UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE QUÍMICA

Pedro Juvenal Froes de Souza

ACOPLAMENTO DE AMINAS SECUNDÁRIAS AO SISTEMA 3,5-ISOXAZOL DISSUBSTITUÍDO, UTILIZANDO AS METODOLOGIAS DE ULLMANN E BUCHWALD.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE QUÍMICA

Pedro Juvenal Froes de Souza

ACOPLAMENTO DE AMINAS SECUNDÁRIAS AO SISTEMA 3,5-ISOXAZOL DISSUBSTITUÍDO, UTILIZANDO AS METODOLOGIAS DE ULLMANN E BUCHWALD.

Trabalho de conclusão apresentado junto à atividade de ensino "Trabalho de Conclusão de Curso - QUI" do Curso de Química, como requisito parcial para a obtenção do grau de Bacharel em Química.

Prof. Dr. Aloir Antonio Merlo Orientador

Prof. Dr. Paulo Henrique Schneider Co-orientador

Agradeço à minha família pelo carinho e paciência.

Ao Aloir por ter me concedido a oportunidade de trabalhar no LaSOMI.

Ao Guilherme Vilela pela disponibilidade e paciência.

A todos os colegas do LaSOMI.

RESUMO

Neste trabalho foi feito o acoplamento de aminas secundárias em 3,5-diarilisoxazois utilizando-se as metodologias de Ullmann e Buchwald-Hartwig. Os acoplamentos foram bem sucedidos apenas para o sistema Pd(OAc)₂/BINAP (Buchwald), já os acoplamentos utilizando iodeto de cobre (Ullmann) não foram bem sucedidos. Dos seis diferentes produtos obtidos pela metodologia de Buchwald-Hartwig, quatro foram obtidos puros, onde os rendimentos variaram entre 30% (11b) e 63% (11c), para o acoplamento da morfolina e difenilamina, respectivamente, no isoxazol 5b; e 55% (12a) e 64% (12b), para o acoplamento da piperidina e morfolina, respectivamente, no isoxazol 7a.

A síntese de dois tipos de 3,5-diarilisoxazois foi feita a partir das respectivas Δ²-isoxazolinas usando a sequência de reação de cicloadição [3+2] 1,3-dipolar de óxidos de nitrilas seguido da reação de oxidação via MnO₂. A etapa inicial é a preparação das oximas 2a-b as quais são as responsáveis pela formação *in situ* do óxido de nitrila na próxima etapa da rota sintética. A segunda etapa é a construção do anel isoxazolina por meio da cicloadição [3+2] 1,3-dipolar, utilizando os estirenos 3a-b como dipolarófilos, e as oximas 2a-b como geradores de compostos 1,3-dipolares. A reação de oxidação das isoxazolinas 4a-b para os isoxazóis 5a-b introduz uma ligação dupla no anel, contribuindo para o aumento da planaridade e da conjugação molecular.

O cicloaduto **5a** é o precursor do fenol **6a**, formado pela remoção do grupo protetor. Após a formação do fenol, faz-se sua alquilação, gerando o produto **7a** com comportamento mesogênico.

Todos os compostos foram caracterizados através da técnica espectroscópica de ressonância magnética nuclear de hidrogênio (¹H RMN) e carbono 13 (¹³C RMN).

Os intermediários contendo o anel isoxazol, são potenciais precursores sintéticos de novos materiais orgânicos.

SUMÁRIO

1.	INTRODUÇÃO	10
2.	REVISÃO BIBLIOGRÁFICA	11
	2.1 A LIGAÇÃO CARBONO NITROGÊNIO	11
	2.2 A REAÇÃO DE ULLMANN	11
	2.3 O PROTOCOLO DE BUCHWALD-HARTWIG	13
	2.4 CRISTAIS LÍQUIDOS	14
3.	OBJETIVOS	15
	3.1 OBJETIVOS ESPECÍFICOS	15
4.	RESULTADOS E DISCUSSÃO	17
	4.1 SÍNTESE DAS OXIMAS	17
	4.2 REAÇÃO DE CICLOADIÇÃO [3+2] 1,3 DIPOLAR	19
	4.3 REAÇÃO DE OXIDAÇÃO	21
	4.4 REAÇÃO DE DESPROTEÇÃO	23
	4.5 REAÇÃO DE ALQUILAÇÃO	24
	4.6 REAÇÃO DE CONDENSAÇÃO DE ULLMANN	26
	4.7 REAÇÃO DE BUCHWALD	28
5.	CONCLUSÕES	35
6.	PROCEDIMENTO EXPERIMENTAL	36
	6.1 SÍNTESE DAS OXIMAS (2a-b)	36
	6.2 SÍNTESE DAS 3,5-DIARILISOXAZOLINAS (4a-b)	36
	6.3 SÍNTESE DOS 3,5-DIARILISOXAZÓIS (5a-b)	37
	6.4 SÍNTESE DO FENOL (6a)	38
	6.5 ALQUILAÇÃO DO FENOL (7a)	38
	6.6 REAÇÃO DE CONDENSAÇÃO DE ULLMANN (9a-b)	39
	6.7 SÍNTESE DA 4-DIFENILAMINA-1-BENZALDEÍDO (REAÇÃO	DE
	$RIICHWAID(Q_c)$	30

6.8	ACOPLAMENTO	DE	AMINAS	SECUNDÁRIAS	NOS	3,5-
DIAI	RILISOXAZOIS (11a-	c, 12a-c	2)			40
7. BIBI	LIOGRAFIA					42
APÊNI	DICES					44

LISTA DE FIGURAS

Figura 1: Ligantes utilizados nas reações de Ullmann (a, b) e Buchwald (c)	12
Figura 2: Representação Esquemática da reação de Ullmann e da condensa	ação de
Ullmann	12
Figura 3: Representação esquemática da reação de Buchwald-Hartwig	13
Figura 4: Representação esquemática do arranjo molecular no estado sólido,	líquido-
cristalino	14
Figura 5: Rota retrossintética	15
Figura 6: Aminas secundárias utilizadas.	17
Figura 7: Mecanismo de formação da oxima.	18
Figura 8: Espectro de 1H RMN (CDCl3, 300 MHz) do composto 2a	18
Figura 9: Mecanismo de formação da isoxazolina. 1) Formação do radical succi	nimida.
2) Formação da cloroxima. 3) Formação do óxido de nitrila. 4) Cicloadição [3	3+2] 1,3
dipolar	20
Figura 10: Espectro de ¹ H RMN (CDC13, 300 MHz) da isoxazolina 4a	21
Figura 11: Espectro de ¹ H RMN (CDCl3, 300 MHz) do isoxazol 5a	22
Figura 12: Proposta de mecanismo para a oxidação do anel isoxazolínico	23
Figura 13: Mecanismo de desproteção.	24
Figura 14: Espectro de ¹ H RMN (CDC13, 300 MHz, 3 gotas de DMSO d6) do co	omposto
6a	24
Figura 15: Espectro de ¹ H RMN (CDC13, 300 MHz) do composto 7a	25
Figura 16: Espectro de ¹ H RMN (CDCl3, 300 MHz) com composto 9a	27
Figura 17: Espectro de ¹ H RMN (CDCl3, 300 MHz) do composto 9c	29
Figura 18: Espectro de ¹ H RMN (CDC13, 300 MHz) do composto 11c	30
Figura 19: Espectro de 13C RMN (CDCl3, 75,5 MHz) do composto 11b	31
Figura 20: Espectro de ¹ H RMN (CDC13, 300 MHz) com composto 12a	32
Figura 21: Espectro de 13C RMN (CDCl3, 75,5 MHz) do composto 12a	32
Figura 22: a) amostras dos isoxazóis acoplados; da esquerda para a direita 12	2a, 12b,
12c, 11a, 11b, 11c; b), c) amostras sob incidência de luz ultravioleta (365nm), b) da
esquerda para a direita: 11a, 11b, 11c; c) da esquerda para a direita, 12a, 11a, 1	1b, 11c.
	33
Figura 23: Ciclo catalítico da reação de Buchwald-Hartwig	34

LISTA DE ESQUEMAS

Esquema 1: Esquema geral da rota sintética para a síntese dos 3,5-diarilisoxazóis.	16
Esquema 2: Reações genéricas de acoplamento de aminas secundárias nos 3,5-	
diarilisoxazóis	16
Esquema 3: Preparação das oximas	17
Esquema 4: Síntese das 3,5-diarilisoxazolinas.	19
Esquema 5: Reação de oxidação do anel da isoxazolina	22
Esquema 6: Reação de desproteção.	23
Esquema 7: Reação de alquilação.	25
Esquema 8: Mecanismo de alquilação do isoxazol 6a	25
Esquema 9: Reação de Ullmann.	27
Esquema 10: Reação de Buchwald	28
Esquema 11: Reação de Buchwald com o isoxazol 5b.*Conversão calculada a par	rtir da
razão dos sinais do hidrogênio (¹ H RMN) do anel isoxazol. a tempo reacional de	48h. 29
Esquema 12: Reação de Buchwald com o isoxazol 7a*Conversão calculada a pa	artir da
razão dos sinais do hidrogênio (¹ H RMN) do anel isoxazol	31

LISTA DE SÍMBOLOS E ABREVIATURAS

¹H RMN: Ressonância Magnética Nuclear de Hidrogênio

¹³C RMN: Ressonância Magnética Nuclear de Carbono 13

NCS: N-Clorossuccinimida

HOMO: Orbital Molecular Ocupado de Maior Energia

LUMO: Orbital Molecular Desocupado de Menor Energia

BINAP: 2,2'-bis-(difenilfosfino)-1,1'-binaftil

DMSO: Dimetilsulfóxido

NMP: *N*-metil-2-pirrolidona

RF: Fator de retenção

1. INTRODUÇÃO

Nos últimos anos a formação de ligações entre carbonos aromáticos e aminas aromáticas e/ou alifáticas mediadas a partir de metais de transição, como o paládio e o cobre, tornou-se o procedimento padrão para a formação da ligação C-N e uma importante ferramenta na síntese orgânica.

As *N*-arilações catalisadas por cobre são conhecidas como reações de Ullmann e ganharam grande destaque a partir do ano de 2001 com a utilização de moléculas ligantes capazes de aumentar a solubilidade do cobre e também estabilizá-lo. Quando a formação da ligação C-N é mediada por paládio ela é chamada de reação de Buchwald-Hartwig.

Isoxazolinas e isoxazois são importantes heterociclos de cinco átomos presentes em muitos produtos biológicos e tecnológicos e, portanto, a possibilidade de formação de ligações C-N nessas moléculas a fim de se observar as mudanças químicas e físicas é de grande interesse. As isoxazolinas e isoxazois também podem apresentar comportamento líquido cristalino, ou seja, possuem organização intermediária entre o cristal e o líquido isotrópico.

O presente trabalho visa explorar as reações catalisadas por cobre e paládio para a formação de ligações *C(aromático)*-N a partir de diferentes aminas no heterociclo isoxazol utilizando métodos tradicionais descritos na literatura.

2. REVISÃO BIBLIOGRÁFICA

2.1 A LIGAÇÃO CARBONO NITROGÊNIO

Nos últimos anos, a formação de ligações *N*-arila mediadas por metais de transição tem se tornado o procedimento padrão para a introdução de aminas em sistemas aromáticos. Enquanto a *N*-arilação de aminas em halogenetos aromáticos simples funciona com altos rendimentos para muitos métodos descritos, para a síntese de moléculas complexas com grupos funcionais adicionais, como produtos naturais e medicamentos, a reação precisa ser otimizada.

