, 2012]ETSI Reference. <available at

http://www.etsi.org/deliver/etsi_en/301700_301799/301790/01.05.01_60/en_30

1790v010501p.pdf>: last access: june 2012.

[GCC, 2012] GCC. <available at http://gcc.gnu.org/>: last access: june 2012.

[ROCHOL, 2011] Rochol, Juergen. Comunicação de dados – Série livros didáticos

 informática UFRGS – VOL 22 – 2011. Ed. Bookman.

[LEHNIGK-EMDEN, 2008] Lehnigk-Emden, Timo, Uwe Wasenmüller, Christina

Gimmler-Dumont, and Norbert Wehn. "Analysis of Iteration control for

Turbo Decoders in Turbo Synchronization Applications." Advances in Radio

Science 7 (2008): 139-144.

http://www.creonic.com/
http://www.doxygen.org/
http://www.etsi.org/WebSite/homepage.aspx
http://www.etsi.org/deliver/etsi_en/301700_301799/301790/01.05.01_60/en_301790v010501p.pdf
http://www.etsi.org/deliver/etsi_en/301700_301799/301790/01.05.01_60/en_301790v010501p.pdf
http://gcc.gnu.org/

75

[MENGALI, 1997] Mengali, Umberto, and Aldo N. D'Andrea. Synchronization

Techniques for Digital Receivers (Applications of Communications Theory).

Springer, 1997.

[MEYR, 1997] Meyr, Heinrich, Marc Moeneclaey , and Stefan A. Fechtel . Digital

Communication Receivers, Synchronization, Channel Estimation, and Signal

Processing. Wiley-Interscience, 1997.

[MSDRG, 2012] Microelectronic Systems Design Research Group. <available at

http://ems.eit.uni-kl.de>: last access: june 2012.

[MODELSIM, 2012] ModelSim. <available at

http://www.mentor.com/products/fv/modelsim/>: last access: june 2012.

[NOELS, 2003] Noels, N, C Herzet, A Dejonghe, V Lottici, and H Steendam. "Turbo

Synchronization: an EM algorithm interpretation." IEEE Int. Conf.

Communications (ICC). Anchorage, Alaska, 2003.

[OPPENHEIM, 1989] Oppenheim, A, and R. W. Schafer. Discrete-Time Signal

Processing. Prentice Hall, 1989.

[PATTON, 2005] Patton, Ron. Software Testing (2nd Edition). Sams, 2005.

[RAY, 2001] Ray, Erik T. Learning XML. O'Reilly Media, 2001.

[REDL, 1995] Redl , Siegmund M. . An Introduction to GSM. 1st. Artech House

Publishers, 1995.

[SNIFFIN, 2009] Sniffin, Robert W., and Timothy T. Pham. A Telemetry Data

Decoding. < available at http://deepspace.jpl.nasa.gov/dsndocs/810-

005/208/208A.pdf>, last access: june 2012.

[TANENBAUM, 2003] Tanenbaum, Andrew S. Computer Networks. Prentice Hall

PTR, 2003.

[TAUB, 2008] Taub, Herbert , and Donald L. Schilling. Principles Of Communication

Systems. McGraw-Hill Education (India) Pvt Ltd, 2008.

[TREES, 2001] Trees, Harry L. Van. Detection, Estimation, and Modulation Theory.

2001.

[VHDL, 2012]VHDL. http://www.vhdl.org: last access: june 2012.

[VITERBI, 1983] Viterbi, A. J., and A. M. Viterbi. "Nonlinear Estimation of PSK

Modulated Carrier Phase with Application to Burst Digital Transmission."

IEEE Transactions on Information Theory 32 (1983): 543–551.

[WASENMÜLLER, 2009] Wasenmüller, Uwe, C Gimmler-Dumont, and Norbert

Wehn. "Low Complexity Synchronization Without Initial Carrier

Synchronization." Advances in Radio Science, Volume 8, September 2009: 123-

128.

[XILINX, 2012] Xilinx. <available at http://www.xilinx.com/support/

documentation/dt_ise13-2.htm>: last access: june 2012.

[XILINX CORE, 2012] Xilinx Core Generator System. <available at

http://www.xilinx.com/tools/coregen.htm>: last access: june 2012.

http://ems.eit.uni-kl.de/
http://www.mentor.com/products/fv/modelsim/
http://deepspace.jpl.nasa.gov/dsndocs/810-005/208/208A.pdf
http://deepspace.jpl.nasa.gov/dsndocs/810-005/208/208A.pdf
http://www.vhdl.org/
http://www.xilinx.com/support/%20documentation/dt_ise13-2.htm
http://www.xilinx.com/support/%20documentation/dt_ise13-2.htm
http://www.xilinx.com/tools/coregen.htm

76

[XILINX ISIM, 2009] Xilinx. ISE ISim In-Depth Tutorial. <available at

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug682.pdf>

: last access: june 2012.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug682.pdf

77

ANNEX A <ARTICLE TG1: FINE CARRIER

SYNCHRONIZATION UNIT FOR A TURBO

SYNCHRONIZATION SYSTEM>

78

Fine Carrier Synchronization Unit for a Turbo

Synchronization System

Leonardo Hax Damiani, Uwe Wasenmüller (co-advisor),

Alexandre Carissimi (advisor)

Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)

Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brasil

{lhdamiani,asc}@inf.ufrgs.br

wasenmueller@eit.uni-kl.de

Abstract. The popularity of the wireless devices comes from several

advantages related to this type of communication, i.e. mobility, easy

installation and less cost for infrastructure. Hence it is vital to assure a

reliable communication where errors can be autonomously fixed and

information responsibly secured. The transmission over wireless channel

results in frequency and phase offsets; additionally the received symbols are

corrupted with noise. Therefore the estimation of the actual frequency and

phase offset becomes a very critical task with high impact on communications

performance; synchronization is a crucial part of each receiver in digital

communication systems. In this context, throughout this work is proposed an

implementation of a Fine Carrier Synchronization Unit that aims a better

communication quality and lower its error rate.

Resumo. A popularidade de equipamentos sem fio decorre de uma série de

vantagens relacionadas a este tipo de comunição, i.e. mobilidade, fácil

instalação e menor custo para infraestrutura. Consequentemente é vital

garantir-se uma comunicação confiável onde erros podem ser

automaticamente corrigidos e a informação responsavelmente segura. A

transmissão sobre canais sem fio resulta em deslocamentos de frequência e

fase; além disso, os símbolos recebidos podem ser corrompidos com ruído.

Portanto uma estimativa dos valores de deslocamento reais de frequência e

fase se torna uma tarefa fundamental com grande impacto no desempenho da

comunicação; sincronização é uma parte crucial em cada receptor em

sistemas de comunicação digital. Nesse contexto, ao longo deste trabalho é

proposto a implementação de uma Unidade de Sincronização Fina de

Portadoras que visa melhorar a qualidade da comunicação e diminuir a taxa

de erros da mesma.

1 Introduction

With the increase of the mobility in our world, there is a rising necessity for people to

communicate with each other and have access to information independently of the

79

location of individuals or the information. Importance is giving by the possibility that

any phone call can be essential enough to save a life, close a business deal or provide

hours of leisure. Each of these examples of mobile communications proposes a

challenge that can only be achieved with an efficient and reliable wireless

communication.

 Synchronization and channel coding/decoding are vital parts in every digital

receiver for wireless communication – it reduces the errors and allows to reduce the

transmit power respectively. With the increase of devices using wireless data

transmission technologies, it is essential that exists efficient and responsible ways to fix

errors that may happen in this kind of transmission. When using wireless channel is

usual that the received data had been corrupted with some kind of noise – also timing,

phase and frequency offset are introduced and somehow must be taken care of. The task

of synchronization is to present data bits to the channel decoder, where the negative

influences of timing, frequency and phase offset are eliminated.

 In addition to detection and decoding, a receiver has also to perform

synchronization i.e. to estimate a number of parameters like the carrier phase or the

maximum likelihood ratio. In turbo receivers synchronization is a very challenging task

– since they operate at very low signal-to-noise ratio (SNR) and therefore classical

synchronizers may fail to provide reliable estimated parameters. Turbo Synchronization

is the idea of taking benefits from the soft information available in turbo receivers in

order to improve the quality of the estimated delivered by the synchronizer [1].

 Due to reasons as time and purpose of this work, synchronization will be the

main subject. Channel decoding will be left aside but it has also potential to be topic of

a future work. This paper will be focused on the frequency and phase synchronization of

bursts with linear modulation, i.e. Quadrature Phase Shift Keying (QPSK) modulation.

Timing synchronization – i.e. the optimal sampling time is properly carried out before.

The system aims the Digital Video Broadcast – Return Channel via Satellite (DVB-

RCS) standard, which is an ETSI satellite communication standard [2].

 It is a known fact that simulations can reduce development time and costs. A

project was created at the Microelectronic Systems Design Research Group from the

Technical University of Kaiserslautern, which developed the software Creonic

Simulation Environment – CSE. The purpose of CSE is to allow for the integration of

complex simulations environments. The simulation of the synchronization task for such

communication systems has enormous importance on the whole project.

 CSE will be the starting point for the work which is about to be developed. New

features aiming the Fine Carrier Synchronization Unit will be developed, tested and

introduced into the already existing simulation environment. Hardware implementations

on VHDL of these new features are also intended. Further on this work, will be possible

80

to evaluate both – software and hardware – according to theory of communication

systems and a good statistical output will be available.

 The rest of this paper is structured as follows. In section 2, a brief overview of

the basic concepts needed and technical concepts involved in this work. Section 3

shows the whole functionality of CSE and advantages of taking it as the first step into

the Fine Carrier Synchronization Unit. Section 4 deals with the objectives and

methodology adopted, how it is going to be done the implementation, which

development environments are going to be used and also how it will treat the question

of evaluation of the precision. Finally, Section 5 brings the schedule related to the

implementation of this work.

2 Basic Concepts

At this point, it is important to understand what exactly involves synchronizations

systems, why and how errors happen. Synchronization consists of the estimation of

unknown parameters of frequency and phase offset, and the removal of all possible

damaging effects introduced by these parameters.

 In every communication transmission there will be a mapper, which is

responsible to convert the binary bit stream into modulated symbols. Modulated means

that the bits are going to be organized into an alphabet, which defines how many

symbols are available and how they work in this “language” that they communicate

with – this alphabet must be previously defined and known by both ends. The

communication can be represented in a complex plane and, for example, a Quadrature

Phase Shift Keying (QPSK) has a defined alphabet with 4 symbols, equally divided on

the plane. Consequently, it’s natural to understand that for every 90° or π/2, will be the

area where one symbol will be represented. It is usual to refer this organization of

symbols in a complex plane as constellation diagram (Figure 1). There are several

modulations available and in use nowadays, i.e. BPSK, QPSK, 8PSK, 16-QAM, 64-

QAM, etc [3].

