
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

FELIPE RIBEIRO SCHNEIDER

Building Transistor-Level Networks Following the
Lower Bound on the Number of Stacked Switches

Dissertação apresentada como requisito parcial
para a obtenção do grau de Mestre em Ciência
da Computação

Prof. Dr. André Inácio Reis
Orientador

Prof. Dr. Renato Perez Ribas
Co-orientador

Porto Alegre, Março de 2007.

 2

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora Adjunta de Pós-Graduação: Profa. Valquiria Linck Bassani
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do PPGC: Prof. Carlos Alberto Heuser
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Schneider, Felipe Ribeiro

On Building Transistor-Level Networks Following the Lower
Bound on the Number of Stacked Switches / Felipe Ribeiro
Schneider – Porto Alegre: Programa de Pós-Graduação em
Computação, 2007.

110 f.:il.

Dissertação (mestrado) – Universidade Federal do Rio Grande
do Sul. Programa de Pós-Graduação em Computação. Porto
Alegre, BR – RS, 2006. Orientador: André Inácio Reis; Co-
orientador: Renato Perez Ribas.

1.Logic Style. 2.Logic Synthesis. 3.Cell Libraries. I. Reis,
André Inácio. II. Ribas, Renato Perez. III. On Building Transistor-
Level Networks Following the Lower Bound on the Number of
Stacked Switches.

 3

AGRADECIMENTOS

Este trabalho é dedicado e em agradecimento aos meus pais, Genésio e Miraci
Schneider, cuja motivação, suporte, carinho e doação em tempo integral permitiu-me
concluir meus estudos com dedicação exclusiva, sem que eu tivesse que me preocupar
por um único momento com a maioria das praticalidades da vida adulta enquanto
estudante. Eu sempre soube que tive uma vida de privilégios proporcionada pela minha
família e isso sempre me motivou a buscar nada menos que o melhor que eu tenho a
oferecer como filho, amigo, estudante ou profissional.

Também dedico este trabalho aos meus mentores e amigos, Prof. André Reis e Prof.
Renato Ribas, cuja dedicação se estende por vários anos, dentre e fora de classe, desde o
momento que me interessei por pesquisa em microeletrônica até o princípio da minha
carreira como Engenheiro.

Finalmente, gostaria de agradecer a todos os professores, colegas e amigos da
UFRGS que de uma forma ou de outra contribuíram com humildade e genialidade ao
meu crescimento pessoal e profissional, refletido aqui neste trabalho.

 4

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS .. 6

LIST OF FIGURES ... 7

LIST OF TABLES .. 9

ABSTRACT .. 10

RESUMO.. 11

1 INTRODUCTION .. 12

1.1 Digital Integrated Circuit Design ... 12
1.2 ASIC Design Flow .. 14
1.2.1 Full-custom ... 14
1.2.2 Gate Array .. 15
1.2.3 Structured ASIC ... 15
1.2.4 Standard-Cell .. 16
1.2.5 Library-free ... 18
1.3 A Novel Logic Style ... 18
1.4 Organization of the Dissertation .. 19

2 STATIC LOGIC STYLES .. 20

2.1 Introduction ... 20
2.2 Complementary Series-Parallel CMOS .. 21
2.3 Pass-Transistor Logic .. 23
2.4 Branch-Based Logic .. 24
2.5 Other Static Logic Styles ... 25

3 LOWER BOUND FOR STACKED SWITCHES .. 27

3.1 Introduction ... 27
3.2 Basic Concepts ... 29
3.2.1 Boolean space and cube size .. 29
3.2.2 Switches and logic cells .. 30
3.3 Exact Lower Bound for Stacked Switches .. 32
3.4 Evaluating the lower bound .. 34
3.5 Consequences and Applications ... 34
3.5.1 Lower bound impact analysis ... 35
3.5.2 Lower bound and general PTL styles ... 36

 5

3.5.3 Lower bound and general non-SP logic styles ... 37
3.5.4 Applicability and compatibility with decomposition methods 38
3.5.5 Factorization and stacked transistors .. 38
3.5.6 Unawareness of lower bound in the number of stacked transistors 39
3.6 Cell Enumeration ... 40
3.6.1 Orthogonality of Enumerations .. 41
3.6.2 Updating number of functions with limited stacked transistors. 41
3.6.3 Binate Function Modeling .. 42

4 NCSP LOGIC STYLE ... 44

4.1 Introduction ... 44
4.2 Constructive method ... 44
4.3 Comparison with a CSP topology .. 45
4.4 Comparing with a PTL topology .. 45
4.5 Algorithm for generating NCSP topologies... 46
4.6 Other Lower-Bound-Based Style ... 56

5 RESULTS ... 57

5.1 Introduction ... 57
5.2 Electrical Characterization ... 57
5.2.1 ‘Black-Box’ cell comparison .. 57
5.2.1.1 CSP Generation .. 57
5.2.1.2 NCSP Evaluation ... 59
5.2.2 Unate Cell Comparison .. 60
5.2.3 Mapped Circuits Comparison ... 61
5.3 Logical Effort ... 65

6 CONCLUSIONS ... 68

REFERENCES ... 70

APPENDIX A: PRESENTATION SLIDES ………………………………………..77

APPENDIX B: CONSTRUINDO REDES DE TRANSISTORES DE
ACORDO COM O NÚMERO MÍNIMO DE CHAVES EM SÉRIE……………...103

 6

LIST OF ABBREVIATIONS AND ACRONYMS

ASIC Application-specific Integrated Circuit

BBL Branch-based Logic

BDD Binary Decision Diagram

CAD Computer-aided Design

CMOS Complementary MOS (Standard CMOS)

CPL Complementary PTL

CSP Complementary SP

DSM Deep Submicron

FPGA Field-programmable Gate-array

HDL Hardware Design Language

IC Integrated Circuit

ISOP Irredundant SOP

LB Lower bound (for the number of stacked switches)

MOS Metal-oxide-semiconductor

NCSP Non-complementary SP

NRE Non-recurring Engineering

PDN Pull-down Network

PLB Programmable logic block

PTL Pass-transistor Logic

PUN Pull-up Network

RTL Register transfer-level

SoC Silicon-on-Chip

SOI Silicon on Insulator

SOP Sum-of-Products

SP Series/Parallel

VLSI Very Large Scale of Integration

 7

LIST OF FIGURES

Figure 1.1: Moore’s Law graph showing the exponential increase in the number of
transistors along the last three decades for the microprocessors family from
Intel. ... 13

Figure 1.2: Abstraction levels on a system design perspective. 13
Figure 1.3: Design flow based on a standard-cell library. .. 17
Figure 2.1: Static CMOS gate. ... 22
Figure 2.2: NMOS logic rules – series devices produces an AND, and parallel devices

produces an OR ... 23
Figure 2.3: Different implementations of a 2-input XOR gate....................................... 23
Figure 2.4: Design flow of BDD-based PTL synthesis. ... 24

Figure 2.5: Branch-based circuit example for the function edbcbaout  . 25
Figure 2.6: Figure 3. Flex-cell generation. Starting with (a) the original cluster of

standard cells, the mapping process (b) creates a flex cell that replaces the
cluster. .. 26

Figure 3.1: BDD and PTL implementation for function c3. .. 28
Figure 3.2: Series/parallel CMOS implementations of c3. ... 29
Figure 3.3: PTL and CSP CMOS topologies. ... 30
Figure 3.4: Two distinct PTL cells. .. 32
Figure 3.5: A small PTL example with drain inputs. ... 36
Figure 3.6: Bridge based 3-3 cell for function f from Example 2. 38
Figure 3.7: Relationship between enumerations. ... 41
Figure 3.8: Transistor implementation for a 3-input XOR. .. 42
Figure 4.1: NCSP cells respecting the lower bounds for function f from Example 2. ... 45
Figure 4.2: CSP cells not respecting the lower bounds for function f from Example 2. 45
Figure 4.3: 4-4 PTL cell not respecting the lower bounds for function f from example 2.

 ... 46
Figure 4.4: NCSP logic style topology generation algorithm. 46
Figure 4.5: Truth-table for the function (0197)16. .. 47
Figure 4.6: Bridge-based 5-4 cell for function (0197)16. .. 47
Figure 4.7: BDD-based 4-4 PTL for function (0197)16. ... 48
Figure 4.8: CSP CMOS cells obtained from the on-set equations of function (0197)16. 49
Figure 4.9: CSP CMOS cells obtained from the off-set equations of function (0197)16. 49
Figure 4.10: CSP CMOS cells (factorized) for function (0197)16 – on-set equation. 50
Figure 4.11: CSP CMOS cells (factorized) for function (0197)16 – off-set equation. 51
Figure 4.12: Covering table obtained from the on-set of function (0197)16. 51
Figure 4.13: Covering table obtained from the off-set of function (0197)16. 52
Figure 4.14: NCSP CMOS cells for function (0197)16. .. 52
Figure 4.15: Truth-table for the function (F1D12F33)16. ... 53

 8

Figure 4.16: Covering table obtained from the on-set of function (F1D12F33)16. 54
Figure 4.17: Covering table obtained from the off-set of function (F1D12F33)16. 54
Figure 4.18: CSP cells obtained from the on-set equation of function (F1D12F33)16. .. 55
Figure 4.19: CSP cells obtained from the off-set equation of function (F1D12F33)16. . 55
Figure 4.20: NCSP cells for function (F1D12F33)16. ... 56
Figure 5.1: CSP_1 (reference) and CSP_2 propagation delay comparison, number of

cells according to delay, power and PDP improvement (%). 58
Figure 5.2: NCSP compared to (a) CSP_1 and (b) CSP_2: number of cells according to

delay, power and PDP improvement (%). ... 59
Figure 5.3: NCSP average delay improvement (%), X-axis, versus number of 6-input

cells, Y-axis, for different output loads and input slope of 0.5ns. X-axis right
extremity means ≥ +30%. .. 61

Figure 5.4: NCSP improvement (%), X-axis, versus number of 6-inputs cells, Y-axis:
power-delay product, average delay, power dissipation and average input
load. X-axis extremities mean ≥ ±30%.. 61

Figure 5.4: NCSP gate implementation of function ‘F1’. .. 64
Figure 5.5: CSP multi-stage implementation of function ‘F1’ targeting libraries (a) 33-

4.genlib, (b) 44-3.genlib and (c) 44-6.genlib. .. 65

 9

LIST OF TABLES

Table 3.1: Literals in cubes associated to paths.. 31
Table 3.2: Pull-up and pull-down paths for the PTL-based network shown in Fig. 3.4.b.

 .. 32
Table 3.3: Pull-up and pull-down paths for the bridge-based network shown in Fig. 3.6.

 .. 37
Table 3.4: Unawareness of the lower bound (#TR – number of transistors).................. 40
Table 3.5: Number of functions with limited stacked transistors. 40
Table 3.6: Number of functions, P- and NPN-classes until 4 inputs. 40
Table 3.7: Number of extra negative-unate P-classes with limited stacked transistors,

considering Theorems 2 and 5. .. 42
Table 3.8: Number of 4-input binate NPN-classes that would not be implemented with

CSP logic. .. 43
Table 5.1: Number of negative unate functions. .. 60
Table 5.2: Size of CSP multi-gate mapped circuits: #TR – number of transistors; #CS –

number of cells. .. 63
Table 5.3: Number of transistors in series for single/gate implementation of CSP and

NCSP approaches. .. 63
Table 5.4: NCSP single-gate improvement (%) compared to CSP multi-gate mapped

circuits. .. 63
Table 5.5: Comparison of six different methods for transistor-level network generation.

 .. 67

 10

Building Transistor-Level Networks Following
the Lower Bound on the Number of Stacked Switches

ABSTRACT

Both the propagation delay and the output slope in CMOS gates are strongly related
to the number of stacked PMOS and NMOS devices in the pull-up and pull-down
networks, respectively. The standard CMOS logic style is usually optimized targeting
one logic plane, presenting then the complemented topology in the other one. As a
consequence, the minimum number of stacked transistors is not necessarily achieved. In
this work, a method to find the lower bound of stacked switches (transistors) in CMOS
complex gates is presented. A novel CMOS logic style, derived from such method, is
then proposed and compared to conventional CMOS style through a commercial cell
characterizer. Electrical characterization of sets of 3- to 6-input functions was done in
order to evaluate the new method. Significant gains in propagation delay were obtained
without penalty in power dissipation or area.

Keywords: Logic style, Logic Synthesis, Cell Libraries.

 11

Construindo Redes de Transistores De Acordo com
o Número Mínimo de Chaves em Série

RESUMO

Em portas lógicas CMOS, tanto o atraso de propagação como a curva de saída estão
fortemente ligados ao número de dispositivos PMOS e NMOS conectados em série nas
redes de carga e descarga, respectivamente. O estilo lógico ‘standard CMOS’ é, em
geral, otimizado para um dos planos, apresentando então o arranjo complementar no
plano oposto. Consequentemente, o número mínimo de transistores em série não é
necessariamente alcançado. Neste trabalho, apresenta-se um método para encontrar o
menor número de chaves (transistores) em série necessários para se implementar portas
lógicas complexas CMOS. Um novo estilo lógico CMOS, derivado de tal método, é
então proposto e comparado ao estilo CMOS convencional através do uso de uma
ferramenta de caracterização comercial. A caracterização elétrica de conjuntos de
funções de 3 a 6 entradas foi realizada para avaliar o novo método, apresentando
significativos ganhos em velocidade, sem perdas em dissipação de potência ou em área.

Palavras-Chave: Estilo lógico, Logic Synthesis, Bibliotecas de Células.

12

1 INTRODUCTION

1.1 Digital Integrated Circuit Design

An Integrated Circuit (IC) is an electronic system consisting of a number of
miniaturized passive and active electronic devices (mainly transistors, resistors,
capacitors and inductors) built on a monolithic semiconductor substrate. The large
majority of the current ICs are implemented in the so called Metal-Oxide-
Semiconductor (MOS) technology (WESTE, 1993; RABAEY, 2003), where in most
fabrication processes the semiconductor is silicon.

IC design can be divided into two broad categories: analog and digital design.
Analog IC design has specializations in power IC design and radio-frequency IC design.
Analog design is used in the development of operational amplifiers, linear regulators,
phase-locked loops, oscillators and active filters. Analog design is more concerned with
the physics of the semiconductor devices such as gain, matching, power dissipation, and
resistance. Fidelity of analog signal amplification and filtering is usually critical and as
a result, analog ICs use larger area active devices than digital designs and are usually
less dense in circuitry. In the other hand, digital IC design is used to produce
components such as microprocessors, FPGAs (Field-Programmable Gate-Arrays),
memories (RAM, ROM, and flash) and digital ASICs (Application-Specific Integrated
Circuits). Digital design focuses on logical correctness, maximizing circuit density, and
placing circuits so that clock and timing signals are routed efficiently. This work
focuses on the digital VLSI (Very Large Scale of Integration) IC design flow (MEAD,
1980; WESTE, 1993; UYEMURA, 1999; CHEN, 2000; RABAEY, 2003).

Since the advent of the technology for constructing ICs, integration density and
performance of these electronic systems have gone through an astounding revolution
driven by the ability of integrating in a single system more and more transistors, the
devices responsible by most of the complexity of digital ICs. Indeed, the increase in the
number of transistors that can be integrated in a single die has grown exponentially in
the last three decades, as predicted by the so called Moore’s Law (INTEL, 2007;
MOORE, 1965). Fig. 1.1 illustrates how this increase prediction has been proved
correct so far. Although it has been frequently stated that such increase might cease in a
few years due to physical limitations of IC manufacturing technologies, new design
methodologies and fabrication process breakthroughs have proven that such cease can
be postponed (MOORE, 2003).

13

Figure 1.1: Moore’s Law graph showing the exponential increase in the number of
transistors along the last three decades for the microprocessors family from Intel

(INTEL, 2007).

Designing ICs as complex as the ones available nowadays requires that engineers
work with different levels of abstraction on a system design perspective. Fig. 2.1 shows
a diagram illustrating these different levels of abstraction (GAJSKI, 1988). The
highlighted abstraction levels, with special attention to Logic Gates in the Structural
Domain and Logic in the Behavioral Domain, are the ones that concern the most to this
work.

Figure 1.2: Abstraction levels on a system design perspective.

14

Among the technologies accessible today, two system design approaches play a
major role in the scene of semiconductor-based integrated circuits: the FPGA-based
design flow and the ASIC-based design flow. The FPGA design flow consists in
configuring a set of programmable logic blocks (PLBs) built into a FPGA chip in order
to achieve a desired application behavior. The ASIC design flow consists in assembling
a set of basic electronic devices (i.e. transistors, resistors, capacitors, etc.) into structures
called cells, which are the basic blocks in the construction of ASICs.

The choice between FPGAs and ASICs usually relies, among several factors, in the
intended number of designs it is intended to be delivered to the market. The FPGA
market has continuously growing as such reconfigurable chips becomes cheaper and
holds more and more complex designs. However, when issues like power consumption,
speed and area arise, nothing can beat the ASIC. The general rule states that for every
FPGA-based design there is an ASIC that is more efficient considering area, energy and
operation speed. On the other hand, ASICs are considered low-cost only for high
volume designs (ZUCHOWSKI, 2002), due to the cost of dedicated masks.

This work focuses on the proposal of a new methodology for implementing,
logically and structurally, the building blocks for ASICs. Therefore, next Section will
focus on the most common ASIC design flows available at the present time.

1.2 ASIC Design Flow

As integrated circuits become more inexpensive and compact, many new types of
products, such as digital cameras, digital camcorders and digital television (JURGEN
1997), are being introduced, based on digital systems. Consequently, logic design must
be done under many different motivations. Since each case is different, one may have
different design problems. Choosing an appropriate logic style, for example, is a very
important issue when one wants to achieve certain performance requirements for a
given IC design.