A *N*-arilação de compostos mediada por paládio e cobre são importantes ferramentas na síntese orgânica. Devido à importância das ligações *N*-arila serem bastante difundidas, muitos métodos sintéticos têm emergido ao longo dos anos com esse fim. Além dos procedimentos tradicionais de Ullmann e Goldberg, as reações catalisadas por paládio de Buchwald e Hartwig têm sido as maiores responsáveis pelos avanços nessa área (KOENIG, B.; 2011).

2.2 A REAÇÃO DE ULLMANN

A base da química moderna de acoplamento-cruzado foi construída no início do século vinte com os trabalhos pioneiros de Fritz Ullmann e Irma Goldberg. Suas investigações em novos métodos para a síntese de ligações C-C, C-N e C-O permitiram o avanço para a utilização de halogenetos de arila inativados e não apenas halogenetos de arila deficientes em elétrons necessários para a reação de substituição nucleofílica aromática clássica. Esses avanços não aumentaram somente o escopo dos substratos que poderiam ser utilizados nas reações de substituição nucleofílica aromática, isso mudou a maneira como os químicos pensavam para a construção de moléculas contendo ligações aril-*N* e aril-*O*. Além disso, existem inúmeros processos industriais que utilizam essas metodologias na química de fármacos, agroquímicos e polímeros (BUCHWALD, L.; 2009). Entretanto, até 2000, os protocolos clássicos de Ullmann e Goldberg tipicamente requeriam condições vigorosas como altas temperaturas (≥ 200 °C), longos tempos de reação e quantidades estequiométricas de cobre. No entanto, em 2001, importantes avanços foram obtidos por dois grupos de pesquisa com a descoberta de sistemas cobre/ligante versáteis e bastante eficientes, para a o acoplamento C-C, C-N ou C-O, os

quais permitiram o uso de quantidades catalíticas do metal cobre sob condições moderadas (90-110°C) (MONNIER, F, 2009). Dentre esses ligantes, os mais comumente utilizados são a L-prolina e a 1,10-fenantrolina (Figura 1; **a,b**).

Figura 1: Ligantes utilizados nas reações de Ullmann (a, b) e Buchwald (c).

De acordo com a nomenclatura comumente aceita, o termo "reação de condensação de Ullmann" se refere a reações mediadas por cobre (estequiométrico ou catalítico) entre halogenetos de arila e uma amina, fenol ou tiofenol para sintetizar as correspondentes aril –amina, -éter ou tio-éter, respectivamente. A "reação de Ullmann", porém, refere-se à síntese mediada por cobre de biarilas a partir de halogenetos de arila (Figura 2) (KOTEN et al, 2010).

Figura 2: Representação Esquemática da reação de Ullmann e da condensação de Ullmann.

2.3 O PROTOCOLO DE BUCHWALD-HARTWIG

Para controlar os problemas envolvidos nas reações de condensação de Ullmann, os químicos têm se voltado mais recentemente para as reações catalisadas por paládio para a formação de ligações C-N como forma de gerar um conjunto mais diversificado de aminas ariladas. A formação de ligações C-N e C-O catalisadas por paládio entre halogenetos de arila ou trifluormetanosulfonados e aminas (aminas alifáticas ou aromáticas 1° e 2°, imidas, amidas, sulfonamidas, sulfoximinas), ou entre halogenetos, ou triflatos e álcoois (alifáticos ou fenóis) na presença de quantidades estequiométricas de base é conhecida como acoplamento-cruzado de Buchwald-Hartwig (Figura 3) (CZAKÓ, B., KÜRTI, L.; 2005; p. 70-71).

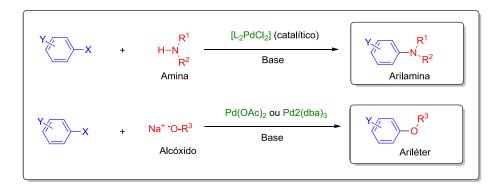


Figura 3: Representação esquemática da reação de Buchwald-Hartwig.

O desenvolvimento da metodologia de formação da ligação C-N catalisada por paládio contribuiu para métodos mais eficientes na síntese de moléculas simplificadas de agentes farmacêuticos, permitindo uma maior aproximação dos seus análogos. Avanços nessa área tem sido devido à implementação de uma nova classe de ligantes, incluindo ligantes difenilfosfino quelantes como o 2,2'-bis-(difenilfosfino)-1,1'-binaftil (BINAP) (Figura 1, c), o 1,1'-bi(difenilfosfino)ferroceno (dppf) e o 4,5-bis(difenilfosfino)-9,9-dimetilxanteno (Xantphos).

Apesar da infinidade de sistemas atualmente disponíveis para o acoplamento C-N catalisado por paládio, apenas um grupo relativamente limitado tem extensa aplicação prática. Isso reflete na combinação da facilidade de uso do sistema catalítico, sua robustez, disponibilidade de ligantes e classe de substratos (BUCHWALD, S; 2011).

2.4 CRISTAIS LÍQUIDOS

A diferença entre cristais e líquidos, é que as moléculas de um cristal são ordenadas enquanto as do líquido não. A organização em um cristal é geralmente direcional e orientacional nas três dimensões, o líquido isotrópico não possui organização direcional nem orientacional, enquanto que um cristal líquido possui organização orientacional e/ou direcional em uma ou duas dimensões (estado mesogênico).

Se as moléculas do cristal líquido possuem organização apenas orientacional na fase, mas estão aleatoriamente distribuídas no espaço dizemos que ela é uma mesofase nemática (N); se a mesofase possui tanto organização orientacional quanto direcional, ela é chamada de mesofase esmética (Sm) (Figura 4) (COLLINGS, P. J.; HIRD, M.;1997).

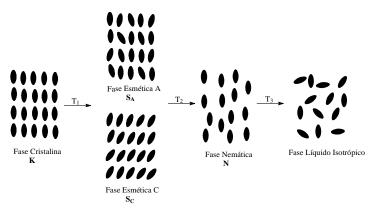


Figura 4: Representação esquemática do arranjo molecular no estado sólido, líquido-cristalino

Compostos orgânicos apresentando o sistema isoxazolina e isoxazol pertencem a uma classe de heterocíclicos conhecidos desde o final do século XIX e que apresentam amplo espectro aplicativo em diversas áreas do conhecimento humano, desde a área de saúde humana, agroquímica, tecnológica e em síntese orgânica.

Dentro das possibilidades da formação da ligação C-N em diferentes compostos e a fim de se explorar as propriedades mesogênicas de alguns isoxazóis, diferentes aminas secundárias foram acopladas nesses heterocíclos.

3. OBJETIVOS

Realizar o acoplamento direto de diferentes aminas secundárias em compostos 3,5- isoxazol dissubstituídos, utilizando-se as metodologias de Ullmann e Buchwald-Hartwig, e analisar as suas propriedades mesogênicas.

Síntetizar os 3,5-Isoxazóis dissubstituídos utilizados para os acoplamentos a partir das isoxazolinas geradas pela cicloadição [3+2] 1,3-dipolar das benzaldeidoximas, preparadas previamente, com estirenos selecionados. E posterior oxidação das 3,5-isoxazolinas para isoxazóis.

3.1 OBJETIVOS ESPECÍFICOS

Analisando a rota retrossintética da molécula alvo (Figura 5), observa-se que ela é formada por uma amina secundária e pelo isoxazol. O isoxazol é originado pela oxidação da isoxazolina. A isoxazolina, por sua vez, é sintetizada a partir da oxima e do estireno. E a oxima é formada através da oximação do aldeído.

$$O_2N$$
 $N-O$
 O_2N
 O_2N

Figura 5: Rota retrossintética.

A síntese dos isoxazóis 3,5-dissubstituídos é esboçada no Esquema 1. A etapa inicial é a preparação das oximas aromáticas **2a-b** partir dos aldeídos **1a-b**. A segunda etapa é a construção do anel isoxazolina por meio da cicloadição [3+2] 1,3-dipolar,

utilizando os estirenos **3a-b** como dipolarófilos, e as oximas aromáticas **2a-b** como geradores de compostos 1,3-dipolares.

A reação de oxidação das isoxazolinas **4a-b** para os isoxazóis **5a-b** correspondentes introduz uma ligação dupla no anel, contribuindo para o aumento da planaridade da conjugação molecular. O isoxazol **5a** gera o fenol, a partir da remoção do grupo protetor, utilizando-se catálise ácida, que é então alquilado ao isoxazol **7a**.

Esquema 1: Esquema geral da rota sintética para a síntese dos 3,5-diarilisoxazóis.

A presença do grupo terminal reativo bromo possibilita as reações de acoplamento de diferentes aminas aos isoxazóis **5b** e **7a** utilizando-se as metodologias de Ullmann e Buchwald-Hartwig (Esquema 2).

$$\begin{array}{c} N-O \\ N-O \\$$

Esquema 2: Reações genéricas de acoplamento de aminas secundárias nos 3,5-diarilisoxazóis.

As diferentes aminas secundárias utilizadas nesse trabalho foram a piperidina, a morfolina e a difenilamina (Figura 6).

Figura 6: Aminas secundárias utilizadas.

4. RESULTADOS E DISCUSSÃO

4.1 SÍNTESE DAS OXIMAS

O Esquema 3 mostra a preparação das oximas aromáticas **2a-b** a partir dos aldeídos **1a-b**. Através desses aldeídos formam-se os óxidos de nitrila *in situ* que serão utilizados para a formação do anel heterocíclico isoxazolina.

NH₂OH.HCI , AcONa

EtOH, H₂O, refluxo, 40 min.

1a
$$X = Br$$
1b $X = NO_2$

2a $X = Br$
2b $X = NO_2$

Esquema 3: Preparação das oximas.

As oximas são obtidas através da reação de adição nucleofílica da hidroxilamina a aldeídos. Primeiramente, o acetato de sódio e o cloridrato de hidroxilamina reagem liberando a hidroxilamina e formando o ácido acético, que será o responsável pela ativação do carbono carbonílico do aldeído pela protonação do oxigênio, levando ao ataque nucleofílico do nitrogênio da hidroxilamina. Após uma troca protônica, a hidroxila protonada sai como água levando a formação da ligação dupla entre o carbono e o nitrogênio. A desprotonação no nitrogênio é feita pelo ânion acetato, regenerando o ácido e levando a formação das oximas E e Z (Figura 7).

$NH_2OH.HCl + AcONa \rightarrow NH_2OH + NaCl + AcOH$

Figura 7: Mecanismo de formação da oxima.

Como se observa a reação de formação da oxima pode levar tanto ao produto com estereoquímica E quanto Z. O isômero preferencial formado é determinado pelo espectro de ressonância magnética nuclear de hidrogênio (^{1}H RMN).

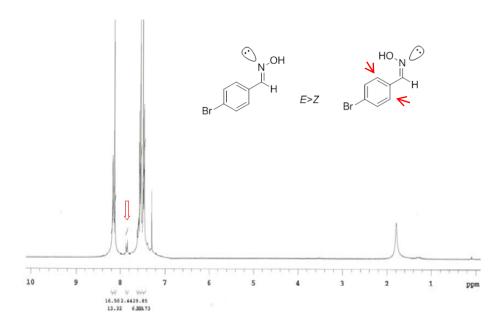


Figura 8: Espectro de ¹H RMN (CDCl₃, 300 MHz) do composto 2a.