81

Figure 1. Constellation diagram for BPSK (left) and QPSK (right) with gray

coding

 The modulation would work perfectly if were not errors, noise and degradation

of signal. To understand how an error occurs, it is important to note that once something

went wrong these symbols are not going to be on the exact expected place. Due to

the noise the symbol – the “point” in figure 1 – shifts its position in the complex plane

when compared to the original position. This shifting will not always result in wrong

interpretation – it can vary certain acceptable range and it will still be considered as the

right symbol.

 In order to explain the figure 1, it is remarkable to remind that the number of

symbols per bits respects the formula 1, which represents that, for example, for every 1

bit, 2 symbols can be represented and for 2 bits, 4 symbols can be represented.

 The problem starts when the error is bigger than the range of acceptable

variation. In a very noisy environment, for matter of explanation, figure 2 makes it more

understandable.

Figure 2. 16-QAM with an acceptable range variation (left – high SNR) and

a very noisy range variation (right – low SNR)

 Analyzing figure 2, it is easy to see that many of the symbols were read and

classified wrongly since the noise was really important and there is no way to define

which symbol belongs to which region on the complex plane. In figure 2, it is easy to

realize that the symbols from each quadrant can suffer with high noise and transform

themselves into a region where it is impossible to distinguish where it is originally from

– the result is an error of the interpretation of the signal.

 There is one parameter known in communication systems as Signal-to-Noise

Ratio – SNR – which represents the ratio between the energy of the signal and the

energy of the noise. SNR is going to define how bad the signal will get after going

(1)

82

through the channel. It is directly influenced by the noise variation of the channel. Also

included in the negative parameters of any synchronization are the frequency and phase

offset.

 Figure 2 can be observed also by differentiating the values of SNR: left part of

figure 2 is the representation of a high SNR value; while the right part of figure 2

corresponds to a low SNR value.

 Frequency offset exists as consequence from the difference between the

oscillator from the transmitter (TX) and the one from the receiver (RX); oscillators from

TX and RX cannot be exactly equal. In figure 3 all the symbols of a burst are

represented on the same complex plane. To comprehend properly how the frequency

offset can be observed, it is primordial to understand that they come not at the same

exactly moment; but for teaching purposes this view of the complex plane makes it easy

– figure 1 shows a QPSK example where there is no frequency offset. Frequency offset

can be easily understood by taking into account the differences among figure 1 and

figure 3. The frequency offset will add a constant and incrementally error to every

received symbol, which is the reason why the symbols on figure 3 have a variation from

the first to the last received symbol, as can be seen, for example, on symbol “10”.

Figure 3. Illustration of a frequency offset () in a QPSK modulation

 In figure 4 is shown how the phase offset acts related to the QPSK, it is a main

key to understand that the phase offset is well defined to the whole bit stream – it will

act in every symbol exactly in the same way. On the other hand, when related to

frequency offset, it will have a higher impact as the bit stream reaches the end – the

impact of the frequency offset will not be the same for every symbol.

 Since the complex plane is equally divided, in QPSK, for example, by four

known symbols, figure 4 show that there is no error on the interpretation of each

symbol, on this case the symbols are still recognized as the expected even though there

is a phase offset (α) introduced. Figure 4 comes with the purpose to show that not every

phase offset would result in error.

83

Figure 4. Illustration of an error free phase offset (α) in a QPSK

modulation

Figure 5. Illustration of an error by phase offset (α) in a QPSK modulation

 On the other hand, with figure 5 it is prominent – and also emphasized on by not

solid circles – that the phase offset introduced add an error to the interpretation of this

communication. The symbols – represented by a solid black circle – were located in a

quadrant of the complex plane and after the addition of the phase offset, they are on a

different one – represented by a not solid circle. This means that the interpretation of

them will result in an error, which can be corrected with a right estimation of this phase

offset and the future correction of it.

3 Creonic Simulation Environment - CSE

 CSE is the simulation environment that provides a set of tools and functionalities

needed to simulate real world communications [4]. It offers the possibility to reduce

development time and costs – a well-known problem to every project. Other goals of

CSE are the ease of use, reusability and the extensibility to new applications and

84

standards – it was designed with the goal to provide a simulation environment where

users would be able to improve their experience with the software by developing new

features and applications.

 CSE was developed by the Microelectronic System Design Research Group

especially Dr.-Ing Timo Lehnigk-Emden and Dr.-Ing Matthias Alles – both are now

former researchers from the Microelectronic System Design Research Group. Projects

with such delicate design and development questions must be highly detail oriented.

Hence choices of design have been adopted and respected throughout the whole

development of the software. As for example, was defined a fixed interface and

configuration procedures for functional modules, strict coding and documentation

guidelines, and also fully object oriented design. For the documentation purposes, it was

used a documentation tool called Doxygen [5] – it generates automatically the

documentation from a set of documented source files.

 C++ was the programming language chosen to the implementation of CSE.

Which is a clever option based on the design choices made by the original developers of

the software. C++ contains a good and richer standard library, if compared to C, and

also support to both the structured programming and object orientation. Therefore, the

new modules that are about to be implemented and integrated to the system must also

follow the same language. It will be used the GCC as compiler – it is the native

compiler included on the GNU/Linux system.

 The simulation environment is composed of functional modules; they work as

versatile pieces available to be organized together following the needs of the user, i.e.

noise generator or channel decoder. These functional modules are connected with each

other providing the possibility to create complex simulation chains. It is important to

emphasize that this functionality is only possible due to the design choices made before.

This simulation environment is extremely useful for projects related to communication

systems, once the simulations costs – related to configuration and connection – used to

cost a lot of time, hours or days, for the developers, now can be easily finished in a few

minutes.

Figure 6. Basic simulation chain and functional modules connection

available on CSE

 In figure 6 is shown the basic simulation chain available on CSE, it represents

the whole path that the bit stream will make. The source module generates random bit

sequences, it is responsible for calculate one block of bits and store them into the output

buffer. The Encoder module changes a signal or any other data into a code; code may

optimize for purposes of compressing for transmission or storage, encrypting or adding

85

redundancies to the input code. The Mapper module is responsible for mapping bits to

modulation symbols. The Noise Channel module adds to the simulation effects of real

life – the impairment to communication is a linear addition of white noise with a

constant spectral density and a Gaussian distribution of amplitude. The Demapper

module receives the symbols from the channel and extracts the hard bits, the LLR

values (log likelihood ratio – is a statistical test used to compare the fit of two models)

and the bit probabilities. The Decoder module will be in charge of the reverse operation

of the encoder – changing the code into a set of signals. The Statistics module is

responsible for comparing the input bits and the output bits, it takes into account the

total amount of bits and how many of them are different. Besides it computes this

information into different statistical parameters.

 The software objective is to allow the user to create its own simulation

environment and also with a rich documentation it encourages to create new functional

modules and test them inside the whole system – analyzing the results and the

performance of the new changes or applications. This feature of the software is a great

ease towards the development of any new module, on this work is proposed the

implementation of a Fine Carrier Synchronization Unit. The new module will be

completely developed during this work following the method developed on [5] and it is

located between the Noise Channel Module and the Demapper Module for test purposes

– this means that it will be exactly the “first” part at the receiver’s end. In a real system

communication it will work iteratively after the decoder. The model used to generating

the noise is the Additive White Gaussian Noise – AWGN.

 In this context of CSE, the Fine Carrier Synchronization is a technique that

impacts the communication positively by providing ways to do it more accurately,

automatically and aiming minimization of errors. With this new module it will be

possible to decrease the negative influences from noise by calculating the offset

parameters – frequency and phase – and correcting. The Fine Carrier Synchronization

reacts to every bit stream used on the simulation environment by being located

sequentially on the simulation chain – figure 7.

Figure 7. Fine Carrier Synchronization Unit Module position regarding the

basic simulation chain

86

 A proper implementation of the synchronization module can be simplified if the

idea of how it is done is divided again into three smaller modules. As shown in figure 8,

it is possible to recognize subtasks to achieve the objective of this module. By having

different and identified subtasks it is obvious to create sub modules - the subtasks can

be easily identified, it makes the design of logic simpler and more accurate. This way,

the implemented software will respect some of its principles – reusability, flexibility

and object orientation.

Figure 8. Fine Carrier Synchronization Unit Module modularization

 The Correlation Module will be responsible for the calculation of the correlation

– a statistical measurement of the relationship between the two bit streams – reference

and received symbols. The reference symbols are exactly the same bit stream provided

by the source module. The received symbols are bit stream that are being transmitted

and had been through the others modules – encoder, mapper and noise channel. The

variable that allows the execution of the correlation calculation are the bit stream –

original and received. Before the Noise Channel module they are perfectly correlated,

since they are exactly the same. After the addiction of the noise, they are correlated –

not perfectly anymore – once the presence of certain characteristics on the original bit

stream will react in order to left a sort of trace of these characteristics on the received bit

stream.

 As the Correlation Module produces its output, the correlation value, the

Estimation module can do its part – estimate the frequency and phase offset. This is

possible based on the average phase of the first and the rear part of the correlation value

– when calculating the correlation value it will be divided into two parts in order to

provide the values needed for the estimation of the wanted parameters.

 Once the value of frequency and phase offset are estimated and available for the

next module, the moment when the last task of the Fine Carrier Synchronization

Module has come. The Correction module will be responsible for the correction of the

noisy signal received in order to decrease the error rates.

 For sake of implementation, adaptation and tests of the Fine Carrier

Synchronization Module, it is needed a way to provide frequency and phase offset

inputs to CSE. This offset is going to be introduced as the last step before the Noise

Channel Module and its only purpose is to check if the Fine Carrier Synchronization

Module is working properly. Therefore, it will be possible to define a frequency and/or

87

phase offset input and analyze the estimation of these values and the proper correction

of the symbols transmitted. The Add Offset module will model the frequency and phase

offset at the transmitter side – which means that it will include an error to the bit stream.

 During the development of this work, the focus is the implementation of the new

modules added on figure 9 – Add Offset and Fine Carrier Synchronization. The model

used to define parameters on both modules is available on [7]. It is also important to

keep in mind that several changes on the Statistics module will also be done in order to

embrace the new parameters and functionalities.

Figure 9. Add Offset and Fine Synchronization Module positions regarding

the basic simulation chain

4 Objectives and Methodology

This work has as purpose two main objectives:

1. Implementation of the Fine Carrier Synchronization module in software and

integrate it to the CSE, as well as the implementation of the same module in

VHDL.

2. Analysis, comparison and evaluation of the accuracy of the implemented

software and its correspondent in VHDL.

