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Building Transistor-Level Networks Following  
the Lower Bound on the Number of Stacked Switches 

ABSTRACT 

Both the propagation delay and the output slope in CMOS gates are strongly related 
to the number of stacked PMOS and NMOS devices in the pull-up and pull-down 
networks, respectively. The standard CMOS logic style is usually optimized targeting 
one logic plane, presenting then the complemented topology in the other one. As a 
consequence, the minimum number of stacked transistors is not necessarily achieved. In 
this work, a method to find the lower bound of stacked switches (transistors) in CMOS 
complex gates is presented. A novel CMOS logic style, derived from such method, is 
then proposed and compared to conventional CMOS style through a commercial cell 
characterizer. Electrical characterization of sets of 3- to 6-input functions was done in 
order to evaluate the new method. Significant gains in propagation delay were obtained 
without penalty in power dissipation or area. 
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Construindo Redes de Transistores De Acordo com  
o Número Mínimo de Chaves em Série 

RESUMO 

Em portas lógicas CMOS, tanto o atraso de propagação como a curva de saída estão 
fortemente ligados ao número de dispositivos PMOS e NMOS conectados em série nas 
redes de carga e descarga, respectivamente. O estilo lógico ‘standard CMOS’ é, em 
geral, otimizado para um dos planos, apresentando então o arranjo complementar no 
plano oposto. Consequentemente, o número mínimo de transistores em série não é 
necessariamente alcançado. Neste trabalho, apresenta-se um método para encontrar o 
menor número de chaves (transistores) em série necessários para se implementar portas 
lógicas complexas CMOS. Um novo estilo lógico CMOS, derivado de tal método, é 
então proposto e comparado ao estilo CMOS convencional através do uso de uma 
ferramenta de caracterização comercial. A caracterização elétrica de conjuntos de 
funções de 3 a 6 entradas foi realizada para avaliar o novo método, apresentando 
significativos ganhos em velocidade, sem perdas em dissipação de potência ou em área. 
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1 INTRODUCTION 

1.1 Digital Integrated Circuit Design 

An Integrated Circuit (IC) is an electronic system consisting of a number of 
miniaturized passive and active electronic devices (mainly transistors, resistors, 
capacitors and inductors) built on a monolithic semiconductor substrate. The large 
majority of the current ICs are implemented in the so called Metal-Oxide-
Semiconductor (MOS) technology (WESTE, 1993; RABAEY, 2003), where in most 
fabrication processes the semiconductor is silicon. 

IC design can be divided into two broad categories: analog and digital design. 
Analog IC design has specializations in power IC design and radio-frequency IC design. 
Analog design is used in the development of operational amplifiers, linear regulators, 
phase-locked loops, oscillators and active filters. Analog design is more concerned with 
the physics of the semiconductor devices such as gain, matching, power dissipation, and 
resistance. Fidelity of analog signal amplification and filtering is usually critical and as 
a result, analog ICs use larger area active devices than digital designs and are usually 
less dense in circuitry. In the other hand, digital IC design is used to produce 
components such as microprocessors, FPGAs (Field-Programmable Gate-Arrays), 
memories (RAM, ROM, and flash) and digital ASICs (Application-Specific Integrated 
Circuits). Digital design focuses on logical correctness, maximizing circuit density, and 
placing circuits so that clock and timing signals are routed efficiently. This work 
focuses on the digital VLSI (Very Large Scale of Integration) IC design flow (MEAD, 
1980; WESTE, 1993; UYEMURA, 1999; CHEN, 2000; RABAEY, 2003). 

Since the advent of the technology for constructing ICs, integration density and 
performance of these electronic systems have gone through an astounding revolution 
driven by the ability of integrating in a single system more and more transistors, the 
devices responsible by most of the complexity of digital ICs. Indeed, the increase in the 
number of transistors that can be integrated in a single die has grown exponentially in 
the last three decades, as predicted by the so called Moore’s Law (INTEL, 2007; 
MOORE, 1965). Fig. 1.1 illustrates how this increase prediction has been proved 
correct so far. Although it has been frequently stated that such increase might cease in a 
few years due to physical limitations of IC manufacturing technologies, new design 
methodologies and fabrication process breakthroughs have proven that such cease can 
be postponed (MOORE, 2003). 
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Figure 1.1: Moore’s Law graph showing the exponential increase in the number of 
transistors along the last three decades for the microprocessors family from Intel 

(INTEL, 2007). 

Designing ICs as complex as the ones available nowadays requires that engineers 
work with different levels of abstraction on a system design perspective. Fig. 2.1 shows 
a diagram illustrating these different levels of abstraction (GAJSKI, 1988). The 
highlighted abstraction levels, with special attention to Logic Gates in the Structural 
Domain and Logic in the Behavioral Domain, are the ones that concern the most to this 
work. 

 

Figure 1.2: Abstraction levels on a system design perspective. 
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Among the technologies accessible today, two system design approaches play a 
major role in the scene of semiconductor-based integrated circuits: the FPGA-based 
design flow and the ASIC-based design flow. The FPGA design flow consists in 
configuring a set of programmable logic blocks (PLBs) built into a FPGA chip in order 
to achieve a desired application behavior. The ASIC design flow consists in assembling 
a set of basic electronic devices (i.e. transistors, resistors, capacitors, etc.) into structures 
called cells, which are the basic blocks in the construction of ASICs.  

The choice between FPGAs and ASICs usually relies, among several factors, in the 
intended number of designs it is intended to be delivered to the market. The FPGA 
market has continuously growing as such reconfigurable chips becomes cheaper and 
holds more and more complex designs. However, when issues like power consumption, 
speed and area arise, nothing can beat the ASIC. The general rule states that for every 
FPGA-based design there is an ASIC that is more efficient considering area, energy and 
operation speed. On the other hand, ASICs are considered low-cost only for high 
volume designs (ZUCHOWSKI, 2002), due to the cost of dedicated masks.  

This work focuses on the proposal of a new methodology for implementing, 
logically and structurally, the building blocks for ASICs. Therefore, next Section will 
focus on the most common ASIC design flows available at the present time. 

1.2 ASIC Design Flow 

As integrated circuits become more inexpensive and compact, many new types of 
products, such as digital cameras, digital camcorders and digital television (JURGEN 
1997), are being introduced, based on digital systems. Consequently, logic design must 
be done under many different motivations. Since each case is different, one may have 
different design problems. Choosing an appropriate logic style, for example, is a very 
important issue when one wants to achieve certain performance requirements for a 
given IC design. 

In this Section, let us consider two important cases of designing ICs, which leads to 
two contrasting logic approaches: quick design and high-performance design. Quick 
design of ICs is called semi-custom design. Recently, it has been also called ASIC 
design (CHINNERY, 2002), although the ASIC abbreviation is still used with a broader 
meaning. On the other hand, deliberate design for high-performance is called full-
custom design, as this kind of design is fully customized to the high performance design 
space (area, speed, power and energy consumption). 

In the next Subsections full-custom as well as different semi-custom approaches will 
be discussed. 

1.2.1 Full-custom 

In Full-custom design one does logic and physical synthesis in order to attain the 
highest performance or smallest size, making use of the most advanced technologies 
(CHEN, 2003). It is definitely the most technology dependent design approach existent: 
every transistor present in every cell inside every macro-block is tweaked in order to 
explore all the performance advantages that a given technology can deliver. 



 

 

15

The benefits of full-custom design in general include reduced area (and therefore 
recurring component cost), performance improvements and also the ability to integrate 
(include) analog components and other pre-designed (and thus fully verified) 
components such as microprocessor cores that form a System-on-Chip (SoC). 

The disadvantages of full-custom can include increased manufacturing and design 
time, increased non-recurring engineering (NRE) costs, more complexity in the 
Computer-Aided Design (CAD) system and a much higher skill requirement on the part 
of the design team. 

However for digital only designs, cell-based semi-custom design together with 
modern CAD systems can offer considerable performance/cost benefits with much 
lower risk. Automated layout tools are quick and easy to use and also can offer the 
possibility to manually handcraft and optimize any performance limiting aspect of the 
design.  

1.2.2 Gate Array 

The Gate Array design is a manufacturing method in which the diffused layers, i.e. 
transistors and other active devices, are predefined. Wafers containing such devices are 
held in stock prior to metallization, in other words, unconnected (CHEN, 2000). The 
physical design process then defines the interconnections of the final device. For most 
ASIC manufacturers, this consists of two to as many as five metal layers, each one 
running perpendicular to the one below it. NRE costs are much lower as photo-
lithographic masks are required only for the metal layers, and production cycles are 
much shorter as metallization is a comparatively quick process. It is also important to 
the designer that reduced propagation delays can be achieved in ASICs when compared 
to the available FPGAs solutions available in the marketplace. 

Metal Programmable Gate Array Design is rarely implemented by circuit designers 
today. It has been replaced almost entirely by field programmable devices, such as 
FPGAs, which can be reprogrammed several times by the user and thus offer minimal 
tooling charges, marginally increased piece part cost and comparable performance. 
Nowadays, Gate Arrays are evolving into Structured ASICs (see Subsection 1.2.3) that 
typically consist of a large IP (Intellectual Property) core like a processor, DSP unit, 
peripheral components, standard interfaces, integrated SRAM memory, and a block of 
reconfigurable logic. This shift is largely because ASIC devices are capable of 
integrating such large blocks of system functionality and SoC designs requires far more 
than just logic blocks. 

1.2.3 Structured ASIC 

The basic premise of a Structured ASIC design (also referred to as Platform ASIC 
design) is that both manufacturing cycle time and design cycle time are reduced 
compared to cell-based ASICs due to pre-defined metal layers (thus reducing 
manufacturing time) and pre-characterization of what is on the silicon (thus reducing 
design cycle time). It is a relatively new design approach (PILLEGI, 2003; ZAHIRI, 
2003). 

In a Structured ASIC design, the logic mask-layers of a device are predefined by the 
ASIC vendor. Design differentiation and customization is achieved by creating custom 
metal layers that create custom connections between predefined lower-layer logic 
elements. Structured ASIC technology is seen as bridging the gap between field-
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programmable gate arrays and Standard-cell ASIC designs. Because only a small 
number of chip layers must be custom-produced, Structured ASIC designs have much 
smaller NRE than standard-cell or full-custom chips, which require that a full mask set 
be produced for every design. This is effectively the same definition as a Gate Array. 

What makes a Structured ASIC different from a gate array is that in a gate array the 
predefined metal layers serve to make manufacturing turn-around time faster whereas in 
a Structured ASIC the predefined metallization is primarily to reduce cost of the mask 
sets and is also used to make the design cycle time significantly shorter as well. For 
example, in a cell-based or gate-array project the designers often must design power, 
clock, and test structures themselves: these are predefined in most Structured ASICs and 
therefore can save time and costs for the designer, when compared to gate-array. 
Another important aspect about Structured/Platform ASIC is that it allows IP that is 
common to certain applications or industry segments to be built-in, like one does in 
FPGAs, rather than designed-in, as it is done in cell-based design.  

1.2.4 Standard-Cell 

The idea behind cell-based design is to reduce the implementation effort by reusing 
a library of cells. The advantage of this approach is that the cells only need to be 
designed and verified once for a given technology, and they can be reused many times, 
thus amortizing the design cost. The disadvantage is that the constrained nature of the 
library (especially due to the limited number of cells) reduces the possibility of fine-
tuning the design (RABAEY, 2003). 

The Standard-cell approach standardizes the design entry-level at the logic gate 
(functional blocks). A library containing a wide selection of logic gates over a range of 
number of inputs and drive strengths is provided. Besides the basic logic functions such 
as inverter, AND/NAND, OR/NOR, XOR/XNOR and Flip-flops, a typical library also 
contains more complex functions such as AOI/OAI (AND/OR-OR/AND-INVERT), 
MUX, Full-adder, Comparator, Counter, Decoder and Encoder.  

The layout of each cell in a specific library has a fixed height, while its width may 
vary, so the cell can be placed side-by-side, in such a way that their power rails and well 
regions properly connect to neighbor cells. Standard-cell design uses these functional 
blocks to achieve high gate density and good electrical performance. Standard-cell 
design fits between Gate Array and Full-Custom design in terms of both its NRE and 
recurring component cost. 

The quality of a synthesized design based on standard-cells depends on three 
components: the synthesis tool, the place and route tools and the target cell library 
(SCOTT, 1994). Choosing the right cell library can have a significant impact on the 
characteristics of a designed circuit (VUJKOVIC, 2002; SECHEN, 2003).  

The design flow, implemented with a level of skill common in the industry, almost 
always produce a final device that correctly implements the original design, unless 
flaws are later introduced by the physical fabrication process. It is as follows: 

1. A team of design engineers starts with a non-formal understanding of the 
required functions for a new ASIC, usually derived from requirement analysis.  

2. The design team constructs a description of an ASIC to achieve these goals 
using a HDL (Hardware Design Language). This process is analogous to 
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writing a computer program in a high-level language. This is usually called the 
RTL (Register transfer level) design.  

3. A logic synthesis tool, in a process called technology mapping (SENTOVICH, 
1992; REIS, 1995; JIANG, 2001; CORREIA, 2004), transforms the RTL 
design into a large collection of lower-level constructs called standard cells. 
These constructs are taken from a standard-cell library consisting of pre-
characterized collections of gates. The standard cells are typically specific to 
the planned manufacturer of the ASIC. The resulting collection of standard 
cells, plus the needed electrical connections between them, is called a gate-
level netlist. Standard-cells can be handcrafted or automatically generated. 

4. The gate-level netlist is next processed by a placement tool which places the 
standard-cells onto a region representing the final ASIC. It attempts to find a 
placement of the standard-cells, subject to a variety of specified constraints.   

5. The routing tool takes the physical placement of the standard-cells and uses 
the netlist to create the electrical connections between them. Since the search 
space is large, this process will produce a sufficient rather than globally-
optimal solution. The output is a set of masks enabling a semiconductor 
fabrication to produce the physical ICs.  

6. Close estimates of final delays, parasitic resistances and capacitances, and 
power consumptions can then be made. In the case of a digital circuit, this will 
then be further mapped into delay information that can be used to tune the 
design up.  

In Fig. 1.3 an overview of the standard-cell design flow is presented. 