In this Section, let us consider two important cases of designing ICs, which leads to
two contrasting logic approaches: quick design and high-performance design. Quick
design of ICs is called semi-custom design. Recently, it has been also called ASIC
design (CHINNERY, 2002), although the ASIC abbreviation is still used with a broader
meaning. On the other hand, deliberate design for high-performance is called full-
custom design, as this kind of design is fully customized to the high performance design
space (area, speed, power and energy consumption).

In the next Subsections full-custom as well as different semi-custom approaches will
be discussed.

1.2.1 Full-custom

In Full-custom design one does logic and physical synthesis in order to attain the
highest performance or smallest size, making use of the most advanced technologies
(CHEN, 2003). It is definitely the most technology dependent design approach existent:
every transistor present in every cell inside every macro-block is tweaked in order to
explore all the performance advantages that a given technology can deliver.

15

The benefits of full-custom design in general include reduced area (and therefore
recurring component cost), performance improvements and also the ability to integrate
(include) analog components and other pre-designed (and thus fully verified)
components such as microprocessor cores that form a System-on-Chip (SoC).

The disadvantages of full-custom can include increased manufacturing and design
time, increased non-recurring engineering (NRE) costs, more complexity in the
Computer-Aided Design (CAD) system and a much higher skill requirement on the part
of the design team.

However for digital only designs, cell-based semi-custom design together with
modern CAD systems can offer considerable performance/cost benefits with much
lower risk. Automated layout tools are quick and easy to use and also can offer the
possibility to manually handcraft and optimize any performance limiting aspect of the
design.

1.2.2 Gate Array

The Gate Array design is a manufacturing method in which the diffused layers, i.e.
transistors and other active devices, are predefined. Wafers containing such devices are
held in stock prior to metallization, in other words, unconnected (CHEN, 2000). The
physical design process then defines the interconnections of the final device. For most
ASIC manufacturers, this consists of two to as many as five metal layers, each one
running perpendicular to the one below it. NRE costs are much lower as photo-
lithographic masks are required only for the metal layers, and production cycles are
much shorter as metallization is a comparatively quick process. It is also important to
the designer that reduced propagation delays can be achieved in ASICs when compared
to the available FPGAs solutions available in the marketplace.

Metal Programmable Gate Array Design is rarely implemented by circuit designers
today. It has been replaced almost entirely by field programmable devices, such as
FPGAs, which can be reprogrammed several times by the user and thus offer minimal
tooling charges, marginally increased piece part cost and comparable performance.
Nowadays, Gate Arrays are evolving into Structured ASICs (see Subsection 1.2.3) that
typically consist of a large IP (Intellectual Property) core like a processor, DSP unit,
peripheral components, standard interfaces, integrated SRAM memory, and a block of
reconfigurable logic. This shift is largely because ASIC devices are capable of
integrating such large blocks of system functionality and SoC designs requires far more
than just logic blocks.

1.2.3 Structured ASIC

The basic premise of a Structured ASIC design (also referred to as Platform ASIC
design) is that both manufacturing cycle time and design cycle time are reduced
compared to cell-based ASICs due to pre-defined metal layers (thus reducing
manufacturing time) and pre-characterization of what is on the silicon (thus reducing
design cycle time). It is a relatively new design approach (PILLEGI, 2003; ZAHIRI,
2003).

In a Structured ASIC design, the logic mask-layers of a device are predefined by the
ASIC vendor. Design differentiation and customization is achieved by creating custom
metal layers that create custom connections between predefined lower-layer logic
elements. Structured ASIC technology is seen as bridging the gap between field-

16

programmable gate arrays and Standard-cell ASIC designs. Because only a small
number of chip layers must be custom-produced, Structured ASIC designs have much
smaller NRE than standard-cell or full-custom chips, which require that a full mask set
be produced for every design. This is effectively the same definition as a Gate Array.

What makes a Structured ASIC different from a gate array is that in a gate array the
predefined metal layers serve to make manufacturing turn-around time faster whereas in
a Structured ASIC the predefined metallization is primarily to reduce cost of the mask
sets and is also used to make the design cycle time significantly shorter as well. For
example, in a cell-based or gate-array project the designers often must design power,
clock, and test structures themselves: these are predefined in most Structured ASICs and
therefore can save time and costs for the designer, when compared to gate-array.
Another important aspect about Structured/Platform ASIC is that it allows IP that is
common to certain applications or industry segments to be built-in, like one does in
FPGAs, rather than designed-in, as it is done in cell-based design.

1.2.4 Standard-Cell

The idea behind cell-based design is to reduce the implementation effort by reusing
a library of cells. The advantage of this approach is that the cells only need to be
designed and verified once for a given technology, and they can be reused many times,
thus amortizing the design cost. The disadvantage is that the constrained nature of the
library (especially due to the limited number of cells) reduces the possibility of fine-
tuning the design (RABAEY, 2003).

The Standard-cell approach standardizes the design entry-level at the logic gate
(functional blocks). A library containing a wide selection of logic gates over a range of
number of inputs and drive strengths is provided. Besides the basic logic functions such
as inverter, AND/NAND, OR/NOR, XOR/XNOR and Flip-flops, a typical library also
contains more complex functions such as AOI/OAI (AND/OR-OR/AND-INVERT),
MUX, Full-adder, Comparator, Counter, Decoder and Encoder.

The layout of each cell in a specific library has a fixed height, while its width may
vary, so the cell can be placed side-by-side, in such a way that their power rails and well
regions properly connect to neighbor cells. Standard-cell design uses these functional
blocks to achieve high gate density and good electrical performance. Standard-cell
design fits between Gate Array and Full-Custom design in terms of both its NRE and
recurring component cost.

The quality of a synthesized design based on standard-cells depends on three
components: the synthesis tool, the place and route tools and the target cell library
(SCOTT, 1994). Choosing the right cell library can have a significant impact on the
characteristics of a designed circuit (VUJKOVIC, 2002; SECHEN, 2003).

The design flow, implemented with a level of skill common in the industry, almost
always produce a final device that correctly implements the original design, unless
flaws are later introduced by the physical fabrication process. It is as follows:

1. A team of design engineers starts with a non-formal understanding of the
required functions for a new ASIC, usually derived from requirement analysis.

2. The design team constructs a description of an ASIC to achieve these goals
using a HDL (Hardware Design Language). This process is analogous to

17

writing a computer program in a high-level language. This is usually called the
RTL (Register transfer level) design.

3. A logic synthesis tool, in a process called technology mapping (SENTOVICH,
1992; REIS, 1995; JIANG, 2001; CORREIA, 2004), transforms the RTL
design into a large collection of lower-level constructs called standard cells.
These constructs are taken from a standard-cell library consisting of pre-
characterized collections of gates. The standard cells are typically specific to
the planned manufacturer of the ASIC. The resulting collection of standard
cells, plus the needed electrical connections between them, is called a gate-
level netlist. Standard-cells can be handcrafted or automatically generated.

4. The gate-level netlist is next processed by a placement tool which places the
standard-cells onto a region representing the final ASIC. It attempts to find a
placement of the standard-cells, subject to a variety of specified constraints.

5. The routing tool takes the physical placement of the standard-cells and uses
the netlist to create the electrical connections between them. Since the search
space is large, this process will produce a sufficient rather than globally-
optimal solution. The output is a set of masks enabling a semiconductor
fabrication to produce the physical ICs.

6. Close estimates of final delays, parasitic resistances and capacitances, and
power consumptions can then be made. In the case of a digital circuit, this will
then be further mapped into delay information that can be used to tune the
design up.

In Fig. 1.3 an overview of the standard-cell design flow is presented.

Figure 1.3: Design flow based on a standard-cell library (CHINNERY, 2002).

18

1.2.5 Library-free

One of the main restrictions of the standard-cell library-based designs is a limited
number of cells and drive strengths available. In library-free (also called library-less)
based design, as the name indicates, the library is said to be virtual (as it is not
physically implemented before technology mapping) and may contain an unlimited
number of cells (GAVRILOV, 1997; REIS, 1997; MORAES, 1999; CORREIA, 2004).

The main difference between standard-cell based technology mapping and library-
free technology mapping concerns the libraries (pre-characterized and virtual,
respectively) they must cope with. Library-free technology mapping implements the
functions directly at the transistor-level, while guaranteeing that the final netlist of
complex gates respect some topological constraints, e.g. number of transistors in series
(REIS, 1998). The great number of available complex gates will improve the design
space and lead to a minimization of the overall number of transistors, minimizing the
design at the transistor-level.

1.3 A Novel Logic Style

ASIC design based on standard cells still remains the most applied approach, even if
cell generators are used to create the library (LEFEBVRE, 1997; KEUTZER, 1999;
CHINNERY, 2002; SECHEN, 2003). Although different CMOS logic styles, like PTL
(BUCH, 1997; SCHOLL, 2000; JIANG, 2001; AVCI, 2003) and dynamic Domino
gates (THORP, 2003), have been proposed as promising choices, the conventional
Complementary Series/Parallel CMOS logic style (BERKELAAR, 1988; GAVRILOV,
1997), called here as CSP, continues to be the most widely adopted in cell libraries
building.

Since the worst-case delay propagation is usually related to the longest path of
stacked transistors, the construction of CMOS gates with minimum transistor stack
length in the pull-up network (PUN) and pull-down network (PDN) is strongly
recommended. As it will be demonstrated in this work, the number of stacked
transistors has a direct impact in the logical effort (SUTHERLAND, 1999; KABBANI,
2005; WESTE, 2006; ROSA 2007) of the cells. However, this requirement cannot be
guaranteed with CSP gates. This is explained by the fact that one plane is generated
from the optimized logic equation, respecting then the minimum stack transistor
number, but the other one is derived by making a complementary series/parallel
topology, which will not guarantee minimum length transistor stacks if the gate has too
many parallel branches.

A method to define the lower bound of stacked transistors in a logic plane presented
in (SCHNEIDER, 2005) has some inconsistencies that were corrected in
(SCHNEIDER, 2006a), with more practical results presented in (SCHNEIDER, 2006b)
and further analyzed herein. The proposal of this work is both the lower bound theory as
well as a novel Non-Complementary Series/Parallel CMOS logic style, named NCSP,
derived from the lower bound method. Propagation delay reduction is expected for
NCSP complex gates in comparison to standard CSP ones, with no penalty in power
dissipation and area overhead. Electrical characterization using a commercial library
characterization tool has been carried out over several logic cells, from 3- to 6- inputs,
taking into account the TSMC 0.13um CMOS technology.

19

1.4 Organization of the Dissertation

This dissertation is organized as follows. In Section 2, it is presented a background
of the most common static logic styles applied by the industry nowadays. Section 3
formulates the lower bound theory for the length of transistor stacks in logic cells and
provides an enumeration of feasible cells using different logic styles considering such
formulation. In Section 4, the implementation of a novel logic style so called NSCP is
presented. Section 5 presents the electrical characterization of NCSP gates and a
comparison with the most used static logic styles nowadays. Furthermore, Section 5
presents the impact in area, presenting some cell layouts. Finally, conclusions and an
analysis of the impact of this work based on its results are pointed out on Section 6.

20

2 STATIC LOGIC STYLES

2.1 Introduction

The transistor is the most basic structure found in digital circuits, where it is mostly
used as a switch. These switching devices are used to form the so called logic gates,
which are the building blocks of digital integrated circuits. Each logic gate is designed
to behave according to a desired logic function, where the output signals of a logic gate
is a function of its input signals.

The circuit of a logic gate can be built using different configurations of transistors
for a given logic function. These configurations are known as logic styles or logic
families. There are numerous logic styles to implement a logic gate for a given logic
function. Different styles are used to perform better for different design metrics like
area, speed, energy and power consumption. Depending on the application, the
emphasis will be on different metrics. For example, the switching speed of digital
circuits is the primary metric in a high-performance processor, while in a battery
operated circuit, it is energy consumption. Recently, power dissipation also has become
an important concern and considerable emphasis is placed on understanding the
mechanisms of power and approaches to dealing with power. One of these mechanisms
currently highlighted by the industry and the academia is the leakage current, critical in
the newest Ultra DSM (Deep Submicron) technologies (ROY, 2003). In addition to
those metrics, robustness to noise and reliability are also very important considerations.

Logic styles are basically classified as being dynamic or static. Dynamic styles
(THORP, 2003), rely on temporary storage of signal values on the capacitance of high-
impedance circuit nodes. The implementation approach of dynamic circuits is simpler
and faster but their design and operation are more prone to failure because of the
increased sensitivity to noise. The most common dynamic logic styles are Domino and
its variants: Dual Domino, Multiple-Output Domino, NORA Domino and Zipper
Domino (WESTE, 2006). On the other hand, Static styles guarantee that, under fixed
input vectors, each gate output is connected to either VDD or GND via a low resistance
path. Also, the outputs of the gate assume at all times the value of the Boolean function
implemented by the circuit, meaning the circuit does not need to be pre-charged or pre-
discharged. Some of the most common static logic styles are Static CMOS, Pseudo-
NMOS, DCVSL and PTL (RABAEY, 2003).

Additionally, logic styles can be also classified as single- or dual-rail circuits.
Single-rail circuits have only one output while dual-rail ones have two outputs, which

21

very frequently are one for the direct polarity signal and one for the inverted polarity
signal.

The most common logic styles used in the industry are the Complementary Series-
Parallel CMOS (referred as CSP in this work) and the Pass-Transistor Logic (PTL),
both static and single-rail. The logic style proposed in this work is also classified as
static and single-rail. This allows its use with a design methodology flow very similar to
the one applied currently to most integrated circuit designs, while it keeps the same
robustness characteristic of CSP logic. In this sense the logic proposed here is superior
to PTL, which may present drain inputs depending on how it is designed. Drain inputs
are a design problem due to noise margin and also because the input capacitance seen at
drain inputs is not constant.

In the next Sections, different logic styles available nowadays will be presented in
order to allow a straightforward comparison with the logic style proposed and further
explained on Chapter 4.

2.2 Complementary Series-Parallel CMOS

The Complementary Series-Parallel CMOS (CSP) is still nowadays the most used
and well established logic style applied by the industry. The CSP style is basically an
extension of the CMOS inverter to multiple inputs. The primary advantage of the CSP
structure is robustness (i.e. low sensitivity to noise), good performance and low power
consumption with almost no static power consumption for technologies with transistor
channel length down to 130nm (WESTE, 2006).

However, newer Ultra DSM fabrication processes might considerably increase the
leakage current responsible for static power consumption and in some point of time it
ought to be comparable with dynamic power consumption. These increase has been
dealt with more complex technologies, like SOI (Silicon-on-Insulator) and high-K
dielectrics (WESTE, 2006), as well as with circuit-level modifications (ROY, 2003).

A static CMOS gate is a combination of two networks, called the pull-up network
(PUN) and the pull-down network (PDN) (Fig. 2.1). The Fig. 2.1 shows a generic N-
input logic gate where all the inputs are distributed to both the PUN and PDN. The
function of the PUN is to provide a connection between the output and VDD anytime the
output of the logic gate is meant to be 1 (based on the inputs). Similarly, the function of
the PDN is to connect the output to GND when the output of the logic gate is meant to
be 0. The PUN and PDN networks are constructed in a mutually exclusive fashion such
that one and only one of the networks is conducting in steady state. In this way, once the
transients have settled, a path always exists between VDD and the output F, realizing a
high output (representing logic one), or, alternatively, between GND and F for a low
output (representing logic zero). This is equivalent to stating that the output node is
always a low-impedance node in steady state.

While constructing the PDN and PUN networks, the following observations should
be kept in mind:

1. A transistor can be thought of as a switch controlled by its gate signal. An
NMOS switch is ON when the controlling signal is high and is OFF when the
controlling signal is low. A PMOS transistor acts as an inverse switch that is ON
when the controlling signal is low and OFF when the controlling signal is high.

22

Figure 2.1: Static CMOS gate.

2. The PDN is constructed using NMOS devices, while PMOS transistors are used
in the PUN. The primary reason for this choice is that NMOS transistors
produce “strong zeros” and PMOS devices produce “strong ones” (RABAEY,
2003).

3. A set of construction rules can be derived to construct logic functions. NMOS
devices connected in series corresponds to an NAND function (Fig. 2.2.a). With
all the inputs high, the series combination conducts and the value at one end of
the chain is transferred to the other end. Similarly, NMOS transistors connected
in parallel represent an NOR function (Fig. 2.2.b). A conducting path exists
between the output and input terminal if at least one of the inputs is high. Using
similar arguments, construction rules for PMOS networks can be formulated. A
series connection of PMOS conducts if both inputs are low, representing a NOR

function (baba ), while PMOS transistors in parallel implement a

NAND (baba ).

4. Using De Morgan’s Theorems baba  and baba  , it can be shown
that the PUN and PDN networks of a complementary CMOS structure are dual
networks. This means that a parallel connection of transistors in the pull-up
network corresponds to a series connection of the corresponding devices in the
pull-down network, and vice versa. Therefore, to construct a CMOS gate, one of
the networks is implemented using combinations of series and parallel devices.
The other network is obtained using duality principle by traversing the
hierarchy, replacing series sub-nets with parallel sub-nets, and parallel sub-nets
with series sub-nets. The complete CMOS gate is constructed by combining the
PDN with the PUN.

23

(a) Series (b) Parallel

Figure 2.2: NMOS logic rules – series devices produces an AND, and parallel devices
produces an OR

2.3 Pass-Transistor Logic

A popular and widely-used alternative to CSP is Pass-Transistor Logic (PTL)
(BUCH, 1997; HSIAO, 2000; SCHOLL, 2000; LINDGREN, 2001; ZHOU, 2001;
SHELAR, 2001; SHELAR, 2002; AVCI, 2003), which attempts to reduce the number
of transistors required to implement logic by allowing the primary inputs to drive gate
terminals as well as source/drain terminals. This characteristic contrasts with most logic
families, which only allow primary inputs to drive the gate terminals of transistors.