 To achieve the first goal, it will be taken into account the whole functionality of

techniques of Synchronization for digital receivers. Once comprehended deeply the

behavior, it is a certain that a better and effective approach on the implementation of

new synchronizations modules for any communications system will be reached [8, 9].

With the support of the CSE, is possible to focus exactly where this work proposes:

Fine Carrier Synchronization Unit. It is aimed the software implementation and the

integration with the CSE as a new module.

 The hardware implementation, in VHDL, can be defined exclusively based on

the needs of this work; it is not – so far – part of a bigger project. The digital system

design tool that will be used is the Xilinx ISE Design Suite V13.2 and the chosen

language is VHDL [10, 11]. It is a powerful and versatile description language, with

88

multiple mechanisms to support design hierarchy and support for multiple levels of

abstraction.

 As soon as the first objective of this work is successfully accomplished, it is the

moment when the accuracy needs to be verified; is essential that the output software and

hardware are with a high excellence to move further with this work. There is completely

no point in developing, spending time and effort to analyze a system that does not fulfill

the requirements of nowadays communication systems. At this specific moment is also

vital to re-examine new ways to improve processes and run them repeatedly - ensuring

credibility, quality and functionality.

 Hardware simulations and analysis are known by being extremely time-

consuming. Taking into account the fact that the evaluation and test of it are necessary

in order to have a reliable and reasonable implementation; it must be found a way

to bypass this problem and prove its functionality and reliability. Therefore, the idea, to

improve and optimize the simulations and analysis, is to have the support on this task

with the software. The hardware and software will be implemented based on the same

study; consequently they will be doing the exact same calculations in the end – of

course designated to different platforms. This way, it is intended to have a higher

number of cases on the software then on hardware but proceed with both evaluations

together – also based on comparisons and exchange of information between the two

implementations. The VHDL is intended to be simulated and synthetized with the same

framework that will be used to its development.

 In order to achieve a deep analysis of the developed software and hardware –

regarding the Statistical module originally included on CSE – some features will be

added to this module with the purpose of statistically analyze the Fine Carrier

Synchronization Module and its functionality.

 Among the objectives of this work is the implementation of such Fine Carrier

Synchronization Unit in hardware. At this point it is crucial to understand some

differences between the software to the hardware implementation, for example, there is

completely no use to the implementation of the Add Offset Module. The “real world”

will be in charge of this task – adding some frequency and/or phase offset to the set of

bits. By developing the exactly same thing as in software, it is possible to assure that it

will have the same functionality; this way, all efforts must be done on the hardware

implementation of the Fine Carrier Synchronization Module. Simulations and

comparisons between both software and hardware implementations will make part of

the usual day-to-day while this project is under development.

5 Schedule

For the TG2, which is going to be done during the subsequent months, it was defined

five activities to be developed, implemented and analyzed between March of 2012 and

89

July 2012. The table 1 shows exactly how the schedule is defined and how it will

proceed.

Activities March April May June July

Implementation of the Fine Carrier

Synchronization Unit (Software)
X X

Implementation of the Fine Carrier

Synchronization Unit (VHDL)
 X X

Analysis, comparison and

evaluation of the implemented

software and VHDL

 X X

Writing
 X X

Presentation
 X

Table 1. Schedule for the second part of this work.

6 References

1. N. Noels, C. Herzet, A. Dejonghe, V. Lottici, H. Steendam.: “Turbo

synchronization: an EM algorithm interpretation”. Presented at the IEEE Int.

Conf. Communications (ICC), Anchorage, AL, May 2003.

2. http://www.etsi.org (accessed on 03/31/2012).

3. Tanenbaum, Andrew S.: Computer Networks (4
th

 edition), Prentice Hall PTR,

2002.

4. www.creonic.com (accessed on 03/31/2012).

5. www.doxygen.org (accessed on 03/31/2012).

6. Wasenmüller, U, C. Gimmler-Dumont, N. Wehn..:Low Complexity

synchronization without initial carrier Synchronization, in: Advances in Radio

Science,Volume 8, pages 123-128, September, 2009, Miltenberg, Germany.

7. Meyr, H., Moeneclaey, M., and Fechtel, S. A.: Digital Communication

Receivers, John Wiley & Sons Inc., 1998.

8. Mengali, U. and D’Andrea, A.: Synchronization Techniques for Digital

Receivers, Plenum Publishing Corporation, New York, Plenum Publishing

Corporation,1997.

9. Alles, M., Lehnigk-Emden, T.,Wasenmüller, U., and Wehn, N.: Implementation

Issues of Turbo Synchronization with Duo-Binary Turbo Decoding, in: Proc.

19th Annual IEEE International Symposium on Personal, Indoor and Mobile

Radio Communications (PIMRC) 2007, Athens, Greece, 2007.

10. http://www.xilinx.com/support/documentation/dt_ise13-2.htm (accessed on

03/31/2012).

11. http://www.vhdl.org/ (accessed on 03/31/2012).

http://www.etsi.org/
http://www.creonic.com/
http://www.doxygen.org/
http://www.xilinx.com/support/documentation/dt_ise13-2.htm
http://www.vhdl.org/

90

ANNEX B < XILINX ISE DESIGN TOOL SYTHESIS

REPORT>

Release 13.2 - xst O.61xd (nt64)

Copyright (c) 1995-2011 Xilinx, Inc. All rights reserved.

--> Parameter TMPDIR set to xst/projnav.tmp

Total REAL time to Xst completion: 1.00 secs
Total CPU time to Xst completion: 0.67 secs

===

* Synthesis Options Summary *

===
---- Source Parameters

Input File Name : "phase_estimation.prj"

Input Format : mixed
Ignore Synthesis Constraint File : NO

---- Target Parameters
Output File Name : "phase_estimation"

Output Format : NGC

Target Device : xc6vlx75t-1-ff484

---- Source Options

Top Module Name : phase_estimation
Automatic FSM Extraction : YES

FSM Encoding Algorithm : Auto

Safe Implementation : No
FSM Style : LUT

RAM Extraction : Yes

RAM Style : Auto
ROM Extraction : Yes

Shift Register Extraction : YES

ROM Style : Auto
Resource Sharing : YES

Asynchronous To Synchronous : NO

Shift Register Minimum Size : 2
Use DSP Block : Auto

Automatic Register Balancing : No

---- Target Options

LUT Combining : Auto

Reduce Control Sets : Auto
Add IO Buffers : YES

Global Maximum Fanout : 100000

Add Generic Clock Buffer(BUFG): 32
Register Duplication : YES

Optimize Instantiated Primitives : NO
Use Clock Enable : Auto

Use Synchronous Set : Auto

Use Synchronous Reset : Auto
Pack IO Registers into IOBs : Auto

Equivalent register Removal : YES

---- General Options

Optimization Goal : Speed

Optimization Effort : 1

91

Power Reduction : NO

Keep Hierarchy : No
Netlist Hierarchy : As_Optimized

RTL Output : Yes

Global Optimization : AllClockNets
Read Cores : YES

Write Timing Constraints : NO

Cross Clock Analysis : NO
Hierarchy Separator : /

Bus Delimiter : <>

Case Specifier : Maintain
Slice Utilization Ratio : 100

BRAM Utilization Ratio : 100

DSP48 Utilization Ratio : 100
Auto BRAM Packing : NO

Slice Utilization Ratio Delta : 5

---- Other Options

Cores Search Directories : {"ipcore_dir" }

===

===

* HDL Synthesis *

===

Synthesizing Unit <phase_estimation>.

 Summary:
 no macro.

Unit <phase_estimation> synthesized.

Synthesizing Unit <calc_estimate_phase_offset>.

 Summary:

 inferred 8 Multiplier(s).
 inferred 19 Adder/Subtractor(s).

 inferred 660 D-type flip-flop(s).

 inferred 4 Comparator(s).
 inferred 16 Multiplexer(s).

Unit <calc_estimate_phase_offset> synthesized.

Synthesizing Unit <romshift2_1>.

 Summary:

 inferred 22 D-type flip-flop(s).
 inferred 1 Multiplexer(s).

 inferred 1 Finite State Machine(s).

Unit <romshift2_1> synthesized.

Synthesizing Unit <rom>.
 Summary:

 inferred 1 RAM(s).

 inferred 12 D-type flip-flop(s).

Unit <rom> synthesized.

Synthesizing Unit <smartscale_generic_shift_1_1>.
 Summary:

 inferred 3 Adder/Subtractor(s).

 inferred 79 D-type flip-flop(s).
 inferred 1 Comparator(s).

 inferred 6 Multiplexer(s).

Unit <smartscale_generic_shift_1_1> synthesized.

Synthesizing Unit <romshift2_2>.

 Summary:
 inferred 22 D-type flip-flop(s).

 inferred 1 Multiplexer(s).

 inferred 1 Finite State Machine(s).
Unit <romshift2_2> synthesized.

Synthesizing Unit <smartscale_generic_shift_1_2>.

 Summary:

 inferred 3 Adder/Subtractor(s).

 inferred 96 D-type flip-flop(s).

92

 inferred 1 Comparator(s).

 inferred 6 Multiplexer(s).
Unit <smartscale_generic_shift_1_2> synthesized.

Synthesizing Unit <frequency_phase_estimation>.
 Summary:

 inferred 1 Adder/Subtractor(s).

 inferred 37 D-type flip-flop(s).
 inferred 8 Multiplexer(s).

Unit <frequency_phase_estimation> synthesized.

Synthesizing Unit <FSM_for_fine_synchronization>.

 Summary:

 inferred 1 Adder/Subtractor(s).
 inferred 9 D-type flip-flop(s).

 inferred 2 Multiplexer(s).

Unit <FSM_for_fine_synchronization> synthesized.

Synthesizing Unit <rot_memory>.

 Summary:
 inferred 3 Adder/Subtractor(s).

 inferred 55 D-type flip-flop(s).

 inferred 11 Multiplexer(s).
Unit <rot_memory> synthesized.

Synthesizing Unit <frequency_corrector>.
 Summary:

 inferred 2 Adder/Subtractor(s).

 inferred 77 D-type flip-flop(s).
 inferred 2 Comparator(s).

 inferred 9 Multiplexer(s).

Unit <frequency_corrector> synthesized.

Synthesizing Unit <phase_corrector>.

 Summary:
 inferred 4 Multiplier(s).

 inferred 4 Adder/Subtractor(s).

 inferred 233 D-type flip-flop(s).
 inferred 2 Multiplexer(s).

Unit <phase_corrector> synthesized.