 

Figure 1.3: Design flow based on a standard-cell library (CHINNERY, 2002). 
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1.2.5 Library-free 

One of the main restrictions of the standard-cell library-based designs is a limited 
number of cells and drive strengths available. In library-free (also called library-less) 
based design, as the name indicates, the library is said to be virtual (as it is not 
physically implemented before technology mapping) and may contain an unlimited 
number of cells (GAVRILOV, 1997; REIS, 1997; MORAES, 1999; CORREIA, 2004). 

The main difference between standard-cell based technology mapping and library-
free technology mapping concerns the libraries (pre-characterized and virtual, 
respectively) they must cope with. Library-free technology mapping implements the 
functions directly at the transistor-level, while guaranteeing that the final netlist of 
complex gates respect some topological constraints, e.g. number of transistors in series 
(REIS, 1998). The great number of available complex gates will improve the design 
space and lead to a minimization of the overall number of transistors, minimizing the 
design at the transistor-level. 

1.3 A Novel Logic Style 

ASIC design based on standard cells still remains the most applied approach, even if 
cell generators are used to create the library (LEFEBVRE, 1997; KEUTZER, 1999; 
CHINNERY, 2002; SECHEN, 2003). Although different CMOS  logic styles, like PTL 
(BUCH, 1997; SCHOLL, 2000; JIANG, 2001; AVCI, 2003) and dynamic Domino 
gates (THORP, 2003), have been proposed as promising choices, the conventional 
Complementary Series/Parallel CMOS logic style (BERKELAAR, 1988; GAVRILOV, 
1997), called here as CSP, continues to be the most widely adopted in cell libraries 
building.  

Since the worst-case delay propagation is usually related to the longest path of 
stacked transistors, the construction of CMOS gates with minimum transistor stack 
length in the pull-up network (PUN) and pull-down network (PDN) is strongly 
recommended. As it will be demonstrated in this work, the number of stacked 
transistors has a direct impact in the logical effort (SUTHERLAND, 1999; KABBANI, 
2005; WESTE, 2006; ROSA 2007) of the cells. However, this requirement cannot be 
guaranteed with CSP gates. This is explained by the fact that one plane is generated 
from the optimized logic equation, respecting then the minimum stack transistor 
number, but the other one is derived by making a complementary series/parallel 
topology, which will not guarantee minimum length transistor stacks if the gate has too 
many parallel branches.  

A method to define the lower bound of stacked transistors in a logic plane presented 
in (SCHNEIDER, 2005) has some inconsistencies that were corrected in 
(SCHNEIDER, 2006a), with more practical results presented in (SCHNEIDER, 2006b) 
and further analyzed herein. The proposal of this work is both the lower bound theory as 
well as a novel Non-Complementary Series/Parallel CMOS logic style, named NCSP, 
derived from the lower bound method. Propagation delay reduction is expected for 
NCSP complex gates in comparison to standard CSP ones, with no penalty in power 
dissipation and area overhead. Electrical characterization using a commercial library 
characterization tool has been carried out over several logic cells, from 3- to 6- inputs, 
taking into account the TSMC 0.13um CMOS technology.  
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1.4 Organization of the Dissertation 

This dissertation is organized as follows. In Section 2, it is presented a background 
of the most common static logic styles applied by the industry nowadays. Section 3 
formulates the lower bound theory for the length of transistor stacks in logic cells and 
provides an enumeration of feasible cells using different logic styles considering such 
formulation. In Section 4, the implementation of a novel logic style so called NSCP is 
presented. Section 5 presents the electrical characterization of NCSP gates and a 
comparison with the most used static logic styles nowadays. Furthermore, Section 5 
presents the impact in area, presenting some cell layouts. Finally, conclusions and an 
analysis of the impact of this work based on its results are pointed out on Section 6. 
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2 STATIC LOGIC STYLES 

2.1 Introduction 

The transistor is the most basic structure found in digital circuits, where it is mostly 
used as a switch. These switching devices are used to form the so called logic gates, 
which are the building blocks of digital integrated circuits. Each logic gate is designed 
to behave according to a desired logic function, where the output signals of a logic gate 
is a function of its input signals.  

The circuit of a logic gate can be built using different configurations of transistors 
for a given logic function. These configurations are known as logic styles or logic 
families. There are numerous logic styles to implement a logic gate for a given logic 
function. Different styles are used to perform better for different design metrics like 
area, speed, energy and power consumption. Depending on the application, the 
emphasis will be on different metrics. For example, the switching speed of digital 
circuits is the primary metric in a high-performance processor, while in a battery 
operated circuit, it is energy consumption. Recently, power dissipation also has become 
an important concern and considerable emphasis is placed on understanding the 
mechanisms of power and approaches to dealing with power. One of these mechanisms 
currently highlighted by the industry and the academia is the leakage current, critical in 
the newest Ultra DSM (Deep Submicron) technologies (ROY, 2003). In addition to 
those metrics, robustness to noise and reliability are also very important considerations. 

Logic styles are basically classified as being dynamic or static. Dynamic styles 
(THORP, 2003), rely on temporary storage of signal values on the capacitance of high-
impedance circuit nodes. The implementation approach of dynamic circuits is simpler 
and faster but their design and operation are more prone to failure because of the 
increased sensitivity to noise. The most common dynamic logic styles are Domino and 
its variants: Dual Domino, Multiple-Output Domino, NORA Domino and Zipper 
Domino (WESTE, 2006). On the other hand, Static styles guarantee that, under fixed 
input vectors, each gate output is connected to either VDD or GND via a low resistance 
path. Also, the outputs of the gate assume at all times the value of the Boolean function 
implemented by the circuit, meaning the circuit does not need to be pre-charged or pre-
discharged. Some of the most common static logic styles are Static CMOS, Pseudo-
NMOS, DCVSL and PTL (RABAEY, 2003). 

Additionally, logic styles can be also classified as single- or dual-rail circuits. 
Single-rail circuits have only one output while dual-rail ones have two outputs, which 
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very frequently are one for the direct polarity signal and one for the inverted polarity 
signal. 

The most common logic styles used in the industry are the Complementary Series-
Parallel CMOS (referred as CSP in this work) and the Pass-Transistor Logic (PTL), 
both static and single-rail. The logic style proposed in this work is also classified as 
static and single-rail. This allows its use with a design methodology flow very similar to 
the one applied currently to most integrated circuit designs, while it keeps the same 
robustness characteristic of CSP logic. In this sense the logic proposed here is superior 
to PTL, which may present drain inputs depending on how it is designed. Drain inputs 
are a design problem due to noise margin and also because the input capacitance seen at 
drain inputs is not constant. 

In the next Sections, different logic styles available nowadays will be presented in 
order to allow a straightforward comparison with the logic style proposed and further 
explained on Chapter 4. 

2.2 Complementary Series-Parallel CMOS 

The Complementary Series-Parallel CMOS (CSP) is still nowadays the most used 
and well established logic style applied by the industry. The CSP style is basically an 
extension of the CMOS inverter to multiple inputs. The primary advantage of the CSP 
structure is robustness (i.e. low sensitivity to noise), good performance and low power 
consumption with almost no static power consumption for technologies with transistor 
channel length down to 130nm (WESTE, 2006).  

However, newer Ultra DSM fabrication processes might considerably increase the 
leakage current responsible for static power consumption and in some point of time it 
ought to be comparable with dynamic power consumption. These increase has been 
dealt with more complex technologies, like SOI (Silicon-on-Insulator) and high-K 
dielectrics (WESTE, 2006), as well as with circuit-level modifications (ROY, 2003). 

A static CMOS gate is a combination of two networks, called the pull-up network 
(PUN) and the pull-down network (PDN) (Fig. 2.1). The Fig. 2.1 shows a generic N-
input logic gate where all the inputs are distributed to both the PUN and PDN. The 
function of the PUN is to provide a connection between the output and VDD anytime the 
output of the logic gate is meant to be 1 (based on the inputs). Similarly, the function of 
the PDN is to connect the output to GND when the output of the logic gate is meant to 
be 0. The PUN and PDN networks are constructed in a mutually exclusive fashion such 
that one and only one of the networks is conducting in steady state. In this way, once the 
transients have settled, a path always exists between VDD and the output F, realizing a 
high output (representing logic one), or, alternatively, between GND and F for a low 
output (representing logic zero). This is equivalent to stating that the output node is 
always a low-impedance node in steady state. 

While constructing the PDN and PUN networks, the following observations should 
be kept in mind: 

1. A transistor can be thought of as a switch controlled by its gate signal. An 
NMOS switch is ON when the controlling signal is high and is OFF when the 
controlling signal is low. A PMOS transistor acts as an inverse switch that is ON 
when the controlling signal is low and OFF when the controlling signal is high. 
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Figure 2.1: Static CMOS gate. 

2. The PDN is constructed using NMOS devices, while PMOS transistors are used 
in the PUN. The primary reason for this choice is that NMOS transistors 
produce “strong zeros” and PMOS devices produce “strong ones” (RABAEY, 
2003).   

3. A set of construction rules can be derived to construct logic functions. NMOS 
devices connected in series corresponds to an NAND function (Fig. 2.2.a). With 
all the inputs high, the series combination conducts and the value at one end of 
the chain is transferred to the other end. Similarly, NMOS transistors connected 
in parallel represent an NOR function (Fig. 2.2.b). A conducting path exists 
between the output and input terminal if at least one of the inputs is high. Using 
similar arguments, construction rules for PMOS networks can be formulated. A 
series connection of PMOS conducts if both inputs are low, representing a NOR 

function ( baba  ), while PMOS transistors in parallel implement a 

NAND ( baba  ). 

4. Using De Morgan’s Theorems baba  and baba  , it can be shown 
that the PUN and PDN networks of a complementary CMOS structure are dual 
networks. This means that a parallel connection of transistors in the pull-up 
network corresponds to a series connection of the corresponding devices in the 
pull-down network, and vice versa. Therefore, to construct a CMOS gate, one of 
the networks is implemented using combinations of series and parallel devices. 
The other network is obtained using duality principle by traversing the 
hierarchy, replacing series sub-nets with parallel sub-nets, and parallel sub-nets 
with series sub-nets. The complete CMOS gate is constructed by combining the 
PDN with the PUN. 
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(a) Series      (b) Parallel 

Figure 2.2: NMOS logic rules – series devices produces an AND, and parallel devices 
produces an OR 

2.3 Pass-Transistor Logic 

A popular and widely-used alternative to CSP is Pass-Transistor Logic (PTL) 
(BUCH, 1997; HSIAO, 2000; SCHOLL, 2000; LINDGREN, 2001; ZHOU, 2001; 
SHELAR, 2001; SHELAR, 2002; AVCI, 2003), which attempts to reduce the number 
of transistors required to implement logic by allowing the primary inputs to drive gate 
terminals as well as source/drain terminals. This characteristic contrasts with most logic 
families, which only allow primary inputs to drive the gate terminals of transistors.  

The switches used in PTL circuits use either NMOS pass transistors or parallel pairs 
of NMOS and PMOS transistors called transmission gates. The most known PTL 
variation which uses transmission gates is called CPL (Complementary Pass-Transistor 
Logic) (YANO, 1990). Another distinct characteristic of PTL circuits is that it can 
present non-series/parallel network configurations. 

One of the promises of PTL approach is that fewer transistors are required to 
implement some functions, especially XOR-based gates, which include MUXes. For 
example, the implementation of an XOR2 gate in Figure 2.3.a requires 6 transistors 
(including the inverter required to invert b), while a complementary CMOS 
implementation (Fig. 2.3.b) would require 12 transistors. The reduced number of 
devices has the additional advantage of lower capacitance. Many authors have claimed 
substantial area, speed and/or power improvements for pass-transistors compared to 
static CMOS. However, an independent evaluation finds that for most general-purpose 
logic, static CMOS is superior in speed power and area (ZIMMERMANN, 1997). 
Mixed approaches have also been proposed, as described in (). 

 
(a) CSP     (b) PTL 

Figure 2.3: Different implementations of a 2-input XOR gate. 
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Another difference of PTL circuits it the way its logic is implemented. In logic 
styles like CSP, Boolean equations area translated into series/parallel arrangements. In 
PTL, however, the most common way of deriving circuits from logic is through the 
used of Binary Decision Diagrams (BBDs) (YANO, 1996). Fig. 2.4 presents the basic 
design flow of BDD-based PTL circuit synthesis. 
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Figure 2.4: Design flow of BDD-based PTL synthesis (YANO, 1996). 

2.4 Branch-Based Logic 

Branch-Based Logic (BBL) is a logic style that has been developed for low-power, 
low-voltage applications and for high-speed circuits (PIGUET, 1984; PIGUET, 1994; 
PIGUET, 1995; NÈVE, 2001). In this style, the transistor networks consist only of 
branches (i.e. a series of up to three transistors between power line and gate output). 
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The advantages of transistor branches are higher layout regularity (i.e. smaller diffusion 
capacitances) and simpler characterization (i.e. branch instead of gate modeling).  

The construction of branch-based circuits is rather simple. It takes a flat (non-
factorized) irredundant sum-of-products and translates each product into an and-stack 
(branch) in the circuit. It’s done for each PUN and PDN independently, using the on-set 
and the off-set logic expression respectively. Fig 2.5 shows an example of a BBL 
circuit. 
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Figure 2.5: Branch-based circuit example for the function edbcbaout  . 

The low-power and high-speed capabilities of BBL circuits are due to its low 
capacitive nodes as there is no parallel connection among branches. This absence of 
interconnection among branches is also a positive characteristic from the layout point of 
view (PIGUET, 1984). However, one problem of BBL circuits is the use of too many 
transistors for some logic functions, as its logic expressions are flat (non-factorized) by 
nature.  

2.5 Other Static Logic Styles 

Several other logic styles have been proposed in order to explore different aspects of 
the area-speed-power design space. The choice depends on the design as well as on the 
tools available for the synthesis of the circuits. 

An appealing approach for high-speed circuits is the BiCMOS family (ELRABAA, 
1992) which uses bipolar transistors in order to achieve improved output drive 
capability. One of the biggest problems of this kind of logic is that the use of bipolar 
transistors is not very well supported for most of the fabrications processes and CAD 
tools available. Currently, BiCMOS is mostly used for bus drivers, I/O drivers and 
linear circuits like high-speed operational amplifiers (WESTE, 1993). 

A couple of old yet very interesting works regarding to logic cells with minimal 
number of transistors are depicted in (GREA, 1958) and (NINOMIYA, 1965) which 
present tables with hand-crafted switch topologies for more complex logic cells. 