The switches used in PTL circuits use either NMOS pass transistors or parallel pairs
of NMOS and PMOS transistors called transmission gates. The most known PTL
variation which uses transmission gates is called CPL (Complementary Pass-Transistor
Logic) (YANO, 1990). Another distinct characteristic of PTL circuits is that it can
present non-series/parallel network configurations.

One of the promises of PTL approach is that fewer transistors are required to
implement some functions, especially XOR-based gates, which include MUXes. For
example, the implementation of an XOR2 gate in Figure 2.3.a requires 6 transistors
(including the inverter required to invert b), while a complementary CMOS
implementation (Fig. 2.3.b) would require 12 transistors. The reduced number of
devices has the additional advantage of lower capacitance. Many authors have claimed
substantial area, speed and/or power improvements for pass-transistors compared to
static CMOS. However, an independent evaluation finds that for most general-purpose
logic, static CMOS is superior in speed power and area (ZIMMERMANN, 1997).
Mixed approaches have also been proposed, as described in ().

(a) CSP (b) PTL

Figure 2.3: Different implementations of a 2-input XOR gate.

24

Another difference of PTL circuits it the way its logic is implemented. In logic
styles like CSP, Boolean equations area translated into series/parallel arrangements. In
PTL, however, the most common way of deriving circuits from logic is through the
used of Binary Decision Diagrams (BBDs) (YANO, 1996). Fig. 2.4 presents the basic
design flow of BDD-based PTL circuit synthesis.

VDD!

f1

Logic Equations

 dcdcbaf 
1

 dcdcaf 
2

a a

b

c

d d

0 1

f2

f1

a a

b

c

d d

0 1

f2

a=0 a=1

f1 f2

GND!

a

b

c

d

BDD construction

Buffer insertion

Cell mapping

Figure 2.4: Design flow of BDD-based PTL synthesis (YANO, 1996).

2.4 Branch-Based Logic

Branch-Based Logic (BBL) is a logic style that has been developed for low-power,
low-voltage applications and for high-speed circuits (PIGUET, 1984; PIGUET, 1994;
PIGUET, 1995; NÈVE, 2001). In this style, the transistor networks consist only of
branches (i.e. a series of up to three transistors between power line and gate output).

25

The advantages of transistor branches are higher layout regularity (i.e. smaller diffusion
capacitances) and simpler characterization (i.e. branch instead of gate modeling).

The construction of branch-based circuits is rather simple. It takes a flat (non-
factorized) irredundant sum-of-products and translates each product into an and-stack
(branch) in the circuit. It’s done for each PUN and PDN independently, using the on-set
and the off-set logic expression respectively. Fig 2.5 shows an example of a BBL
circuit.

out

GND!

VDD!

b

a

a

c

b

d
e

e
b

d

e

c

Figure 2.5: Branch-based circuit example for the function edbcbaout  .

The low-power and high-speed capabilities of BBL circuits are due to its low
capacitive nodes as there is no parallel connection among branches. This absence of
interconnection among branches is also a positive characteristic from the layout point of
view (PIGUET, 1984). However, one problem of BBL circuits is the use of too many
transistors for some logic functions, as its logic expressions are flat (non-factorized) by
nature.

2.5 Other Static Logic Styles

Several other logic styles have been proposed in order to explore different aspects of
the area-speed-power design space. The choice depends on the design as well as on the
tools available for the synthesis of the circuits.

An appealing approach for high-speed circuits is the BiCMOS family (ELRABAA,
1992) which uses bipolar transistors in order to achieve improved output drive
capability. One of the biggest problems of this kind of logic is that the use of bipolar
transistors is not very well supported for most of the fabrications processes and CAD
tools available. Currently, BiCMOS is mostly used for bus drivers, I/O drivers and
linear circuits like high-speed operational amplifiers (WESTE, 1993).

A couple of old yet very interesting works regarding to logic cells with minimal
number of transistors are depicted in (GREA, 1958) and (NINOMIYA, 1965) which
present tables with hand-crafted switch topologies for more complex logic cells.

Finally, one must cite the innovative approach developed by Zenasis Technologies
(ZENASIS, 2007) so called Flex-cells (ROY, 2005). This approach was developed in

26

order to cope with the gap between standard-cell based design and full-custom design,
where it is estimated that automated design flows deliver circuits slower by at least a
factor of 6 and consume a larger area at least by a factor of 10 (Chapter 10 of
CHINNERY, 2002). Flex-cell is not a logic style, indeed, but it is cited here because it
is an optimization approach done at transistor-level. In summary, the Flex-cell-based
optimization consists in automating the process of creating tactical cells in a design, by
grouping clusters of logic gates in a single gate, as shown in Fig. 2.6. With such
approach it’s expected to have significant improvements in area and speed without
having to handcraft such tactical cells.

Figure 2.6: Figure 3. Flex-cell generation. Starting with (a) the original cluster of
standard cells, the mapping process (b) creates a flex cell that replaces the cluster

(ROY, 2005).

27

3 LOWER BOUND FOR STACKED SWITCHES

3.1 Introduction

The number of stacked switches (or switches in series) inside a cell is a limiting
factor to the maximum speed it may attain in CMOS technologies. Regardless of the
transistor topology used to implement a switching function, there is a strong correlation
between the length of its longest transistor stack and its worst-case propagation delay.
This correlation is verified because the switches along this path are likely to charge or
discharge a path that corresponds to the worst-case delay scenario. This loss in delay is
directly related with the logical effort (SUTHERLAND, 1999; KABBANI, 2005;
WESTE, 2006; ROSA 2007) of the cell, as it will be demonstrated on Chapter 5. The
approach in (SHELAR, 2001) made use of this correlation described above in its
algorithm for performance-driven PTL synthesis. The method presented there exploits
two separate effects. First, it aims to reduce the number of serially connected gates by
applying functional decomposition. Second, it reduces the number of stacked transistors
(switches) inside the gates by encoding decompositions with a one-hot code and
deriving cell level PTL networks partially from a BDD (Binary Decision Diagram) and
partially from a one-hot multiplexer. The results reported there show significant
performance gains, proving the importance of the number of stacked transistors
(switches) as a parameter to the quality of cell networks, especially when performance
is the design goal.

Synthesis techniques for PTL circuits have been closely related to BDD
representation of logic functions, for reasons such as elimination of sneak paths and
availability of efficient algorithms for the construction of BDDs (SHELAR, 2001).
Indeed, the approaches in (BUCH, 1997; HSIAO, 2000; SCHOLL, 2000; LINDGREN,
2001; ZHOU, 2001; SHELAR, 2001; SHELAR, 2002; AVCI, 2003) are based on
BDDs. Therefore, when discussing PTL networks in this work, it will be assumed in
this work they are derived from BDDs. Despite the gains demonstrated by (SHELAR,
2001), this work will demonstrate that even the introductory example used there, the
circuit c3 (carry out for the first 3 bits of an adder), shown in Fig. 3.1, may be
synthesized with a significantly smaller number of stacked transistors than originally
presented. Fig. 3.1.a shows the BDD for c3. This BDD has a path with six arcs in series,
and it would have six transistors in series if mapped as a single PTL gate. For this
reason, PTL approaches will insert buffers to limit the number of transistors in series to
three or four (SHELAR, 2001; ZHOU, 2001). Fig. 3.1.b shows a PTL gate for c3, with
(inverting) buffers inserted. This way, the bottom part, below the first stage of buffers,

28

has four transistors in series (counting the transistors inside the buffer that generates
signal B2). On the other hand, the top part of the cell has three transistors in series
(counting the transistors inside the buffers). Consequently, the PTL implementation in
Fig. 3.1.b may then be viewed as two independent gates connected in cascade.

A Complementary Series/Parallel (CSP) CMOS (BERKELAAR, 1988; REIS, 1995;
REIS, 1997; GAVRILOV, 1997) implementation of the circuit c3 can be observed on
Fig. 3.2.a, where there is a pull-down network with five transistors in series. This is not
considered feasible from the electrical point of view as there is too much degradation of
the signal in the discharge path due to increased resistance. Using CSP in this case
would require the logic cell to be split into two or more stages.

However, one may notice that the c3 function may be synthesized as a single cell
where the pull-down network has at most four stacked transistors and the pull-up chain
has at most three. This implementation is shown in Fig. 3.2.b, and it is 60% faster
(according to SPICE simulations) than the fastest decomposed version presented in
(SHELAR, 2001). Moreover, this is not a problem that is unique to the cell generation
method in (SHELAR, 2001). Indeed, this seems to be true for several approaches based
on PTL, as the are also examples of non-optimized pull-up and/or pull-down paths in
other papers based on PTL logic (BUCH, 1997; ZHOU, 2001). Notice that although the
circuit in Fig. 3.2.b is series/parallel CMOS, PUN and PDN are not topologically
complementary. Therefore, this problem is not unique to the cell generation for PTL,
since reducing (or controlling as a design parameter) the maximum length of transistor
stacks in a circuit is important for most logic families. These observations lead us to
formulate the following questions:

1) What is the minimum length for the PUN and PDN paths when designing a
switch network for a given cell?

2) Is it possible to synthesize a network for the circuit in Fig. 3.2.b with shorter PUN
and PDN path lengths?

VDD! GND!
__
b2

__
a2

a2

a2

__
a2

__
a1a1

__
a1 a1

b0

a0
__
a0

__
b0

__
b1b1

out
1

0

0

0

0
0

0

0
0

1

1

1
1

1

1

1

a0

b0

a1

b1

a1

a2 a2

b2

0 1

 (a) BDD for function c3 (b) PTL implementation

Figure 3.1: BDD and PTL implementation for function c3.

29

b2

a2

a1 b1 b2

b1

a1

a2 b2

a0 b0

VDD!

GND!

a2

outa0 a2 a1

b0 b2 b1

b2a2

a2

b2

a1 b1

b2

a2

a1 b1 b2

b1

a1

a2 b2

a0 b0

VDD!

a0

GND!

b0

a2

b2
a1 b1

a2 b2

b1

a1

a2 b2

a2

out

(a) Complementary (b) Non-complementary (designed by hand)

Figure 3.2: Series/parallel CMOS implementations of c3.

In the next Sections it will be addressed the question of deriving exact lower bounds
for the number of switches in the longest PUN and PDN stacks inside a switch network
for a logic cell.

3.2 Basic Concepts

3.2.1 Boolean space and cube size

The Boolean set B is composed of the following elements {0, 1}. A Boolean variable
may assume an arbitrary value in the set B. A n-dimensional Boolean space is defined
through a set composed of n Boolean variables and is noted as Bn = {(a0, a1, …, an-1)}| ai
 {0, 1}}. The Boolean space Bn is composed of 2n distinct points. A cube of Bn is a
sub-space of Bn obtained through the assignment of specific values to a subset of
variables in Bn. The assignment of values to m out of the n variables in Bn will denote a
cube of size Bn-m. A cube of unitary size is said to be a minterm. If all variables have
assigned values, a single point in the Boolean space is indicated. A Boolean function is
a mapping BnB, such that every point in Bn is mapped to one and only one value in B.
The set of variables in Bn is the domain of the function. Boolean functions may be
expressed through the Boolean algebra, composed of the following operations in the B
set: AND (denoted by ), OR (denoted by +) and INVERSION or NOT (denoted by a

horizontal bar over the variable or function, like a). Consider an ordering that states
that 1>0, over B. The AND of n Boolean variables is defined as the minimum value
assumed by the input variables. The OR of n Boolean variables is defined as the
maximum value assumed by the input variables. The INVERSION is a unary operator
that returns the value in B that is different from the one assigned to the input. It is
important to observe the operator precedence is NOT > AND > OR. A literal of an

equation is an instance of a variable in the direct ai or inverted ia form. A specific cube

30

of Bn may be expressed as a product of literals in the following manner: variables
assigned to the value 1 appear as a direct literal ai, while variables assigned to the value
0 appears as an inverted ia literal. For instance the cube dca  represents the Boolean
subspace where a = 1, c = 0 and d = 1. The subspace defined by this cube will have a
size 2n-3, with respect to a n-dimensional Boolean space Bn. A cube C is said to be an
on-set implicant cube of a given Boolean function f if all the points in the subspace
defined by C are mapped to 1 through the function f. An implicant cube is said to be an
on-set prime implicant of function f if it is not contained in a distinct implicant cube of
f. Similarly, a cube C is said to be an off-set implicant cube of a given Boolean function
f if all the points in the subspace defined by C are mapped to 0 through the function f.
An implicant cube is said to be an off-set prime implicant of function f if it is not
contained in a distinct implicant cube of the off-set of function f.

3.2.2 Switches and logic cells

A switch controls the connection between two different points. The discussion in
this paper will be restricted to two different kinds of switches, as described in the
following. An active-0 switch will connect two nodes if the control variable is equal to
0; the switch will not connect these points when the control signal is equal to 1.
Similarly, an active-1 switch will short-circuit two nodes if the control variable is equal
to 1 and it will be an open circuit if the variable is 0. PMOS transistors are active-0
switches and NMOS transistors are active-1 switches.

A logic cell that implements a given logic function is formed by a set of
interconnected switches. These switches are controlled by the variables in the domain of
the logic function. The main switch topologies used to design transistor networks for
logic cells are Pass Transistor Logic (PTL) (BUCH, 1997; HSIAO, 2000; SCHOLL,
2000; LINDGREN, 2001; ZHOU, 2001; SHELAR, 2001; SHELAR, 2002; AVCI,
2003) and Complementary Series/Parallel (CSP) CMOS Logic (BERKELAAR, 1988;
REIS, 1995; REIS, 1997; GAVRILOV, 1997). Fig. 3.3 illustrates these topologies. It is
possible to notice that the PTL topology is composed of a single non-disjoint pull-
up/down plane, while the CSP topology has two disjoint switch planes: one pull-up
plane and one pull-down plane.

C
on

tr
ol

 V
ar

ia
bl

es

C
on

tr
ol

 V
ar

ia
bl

es

 (a) PTL (b) CSP CMOS

Figure 3.3: PTL and CSP CMOS topologies.

31

Independently of the topology, the output of the cell is connected to VDD or GND

through a path composed of serially connected switches that are active (connected)
under a given input assignment. A pull-up path connects the output of the cell to the VDD
(logic-1) reference, through a set of serially connected switches. A pull-down path
connects the output of the cell to the GND (logic-0) reference, through a set of serially
connected switches. A pull-up path is associated with an on-set implicant cube, while a
pull-down path is associated with an off-set implicant cube. In this work it will be
referred to a cell with longest pull-up chain PU and longest pull-down PD as being a
PU-PD cell. For instance, a static CMOS 2-input NAND is a 1-2 cell.

Example 1: Consider the PTL cells shown in Fig. 3.4, for the carry-out function of a
full adder. The PTL cell in Fig. 3.4.a has the input c connected to transistor drains.
However, inside an integrated circuit these signals will always be available through
another cell that will generate them. In the best case, these signals will be generated
through an inverter. Thus the following discussion will consider that drain signals are
available through inverters. Fig. 3.4.b shows the PTL cell with the transistors
corresponding to the inverters added to the transistor network. The path composed of
the transistors T2-T5-T8 is a pull-up path and it is associated to the on-set implicant
cube cba  . The association between switches and literals follows the possibilities
listed in Table 3.1: T2 corresponds to possibility #3, T5 corresponds to possibility #4
and T8 corresponds to possibility #2. The other pull-up paths are T1-T3-T8 and T2-T6
corresponding to the on-set implicants cba  and ba  . Similarly for the off-set, the
path composed of the transistors T1-T3-T7 is a pull-down path and it is associated to the
off-set implicant cube cba  . Again, the association between switches and literals
follow the possibilities listed in Table 3.1: T1 corresponds to possibility #4, T3
corresponds to possibility #3 and T7 corresponds to possibility #4. The other pull-down

paths are T1-T4 and T2-T5-T7 corresponding to the on set implicants ba  and
cba  . The on-set (off-set) is given by the sum of all on-set/off-set implicants

corresponding to PUN/PDN paths, as given by equations (3.1)/(3.2) below. Notice that
these equations are correct, but they are not prime covers. Prime covers for the on-set
and off-set of this particular function would have cubes composed of at most two
literals. The cell in Fig 3.4.b is a 3-3 cell, which is not the minimum transistor chain that
may be achieved for this cell, as will be demonstrated later in this Chapter. Paths and
associated cubes present in the switch network of Fig. 3.4.b are summarized in Table
3.2.

bacbacbaseton  (3.1)

cbabacbasetoff  (3.2)

Table 3.1: Literals in cubes associated to paths.

Possibility
number

Switch
type

Literal in
the switch

Literal in
the cube

1 Active-0 ia ia

2 Active-0 ia ia

3 Active-1 ia ia

4 Active-1 ia ia

32

cout_
a a

b

b
_
b

_
b

VDD!GND!

_
c

T1 T2

T3 T5
T6T4

T7 T8

_
c

cout_
a

VDD!GND!

a

b

b
_
b

_
b

c

 (a) drain inputs (b) strong signals through inverters

Figure 3.4: Two distinct PTL cells.

Table 3.2: Pull-up and pull-down paths for the PTL-based network shown in Fig. 3.4.b.

Type Transistors Cube

Pull-up

T1-T3-T8 cba 

T2-T5-T8 cba 
T2-T6 ba 

Pull-down

T1-T4 ba 

T1-T3-T7 cba 

T2-T5-T7 cba 

3.3 Exact Lower Bound for Stacked Switches

The lower bound for the number of stacked switches proposed hereby is based on
the number of literals of the smallest cube in a prime and irredundant cover (set of
prime implicants that covers a function and where each prime implicant on the set is not
covered any other one in the same set). The problem with this is that if a function might
have distinct prime and irredundant covers with a different number of literals in the
smallest cube, then the lower bound would not be univocally defined. In the following,
it is presented a proof to ensure that this condition will never happen as the size of the
smallest cube in distinct prime irredundant covers of a logic function is univocally
defined.