===

HDL Synthesis Report

Macro Statistics

RAMs : 2

 4096x9-bit single-port Read Only RAM : 2
Multipliers : 12

 18x18-bit multiplier : 4
 9x9-bit multiplier : 8

Adders/Subtractors : 36

 10-bit adder : 2

 12-bit adder : 1

 12-bit addsub : 1

 13-bit adder : 2
 13-bit addsub : 1

 13-bit subtractor : 2

 19-bit adder : 1
 19-bit subtractor : 1

 23-bit adder : 1

 29-bit adder : 10
 29-bit subtractor : 2

 30-bit adder : 2

 38-bit adder : 1
 38-bit subtractor : 1

 5-bit adder : 1

 5-bit subtractor : 1
 6-bit subtractor : 1

 7-bit adder : 4

 9-bit subtractor : 1

Registers : 99

 1-bit register : 31

 10-bit register : 1

93

 12-bit register : 6

 13-bit register : 7
 18-bit register : 6

 19-bit register : 2

 23-bit register : 2
 29-bit register : 12

 30-bit register : 4

 36-bit register : 4
 38-bit register : 4

 5-bit register : 2

 6-bit register : 6
 9-bit register : 12

Comparators : 8

 13-bit comparator greater : 2
 13-bit comparator lessequal : 3

 13-bit comparator not equal : 1

 5-bit comparator greater : 1
 6-bit comparator greater : 1

Multiplexers : 62

 1-bit 2-to-1 multiplexer : 26
 10-bit 2-to-1 multiplexer : 2

 12-bit 2-to-1 multiplexer : 2

 13-bit 2-to-1 multiplexer : 8
 18-bit 2-to-1 multiplexer : 8

 23-bit 2-to-1 multiplexer : 3

 30-bit 2-to-1 multiplexer : 2
 38-bit 2-to-1 multiplexer : 2

 5-bit 2-to-1 multiplexer : 3

 6-bit 2-to-1 multiplexer : 6
FSMs : 2

Xors : 4

 1-bit xor2 : 4

===

INFO:Xst:1767 - HDL ADVISOR - Resource sharing has identified that some arithmetic operations in this design can share the
same physical resources for reduced device utilization. For improved clock frequency you may try to disable resource sharing.

===
* Advanced HDL Synthesis *

===

Reading core <ipcore_dir/divider.ngc>.

Reading core <ipcore_dir/Rot_symbols.ngc>.

Reading core <ipcore_dir/SCL_LUT_9.ngc>.
Loading core <divider> for timing and area information for instance <part8>.

Loading core <Rot_symbols> for timing and area information for instance <part11>.

Loading core <SCL_LUT_9> for timing and area information for instance <dds>.

Synthesizing (advanced) Unit <FSM_for_fine_synchronization>.
The following registers are absorbed into counter <pipe>: 1 register on signal <pipe>.

Unit <FSM_for_fine_synchronization> synthesized (advanced).

Synthesizing (advanced) Unit <calc_estimate_phase_offset>.

The following registers are absorbed into counter <index>: 1 register on signal <index>.

The following registers are absorbed into accumulator <ac_0>: 1 register on signal <ac_0>.
The following registers are absorbed into accumulator <bd_0>: 1 register on signal <bd_0>.

The following registers are absorbed into accumulator <ad_0>: 1 register on signal <ad_0>.

The following registers are absorbed into accumulator <ac_1>: 1 register on signal <ac_1>.
The following registers are absorbed into accumulator <bc_0>: 1 register on signal <bc_0>.

The following registers are absorbed into accumulator <bd_1>: 1 register on signal <bd_1>.

The following registers are absorbed into accumulator <ad_1>: 1 register on signal <ad_1>.
The following registers are absorbed into accumulator <bc_1>: 1 register on signal <bc_1>.

Unit <calc_estimate_phase_offset> synthesized (advanced).

Synthesizing (advanced) Unit <frequency_corrector>.

The following registers are absorbed into counter <index>: 1 register on signal <index>.

Unit <frequency_corrector> synthesized (advanced).

Synthesizing (advanced) Unit <phase_corrector>.

 Multiplier <Mmult_r_im_reg[2][8]_cos_reg[8]_MuLt_2_OUT> in block <phase_corrector> and adder/subtractor

<Madd_im_temp1[17]_im_temp2_reg[17]_add_7_OUT> in block <phase_corrector> are combined into a

MAC<Maddsub_r_im_reg[2][8]_cos_reg[8]_MuLt_2_OUT>.

94

 The following registers are also absorbed by the MAC: <im_temp1> in block <phase_corrector>, <r_im_out_s1> in

block <phase_corrector>.
 Multiplier <Mmult_r_re_reg[2][8]_cos_reg[8]_MuLt_4_OUT> in block <phase_corrector> and adder/subtractor

<Msub_re_temp1[17]_re_temp2_reg[17]_sub_7_OUT<18:0>> in block <phase_corrector> are combined into a

MAC<Maddsub_r_re_reg[2][8]_cos_reg[8]_MuLt_4_OUT>.

 The following registers are also absorbed by the MAC: <re_temp1> in block <phase_corrector>, <r_re_out_s1> in block

<phase_corrector>.
 Found pipelined multiplier on signal <r_im_reg[1][8]_sin_value[8]_MuLt_5_OUT>:

 - 2 pipeline level(s) found in a register connected to the multiplier macro output.

 Pushing register(s) into the multiplier macro.
 Found pipelined multiplier on signal <r_re_reg[1][8]_sin_value[8]_MuLt_3_OUT>:

 - 2 pipeline level(s) found in a register connected to the multiplier macro output.

 Pushing register(s) into the multiplier macro.
Unit <phase_corrector> synthesized (advanced).

Synthesizing (advanced) Unit <romshift2_1>.
INFO:Xst:3226 - The RAM <part4/Mram_douta> will be implemented as a BLOCK RAM, absorbing the following register(s):

<scaled_radiance>

 | ram_type | Block | |

 | Port A |
 | aspect ratio | 4096-word x 9-bit | |

 | mode | write-first | |

 | clkA | connected to signal <clk> | rise |
 | enA | connected to internal node | high |

 | weA | connected to signal <GND> | high |

 | addrA | connected to signal <part4/r_addra> | |
 | diA | connected to signal <GND> | |

 | doA | connected to signal <scaled_radiance> | |

 | dorstA | connected to signal <srst> | high |
 | reset value | 000000000 |

 | optimization | speed | |

Unit <romshift2_1> synthesized (advanced).

Synthesizing (advanced) Unit <romshift2_2>.

INFO:Xst:3226 - The RAM <part4/Mram_douta> will be implemented as a BLOCK RAM, absorbing the following register(s):

<scaled_radiance>

 | ram_type | Block | |

 | Port A |

 | aspect ratio | 4096-word x 9-bit | |

 | mode | write-first | |
 | clkA | connected to signal <clk> | rise |

 | enA | connected to internal node | high |
 | weA | connected to signal <GND> | high |

 | addrA | connected to signal <part4/r_addra> | |

 | diA | connected to signal <GND> | |

 | doA | connected to signal <scaled_radiance> | |

 | dorstA | connected to signal <srst> | high |

 | reset value | 000000000 |

 | optimization | speed | |

Unit <romshift2_2> synthesized (advanced).

Synthesizing (advanced) Unit <rot_memory>.
The following registers are absorbed into counter <addrb_sig>: 1 register on signal <addrb_sig>.

The following registers are absorbed into counter <addra_sig>: 1 register on signal <addra_sig>.

Unit <rot_memory> synthesized (advanced).

===

Advanced HDL Synthesis Report

Macro Statistics

RAMs : 2

 4096x9-bit single-port block Read Only RAM : 2

MACs : 2

 9x9-to-19-bit MAC : 2

95

Multipliers : 10

 18x18-bit multiplier : 4
 9x9-bit multiplier : 4

 9x9-bit registered multiplier : 2

Adders/Subtractors : 21
 10-bit adder : 2

 13-bit addsub : 1

 13-bit subtractor : 2
 23-bit adder : 1

 29-bit adder : 2

 29-bit subtractor : 2
 30-bit adder : 2

 38-bit adder : 1

 38-bit subtractor : 1
 5-bit subtractor : 1

 6-bit subtractor : 1

 7-bit adder : 4
 9-bit subtractor : 1

Counters : 5

 12-bit up counter : 1
 12-bit updown counter : 1

 13-bit up counter : 2

 5-bit up counter : 1
Accumulators : 8

 29-bit up accumulator : 8

Registers : 863
 Flip-Flops : 863

Comparators : 8

 13-bit comparator greater : 2
 13-bit comparator lessequal : 3

 13-bit comparator not equal : 1

 5-bit comparator greater : 1
 6-bit comparator greater : 1

Multiplexers : 67

 1-bit 2-to-1 multiplexer : 37
 10-bit 2-to-1 multiplexer : 2

 13-bit 2-to-1 multiplexer : 5

 18-bit 2-to-1 multiplexer : 8
 23-bit 2-to-1 multiplexer : 3

 30-bit 2-to-1 multiplexer : 2

 38-bit 2-to-1 multiplexer : 2
 5-bit 2-to-1 multiplexer : 2

 6-bit 2-to-1 multiplexer : 6

FSMs : 2
Xors : 4

 1-bit xor2 : 4

===

===

* Low Level Synthesis *

===

WARNING:Xst:1710 - FF/Latch <frequency_offset_real_0> (without init value) has a constant value of 0 in block

<frequency_phase_estimation>. This FF/Latch will be trimmed during the optimization process.

WARNING:Xst:1426 - The value init of the FF/Latch last hinder the constant cleaning in the block rot_memory.
 You should achieve better results by setting this init to 1.

Analyzing FSM <MFsm> for best encoding.

Optimizing FSM <part3/FSM_0> on signal <cs[1:2]> with user encoding.

 State | Encoding

 ready | 00

 shift | 01

 angle | 10
 output | 11

Analyzing FSM <MFsm> for best encoding.
Optimizing FSM <part6/FSM_1> on signal <cs[1:2]> with user encoding.

 State | Encoding

 ready | 00

 shift | 01

96

 angle | 10

 output | 11

Optimizing unit <phase_estimation> ...

Optimizing unit <calc_estimate_phase_offset> ...

Optimizing unit <frequency_phase_estimation> ...

Optimizing unit <rot_memory> ...

Optimizing unit <frequency_corrector> ...

Optimizing unit <romshift2_1> ...

Optimizing unit <smartscale_generic_shift_1_1> ...

Optimizing unit <romshift2_2> ...

Optimizing unit <smartscale_generic_shift_1_2> ...

Optimizing unit <phase_corrector> ...
WARNING:Xst:2677 - Node <part12/total_sum_22> of sequential type is unconnected in block <phase_estimation>.

WARNING:Xst:2677 - Node <part12/total_sum_12> of sequential type is unconnected in block <phase_estimation>.

WARNING:Xst:2677 - Node <part12/total_sum_11> of sequential type is unconnected in block <phase_estimation>.
WARNING:Xst:2677 - Node <part12/total_sum_10> of sequential type is unconnected in block <phase_estimation>.