Finally, one must cite the innovative approach developed by Zenasis Technologies 
(ZENASIS, 2007) so called Flex-cells (ROY, 2005). This approach was developed in 
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order to cope with the gap between standard-cell based design and full-custom design, 
where it is estimated that automated design flows deliver circuits slower by at least a 
factor of 6 and consume a larger area at least by a factor of 10 (Chapter 10 of 
CHINNERY, 2002). Flex-cell is not a logic style, indeed, but it is cited here because it 
is an optimization approach done at transistor-level. In summary, the Flex-cell-based 
optimization consists in automating the process of creating tactical cells in a design, by 
grouping clusters of logic gates in a single gate, as shown in Fig. 2.6. With such 
approach it’s expected to have significant improvements in area and speed without 
having to handcraft such tactical cells.  

 

 

Figure 2.6: Figure 3. Flex-cell generation. Starting with (a) the original cluster of 
standard cells, the mapping process (b) creates a flex cell that replaces the cluster 

(ROY, 2005). 
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3 LOWER BOUND FOR STACKED SWITCHES 

3.1 Introduction 

The number of stacked switches (or switches in series) inside a cell is a limiting 
factor to the maximum speed it may attain in CMOS technologies. Regardless of the 
transistor topology used to implement a switching function, there is a strong correlation 
between the length of its longest transistor stack and its worst-case propagation delay. 
This correlation is verified because the switches along this path are likely to charge or 
discharge a path that corresponds to the worst-case delay scenario. This loss in delay is 
directly related with the logical effort (SUTHERLAND, 1999; KABBANI, 2005; 
WESTE, 2006; ROSA 2007) of the cell, as it will be demonstrated on Chapter 5. The 
approach in (SHELAR, 2001) made use of this correlation described above in its 
algorithm for performance-driven PTL synthesis. The method presented there exploits 
two separate effects. First, it aims to reduce the number of serially connected gates by 
applying functional decomposition. Second, it reduces the number of stacked transistors 
(switches) inside the gates by encoding decompositions with a one-hot code and 
deriving cell level PTL networks partially from a BDD (Binary Decision Diagram) and 
partially from a one-hot multiplexer. The results reported there show significant 
performance gains, proving the importance of the number of stacked transistors 
(switches) as a parameter to the quality of cell networks, especially when performance 
is the design goal. 

Synthesis techniques for PTL circuits have been closely related to BDD 
representation of logic functions, for reasons such as elimination of sneak paths and 
availability of efficient algorithms for the construction of BDDs (SHELAR, 2001). 
Indeed, the approaches in (BUCH, 1997; HSIAO, 2000; SCHOLL, 2000; LINDGREN, 
2001; ZHOU, 2001; SHELAR, 2001; SHELAR, 2002; AVCI, 2003) are based on 
BDDs. Therefore, when discussing PTL networks in this work, it will be assumed in 
this work they are derived from BDDs. Despite the gains demonstrated by (SHELAR, 
2001), this work will demonstrate that even the introductory example used there, the 
circuit c3 (carry out for the first 3 bits of an adder), shown in Fig. 3.1, may be 
synthesized with a significantly smaller number of stacked transistors than originally 
presented. Fig. 3.1.a shows the BDD for c3. This BDD has a path with six arcs in series, 
and it would have six transistors in series if mapped as a single PTL gate. For this 
reason, PTL approaches will insert buffers to limit the number of transistors in series to 
three or four (SHELAR, 2001; ZHOU, 2001). Fig. 3.1.b shows a PTL gate for c3, with 
(inverting) buffers inserted. This way, the bottom part, below the first stage of buffers, 
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has four transistors in series (counting the transistors inside the buffer that generates 
signal B2). On the other hand, the top part of the cell has three transistors in series 
(counting the transistors inside the buffers). Consequently, the PTL implementation in 
Fig. 3.1.b may then be viewed as two independent gates connected in cascade.  

A Complementary Series/Parallel (CSP) CMOS (BERKELAAR, 1988; REIS, 1995; 
REIS, 1997; GAVRILOV, 1997) implementation of the circuit c3 can be observed on 
Fig. 3.2.a, where there is a pull-down network with five transistors in series. This is not 
considered feasible from the electrical point of view as there is too much degradation of 
the signal in the discharge path due to increased resistance. Using CSP in this case 
would require the logic cell to be split into two or more stages. 

However, one may notice that the c3 function may be synthesized as a single cell 
where the pull-down network has at most four stacked transistors and the pull-up chain 
has at most three. This implementation is shown in Fig. 3.2.b, and it is 60% faster 
(according to SPICE simulations) than the fastest decomposed version presented in 
(SHELAR, 2001). Moreover, this is not a problem that is unique to the cell generation 
method in (SHELAR, 2001). Indeed, this seems to be true for several approaches based 
on PTL, as the are also examples of non-optimized pull-up and/or pull-down paths in 
other papers based on PTL logic (BUCH, 1997; ZHOU, 2001). Notice that although the 
circuit in Fig. 3.2.b is series/parallel CMOS, PUN and PDN are not topologically 
complementary. Therefore, this problem is not unique to the cell generation for PTL, 
since reducing (or controlling as a design parameter) the maximum length of transistor 
stacks in a circuit is important for most logic families. These observations lead us to 
formulate the following questions: 

1) What is the minimum length for the PUN and PDN paths when designing a 
switch network for a given cell?  

2) Is it possible to synthesize a network for the circuit in Fig. 3.2.b with shorter PUN 
and PDN path lengths? 
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Figure 3.1: BDD and PTL implementation for function c3. 
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(a) Complementary      (b) Non-complementary (designed by hand) 

Figure 3.2: Series/parallel CMOS implementations of c3. 

In the next Sections it will be addressed the question of deriving exact lower bounds 
for the number of switches in the longest PUN and PDN stacks inside a switch network 
for a logic cell.  

3.2 Basic Concepts 

3.2.1 Boolean space and cube size 

The Boolean set B is composed of the following elements {0, 1}. A Boolean variable 
may assume an arbitrary value in the set B. A n-dimensional Boolean space is defined 
through a set composed of n Boolean variables and is noted as Bn = {(a0, a1, …, an-1)}| ai 
 {0, 1}}. The Boolean space Bn is composed of 2n distinct points. A cube of Bn is a 
sub-space of Bn obtained through the assignment of specific values to a subset of 
variables in Bn. The assignment of values to m out of the n variables in Bn will denote a 
cube of size Bn-m. A cube of unitary size is said to be a minterm. If all variables have 
assigned values, a single point in the Boolean space is indicated. A Boolean function is 
a mapping BnB, such that every point in Bn is mapped to one and only one value in B. 
The set of variables in Bn is the domain of the function. Boolean functions may be 
expressed through the Boolean algebra, composed of the following operations in the B 
set: AND (denoted by  ), OR (denoted by +) and INVERSION or NOT (denoted by a 

horizontal bar over the variable or function, like a ). Consider an ordering that states 
that 1>0, over B. The AND of n Boolean variables is defined as the minimum value 
assumed by the input variables. The OR of n Boolean variables is defined as the 
maximum value assumed by the input variables. The INVERSION is a unary operator 
that returns the value in B that is different from the one assigned to the input. It is 
important to observe the operator precedence is NOT > AND > OR. A literal of an 

equation is an instance of a variable in the direct ai or inverted ia  form. A specific cube 
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of Bn may be expressed as a product of literals in the following manner: variables 
assigned to the value 1 appear as a direct literal ai, while variables assigned to the value 
0 appears as an inverted ia  literal. For instance the cube dca  represents the Boolean 
subspace where a = 1, c = 0 and d = 1. The subspace defined by this cube will have a 
size 2n-3, with respect to a n-dimensional Boolean space Bn. A cube C is said to be an 
on-set implicant cube of a given Boolean function f if all the points in the subspace 
defined by C are mapped to 1 through the function f. An implicant cube is said to be an 
on-set prime implicant of function f if it is not contained in a distinct implicant cube of 
f. Similarly, a cube C is said to be an off-set implicant cube of a given Boolean function 
f if all the points in the subspace defined by C are mapped to 0 through the function f. 
An implicant cube is said to be an off-set prime implicant of function f if it is not 
contained in a distinct implicant cube of the off-set of function f.  

3.2.2 Switches and logic cells 

A switch controls the connection between two different points. The discussion in 
this paper will be restricted to two different kinds of switches, as described in the 
following. An active-0 switch will connect two nodes if the control variable is equal to 
0; the switch will not connect these points when the control signal is equal to 1. 
Similarly, an active-1 switch will short-circuit two nodes if the control variable is equal 
to 1 and it will be an open circuit if the variable is 0. PMOS transistors are active-0 
switches and NMOS transistors are active-1 switches. 

A logic cell that implements a given logic function is formed by a set of 
interconnected switches. These switches are controlled by the variables in the domain of 
the logic function. The main switch topologies used to design transistor networks for 
logic cells are Pass Transistor Logic (PTL) (BUCH, 1997; HSIAO, 2000; SCHOLL, 
2000; LINDGREN, 2001; ZHOU, 2001; SHELAR, 2001; SHELAR, 2002; AVCI, 
2003) and Complementary Series/Parallel (CSP) CMOS Logic (BERKELAAR, 1988; 
REIS, 1995; REIS, 1997; GAVRILOV, 1997). Fig. 3.3 illustrates these topologies. It is 
possible to notice that the PTL topology is composed of a single non-disjoint pull-
up/down plane, while the CSP topology has two disjoint switch planes: one pull-up 
plane and one pull-down plane.  
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Figure 3.3: PTL and CSP CMOS topologies. 
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Independently of the topology, the output of the cell is connected to VDD or GND 

through a path composed of serially connected switches that are active (connected) 
under a given input assignment. A pull-up path connects the output of the cell to the VDD 
(logic-1) reference, through a set of serially connected switches. A pull-down path 
connects the output of the cell to the GND (logic-0) reference, through a set of serially 
connected switches. A pull-up path is associated with an on-set implicant cube, while a 
pull-down path is associated with an off-set implicant cube. In this work it will be 
referred to a cell with longest pull-up chain PU and longest pull-down PD as being a 
PU-PD cell. For instance, a static CMOS 2-input NAND is a 1-2 cell. 

Example 1: Consider the PTL cells shown in Fig. 3.4, for the carry-out function of a 
full adder. The PTL cell in Fig. 3.4.a has the input c connected to transistor drains. 
However, inside an integrated circuit these signals will always be available through 
another cell that will generate them. In the best case, these signals will be generated 
through an inverter. Thus the following discussion will consider that drain signals are 
available through inverters. Fig. 3.4.b shows the PTL cell with the transistors 
corresponding to the inverters added to the transistor network. The path composed of 
the transistors T2-T5-T8 is a pull-up path and it is associated to the on-set implicant 
cube cba  . The association between switches and literals follows the possibilities 
listed in Table 3.1: T2 corresponds to possibility #3, T5 corresponds to possibility #4 
and T8 corresponds to possibility #2. The other pull-up paths are T1-T3-T8 and T2-T6 
corresponding to the on-set implicants cba   and ba  . Similarly for the off-set, the 
path composed of the transistors T1-T3-T7 is a pull-down path and it is associated to the 
off-set implicant cube cba  . Again, the association between switches and literals 
follow the possibilities listed in Table 3.1: T1 corresponds to possibility #4, T3 
corresponds to possibility #3 and T7 corresponds to possibility #4. The other pull-down 

paths are T1-T4 and T2-T5-T7 corresponding to the on set implicants ba   and 
cba  . The on-set (off-set) is given by the sum of all on-set/off-set implicants 

corresponding to PUN/PDN paths, as given by equations (3.1)/(3.2) below. Notice that 
these equations are correct, but they are not prime covers. Prime covers for the on-set 
and off-set of this particular function would have cubes composed of at most two 
literals. The cell in Fig 3.4.b is a 3-3 cell, which is not the minimum transistor chain that 
may be achieved for this cell, as will be demonstrated later in this Chapter. Paths and 
associated cubes present in the switch network of Fig. 3.4.b are summarized in Table 
3.2.  

bacbacbaseton   (3.1)

cbabacbasetoff   (3.2)

Table 3.1: Literals in cubes associated to paths. 

Possibility 
number 

Switch 
type 

Literal in 
the switch 

Literal in 
the cube 

1 Active-0 ia  ia  

2 Active-0 ia  ia  

3 Active-1 ia  ia  

4 Active-1 ia  ia  
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Figure 3.4: Two distinct PTL cells. 

Table 3.2: Pull-up and pull-down paths for the PTL-based network shown in Fig. 3.4.b. 

Type Transistors Cube 

Pull-up 

T1-T3-T8 cba   

T2-T5-T8 cba   
T2-T6 ba   

Pull-down 

T1-T4 ba   

T1-T3-T7 cba   

T2-T5-T7 cba   
 

3.3 Exact Lower Bound for Stacked Switches 

The lower bound for the number of stacked switches proposed hereby is based on 
the number of literals of the smallest cube in a prime and irredundant cover (set of 
prime implicants that covers a function and where each prime implicant on the set is not 
covered any other one in the same set). The problem with this is that if a function might 
have distinct prime and irredundant covers with a different number of literals in the 
smallest cube, then the lower bound would not be univocally defined. In the following, 
it is presented a proof to ensure that this condition will never happen as the size of the 
smallest cube in distinct prime irredundant covers of a logic function is univocally 
defined. 

Definition 1: A cube with m literals will have cube size 2n-m in Boolean space Bn. 
By definition, the smallest cube is the cube with larger number of literals. 

Theorem 1: The number m of literals in the smallest cube does not change for 
distinct prime implicant covers of the same logic function. 

Proof (by contradiction): Consider two distinct prime and irredundant covers C1 
and C2 of the same function f such that the smallest cubes in C1 and C2 have different 
sizes. Suppose that cover C1 has smallest cube(s) composed of m literals. Suppose also 
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that the smallest(s) cube(s) in cover C2 are composed of m-i literals, such that 0 < i < 
m. To turn on any prime irredundant cube in C1, it is necessary to assign at most m 
variables to logic-0 or logic-1 as appropriate. The reason for this is because the smallest 
cube in C1 is not redundant and has m literals. However, assigning at most m-i variables 
is sufficient to turn on any prime implicant cube in C2. Thus, the analysis of the 
complete set of all variable assignments containing m-i or fewer variables in Bn is 
sufficient to decide if the function represented by C2 evaluates to logic-1. This same 
analysis is not sufficient, nonetheless, to decide if the function represented by C1 
evaluates to logic-1, due to the irredundant prime implicant(s) with m literals. 
Therefore, the functions given by covers C1 and C2 are not the same logic function, 
leading to a contradiction of our initial hypothesis that two distinct prime implicant 
covers of the same function could have smallest cubes with different sizes. QED. 