Definition 1: A cube with m literals will have cube size 2n-m in Boolean space Bn.
By definition, the smallest cube is the cube with larger number of literals.

Theorem 1: The number m of literals in the smallest cube does not change for
distinct prime implicant covers of the same logic function.

Proof (by contradiction): Consider two distinct prime and irredundant covers C1
and C2 of the same function f such that the smallest cubes in C1 and C2 have different
sizes. Suppose that cover C1 has smallest cube(s) composed of m literals. Suppose also

33

that the smallest(s) cube(s) in cover C2 are composed of m-i literals, such that 0 < i <
m. To turn on any prime irredundant cube in C1, it is necessary to assign at most m
variables to logic-0 or logic-1 as appropriate. The reason for this is because the smallest
cube in C1 is not redundant and has m literals. However, assigning at most m-i variables
is sufficient to turn on any prime implicant cube in C2. Thus, the analysis of the
complete set of all variable assignments containing m-i or fewer variables in Bn is
sufficient to decide if the function represented by C2 evaluates to logic-1. This same
analysis is not sufficient, nonetheless, to decide if the function represented by C1
evaluates to logic-1, due to the irredundant prime implicant(s) with m literals.
Therefore, the functions given by covers C1 and C2 are not the same logic function,
leading to a contradiction of our initial hypothesis that two distinct prime implicant
covers of the same function could have smallest cubes with different sizes. QED.

Corollary: Theorem 1 is valid for two prime irredundant covers. Non-prime covers
may have smaller non-prime cubes with more than m literals, where m is the size of the
smallest cube in any prime irredundant cover. However, no cover may have only cubes
greater (with a smaller number of literals) than the smallest cube in any prime
irredundant cover.

Definition 2: A PUN path connects the output of the cell to the VDD (logic-1)
reference, through a set of serially connected switches.

Theorem 2: Given a function f, it is not possible to have a cell whose longest PUN
path has fewer switches than m, being m the number of literals in the smallest cube of
any prime irredundant cover C for the on-set of function f.

Proof (by contradiction): Recall that the smallest cube has the greater number of
literals (Definition 1). By Theorem 1, all the prime irredundant covers of function f will
have at least one cube with m literals, where m is the size of the smaller cube in any
prime cover of f. Non-prime covers of f may have smaller cubes with more than m
literals. However, covers where all the cubes have less than m literals are not possible,
due to Theorem 1 and its Corollary. Consider a function f defined in Bn, such that a
prime irredundant cover C of f has m literals. Suppose now that function f has a generic
switch realization where the ith pull-up path has size pi, such that pi < m. As described in
detail through Example 1 of Subsection 3.2.2, each of these PUN paths would be
associated with an on-set implicant cube with pi literals. As a consequence, every PUN
path with size pi < m will produce a cube with pi literals where pi < m. The cover
obtained from the network this way will have only cubes with less than m literals, as pi
< m, for every path. According to Theorem 1, this contradicts the initial hypothesis that
the smallest cube in the prime implicant cover C has m literals, as all the cubes in the
realization would have a smaller number of literals pi < m and a greater size. QED.

Theorem 3: Given a function f, it is possible to produce a cell where the longest
PUN path has m switches in series, being m is the number of literals in the smallest cube
in a prime irredundant cover C for the on-set of function f.

Proof (by construction): It is possible to construct a pull-up plane for function f
given a prime irredundant cover C=Pi of the function, where each cube Pi= li is a
product of literals associated to the variables in the domain of the function. Every prime
cube Pi contributes to the PUN with an independent path. The paths for each cube Pi are
independent as they are parallel paths among each other. Each of the independent paths
is composed of serially connected switches between the logic-1 reference (VDD) and the
output of the cell. The path for a given cube in the cover contains one serially connected

34

switch for each literal li in the cube, as described by Example 1 in Subsection 3.2.2. As
the smallest cube has the greater number of literals, it will determine the size of the
longest path. Thus this implementation will have by construction the longest PUN path
with a size correspondent to the number m of literals in the smallest cube of C.
Furthermore, as the path for each cube is independent, this solution has no sneak paths.
QED.

Theorem 4: The exact lower bound in the number of stacked switches (or switches
in series) in the longest PUN path of a logic function f is given by m, the number of
literals in the smallest cube in any prime irredundant cover C for the on-set of function
f.

Proof: Immediate Corollary of Theorems 2 and 3, and univocally defined as
consequence of Theorem 1. QED.

Definition 3: A PDN path connects the output of the cell to the GND (logic-0)
reference, through a set of serially connected switches.

Theorem 5: Given a function f, it is not possible to have a cell whose longest PDN
path has fewer switches than m, the number of literals in the smallest cube of any prime
irredundant cover C for the off-set of function f.

Proof: The proof is similar to that of Theorem 2. QED.

Theorem 6: Given a function f, it is possible to produce a cell where the longest
PDN path has m switches in series, where m is the number of literals in the smallest
cube in a prime irredundant cover C for the off-set of function f.

Proof: The proof is similar to that of Theorem 3. QED.

Theorem 7: The exact lower bound in the number of stacked switches in the longest
PDN path of a logic function f is given by m, the number of literals in the smallest cube
in any prime irredundant cover C for the off-set of function f.

Proof: Immediate corollary of Theorems 5 and 6, and univocally defined as
consequence of Theorem 1. QED.

3.4 Evaluating the lower bound

At first, it may seem too time-intensive to calculate the lower bound for candidate
functions, as it is necessary to calculate two prime ISOPs (Irredundant Sums-of-
Products). However, as one evaluate only the PUN and PDN stacks inside cells, the
evaluation process is not a critical step because it is easy to obtain prime ISOPs when
the number of variables is small. For this purpose a BDD-based ISOP function
(MINATO, 1996) may be used.

For the sake of simplicity, next Chapter will extract the ISOPs used to determine the
lower bound for the number of transistors in PUN and PDN stacks using the well-
established tabular method so called Quine-McCluskey (QUINE, 1955; MCCLUSKEY,
1956; MICHELI, 1994).

3.5 Consequences and Applications

This Section presents consequences and applications of the lower bounds introduced
in previous Sections.

35

3.5.1 Lower bound impact analysis

For a better understanding of the impact of the lower bound theory for stacked
switch paths length, some illustrative examples are presented.

Example 2: Consider a function f given by equation dcacbbaf  . The
minimum covers for the on-set and the off-set of this function are:

dcacbbaseton  (3.3)

cbdbcabasetoff  (3.4)

The smallest cube in the on-set is dca  , so the lower bound for the number of
stacked transistors in the PUN is three. The cubes in the off-set are all the same size,
and the lower bound for the number of stacked switches in the PDN is two. This way
the cell corresponding to the function f is a 3-2 cell, when mapped with the constructive
method proposed in the next Chapter. It could also be a 2-3 cell, if the function is
inverted and an inverter is added to the cell output.

Example 3: Recall the function in Example 1, the carry-out of a full adder. Prime
irredundant covers for the on-set and off-set are given by the following equations.

cbcabaseton  (3.5)

cbcabasetoff  (3.6)

It is easy to see that the lower bounds for the carry-out in a full adder are two switches
for both the pull-up and pull-down planes. This is consistent with the classic 2-2 cell for
carry-out generation presented in the cover of the classic Weste-Eshraghian book
(WESTE, 1993).

Example 4: What is the minimum number of transistor in series to implement the
function c3? The minimum covers are given by the following equations.

001200120012

001211211222

babbbaabbaba

baaababbaabaseton




 (3.7)

012012012

012112012012

01201211222

bbbabbbab

aabbabbbaaba

baaaaabaabasetoff






(3.8)

Equation (3.7) has 4 literals in the smallest cube. Equation (3.8) has 3 literals in the
smallest cube. This way, the circuit presented in Fig. 2 cannot be designed with shorter
transistor chains, as it is clear that minimum transistor chain version of c3 is either a 3-4
cell or a 4-3 cell, depending on polarity assignment. This is the main goal of the lower
bound proposed here, to verify and ensure that performance is not being lost due to the
misuse of cells with excessively long transistor stacks. The CSP implementation from
equation (3.7) would be 4-7 cell, while the CSP implementation from equation (3.8)
would be a 3-11 cell. The PTL cell would be a 6-6 cell.

36

3.5.2 Lower bound and general PTL styles

Notice that the lower bounds defined here apply to general PTL styles, due to the
definition of PUN and PDN paths in this work. In the following it is treated a pitfall
counterexample.

Example 5: Consider a 2-input AND function given by equation ab. The on-set and
off-set prime irredundant covers are given by the following equations.

baseton  (3.9)

basetoff  (3.10)

From these equations, this cell should be implemented as a 1-2 cell. However, the
network in Fig. 3.5 implements a 2-input AND with (apparently) only one transistor for
PUN and PDN. The pitfall in this counterexample network is that it ignores the
definition of PUN and PDN paths (Definitions 2 and 3). The path from drain input b to
the output out is not a valid pull-up or pull-down path as node b is not a power supply
(VDD or GND). As node b may assume both logic values, at least one switch is necessary
to connect/disconnect it to VDD as well as to GND. This extra switch should be added to
the length of the longest PUN and PDN paths. As a consequence, the lower bound is
still valid, according to the given Definitions (2 and 3) of PUP and PDN paths, as the
cell in Fig. 3.5 becomes a 2-2 cell, which is larger than the 1-2 lower bound for this
function.

For completeness, it is presented the following Theorem for the general case where
PTL with drain inputs are admitted, though as it will soon be obvious, this is not a
practically useful result.

Theorem 8: In a general PTL topology, where drain inputs are admitted, every
circuit may be synthesized with cells with at most one switch in series.

Proof (by construction): If a cell (set of switches S) has n > 1 switches in series,
partition the set of switches S in two sets S1 and S2 such that S1 has only one switch in
series and S2 has n-1 switches in series. Repeat the procedure until every cell in the
circuit has only one switch in series. QED.

Observation: Theorem 8 is correct under its assumptions, but it is not very useful
from the electrical point of view, as it ignores the (lack of) strength of the signals in the
drain inputs of PTL logic. The Theorems presented in Section 3.3, with PUN and PDN
paths starting at strong power supplies are more practical for real circuits.

Figure 3.5: A small PTL example with drain inputs.

37

3.5.3 Lower bound and general non-SP logic styles

It is important to notice that the way the lower bound was derived is independent
from circuit topology and may be applied to any transistor network. This includes the
non-SP (non-series/parallel) ones presented as “minimal networks” in (GREA, 1958)
and (NINOMIYA, 1965). For instance, the same analysis may be applied to bridge-
based circuits, as illustrated through the following example.

Example 6: Consider the bridge-based circuit in Fig. 3.6. The PUN and PDN paths
are listed in Table 3.3, as well as the associated cubes. Some cubes do not contribute to
the cell functionality, so that they may be ignored in the on-set and off-set covers given
by equations (3.11) and (3.12). Notice that equations (3.11) and (3.12) are logic
equivalents to equations (3.4) and (3.3) respectively, from Example 2. Equations (3.3)
and (3.4) represent the lower bound for this logic function, as they are prime
irredundant cover. The bridge circuit does not respect the lower bound and this way

some paths (T1-T4-T6) will contribute with non-prime cubes (bca ). This way, the
cell in figure is topologically a 3-4 cell and logically a 3-3 cell. Both possibilities are
worst than the optimal 2-3 cell presented in Fig. 4.1.b for this function.

bdbcbcacaseton  (3.11)

dcabcabcsetoff  (3.12)

Table 3.3: Pull-up and pull-down paths for the bridge-based network shown in Fig. 3.6.

Type Transistors Cube

Pull-up

T1-T5 ca 

T1-T4-T6 bca 

T2-T4-T5 ccc  (does not affect functionality)

T3-T4-T5 ccd  (does not affect functionality)

T2-T6 bc 

T3-T6 bd 

Pull-down

T7-T10 bc 

T7-T9-T11-T12 dccc  (does not affect functionality)

T8-T9-T10 bca 

T8-T11-T12 dca 

38

Figure 3.6: Bridge based 3-3 cell for function f from Example 2.

Notice that the analysis used to derive the lower bound is independent of circuit
topology. Therefore the lower bound hold for every switch network independently of
the chosen topology (SP, PTL, NCSP, bridge-based or non-planar topologies).

3.5.4 Applicability and compatibility with decomposition methods

The introduced lower bound has other applications, which include: 1) the evaluation
of the quality of cells generated by different methodologies; and 2) the guidance for
functional decomposition based technology mapping methods (BUCH, 1997; HSIAO,
2000; SHELAR, 2001; SCHOLL, 2001; LINDGREN, 2001; SHELAR, 2002; ROY,
2005), where the lower bound may be used to evaluate the complexity and the
feasibility of different alternative sub-functions.

Another important conclusion is that, due to the fact that PTL logic exceeds the
lower bound frequently, many PTL circuits and synthesis tools may benefit from the
substitution of PTL style cells for NCSP cells that respect the introduced lower bound.
In this sense, the lower bound and the NCSP topology are compatible with the
decomposition methods mentioned. As PTL and CSP are widely used, the use of the
NCSP topology proposed in this paper may imply a significant impact in the design of
high performance integrated circuits.

3.5.5 Factorization and stacked transistors

The factorization (BRAYTON, 1982; BRAYTON, 1984; HACHTEL, 1996) does
not affect the number of transistors in series. However, it affects the number of parallel
branches in a network. As a consequence, factorization may reduce the number of
transistors in series in the dual of a series/parallel network. Consider the example given
by the following on-set and off-set equations:

39

001200120012

00111211222

babbbaabbaba

baababbaabaseton





(3.13)

012012012

012112012012

01201211222

bbbabbbab

aabbabbbaaba

baaaaabaabasetoff







(3.14)

Equation (3.13) has four literals in the smallest cube. Equation (3.14) has three
literals in the smallest cube. This way, the transistor network for equations (13) and (14)
is either a 3-4 cell or a 4-3 cell depending on polarity assignment. Without factorization,
the series/parallel implementation from equation (3.13) would be 4-7 cell, while the
series/parallel implementation from equation (3.14) would be a 3-11 cell. The equation
(3.14) can be factorized into equation (3.15). Equation (3.15) may be used to implement
a complementary series/parallel transistor network that respects the lower bound of
Theorems 1 and 2:

)22())11()00(11()22(bababababasetoff 
(3.15)

In the example above, the use of factorization allowed to achieve a series/parallel
implementation that respects the lower bound. However, there are examples in which
factorization may reduce the overall number of transistors, but it will not be sufficient to
guarantee that the lower bounds of Theorems 2 and 5 are achieved with CSP
implementations.

3.5.6 Unawareness of lower bound in the number of stacked transistors

Even if the lower bound in the number of stacked transistors presented by Theorems
2 and 5 seems rather obvious, this fact is largely ignored in the current literature, as it is
illustrated by Table 3.4. Methods presented in (SHELAR, 2003), (BUSH, 1997) and
(YANG, 2002) decompose functions whose PUN and PDN chains would allow them to
be implemented as a single cell with timing and power advantages. Methods presented
in (SCHOLL, 2000), (AVCI, 2003), (JIANG, 2001) and (POLI, 2003) present drawings
of functions with non-optimal transistor stacks. The transistor count advantage obtained
by (BUCH, 1997) is due to the use of NMOS only planes (conducting ones). The same
is true for (SHELAR, 2005) and (SCHOLL, 2000), even if they lose in the transistor
count. The low transistor count of (JIANG, 2001) is due to the use of drain inputs,
which may lead to weak signals. The transistor count for functions g and h in (YANG,
2002) is combined because they have shared logic.

40

Table 3.4: Unawareness of the lower bound (#TR – number of transistors).

 Previous papers Lower bound
Reference Fig. PUN PDN #TR PUN PDN #TR

(SHELAR, 2005) #2 6 6 30 3 4 22
(BUCH, 1997) #9.a 4 4 18 3 4 22

(SCHOLL, 2000) #2 3 3 14 2 2 10
(AVCI, 2003) #2 3 3 16 2 2 12

(JIANG, 2001) #10 4 4 8 2 2 10
(POLI, 2003) #6 4 4 8 3 3 22

(YANG, 2002) #14.a(g) 5 5 32 4 4 32
(YANG, 2002) #14.a(h) 5 5 16 3 3 16

3.6 Cell Enumeration

A table that is recurrently used to describe the number of logic functions with an
exact maximum number of PMOS and NMOS transistors in series is shown in Table
3.5. This table is implicitly used for most methods aiming the use of large libraries,
meaning that what is exploited is the universe of topologically complementary
series/parallel gates presented in Table 3.5. The construction of Table 3.5 (DETJENS,
1987) has the underlying assumption of considering only negative-unate functions. The
choice of negative-unate functions is justified by the fact that Complementary CMOS
gates are negative gates by nature. The computation of the number of stacked transistors
is made in a series/parallel association, due to the easy of computation.

Another common enumeration of feasible functions to exploit large libraries is a
limitation in the number of inputs of the logic function. The huge number of functions is
reduced by employing the equivalence under permutation of inputs – P-class
equivalence – or equivalence under permutation of inputs and input/output negation –
NPN-class equivalence – (SASAO, 1999). A cell in a library is capable of implementing
all logic functions equivalent under input permutation. That means the same cell is able

to implement functions cbaf  and bcaf  , even if they are different functions.

Table 3.5: Number of functions with limited stacked transistors.