WARNING:Xst:2677 - Node <part12/total_sum_9> of sequential type is unconnected in block <phase_estimation>.

WARNING:Xst:2677 - Node <part12/total_sum_8> of sequential type is unconnected in block <phase_estimation>.
WARNING:Xst:2677 - Node <part12/total_sum_7> of sequential type is unconnected in block <phase_estimation>.

WARNING:Xst:2677 - Node <part12/total_sum_6> of sequential type is unconnected in block <phase_estimation>.

WARNING:Xst:2677 - Node <part12/total_sum_5> of sequential type is unconnected in block <phase_estimation>.
WARNING:Xst:2677 - Node <part12/total_sum_4> of sequential type is unconnected in block <phase_estimation>.

WARNING:Xst:2677 - Node <part12/total_sum_3> of sequential type is unconnected in block <phase_estimation>.

WARNING:Xst:2677 - Node <part12/total_sum_2> of sequential type is unconnected in block <phase_estimation>.
WARNING:Xst:2677 - Node <part12/total_sum_1> of sequential type is unconnected in block <phase_estimation>.

WARNING:Xst:2677 - Node <part12/total_sum_0> of sequential type is unconnected in block <phase_estimation>.

WARNING:Xst:2677 - Node <part12/total_sum_sig_22> of sequential type is unconnected in block <phase_estimation>.
WARNING:Xst:1710 - FF/Latch <part12/index_12> (without init value) has a constant value of 0 in block <phase_estimation>.

This FF/Latch will be trimmed during the optimization process.

INFO:Xst:2261 - The FF/Latch <part9/phase_valid_bit> in Unit <phase_estimation> is equivalent to the following FF/Latch, which
will be removed : <part9/freq_valid_bit>

INFO:Xst:2261 - The FF/Latch <part12/valid_estimation_output> in Unit <phase_estimation> is equivalent to the following

FF/Latch, which will be removed : <part12/pipe>
INFO:Xst:2261 - The FF/Latch <part7/division_ready> in Unit <phase_estimation> is equivalent to the following 2 FFs/Latches,

which will be removed : <part7/frequency_offset_estimation_valid> <part7/phase_offset_estimation_valid>

Mapping all equations...

Building and optimizing final netlist ...
Found area constraint ratio of 100 (+ 5) on block phase_estimation, actual ratio is 3.

WARNING:Xst:1426 - The value init of the FF/Latch part11/last hinder the constant cleaning in the block phase_estimation.

 You should achieve better results by setting this init to 1.

Final Macro Processing ...

Processing Unit <phase_estimation> :

INFO:Xst:741 - HDL ADVISOR - A 6-bit shift register was found for signal <part13/data_v_in_s_5> and currently occupies 6 logic

cells (3 slices). Removing the set/reset logic would take advantage of SRL32 (and derived) primitives and reduce this to 1 logic cells
(1 slices). Evaluate if the set/reset can be removed for this simple shift register. The majority of simple pipeline structures do not

need to be set/reset operationally.

Unit <phase_estimation> processed.

===

Final Register Report

Macro Statistics

Registers : 941
 Flip-Flops : 941

===

===

* Partition Report *

97

===

Partition Implementation Status

 No Partitions were found in this design.

===

* Design Summary *
===

Top Level Output File Name : phase_estimation.ngc

Primitive and Black Box Usage:

BELS : 3454

GND : 4

INV : 82
LUT1 : 8

LUT2 : 678

LUT3 : 551
LUT4 : 89

LUT5 : 48

LUT6 : 55
MULT_AND : 11

MUXCY : 965

VCC : 4
XORCY : 959

FlipFlops/Latches : 1943

FD : 986
FDE : 51

FDR : 96

FDRE : 808
FDS : 2

RAMS : 5

RAMB18E1 : 1
RAMB36E1 : 4

Shift Registers : 25

SRLC16E : 23
SRLC32E : 2

Clock Buffers : 1

BUFGP : 1
IO Buffers : 103

IBUF : 52

OBUF : 51
DSPs : 12

DSP48E1 : 12

Device utilization summary:

Selected Device : 6vlx75tff484-1

Slice Logic Utilization:

 Number of Slice Registers: 1943 out of 93120 2%

 Number of Slice LUTs: 1536 out of 46560 3%

 Number used as Logic: 1511 out of 46560 3%
 Number used as Memory: 25 out of 16720 0%

 Number used as SRL: 25

Slice Logic Distribution:

 Number of LUT Flip Flop pairs used: 2349

 Number with an unused Flip Flop: 406 out of 2349 17%
 Number with an unused LUT: 813 out of 2349 34%

 Number of fully used LUT-FF pairs: 1130 out of 2349 48%

 Number of unique control sets: 30

IO Utilization:

 Number of IOs: 104

98

 Number of bonded IOBs: 104 out of 240 43%

Specific Feature Utilization:

 Number of Block RAM/FIFO: 5 out of 156 3%

 Number using Block RAM only: 5
 Number of BUFG/BUFGCTRLs: 1 out of 32 3%

 Number of DSP48E1s: 12 out of 288 4%

Partition Resource Summary:

 No Partitions were found in this design.

===

Timing Report

Clock Information:

-----------------------------------+------------------------+-------+
Clock Signal | Clock buffer(FF name) | Load |

-----------------------------------+------------------------+-------+

clk | BUFGP | 1981 |
-----------------------------------+------------------------+-------+

Timing Summary:

Speed Grade: -1

 Minimum period: 5.109ns (Maximum Frequency: 195.733MHz)

 Minimum input arrival time before clock: 5.938ns

 Maximum output required time after clock: 0.783ns
 Maximum combinational path delay: No path found

Timing Details:

All values displayed in nanoseconds (ns)

===

Timing constraint: Default period analysis for Clock 'clk'

 Clock period: 5.109ns (frequency: 195.733MHz)
 Total number of paths / destination ports: 100385 / 3805

Delay: 5.109ns (Levels of Logic = 1)
 Source: part1/phase_offset_estimation_1_imag_22 (FF)

 Destination: part1/Mmux_phase_offset_estimation_0_real[22]_phase_offset_estimation_0_real[28]_mux_49_OUT_rs (DSP)
 Source Clock: clk rising

 Destination Clock: clk rising

 Data Path: part1/phase_offset_estimation_1_imag_22 to

part1/Mmux_phase_offset_estimation_0_real[22]_phase_offset_estimation_0_real[28]_mux_49_OUT_rs

 Gate Net
 Cell:in->out fanout Delay Delay Logical Name (Net Name)

 -- ------------

 FDRE:C->Q 3 0.375 0.595 part1/phase_offset_estimation_1_imag_22 (part1/phase_offset_estimation_1_imag_22)
 LUT3:I0->O 16 0.068 0.497

part1/Mmux_phase_offset_estimation_0_imag[22]_phase_offset_estimation_0_imag[28]_mux_47_OUT_rs_B<28>1

(part1/Mmux_phase_offset_estimation_0_imag[22]_phase_offset_estimation_0_imag[28]_mux_47_OUT_rs_B<28>)
 DSP48E1:A17 3.574

part1/Mmux_phase_offset_estimation_0_imag[22]_phase_offset_estimation_0_imag[28]_mux_47_OUT_rs

 --
 Total 5.109ns (4.017ns logic, 1.092ns route)

 (78.6% logic, 21.4% route)

===

Timing constraint: Default OFFSET IN BEFORE for Clock 'clk'

 Total number of paths / destination ports: 171576 / 1824

Offset: 5.938ns (Levels of Logic = 32)

 Source: reference_symb_real<8> (PAD)

99

 Destination: part1/bc_1_28 (FF)

 Destination Clock: clk rising

 Data Path: reference_symb_real<8> to part1/bc_1_28

 Gate Net
 Cell:in->out fanout Delay Delay Logical Name (Net Name)

 -- ------------

 IBUF:I->O 34 0.003 0.552 reference_symb_real_8_IBUF (reference_symb_real_8_IBUF)
 DSP48E1:A8->P0 2 3.826 0.423 part1/Mmult_received_symb_real[8]_reference_symb_real[8]_MuLt_3_OUT

(part1/received_symb_real[8]_reference_symb_real[8]_MuLt_3_OUT<0>)

 LUT2:I1->O 1 0.068 0.000 part1/Maccum_ac_0_lut<0> (part1/Maccum_ac_0_lut<0>)
 MUXCY:S->O 1 0.290 0.000 part1/Maccum_ac_0_cy<0> (part1/Maccum_ac_0_cy<0>)

 MUXCY:CI->O 1 0.020 0.000 part1/Maccum_ac_0_cy<1> (part1/Maccum_ac_0_cy<1>)

 MUXCY:CI->O 1 0.020 0.000 part1/Maccum_ac_0_cy<2> (part1/Maccum_ac_0_cy<2>)
 MUXCY:CI->O 1 0.020 0.000 part1/Maccum_ac_0_cy<3> (part1/Maccum_ac_0_cy<3>)

 MUXCY:CI->O 1 0.020 0.000 part1/Maccum_ac_0_cy<4> (part1/Maccum_ac_0_cy<4>)

 MUXCY:CI->O 1 0.020 0.000 part1/Maccum_ac_0_cy<5> (part1/Maccum_ac_0_cy<5>)
 MUXCY:CI->O 1 0.020 0.000 part1/Maccum_ac_0_cy<6> (part1/Maccum_ac_0_cy<6>)

 MUXCY:CI->O 1 0.020 0.000 part1/Maccum_ac_0_cy<7> (part1/Maccum_ac_0_cy<7>)

 MUXCY:CI->O 1 0.020 0.000 part1/Maccum_ac_0_cy<8> (part1/Maccum_ac_0_cy<8>)
 MUXCY:CI->O 1 0.020 0.000 part1/Maccum_ac_0_cy<9> (part1/Maccum_ac_0_cy<9>)

 MUXCY:CI->O 1 0.020 0.000 part1/Maccum_ac_0_cy<10> (part1/Maccum_ac_0_cy<10>)

 MUXCY:CI->O 1 0.020 0.000 part1/Maccum_ac_0_cy<11> (part1/Maccum_ac_0_cy<11>)
 MUXCY:CI->O 1 0.020 0.000 part1/Maccum_ac_0_cy<12> (part1/Maccum_ac_0_cy<12>)

 MUXCY:CI->O 1 0.020 0.000 part1/Maccum_ac_0_cy<13> (part1/Maccum_ac_0_cy<13>)

 MUXCY:CI->O 1 0.020 0.000 part1/Maccum_ac_0_cy<14> (part1/Maccum_ac_0_cy<14>)
 MUXCY:CI->O 1 0.020 0.000 part1/Maccum_ac_0_cy<15> (part1/Maccum_ac_0_cy<15>)

 MUXCY:CI->O 1 0.019 0.000 part1/Maccum_ac_0_cy<16> (part1/Maccum_ac_0_cy<16>)