Corollary: Theorem 1 is valid for two prime irredundant covers. Non-prime covers 
may have smaller non-prime cubes with more than m literals, where m is the size of the 
smallest cube in any prime irredundant cover. However, no cover may have only cubes 
greater (with a smaller number of literals) than the smallest cube in any prime 
irredundant cover. 

Definition 2: A PUN path connects the output of the cell to the VDD (logic-1) 
reference, through a set of serially connected switches.  

Theorem 2: Given a function f, it is not possible to have a cell whose longest PUN 
path has fewer switches than m, being m the number of literals in the smallest cube of 
any prime irredundant cover C for the on-set of function f.  

Proof (by contradiction): Recall that the smallest cube has the greater number of 
literals (Definition 1). By Theorem 1, all the prime irredundant covers of function f will 
have at least one cube with m literals, where m is the size of the smaller cube in any 
prime cover of f. Non-prime covers of f may have smaller cubes with more than m 
literals. However, covers where all the cubes have less than m literals are not possible, 
due to Theorem 1 and its Corollary. Consider a function f defined in Bn, such that a 
prime irredundant cover C of f has m literals. Suppose now that function f has a generic 
switch realization where the ith pull-up path has size pi, such that pi < m. As described in 
detail through Example 1 of Subsection 3.2.2, each of these PUN paths would be 
associated with an on-set implicant cube with pi literals. As a consequence, every PUN 
path with size pi < m will produce a cube with pi literals where pi < m. The cover 
obtained from the network this way will have only cubes with less than m literals, as pi 
< m, for every path. According to Theorem 1, this contradicts the initial hypothesis that 
the smallest cube in the prime implicant cover C has m literals, as all the cubes in the 
realization would have a smaller number of literals pi < m and a greater size. QED. 

Theorem 3: Given a function f, it is possible to produce a cell where the longest 
PUN path has m switches in series, being m is the number of literals in the smallest cube 
in a prime irredundant cover C for the on-set of function f.  

Proof (by construction): It is possible to construct a pull-up plane for function f 
given a prime irredundant cover C=Pi of the function, where each cube Pi= li is a 
product of literals associated to the variables in the domain of the function. Every prime 
cube Pi contributes to the PUN with an independent path. The paths for each cube Pi are 
independent as they are parallel paths among each other. Each of the independent paths 
is composed of serially connected switches between the logic-1 reference (VDD) and the 
output of the cell. The path for a given cube in the cover contains one serially connected 
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switch for each literal li in the cube, as described by Example 1 in Subsection 3.2.2. As 
the smallest cube has the greater number of literals, it will determine the size of the 
longest path. Thus this implementation will have by construction the longest PUN path 
with a size correspondent to the number m of literals in the smallest cube of C. 
Furthermore, as the path for each cube is independent, this solution has no sneak paths. 
QED. 

Theorem 4: The exact lower bound in the number of stacked switches (or switches 
in series) in the longest PUN path of a logic function f is given by m, the number of 
literals in the smallest cube in any prime irredundant cover C for the on-set of function 
f. 

Proof: Immediate Corollary of Theorems 2 and 3, and univocally defined as 
consequence of Theorem 1. QED. 

Definition 3: A PDN path connects the output of the cell to the GND (logic-0) 
reference, through a set of serially connected switches. 

Theorem 5: Given a function f, it is not possible to have a cell whose longest PDN 
path has fewer switches than m, the number of literals in the smallest cube of any prime 
irredundant cover C for the off-set of function f.  

Proof: The proof is similar to that of Theorem 2. QED. 

Theorem 6: Given a function f, it is possible to produce a cell where the longest 
PDN path has m switches in series, where m is the number of literals in the smallest 
cube in a prime irredundant cover C for the off-set of function f.  

Proof: The proof is similar to that of Theorem 3. QED. 

Theorem 7: The exact lower bound in the number of stacked switches in the longest 
PDN path of a logic function f is given by m, the number of literals in the smallest cube 
in any prime irredundant cover C for the off-set of function f. 

Proof: Immediate corollary of Theorems 5 and 6, and univocally defined as 
consequence of Theorem 1. QED. 

3.4 Evaluating the lower bound 

At first, it may seem too time-intensive to calculate the lower bound for candidate 
functions, as it is necessary to calculate two prime ISOPs (Irredundant Sums-of-
Products). However, as one evaluate only the PUN and PDN stacks inside cells, the 
evaluation process is not a critical step because it is easy to obtain prime ISOPs when 
the number of variables is small. For this purpose a BDD-based ISOP function 
(MINATO, 1996) may be used. 

For the sake of simplicity, next Chapter will extract the ISOPs used to determine the 
lower bound for the number of transistors in PUN and PDN stacks using the well-
established tabular method so called Quine-McCluskey (QUINE, 1955; MCCLUSKEY, 
1956; MICHELI, 1994). 

3.5 Consequences and Applications 

This Section presents consequences and applications of the lower bounds introduced 
in previous Sections.  
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3.5.1 Lower bound impact analysis 

For a better understanding of the impact of the lower bound theory for stacked 
switch paths length, some illustrative examples are presented. 

Example 2: Consider a function f given by equation dcacbbaf  . The 
minimum covers for the on-set and the off-set of this function are: 

dcacbbaseton   (3.3)

cbdbcabasetoff   (3.4)

The smallest cube in the on-set is dca  , so the lower bound for the number of 
stacked transistors in the PUN is three. The cubes in the off-set are all the same size, 
and the lower bound for the number of stacked switches in the PDN is two. This way 
the cell corresponding to the function f is a 3-2 cell, when mapped with the constructive 
method proposed in the next Chapter. It could also be a 2-3 cell, if the function is 
inverted and an inverter is added to the cell output. 

Example 3: Recall the function in Example 1, the carry-out of a full adder. Prime 
irredundant covers for the on-set and off-set are given by the following equations. 

cbcabaseton   (3.5)

cbcabasetoff   (3.6)

It is easy to see that the lower bounds for the carry-out in a full adder are two switches 
for both the pull-up and pull-down planes. This is consistent with the classic 2-2 cell for 
carry-out generation presented in the cover of the classic Weste-Eshraghian book 
(WESTE, 1993). 

Example 4: What is the minimum number of transistor in series to implement the 
function c3? The minimum covers are given by the following equations. 

001200120012

001211211222

babbbaabbaba

baaababbaabaseton




 (3.7)
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

 
(3.8)

Equation (3.7) has 4 literals in the smallest cube. Equation (3.8) has 3 literals in the 
smallest cube. This way, the circuit presented in Fig. 2 cannot be designed with shorter 
transistor chains, as it is clear that minimum transistor chain version of c3 is either a 3-4 
cell or a 4-3 cell, depending on polarity assignment. This is the main goal of the lower 
bound proposed here, to verify and ensure that performance is not being lost due to the 
misuse of cells with excessively long transistor stacks. The CSP implementation from 
equation (3.7) would be 4-7 cell, while the CSP implementation from equation (3.8) 
would be a 3-11 cell. The PTL cell would be a 6-6 cell. 
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3.5.2 Lower bound and general PTL styles 

Notice that the lower bounds defined here apply to general PTL styles, due to the 
definition of PUN and PDN paths in this work. In the following it is treated a pitfall 
counterexample. 

Example 5: Consider a 2-input AND function given by equation ab. The on-set and 
off-set prime irredundant covers are given by the following equations.  

baseton   (3.9)

basetoff   (3.10)

From these equations, this cell should be implemented as a 1-2 cell. However, the 
network in Fig. 3.5 implements a 2-input AND with (apparently) only one transistor for 
PUN and PDN. The pitfall in this counterexample network is that it ignores the 
definition of PUN and PDN paths (Definitions 2 and 3). The path from drain input b to 
the output out is not a valid pull-up or pull-down path as node b is not a power supply 
(VDD or GND). As node b may assume both logic values, at least one switch is necessary 
to connect/disconnect it to VDD as well as to GND. This extra switch should be added to 
the length of the longest PUN and PDN paths. As a consequence, the lower bound is 
still valid, according to the given Definitions (2 and 3) of PUP and PDN paths, as the 
cell in Fig. 3.5 becomes a 2-2 cell, which is larger than the 1-2 lower bound for this 
function. 

For completeness, it is presented the following Theorem for the general case where 
PTL with drain inputs are admitted, though as it will soon be obvious, this is not a 
practically useful result. 

Theorem 8: In a general PTL topology, where drain inputs are admitted, every 
circuit may be synthesized with cells with at most one switch in series. 

Proof (by construction): If a cell (set of switches S) has n > 1 switches in series, 
partition the set of switches S in two sets S1 and S2 such that S1 has only one switch in 
series and S2 has n-1 switches in series. Repeat the procedure until every cell in the 
circuit has only one switch in series. QED. 

Observation: Theorem 8 is correct under its assumptions, but it is not very useful 
from the electrical point of view, as it ignores the (lack of) strength of the signals in the 
drain inputs of PTL logic. The Theorems presented in Section 3.3, with PUN and PDN 
paths starting at strong power supplies are more practical for real circuits. 

 

Figure 3.5: A small PTL example with drain inputs. 
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3.5.3 Lower bound and general non-SP logic styles 

It is important to notice that the way the lower bound was derived is independent 
from circuit topology and may be applied to any transistor network. This includes the 
non-SP (non-series/parallel) ones presented as “minimal networks” in (GREA, 1958) 
and (NINOMIYA, 1965). For instance, the same analysis may be applied to bridge-
based circuits, as illustrated through the following example. 

Example 6: Consider the bridge-based circuit in Fig. 3.6. The PUN and PDN paths 
are listed in Table 3.3, as well as the associated cubes. Some cubes do not contribute to 
the cell functionality, so that they may be ignored in the on-set and off-set covers given 
by equations (3.11) and (3.12). Notice that equations (3.11) and (3.12) are logic 
equivalents to equations (3.4) and (3.3) respectively, from Example 2. Equations (3.3) 
and (3.4) represent the lower bound for this logic function, as they are prime 
irredundant cover. The bridge circuit does not respect the lower bound and this way 

some paths (T1-T4-T6) will contribute with non-prime cubes ( bca  ). This way, the 
cell in figure is topologically a 3-4 cell and logically a 3-3 cell. Both possibilities are 
worst than the optimal 2-3 cell presented in Fig. 4.1.b for this function. 

bdbcbcacaseton   (3.11)

dcabcabcsetoff   (3.12)

Table 3.3: Pull-up and pull-down paths for the bridge-based network shown in Fig. 3.6. 

Type Transistors Cube 

Pull-up 

T1-T5 ca   

T1-T4-T6 bca   

T2-T4-T5 ccc   (does not affect functionality) 

T3-T4-T5 ccd   (does not affect functionality) 

T2-T6 bc   

T3-T6 bd   

Pull-down 

T7-T10 bc   

T7-T9-T11-T12 dccc   (does not affect functionality) 

T8-T9-T10 bca   

T8-T11-T12 dca   
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Figure 3.6: Bridge based 3-3 cell for function f from Example 2. 

Notice that the analysis used to derive the lower bound is independent of circuit 
topology. Therefore the lower bound hold for every switch network independently of 
the chosen topology (SP, PTL, NCSP, bridge-based or non-planar topologies). 

3.5.4 Applicability and compatibility with decomposition methods 

The introduced lower bound has other applications, which include: 1) the evaluation 
of the quality of cells generated by different methodologies; and 2) the guidance for 
functional decomposition based technology mapping methods (BUCH, 1997; HSIAO, 
2000; SHELAR, 2001; SCHOLL, 2001; LINDGREN, 2001; SHELAR, 2002; ROY, 
2005), where the lower bound may be used to evaluate the complexity and the 
feasibility of different alternative sub-functions.  

Another important conclusion is that, due to the fact that PTL logic exceeds the 
lower bound frequently, many PTL circuits and synthesis tools may benefit from the 
substitution of PTL style cells for NCSP cells that respect the introduced lower bound. 
In this sense, the lower bound and the NCSP topology are compatible with the 
decomposition methods mentioned. As PTL and CSP are widely used, the use of the 
NCSP topology proposed in this paper may imply a significant impact in the design of 
high performance integrated circuits.  

3.5.5 Factorization and stacked transistors 

The factorization (BRAYTON, 1982; BRAYTON, 1984; HACHTEL, 1996) does 
not affect the number of transistors in series. However, it affects the number of parallel 
branches in a network. As a consequence, factorization may reduce the number of 
transistors in series in the dual of a series/parallel network. Consider the example given 
by the following on-set and off-set equations: 
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(3.14) 

Equation (3.13) has four literals in the smallest cube. Equation (3.14) has three 
literals in the smallest cube. This way, the transistor network for equations (13) and (14) 
is either a 3-4 cell or a 4-3 cell depending on polarity assignment. Without factorization, 
the series/parallel implementation from equation (3.13) would be 4-7 cell, while the 
series/parallel implementation from equation (3.14) would be a 3-11 cell. The equation 
(3.14) can be factorized into equation (3.15). Equation (3.15) may be used to implement 
a complementary series/parallel transistor network that respects the lower bound of 
Theorems 1 and 2: 

)22())11()00(11()22( bababababasetoff   
(3.15) 

In the example above, the use of factorization allowed to achieve a series/parallel 
implementation that respects the lower bound. However, there are examples in which 
factorization may reduce the overall number of transistors, but it will not be sufficient to 
guarantee that the lower bounds of Theorems 2 and 5 are achieved with CSP 
implementations.  

3.5.6 Unawareness of lower bound in the number of stacked transistors 

Even if the lower bound in the number of stacked transistors presented by Theorems 
2 and 5 seems rather obvious, this fact is largely ignored in the current literature, as it is 
illustrated by Table 3.4. Methods presented in (SHELAR, 2003), (BUSH, 1997) and 
(YANG, 2002) decompose functions whose PUN and PDN chains would allow them to 
be implemented as a single cell with timing and power advantages. Methods presented 
in (SCHOLL, 2000), (AVCI, 2003), (JIANG, 2001) and (POLI, 2003) present drawings 
of functions with non-optimal transistor stacks. The transistor count advantage obtained 
by (BUCH, 1997) is due to the use of NMOS only planes (conducting ones). The same 
is true for (SHELAR, 2005) and (SCHOLL, 2000), even if they lose in the transistor 
count. The low transistor count of (JIANG, 2001) is due to the use of drain inputs, 
which may lead to weak signals. The transistor count for functions g and h in (YANG, 
2002) is combined because they have shared logic. 
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Table 3.4: Unawareness of the lower bound (#TR – number of transistors). 