Observa-se no espectro de ¹H RMN o sinal do hidrogênio imínico (RCH=NOH) em 8,17 ppm referente a oxima *E*, sobreposto ao singleto do hidrogênio da hidroxila ~8,19. Em 7,9 ppm há um dubleto referente aos dois hidrogênios aromáticos do isômero *Z* indicados pela seta na Figura 8, já os hidrogênios aromáticos do isômero E estão em 7,6 ppm. A partir da relação entre as integrais dos sinais, obtém-se que a proporção da oxima E em relação a oxima *Z* é maior, com uma relação *E/Z*>90%. A diferença de deslocamento químico nos diferentes isômeros ocorre porque o par de elétrons não-ligante do nitrogênio da oxima acaba blindando os hidrogênios aromáticos do isômero *E*, deslocando o seu sinal para campo mais alto, enquanto que para o isômero *Z* esse efeito de blindagem não ocorre, mantendo o sinal em campo mais baixo.

4.2 REAÇÃO DE CICLOADIÇÃO [3+2] 1,3 DIPOLAR

A reação de cicloadição [3+2] 1,3-dipolar (TAVARES A. et al, 2009; PASSO, J. A. et al, 2008) entre as aldoximas e estirenos selecionados, com grupos polares na posição *para*, é uma metodologia amplamente utilizada na síntese orgânica para a obtenção de moléculas com atividade biológica, e esta reação também é importante pois forma o heteroanel 3,5-Isoxazolina (RITTER, O. et al. 2006; HOUK, K., et al. 1973a, 1973b); que proporciona a polarizabilidade anisotrópica necessária para o aparecimento de mesofase. Desta forma foram utilizados os estirenos **3a** e **3b** como dipolarófilos e como geradores de dipolo as aldoximas **2a** e **2b** (Esquema 4).

Esquema 4: Síntese das 3,5-diarilisoxazolinas.

A reação de cicloadição para estas moléculas foi feita através de uma modificação experimental original seguindo o procedimento de Liu et al. (1980). Os rendimentos obtidos foram em média de 70% para a isoxazolina **4a** e 20% para a **4b**. A proposta mecanística para a formação do óxido de nitrila (etapas 1 a 3) e a posterior formação da isoxazolina (etapa 4) é mostrada na Figura 9.

Figura 9: Mecanismo de formação da isoxazolina. 1) Formação do radical succinimida. 2) Formação da cloroxima. 3) Formação do óxido de nitrila. 4) Cicloadição [3+2] 1,3 dipolar.

Na primeira etapa ocorre a cisão homolítica da *N*-clorossuccinimida (NCS) gerando os radicais cloro e succinimida, onde esta abstrai o hidrogênio da aldoxima. O radical aldoxima gerado reage com o cloro radical formando a cloroxima. Em seguida ocorre a sua dehidrocloração pelo ataque da base ao hidrogênio da hidroxila formando o óxido de nitrila (1,3 dipolo) que é a forma ativa responsável pela reação de cicloadição com o estireno (dipolarófilo), dando origem as 3,5-diarilisoxazolinas **4a** e **4b**.

Quanto mais próximos em energia forem os orbitais HOMO e LUMO entre as espécies reativas, mais favorecida será esta combinação de orbitais. No caso em estudo, a combinação se dá entre o HOMO do dipolarófilo e o LUMO do dipolo, levando preferencialmente a formação do regioisômero 3,5-dissubstituído em relação ao 3,4-dissubstituído. Além do impedimento estérico dos substituintes desfavorecer a formação do cicloaduto 3,4-dissubstituído, também deve-se considerar a proporcionalidade tanto em sinal quanto em magnitude entre os coeficientes de Fukui (HOUK, K. N; 1973).

A regioquímica das isoxazolinas geradas são confirmadas pelo espectro de ¹H RMN, onde observam-se os três sinais de duplos dubletos referentes aos hidrogênios do anel heterocíclico, onde os sinais em 3,3 ppm e 3,8 ppm correspondem aos hidrogênios do carbono 4 e o sinal em 5,8 ppm corresponde ao hidrogênio do carbono quiral 5 (Figura 10). O sinal em 1,3 ppm é referente aos hidrogênios alifáticos do grupo *terc*-butóxi.

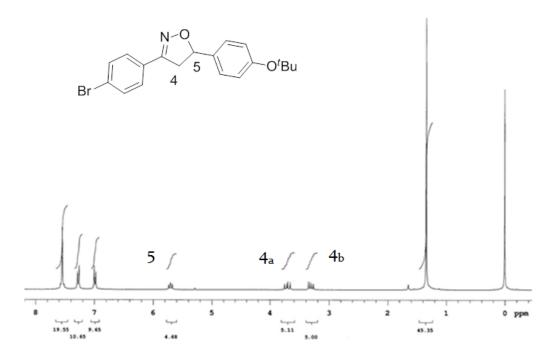


Figura 10: Espectro de ¹H RMN (CDCl₃, 300 MHz) da isoxazolina 4a.

Os sinais dos hidrogênios do carbono 4 e 5 do anel heterocíclico surgem como duplos dubletos devido ao acoplamento geminal entre os dois hidrogênios diastereotópicos do carbono 4 e também devido ao acoplamento geminal *cis* e *trans* entre os hidrogênios do carbono 4 e 5. A partir do espectro de 1 H RMN ampliado, faz-se o cálculo das constantes de acoplamento (J) entre os núcleos de hidrogênio 4 e 5 do heteroanel. O maior valor calculado foi para o J*gem* (\cong 16 Hz), seguido do J*cis* (\cong 11 Hz) e do J*trans* (\cong 8 Hz).

4.3 REAÇÃO DE OXIDAÇÃO

A oxidação da isoxazolina consiste na remoção dos hidrogênios do anel heterocíclico promovendo a formação da dupla ligação entre os carbonos 4 e 5, aumentando dessa forma a planaridade e a conjugação molecular. A formação dos

isoxazois foi feita utilizando-se o MnO₂ como oxidante, sob refluxo de tolueno, obtendo-se rendimentos de 95%.

Esquema 5: Reação de oxidação do anel da isoxazolina.

Pode-se constatar a formação do isoxazol através da análise de ¹H RMN, onde se observa o desaparecimento dos duplos dubletos referentes aos hidrogênios do heteroanel e o surgimento de um singleto em 6,7 ppm, correspondente ao hidrogênio remanescente do carbono 4.

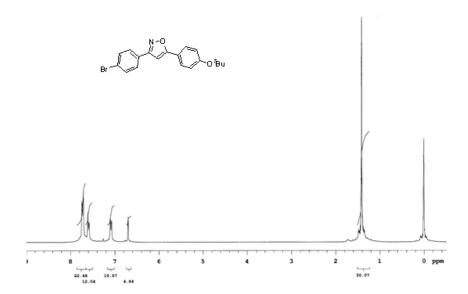


Figura 11: Espectro de ¹H RMN (CDCl₃, 300 MHz) do isoxazol 5a.

Uma das propostas para a formação do isoxazol utilizando dióxido de manganês é através do mecanismo radicalar (VILELA, G. D., 2011), onde o nitrogênio da isoxazolina se coordena a superfície do dióxido de manganês formando o complexo **I**, ativando o hidrogênio α-imínico, que é removido pelo dióxido de manganês, formando o radical estável **II**. A abstração do outro hidrogênio do carbono 5 leva a formação de **III**, o qual é dissociado levando à formação do isoxazol e das espécies inorgânicas (MnO₂, MnO e H₂O). Outra proposta é a reação concertada com a redução do dióxido de manganês IV para hidróxido de manganês II.

Associação
$$R = \frac{MnO_2}{Tolueno} = \frac{MnO_2}{R} = \frac{MnO_2$$

Figura 12: Proposta de mecanismo para a oxidação do anel isoxazolínico.

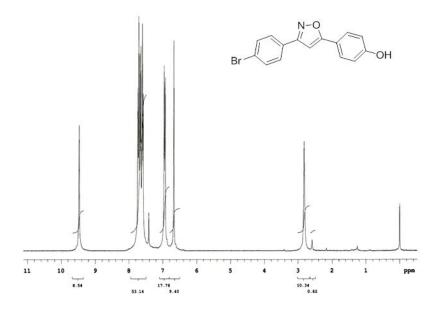
4.4 REAÇÃO DE DESPROTEÇÃO

Nesta etapa o isoxazol **5a** tem o grupo *terc*-butila removido por meio de catálise ácida (MCOMIE, 1973) utilizando uma mistura de ácido bromídrico concentrado e ácido acético glacial, sob refluxo de metanol, formando o fenol **6a** com rendimentos de 98%.

$$O^tBu$$
 O^tBu
 O^tB

Esquema 6: Reação de desproteção.

A partir do ponto de fusão do produto gerado, pode-se confirmar a formação do fenol. O ponto de fusão do fenol é de 206 °C, maior do que o isoxazol protegido, que possui ponto de fusão de 157 °C. O maior ponto de fusão do fenol é devido ao aumento das forças intermoleculares decorrente das pontes de hidrogênio.


O mecanismo para a reação de desproteção é exemplificado na Figura 13, onde há a formação do cátion oxônio a partir do pré-equilíbrio entre o isoxazol e o ácido. A

etapa lenta é a formação do fenol e do cátion *terc*-butila, que reage com o contra íon do ácido gerando o produto de substituição ou eliminação.

Br
$$H_3O^+$$
 H_3O^+ H_3O^+ H_3O^+ H_3C^+ CH_3 H_3C^+ H_3C

Figura 13: Mecanismo de desproteção.

A análise do ¹H RMN confirma a formação do fenol pelo desaparecimento do singleto em 1,3 ppm correspondente aos hidrogênios alifáticos do grupo *terc*-butila, e onde pode-se observar o sinal do hidrogênio da hidroxila em 9,5 ppm.

Figura 14: Espectro de ¹H RMN (CDCl₃, 300 MHz, 3 gotas de DMSO d⁶) do composto **6a**. 4.5 REAÇÃO DE ALQUILAÇÃO

Com o fenol faz-se, por fim, a sua alquilação, a fim de se observar comportamento mesogênico no isoxazol alquilado. Deixou-se o fenol reagindo sob refluxo de acetona, com carbonato de potássio e 1-bromodecano, durante 48 horas, com um rendimento final de 99%.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Esquema 7: Reação de alquilação.

No mecanismo de reação (Esquema 8), a base abstrai o hidrogênio do fenol, levando a formação do alcóxido, que posteriormente ataca o bromodecano, através de uma SN₂, formando o isoxazol **7a**, que apresenta comportamento mesogênico.

Esquema 8: Mecanismo de alquilação do isoxazol 6a.

O espectro de ¹H RMN do composto **7a** mostra o surgimento dos sinais dos hidrogênios alifáticos na região entre 1,9 – 0,8 ppm, e em 4 ppm correspondente aos dois hidrogênios da metila mais próxima do oxigênio.

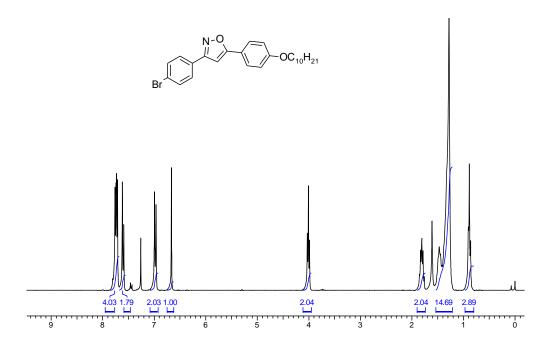


Figura 15: Espectro de ¹H RMN (CDCl₃, 300 MHz) do composto 7a.