 MUXCY:CI->O 1 0.019 0.000 part1/Maccum_ac_0_cy<17> (part1/Maccum_ac_0_cy<17>)
 MUXCY:CI->O 1 0.019 0.000 part1/Maccum_ac_0_cy<18> (part1/Maccum_ac_0_cy<18>)

 MUXCY:CI->O 1 0.019 0.000 part1/Maccum_ac_0_cy<19> (part1/Maccum_ac_0_cy<19>)

 MUXCY:CI->O 1 0.019 0.000 part1/Maccum_ac_0_cy<20> (part1/Maccum_ac_0_cy<20>)
 MUXCY:CI->O 1 0.019 0.000 part1/Maccum_ac_0_cy<21> (part1/Maccum_ac_0_cy<21>)

 MUXCY:CI->O 1 0.019 0.000 part1/Maccum_ac_0_cy<22> (part1/Maccum_ac_0_cy<22>)

 MUXCY:CI->O 1 0.019 0.000 part1/Maccum_ac_0_cy<23> (part1/Maccum_ac_0_cy<23>)
 MUXCY:CI->O 1 0.019 0.000 part1/Maccum_ac_0_cy<24> (part1/Maccum_ac_0_cy<24>)

 MUXCY:CI->O 1 0.019 0.000 part1/Maccum_ac_0_cy<25> (part1/Maccum_ac_0_cy<25>)

 MUXCY:CI->O 1 0.019 0.000 part1/Maccum_ac_0_cy<26> (part1/Maccum_ac_0_cy<26>)
 MUXCY:CI->O 0 0.019 0.000 part1/Maccum_ac_0_cy<27> (part1/Maccum_ac_0_cy<27>)

 XORCY:CI->O 1 0.239 0.000 part1/Maccum_ac_0_xor<28> (part1/Result<28>1)

 FDRE:D 0.011 part1/ac_0_28
 --

 Total 5.938ns (4.963ns logic, 0.975ns route)

 (83.6% logic, 16.4% route)

===

Timing constraint: Default OFFSET OUT AFTER for Clock 'clk'
 Total number of paths / destination ports: 51 / 51

Offset: 0.783ns (Levels of Logic = 2)

 Source: part8/blk00000003/blk00000668 (FF)

 Destination: frequency_quotient_offset_real_output<8> (PAD)

 Source Clock: clk rising

 Data Path: part8/blk00000003/blk00000668 to frequency_quotient_offset_real_output<8>
 Gate Net

 Cell:in->out fanout Delay Delay Logical Name (Net Name)

 -- ------------
 FD:C->Q 2 0.375 0.405 blk00000668 (quotient(8))

 end scope: 'part8/blk00000003:quotient(8)'

 end scope: 'part8:quotient<8>'
 OBUF:I->O 0.003 frequency_quotient_offset_real_output_8_OBUF (frequency_quotient_offset_real_output<8>)

 --

 Total 0.783ns (0.378ns logic, 0.405ns route)
 (48.3% logic, 51.7% route)

Total REAL time to Xst completion: 53.00 secs
Total CPU time to Xst completion: 52.72 secs

-->

Total memory usage is 323104 kilobytes

100

Number of errors : 0 (0 filtered)

Number of warnings : 60 (0 filtered)
Number of infos : 10 (0 filtered)

101

ANNEX C < RESUMO TG2: UNIDADE DE

SINCRONIZAÇÃO FINA DE PORTADORAS PARA

SISTEMAS DE SINCRONIZAÇÃO TURBO >

102

Unidade de Sincronização Fina de Portadoras para

Sistemas de Sincronização Turbo

Leonardo Hax Damiani, Uwe Wasenmüller (co-advisor),

Alexandre Carissimi (advisor)

Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)

Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brasil

{lhdamiani,asc}@inf.ufrgs.br

wasenmueller@eit.uni-kl.de

Abstract. The popularity of the wireless devices comes from several

advantages related to this type of communication, i.e. mobility, easy

installation and less cost for infrastructure. Hence it is vital to assure a

reliable communication where errors can be autonomously fixed and

information responsibly secured. The transmission over wireless channel

results in frequency and phase offsets; additionally the received symbols are

corrupted with noise. Therefore the estimation of the actual frequency and

phase offset becomes a very critical task with high impact on communications

performance; synchronization is a crucial part of each receiver in digital

communication systems. In this context, throughout this work is proposed an

implementation of a Fine Carrier Synchronization Unit that aims a better

communication quality and lower its error rate.

Resumo. A popularidade de equipamentos sem fio decorre de uma série de

vantagens relacionadas a este tipo de comunicação, i.e. mobilidade, fácil

instalação e menor custo para infra-estrutura. Consequentemente é vital

garantir-se uma comunicação confiável onde erros podem ser

automaticamente corrigidos e a informação responsavelmente segura. A

transmissão sobre canais sem fio resulta em deslocamentos de frequência e

fase; além disso, os símbolos recebidos podem ser corrompidos com ruído.

Portanto uma estimativa dos valores de deslocamento reais de frequência e

fase se torna uma tarefa fundamental com grande impacto no desempenho da

comunicação; sincronização é uma parte crucial em cada receptor em

sistemas de comunicação digital. Nesse contexto, ao longo deste trabalho é

proposto a implementação de uma Unidade de Sincronização Fina de

Portadoras que visa melhorar a qualidade da comunicação e diminuir a taxa

de erros da mesma.

103

1 Introdução

Com o aumento da mobilidade, existe uma crescente necessidade das pessoas em se

comunicar e ter acesso à informação independentemente da localização pessoal ou da

informação. Tamanha importância é devido a possibilidade de que qualquer ligação

telefônica pode ser essencial o suficiente para salvar uma vida, fechar um acordo

empresarial ou prover horas de lazer. Cada um desses exemplos de comunicação móveis

propõe desafios que somente podem ser atingidos com um eficiente e confiável sistema

de comunicação sem fio.

 A sincronização e codificação/decodificação de canal de são partes vitais em

todos receptores digitais para comunicação sem fio – através destas técnicas é possível

reduzir os erros e diminuir a potência de transmissão [MENGALI, 1997].. A

popularização de dispositivos que utilizam tecnologias sem fio de transmissão de dados

exige maneiras eficientes e responsáveis para corrigir erros que ocorrem neste tipo de

transmissão. Ao usar o canal sem fio é normal que os dados recebidos estejam

corrompidos com desvios de tempo e deslocamentos de fase e frequência, entretanto,

para se atingir uma comunicação de qualidade estes erros devem ser corrigidos. A tarefa

de sincronização é juntamente com o decodificador de canal, eliminar as influências

negativas do desvio de tempo e deslocamento de fase e frequência [MEYR, 1997].

 Em adição à detecção e decodificação, um receptor tem também que executar a

sincronização; isto é, estimar parâmetros como a fase da portadora e a taxa de

probabilidade máxima (maximum likelihood ratio). A sincronização é uma tarefa muito

desafiadora em receptores turbo – uma vez que eles operam com baixa relação sinal-

ruído (SNR) e, portanto, sincronizadores clássicos podem falhar no momento de

fornecer parâmetros estimados confiáveis. A sincronização turbo baseia-se no

beneficiamento a partir da informação disponível em receptores turbo a fim de melhorar

a qualidade de estimações entregues pelo sincronizador [REDL, 1995].

 Este trabalho será focado na sincronização de frequência e fase com modulação

linear, ou seja, modulação por deslocamento de fase (Quadrature Phase Shift Keying –

QPSK). Considera-se que a sincronização de tempo é adequadamente realizada antes. O

sistema visa o padrão Digital Video Broadcast – Return Channel via satélite (DVB-

RCS), que é um padrão de satélite de comunicação ETSI [ETSI, 2012].

 O software Creonic Simulation Environment – CSE foi desenvolvido dentro de

um projeto do Grupo de Pesquisa em Sistemas de Microeletrônica da Universidade

Técnica de Kaiserslautern. O objetivo do CSE é permitir a integração de ambientes

complexos e simulações, focado principalmente em decodificadores. A simulação e

implementação da tarefa de sincronização para sistemas de comunicação têm

importância vital em todo o projeto, além do fato conhecido de redução do tempo e

custo de desenvolvimento.

104

 O CSE é o ponto de partida para o desnevolvimento deste trabalho. Novas

características destinadas a Unidade de Sincronização Fina de Portadores serão

desenvolvidas, testadas e introduzidas no ambiente de simulação já existente.

Implementações de hardware em Very High Speed Integrated Circuit (VHSIC)

Hardware Description Language (VHDL) [VHDL, 2012] desses novos recursos

também são metas desse trabalho. Será possível avaliar ambos – software e hardware –

de acordo com a teoria dos sistemas de comunicação e ter uma análise completa e de

qualidade de ambos.

 Portanto, este trabalho objetiva a implementação de uma Unidade de

Sincronização Fina de Portadoras em software e integrá-la ao CSE, e paralelamente a

implementacão da mesma unidade em VHDL. Além disso, uma análise, comparação e

avaliação da qualidade e precisão do software e VHDL desenvolvidos.

 O restante do trabalho está estruturado da maneira que segue. Na seção 2 uma

breve revisão dos conceitos necessários para compreensão do trabalho. A seção 3

apresenta o software CSE, suas funcionalidades, vantagens de tomá-lo como base para o

trabalho e também como e onde a Unidade de Sincronização Fina de Portadoras se

encaixa dentro do CSE. A seção 4 apresenta detalhes de implementação, bem como a

metodologia utilizada durante a mesma. A seção 5 mostra a parte de validação referente

aquilo que foi implementado anteriormente e desafios encontrados durante a mesma. A

seção 6 abrange as conclusões atingidas após a realização do trabalho e aborda também

possíveis futuros trabalhos.

2 Conceitos Básicos

 Neste momento, é importante compreender exatamente o que envolve sistemas

de sincronização, o porquê e a causa pelas quais erros acontecem. Sincronização

consiste na estimativa de parâmetros desconhecidos de desvios de frequência e fase, e a

remoção de todos os possíveis efeitos prejudiciais introduzidos por estes parâmetros.

 Em toda transmissão haverá um mapeador, que é responsável por converter o

fluxo de bits binários em símbolos modulados. Modulados significa dizer que os bits

vão ser organizados em um alfabeto, que define quantos símbolos estão disponíveis e

como eles funcionam neste "idioma" em que se comunicam – este alfabeto deve ser

previamente definido e conhecido por ambas as extremidades. A comunicação pode ser

representada em um plano complexo e, por exemplo, uma modulação por deslocamento

de fase em quadratura (Quadrature Phase Shift Keying – QPSK) tem um alfabeto

definido com 4 símbolos (00, 01, 10 e 11), igualmente divididas no plano.