 Previous papers Lower bound 
Reference Fig. PUN PDN #TR PUN PDN #TR 

(SHELAR, 2005) #2 6 6 30 3 4 22 
(BUCH, 1997) #9.a 4 4 18 3 4 22 

(SCHOLL, 2000) #2 3 3 14 2 2 10 
(AVCI, 2003) #2 3 3 16 2 2 12 

(JIANG, 2001) #10 4 4 8 2 2 10 
(POLI, 2003) #6 4 4 8 3 3 22 

(YANG, 2002) #14.a(g) 5 5 32 4 4 32 
(YANG, 2002) #14.a(h) 5 5 16 3 3 16 

3.6 Cell Enumeration 

A table that is recurrently used to describe the number of logic functions with an 
exact maximum number of PMOS and NMOS transistors in series is shown in Table 
3.5. This table is implicitly used for most methods aiming the use of large libraries, 
meaning that what is exploited is the universe of topologically complementary 
series/parallel gates presented in Table 3.5. The construction of Table 3.5 (DETJENS, 
1987) has the underlying assumption of considering only negative-unate functions. The 
choice of negative-unate functions is justified by the fact that Complementary CMOS 
gates are negative gates by nature. The computation of the number of stacked transistors 
is made in a series/parallel association, due to the easy of computation.  

Another common enumeration of feasible functions to exploit large libraries is a 
limitation in the number of inputs of the logic function. The huge number of functions is 
reduced by employing the equivalence under permutation of inputs – P-class 
equivalence – or equivalence under permutation of inputs and input/output negation – 
NPN-class equivalence – (SASAO, 1999). A cell in a library is capable of implementing 
all logic functions equivalent under input permutation. That means the same cell is able 

to implement functions cbaf  and bcaf  , even if they are different functions.  

Table 3.5: Number of functions with limited stacked transistors. 

  Number of Stacked PMOS Transistors 
  1 2 3 4 

Number 1 1 1 1 1 

of Stacked 2 1 4 10 23 

NMOS  3 1 10 58 285 

Transistors  4 1 23 285 2798 

Table 3.6: Number of functions, P- and NPN-classes until 4 inputs. 

# of inputs 1 2 3 4 

# of functions 4 16 256 65536 

# of P-classes 4 12 80 3984 

# of NPN-classes 2 4 14 222 
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3.6.1 Orthogonality of Enumerations 

The enumerations presented in Tables 3.5 and 3.6 are orthogonal, in the sense that 
they are produced using different criteria. Fig. 3.7 illustrates this idea, by showing the 
number of common functions between the 3503 functions with 4 or less stacked 
transistors in Table 3.5 (3503 is the sum of all the numbers in Table 3.5) and the 3984 
P-classes (SASAO, 1999) of Table 3.6; there are only 17 common functions. This 
happens because 3486 out of 3503 functions have more than four inputs. The same 
comparison is made for the 222 NPN-classes of Table 3.6. Again, the intersection 
between the two sets is 17 functions, under the supposition that negative unate functions 
will have the preference to represent their NPN-class. Notice that Table 3.5 refers only 
to negative-unate functions, while Table 3.6 has no restriction on polarity (positive- or 
negative-unate, as well as binate functions are allowed). To have a more complete 
library, both categories should be considered together. The merit of the evaluation 
method from Theorems 2 and 5 is that it is able to detect correctly the costs for the 
functions belonging to the union of all the sets represented in Fig 3.7. 

 

Figure 3.7: Relationship between enumerations. 

3.6.2 Updating number of functions with limited stacked transistors 

The seven functions listed in Table 3.5 for the case of a maximum of 2 NMOS and 2 
PMOS transistors in series are the following:  

af  , baf  , baf  , cbaf  , cbaf  )( , )()( dcbaf  , dcbaf  .  

It happens because the construction of Table 3.5 considers only CSP networks. The 
lower bound presented in Theorems 2 and 5 has smaller value for some functions, as it 

is the case of functions cbcabaf   and dbcabaf  . This way, there are 
in fact 6 negative unate functions with exactly 2 transistors in series. The extra unate P-
classes obtained by considering Theorems 2 and 5 for all the 6-input functions are 
presented in Table 3.7. This work limits the search of unate functions to 6-input 
functions due to the complexity of the method to find all P-equivalent classes. The 
functions in Table 3.7 are not listed in Table 3.5, once that this is a huge set of possible 
functions that has been ignored so far. 
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Table 3.7: Number of extra negative-unate P-classes with  
limited stacked transistors, considering Theorems 2 and 5. 

  Number of Stacked PMOS Transistors 
  1 2 3 4 

Number 1 0 0 0 0 

of Stacked 2 0 +2 +13 +62 

NMOS  3 0 +13 +498 +2897 

Transistors  4 0 +62 +2897 +2222 

3.6.3 Binate Function Modeling 

As an effect of the method for computing stacked transistors described by Theorems 
1 and 2, the computation of transistors in series can also be executed for functions that 
are binate, leading to a correct estimation of the number of serial transistors needed. The 
case of binate functions cannot always be reduced to the unate case were each polarity 
of a input is considered a different variable. 

For instance, consider the network for a 3-input XOR presented in Fig. 3.8. If this 
network is considered as a network where a and a  (b and b , c and c ) are considered 
distinct variables, the output could connect to VDD and GND at the same time. That 
means that Tables 4 and 6, when considering only unate functions, discard useful 
implementations of binate functions. This is the case of the 3-input XOR, implemented 
using CMOS from BDDs (POLI, 2003) of Fig. 3.8, which could be used to calculate the 
sum of three bits. It is not feasible as a single unate gate.  

Table 3.8 presents the number of functions, with no polarity restrictions and limited 
number of transistors in series, considering Theorems 2 and 5. For Table 3.5 the search 
was limited to 4-input functions due to the complexity of the method.  

 

Figure 3.8: Transistor implementation for a 3-input XOR. 
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Table 3.8: Number of 4-input binate NPN-classes that would not be implemented with 
CSP logic. 

  Number of Stacked PMOS Transistors 
  1 2 3 4 

Number 1 0 0 0 0 

of Stacked 2 0 0 0 0 

NMOS  3 0 4 39 0 

Transistors  4 0 2 47 31 
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4 NCSP LOGIC STYLE 

4.1 Introduction 

In the previous Chapters it was demonstrated that the logic styles currently available 
and its associated constructive method do not take into consideration the lower bound 
for the number of transistors in series. In this Chapter it is presented in detail the 
constructive method for a novel logic style where both PUN and PDN respect the lower 
bound fully described on Chapter 3. As it is about to be demonstrated, respecting such 
constraint in the number of transistors in series requires sometimes PUN and PDN not 
to be topologically complementary, although it is still logically complementary. 
Henceforth, this work refers to the new logic style and its constructive method as Non-
Complementary Series/Parallel (NCSP) logic style.  

4.2 Constructive method 

The constructive method for a NCSP cell was detailed in the proof of Theorems 3 
and 6. As an example, consider the resulting cell for the function f in Example 2, 
presented on Chapter 3. The NCSP cell has the PUN derived from the on-set equation 
(hence the longest pull-up path has 3 switches) and the PDN derived from the off-set 
equation (thus the longest pull-down path has 2 switches), as it may be observed in Fig. 
4.1.a. As the on-set and the off-set may be interchanged by inverting the function and 
adding an inverter at the output, it is always possible to use the smaller constraint in the 
pull-up network. This is desirable because PMOS transistors are more resistive than 
NMOS ones. The NCSP network considering the inverted version of function f is shown 
in Fig. 4.1.b. 

One must notice that the networks could have the transistors count reduced by 
factorization (BRAYTON, 1982; BRAYTON, 1984; HACHTEL, 1996). Nevertheless, 
the number of stacked transistors would not change at all. 

 



 

 

45

out

GND!

VDD!

_
a
_
b

_
a
_
c

_
b
_
d

_
b
_
c

_
a
_
b

_
b
_
c

_
c
_
d

_
a

out

GND!

VDD!

b c

a a

a b

b c

a

c

d

d

b

c

b

 
          (a) 3-2 cell for direct f.  (b) 2-3 cell for inverted f. 

Figure 4.1: NCSP cells respecting the lower bounds for function f from Example 2. 

4.3 Comparison with a CSP topology 

A Complementary Series/Parallel (CSP) derived only from the on-set equation 
would result in a 3-3 cell, as shown in Fig. 4.2.a. Similarly, if a CSP cell were derived 
exclusively from the off-set equation, the result would be the 2-4 cell illustrated in Fig. 
4.2.b. Thus, the use of the lower bound will produce a cell that has shorter pull-up and 
pull-down networks than CSP. Based on Example 2, it is possible to see that the NCSP 
topology propose hereby may be used to reduce the length of pull-up and pull-down 
longest chains when implementing cell level networks. 

 
(a) 3-3 cell from on-set equation  (b) 2-4 cell from off-set equation 

Figure 4.2: CSP cells not respecting the lower bounds for function f from Example 2. 

4.4 Comparison with a PTL topology 

The Pass Transistor Logic (PTL) realization of the cell from Example 2 would be a 
4-4 cell, independently of the BDD variable order used to generate the PTL network 
(NAGAYAMA, 2004). One possible PTL network is shown in Fig. 4.3. This way, the 
use of the lower bound will produce a cell that has smaller pull-up and pull-down 
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networks than PTL. Based on Example 2, it is possible to see that the NCSP proposed 
may be used to reduce the length of pull-up and pull-down chains when implementing 
cell level networks. 

 

Figure 4.3: 4-4 PTL cell not respecting the lower bounds for function f from Example 2. 

4.5 Algorithm for generating NCSP topologies 

This Section depicts the NCSP logic style topology generation algorithm. The 
diagram in Fig. 4.4 represents the flow of the algorithm. In order to fully illustrate how 
the algorithm works, a pair of examples will be presented. In both examples, where 
NCSP networks are generated from different logic functions, the CSP counterparts will 
also be presented for comparison. 

 

Figure 4.4: NCSP logic style topology generation algorithm. 
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Example 7: Consider the example function shown in Fig. 4.5. An integer number 
will be used to represent the function, most of the time in hexadecimal radix. This 
number is built grouping in 4-bit sets from the output values of the truth-table. In the 
example presented in Fig. 4.5, the output compounds the integer 
(0000.0001.1001.0111)2 = (0197)16. 

A B C D OUT  
0 0 0 0 1  
0 0 0 1 1 

7
0 0 1 0 1 
0 0 1 1 0  
0 1 0 0 1  
0 1 0 1 0 

9
0 1 1 0 0 
0 1 1 1 1  
1 0 0 0 1  
1 0 0 1 0 

1
1 0 1 0 0 
1 0 1 1 0  
1 1 0 0 0  
1 1 0 1 0 

0
1 1 1 0 0 
1 1 1 1 0  

 
Figure 4.5: Truth-table for the function (0197)16. 

In Fig. 4.6 it is shown a 5-4 bridge-based circuit (GREA, 1958; NINOMIYA, 1965) 
for the function in Fig. 4.5. Fig. 4.7 shows a 4-4 BDD-based PTL network 
corresponding to the logic function (0197)16.  

 

Figure 4.6: Bridge-based 5-4 cell for function (0197)16. 
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Figure 4.7: BDD-based 4-4 PTL for function (0197)16. 

Another way to implement a logic function is by extracting a representative logic 
equation and mapping it into a series/parallel switch network. The prime irredundant 
equations for the function (0197)16 can be obtained by two-level minimization 
(BRAYTON, 1984). The logic equation (4.1) represents the on-set of the function 
(0197)16 while the logic equation (4.2) represents the off-set for the same function. 

dcbdcbadcadbacba
seton

f 


, (4.1)

bacadadcbdcbdcb
setoff

f 


. (4.2)

Figures 4.8 and 4.9 show Complementary Series/Parallel (CSP) CMOS networks for 
the function (0197)16. Fig. 4.8 presents the networks based on the on-set equation and 
Fig. 6 presents the networks based on the off-set one. For each CSP circuit in Figures 
4.8 and 4.9 it is derived one plane from the equation and the other one as its topological 
complement. 
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(a) 5-4 cell from on-set equation (direct 
polarity).  

 (b) 4-5 cell from on-set equation (inverted 
polarity). 

Figure 4.8: CSP CMOS cells obtained from the on-set equations of function (0197)16. 

 

(a) 6-3 cell from off-set equation (direct 
polarity).  

 (b) 3-6 cell from off-set equation  
(inverted polarity). 

Figure 4.9: CSP CMOS cells obtained from the off-set equations of function (0197)16. 
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In order to reduce the number of switches in the networks both on-set and off-set 
equations ((4.3) and (4.4) respectively) can be factorized (BRAYTON, 1982; 
BRAYTON, 1984; HACHTEL, 1996). Possible factorizations for the equations (4.1) 
and (4.2) are demonstrated as follows by (4.3) and (4.4) respectively. 

        dcbdcdcbdcba
seton

f 


, (4.3)

        dcbdcdcbdcba
setoff

f 


.  (4.4)

This factorization leads to the optimized networks presented in Figures 4.10 and 
4.11. 

 
(a) 3-6 cell from on-set equation  

(direct polarity).  
 (b) 6-3 cell from on-set equation  

(inverted polarity). 

Figure 4.10: CSP CMOS cells (factorized) for function (0197)16 – on-set equation. 
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(a) 5-4 cell from off-set equation  

(direct polarity). 
 (b) 4-5 cell from off-set equation (inverted 

polarity). 

Figure 4.11: CSP CMOS cells (factorized) for function (0197)16 – off-set equation. 