4.6 REAÇÃO DE CONDENSAÇÃO DE ULLMANN

A partir do isoxazol **7a** sintetizado, fez-se o estudo do acoplamento de aminas secundárias como a piperidina (**8a**), a morfolina (**8b**, anexos) e a difenilamina, utilizando a metodologia de Ullmann. Inicialmente otimizaram-se as condições reacionais do acoplamento dessas aminas com o bromobenzaldeído, baseado no trabalho de Dawei Ma (2003), analisando o comportamento da reação (Tabela 1).

Tabela 1: Otimização da reação de condensação de Ullmann.

Entrada	Base	Ligante ^a	CuI(mol%)	T	Rendimento
1	K_2CO_3	A	10	60 °C	6,5%
2	K_2CO_3	A	10	80 C°	10% (37%)*
3	K_2CO_3	A	10	100 °C	32%
4	K_2CO_3	A	20	100 °C	54%
5	K_2CO_3	В	20	100 °C	48%
6	Cs ₂ CO ₃	A	20	100 °C	17%

*Após 72 horas de reação, utilizando como solvente NMP. ^a A: L-prolina, B:1,10-fenantrolina.

Como observado, os melhores rendimentos foram obtidos para a temperatura de 100 °C, utilizando carbonato de potássio com 20% mol de iodeto de cobre. Os ligantes L-prolina e fenantrolina foram variados, onde a L-prolina apresentou melhor rendimento. Já o acoplamento com a morfolina a 80 °C apresentou rendimentos menores que 21%, optando-se pelo estudo das condições reacionais com a piperidina. Os acoplamentos com a difenilamina, menos reativa, por ser um nucleófilo mais fraco, não foram bem sucedidos para as diferentes temperaturas e tempos reacionais. Vale notar que diversas tentativas foram feitas para a efetivação da reação com a difenilamina, utilizando-se complexos a base de cobre como Cu(PPh₃)₃Br (D. VENKATARAMAN, 2001) e inclusive reagindo sob atmosfera inerte de nitrogênio. Porém mais investigações devem ser feitas a fim de se obter o sucesso da reação com difenilamina. A base carbonato de potássio apresentou melhor eficiência do que o carbonato de césio, mais forte. Baseado no trabalho de Wolf C. (2009), fez-se a reação

na ausência de ligantes com o solvente *N*-metil-2-pirrolidona (NMP) que é mais coordenante, e pode estabilizar o centro metálico. Porém após 24 horas de reação não foi observada a formação de produto por cromatografia de camada delgada, adicionando-se a L-prolina e deixando a reação por mais 72 horas, nas quais houve a formação do produto (37%).

A confirmação do produto formado é dada pelo espectro de ¹H RMN, no qual podem-se observar os sinais dos hidrogênios aromáticos do anel do benzaldeído em 7,6 e 6,8 ppm, e os hidrogênios alifáticos da piperidina em 3,3 e 1,6 ppm, e em 9,6 ppm o hidrogênio do aldeído.

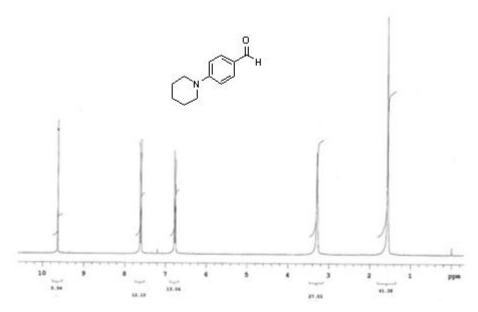


Figura 16: Espectro de ¹H RMN (CDCl₃, 300 MHz) com composto 9a.

A partir desses dados, fez-se o acoplamento da piperidina e da morfolina diretamente no isoxazol 7a.

$$R_2NH + \textbf{7a} \qquad \frac{\text{Cul(20 mol \%), K}_2\text{CO}_3, \text{L-prolina}}{\text{DMSO, 100 °C, 38h}} \qquad \qquad \qquad \text{OC}_{10}H_{21}$$

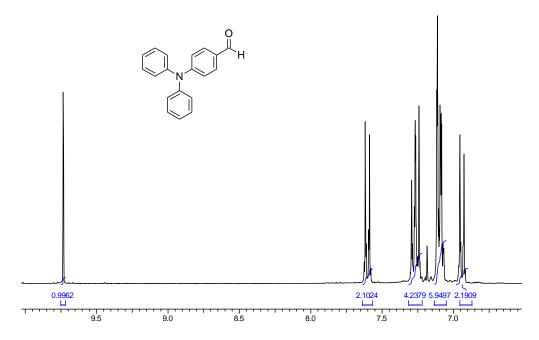
$$\textbf{8a} \ R_2NH = \text{Piperidina}$$

$$\textbf{8b} \ R_2NH = \text{Morfolina}$$

$$\textbf{10a} \ R_2N = \text{Piperidina (traços)}$$

$$\textbf{10b} \ R_2N = \text{Morfolina (traços)}$$

Esquema 9: Reação de Ullmann.


Porém, a partir dos espectros de ¹H RMN observaram-se fracos sinais dos produtos acoplados (**10a-b**), restando basicamente o isoxazol de partida **7a**. Isso demonstra a necessidade de explorar melhores condições reacionais para o acoplamento no isoxazol. A maior complexidade do isoxazol frente ao bromobenzaldeído demonstra a falta de robustez do método utilizado para a otimização. Estudos mecanísticos podem ajudar a elucidar essas questões, porém ainda existem divergências quanto ao verdadeiro mecanismo, que ainda está sob investigação (GERAR K. et al., 2010).

4.7 REAÇÃO DE BUCHWALD

A reação de Buchwald, a qual utiliza como catalisador espécies mais reativas de paládio foi feita para o acoplamento das mesmas aminas (piperidina e morfolina) incluindo a difenilamina, baseado no trabalho de Buchwald (1997). A fim de se observar o comportamento dessas reações catalisadas por paládio, fez-se, inicialmente, o acoplamento da amina menos reativa difenilamina no bromobenzaldeído.

Esquema 10: Reação de Buchwald.

O composto **9c** foi confirmado por ¹H RMN, onde pode-se observar os hidrogênios do benzaldeído e das duas fenilas do nitrogênio em 7,25 – 7,10 ppm.

Figura 17: Espectro de ¹H RMN (CDCl₃, 300 MHz) do composto **9c**.

A efetividade da reação utilizando paládio quando comparado ao cobre se evidencia não só pelo fato da reação ter ocorrido com o nucleófilo mais fraco, a difenilamina, mas também pela pequena proporção de catalisador utilizada (4 mol % em relação ao bromobenzaldeído), quando foram 20% de iodeto de cobre na reação de Ullmann. Sem esquecer que apesar de mais reativo o paládio tem um custo muito maior que o cobre, além de ser mais tóxico.

Testou-se, portanto, o acoplamento dessas aminas nos dois diferentes isoxazois sintetizados **5b** e **7a**.

$$R_2NH + \mathbf{5b}$$

$$Pd(OAc)_2, (4 \text{ mol}\% \text{ Pd}), BINAP, Cs_2CO_3$$

$$Tolueno, 100 °C, N_2, 24h$$

$$\mathbf{8a} \ R_2NH = \text{Piperidina}$$

$$\mathbf{8b} \ R_2NH = \text{Morfolina}$$

$$\mathbf{8b} \ R_2NH = \text{Difenilamina}$$

$$\mathbf{11a} \ R_2N = \text{Piperidina} \quad (57\%)^*$$

$$\mathbf{11b} \ R_2N = \text{Morfolina} \quad (30\%)$$

$$\mathbf{11c} \ R_2N = \text{Difenilamina} \quad (63\%)^a$$

Esquema 11: Reação de Buchwald com o isoxazol **5b**.*Conversão calculada a partir da razão dos sinais do hidrogênio (¹H RMN) do anel isoxazol. a tempo reacional de 48h.

O produto **11a** co-precipita com o isoxazol não acoplado, dificultando sua purificação. Já o rendimento obtido para a morfolina foi baixo em 24 horas, em vista disso, aumentou-se o tempo reacional para 48 horas com a difenilamina. Com o aumento do tempo reacional para o acoplamento da difenilamina obteve-se um bom rendimento de 63% para a formação do composto **11c**, maior do que a reação teste feita anteriormente com o bromobenzaldeído. Os isoxazois acoplados podem ser confirmados pelos espectros de ¹H RMN e ¹³C RMN. Na análise do espectro de ¹H RMN do composto **11c** pode-se observar todos os hidrogênios das fenilas da difenilamina acoplada no isoxazol na região de 7,1-7,3 ppm.

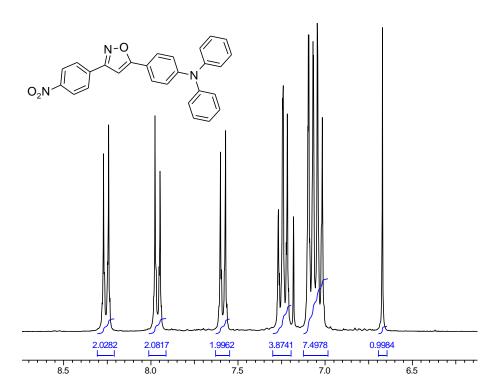


Figura 18: Espectro de ¹H RMN (CDCl₃, 300 MHz) do composto 11c.

Já no espectro de ¹³C RMN do composto **11b**, são observados os 13 tipos de carbonos da molécula, onde os sinais em 94 e 114 ppm são referentes aos carbono 4 e 5, respectivamente, do heteroanel isoxazol. Abaixo de 70 ppm estão os dois sinais dos dois tipos de carbonos alifáticos da morfolina.

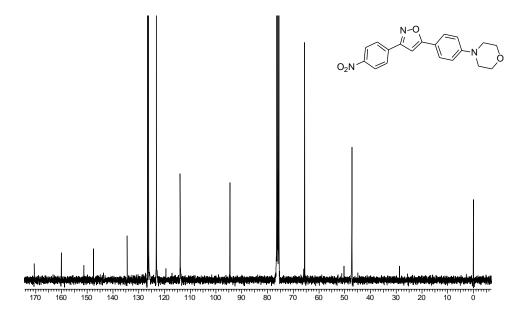


Figura 19: Espectro de 13C RMN (CDCl₃, 75,5 MHz) do composto 11b.

Repetiram-se as mesmas reações para o isoxazol **7a**, onde foi observado um comportamento diferente frente às diferentes aminas.

Esquema 12: Reação de Buchwald com o isoxazol 7a. .*Conversão calculada a partir da razão dos sinais do hidrogênio (¹H RMN) do anel isoxazol.

Primeiramente os rendimentos obtidos para a piperidina e para a morfolina foram bons em 24 horas, e para o produto **11c**, com a difenilamina, o isoxazol não acoplado coprecipitou. A melhor maneira de separação está sendo investigada para os produtos que coprecipitaram, tendo em vista que tanto o material de partida como os produtos eluem com RF's muito próximos na cromatografia de camada delgada.

O produto obtido é confirmado a partir dos espectros de ¹H RMN e ¹³C RMN, onde no espectro de ¹H RMN do composto **12a** pode-se observar o aparecimento dos sinais dos hidrogênios alifáticos da piperidina em 3,3 ppm e na região entre 1,8 e 1,6 ppm sobrepostos aos sinais dos hidrogênios da cadeia alquílica.