Consequentemente, é natural entender que para cada 90° ou π/2 um símbolo será

representado. É comum se referir a esta organização de símbolos em um plano

complexo como diagrama de constelação (Figura 1). Existem várias modulações

disponíveis para uso atualmente, por exemplo, BPSK, QPSK, 8PSK, 16-QAM, 64-

QAM, etc [TANENBAUM, 2003].

105

Figura 1. Diagrama de constelação para BPSK (esquerda) e QPSK (direita) utilizando

codificação gray

 A modulação funcionaria perfeitamente se não existissem erros, ruídos e

degradação de sinal. Para entender como os erros ocorrem é importante ressaltar que

com os erros esses símbolos não irão se encontrar no local esperado. Devido aos ruídos,

os símbolos, identificados por pontos da figura 1, deslocam sua posição no plano

complexo se comparada a posição original. Este deslocamento nem sempre acarretará

falhas na comunicação – se o deslocamento estiver dentro de um limite aceitável ele

continua resultando em uma correta interpretação do mesmo e, portanto, sem defeitos.

 O problema se agrava quando este deslocamento é maior que a faixa de variação

aceitável. A comparação entre ambientes com ruído aceitável (esquerda) e um além do

aceitável (direita) é apresentada na figura 2. É facilmente perceptível que muitos

símbolos foram erroneamente classificados, na parte direita da figura, uma vez que o

ruído foi além da faixa aceitável de variação e acabou ficando impossível a

identificação exata de tais símbolos – o que resultará possivelmente em um erro na

interpretação do símbolo.

Figure 2: 16-QAM com uma variação pequena de ruído (esquerda – alto SNR) e com

uma variação grande de ruído (direita – baixo SNR)

106

 Existe um parâmetro conhecido em sistemas de comunicação como Relação

sinal-ruído (SNR), o qual representa a relação entre a energia do sinal e a energia do

ruído. Quanto maior o SNR melhor a qualidade do sinal. Dentre os parâmetros

negativos de sistemas de sincronização estão também, os deslocamentos de frequência e

de fase.

 O deslocamento de frequência existe como consequência da diferença entre o

oscilador do transmissor (TX) e do receptor (RX); osciladores de TX e RX não são

exatamente iguais. É primordial entender que os símbolos representados na figura 3 não

coexistem no mesmo instante, mas representam todos os símbolos de uma transmissão.

Por exemplo, para transmissão da seqüência binária “10101010” com deslocamento de

frequência f (responsável por adicionar um erro constante e incremental durante a

transmissão). Esta é a razão pela qual os símbolos têm uma variação a partir do local

identificado na figura como "first" até o local "last". Cada símbolo seguinte será um

pouco mais deslocado em relação à posição original do "10" inicial no plano complexo.

Devido a fins didáticos, todo o fluxo de bits é representado em um único plano

complexo como se fosse um acumulador – caso uma foto instantânea do plano

complexo fosse tirada, seria encontrado apenas um símbolo "10" a cada momento, e

isso não seria útil para a compreensão do conceito de deslocamento de frequência.

Figura 3: Ilustração do deslocamento de frequência () em uma modulação QPSK

 O deslocamento de frequência impacta mais aqueles que estiverem perto do fim

do conjunto de símbolos – o mesmo é sequencialmente adicionado a cada novo

símbolo. Em contrapartida, na figura 4 é mostrado como o deslocamento de fase atua

em uma modulação QPSK. É fundamental que se entenda que o deslocamento de fase

atuará igualmente aplicando o mesmo erro a todos os símbolos pertencentes à rajada.

 A Figura 4a mostra uma transmissão QPSK cujo símbolo "10" foi transmitido

com um deslocamento de fase (α). A classificação deste símbolo não implica qualquer

erro sobre a interpretação do mesmo, uma vez que o QPSK postula 90 graus para cada

símbolo variar. É possível ter um deslocamento de fase sem erro sobre a interpretação

107

do sinal. A Figura 4a é importante para compreender que nem todo deslocamento de

fase resultará em erro.

 Por outro lado, com a figura 4b é proeminente que o deslocamento de fase

introduzido irá resultar em erros de interpretação do símbolo. O símbolo era

originalmente localizado em um quadrante do plano complexo e após a adição do

deslocamento de fase encontra-se em um quadrante diferente. Isto significa que a

interpretação irá resultar em um erro, o qual pode, e deve, ser corrigido com uma

estimativa correta deste deslocamento de fase e da futura correção do mesmo.

Figura 4 Ilustração do deslocamento de fase com modulação QPSK

3 Creonic Simulation Environment – CSE

 O CSE foi desenvolvido pelo Grupo de Pesquisa em Design de Sistemas

Microeletrônicos da Universidade Técnica de Kaiserslautern e Dr.-Ing Timo Lehnigk-

Emden e Dr.-Ing Matthias Alles – ambos, são agora, ex-pesquisadores do grupo. O CSE

é um dentre os projetos bem-sucedidos acadêmicos deste grupo de pesquisa que se

tornou uma empresa – Creonic IP Cores & System Solutions GmbH [CREONIC, 2012].

 O CSE é um ambiente de simulação que fornece um conjunto de ferramentas e

funcionalidades necessárias para simular as comunicações do mundo real de uma

maneira prática e amigável. Ele oferece a possibilidade de reduzir o tempo de

desenvolvimento e o custo – um problema bem conhecido na concretização de projetos.

Outros objetivos do CSE são a facilidade de reutilização, o uso e a extensão para novas

aplicações e padrões – ele foi projetado com o objetivo de proporcionar um ambiente de

simulação onde os usuários seriam capazes de melhorar a sua experiência com o

software através do desenvolvimento de novas funcionalidades e aplicações.

108

 O C++ foi a linguagem de programação escolhida para a implementação do CSE

– uma opção inteligente com base nas escolhas de projeto feitas pelos desenvolvedores

originais do software. O C++ contém uma biblioteca de classes padrão ampla, suporte a

interfaces e multi-thread. Além disso, permite tanto a programação estruturada quanto a

programação orientada a objetos.

 O ambiente de simulação é composto de módulos funcionais, os quais atuam

como peças versáteis disponíveis para serem organizadas em conjunto seguindo as

necessidades do usuário. Como exemplo, pode ser citado o modulo gerador de ruído e o

modulo decodificador de canal. Estes módulos funcionais estão ligados uns aos outros

proporcionando a criacão de cadeias de simulações. Este ambiente de simulação é

extremamente útil para projetos ligados a sistemas de comunicação, uma vez que os

custos de simulações – relacionado à configuração e à conexão – que normalmente

levavam horas ou dias agora pode ser facilmente concluído em poucos minutos.

Figure 5: Cadeia de simulação básica e conexão dos módulos funcionais disponíveis no

CSE

 Na figura 5 é ilustrado a cadeia de simulação básica disponível no CSE, a qual

representa todo o caminho que o fluxo de bits irá percorrer. O módulo fonte (source

module) gera seqüências de bits aleatórios e é responsável por calcular um bloco de bits

e armazená-lo para o buffer de saída. O módulo codificador (encoder module)

transforma o sinal em código; essa transformação (codificação) otimiza a compressão

para transmissão ou armazenamento. O módulo mapeador (mapper module) é

responsável pelo mapeamento de bits para símbolos de modulação. O módulo canal de

ruído (noise channel module) acrescenta os efeitos de simulação de vida real – o

prejuízo adicionado à comunicação é do tipo linear com ruído branco e densidade

espectral constante e uma distribuição de amplitude gaussiana. O módulo demapeador

(demapper module) recebe os símbolos do canal e extrai o valor dos bits e do LLR (log

likelihood ratio – teste estatístico utilizado para comparar o ajuste de dois modelos) e as

probabilidades de bits. O módulo decodificador (decoder module) será responsável pela

operação inversa do codificador – mudar o código em um conjunto de sinais. O módulo

de estatísticas é responsável pela comparação dos bits de entrada e os bits de saída, que

leva em conta a quantidade total de bits e quantos deles são diferentes.

 O objetivo do software é permitir ao usuário criar um próprio ambiente de

simulação; o CSE conta com uma rica documentação que incentiva criação de novos

módulos funcionais e testes dos mesmos dentro do sistema. A análise dos resultados e

do desempenho das novas mudanças ou aplicações também é um atrativo à criação de

novos módulos. Este trabalho propõe a implementação de uma Unidade de

Sincronização Fina de Portadoras. Esse novo módulo será completamente desenvolvido

109

neste trabalho e será localizado entre o módulo canal de ruído (noise channel module) e

o módulo demapeador (demapper module) para fins de teste. Isto significa que ele vai

ser exatamente a "primeira" parte no lado do receptor. Em um sistema de comunicação

real, tal unidade será posicionada dentro do laço de iteração do decodificador. O modelo

de ruído utilizado em tal ambiente de simulação é o ruído branco aditivo gaussiano

(Additive White Gaussian Noise – AWGN).

 Nesse contexto do CSE, a Unidade de Sincronização Fina de Portadoras é uma

técnica que impacta a comunicação positivamente por proporcionar maneiras de fazer

um processo de forma mais precisa, automática e visando a minimização de erros. Com

esse novo módulo será possível diminuir a influência negativa do ruído a partir do

cálculo dos deslocamentos de fase e frequência e da correção dos mesmos

[WASENMÜLLER, 2009]. Tal unidade estará localizada exatamente no fluxo dos

dados, trabalhando da mesma maneira durante todo o fluxo, visto que, estará

posicionada sequencialmente dentro da cadeia – conforme pode ser observado na figura

6.

Figura 6: Posição da Unidade de Sincronização Fina de Portadoras em relação à cadeia

de simulação do CSE.

 A implementação adequada do módulo de sincronização pode ser simplificada

se a idéia inerente a sua funcionalidade for dividida novamente em três módulos

menores. Conforme ilustrado na figura 7, é possível reconhecer sub tarefas para atingir

o objetivo final deste módulo. Por existirem sub tarefas distintas e bem definidas fica

claro a criação de sub módulos – isso torna a concepção da lógica mais simples e

precisa. Desta forma, o software final implementado vai respeitar os princípios originais

do CSE – flexibilidade, reutilização e orientação a objetos.

Figura 7: Sub modularização dentro da Unidade de Sincronização Fina de Portadoras

110

 O módulo de correlação (correlation module) é responsável pelo cálculo da

correlação – uma medida estatística que representa a fidelidade entre os dois fluxos de

símbolos (de referência e os recebidos). Os símbolos de referência são exatamente o

mesmo fluxo de bits fornecidos pelo módulo fonte. Os símbolos recebidos são o fluxo

de bits que está sendo transmitido e está percorrendo todos os módulos da cadeia. Antes

do módulo canal de ruído ambas variáveis encontram-se perfeitamente correlacionadas,

uma vez que são exatamente iguais. Os símbolos recebidos, mesmo com a adição de

ruído, terão características remanescentes dos símbolos originais.