In the methodology proposed hereby and illustrated in Fig. 4.1, one needs to 
generate PUN and PDN using a pair of on- and off-set equations which respect the 
lower bound for the number of transistors in series. The lower bound must be evaluated 
for both on- and off-set extracted from the function under evaluation. Hence, the 
evaluation of lower bounds requires the construction of the covering tables for both on- 
and off-set. Fig. 4.12 shows the covering table for the on-set of the function presented 
(0197)16 while Fig. 4.13 shows the covering table for the off-set of the same function. 
The process of finding the prime implicants and building the covering table is well 
known as Quine-McCluskey minimization, and is further described in (QUINE, 1955; 
MCCLUSKEY, 1956). In the covering tables, the rows represent the prime implicants 
for the on-set/off-set logic under evaluation, while the columns represent the 
minterms/maxterms in the on-set/off-set equation. 

dcba 
cba 
dcb 
dca 
dba 

 

Figure 4.12: Covering table obtained from the on-set of function (0197)16. 
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dcb 
dcb 
dcb 

ba 
ca 

 da 
 

Figure 4.13: Covering table obtained from the off-set of function (0197)16. 

 
Looking at the covering table in Fig. 4.12 it is possible to notice that the cube with 

more literals ( dcba  ) cannot be removed from the final cover as it is an essential 
prime implicant (i.e. it is the only prime implicant which covers the minterm 7). Hence, 
the lower bound for the number of stacked switches for the on-set is 4 (the number of 
literals in the cube). For covering table in Fig. 4.13, the lower bound evaluated is 3. 
Hence, the circuit with PUN and PDN respecting the lower bounds will be 3-4 or 4-3. 

One must notice that none of the implementations previously presented in this 
example have minimum length switch stacks. Worse than that, some circuit 
implementations like the ones in Figures 4.8, 4.9, 4.10 and 4.11 are not even feasible 
due to the long transistor stacks.  

Fig. 4.14 shows implementations of minimum length transistor stacks for the 
example function (0197)16. The circuit on Fig. 4.14.a was generated based on the 
equation (4.4) for the PUN and on the equation (4.3) for the PDN. Using the same 
equations with inverted polarity for the inputs and output lead us to the circuit in Fig. 
4.14.b. The circuit in Fig. 4.14.b might be more desirable than the one in Fig. 4.14.a, as 
it has a smaller path in the PUN, more resistive than the PDN for same-length paths. 

 

(a) 4-3 cell (direct polarity).  (b) 3-4 cell (inverted polarity). 

Figure 4.14: NCSP CMOS cells for function (0197)16. 
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The work in (PIGUET, 1984; PIGUET 1994; PIGUET 1995) also presents a 
technique of generating circuits using non-complementary pull-up/down networks. The 
circuits generated with such technique are so called branch-based (Section 2.4) due to 
the fact that the cubes of the on-set and off-set equations are directly translated into 
branches in the pull-up/down planes. However, this technique is not concerned with the 
length of transistor chains.  

Example 8: Now it will be used another function to better exemplify the lower 
bound evaluation used to choose the correct networks for minimum transistor stacks. 
Fig. 4.15 shows the truth-table of a 5-input function whose representative hexadecimal 
integer is (F1D12F33)16. 

E = 0   E = 1   
              

A B C D OUT   A B C D OUT   
0 0 0 0 1   0 0 0 0 1   
0 0 0 1 1  

3 
0 0 0 1 0  

1 
0 0 1 0 0  0 0 1 0 0  
0 0 1 1 0   0 0 1 1 0   
0 1 0 0 1   0 1 0 0 1   
0 1 0 1 1  

3 
0 1 0 1 0  

D 
0 1 1 0 0  0 1 1 0 1  
0 1 1 1 0   0 1 1 1 1   
1 0 0 0 1   1 0 0 0 1   
1 0 0 1 1  

F 
1 0 0 1 0  

1 
1 0 1 0 1  1 0 1 0 0  
1 0 1 1 1   1 0 1 1 0   
1 1 0 0 0   1 1 0 0 1   
1 1 0 1 1  

2 
1 1 0 1 1  

F 
1 1 1 0 0  1 1 1 0 1  
1 1 1 1 0   1 1 1 1 1   

Figure 4.15: Truth-table for the function (F1D12F33)16. 

The prime irredundant equations for the function (F1D12F33)16 obtained by two-
level minimization are (4.5) for the on-set and (4.6) for the off-set. 

edcbdcaedacbadba
seton

f 
 , (4.5)

dcbdcaecaedbadcaecba
setoff

f 
 . (4.6)

These equations were generated aiming a smaller set of cubes. However, if one 
evaluates the lower bound just looking for the cube with more literals it will be wrongly 
assumed that the lower bounds for the function (F1D12F33)16 should be 4-4. However, 
the covering table for the on-set of such function (Fig. 4.16) shows that the cube (prime 
implicant) with more literals on the equation (4.5) can be removed without losing the 
cover of all minterms. In equation (4.7) it is shown an equivalent representation for 
equation (4.5) where the cube with four literals can be replaced by a pair of cubes with 
only three literals.  

cbaedadcaedacbadba
seton

f 
 . (4.7)
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The off-set covering table in Fig. 4.17 shows that the same reduction cannot be done 
to the off-set equation (4.6), once that the cubes with more literals are essential prime 
implicants. It means that they cannot be removed from the final solution and that the 
evaluation of lower bounds for the function (F1D12F33)16 should deliver 3-4/4-3 
circuits. 

985410

XX

XXXX

XX

XX

XXXX

16131110

XX

X

X

XXX X 

24232220 31302928

X

X

X

X XXX

XXX X

XXX

XX XX

X

X

cba 
dca 
edc 
edb 

eda 
edcb 

cba 
eca 
eda 
dca 

dba 

 

Figure 4.16: Covering table obtained from the on-set of function (F1D12F33)16. 

dca 
dcb 
dba 

ecba 
eca 

dca 

edba 
 

Figure 4.17: Covering table obtained from the off-set of function (F1D12F33)16. 

The equations (4.7) (on-set) and (4.6) (off-set) can be further factorized and possible 
results are provided by equations (4.8) and (4.9), respectively. 

     edbdcacbbeda
seton

f 
 , (4.8)

    decedbadcbdebca
setoff

f 
 . (4.9)

In Figures 4.18 and 4.19, circuits using the regular CSP CMOS approach are shown 
using the factorized equations in (4.8) and (4.9), respectively. The pull-up/down 
networks of these circuits were used in Fig. 4.20 to generate NCSP circuits with 
minimum length transistor chains. 
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(a) 6-3 cell from on-set equation  

(direct polarity). 
 (b) 3-6 cell from on-set equation (inverted 

polarity). 

Figure 4.18: CSP cells obtained from the on-set equation of function (F1D12F33)16. 

 

 

 
(a) 4-6 cell from off-set equation  

(direct polarity). 
 (b) 6-4 cell from off-set equation  

(inverted polarity). 

Figure 4.19: CSP cells obtained from the off-set equation of function (F1D12F33)16. 
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(a) 4-3 NCSP cell from equation (direct 
polarity). 

 (b) 3-4 NCSP cell from equation (inverted 
polarity). 

Figure 4.20: NCSP cells for function (F1D12F33)16. 

4.6 Other Lower-Bound-Based Style 

The constructive method for generating transistor-level networks presented hereby is 
the first one which follows the lower bound for the number of stacked transistors for 
every desired logic gate. Another constructive method which also respects the 
mentioned lower bound is presented in (ROSA, 2007), where instead of translating 
factorized SOPs into series/parallel transistor configurations, it constructs disjoint 
transistor networks based on BDDs (POLI, 2003; ROSA, 2006). It has been reported for 
this method smaller transistor counts and smaller logical effort (see Table 5.5). 
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5 RESULTS 

5.1 Introduction 

The electrical evaluation of NSCP gates has been carried out using the commercial 
cell characterization tool Nangate Cell Characterizer™ (NANGATE, 2007), which 
provides a full characterization of a cell library described in Liberty format, with 
associated SPICE or GDS-II files describing each cell. The logic functions were 
described as SPICE netlists, and the transistors were straightforwardly sized for NCSP, 
CSP and PTL cells. The sizing strategy used for every cell in this Chapter is the same. 
In such strategy, transistors were equally sized and a PMOS/NMOS-ratio was also 
considered when sizing the PUN transistors. The typical process parameters from 
TSMC 0.13µm CMOS (TSMC, 2007) has been taken into account in the 
characterization, realized for 16 different conditions: four input slopes versus four 
output loads.  

5.2 Electrical Characterization 

5.2.1 ‘Black-Box’ cell comparison 

In the first analysis, the logic cells were considered as ‘black-box’ circuits, i.e. the 
logic functions were implemented with different topologies, implying in some cases that 
the addition or removal of input/output inverters were done. The set of cells used in this 
first comparison is the set of all 4-input cells, represented through the set of 3984 P-
classes of 4-input functions (CORREIA, 2001), as depicted on Table 3.6.  

5.2.1.1 CSP Generation 

To generate a CSP implementation for a given function it is necessary to choose 
between the equations derived from the on-set and from the off-set of the function. The 
choice of the Boolean expression that closely respects the lower bound is slightly more 
complicated in some cases. For instance, being PU_length and PD_length the longest 
transistor stacks in the pull-up and pull-down networks respectively, consider the 
following two examples. 
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Example A: Lower Bound: PU_length=2, PD_length=3 

off-set: PU_length=2, PD_length=6 [ cbbcddbcaout  )()( ] 

on-set:  PU_length=3, PD_length=4 [ ))(( dccdbadcbout  ] 

Example B: Lower Bound: PU_length=3, PD_length=4 

off-set: PU_length=3, PD_length=5 [ adcdcbdcdcbout  )()()( ] 

on-set:  PU_length=4, PD_length=4 [ ))()()(( dcdcbdcdcbaout  ] 

To choose between on-set and off-set equations a criterion is necessary. Two 
different criteria used hereby are described below. 

CSP_1 Criterion: The equation whose pull-up respects the lower bound is chosen. 
This is always possible as the polarity is changed to use the smaller stack as the pull-up. 
This choice corresponds to the off-set equation for both examples above. 

CSP_2 Criterion: Choose the equation with smaller difference between both 
planes: min{PD_length - PU_length}. This choice corresponds to the on-set equation for 
both examples above. 

For both examples above, the solutions chosen by CSP_1 criterion are not feasible, 
as they have more than four transistors in series. Out of the 3984 4-input P-classes, a set 
of 118 cases present different but feasible topologies when using either CSP_1 or 
CSP_2 criteria. The CSP_1 and CSP_2 versions for these cells have been characterized 
and compared with each other. Fig. 5.1 presents the result of this comparison. The X-
axis shows the percentage differences in propagation delay, considering the CSP_1 
criterion as the reference. The Y-axis presents the number of cases. It is possible to 
observe that there is not a general winner between CSP_1 and CSP_2 criteria. Similar 
behavior was also observed in terms of power dissipation and power-delay product. The 
characterization of each gate was done using a 2fF output load (reference inverter 
equivalent capacitance) and an input slope of 0.02ns. 

 

Figure 5.1: CSP_1 (reference) and CSP_2 propagation delay comparison, number of 
cells according to delay, power and PDP improvement (%). 
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5.2.1.2 NCSP Evaluation 

Gates using the NCSP style presented herein were then compared to both CSP_1 
and CSP_2 approaches. Only feasible CSP cells (i.e. with four or less serial transistors) 
where the lower bound from Theorems 1 and 2 was not achieved were compared to 
NCSP. This corresponds to a set of 758 different topologies for CSP_1 and to a set of 
1513 different cells for CSP_2. This difference happens because CSP_2 tends to return 
more feasible cells, as the PUP and PDN chain lengths difference is smaller. 

In Fig. 5.2.a the sum of rise and fall propagation delay differences between NCSP 
and CSP_1 is observed, for different input slopes and output loads. It also shows the 
expected improvements for power dissipation and power-delay product. The X-axis is 
given in percentage, being the positive values related to the NCSP gains, i.e. the 
reduction in delay obtained using such new logic style. The comparison to CSP_2 is 
shown in Fig. 5.2.b. 

 

(a) 

 

(b) 

Figure 5.2: NCSP compared to (a) CSP_1 and (b) CSP_2: number of cells according to 
delay, power and PDP improvement (%). 



 

 

60

5.2.2 Unate Cell Comparison 

The set of cells considered in such analysis includes only unate functions – each 
input has a single polarity. Moreover, in order to focus in the main pull-up and pull-
down logic network building, this group of cells is only composed by gates without any 
inversion of the input and output signals. The number of negative unate functions 
initially identified is presented in Table 5.1 (#NUF). Another restriction to define the set 
of cells for NCSP characterization and comparison to CSP was again the number of 
stacked transistors in the PUN and PDN, limited to four transistors. Furthermore, the 
functions whose CSP gate respects the ‘lower bound’ metric were also subtracted from 
this group. As a result, the number of possible characterized and compared NCSP and 
CSP implementations was reduced, as shown in Table 5.1 (#COMP). In this table is also 
presented the average number of transistors per gate for both CSP (#TR_CSP) and 
NCSP (#TR_NCSP) styles. 

Table 5.1: Number of negative unate functions. 

INPUTS #NUF #COMP #TR_CSP #TR_NCSP 

1 1 – –  – 
2 2 – – – 
3 5 1 10 10 
4 20 8 12.8 12.8 
5 171 53 15.4 15.7 
6 9007 280 18.2 19.1 

The improvements in propagation delay of NSCP compared to CSP are observed in 
the graphs of Figs. 5.3 and 5.4. In Fig. 5.3 is shown the average delay gains (in 
percentage, X-axis) obtained with 6-input NCSP cell implementation compared to CSP, 
for four output loads (2fF, 5fF, 10fF and 20fF) and the input slope equal to 0.5ns. The 
right extremity of X-axis means gains equal to or greater than 30%. The best case 
attained around 45% of improvement. The Y-axis corresponds to the number of cells 
with respective savings. As expected, reducing the number of stacked transistors, the 
cell timing is also reduced. However, this assumption has not been verified for all cases. 
The performance degeneration in some few exceptions can be explained by the 
particular electrical arrangement, i.e. the transistor ordering and consequently the input 
position. The simplified sizing strategy used for these simulations is another issue that 
slightly reduces the accuracy of the results. However, it is expected for both CSP and 
NSCP cells used on this comparison an equal benefit from an improved sizing strategy 
as both are series/parallel circuits. 

In Fig. 5.4 is presented the comparison of power dissipation, average delay, power-
delay product and average input load for 6-input cells. It corresponds to the 
characterization with 0.02ns of input slope and 2fF of output load. It can be observed 
the increasing in input load for some cases probably due to the factorization method 
applied. 
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Figure 5.3: NCSP average delay improvement (%), X-axis, versus number of 6-input 
cells, Y-axis, for different output loads and input slope of 0.5ns. X-axis right extremity 

means ≥ +30%. 