 Number of Stacked PMOS Transistors
 1 2 3 4

Number 1 1 1 1 1

of Stacked 2 1 4 10 23

NMOS 3 1 10 58 285

Transistors 4 1 23 285 2798

Table 3.6: Number of functions, P- and NPN-classes until 4 inputs.

of inputs 1 2 3 4

of functions 4 16 256 65536

of P-classes 4 12 80 3984

of NPN-classes 2 4 14 222

41

3.6.1 Orthogonality of Enumerations

The enumerations presented in Tables 3.5 and 3.6 are orthogonal, in the sense that
they are produced using different criteria. Fig. 3.7 illustrates this idea, by showing the
number of common functions between the 3503 functions with 4 or less stacked
transistors in Table 3.5 (3503 is the sum of all the numbers in Table 3.5) and the 3984
P-classes (SASAO, 1999) of Table 3.6; there are only 17 common functions. This
happens because 3486 out of 3503 functions have more than four inputs. The same
comparison is made for the 222 NPN-classes of Table 3.6. Again, the intersection
between the two sets is 17 functions, under the supposition that negative unate functions
will have the preference to represent their NPN-class. Notice that Table 3.5 refers only
to negative-unate functions, while Table 3.6 has no restriction on polarity (positive- or
negative-unate, as well as binate functions are allowed). To have a more complete
library, both categories should be considered together. The merit of the evaluation
method from Theorems 2 and 5 is that it is able to detect correctly the costs for the
functions belonging to the union of all the sets represented in Fig 3.7.

Figure 3.7: Relationship between enumerations.

3.6.2 Updating number of functions with limited stacked transistors

The seven functions listed in Table 3.5 for the case of a maximum of 2 NMOS and 2
PMOS transistors in series are the following:

af  , baf  , baf  , cbaf  , cbaf )(,)()(dcbaf  , dcbaf  .

It happens because the construction of Table 3.5 considers only CSP networks. The
lower bound presented in Theorems 2 and 5 has smaller value for some functions, as it

is the case of functions cbcabaf  and dbcabaf  . This way, there are
in fact 6 negative unate functions with exactly 2 transistors in series. The extra unate P-
classes obtained by considering Theorems 2 and 5 for all the 6-input functions are
presented in Table 3.7. This work limits the search of unate functions to 6-input
functions due to the complexity of the method to find all P-equivalent classes. The
functions in Table 3.7 are not listed in Table 3.5, once that this is a huge set of possible
functions that has been ignored so far.

42

Table 3.7: Number of extra negative-unate P-classes with
limited stacked transistors, considering Theorems 2 and 5.

 Number of Stacked PMOS Transistors
 1 2 3 4

Number 1 0 0 0 0

of Stacked 2 0 +2 +13 +62

NMOS 3 0 +13 +498 +2897

Transistors 4 0 +62 +2897 +2222

3.6.3 Binate Function Modeling

As an effect of the method for computing stacked transistors described by Theorems
1 and 2, the computation of transistors in series can also be executed for functions that
are binate, leading to a correct estimation of the number of serial transistors needed. The
case of binate functions cannot always be reduced to the unate case were each polarity
of a input is considered a different variable.

For instance, consider the network for a 3-input XOR presented in Fig. 3.8. If this
network is considered as a network where a and a (b and b , c and c) are considered
distinct variables, the output could connect to VDD and GND at the same time. That
means that Tables 4 and 6, when considering only unate functions, discard useful
implementations of binate functions. This is the case of the 3-input XOR, implemented
using CMOS from BDDs (POLI, 2003) of Fig. 3.8, which could be used to calculate the
sum of three bits. It is not feasible as a single unate gate.

Table 3.8 presents the number of functions, with no polarity restrictions and limited
number of transistors in series, considering Theorems 2 and 5. For Table 3.5 the search
was limited to 4-input functions due to the complexity of the method.

Figure 3.8: Transistor implementation for a 3-input XOR.

43

Table 3.8: Number of 4-input binate NPN-classes that would not be implemented with
CSP logic.

 Number of Stacked PMOS Transistors
 1 2 3 4

Number 1 0 0 0 0

of Stacked 2 0 0 0 0

NMOS 3 0 4 39 0

Transistors 4 0 2 47 31

44

4 NCSP LOGIC STYLE

4.1 Introduction

In the previous Chapters it was demonstrated that the logic styles currently available
and its associated constructive method do not take into consideration the lower bound
for the number of transistors in series. In this Chapter it is presented in detail the
constructive method for a novel logic style where both PUN and PDN respect the lower
bound fully described on Chapter 3. As it is about to be demonstrated, respecting such
constraint in the number of transistors in series requires sometimes PUN and PDN not
to be topologically complementary, although it is still logically complementary.
Henceforth, this work refers to the new logic style and its constructive method as Non-
Complementary Series/Parallel (NCSP) logic style.

4.2 Constructive method

The constructive method for a NCSP cell was detailed in the proof of Theorems 3
and 6. As an example, consider the resulting cell for the function f in Example 2,
presented on Chapter 3. The NCSP cell has the PUN derived from the on-set equation
(hence the longest pull-up path has 3 switches) and the PDN derived from the off-set
equation (thus the longest pull-down path has 2 switches), as it may be observed in Fig.
4.1.a. As the on-set and the off-set may be interchanged by inverting the function and
adding an inverter at the output, it is always possible to use the smaller constraint in the
pull-up network. This is desirable because PMOS transistors are more resistive than
NMOS ones. The NCSP network considering the inverted version of function f is shown
in Fig. 4.1.b.

One must notice that the networks could have the transistors count reduced by
factorization (BRAYTON, 1982; BRAYTON, 1984; HACHTEL, 1996). Nevertheless,
the number of stacked transistors would not change at all.

45

out

GND!

VDD!

_
a
_
b

_
a
_
c

_
b
_
d

_
b
_
c

_
a
_
b

_
b
_
c

_
c
_
d

_
a

out

GND!

VDD!

b c

a a

a b

b c

a

c

d

d

b

c

b

 (a) 3-2 cell for direct f. (b) 2-3 cell for inverted f.

Figure 4.1: NCSP cells respecting the lower bounds for function f from Example 2.

4.3 Comparison with a CSP topology

A Complementary Series/Parallel (CSP) derived only from the on-set equation
would result in a 3-3 cell, as shown in Fig. 4.2.a. Similarly, if a CSP cell were derived
exclusively from the off-set equation, the result would be the 2-4 cell illustrated in Fig.
4.2.b. Thus, the use of the lower bound will produce a cell that has shorter pull-up and
pull-down networks than CSP. Based on Example 2, it is possible to see that the NCSP
topology propose hereby may be used to reduce the length of pull-up and pull-down
longest chains when implementing cell level networks.

(a) 3-3 cell from on-set equation (b) 2-4 cell from off-set equation

Figure 4.2: CSP cells not respecting the lower bounds for function f from Example 2.

4.4 Comparison with a PTL topology

The Pass Transistor Logic (PTL) realization of the cell from Example 2 would be a
4-4 cell, independently of the BDD variable order used to generate the PTL network
(NAGAYAMA, 2004). One possible PTL network is shown in Fig. 4.3. This way, the
use of the lower bound will produce a cell that has smaller pull-up and pull-down

46

networks than PTL. Based on Example 2, it is possible to see that the NCSP proposed
may be used to reduce the length of pull-up and pull-down chains when implementing
cell level networks.

Figure 4.3: 4-4 PTL cell not respecting the lower bounds for function f from Example 2.

4.5 Algorithm for generating NCSP topologies

This Section depicts the NCSP logic style topology generation algorithm. The
diagram in Fig. 4.4 represents the flow of the algorithm. In order to fully illustrate how
the algorithm works, a pair of examples will be presented. In both examples, where
NCSP networks are generated from different logic functions, the CSP counterparts will
also be presented for comparison.

Figure 4.4: NCSP logic style topology generation algorithm.

47

Example 7: Consider the example function shown in Fig. 4.5. An integer number
will be used to represent the function, most of the time in hexadecimal radix. This
number is built grouping in 4-bit sets from the output values of the truth-table. In the
example presented in Fig. 4.5, the output compounds the integer
(0000.0001.1001.0111)2 = (0197)16.

A B C D OUT
0 0 0 0 1
0 0 0 1 1

7
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0

9
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0

1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0

0
1 1 1 0 0
1 1 1 1 0

Figure 4.5: Truth-table for the function (0197)16.

In Fig. 4.6 it is shown a 5-4 bridge-based circuit (GREA, 1958; NINOMIYA, 1965)
for the function in Fig. 4.5. Fig. 4.7 shows a 4-4 BDD-based PTL network
corresponding to the logic function (0197)16.

Figure 4.6: Bridge-based 5-4 cell for function (0197)16.

48

Figure 4.7: BDD-based 4-4 PTL for function (0197)16.

Another way to implement a logic function is by extracting a representative logic
equation and mapping it into a series/parallel switch network. The prime irredundant
equations for the function (0197)16 can be obtained by two-level minimization
(BRAYTON, 1984). The logic equation (4.1) represents the on-set of the function
(0197)16 while the logic equation (4.2) represents the off-set for the same function.

dcbdcbadcadbacba
seton

f 


, (4.1)

bacadadcbdcbdcb
setoff

f 


. (4.2)

Figures 4.8 and 4.9 show Complementary Series/Parallel (CSP) CMOS networks for
the function (0197)16. Fig. 4.8 presents the networks based on the on-set equation and
Fig. 6 presents the networks based on the off-set one. For each CSP circuit in Figures
4.8 and 4.9 it is derived one plane from the equation and the other one as its topological
complement.

49

(a) 5-4 cell from on-set equation (direct
polarity).

 (b) 4-5 cell from on-set equation (inverted
polarity).

Figure 4.8: CSP CMOS cells obtained from the on-set equations of function (0197)16.

(a) 6-3 cell from off-set equation (direct
polarity).

 (b) 3-6 cell from off-set equation
(inverted polarity).

Figure 4.9: CSP CMOS cells obtained from the off-set equations of function (0197)16.

50

In order to reduce the number of switches in the networks both on-set and off-set
equations ((4.3) and (4.4) respectively) can be factorized (BRAYTON, 1982;
BRAYTON, 1984; HACHTEL, 1996). Possible factorizations for the equations (4.1)
and (4.2) are demonstrated as follows by (4.3) and (4.4) respectively.

        dcbdcdcbdcba
seton

f 


, (4.3)

        dcbdcdcbdcba
setoff

f 


. (4.4)

This factorization leads to the optimized networks presented in Figures 4.10 and
4.11.

(a) 3-6 cell from on-set equation

(direct polarity).
 (b) 6-3 cell from on-set equation

(inverted polarity).

Figure 4.10: CSP CMOS cells (factorized) for function (0197)16 – on-set equation.

51

(a) 5-4 cell from off-set equation

(direct polarity).
 (b) 4-5 cell from off-set equation (inverted

polarity).

Figure 4.11: CSP CMOS cells (factorized) for function (0197)16 – off-set equation.

In the methodology proposed hereby and illustrated in Fig. 4.1, one needs to
generate PUN and PDN using a pair of on- and off-set equations which respect the
lower bound for the number of transistors in series. The lower bound must be evaluated
for both on- and off-set extracted from the function under evaluation. Hence, the
evaluation of lower bounds requires the construction of the covering tables for both on-
and off-set. Fig. 4.12 shows the covering table for the on-set of the function presented
(0197)16 while Fig. 4.13 shows the covering table for the off-set of the same function.
The process of finding the prime implicants and building the covering table is well
known as Quine-McCluskey minimization, and is further described in (QUINE, 1955;
MCCLUSKEY, 1956). In the covering tables, the rows represent the prime implicants
for the on-set/off-set logic under evaluation, while the columns represent the
minterms/maxterms in the on-set/off-set equation.

dcba 
cba 
dcb 
dca 
dba 

Figure 4.12: Covering table obtained from the on-set of function (0197)16.

52

dcb 
dcb 
dcb 

ba 
ca 

 da 

Figure 4.13: Covering table obtained from the off-set of function (0197)16.

Looking at the covering table in Fig. 4.12 it is possible to notice that the cube with

more literals (dcba ) cannot be removed from the final cover as it is an essential
prime implicant (i.e. it is the only prime implicant which covers the minterm 7). Hence,
the lower bound for the number of stacked switches for the on-set is 4 (the number of
literals in the cube). For covering table in Fig. 4.13, the lower bound evaluated is 3.
Hence, the circuit with PUN and PDN respecting the lower bounds will be 3-4 or 4-3.

One must notice that none of the implementations previously presented in this
example have minimum length switch stacks. Worse than that, some circuit
implementations like the ones in Figures 4.8, 4.9, 4.10 and 4.11 are not even feasible
due to the long transistor stacks.

Fig. 4.14 shows implementations of minimum length transistor stacks for the
example function (0197)16. The circuit on Fig. 4.14.a was generated based on the
equation (4.4) for the PUN and on the equation (4.3) for the PDN. Using the same
equations with inverted polarity for the inputs and output lead us to the circuit in Fig.
4.14.b. The circuit in Fig. 4.14.b might be more desirable than the one in Fig. 4.14.a, as
it has a smaller path in the PUN, more resistive than the PDN for same-length paths.

(a) 4-3 cell (direct polarity). (b) 3-4 cell (inverted polarity).

Figure 4.14: NCSP CMOS cells for function (0197)16.

53

The work in (PIGUET, 1984; PIGUET 1994; PIGUET 1995) also presents a
technique of generating circuits using non-complementary pull-up/down networks. The
circuits generated with such technique are so called branch-based (Section 2.4) due to
the fact that the cubes of the on-set and off-set equations are directly translated into
branches in the pull-up/down planes. However, this technique is not concerned with the
length of transistor chains.

Example 8: Now it will be used another function to better exemplify the lower
bound evaluation used to choose the correct networks for minimum transistor stacks.
Fig. 4.15 shows the truth-table of a 5-input function whose representative hexadecimal
integer is (F1D12F33)16.

E = 0 E = 1

A B C D OUT A B C D OUT
0 0 0 0 1 0 0 0 0 1
0 0 0 1 1

3
0 0 0 1 0

1
0 0 1 0 0 0 0 1 0 0
0 0 1 1 0 0 0 1 1 0
0 1 0 0 1 0 1 0 0 1
0 1 0 1 1

3
0 1 0 1 0

D
0 1 1 0 0 0 1 1 0 1
0 1 1 1 0 0 1 1 1 1
1 0 0 0 1 1 0 0 0 1
1 0 0 1 1

F
1 0 0 1 0

1
1 0 1 0 1 1 0 1 0 0
1 0 1 1 1 1 0 1 1 0
1 1 0 0 0 1 1 0 0 1
1 1 0 1 1

2
1 1 0 1 1

F
1 1 1 0 0 1 1 1 0 1
1 1 1 1 0 1 1 1 1 1

Figure 4.15: Truth-table for the function (F1D12F33)16.

The prime irredundant equations for the function (F1D12F33)16 obtained by two-
level minimization are (4.5) for the on-set and (4.6) for the off-set.

edcbdcaedacbadba
seton

f 
 , (4.5)

dcbdcaecaedbadcaecba
setoff

f 
 . (4.6)

These equations were generated aiming a smaller set of cubes. However, if one
evaluates the lower bound just looking for the cube with more literals it will be wrongly
assumed that the lower bounds for the function (F1D12F33)16 should be 4-4. However,
the covering table for the on-set of such function (Fig. 4.16) shows that the cube (prime
implicant) with more literals on the equation (4.5) can be removed without losing the
cover of all minterms. In equation (4.7) it is shown an equivalent representation for
equation (4.5) where the cube with four literals can be replaced by a pair of cubes with
only three literals.

cbaedadcaedacbadba
seton

f 
 . (4.7)

54

The off-set covering table in Fig. 4.17 shows that the same reduction cannot be done
to the off-set equation (4.6), once that the cubes with more literals are essential prime
implicants. It means that they cannot be removed from the final solution and that the
evaluation of lower bounds for the function (F1D12F33)16 should deliver 3-4/4-3
circuits.

985410

XX

XXXX

XX

XX

XXXX

16131110

XX

X

X

XXX X

24232220 31302928

X

X

X

X XXX

XXX X

XXX

XX XX

X

X

cba 
dca 
edc 
edb 

eda 
edcb 

cba 
eca 
eda 
dca 

dba 

Figure 4.16: Covering table obtained from the on-set of function (F1D12F33)16.

dca 
dcb 
dba 

ecba 
eca 

dca 

edba 

Figure 4.17: Covering table obtained from the off-set of function (F1D12F33)16.

The equations (4.7) (on-set) and (4.6) (off-set) can be further factorized and possible
results are provided by equations (4.8) and (4.9), respectively.

     edbdcacbbeda
seton

f 
 , (4.8)

    decedbadcbdebca
setoff

f 
 . (4.9)

In Figures 4.18 and 4.19, circuits using the regular CSP CMOS approach are shown
using the factorized equations in (4.8) and (4.9), respectively. The pull-up/down
networks of these circuits were used in Fig. 4.20 to generate NCSP circuits with
minimum length transistor chains.

55

(a) 6-3 cell from on-set equation

(direct polarity).
 (b) 3-6 cell from on-set equation (inverted

polarity).

Figure 4.18: CSP cells obtained from the on-set equation of function (F1D12F33)16.

(a) 4-6 cell from off-set equation

(direct polarity).
 (b) 6-4 cell from off-set equation

(inverted polarity).

Figure 4.19: CSP cells obtained from the off-set equation of function (F1D12F33)16.

56

(a) 4-3 NCSP cell from equation (direct
polarity).

 (b) 3-4 NCSP cell from equation (inverted
polarity).

Figure 4.20: NCSP cells for function (F1D12F33)16.