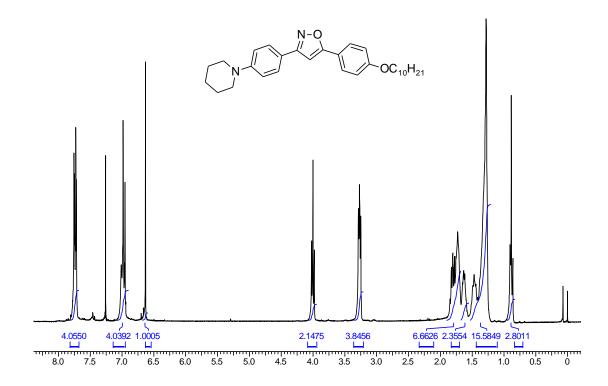


Figura 20: Espectro de ¹H RMN (CDCl₃, 300 MHz) com composto 12a.

No espectro de ¹³C RMN observam-se os 13 tipos de carbono alifáticos do composto na região abaixo de 70 ppm.

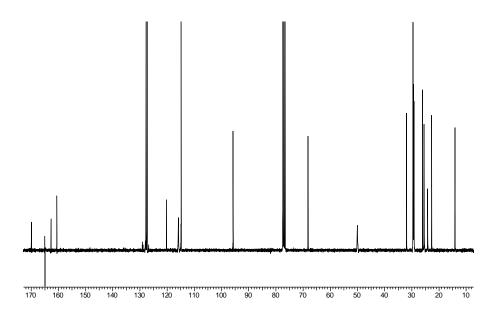


Figura 21: Espectro de 13C RMN (CDCl₃, 75,5 MHz) do composto 12a.

Os isoxazóis **12a-c** apresentaram comportamento de cristal líquido conforme mostra a Tabela 2, onde pode-se identificar as mesofases Nemática para **12a**, e

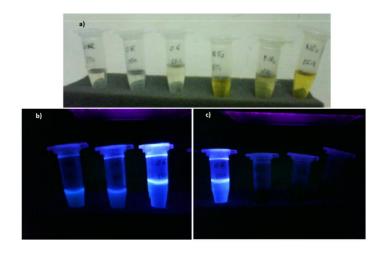

Esmético A para **12b-c**. Enquanto os isoxazóis **11a-c** não apresentaram comportamento mesogênico, também houve a decomposição de **11a,b**. Lembrando que os compostos **11a** e **12c** ainda precisam ser purificados.

Tabela 2: Transições térmicas dos isoxazois acoplados

	X	Y	Transições Térmicas (°C)
12a	Piperidina	$OC_{10}H_{21}$	Cr 127 – 127,5 N 133,5 – 134,7 I
12b	Morfolina	$OC_{10}H_{21}$	Cr 141,7 SmA 156 – 160 I
12c ⁱ	Difenilamina	$OC_{10}H_{21}$	Cr 80 SmA 110 – 115 I
11a ⁱ	NO_2	Piperidina	Cr 205-215 I *
11b	NO_2	Morfolina	Cr 258-262 I *
11c	NO_2	Difenilamina	Cr 214-219 I

*os produtos sofreram decomposição térmica; i produtos com impurezas de isoxazol de partida.

Os produtos gerados foram observados na luz ultravioleta de 365 nm (Figura 19), onde os isoxazois alquilados **12a-c** apresentaram fluorescência. Na imagem pode-se observar as amostras em tubos eppendorf (**a**), e submetidas à luz ultravioleta (**b,c**).

Figura 22: a) amostras dos isoxazóis acoplados; da esquerda para a direita 12a, 12b, 12c, 11a, 11b, 11c; b), c) amostras sob incidência de luz ultravioleta (365nm), b) da esquerda para a direita: 11a, 11b, 11c; c) da esquerda para a direita, 12a, 11a, 11b, 11c.

O mecanismo genérico para o ciclo catalítico na aminação de Buchwald é mostrada abaixo. Onde o $Pd(OAc)_2$ está em equilíbrio com a espécie $Pd(0)L_2$, onde L_2 é

o ligante quelante 2,2'-bis(difenilfosfina)-1,1'-binaftil (BINAP); Ocorre a adição oxidativa no complexo Pd(0)BINAP, seguida da coordenação da nucleófilo (amina) no complexo de paládio e posterior abstração do hidrogênio do nitrogênio pela base. Por fim o produto é formado e o complexo é regenerado através da eliminação redutiva.

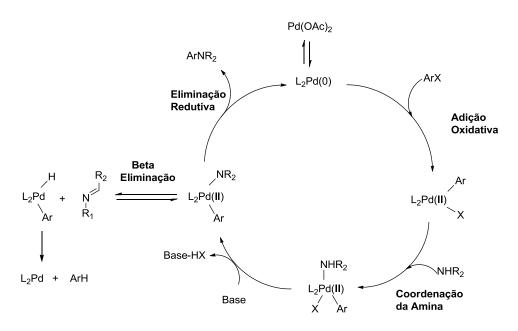


Figura 23: Ciclo catalítico da reação de Buchwald-Hartwig.

Estudos mostram que ligantes quelantes diminuiem a taxa de velocidade da eliminação redutiva, porém, como vantagem, a taxa de velocidade da beta-eliminação também é menor, desfavorecendo a formação de sub-produtos (HARTWIG J.,1999; BUCHWALD S., et al. 1995).

5. CONCLUSÕES

No presente trabalho foram sintetizados com rendimentos de baixos a moderados dois tipos de 3,5-diarilisoxazois acoplados com três tipos de aminas secundárias, piperidina, morfolina e difenilamina, porém o sucesso da reação só se deu com a metodologia de Buchwald-Hartwig, utilizando o sistema catalítico Pd(OAc)₂/BINAP. A metodologia de Ullmann para esses acoplamentos só foi efetiva na molécula menos complexa 4-bromobenzaldeído, necessitando maiores estudos para o acoplamento diretamente nos isoxazois.

Os 3,5-diarilisoxazois foram analisados e três deles (**12a-c**) apresentaram comportamento mesogênico e fluorescência sob incidência de luz ultravioleta (365 nm). Porém dois produtos (**11a,12c**) ainda estavam impuros devido a coprecipitação do isoxazol de partida.

Como perspectiva há a necessidade de desenvolvimento de um método mais robusto para as reações de condensação de Ullmann nos 3,5-diarilisoxazois, variando ligante, base, solvente e temperatura.

Dando continuidade aos acoplamentos feitos a partir da metodologia de Buchwald-Hartwig, pretende-se aumentar o escopo de nucleófilos de aminas.

6. PROCEDIMENTO EXPERIMENTAL

Os espectros de ¹H RMN e ¹³C RMN foram obtidos em espectrômetros Varian Inova 300 e Varian VNMRs 300 (Instituto de Química – UFRGS). Os deslocamentos químicos (δ) estão relacionados em parte por milhão (ppm) em relação ao tetrametilsilano (TMS) utilizado como padrão interno para os espectros de ¹H RMN e em relação ao CDCl₃ para os espectros de ¹³C RMN, colocando-se entre parênteses a multiplicidade (s = singleto, sl = sinal largo, d = dubleto, dd = duplo dubleto, t = tripleto, m = multipleto), o número de hidrogênios deduzidos da integral relativa e a constante de acoplamento (*J*) expressa em Hertz (Hz).

O comportamento térmico dos produtos obtidos foi observado em um microscópio óptico modelo Olympus BX 41 acoplado a uma placa de aquecimento Mettler Toledo FP-90 F 982 T, utilizando-se uma taxa de aquecimento de 10 °C/min.

6.1 SÍNTESE DAS OXIMAS (**2a-b**)

Em um balão monotubulado são colocados o aldeído **1a-b** (27 mmol) e o cloridrato de hidroxilamina (75,6 mmol) dissolvidos em etanol (210 mL). Após, é adicionado o acetato de sódio (108 mmol) dissolvido em água destilada (105 mL). A reação é deixada sob aquecimento (refluxo) por aproximadamente 40 minutos. Após resfriamento nada precipita, então parte do solvente é evaporado e os produtos são purificados.

Dados da 4-bromobenzaldoxima (**2a**): Sólido cristalino branco; rendimento: 95%; P.F. 109-111°C (lit.⁷ P.F. 111-113 °C).; ¹H RMN (300 MHz, CDCl₃) δ = 8,16 (s, 1H), 8,12 (s, 1H), 7,51 (m, 4H); ¹³C RMN (75,5 MHz, CDCl₃) δ = 124,6, 128,7, 131,0, 132,3, 149,7.

Dados da 4-nitrobenzaldoxima (**2b**): Sólido cristalino bege; rendimento: 90%; P.F. 127-129°C (lit.⁷ P.F. 128–131°C); ¹H RMN (300 MHz, CDCl₃) δ = 8,25 (d, 2H, J = 9,0 Hz), 8,21 (s, 1H), 8,11 (s, 1H), 7,76 (d, 2H, J = 9,0 Hz); ¹³C RMN (75,5 MHz, CDCl₃/DMSO d⁶) δ = 123,6, 127,1, 139,0, 146,8, 147,7.

6.2 SÍNTESE DAS 3,5-DIARILISOXAZOLINAS (**4a-b**)

Em um balão monotubulado adicionam-se a oxima **2a-b** (7,5 mmol), o diclorometano (70 mL) e o NCS (8,25 mmol). Após a adição de uma gota de HCl deixase a mistura agitando por quatro horas a temperatura ambiente. Transcorrido o tempo da

reação, adiciona-se o estireno **3a-b** (7,5 mmol) ao balão e a trietilamina (22,5 mmol) é gotejada na mistura, sob banho de gelo. Remove-se o banho de gelo e deixa-se agitando por vinte e quatro horas a temperatura ambiente. Em seguida, a mistura é lavada com 2x10 mL HCl 1 M seguido de 2x10 mL de NaCl saturado. Adiciona-se Na₂SO₄ à fase orgânica, filtra-se e o solvente é evaporado. O sólido escuro restante é recristalizado em etanol.

Dados da 5-(4-*terc*-butóxifenil)-3-(4-bromofenil)isoxazolina (**4a**): Sólido cristalino branco; rendimento: 70%; P.F. 121-123 °C; ¹H RMN (300 MHz, CDCl₃) δ = 7,55 (s, 4H), 7,28 (d, 2H, J = 8,4 Hz), 6,99 (d, 2H, J = 8,4 Hz), 5,70 (dd, 1H, J_{cis} = 11,1 Hz, J_{trans} = 8,7 Hz), 3,71 (dd, 1H, J_{gem} = 16,8 Hz, J_{cis} = 11,1 Hz), 3,31 (dd, 1H, J_{gem} = 16,8 Hz, J_{trans} = 8,7 Hz), 1,34 (s, 9H); ¹³C RMN (75,5 MHz, CDCl₃) δ = 155,5, 155,4, 135,12, 131,9, 128,5, 128,1, 126,7, 126,6, 124,3, 82,7, 78,7, 42,7, 28,8.

Dados da 5-(4-*terc*-butóxifenil)-3-(4-nitrofenil)-isoxazolina (**4b**): Sólido amarelo claro; rendimento: 20%; P.F. 143°C; ¹H RMN (300 MHz, CDCl₃) δ = 8,26 (d, 2H, J = 9,0 Hz), 7,86 (d, 2H, J = 9,0 Hz), 7,28 (d, 2H, J = 8,7 Hz), 7,50 (d, 2H, J = 8,4 Hz), 5,79 (dd, 1H, J_{cis} = 11,1 Hz, J_{trans} = 8,7 Hz), 3,77 (dd, 1H, J_{gem} = 16,8 Hz, J_{cis} = 11,1 Hz), 3,38 (dd, 1H, J_{gem} = 16,8 Hz, J_{trans} = 8,7 Hz), 1,34 (s, 9H); ¹³C RMN (75,5 MHz, CDCl₃) δ = 155,8, 154,7, 148,4, 135,6, 134,5, 127,3, 126,6 124,3, 124,0, 83,6, 78,8, 42,2, 28,8.