 

Figure 5.4: NCSP improvement (%), X-axis, versus number of 6-inputs cells, Y-axis: 
power-delay product, average delay, power dissipation and average input load. X-axis 

extremities mean ≥ ±30%. 

5.2.3 Mapped Circuits Comparison 

As it was presented in Table 3.7, when creating circuits which respect the lower 
bounds of stacked transistors – like the NCSP ones – a much broader range of functions 
can be implemented in a single gate. For any circuit, when it is not practical to 
implement it due to too many transistors in series, its logic is split in order to achieve 
multi-gate (multi-stage) implementations. 

In this third step of the analysis, since this new CMOS logic style is able to build 
more complex functions in a single gate, seven critical functions were identified and 
implemented in NSCP and also mapped to multi CSP gate circuit using SIS Logic 
Synthesis tool (SENTOVICH, 1992), in order to exemplify this issue. The Boolean 
equations of such functions are the following: 
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For equations (5.1) to (5.7), three SIS libraries have been targeted: 33-4.genlib, 44-
3.genlib and 44-6.genlib. It resulted in the circuit sizes presented in Table 5.2. The total 
number of transistors required in the function implementations was always less in the 
NSCP approach. The NCSP gate schematic of function F1 (equation (5.1)) is depicted 
in Fig. 5.4. The multi-stage equivalent circuit using CSP gates is presented in Fig. 5.5. 
Table 5.3 shows the number of transistors in series when trying to implement CSP 
circuits for functions F1 to F7 in a single gate. The same table also presents the number 
of stacked transistors for the NCSP implementations – all respecting lower bound – 
used in the electrical evaluation. 

The electrical performance comparison between NCSP and these three CSP circuit 
versions is shown in Table 5.4. The delay and power consumption improvements in 
these cases are even more significant, as it is expected when the number of gates is 
reduced in the circuit implementation and no important degradation is caused by a 
reasonable number of stacked transistors in the gates. Power-delay product attained up 
to 75% of gain for the function F3 (equation (5.3)). Again, the accuracy of the results 
may be reduced due to the lack of a more careful transistor sizing in the NCSP gates. 
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Table 5.2: Size of CSP multi-gate mapped circuits:  
#TR – number of transistors; #CS – number of cells.  

 
NCSP 33-4.genlib 44-3.genlib 44-6.genlib 
#TR #CS #TR #CS #TR #CS #TR 

F1 63 11 74 11 82 10 74 
F2 65 13 82 9 78 7 70 
F3 56 13 70 7 64 11 76 
F4 58 13 80 9 74 9 74 
F5 56 11 72 9 72 9 68 
F6 65 15 92 6 74 6 74 
F7 60 9 70 7 68 7 68 

Table 5.3: Number of transistors in series for single/gate implementation of CSP and 
NCSP approaches.  

 CSP_ona CSP_offb NCSP 
 p-n (or n-p) p-n (or n-p) p-n (or n-p) 

F1 14-4 (or 4-14) 17-3 (or 3-17) 3-4 or (4-3) 
F2 15-4 (or 4-15) 16-3 (or 3-16) 3-4 (or 4-3) 
F3 14-4 (or 4-14) 14-4 (or 4-14) 4-4 
F4 15-4 (or 4-15) 15-4 (or 4-15) 4-4 
F5 14-4 (or 4-14) 14-4 (or 4-14) 4-4 
F6 16-3 (or 3-16) 15-4 (or 4-15) 3-4 (or 4-3) 
F7 17-3 (or 3-17) 14-4 (or 4-14) 3-4 (or 4-3) 

(a) CSP circuit generated from the factorized on-set equation. 
(b) CSP circuit generated from the factorized off-set equation. 

Table 5.4: NCSP single-gate improvement (%) compared to CSP multi-gate mapped 
circuits. a 

 
33-4.genlib 44-3.genlib 44-6.genlib 
Td PDP Td PDP Td PDP 

F1 4 11 17 21 18 25 
F2 -5 7 -16 -6 5 -8 
F3 9 35 50 25 66 75 
F4 42 38 29 29 29 26 
F5 17 13 11 09 25 6 
F6 27 50 25 11 25 11 
F7 47 21 49 20 49 20 

(a) Worst cases: Td – delay propagation, PDP –power-delay product. 
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Figure 5.4: NCSP gate implementation of function ‘F1’. 

 

(a) 

[786059] = 
!x2*!x1*!x3 + 
!x2*!x1*!x0 + 
!x2*!x1*!x4;

[786047] = 
![786059]*![786174]*![786118]*![786119] + 
![786059]*![786116]*![786118]*![786119] + 
![786059]*![786174]*![786117] + 
![786059]*![786116]*![786117] + 
![786059]*![786174]*![786120] + 
![786059]*![786116]*![786120];

[786057] = 
!x2*!x0*!x3 + 
!x2*!x0*!x1 + 
!x2*!x0*!x5;

[786118] = !x2;

[786119] = !x1;

[786120] = !x3;

[786117] = !x0;

F1

[786046] = 
![786057]*![786117]*![786118] + 
![786057]*![786119] + 
![786057]*![786120];

[786116] = !x4;

[786174] = 
!x3*!x1 + 
!x3*!x0 + 
!x3*!x2 + 
!x0*!x1;

q = 
!x5*![786047] + 
!x4*![786046];

 

(b) 
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(c) 

Figure 5.5: CSP multi-stage implementation of function ‘F1’ targeting libraries  
(a) 33-4.genlib, (b) 44-3.genlib and (c) 44-6.genlib. 

5.3 Logical Effort 

The method of logical effort (SUTHERLAND, 1999) is founded on a simple model 
of the delay through a single logic gate. The model describes delays caused by the 
capacitive load that the logic gate drives and by the topology of the logic gate. Clearly, 
as the load increases, the delay increases, but delay also depends on the logic function 
of the gate. Inverters, the simplest logic gates, drive loads best and are often used as 
amplifiers to drive large capacitances. Logic gates that compute other functions require 
more transistors, some of which are connected in series, making them poorer than 
inverters at driving current. Thus a NAND gate has more delay than an inverter with 
similar transistor sizes that drives the same load. The method of logical effort quantifies 
these effects to simplify delay analysis for individual logic gates and multistage logic 
networks. 

The logical effort of a gate is defined itself as the ratio of the input capacitance of 
the gate to the input capacitance of an inverter that can deliver the same output current. 
Equivalently, logical effort indicates how much worse a gate is at producing output 
current as compared to an inverter, given that each input of the gate may only present as 
much input capacitance as the inverter (WESTE, 2006).  

Estimating the delay of a single stage in a circuit can be done calculating the so 
called delay effort of the gate. Additionally to the logical effort, the delay effort also 
depends on the output capacitance by input capacitance ratio, the so called electrical 
effort, and on a parasitic delay. The delay effort can be expressed by the following 
equation: 

d = g.h + p. (5.8)

In equation (5.8), g is the logical effort, h is the electrical effort, and p is the parasitic 
delay of the gate when it drives a zero load. 

For multi-stage circuits, the delay is obtained through the evaluation of the so called 
path effort delay, which is expressed by the following equations: 
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D = N.F1/N + P , (5.8)

F = G.B.H , (5.9)

G = Πgi , (5.10)

B = Πbi , (5.11)

b = (Con-path+Coff-path)/Con-path , (5.12)

H=Cout/Cin , (5.13)

P = Σpi . (5.14)

The variables in the equations (5.8) to (5.14), are as follows: 

 D – path delay effort: the minimum possible delay for a N-stage path. 

 N – number of stages in a path; 

 P – path parasitic delay: the sum of the parasitic delay of each stage in a path; 

 G – path logical effort: the products of the logical efforts of each stage in a path; 

 b – branching effort: is the ratio of the total capacitance seen by a stage to the 
capacitance on a path; 

 B – path branching effort: the product of the branching efforts along a path. 

 H – path electrical effort: ratio of the output capacitance the path must drive by 
the input capacitance presented by the path. 

Evaluating the delay effort of single-stage and multi-stage logic gates arises some 
important considerations when analyzing the gains presented on Table 5.4 in favor of 
NCSP logic gates. Single-stage gates tend to present higher logical effort when 
compared to the individual gates available into their multi-stage counterparts, as there is 
more capacitance associated to each individual input. However, two parameters go 
against multi-stage gates: 1) the logical efforts of each stage along a path are multiplied 
by each other and 2) the branching effort, i.e. each stage may drive capacitances 
presented in the on-path, as well the capacitances in the off-path. 

Despite the limitations of logical effort, which is based on the linear delay model 
(WESTE, 2006), it still works remarkably well for many practical applications as it is a 
very fast, straightforward and reasonably accurate. It has been widely used in a variety 
of application domains (STOK, 1999; HU, 2003; KARANDIKAR, 2004) as well as in 
industry standard EDA synthesis tools (STOK, 1996; MAGMA, 2007; NANGATE, 
2007). 

Table 5.5 shows, among other metrics, the average logical effort obtained for all 
3984 P-classes of 4-input functions implemented through six different transistor-level 
construction techniques. The logical effort was calculated using a PMOS/NMOS-ratio 
equal to 2, as it is seen in the examples in (SUTHERLAND, 1999). It can be seen that 
the average logical efforts for the transistor-level constructions based on the lower 
bound for the number stacked transistors – NCSP and CMOS LB (Lower Bound) from 
BDDs (ROSA, 2007) – are significantly smaller than the ones calculated for other logic 
styles. 
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Table 5.5: Comparison of six different methods for transistor-level network generation. 

Metrics CSP_1 CSP_2 NCSP CMOS 
from BDDsa 

Opt. CMOS 
from BDDsb 

CMOS LB 
from BDDsc 

Σ transistors 75530 75456 75889 75774 73438 72307 

Σ PU_length 11954 13084 11954 15538 14227 11954 

Σ PD_length 17009 15931 14242 15538 15321 14242 

Logical Effort 
(average) 4.54 4.37 3.83 4.35 4.07 3.68 

Functions not 
respecting LB 2312 2312 0 3148 2373 0 

Unfeasible 
functions 1546 791 0 0 0 0 

(a) (REIS, 1995) – (b) (POLI, 2003) – (c) (ROSA, 2007) 

The logical effort for circuits based on the ‘lower bound’ is smaller because the base 
sizing used for individual logic gates in the logical effort approach is done based on the 
longest path between VDD/GND and the output a transistor belongs to. It means that the 
smaller the stack lengths, the smaller the sizes of the transistors and, consequently, the 
smaller the input capacitance and the smaller the logical effort. 
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6 CONCLUSIONS 

This work presented a method to derive the exact lower bound for the number of 
stacked switches needed to implement a logic function at the switch level. It was 
demonstrated that the most used transistor topologies – pass-transistor logic (PTL) and 
complementary series/parallel (CSP) – will not respect the presented lower bound for 
most 4+ inputs logic functions. This was demonstrated through the sum of the lengths of 
pull-up and pull-down longest transistor stacks for each cell in the critical path for 
circuits mapped with 3- to 6-input logic functions. The impact of this overhead in the 
number of stacked transistors in the delay of mapped circuits was evaluated through 
SPICE simulations, and compared to the delay of NCSP networks proposed here. The 
reduction of the length of pull-up and pull-down transistors stacks translates into better 
timing for the NCSP approach. It is believed that the lower bounds presented here will 
have a significant impact in the design of high performance integrated circuits using 
methods like the one in (SHELAR, 2001) and (ROY, 2005), through the guidance for 
the choice of better cell topologies. Note that the NCSP topology and the lower bounds 
proposed here are valid and useful independently of the decomposition used (BUCH, 
1997; SCHOLL, 2000; HSIAO, 2000; LINDGREN, 2001; SHELAR, 2001; SHELAR, 
2002) and could possibly increase the speed of many circuits by simply exchanging the 
switch-level cell networks in the critical paths with optimized versions.  

The approach in (ROY, 2005) clearly states that the cell transistor network 
generation is an important point in their performance oriented design flow. Their paper 
shows examples that use complex cells with reduced pull-up and pull-down paths. 
However, they make no explicit mention to the PUN and PDN stack length of the cells 
as important parameters. This work is the first to explicitly and unequivocally address 
the importance of these parameters, to the best knowledge of the author. 

The new CMOS logic style (NCSP) presented here is very promising. It was shown 
that the reduction of the number of stacked transistors can significantly improve 
networks. Moreover, it was demonstrated that respecting the lower bounds for the 
number of staked transistors while generating PUN and PDN make a much broader 
range of circuits feasible, as depicted on Table 3.7. Single-by-single gate comparison to 
standard CMOS topologies (CSP) has demonstrated the expected cell timing reduction. 
More complex NCSP gates, not feasible in a single CSP one, presents even more 
significant performance improvements that can be efficiently explored by logic 
synthesis tools. Improved networks, like the ones in (ROSA, 2007) which also take 
advantage of the lower bound theory may present even better results for some sets of 
logic functions. 
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The availability of cells respecting the lower bound presented here suits very well 
with library-free technology mapping which can explore a huge set of complex gates 
and generate them on-the-fly when they are needed. The work in (MARQUES, 2007) 
presents a DAG-based library-less technology mapping solution which considers the 
theory presented on Chapter 3 in order to improve the speed of circuits by reducing the 
number of stacked transistors in the critical path. It is important to highlight that the use 
of library-free technology mapping is seen as a very important solution for the gap 
between cell-based and full-custom designs. It is estimated that automated design flows 
using fixed libraries deliver circuits slower by at least a factor of 6 and consume a larger 
area at least by a factor of 10 (CHINNERY, 2002). 

As presented by the graphs on Chapter 5, the NCSP cells are not the best choice for 
every logic function. Both delay and power consumption on logic gates are mainly due 
to both transistor channel resistance and node capacitance, and on NCSP cells one may 
reduce the resistive paths between VDD/VSS and the output but they may also present 
more capacitive nodes. A good example for this fact is the different implementations for 
the function represented by equations (4.5), which does not respect the ‘lower bound’, 
and (4.7), which respects the ‘lower bound’: the product edcb   (one and-stack of 
four transistors) in equation (4.5) is replaced by the pair of products cbaeda   
(two and-stacks of three transistors) in equation (4.7). A good and straightforward way 
of reducing both node capacitance and path resistance is to combine the Branch-based 
logic with the lower bound theory. Finally, using a more appropriate transistor sizing 
strategy might provide even better performance results for NCSP cells. 