4.6 Other Lower-Bound-Based Style

The constructive method for generating transistor-level networks presented hereby is
the first one which follows the lower bound for the number of stacked transistors for
every desired logic gate. Another constructive method which also respects the
mentioned lower bound is presented in (ROSA, 2007), where instead of translating
factorized SOPs into series/parallel transistor configurations, it constructs disjoint
transistor networks based on BDDs (POLI, 2003; ROSA, 2006). It has been reported for
this method smaller transistor counts and smaller logical effort (see Table 5.5).

57

5 RESULTS

5.1 Introduction

The electrical evaluation of NSCP gates has been carried out using the commercial
cell characterization tool Nangate Cell Characterizer™ (NANGATE, 2007), which
provides a full characterization of a cell library described in Liberty format, with
associated SPICE or GDS-II files describing each cell. The logic functions were
described as SPICE netlists, and the transistors were straightforwardly sized for NCSP,
CSP and PTL cells. The sizing strategy used for every cell in this Chapter is the same.
In such strategy, transistors were equally sized and a PMOS/NMOS-ratio was also
considered when sizing the PUN transistors. The typical process parameters from
TSMC 0.13µm CMOS (TSMC, 2007) has been taken into account in the
characterization, realized for 16 different conditions: four input slopes versus four
output loads.

5.2 Electrical Characterization

5.2.1 ‘Black-Box’ cell comparison

In the first analysis, the logic cells were considered as ‘black-box’ circuits, i.e. the
logic functions were implemented with different topologies, implying in some cases that
the addition or removal of input/output inverters were done. The set of cells used in this
first comparison is the set of all 4-input cells, represented through the set of 3984 P-
classes of 4-input functions (CORREIA, 2001), as depicted on Table 3.6.

5.2.1.1 CSP Generation

To generate a CSP implementation for a given function it is necessary to choose
between the equations derived from the on-set and from the off-set of the function. The
choice of the Boolean expression that closely respects the lower bound is slightly more
complicated in some cases. For instance, being PU_length and PD_length the longest
transistor stacks in the pull-up and pull-down networks respectively, consider the
following two examples.

58

Example A: Lower Bound: PU_length=2, PD_length=3

off-set: PU_length=2, PD_length=6 [cbbcddbcaout )()(]

on-set: PU_length=3, PD_length=4 [))((dccdbadcbout ]

Example B: Lower Bound: PU_length=3, PD_length=4

off-set: PU_length=3, PD_length=5 [adcdcbdcdcbout )()()(]

on-set: PU_length=4, PD_length=4 [))()()((dcdcbdcdcbaout ]

To choose between on-set and off-set equations a criterion is necessary. Two
different criteria used hereby are described below.

CSP_1 Criterion: The equation whose pull-up respects the lower bound is chosen.
This is always possible as the polarity is changed to use the smaller stack as the pull-up.
This choice corresponds to the off-set equation for both examples above.

CSP_2 Criterion: Choose the equation with smaller difference between both
planes: min{PD_length - PU_length}. This choice corresponds to the on-set equation for
both examples above.

For both examples above, the solutions chosen by CSP_1 criterion are not feasible,
as they have more than four transistors in series. Out of the 3984 4-input P-classes, a set
of 118 cases present different but feasible topologies when using either CSP_1 or
CSP_2 criteria. The CSP_1 and CSP_2 versions for these cells have been characterized
and compared with each other. Fig. 5.1 presents the result of this comparison. The X-
axis shows the percentage differences in propagation delay, considering the CSP_1
criterion as the reference. The Y-axis presents the number of cases. It is possible to
observe that there is not a general winner between CSP_1 and CSP_2 criteria. Similar
behavior was also observed in terms of power dissipation and power-delay product. The
characterization of each gate was done using a 2fF output load (reference inverter
equivalent capacitance) and an input slope of 0.02ns.

Figure 5.1: CSP_1 (reference) and CSP_2 propagation delay comparison, number of
cells according to delay, power and PDP improvement (%).

59

5.2.1.2 NCSP Evaluation

Gates using the NCSP style presented herein were then compared to both CSP_1
and CSP_2 approaches. Only feasible CSP cells (i.e. with four or less serial transistors)
where the lower bound from Theorems 1 and 2 was not achieved were compared to
NCSP. This corresponds to a set of 758 different topologies for CSP_1 and to a set of
1513 different cells for CSP_2. This difference happens because CSP_2 tends to return
more feasible cells, as the PUP and PDN chain lengths difference is smaller.

In Fig. 5.2.a the sum of rise and fall propagation delay differences between NCSP
and CSP_1 is observed, for different input slopes and output loads. It also shows the
expected improvements for power dissipation and power-delay product. The X-axis is
given in percentage, being the positive values related to the NCSP gains, i.e. the
reduction in delay obtained using such new logic style. The comparison to CSP_2 is
shown in Fig. 5.2.b.

(a)

(b)

Figure 5.2: NCSP compared to (a) CSP_1 and (b) CSP_2: number of cells according to
delay, power and PDP improvement (%).

60

5.2.2 Unate Cell Comparison

The set of cells considered in such analysis includes only unate functions – each
input has a single polarity. Moreover, in order to focus in the main pull-up and pull-
down logic network building, this group of cells is only composed by gates without any
inversion of the input and output signals. The number of negative unate functions
initially identified is presented in Table 5.1 (#NUF). Another restriction to define the set
of cells for NCSP characterization and comparison to CSP was again the number of
stacked transistors in the PUN and PDN, limited to four transistors. Furthermore, the
functions whose CSP gate respects the ‘lower bound’ metric were also subtracted from
this group. As a result, the number of possible characterized and compared NCSP and
CSP implementations was reduced, as shown in Table 5.1 (#COMP). In this table is also
presented the average number of transistors per gate for both CSP (#TR_CSP) and
NCSP (#TR_NCSP) styles.

Table 5.1: Number of negative unate functions.

INPUTS #NUF #COMP #TR_CSP #TR_NCSP

1 1 – – –
2 2 – – –
3 5 1 10 10
4 20 8 12.8 12.8
5 171 53 15.4 15.7
6 9007 280 18.2 19.1

The improvements in propagation delay of NSCP compared to CSP are observed in
the graphs of Figs. 5.3 and 5.4. In Fig. 5.3 is shown the average delay gains (in
percentage, X-axis) obtained with 6-input NCSP cell implementation compared to CSP,
for four output loads (2fF, 5fF, 10fF and 20fF) and the input slope equal to 0.5ns. The
right extremity of X-axis means gains equal to or greater than 30%. The best case
attained around 45% of improvement. The Y-axis corresponds to the number of cells
with respective savings. As expected, reducing the number of stacked transistors, the
cell timing is also reduced. However, this assumption has not been verified for all cases.
The performance degeneration in some few exceptions can be explained by the
particular electrical arrangement, i.e. the transistor ordering and consequently the input
position. The simplified sizing strategy used for these simulations is another issue that
slightly reduces the accuracy of the results. However, it is expected for both CSP and
NSCP cells used on this comparison an equal benefit from an improved sizing strategy
as both are series/parallel circuits.

In Fig. 5.4 is presented the comparison of power dissipation, average delay, power-
delay product and average input load for 6-input cells. It corresponds to the
characterization with 0.02ns of input slope and 2fF of output load. It can be observed
the increasing in input load for some cases probably due to the factorization method
applied.

61

Figure 5.3: NCSP average delay improvement (%), X-axis, versus number of 6-input
cells, Y-axis, for different output loads and input slope of 0.5ns. X-axis right extremity

means ≥ +30%.

Figure 5.4: NCSP improvement (%), X-axis, versus number of 6-inputs cells, Y-axis:
power-delay product, average delay, power dissipation and average input load. X-axis

extremities mean ≥ ±30%.

5.2.3 Mapped Circuits Comparison

As it was presented in Table 3.7, when creating circuits which respect the lower
bounds of stacked transistors – like the NCSP ones – a much broader range of functions
can be implemented in a single gate. For any circuit, when it is not practical to
implement it due to too many transistors in series, its logic is split in order to achieve
multi-gate (multi-stage) implementations.

In this third step of the analysis, since this new CMOS logic style is able to build
more complex functions in a single gate, seven critical functions were identified and
implemented in NSCP and also mapped to multi CSP gate circuit using SIS Logic
Synthesis tool (SENTOVICH, 1992), in order to exemplify this issue. The Boolean
equations of such functions are the following:

62

))432()43)34(2(1(5

4321)))432()43)34(2(1(

))43)34(2()234(1(5(01

xxxxxxxxxx

xxxxxxxxxxxxx

xxxxxxxxxxxF







 (5.1)

))234(5432(1)43)34(2(5

)))234(5432()43)34(2(1(02

xxxxxxxxxxxxxx

xxxxxxxxxxxxxxF




 (5.2)

))542

)54)45(2(1(3)542(1)))542()54

)45(2(1())54)45(2()45(1(3(03

xxx

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxF







 (5.3)

))123(5321(4)32)23(1(5

)))123(5321()5)32()23(1((4(04

xxxxxxxxxxxxxx

xxxxxxxxxxxxxxxF





(5.4)

)))34(5()543(1(2))34(5(1))))34(5(

)543(1()1)543((2(05435

xxxxxxxxxxxxxxx

xxxxxxxxxxxxxF




 (5.5)

)2143

)34()12((5))2143)34()12((

)1234(5(0)12(43)34(216

xxxx

xxxxxxxxxxxxx

xxxxxxxxxxxxxxF







 (5.6)

))54)45(3()345(2(1)54)45(3(2

)1))54)45(3()345(2((05437

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxF




 (5.7)

For equations (5.1) to (5.7), three SIS libraries have been targeted: 33-4.genlib, 44-
3.genlib and 44-6.genlib. It resulted in the circuit sizes presented in Table 5.2. The total
number of transistors required in the function implementations was always less in the
NSCP approach. The NCSP gate schematic of function F1 (equation (5.1)) is depicted
in Fig. 5.4. The multi-stage equivalent circuit using CSP gates is presented in Fig. 5.5.
Table 5.3 shows the number of transistors in series when trying to implement CSP
circuits for functions F1 to F7 in a single gate. The same table also presents the number
of stacked transistors for the NCSP implementations – all respecting lower bound –
used in the electrical evaluation.

The electrical performance comparison between NCSP and these three CSP circuit
versions is shown in Table 5.4. The delay and power consumption improvements in
these cases are even more significant, as it is expected when the number of gates is
reduced in the circuit implementation and no important degradation is caused by a
reasonable number of stacked transistors in the gates. Power-delay product attained up
to 75% of gain for the function F3 (equation (5.3)). Again, the accuracy of the results
may be reduced due to the lack of a more careful transistor sizing in the NCSP gates.

63

Table 5.2: Size of CSP multi-gate mapped circuits:
#TR – number of transistors; #CS – number of cells.

NCSP 33-4.genlib 44-3.genlib 44-6.genlib
#TR #CS #TR #CS #TR #CS #TR

F1 63 11 74 11 82 10 74
F2 65 13 82 9 78 7 70
F3 56 13 70 7 64 11 76
F4 58 13 80 9 74 9 74
F5 56 11 72 9 72 9 68
F6 65 15 92 6 74 6 74
F7 60 9 70 7 68 7 68

Table 5.3: Number of transistors in series for single/gate implementation of CSP and
NCSP approaches.

 CSP_ona CSP_offb NCSP
 p-n (or n-p) p-n (or n-p) p-n (or n-p)

F1 14-4 (or 4-14) 17-3 (or 3-17) 3-4 or (4-3)
F2 15-4 (or 4-15) 16-3 (or 3-16) 3-4 (or 4-3)
F3 14-4 (or 4-14) 14-4 (or 4-14) 4-4
F4 15-4 (or 4-15) 15-4 (or 4-15) 4-4
F5 14-4 (or 4-14) 14-4 (or 4-14) 4-4
F6 16-3 (or 3-16) 15-4 (or 4-15) 3-4 (or 4-3)
F7 17-3 (or 3-17) 14-4 (or 4-14) 3-4 (or 4-3)

(a) CSP circuit generated from the factorized on-set equation.
(b) CSP circuit generated from the factorized off-set equation.

Table 5.4: NCSP single-gate improvement (%) compared to CSP multi-gate mapped
circuits. a

33-4.genlib 44-3.genlib 44-6.genlib
Td PDP Td PDP Td PDP

F1 4 11 17 21 18 25
F2 -5 7 -16 -6 5 -8
F3 9 35 50 25 66 75
F4 42 38 29 29 29 26
F5 17 13 11 09 25 6
F6 27 50 25 11 25 11
F7 47 21 49 20 49 20

(a) Worst cases: Td – delay propagation, PDP –power-delay product.

64

Figure 5.4: NCSP gate implementation of function ‘F1’.

(a)

[786059] =
!x2*!x1*!x3 +
!x2*!x1*!x0 +
!x2*!x1*!x4;

[786047] =
![786059]*![786174]*![786118]*![786119] +
![786059]*![786116]*![786118]*![786119] +
![786059]*![786174]*![786117] +
![786059]*![786116]*![786117] +
![786059]*![786174]*![786120] +
![786059]*![786116]*![786120];

[786057] =
!x2*!x0*!x3 +
!x2*!x0*!x1 +
!x2*!x0*!x5;

[786118] = !x2;

[786119] = !x1;

[786120] = !x3;

[786117] = !x0;

F1

[786046] =
![786057]*![786117]*![786118] +
![786057]*![786119] +
![786057]*![786120];

[786116] = !x4;

[786174] =
!x3*!x1 +
!x3*!x0 +
!x3*!x2 +
!x0*!x1;

q =
!x5*![786047] +
!x4*![786046];

(b)

65

(c)

Figure 5.5: CSP multi-stage implementation of function ‘F1’ targeting libraries
(a) 33-4.genlib, (b) 44-3.genlib and (c) 44-6.genlib.

5.3 Logical Effort

The method of logical effort (SUTHERLAND, 1999) is founded on a simple model
of the delay through a single logic gate. The model describes delays caused by the
capacitive load that the logic gate drives and by the topology of the logic gate. Clearly,
as the load increases, the delay increases, but delay also depends on the logic function
of the gate. Inverters, the simplest logic gates, drive loads best and are often used as
amplifiers to drive large capacitances. Logic gates that compute other functions require
more transistors, some of which are connected in series, making them poorer than
inverters at driving current. Thus a NAND gate has more delay than an inverter with
similar transistor sizes that drives the same load. The method of logical effort quantifies
these effects to simplify delay analysis for individual logic gates and multistage logic
networks.

The logical effort of a gate is defined itself as the ratio of the input capacitance of
the gate to the input capacitance of an inverter that can deliver the same output current.
Equivalently, logical effort indicates how much worse a gate is at producing output
current as compared to an inverter, given that each input of the gate may only present as
much input capacitance as the inverter (WESTE, 2006).

Estimating the delay of a single stage in a circuit can be done calculating the so
called delay effort of the gate. Additionally to the logical effort, the delay effort also
depends on the output capacitance by input capacitance ratio, the so called electrical
effort, and on a parasitic delay. The delay effort can be expressed by the following
equation:

d = g.h + p. (5.8)

In equation (5.8), g is the logical effort, h is the electrical effort, and p is the parasitic
delay of the gate when it drives a zero load.

For multi-stage circuits, the delay is obtained through the evaluation of the so called
path effort delay, which is expressed by the following equations:

66

D = N.F1/N + P , (5.8)

F = G.B.H , (5.9)

G = Πgi , (5.10)

B = Πbi , (5.11)

b = (Con-path+Coff-path)/Con-path , (5.12)

H=Cout/Cin , (5.13)

P = Σpi . (5.14)

The variables in the equations (5.8) to (5.14), are as follows:

 D – path delay effort: the minimum possible delay for a N-stage path.

 N – number of stages in a path;

 P – path parasitic delay: the sum of the parasitic delay of each stage in a path;

 G – path logical effort: the products of the logical efforts of each stage in a path;

 b – branching effort: is the ratio of the total capacitance seen by a stage to the
capacitance on a path;

 B – path branching effort: the product of the branching efforts along a path.

 H – path electrical effort: ratio of the output capacitance the path must drive by
the input capacitance presented by the path.

Evaluating the delay effort of single-stage and multi-stage logic gates arises some
important considerations when analyzing the gains presented on Table 5.4 in favor of
NCSP logic gates. Single-stage gates tend to present higher logical effort when
compared to the individual gates available into their multi-stage counterparts, as there is
more capacitance associated to each individual input. However, two parameters go
against multi-stage gates: 1) the logical efforts of each stage along a path are multiplied
by each other and 2) the branching effort, i.e. each stage may drive capacitances
presented in the on-path, as well the capacitances in the off-path.

Despite the limitations of logical effort, which is based on the linear delay model
(WESTE, 2006), it still works remarkably well for many practical applications as it is a
very fast, straightforward and reasonably accurate. It has been widely used in a variety
of application domains (STOK, 1999; HU, 2003; KARANDIKAR, 2004) as well as in
industry standard EDA synthesis tools (STOK, 1996; MAGMA, 2007; NANGATE,
2007).

Table 5.5 shows, among other metrics, the average logical effort obtained for all
3984 P-classes of 4-input functions implemented through six different transistor-level
construction techniques. The logical effort was calculated using a PMOS/NMOS-ratio
equal to 2, as it is seen in the examples in (SUTHERLAND, 1999). It can be seen that
the average logical efforts for the transistor-level constructions based on the lower
bound for the number stacked transistors – NCSP and CMOS LB (Lower Bound) from
BDDs (ROSA, 2007) – are significantly smaller than the ones calculated for other logic
styles.

67

Table 5.5: Comparison of six different methods for transistor-level network generation.