6.3 SÍNTESE DOS 3,5-DIARILISOXAZÓIS (**5a-b**)

Em um balão monotubulado, adaptado com Dean-Stark e condensador, são adicionados a isoxazolina (4,93 mmol), o dióxido de manganês (MnO₂- cinco vezes em massa) e o tolueno (10 mL/g de MnO₂). A mistura é deixada sob refluxo de tolueno durante treze horas.

A mistura é filtrada sob celite, lavada com diclorometano e concentrada, obtendo-se o produto.

Dados do 5-(4-*terc*-butóxifenil)-3-(4-bromofenil)isoxazol (**5a**): Sólido branco cristalino; rendimento: 95%; P.F. 157-158°C; ¹H RMN (300 MHz, CDCl₃) δ = 7,72 (m, 4H), 7,59 (d, 2H, J = 8,4 Hz), 7,08 (d, 2H, J = 8,7 Hz), 6,69 (s, 1H), 1,40 (s, 9H); ¹³C RMN (75,5 MHz, CDCl₃) δ = 170,6, 161,9, 157,6, 132,1, 128,2, 126,8, 124,2, 126,7, 123,9, 122,0, 96,3, 79,4, 28,8.

Dados do 5-(4-bromofenil)-3-(4-nitrofenil)isoxazol (**5b**): Rendimento: 42 %; P.F. 224,8 °C; ¹H RMN (300 MHz, CDCl₃): δ = 8,36 (d, 2H, J = 8,7 Hz); 8,08 (d, 2H, J = 9,0 Hz); 7,75 (d, 2H, J = 8,7 Hz); 7,67 (d, 2H, J = 8,4 Hz); 7,03 (s, 1H); ¹³C RMN (CDCl₃, 75,5 MHz): δ = 170,1; 161,1; 148,5; 134,8; 132,2; 127,5; 127,1; 125,6; 124,9; 124,1; 97,8.

6.4 SÍNTESE DO FENOL (6a)

Em um balão monotubulado adaptado com condensador adiciona-se o isoxazol **5a** (1 mmol) dissolvido em metanol (25mL), o ácido acético (HOAc) (13 mmol) e o ácido bromídrico (HBr) (13 mmol).

A mistura é deixada sob refluxo até verificar-se o consumo do reagente por cromatografia em camada delgada (aproximadamente 6 horas à 70°C). Após resfriar adiciona-se NaHCO₃ até pH ~ 6-7. O precipitado formado é filtrado em papel pregueado e lavado com água destilada.

Dados do 5-(4-hidroxifenil)-3-(4-bromofenil)isoxazol (**6a**): Sólido bege; rendimento: 99%; P.F. 204-206°C; ¹H RMN (300 MHz, CDCl₃, 3 gotas de DMSO d⁶) δ = 9,48 (s, 1H), 7,73 (d, 2H, J = 8,1 Hz), 7,67 (d, 2H, J = 8,4 Hz), 7,60 (d, 2H, J = 8,4 Hz), 6,95 (d, 2H, J = 8,1 Hz), 6,68 (s, 1H), 2,827 (DMSO); ¹³C RMN (75,5 MHz, CDCl₃, 3 gotas de DMSO d⁶) δ = 170,7, 161,5, 159,2, 131,7, 127,9, 127,1, 123,6, 118,2, 115,8, 95,0.

6.5 ALQUILAÇÃO DO FENOL (7a)

Em um balão monotubulado são adicionados 2,53 mmol do fenol (6a), o carbonato de potássio (K_2CO_3 ; 3,04 mmol) e o solvente (acetona, 30 mL). Deixa-se agitando e adiciona-se o bromodecano (2,78 mmol) gota-a-gota. Acompanha-se a reação por cromatografia de camada delgada. Ao término, filtra-se a reação para a remoção do K_2CO_3 e evapora-se o solvente.

Adiciona-se diclorometano ao sólido e faz-se a extração com HCl 1M, água e cloreto de sódio saturado.

Dados do 5-(4-dectiloxifenil)-3-(4-bromofenil)isoxazol (**7a**): Sólido branco; rendimento: 95%; P.F. **Cr** 90,37 °C **CrE** 114,95 °C **SmA** 190,81 °C **I**; ¹H RMN (300 MHz, CDCl₃) δ = 7,73 (q, 4H, J = 8,5 Hz), 7,60 (d, 2H, J = 8,50 Hz), 6,98 (d, 2H, J = 8,79 Hz), 6,66 (s, 1H), 4,0 (t, 2H, J = 6,59 Hz), 1,81 (m, 2H), 1,61 (s, água), 1,47 (sl, 2H), 1,28 (s, 12H), 0,88 (t, 3H, J = 6,44 Hz).

6.6 REAÇÃO DE CONDENSAÇÃO DE ULLMANN (**9a-b**)

Em um balão Schlenk deixa-se agitando por 15 minutos o iodeto de cobre (0,216 mmol) e a L-prolina (0,432) em DMSO (4 mL). Depois adiciona-se o 4-bromobenzaldeído (1,08 mmol), a amina (1,62 mmol) e a base (2,16 mmol). Deixa-se sob agitação à 100 °C durante 38 horas.

Após adiciona-se acetato de etila (25 mL a mistura reacional e faz-se a extração com NaCl saturado (20 mL), ácido acético 1M (20 mL), cloreto de amônio saturado (20 mL) e NaCl saturado (20 mL). Separa-se as fazes e adiciona-se sulfato de sódio (Na₂SO₄) à fase orgânica, filtra-se e o solvente é evaporado.

O produto é purificado por cromatografia em coluna.

Dados da 4-piperidina-1-benzaldeído (**9a**): Líquido vermelho escuro; rendimento: 55%; ¹H RMN (300 MHz, CDCl₃) δ = 9,74 (s, 1H), 7,72 (d, 2H, J= 8,5 Hz), 6,88 (d, 2H, J = 8,8 Hz), 3,4 (s, 4H), 1,66 (s, 6H).

Dados da 4-morfolina-1-benzaldeído (**9b**): Líquido vermelho escuro; rendimento: $17\%^*$; ¹H RMN (300 MHz, CDCl₃) δ = 9,76 (s, 1H), 7, 70 (d, 2H, J = 9 Hz), 6,84 (d, 2H, J = 9 Hz), 3,77 (t, 4H, J = 4,95 Hz), 3, 36 (t, 4H, J = 4,95 Hz).

*reação feita a 80°C, com 10 mol % de CuI.

6.7 SÍNTESE DA 4-DIFENILAMINA-1-BENZALDEÍDO (REAÇÃO DE BUCHWALD) (**9c**).

Um balão Schlenk com o agitador magnético é flambado sob atmosfera de nitrogênio, após adiciona-se o tolueno seco (5 mL) no qual faz-se um fluxo de nitrogênio com uma seringa através de um septo de borracha durante 10 minutos. O Pd(OAc)₂ (0,04 mmol) e o ligante BINAP (0,06 mmol) são adicionados ao balão que fica sob fluxo de nitrogênio, e deixa-se sob agitação durante 15 minutos. Decorrido o tempo adicionam-se o bromobenzaldeído (1,0 mmol), a difenilamina (1,2 mmol) e o carbonato de césio (1,4 mmol). O balão Schlenk é selado e deixa-se a mistura reacional agitando por 24 horas à 100 °C.

Filtra-se a mistura reacional e evapora-se o tolueno através da adição de metanol, onde ocorre a formação de um azeótropo. Adiciona-se dicloro (20 mL) no sólido remanescente e faz-se a extração com HCl 1M (15 mL), água (15 mL) e solução

de cloreto de sódio saturado (15 mL). Adiciona-se sulfato de sódio à fase orgânica (Na_2SO_4), filtra-se e evapora-se o solvente. Adiciona-se etanol para a recristalização, e filtra-se. O sólido remanescente é o produto.

Dados da 4-difenilamina-1-benzaldeído (**9c**): Sólido marrom; rendimento: 55%; P.F 129-133 °C; ¹H RMN (300 MHz, CDCl₃) δ = 9,73 (s, 1H), 7,6 (d, 2H, J = 8,8 Hz), 7,27 (t, 4H, 7,93 Hz), 7,10 (m, 6H), 6,93 (d, 2H, J = 8,8 Hz).

6.8 ACOPLAMENTO DE AMINAS SECUNDÁRIAS NOS 3,5-DIARILISOXAZOIS (11a-c, 12a-c).

11a-c: O procedimento utilizado é o mesmo para a síntese da 4-difenilamina-1-benzaldeído. Adicionam-se o Pd(OAc)₂ (0,023 mmol), BINAP (0,035 mmol) primeiramente sob agitação em tolueno (5 mL). Após adicionam-se o isoxazol (**5b**, **7a**) (0,58 mmol), a difenilamina (0,696 mmol) e o carbonato de césio (0,812 mmol).

12a-c: O procedimento utilizado é o mesmo para a síntese da 4-difenilamina-1-benzaldeído. Adicionam-se o Pd(OAc)₂ (0,018 mmol), BINAP (0,026 mmol) primeiramente sob agitação em tolueno (5 mL). Após adicionam-se o isoxazol (**5b**, **7a**) (0,44 mmol), a difenilamina (0,528 mmol) e o carbonato de césio (0,616 mmol).

Dados do 5-(4-morfolina-fenil)-3-(4-nitrofenil)isoxazol (**11b**): Sólido laranja escuro; rendimento: 30%; P.F. 258-262 (Decompõe); ¹H RMN (300 MHz, CDCl₃) δ = 8,27 (d, 2H, J = 8,8 Hz), 7,97 (d, 2H, J = 8,8 Hz), 7,69 (d, 2H, J = 8,8 Hz), 6,93 (d, 2H, J = 8,8 Hz), 6,67 (s, 1H), 3,82 (t, 4H, J = 4,99 Hz), 3,22 (t, 4H, J = 4,99 Hz) 1,53 (sl, água). ¹³C RMN (CDCl₃, 75,5 MHz): δ = 170,6; 160,0; 151,3; 147,6; 134,5; 126,6; 126,2; 123,2; 119,5; 113,9; 94,6; 65,6; 47,2.

Dados do 5-(4-difenilamina-fenil)-3-(4-nitrofenil)isoxazol (**11c**): Sólido laranja; rendimento: $63\%^*$; P.F. 214-219; ¹H RMN (300 MHz, CDCl₃) $\delta = 8,26$ (d, 2H, J = 8,80 Hz), 7,96 (d, 2H, J = 8,80 Hz), 7,58 (d, 2H, J = 8,80 Hz), 7,24 (t, 4H, J = 7,63 Hz), 7,07 (m, 6H), 6,67 (s, 1H). ¹³C RMN (CDCl₃, 75,5 MHz): $\delta = 171,5$; 161,1; 150,1; 148,6; 146,8; 135,5; 129,6; 127,7; 126,9; 125,5; 124,2; 121,6; 119,6; 95,9.