It was noticed that in terms of area, NCSP cells present reductions for some logic 
functions as well as increased area for others, when compared with CSP. The difference 
is small though. When comparing the total number of transistors for all 4-input P-
classes, as shown on Table 5.5, NCSP cells presents an increase of only 0.5%. Besides 
that, the values on Table 5.5 consider that all 3984 P-classes implemented in CSP are 
feasible, i.e. has less than four stacked transistors, which is not correct. When a CSP 
function is not feasible in a single stage, it needs to be split into more stages, and for 
each extra stage at least an extra pair of transistors needs to be accounted.  

A strategic advantage of NCSP cells is that they can be perfectly mixed with CSP 
ones. Hence, a synthesis tool could easily choose among CSP and NCSP cells, taking 
the smaller ones for area improvement, and the faster ones, no matter the size, to be 
used in the critical path. 

Finally, in terms of actual layout, no advanced study has been profoundly carried out 
in this work, mainly due to unavailability of tools for automatic generation of layouts 
using the NCSP logic style. Nevertheless, there are both favorable and unfavorable 
cases for NCSP. As NCSP cells may have topologically non-complementary (also 
known as auto-dual) PUN and PDN, those may also have a different number of 
transistors, which may require a more advanced transistor-level placement (transistor 
ordering) routine. For the same reason, the intra-cell routing might be also more 
difficult. However, in some cases one may obtain networks that are topologically 
symmetric in NCSP, which cannot be achieved with regular constructive method of 
CSP. In these cases, the ordering would have the same complexity as the one for CSP 
cells, but the layout would be more regular and easy to route. 
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APPENDIX A: PRESENTATION SLIDES 
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APPENDIX B: CONSTRUINDO REDES DE 
TRANSISTORES DE ACORDO COM O NÚMERO 
MÍNIMO DE CHAVES EM SÉRIE 

Resumo da Dissertação em Português 

 

Introdução 

Em portas lógicas CMOS, tanto o atraso de propagação como a curva de saída estão 
fortemente ligados ao número de dispositivos PMOS e NMOS conectados em série nas 
redes de carga e descarga, respectivamente. Essa correlação está diretamente 
relacionada com o Esforço Lógico da célula (SUTHERLAND, 1999; KABBANI, 2005; 
WESTE, 2006; ROSA 2007). O estilo lógico standard CMOS é, em geral, otimizado 
para um dos planos, apresentando então o arranjo complementar no plano oposto. 
Conseqüentemente, o número mínimo de transistores em série não é necessariamente 
alcançado. 

Neste trabalho, apresenta-se um método para encontrar o menor número de chaves 
(transistores) em série necessários para se implementar portas lógicas complexas 
CMOS. Um novo estilo lógico CMOS denominado NCSP, derivado de tal método, é 
então proposto e comparado ao estilo CSP (standard CMOS). Finalmente, uma análise 
acerca da performance, área e potência são então apresentados. 

Limite inferior para o número de chaves em série 

O limite inferior para o número de chaves em série (aqui simplesmente referido 
como lower bound) proposto neste trabalho é baseado no número de literais do menor 
cubo em uma cobertura prima e não-redundante (conjunto de implicantes primos que 
cobrem uma função e onde cada implicante primo no conjunto não é coberto por 
nenhum outro no mesmo conjunto). O problema é que se uma função pode ter 
coberturas primas e não-redundantes com um número de literais diferentes no menor 
cubo, então o lower bound não seria univocamente definido. Este trabalho apresenta 
uma conjunto de Teoremas e Provas (aqui referido apenas como Teoria do lower bound) 
que garantem que o tamanho do menor cubo em coberturas primas e não-redundantes 
distintas de uma mesma função lógica é univocamente definido.  

Para melhor entender o impacto da Teoria do lower bound, observe o seguinte 
exemplo. 

Exemplo 1: Considere a função f dada pela equação dcacbbaf  . As 
coberturas mínimas para o on-set e o off-set desta função são:  
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dcacbbaseton   

cbdbcabasetoff   

O menor cubo no on-set é dca  , então o lower bound para o número de 
transistors em série no plano de pull-up é três. Os cubos no off-set são todos do mesmo 
tamanho, e o lower bound para o número de transistors em série no plano de pull-down 
é dois. Dessa forma, a célula correspondente a função f é uma célula 3-2 (3 transistores 
em série em um plano e 2 no outro), quando mapeado com o método construtivo a ser 
detalhado a seguir. Uma célula 2-3 também poderia ser derivada para a função f com a 
inversão da função. 

Uma tabela conhecida no meio acadêmico para descrever o número de funções 
lógicas com um determinado número de transistores em série é apresentado na Tabela 
B.1. A construção da Tabela B.1 (DETJENS, 1987) considera apenas funções negative-
unate. A computação do número de transistores em série é feita considerando 
associações em série/paralelo. 

Tabela B.1: Número de funções negative-unate com um determinado número de 
transistors em série (DETJENS, 1987). 

  #Transistores PMOS em Série 
  1 2 3 4 

#Transistores 1 1 1 1 1 

NMOS 2 1 4 10 23 

em 3 1 10 58 285 

Série  4 1 23 285 2798 

 

Na Tabela B.1 pode-se observar que há 7 funções com no máximo 2 transistores em 
série: 

af  , baf  , baf  , cbaf  , cbaf  )( , )()( dcbaf  , dcbaf  .  

Este número está limitado a apenas 7 funções porque a Tabela 1 considera apenas 
redes CSP. A Teoria do lower bound descrita nesse trabalho nos permite revelar que na 
o lower bound para algumas funções é na realidade menor para algumas funções, como 

no caso das funções cbcabaf   e dbcabaf  . Dessa forma, de fato há 5 
funções negative-unate com exatamente 2 transistores em série em cada plano. O 
conjunto de funções negative-unate extras obtidas depois de considerar a Teoria do 
lower bound, para todas as funções com até 6 entradas, é apresentado na Tabela B.2. 
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Tabela B.2: Número de funções negative-unate extras com um determinado número de 
transistors em série, considerando a Teoria do lower-bound. 

  #Transistores PMOS em Série 
  1 2 3 4 

#Transistores 1 0 0 0 0 

NMOS 2 0 +2 +13 +62 

em 3 0 +13 +498 +2897 

Série  4 0 +62 +2897 +2222 

 

Estilo Lógico NCSP 

O estilo lógico CSP comumente utilizado para gerar portas lógicas CMOS assume 
não apenas que os planos de pull-up e pull-down são logicamente complementares – 
característica inerente de células CMOS – mas que eles são também topologicamente 
complementares – entradas em série em um plano se arranjam em paralelo no plano 
oposto. Entretanto, para se respeitar o lower bound, algumas células terão seus planos 
opostos não complementares topologicamente falando (ainda que logicamente eles 
continuam complementares). Assim sendo, neste trabalho um novo estilo lógico 
chamado NCSP, e que implementa células que sempre respeitam o lower bound, é então 
proposto e seu método de construção é detalhado. 

Como um exemplo, considere a célula resultante da função f apresentada no 
Exemplo 1. A célula NCSP tem tem seu plano de pull-up derivado da equação de on-set 
(i.e. o caminho mais longo nesse plano tem 3 transistores em série) e seu plano de pull-
down derivado da equação de off-set (i.e. o caminho mais longo nesse plano tem 2 
transistores em série), como pode ser observado na Figura B.1.a. Alternativamente, as 
equações de on-set e off-set podem ser trocadas quando a função for invertida e um 
inversor for adicionado à saída da células, resultando na célula da Figura B.1.b. Como 
transistores PMOS são mais resistivos que os NMOS, a implementação da Figura B.1.b 
é mais recomendada que a da Figura B.1.a.   
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         (a) célula 3-2 para versão direta de f.   (b) célula 2-3 para a versão invertida de f. 

Figura B.1: Células NCSP respeitando o lower-bound para a função f apresentada no 
Exemplo 1. 

 



 

 

105

Para a mesma função f mencionada acima, uma célula CSP derivada unicamente da 
equação de on-set resultaria em uma célula 3-3, como demonstrado na Figura B.2.a. De 
forma semelhante, se a célula CSP for derivada da equação de off-set, o resultado seria a 
Celula 2-4 ilustrada na Figura B.2.b. Este é um exemplo claro de como é possível, 
através de redes lógicas NCSP, atingir o lower bound que até então havia sido negligido 
na geração da maioria das células complexas. 

 
(a) célula 3-3 cell a partir da equação de on-set.  (b) célula 2-4 a partir da equação de off-set. 

Figura B.2: Células CSP não respeitando o lower bound para a função f  do Exemplo 1. 

 

Resultados 

Para gerar células CSP para uma determinada função é necessário escolher entre a 
função derivada do on-set ou do off-set da função. A escolha da expressão Booleana que 
melhor respeita o lower bound pode ser um pouco complicada em alguns casos. Por 
exemplo, sendo PU_length e PD_length o número de transistores no caminho com mais 
transistores no plano de pull-up e pull-down, respectivamente, considere os dois 
seguintes exemplos: 

Exemplo A: Lower Bound: PU_length=2, PD_length=3 

off-set: PU_length=2, PD_length=6 [ cbbcddbcaout  )()( ] 

on-set:  PU_length=3, PD_length=4 [ ))(( dccdbadcbout  ] 

Exemplo B: Lower Bound: PU_length=3, PD_length=4 

off-set: PU_length=3, PD_length=5 [ adcdcbdcdcbout  )()()( ] 

on-set:  PU_length=4, PD_length=4 [ ))()()(( dcdcbdcdcbaout  ] 
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Para escolher entre as equações de on-set e off-set um critério é necessário. Dois 
critérios são então utilizados e aqui descritos: 

CSP_1: Neste critério, a equação cujo plano de pull-up (mais crítico) respeita o 
lower bound é escolhida. Essa opção sempre é possível já que a polaridade da função 
pode ser invertida pra acomodar a equação que resultada num menor número de 
transistores em série. Para ambos Exemplos A e B, a equação escolhida é a de off-set. 

CSP_2: Neste critério, escolhe-se a equação que resulte na menor diferença entre 
PU_length e PD_length. Para ambos Exemplos A e B, a equação escolhida é a de on-
set. 

Para ambos Exemplos A e B, a equação escolhida pelo critério CSP_1 não podem 
ser implementadas já que têm mais de 4 transistores em série. Das 3984 funções de 
quatro entradas existentes (P-classes), 118 casos apresentam topologias diferentes mas 
implementáveis para ambos critérios CSP_1 e CSP_2. As versões CSP_1 e CSP_2 
dessas células foram caracterizadas e comparadas (Figura B.3). 

 

Figura B.3: Comparação do atraso de propagação entre CSP_1 (referência) e CSP_2, 
número de células de acordo melhoria (%) em atraso, potência e PDP. 

Portas lógicas NCSP apresentadas neste trabalho foram então comparadas com os 
critérios CSP_1 e CSP_2 (Figura B.4). Apenas células eletricamente implementáveis 
(i.e. com no máximo 4 transistores em série) e que não respeitam o lower bound em 
ambos os planos foram utilizadas na comparação. 
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(a) 

 

(b) 

Figura B.4: NCSP comparado a (a) CSP_1 e (b) CSP_2: número de células de acordo 
com melhoria (%) em atraso, potência e PDP. 

Na Figura B.5 é mostrado os ganhos em média de atraso obtidos com células de 6 
entradas NCSP, comparadas com a implementação CSP, para quatro cargas de saída 
(2fF, 5fF, 10fF and 20fF) e curva de entrada de 0.5ns.  

Na Figura B.6 é apresentada a comparação de potência, atraso, PDP e carga media 
de entrada para células de 6 entradas. A caracterização foi realizada usando 0.02ns para 
a curva de entrada e 2fF para carga de saída. Pode-se observar a carga de entrada 
aumentando para alguns casos, provavelmente devido ao metido de fatoração aplicado. 
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Figura B.5: média de melhoria (%) de NCSP, eixo-X, versus número de células de 6 
entradas, eixo-Y, para diferentes cargas de saída e uma curva de entrada de 0.5ns.  

 

Figure B.6: melhoria (%) de NCSP, eixo-X, versus número de células de 6 entradas, 
eixo-Y, PDP, atraso médio, potência e carga de entrada média.  

A tabela B.3 mostra, entre outras métricas, o esforço lógico médio obtido para todas 
as 3984 P-classes de funções de 4 entradas implementadas usando 6 diferentes técnicas 
para implementação das células em nível de transistores. O esforço lógico foi calculado 
usando a razão PMOS/NMOS igual a 2, tal como exemplificado em (SUTHERLAND, 
1999). Pode-se observar que o esforço lógico médio para as construções que respeitam 
o lower bound – NCSP e CMOS LB from BDDs (ROSA, 2007) – são 
significativamente menores do que as calculadas com outros estilos lógicos. 
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Tabela B.3: Comparação de seis métodos diferentes para geração de redes de 
transistores. 

Métricas CSP_1 CSP_2 NCSP 
CMOS de 

BDDsa 
CMOS de 

BDDsb 
CMOS LB de 

BDDsc 

Σ transistores 75530 75456 75889 75774 73438 72307 

Σ PU_length 11954 13084 11954 15538 14227 11954 

Σ PD_length 17009 15931 14242 15538 15321 14242 

Esforço Lógico 
(média) 4.54 4.37 3.83 4.35 4.07 3.68 

Funções não 
respeitando 
lower bound  

2312 2312 0 3148 2373 0 

Funções não-
implementáveis 1546 791 0 0 0 0 

(a) (REIS, 1995) – (b) (POLI, 2003) – (c) (ROSA, 2007) 

Conclusões 

O novo estilo lógico CMOS desenvolvido neste trabalho, aqui referido como NCSP, 
é muito promissor. Essa tecnologia provou o quão significante podem ser as melhorias 
em timing – sem afetar área e potência de forma significativa – nas redes de transistores 
quando um número mínimo de transistores em série é utilizado. Além do mais, 
demonstrou-se que respeitando o lower bound para as redes de pull-up e pull-down 
permite que um maior conjunto de células lógicas sejam factíveis dentro de parâmetros 
elétricos aceitáveis. 

Finalmente, uma das vantagens estratégicas das células NCSP é que elas podem ser 
utilizadas sem qualquer problema com outras células CSP disponíveis atualmente. 
Dessa forma, ferramentas de síntese podem escolher entre células CSP e NCSP 
baseando-se unicamente nas métricas que favorecem um ou outro estilo lógico. 

 

 

 