 Quando o módulo de correlação (correlation module) produz sua saída, o valor

da correlação, o módulo de estimação (estimation module) pode, então, efetuar seu

trabalho – estimar o deslocamento de fase e frequência. Uma vez que os valores de

deslocamento de frequência e fase estão estimados é chegado a última subtarefa da

Unidade de Sincronização Fina de Portadoras. O módulo de correção (correction

module) é responsável pela correção dos símbolos com ruídos visando, dessa maneira,

diminuir a taxa de erro encontrada na transmissão.

 A fim de implementar, adaptar e testar a Unidade de Sincronização Fina de

Portadoras, se faz necessário uma maneira de introduzir deslocamentos de frequência e

fase à transmissão do CSE. Esse deslocamento será introduzido através da criação de

um outro módulo extra, chamado adição de deslocamento (add offset module). A função

desse módulo é simplesmente introduzir falhas para a verificação do correto

funcionamento da Unidade de Sincronização Fina de Portadoras. Portanto, com o

módulo adição de deslocamento será possível definir deslocamentos de fase e/ou

frequência e analisar as estimativas e as correções que serão feitas.

 Durante o desenvolvimento deste trabalho, o foco foi a implementação dos

módulos adicionais a cadeia de simulação original do CSE destacados na figura 8 –

Adição de deslocamento (Add Offset Module) e Unidade de Sincronização Fina de

Portadoras (Fine Carrier Synchronization Unit). É importante ressaltar que diversas

novas funcionalidades foram acrescentadas ao módulo de estatísticas (statistics module)

do CSE visando abranger os dois módulos novos e fornecer cálculos probabilísticos a

respeito dos mesmos.

111

Figure 8: Módulo de Adição de deslocamento (Add Offset Module) e Módulo da

Unidade de Sincronização Fina de Portadoras (Fine Carrier Synchronization Unit)

adicionados a cadeia do CSE

4 Implementação

 A implementação das determinadas funcionalidades segue a mesma linguagem

já escolhida pelos desenvolvedores originais do CSE (C++), a qual é uma linguagem de

programação de propósitos gerais com suporte eficiente a computação de baixo nível,

abstração de dados e programação orientada a objetos. Ela fornece mecanismos

poderosos e flexíveis para abstração; o que quer dizer que tal linguagem permite que o

programador introduza e utilize novos tipos de objetos que combinem com os conceitos

das suas aplicações. Portanto, C++ suporta tanto estilo de programação que manipula

diretamente os recursos de hardware quanto a programação de alto nível baseada em

definições de tipo criadas pelo usuário [DALE, 2004].

 A implementação da Unidade de Sincronização Fina de Portadoras em VHDL

exige uma visão das funcionalidades em baixo nível de abstração; é necessário, por

exemplo, controlar sinais que sejam responsáveis pela leitura/escrita na memória ROM.

No momento em que se refere à implementação do software esse tipo de controle é

completamente ignorado e não importante, uma vez que é feito automaticamente. Em

contrapartida, outras características, como por exemplo, a implementação do módulo

responsável pela introdução do erro é desnecessária no VHDL pois ele é conseqüência

natural dos sistemas de comunicação hoje em dia. O ISE Xilinx Design Tools 13.2

[XILINX, 2012] é o framework utilizado para tal desenvolvimento – o qual

disponibiliza ferramentas disponíveis para desenvolvimento, compilação, simulação e

sintetização.

 A implementação de tal hardware em um Fully Programable Gate Array

(FPGA) não foi efetuada devido aos recursos disponíveis; contudo, a criação de um

hardware com tal comportamento é possível pois o VHDL encontra-se finalizado e

sintetizável – uma grande preocupação durante todo o trabalho. É possível notar na

figura 9 as características do VHDL sintetizado relacionadas às propriedades temporais.

112

Com eles pode-se verificar que os valores obtidos encontram-se de acordo com os

requisitos de produção exigidos pelo mercado atualmente. Ressalta-se a presença de

flip-flops e processos dependentes do clock – isto explica o motivo da não existência de

um atraso máximo do caminho combinacional (maximum combination path delay).

Figura 9: Propriedades temporais do VHDL desenvolvido

 É importante salientar que a implementação da Unidade de Sincronização Fina

de Portadoras foi desenvolvida visando uma tecnologia Virtex 6. Uma vez que a síntese

foi concluída, é possível ter uma análise dos recursos necessários para implementação

da mesma em uma FPGA – nota-se que este trabalho utilizou, por exemplo, 2% do

número de Registradores e 3% do número de Look-Up Tables (LUT). Percebe-se, então,

que o trabalho desenvolvido pode efetivamente vir a ser um equipamento utilizado em

sistemas de comunicação hoje em dia.

5 Validação

 Esta seção descreve os testes que foram feitos sobre a implementação

desenvolvida ao longo deste trabalho. Os testes têm o objetivo de validar tanto os

modelos matemáticos em que este trabalho se baseou como provar que a Unidade de

Sincronização Fina de Portadoras possui a funcionalidade esperada em ambas as

implementações – C++ e VHDL.

 Isso quer dizer que a validação de software e hardware irá abordar diversos tipos

de estímulos: entradas nas condições limites e entradas inválidas [PATTON, 2005]. Em

uma visão simplificada, o teste é basicamente a introdução de um ruído – que é um

deslocamento de fase e/ou frequência – no sinal original e a verificação da correção na

outra extremidade da cadeia. A figura 10 ilustra esse fluxo.

Figura 10: Fluxo que sinal original passa até a estimação das correções

113

 Com as estimativas disponíveis verifica-se quão bom é a aproximação do sinal

recebido quando adotam-se tais correções. A figura 11 representa esse ciclo inverso de

reconstrução do sinal original e verifica a confiabilidade e qualidade das estimativas

feitas.

Figura 11: Verificação da confiabilidade e qualidade das correções estimadas

É importante lembrar que todos os testes, validações, métodos e critérios adotados

valem tanto para C++ quanto para VHDL. Isto é possível uma vez que o VHDL recebe

como entrada o sinal recebido (extraído do software), o qual irá conter as definições

vindas do software. Portanto, todas as definições (valor do SNR, número de símbolos,

deslocamentos de fase e frequência) serão feitas no software porém irão manter-se

válidas para o VHDL.

Os cenários escolhidos – e mostrados na tabela 1 – estão basicamente tentando

abranger todos os detalhes das implementações e são feitos por partes. O primeiro

cenário adota somente um deslocamento de fase. O segundo cenário adota somente um

deslocamento de frequência. O terceiro e último cenário adota um deslocamento de fase

e frequência.

Tabela 1: Cenários utilizados para validação do trabalho

Cenário Variação Limites

1 Somente Fase [-π,+π]

2 Somente Frequência [-0.5,+0.5]

3 Fase e Frequência [-π,+π] e [-0.5,+0.5]

Para eliminar a influência na simulação do ruído proveniente do módulo AWGN e

obter-se uma transmissão livre de ruídos, se empregou um SNR de 20dB. Com esse

valor a transmissão ocorre praticamente em um canal ideal e isso possibilita a avaliação

apenas dos erros introduzidos pela variação de fase e/ou frequência do módulo de

adição de deslocamento.

Uma ótima aproximação foi atingida para todos os cenários testados. Além das

estimativas, observa-se também o desempenho do módulo estatístico, o qual provê

variância e desvio padrão para as estimativas (figura 12).

114

Figura 12: Resultado dos cenários de teste

 Após ter certeza de que o software estava comportando-se da maneira esperada,

partiu-se para a simulação em VHDL e analisou-se os resultados lado a lado, conforme

mostra a tabela 2, para possibilitar uma comparação entre os mesmos. Conclui-se que o

VHDL também encontra-se funcionando de acordo com o esperado e com uma

aproximação dentro do limite aceitável.

Tabela 2: Estimativas de software e VHDL lado a lado

phase offset

input(°)

software phase

offset (°)

software

frequency offset

VHDL

phase offset

(°)

VHDL

frequency

offset

0 0.00278 5.43432e-06 0 0

5 5.08928 -8.49855e-06 4,921875 0

10 10.1226 -9.65789e-06 9,140625 0

15 15.1694 -1.07359e-05 14,765625 0

20 20.2232 -1.17073e-05 21,796875 0

60 59.6884 -1.52645e-05 61,171875 0

90 90.0924 -1.32207e-05 92,109375 0

135 135.002 -2.86087e-06 131,484375 0

115

6 Conclusão

 Este trabalho descreve a implementação de uma Unidade de Sincronização Fina

de Portadoras em software e em VHDL e a comparação de resultados provenientes

desta implementação; atingindo, então, os objetivos propostos.

 A Unidade de Sincronização Fina de Portadoras destina-se a aumentar a

qualidade e a precisão dos sistemas de sincronização turbo – exigidos em sistemas de

comunicação modernos. A implementação de uma ferramenta dinâmica, útil e de

qualidade foi uma grande preocupação durante todo o projeto.

 A implementação da Unidade de Sincronização Fina de Portadoras mostra a

possibilidade do trabalho desenvolvido funcionar como uma importante ferramenta

visando melhorias nos sistemas de comunicação através da introdução de uma técnica

apurada de estimação e correção dos parâmetros de deslocamento. Serve ainda, para

validar todo o embasamento teórico e matemático necessário para o desenvolvimento

deste trabalho.

 Devido ao objetivo inicial deste trabalho, restaram pontos onde existem

possíveis melhorias a serem efetuadas. Por exemplo, uma melhor integração entre o

CSE e o simulador de VHDL. A simulação de VHDL é feita com arquivos de

configuração criados manualmente (test benchs) com dados extraídos do CSE, portanto,

uma automação deste processo viria a reduzir o tempo necessário para simulação do

VHDL significativamente.

 A Unidade de Sincronização Fina para Portadoras usa o CSE como uma

ferramenta para atingir a sua funcionalidade final; os resultados, portanto, são prova de

que tal implementação encontra-se funcionando conforme o comportamento esperado e

também verificado pelo CSE e pelas simulações em VHDL.

 O trabalho desenvolvido contribui através da implementação de um novo

módulo para o CSE que estará pronto para ser utilizado como uma ferramenta didática

acadêmica, para ajudar outros alunos na compreensão de sistemas de sincronização.

Além disso, deve ser mencionado que esta mesma unidade implementada está apta a ser

utilizada em cadeias de produção. Outra contribuição marcante é a implementação e

validação de modelos matemáticas que suportam todo o desenvolvimento da Unidade

de Sincronização Fina de Portadoras. Além disso, a integração dos novos módulos com

o CSE ratifica os princípios adotados no projeto anterior, como expansibilidade,

flexibilidade e modularidade.