Metrics CSP_1 CSP_2 NCSP CMOS
from BDDsa

Opt. CMOS
from BDDsb

CMOS LB
from BDDsc

Σ transistors 75530 75456 75889 75774 73438 72307

Σ PU_length 11954 13084 11954 15538 14227 11954

Σ PD_length 17009 15931 14242 15538 15321 14242

Logical Effort
(average) 4.54 4.37 3.83 4.35 4.07 3.68

Functions not
respecting LB 2312 2312 0 3148 2373 0

Unfeasible
functions 1546 791 0 0 0 0

(a) (REIS, 1995) – (b) (POLI, 2003) – (c) (ROSA, 2007)

The logical effort for circuits based on the ‘lower bound’ is smaller because the base
sizing used for individual logic gates in the logical effort approach is done based on the
longest path between VDD/GND and the output a transistor belongs to. It means that the
smaller the stack lengths, the smaller the sizes of the transistors and, consequently, the
smaller the input capacitance and the smaller the logical effort.

68

6 CONCLUSIONS

This work presented a method to derive the exact lower bound for the number of
stacked switches needed to implement a logic function at the switch level. It was
demonstrated that the most used transistor topologies – pass-transistor logic (PTL) and
complementary series/parallel (CSP) – will not respect the presented lower bound for
most 4+ inputs logic functions. This was demonstrated through the sum of the lengths of
pull-up and pull-down longest transistor stacks for each cell in the critical path for
circuits mapped with 3- to 6-input logic functions. The impact of this overhead in the
number of stacked transistors in the delay of mapped circuits was evaluated through
SPICE simulations, and compared to the delay of NCSP networks proposed here. The
reduction of the length of pull-up and pull-down transistors stacks translates into better
timing for the NCSP approach. It is believed that the lower bounds presented here will
have a significant impact in the design of high performance integrated circuits using
methods like the one in (SHELAR, 2001) and (ROY, 2005), through the guidance for
the choice of better cell topologies. Note that the NCSP topology and the lower bounds
proposed here are valid and useful independently of the decomposition used (BUCH,
1997; SCHOLL, 2000; HSIAO, 2000; LINDGREN, 2001; SHELAR, 2001; SHELAR,
2002) and could possibly increase the speed of many circuits by simply exchanging the
switch-level cell networks in the critical paths with optimized versions.

The approach in (ROY, 2005) clearly states that the cell transistor network
generation is an important point in their performance oriented design flow. Their paper
shows examples that use complex cells with reduced pull-up and pull-down paths.
However, they make no explicit mention to the PUN and PDN stack length of the cells
as important parameters. This work is the first to explicitly and unequivocally address
the importance of these parameters, to the best knowledge of the author.

The new CMOS logic style (NCSP) presented here is very promising. It was shown
that the reduction of the number of stacked transistors can significantly improve
networks. Moreover, it was demonstrated that respecting the lower bounds for the
number of staked transistors while generating PUN and PDN make a much broader
range of circuits feasible, as depicted on Table 3.7. Single-by-single gate comparison to
standard CMOS topologies (CSP) has demonstrated the expected cell timing reduction.
More complex NCSP gates, not feasible in a single CSP one, presents even more
significant performance improvements that can be efficiently explored by logic
synthesis tools. Improved networks, like the ones in (ROSA, 2007) which also take
advantage of the lower bound theory may present even better results for some sets of
logic functions.

69

The availability of cells respecting the lower bound presented here suits very well
with library-free technology mapping which can explore a huge set of complex gates
and generate them on-the-fly when they are needed. The work in (MARQUES, 2007)
presents a DAG-based library-less technology mapping solution which considers the
theory presented on Chapter 3 in order to improve the speed of circuits by reducing the
number of stacked transistors in the critical path. It is important to highlight that the use
of library-free technology mapping is seen as a very important solution for the gap
between cell-based and full-custom designs. It is estimated that automated design flows
using fixed libraries deliver circuits slower by at least a factor of 6 and consume a larger
area at least by a factor of 10 (CHINNERY, 2002).

As presented by the graphs on Chapter 5, the NCSP cells are not the best choice for
every logic function. Both delay and power consumption on logic gates are mainly due
to both transistor channel resistance and node capacitance, and on NCSP cells one may
reduce the resistive paths between VDD/VSS and the output but they may also present
more capacitive nodes. A good example for this fact is the different implementations for
the function represented by equations (4.5), which does not respect the ‘lower bound’,
and (4.7), which respects the ‘lower bound’: the product edcb  (one and-stack of
four transistors) in equation (4.5) is replaced by the pair of products cbaeda 
(two and-stacks of three transistors) in equation (4.7). A good and straightforward way
of reducing both node capacitance and path resistance is to combine the Branch-based
logic with the lower bound theory. Finally, using a more appropriate transistor sizing
strategy might provide even better performance results for NCSP cells.

It was noticed that in terms of area, NCSP cells present reductions for some logic
functions as well as increased area for others, when compared with CSP. The difference
is small though. When comparing the total number of transistors for all 4-input P-
classes, as shown on Table 5.5, NCSP cells presents an increase of only 0.5%. Besides
that, the values on Table 5.5 consider that all 3984 P-classes implemented in CSP are
feasible, i.e. has less than four stacked transistors, which is not correct. When a CSP
function is not feasible in a single stage, it needs to be split into more stages, and for
each extra stage at least an extra pair of transistors needs to be accounted.

A strategic advantage of NCSP cells is that they can be perfectly mixed with CSP
ones. Hence, a synthesis tool could easily choose among CSP and NCSP cells, taking
the smaller ones for area improvement, and the faster ones, no matter the size, to be
used in the critical path.

Finally, in terms of actual layout, no advanced study has been profoundly carried out
in this work, mainly due to unavailability of tools for automatic generation of layouts
using the NCSP logic style. Nevertheless, there are both favorable and unfavorable
cases for NCSP. As NCSP cells may have topologically non-complementary (also
known as auto-dual) PUN and PDN, those may also have a different number of
transistors, which may require a more advanced transistor-level placement (transistor
ordering) routine. For the same reason, the intra-cell routing might be also more
difficult. However, in some cases one may obtain networks that are topologically
symmetric in NCSP, which cannot be achieved with regular constructive method of
CSP. In these cases, the ordering would have the same complexity as the one for CSP
cells, but the layout would be more regular and easy to route.

70

REFERENCES

AVCI, M.; YILDIRIM. T. General design method for complementary pass transistor
logic circuits. Electronic Letters, [S.l.], v. 39, n. 1, p. 46 – 48, Jan. 2003.

BERKELAAR, M.R.C.M.; JESS, J.A.G. Technology mapping for standard-cell
generators. In: IEEE INTERNATIONAL CONFERENCE ON COMPUTER-AIDED
DESIGN, ICCAD, 1988, Santa Clara, USA. Digest of Technical Papers. New York:
IEEE, 1988, p. 470 – 473.

BRAYTON, R.K. Factoring Logic Functions. IBM Journal of Research and
Development, v. 31, n. 2, p. 187 – 198, Mar. 1987.

BRAYTON, R.K. et al. Logic Minimization Algorithms for VLSI Synthesis. Boston:
Kluwer Academic Publishers, 1984.

BUCH, P. et al. Logic synthesis for large pass transistor circuits. In: IEEE/ACM
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, ICCAD,
1997, San Jose, USA. Proceedings… New York: IEEE, 1997, p. 663 – 670.

CHEN, W-K. The VLSI Handbook. [S.l.]: CRC Press, 2000.

CHINNERY, D.; KEUTZER, K. Closing the Gap Between ASIC & Custom: Tools
and Techniques for High-Performance ASIC Design. Boston: Kluwer Academic
Publishers, 2002.

CORREIA, V.P., REIS, A.I. Classifying n-Input Boolean Functions. In: WORKSHOP
IBERCHIP, 2001, Montevideo, Uruguay. Memorias. Montevideo: Universidad de la
Republica, 2001.

CORREIA, V.P., REIS, A.I. Advanced Technology Mapping for Standard-cell
Generators. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS
DESIGN, SBCCI, 2004, Pernambuco, Brazil. Proceedings..., 2004.

DETJENS, E. et al. Technology mapping in MIS. In: IEEE/ACM INTERNATIONAL
CONFERENCE ON COMPUTER-AIDED DESIGN, ICCAD, 1987. Proceedings… p.
116-119.

ELRABAA, M.S.; ELMASRY, M.I.; Design and optimization of buffer chains and
logic circuits in a BiCMOS environment. IEEE Journal of Solid-State Circuits, v. 27,
n. 5, p. 792 –801, May 1992.

GAJSKI, D.D. Silicon Compilation. Reading: Addison-Wesley, 1988.

71

GAVRILOV, S. et al. Library-less synthesis for static CMOS combinational logic
circuits. In: IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-
AIDED DESIGN, ICCAD, 1997, San Jose, USA. Proceedings… New York: IEEE,
1997, p. 658 – 662.

GREA, R.A; HIGONNET, R.A. Table of four-relay contact networks. In: MOORE,
E.F. Logical Design of Electrical Circuits, New York: McGraw-Hill, 1958.

HACHTEL, G.D.; SOMENZI, F. Logic Synthesis and Verification Algorithms.
Publisher. [S.l.]: Kluwer Academic Publishers, 1996.

HSIAO, S-F.; YEH, J-S.; CHEN, D-Y. High-performance multiplexer-based logic
synthesis using pass-transistor logic. In: IEEE INTERNATIONAL SYMPOSIUM ON
CIRCUITS AND SYSTEMS, ISCAS, 2000, Geneva, Switzerland. Proceedings… p.
325-328.

HU, B. et al. Gain-Based Technology Mapping for Discrete-Size Cell Libraries. In:
DESIGN AUTOMATION CONFERENCE, DAC, 2003, Anaheim, CA, USA.
Proceedings… p. 574 – 579.

INTEL CORPORATION. Moore’s Law, The Future – Technology & Research at
Intel. Available at: <http://www.intel.com/technology/mooreslaw/index.htm>, Visited
on: March 2007.

JIANG, Y.; SAPATNEKAR, S.; BAMJI, C. Technology mapping for high-performance
static CMOS and pass transistor logic designs. IEEE Transactions on VLSI, New
York, v. 9, n. 5, p. 577 – 589, Oct. 2001.

JURGEN, R.K. Digital Consumer Electronics Handbook. [S.l.]: Mc-Graw-Hill, 1997.

KABBANI, A.; AL-KHALILI, D.; AL-KHALILI, A.J. Delay analysis of CMOS gates
using modified logical effort model. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, New York, v. 24, n. 6, p. 937-947, June 2005.

KARANDIKAR, S.K.; SAPATNEKAR, S.S. Logical Effort Based Technology
Mapping. In: IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-
AIDED DESIGN, ICCAD, 2004, San Jose, CA, USA. Proceedings… New York:
IEEE, 2004, p. 419 – 422.

KEUTZER, K. Cell libraries - build vs. buy; static vs. dynamic. In: DESIGN
AUTOMATION CONFERENCE, DAC, 1999, New Orleans, LA, USA.
Proceedings… p. 341 – 342.

LEFEBVRE, M.; MARPLE, D.; SECHEN, C. The future of custom cell generation in
physical synthesis. In: DESIGN AUTOMATION CONFERENCE, DAC, 1997,
Anaheim, CA, USA. Proceedings… p. 446 – 51.

LINDGREN, P.; KERTHU, M.; THORNTON, M.; DRESCHSLER, R. Low-power
optimization technique for BDD mapped circuits. In: ASIA AND SOUTH PACIFIC
DESIGN AUTOMATION CONFERENCE, ASP-DAC, 2001, Yokohama, Japan.
Proceedings… p. 615 – 621.

72

MAGMA DESIGN AUTOMATION. Gain Based Synthesis: Speeding RTL to Silicon.
Available at: < http://www.magma-da.com>. Visited on: February 2007.

MCCLUSKEY, E.J. Minimization of Boolean functions. Bell Systems Technical
Journal, [S.l.], v. 5, n. 5, p. 1417 – 1444, 1956.

MARQUES, F.S.; ROSA, L.S.; RIBAS, R.P.; SAPATNEKAR, S.S.; REIS, A.I. DAG
Based Library-Free Technology Mapping. In: ACM GREAT LAKES SYMPOSIUM
ON VLSI, GLSVLSI, 2007, New York, NY, USA. Proceedings…

MEAD, A.C.; CONWAY, L.A. Introduction to VLSI Systems. Reading: Addison-
Wesley, 1980.

MICHELI, G.D. Synthesis and optimization of digital circuits. New York: McGraw-
Hill, 1994.

MINATO, S. Binary Decision Diagrams and Applications for VLSI CAD. Boston:
Kluwer, 1996.

MOORE, G.E. Cramming more Components into Integrated Circuits, Electronics,
[S.l.], v. 38, n. 8, Apr. 1965.

MOORE, G.E. No exponential is forever. In: IEEE INTERNATIONAL SOLID-STATE
CIRCUIT CONFERENCE, 2003. Digest of Technical Papers. New York: IEEE, 2003,
p. 20 – 23.

MORAES, F.; ROBERT, M.; AUVERGNE, D. A Virtual CMOS Library Approach for
Fast Layout Synthesis. In: IFIP INTERNATIONAL CONFERENCE ON VERY
LARGE SCALE INTEGRATION: SYSTEMS ON A CHIP, 1999, Proceedings… p.
415 – 426.

NAGAYAMA, S.; SASAO, T. On the minimization of longest path length for decision
diagrams. In: INTERNATIONAL WORKSHOP ON LOGIC AND SYNTHESIS,
IWLS, 2004. Proceedings… p. 28 – 35.

NANGATE. Nangate Library Characterizer. Available at:
<http://www.nangate.com>. Visited on: February 2007.

NÈVE, A.; FLANDRE, D. Branch-Based Logic for High Performance Carry-Select
Adders in 0.25 μm Bulk and Silicon-On-Insulator CMOS Technologies. In:
INTERNATIONAL WORKSHOP ON POWER AND TIMING MODELING,
OPTIMIZATION AND SIMULATION, PATMOS, Yverdon-Les-Bains, Switzerland.
Proceedings… Sep. 2001.

NINOMIYA, I. Table of minimal switching circuits for functions of four variables. In:
HARRISON, M.A., Introduction to Switching and Automata Theory. [S.l.]:
McGraw-Hill, 1966.

PIGUET, C. et al. A Metal-Oriented Layout Structure for CMOS Logic. IEEE Journal
of Solid-state Circuits, New York, v. 19, n.3, p. 425 – 436, June 1984.

73

PIGUET, C. et al. Low-power low-voltage digital CMOS cell design. In:
INTERNATIONAL WORKSHOP ON POWER AND TIMING MODELING,
OPTIMIZATION AND SIMULATION, PATMOS, 1994, Oldenburg, Germany.
Proceedings… p. 132–139.

PIGUET, C. et al. Low-power low-voltage standard cell libraries, In: Solid-State
Circuits Conference, ESSCIRC, 1995, Proceedings…

PILLEGI. L. et al. Exploring regular fabrics to optimize the performance-cost trade-off.
In: DESIGN AUTOMATION CONFERENCE, DAC, Anaheim, CA, USA. 2003.
Proceedings…

POLI, R.E.B.; SCHNEIDER, F.R.; RIBAS, R.P.; REIS, A.I. Unified theory to build
cell-level transistor networks from BDDs. In: SYMPOSIUM ON INTEGRATED
CIRCUITS AND SYSTEMS DESIGN, SBCCI, 2003, São Paulo, SP, Brazil.
Proceedings… p. 199 – 204.

QUINE, W. V. A way to simplify truth functions. American Mathematical Monthly,
[S.l], v. 62, n. 9, p. 627 – 631, 1965.

RABAEY, J.M.; CHANDRAKASAN, A.; NIKOLIC, B. Digital Integrated Circuits:
A Design Perspective. Upper Saddle River: Prentice-Hall, 2003.

REIS, A.; ROBERT, M.; AUVERGNE, D.; REIS, R. Associating CMOS transistors
with BDD arcs for technology mapping. IEE Electronics Letters, [S.l.], v. 31, n. 14,
p. 1118 – 20, July 1995.

REIS, A.; REIS, R.; AUVERGNE, D.; ROBERT, M. Library free technology mapping.
In: IFIP INTERNATIONAL CONFERENCE ON VERY LARGE SCALE
INTEGRATION, 1997, Proceedings…

REIS, A.; REIS, R.; ROBERT, M. Topological Parameters for Library Free Technology
Mapping. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS
DESIGN, SBCCI, 1998. Proceedings…

ROSA, L.S.; MARQUES, F.; CARDOSO, T.M.G.; RIBAS, R.P.; SAPATNEKAR,
S.S.; REIS, A.I. Fast Transistor Networks from BDDs. In: SYMPOSIUM ON
INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 2006. Proceedings…

ROSA, L.S, SCHNEIDER, F.R.; RIBAS, R.P., REIS, A.I. Analysis of Transistor
Networks Generation. In WORKSHOP IBERCHIP, 2007. Memorias.

ROY, K.; MUKHOPADHYAY, S.; MAHMOODI-MEIMAND, H. Leakage Current
Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS
Circuits. Proceeding of the IEEE, New York, v. 91, n. 2, February 2003.

ROY, R.; BHATTACHARYA, D.; BOPPANA, V. Transistor-Level Optimization of
Digital Designs with Flex Cells. Computer, 2005.

SASAO, T. Switching Theory for Logic Synthesis. Boston: Kluwer Academic
Publishers. 1999.

74

SCHNEIDER, F.R.; RIBAS, R.P.; SAPATNEKAR, S.S.; REIS, A.I. Exact lower bound
for the number of switches in series to implement a combinational logic cell. In:
INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, ICCD, 2005, San
Jose, CA, USA. Proceedings… p. 357 – 362, Oct. 2005.