^{*}tempo de reação de 48 horas

Dados do 5-(4-dectiloxifenil)-3-(4-piperidina-fenil)isoxazol (**12a**): Sólido laranja; rendimento: 55%; P.F. **Cr** 127,0-127,5 **N** 133,5-134,7 **I;** ¹H RMN (300 MHz, CDCl₃) δ = 7,74 (m, 4H), 6,98 (m, 4H), 6,63 (s, 1H), 4,0 (t, 2H, J = 6,44 Hz), 3,26 (t, 4H, J = 5,28 Hz), 1,78 (m, 6H), 1,47 (m, 2H), 1,28 (s, 13H), 0,8 (t, 3H, J = 6,44 Hz). ¹³C RMN (CDCl₃, 75,5 MHz): δ = 169,9; 162,7; 160,6; 127,8; 127,4; 120,3; 115,8; 114,94; 114,91; 114,85; 95,7; 68,2; 50,0; 31,9; 29,6; 29,5; 29,4; 29,3; 29,1; 26,0; 25,4; 24,2; 22,7; 14,1.

Dados do 5-(4-dectiloxifenil)-3-(4-morfolina-fenil)isoxazol (**12b**): Sólido amarelado; rendimento: 65%; P.F. **Cr** 141,7 °C **SmA** 156-160 °C **I;** ¹H RMN (300 MHz, CDCl₃) δ = 7,76 (q, 4H, J = 8,64 Hz), 6,97 (d, 4H, J = 8,79 Hz), 6,64 (s, 1H), 4,0 (t, 2H, J = 6,44 Hz), 3,88 (t, 4H, J = 4,84 Hz), 3,24 (t, 4H, J = 4,69 Hz), 1,8 (m, 2H), 1,65 (sl, água), 1,47 (m, 2H), 1,28 (s, 13H), 0,88 (t, 3H, J = 6,59 Hz). ¹³C RMN (CDCl₃, 75,5 MHz): δ = 170,1; 162,6; 160,6; 152,1; 127,8; 127,4; 120,5; 120,2; 115,2; 114,9; 95,74; 68,2; 66,7; 48,7; 31,9; 29,60; 29,58; 29,4; 29,3; 29,2; 26,0; 22,7; 14,16.

7. BIBLIOGRAFIA

BELLER, M. et al. Chem. Eur. J. 10, 2983-2990, 2004.

BUCHWALD, S. L. et al. Chem. Sci., 2, 27–50, 2011.

BUCHWALD, S. L., et al. J. Am. Chem. Soc., 131, 78-88, No.1, 2009.

BUCHWALD, S. L., J. Am. Chem. Soc., 118, 7215-7216, 1996.

BUCHWALD, S. L.; Wolfe, J. P. Tetrahedron Letters, 38, No 36, 6359-6362, 1997.

COLLINGS, P. J.; HIRD, M., Introduction to Liquid Crystals. Taylor & Francis. Londres, **1997**.

CZAKÓ, B., KÜRTI, L., Strategic Applications of Named Reactions in Organic Synthesis. Elsevier. Inglaterra. (p. 70-71; 464-467), **2005**.

HAJIPOUR, A.R.; MALLAKPOUR, S.E.; IMANZADEH, G. J. Chem. Research, 228, 1999.

HARTWIG, J. F.; IUPAC, Pure Appl. Chem. 71, 1417-1423, 1999.

HOUK, K. N.; SIMS, J.; STROZIER, R. W.; GEORGE, J. K.; *J. Am. Chem. Soc.*, 95, 7287, **1973**.

HOUK, K. N.; SIMS, J.; WATTS, C. R.; LUSKUS, L. J.; *J. Am. Chem. Soc.*, 95, 7301, **1973**.

KOENIG, B., FISCHER C. Beilstein J. Org. Chem., 7, 59-74, 2011.

KOTEN, G. et al. Dalton Trans., 39, 10338-10351, 2010.

LIU, K.-C.; SHELTON, B. R.; HOWE, R. K. J. Org. Chem., 45, 3916-3918, 1980.

MA, D. et al. *Org. Lett.*, Vol. 5, No. 14, **2003**.

MCOMIE, J. F. W., *Protective Groups in Organic Chemistry*, Plenum Press, London and New York, **1973**.

MONNIER, F. TAILLEFER, M.; Angew. Chem. Int. Ed., 48, 6954 – 6971, **2009**.

PASSO, J. P.; SCHNEIDER, P. H.; VILELA, G. D.; RITTER, O. M. S.; MERLO, A. A.; *Liq. Cryst.*, *34*, 834, **2008**.

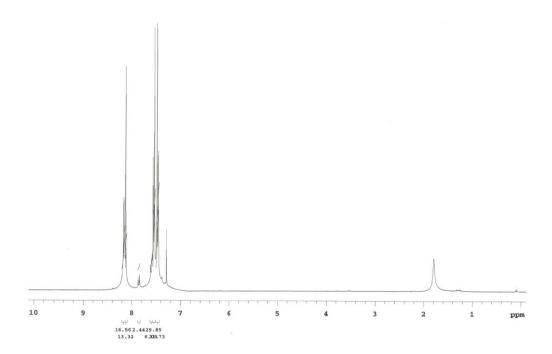
PESTI, J. A. et al. Organic Process Research & Development, 8, 22, 2004.

RITTER, O. M. S.; GIACOMELLI, F. C.; PASSO, J. A.; MERLO, A. A.; *Polym. Bull.*, *56*, 549, **2006**.

SOLOMONS, G.; FRYHLE, C.; Organic Chemistry; John Wiley & Sons. 7 ed.; 2000.

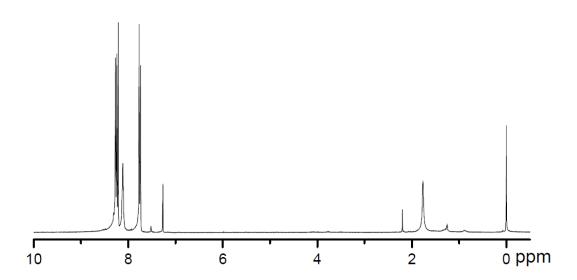
TANGALLAPALLY, R., et al. Curr. Top. Med. Chem. 7, 509–526, 2007.

TAVARES, A.; SCHNEIDER, P. H.; MERLO, A. A.; Eur. J. Org. Chem., 6, 889, **2009**,.

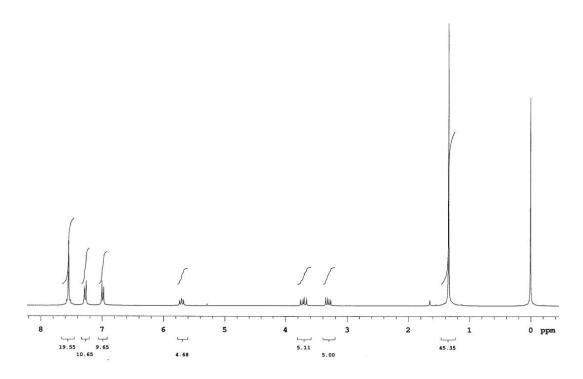

VENKATARAMAN, D. et al. Tetrahedron Letter, 42, 4791-4793, 2001.

VILELA, G. D. et al. / Tetrahedron Letters, 52, 6569–6572, 2011.

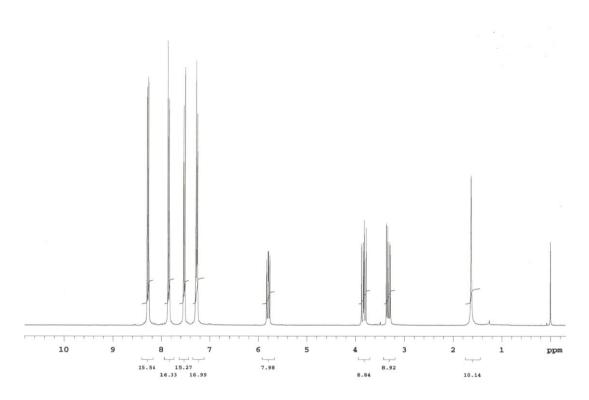
WEIKER, R. J. et al. J. Med. Chem., 34, 1630-1633, 1991.

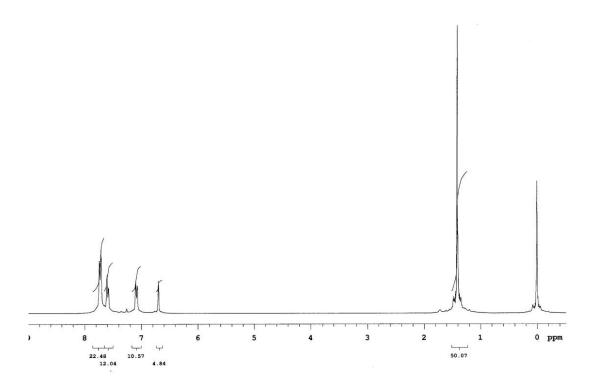

WOLF, C., Chem. Commun., 1715-1717, 2009.

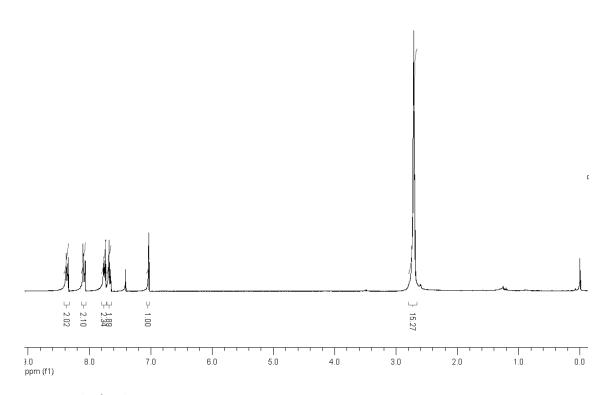
APÊNDICES

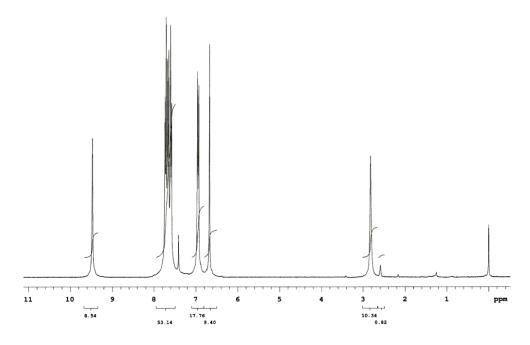


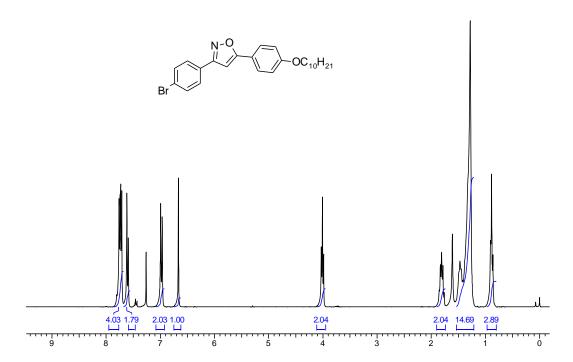
Apêndice 1: Espectro de ¹H RMN (300 MHz, CDCl₃) do composto **2a**.