SCHNEIDER, F.R.; RIBAS, R.P.; REIS, A.I. Fast CMOS Logic Style Using Minimum
Transistor Stack for Pull-up and Pull-down Networks. In: INTERNATIONAL
WORKSHOP ON LOGIC AND SYNTHESIS, IWLS, 2006a. Proceedings…

SCHNEIDER, F.R.; RIBAS, R.P.; REIS, A.I. CMOS Logic Gates Based on the
Minimum Theoretical Number of Transistor in Series. In: NORCHIP Conference,
Linköping, Sweden. 2006b. Proceedings…

SCHOLL, C.; BECKER, B. On the generation of multiplexer circuits for pass transistor
logic. In: DESIGN, AUTOMATION, AND TEST IN EUROPE, DATE, 2000.
Proceedings… p. 372 – 378.

SCOTT, K.; KEUTZER, K. Improving Cell Libraries for Synthesis. In: CUSTOM
INTEGRATED CIRCUITS CONFERENCE, CICC, 1994. Proceedings… p. 128-131.

SECHEN, C. Libraries: lifejacket or straitjacket. In: DESIGN AUTOMATION
CONFERENCE, DAC, 2003, Anaheim, CA, USA. Proceedings… p. 642 – 643.

SENTOVICH, E.M. et al. SIS: A system for sequential circuit synthesis. Berkeley:
Technical Report No. UCB/ERL M92/41, EECS Department, University of California,
Berkeley, 1992.

SHELAR, R.S.; SAPATNEKAR, S.S. Recursive bipartitioning of BDDs for
performance driven synthesis of pass transistor logic circuits. In: IEEE/ACM
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, ICCAD,
2001. Proceedings… New York: IEEE, p. 449 – 452.

SHELAR, R.S.; SAPATNEKAR, S.S. An efficient algorithm for low power pass
transistor logic synthesis. In: ASIA AND SOUTH PACIFIC DESIGN AUTOMATION
CONFERENCE, ASP-DAC, 2002. Proceedings… p. 87 – 92.

SHELAR, R.S.; SAPATNEKAR, S.S. BDD decomposition for delay oriented pass
transistor logic synthesis. IEEE Trans. on VLSI, New York, v. 13, n. 8, p. 957 – 970,
Aug. 2005.

STOK, L. et al. BooleDozer: Logic Synthesis for ASICs. IBM Journal of Research
and Development, Armonk, v. 40, n. 4, p. 407-430, 1996.

STOK, L.; LYER, M.A.; SULLIVAN, A.J. Wavefront Technology Mapping. In:
DESIGN, AUTOMATION, AND TEST IN EUROPE, DATE, 1999, Proceedings… p.
531–536.

SUTHERLAND, I.; SPROULL, B.; HARRIS, D. Logical Effort: Designing Fast
CMOS Circuits. San Francisco, USA: Morgan Kaufmann Publishers, 1999.

THORP, T.J.; YEE, G.S.; SECHEN, C.M. Design and synthesis of dynamic circuits.
IEEE Transactions on VLSI, New York, v. 11, n. 1, p. 141 – 149, Feb. 2003.

75

UYEMURA, J. P. CMOS Logic Circuit Design. Norwell: Kluwer Academic
Publishers, 1999.

VUJKOVIC, M., SECHEN, C. Optimized power-delay curve generation for standard
cell ICs. In: IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-
AIDED DESIGN, ICCAD, 2002. Proceedings…

WESTE, N.H.E.; ESHRAGHIAN, K. Principles of CMOS VLSI Design: A Systems
Perspective. 2nd ed. Reading: Addison-Wesley, 1993.

WESTE, N.H.E.; HARRIS, D. CMOS VLSI Design: A Circuits and Systems
Perspective. 3rd ed. Boston: Pearson/Addison-Wesley, 2005.

YANG, C.; CIESIELSKI, M. BDS: a BDD-based logic optimization system. IEEE
Transactions on CAD, New York, v. 21, n. 7, p. 866 – 876. July 2002.

YANO, K.; YAMANAKA, T.; NISHIDA, T.; SAITO, M.; SHIMOHIGASHI, K.;
SHIMIZU, A. A 3.8-ns CMOS 16x16-b multiplexer using complementary pass-
transistor logic, IEEE Journal of Solid-State Circuits, Piscataway, v. 25, p. 388 – 395,
1990.

YANO, K. et al. Top-down pass-transistor logic design. IEEE Journal of Solid-State
Circuits, Piscataway, v. 31, p. 792 – 803, 1996.

ZAHIRI, B. Structured ASICs: opportunities and challenges. In: INTERNATIONAL
CONFERENCE IN CIRCUITS DESIGN, ICCD, 2003. Proceedings… p. 404 – 409.

ZENASIS TECHNOLOGIES. Available at: <http://www.zenasis.com>. Visited on:
February 2007.

ZHOU, H.; AZIZ, A. Buffer minimization in pass transistor logic. IEEE Transactions
on CAD, New York, v. 20, n. 5, p. 693 – 697, May 2001.

ZIMMERMANN, R.; FICHTNER, W. Low-power logic styles: CMOS versus pass-
transistor logic IEEE Journal of Solid-State Circuits, Piscataway, v. 32, no. 7, p. 1079
– 1090, July 1997.

ZUCHOWSKI, P.S.; REYNOLDS, C.B.; GRUPP, R.J.; DAVIS, S.G.; CREMEN, B.;
TROXEL, B. A Hybrid ASIC and FPGA Design In: IEEE/ACM INTERNATIONAL
CONFERENCE ON COMPUTER-AIDED DESIGN, ICCAD, 2002. Proceedings…

76

APPENDIX A: PRESENTATION SLIDES

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

APPENDIX B: CONSTRUINDO REDES DE
TRANSISTORES DE ACORDO COM O NÚMERO
MÍNIMO DE CHAVES EM SÉRIE

Resumo da Dissertação em Português

Introdução

Em portas lógicas CMOS, tanto o atraso de propagação como a curva de saída estão
fortemente ligados ao número de dispositivos PMOS e NMOS conectados em série nas
redes de carga e descarga, respectivamente. Essa correlação está diretamente
relacionada com o Esforço Lógico da célula (SUTHERLAND, 1999; KABBANI, 2005;
WESTE, 2006; ROSA 2007). O estilo lógico standard CMOS é, em geral, otimizado
para um dos planos, apresentando então o arranjo complementar no plano oposto.
Conseqüentemente, o número mínimo de transistores em série não é necessariamente
alcançado.

Neste trabalho, apresenta-se um método para encontrar o menor número de chaves
(transistores) em série necessários para se implementar portas lógicas complexas
CMOS. Um novo estilo lógico CMOS denominado NCSP, derivado de tal método, é
então proposto e comparado ao estilo CSP (standard CMOS). Finalmente, uma análise
acerca da performance, área e potência são então apresentados.

Limite inferior para o número de chaves em série

O limite inferior para o número de chaves em série (aqui simplesmente referido
como lower bound) proposto neste trabalho é baseado no número de literais do menor
cubo em uma cobertura prima e não-redundante (conjunto de implicantes primos que
cobrem uma função e onde cada implicante primo no conjunto não é coberto por
nenhum outro no mesmo conjunto). O problema é que se uma função pode ter
coberturas primas e não-redundantes com um número de literais diferentes no menor
cubo, então o lower bound não seria univocamente definido. Este trabalho apresenta
uma conjunto de Teoremas e Provas (aqui referido apenas como Teoria do lower bound)
que garantem que o tamanho do menor cubo em coberturas primas e não-redundantes
distintas de uma mesma função lógica é univocamente definido.

Para melhor entender o impacto da Teoria do lower bound, observe o seguinte
exemplo.

Exemplo 1: Considere a função f dada pela equação dcacbbaf  . As
coberturas mínimas para o on-set e o off-set desta função são:

103

dcacbbaseton 

cbdbcabasetoff 

O menor cubo no on-set é dca  , então o lower bound para o número de
transistors em série no plano de pull-up é três. Os cubos no off-set são todos do mesmo
tamanho, e o lower bound para o número de transistors em série no plano de pull-down
é dois. Dessa forma, a célula correspondente a função f é uma célula 3-2 (3 transistores
em série em um plano e 2 no outro), quando mapeado com o método construtivo a ser
detalhado a seguir. Uma célula 2-3 também poderia ser derivada para a função f com a
inversão da função.

Uma tabela conhecida no meio acadêmico para descrever o número de funções
lógicas com um determinado número de transistores em série é apresentado na Tabela
B.1. A construção da Tabela B.1 (DETJENS, 1987) considera apenas funções negative-
unate. A computação do número de transistores em série é feita considerando
associações em série/paralelo.

Tabela B.1: Número de funções negative-unate com um determinado número de
transistors em série (DETJENS, 1987).

 #Transistores PMOS em Série
 1 2 3 4

#Transistores 1 1 1 1 1

NMOS 2 1 4 10 23

em 3 1 10 58 285

Série 4 1 23 285 2798

Na Tabela B.1 pode-se observar que há 7 funções com no máximo 2 transistores em
série:

af  , baf  , baf  , cbaf  , cbaf )(,)()(dcbaf  , dcbaf  .

Este número está limitado a apenas 7 funções porque a Tabela 1 considera apenas
redes CSP. A Teoria do lower bound descrita nesse trabalho nos permite revelar que na
o lower bound para algumas funções é na realidade menor para algumas funções, como

no caso das funções cbcabaf  e dbcabaf  . Dessa forma, de fato há 5
funções negative-unate com exatamente 2 transistores em série em cada plano. O
conjunto de funções negative-unate extras obtidas depois de considerar a Teoria do
lower bound, para todas as funções com até 6 entradas, é apresentado na Tabela B.2.

104

Tabela B.2: Número de funções negative-unate extras com um determinado número de
transistors em série, considerando a Teoria do lower-bound.

 #Transistores PMOS em Série
 1 2 3 4

#Transistores 1 0 0 0 0

NMOS 2 0 +2 +13 +62

em 3 0 +13 +498 +2897

Série 4 0 +62 +2897 +2222

Estilo Lógico NCSP

O estilo lógico CSP comumente utilizado para gerar portas lógicas CMOS assume
não apenas que os planos de pull-up e pull-down são logicamente complementares –
característica inerente de células CMOS – mas que eles são também topologicamente
complementares – entradas em série em um plano se arranjam em paralelo no plano
oposto. Entretanto, para se respeitar o lower bound, algumas células terão seus planos
opostos não complementares topologicamente falando (ainda que logicamente eles
continuam complementares). Assim sendo, neste trabalho um novo estilo lógico
chamado NCSP, e que implementa células que sempre respeitam o lower bound, é então
proposto e seu método de construção é detalhado.

Como um exemplo, considere a célula resultante da função f apresentada no
Exemplo 1. A célula NCSP tem tem seu plano de pull-up derivado da equação de on-set
(i.e. o caminho mais longo nesse plano tem 3 transistores em série) e seu plano de pull-
down derivado da equação de off-set (i.e. o caminho mais longo nesse plano tem 2
transistores em série), como pode ser observado na Figura B.1.a. Alternativamente, as
equações de on-set e off-set podem ser trocadas quando a função for invertida e um
inversor for adicionado à saída da células, resultando na célula da Figura B.1.b. Como
transistores PMOS são mais resistivos que os NMOS, a implementação da Figura B.1.b
é mais recomendada que a da Figura B.1.a.

out

GND!

VDD!

_
a
_
b

_
a
_
c

_
b
_
d

_
b
_
c

_
a
_
b

_
b
_
c

_
c
_
d

_
a

out

GND!

VDD!

b c

a a

a b

b c

a

c

d

d

b

c

b

 (a) célula 3-2 para versão direta de f. (b) célula 2-3 para a versão invertida de f.

Figura B.1: Células NCSP respeitando o lower-bound para a função f apresentada no
Exemplo 1.

105

Para a mesma função f mencionada acima, uma célula CSP derivada unicamente da
equação de on-set resultaria em uma célula 3-3, como demonstrado na Figura B.2.a. De
forma semelhante, se a célula CSP for derivada da equação de off-set, o resultado seria a
Celula 2-4 ilustrada na Figura B.2.b. Este é um exemplo claro de como é possível,
através de redes lógicas NCSP, atingir o lower bound que até então havia sido negligido
na geração da maioria das células complexas.

(a) célula 3-3 cell a partir da equação de on-set. (b) célula 2-4 a partir da equação de off-set.

Figura B.2: Células CSP não respeitando o lower bound para a função f do Exemplo 1.

Resultados

Para gerar células CSP para uma determinada função é necessário escolher entre a
função derivada do on-set ou do off-set da função. A escolha da expressão Booleana que
melhor respeita o lower bound pode ser um pouco complicada em alguns casos. Por
exemplo, sendo PU_length e PD_length o número de transistores no caminho com mais
transistores no plano de pull-up e pull-down, respectivamente, considere os dois
seguintes exemplos:

Exemplo A: Lower Bound: PU_length=2, PD_length=3

off-set: PU_length=2, PD_length=6 [cbbcddbcaout )()(]

on-set: PU_length=3, PD_length=4 [))((dccdbadcbout ]

Exemplo B: Lower Bound: PU_length=3, PD_length=4

off-set: PU_length=3, PD_length=5 [adcdcbdcdcbout )()()(]

on-set: PU_length=4, PD_length=4 [))()()((dcdcbdcdcbaout ]

106

Para escolher entre as equações de on-set e off-set um critério é necessário. Dois
critérios são então utilizados e aqui descritos:

CSP_1: Neste critério, a equação cujo plano de pull-up (mais crítico) respeita o
lower bound é escolhida. Essa opção sempre é possível já que a polaridade da função
pode ser invertida pra acomodar a equação que resultada num menor número de
transistores em série. Para ambos Exemplos A e B, a equação escolhida é a de off-set.

CSP_2: Neste critério, escolhe-se a equação que resulte na menor diferença entre
PU_length e PD_length. Para ambos Exemplos A e B, a equação escolhida é a de on-
set.

Para ambos Exemplos A e B, a equação escolhida pelo critério CSP_1 não podem
ser implementadas já que têm mais de 4 transistores em série. Das 3984 funções de
quatro entradas existentes (P-classes), 118 casos apresentam topologias diferentes mas
implementáveis para ambos critérios CSP_1 e CSP_2. As versões CSP_1 e CSP_2
dessas células foram caracterizadas e comparadas (Figura B.3).

Figura B.3: Comparação do atraso de propagação entre CSP_1 (referência) e CSP_2,
número de células de acordo melhoria (%) em atraso, potência e PDP.

Portas lógicas NCSP apresentadas neste trabalho foram então comparadas com os
critérios CSP_1 e CSP_2 (Figura B.4). Apenas células eletricamente implementáveis
(i.e. com no máximo 4 transistores em série) e que não respeitam o lower bound em
ambos os planos foram utilizadas na comparação.

107

(a)

(b)

Figura B.4: NCSP comparado a (a) CSP_1 e (b) CSP_2: número de células de acordo
com melhoria (%) em atraso, potência e PDP.

Na Figura B.5 é mostrado os ganhos em média de atraso obtidos com células de 6
entradas NCSP, comparadas com a implementação CSP, para quatro cargas de saída
(2fF, 5fF, 10fF and 20fF) e curva de entrada de 0.5ns.

Na Figura B.6 é apresentada a comparação de potência, atraso, PDP e carga media
de entrada para células de 6 entradas. A caracterização foi realizada usando 0.02ns para
a curva de entrada e 2fF para carga de saída. Pode-se observar a carga de entrada
aumentando para alguns casos, provavelmente devido ao metido de fatoração aplicado.

108

Figura B.5: média de melhoria (%) de NCSP, eixo-X, versus número de células de 6
entradas, eixo-Y, para diferentes cargas de saída e uma curva de entrada de 0.5ns.

Figure B.6: melhoria (%) de NCSP, eixo-X, versus número de células de 6 entradas,
eixo-Y, PDP, atraso médio, potência e carga de entrada média.

A tabela B.3 mostra, entre outras métricas, o esforço lógico médio obtido para todas
as 3984 P-classes de funções de 4 entradas implementadas usando 6 diferentes técnicas
para implementação das células em nível de transistores. O esforço lógico foi calculado
usando a razão PMOS/NMOS igual a 2, tal como exemplificado em (SUTHERLAND,
1999). Pode-se observar que o esforço lógico médio para as construções que respeitam
o lower bound – NCSP e CMOS LB from BDDs (ROSA, 2007) – são
significativamente menores do que as calculadas com outros estilos lógicos.

109

Tabela B.3: Comparação de seis métodos diferentes para geração de redes de
transistores.

Métricas CSP_1 CSP_2 NCSP
CMOS de

BDDsa
CMOS de

BDDsb
CMOS LB de

BDDsc

Σ transistores 75530 75456 75889 75774 73438 72307

Σ PU_length 11954 13084 11954 15538 14227 11954

Σ PD_length 17009 15931 14242 15538 15321 14242

Esforço Lógico
(média) 4.54 4.37 3.83 4.35 4.07 3.68

Funções não
respeitando
lower bound

2312 2312 0 3148 2373 0

Funções não-
implementáveis 1546 791 0 0 0 0

(a) (REIS, 1995) – (b) (POLI, 2003) – (c) (ROSA, 2007)

Conclusões

O novo estilo lógico CMOS desenvolvido neste trabalho, aqui referido como NCSP,
é muito promissor. Essa tecnologia provou o quão significante podem ser as melhorias
em timing – sem afetar área e potência de forma significativa – nas redes de transistores
quando um número mínimo de transistores em série é utilizado. Além do mais,
demonstrou-se que respeitando o lower bound para as redes de pull-up e pull-down
permite que um maior conjunto de células lógicas sejam factíveis dentro de parâmetros
elétricos aceitáveis.

Finalmente, uma das vantagens estratégicas das células NCSP é que elas podem ser
utilizadas sem qualquer problema com outras células CSP disponíveis atualmente.
Dessa forma, ferramentas de síntese podem escolher entre células CSP e NCSP
baseando-se unicamente nas métricas que favorecem um ou outro estilo lógico.