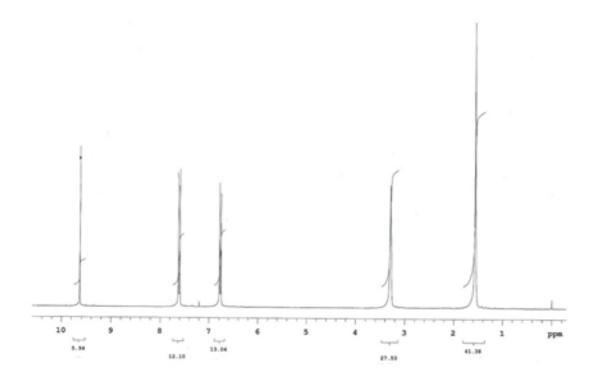

2b

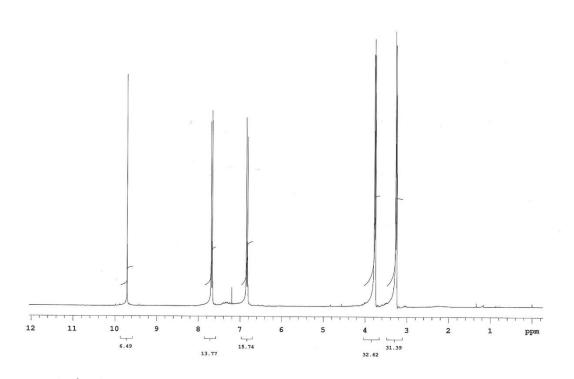

Apêndice 2: Espectro de 1 H RMN (300 MHz, CDCl $_{3}$) do composto **2b**.

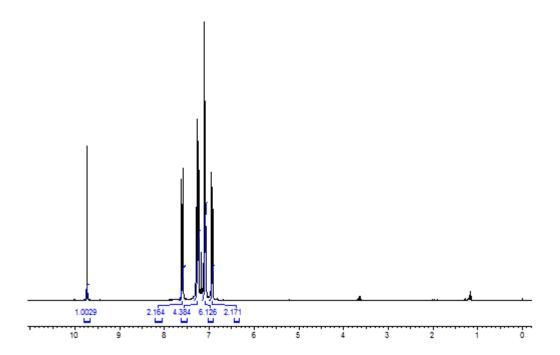

Apêndice 3: Espectro de ¹H RMN (300 MHz, CDCl₃) do composto **4a**.

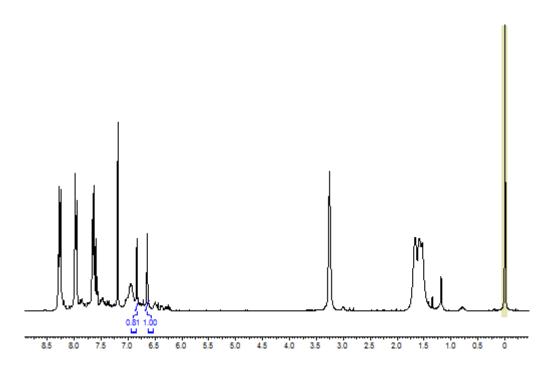

Apêndice 4: Espectro de ¹H RMN (300 MHz, CDCl₃) do composto **4b**.

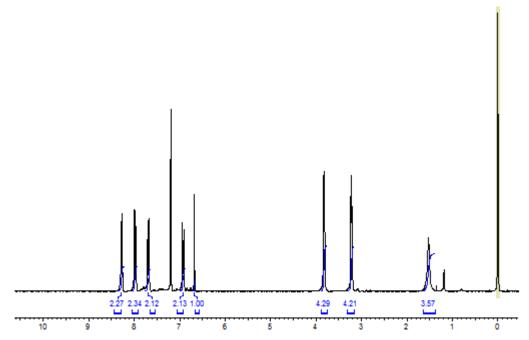

Apêndice 5: Espectro de ¹H RMN (300 MHz, CDCl₃) do composto **5a**.

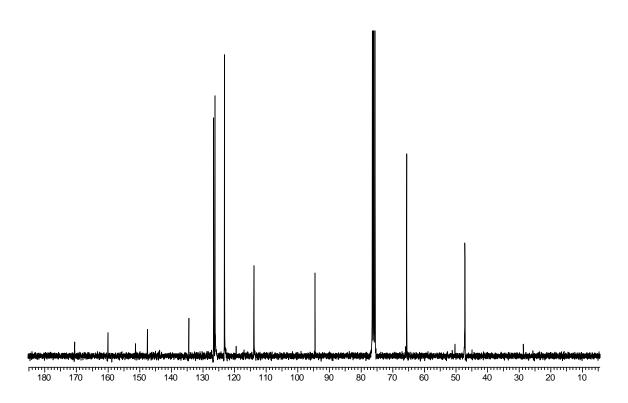

Apêndice 6: Espectro de ¹H RMN (300 MHz, CDCl₃) do composto **5b**.

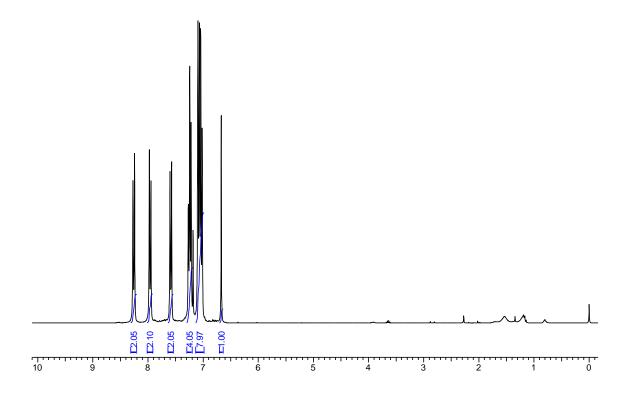

Apêndice 7: Espectro de ¹H RMN (300 MHz, CDCl₃, 3 gotas de DMSO d⁶) do composto **6a**.

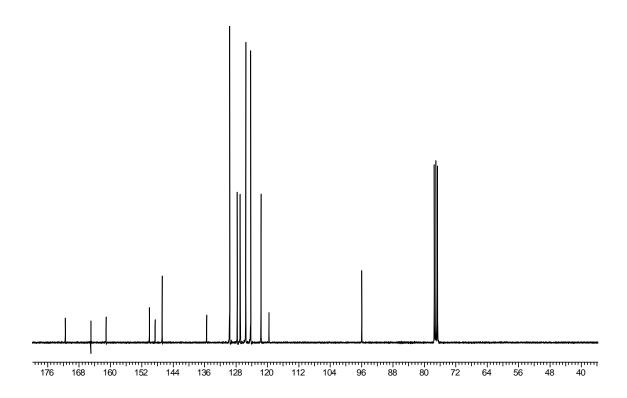

Apêndice 8: Espectro de ¹H RMN (300 MHz, CDCl₃) do composto **7a**.

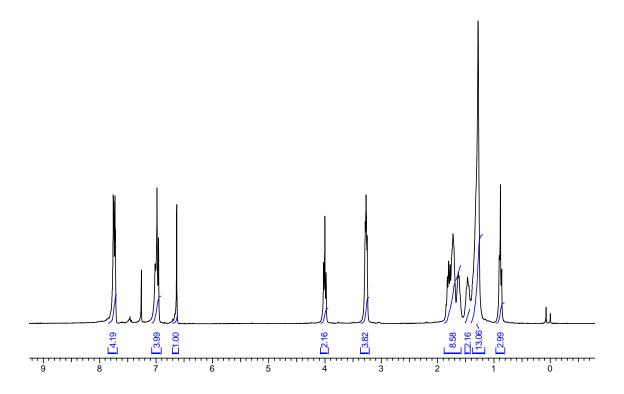

Apêndice 9: Espectro de ¹H RMN (300 MHz, CDCl₃) do composto **9a**.

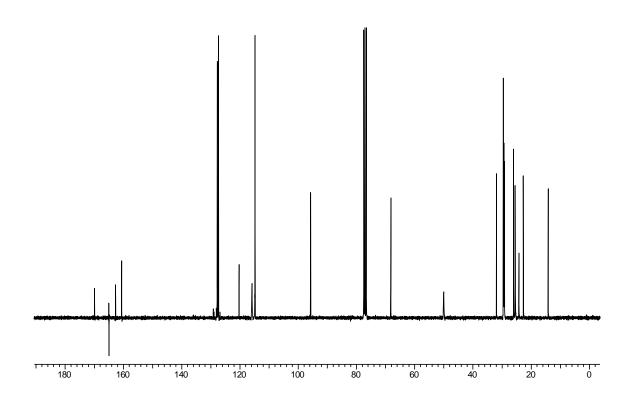

Apêndice 10: Espectro de ¹H RMN (300 MHz, CDCl₃) do composto 9b.

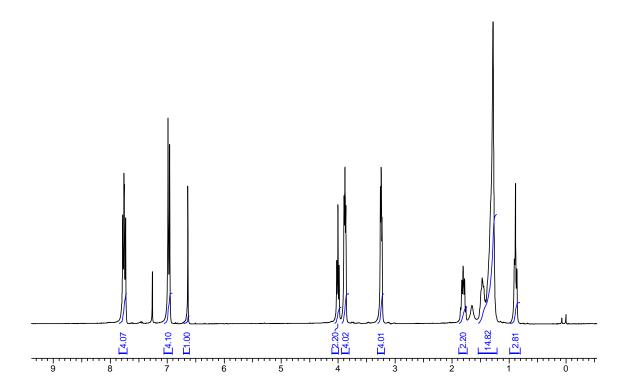

Apêndice 11: Espectro de ¹H RMN (300 MHz, CDCl₃) do composto **9c**.

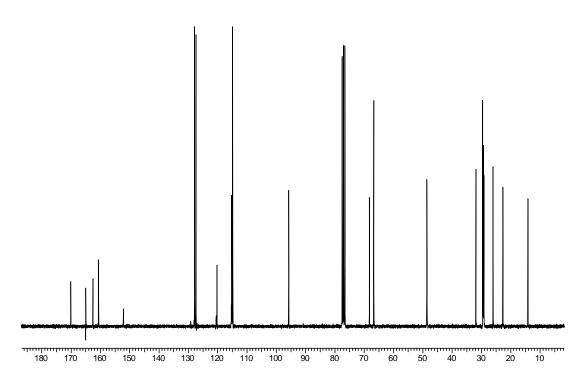

Apêndice 12: Espectro de ¹H RMN (300 MHz, CDCl₃) do composto **11a**.

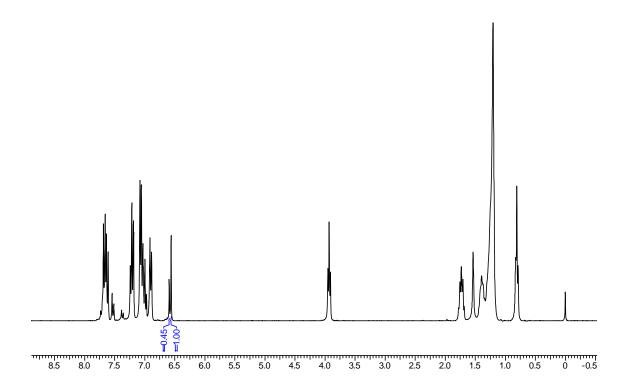

Apêndice 13: Espectro de 1H RMN (300 MHz, CDCl $_3$) do composto **11b**.


Apêndice 14: Espectro de ¹H RMN (75,5 MHz, CDCl₃) do composto **11b**.


Apêndice 15: Espectro de ¹H RMN (300 MHz, CDCl₃) do composto **11c**.


Apêndice 16: Espectro de ¹H RMN (75,5 MHz, CDCl₃) do composto **11c**.


Apêndice 17: Espectro de ¹H RMN (300 MHz, CDCl₃) do composto **12a**.


Apêndice 18: Espectro de ¹H RMN (75,5 MHz, CDCl₃) do composto 12a.

Apêndice 19: Espectro de ¹H RMN (300 MHz, CDCl₃) do composto **12b**.

Apêndice 20: Espectro de ¹H RMN (75,5 MHz, CDCl₃) do composto **12b**.

Apêndice 21: Espectro de ¹H RMN (300 MHz, CDCl₃) do composto **12c**.