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ABSTRACT

The rapid growth of urban areas has a significant impact dfctiend transporta-
tion systems. New management policies and planning stestege clearly necessary to
cope with the more than ever limited capacity of existingdro@tworks. The concept
of Intelligent Transportation System (ITS) arises in thisrsgario; rather than attempting
to increase road capacity by means of physical modificatiortbe infrastructure, the
premise of ITS relies on the use of advanced communicationcamputer technolo-
gies to handle today’s traffic and transportation fac#itiénfluencing users’ behaviour
patterns is a challenge that has stimulated much reseatble IS field, where human
factors start gaining great importance to modelling, satinfy, and assessing such an
innovative approach.

This work is aimed at using Multi-agent Systems (MAS) to esant the traffic and
transportation systems in the light of the new performaneasures brought about by
ITS technologies. Agent features have good potentialiiespresent those components
of a system that are geographically and functionally distted, such as most components
in traffic and transportation. A BDI (beliefs, desires, antentions) architecture is pre-
sented as an alternative to traditional models used togeptéhe driver behaviour within
microscopic simulation allowing for an explicit represasin of users’ mental states.

Basic concepts of ITS and MAS are presented, as well as soplieatpn examples
related to the subject. This has motivated the extensiom @xeting microscopic sim-
ulation framework to incorporate MAS features to enhaneerépresentation of drivers.
This way demand is generated from a population of agentsaz#ult of their decisions
on route and departure time, on a daily basis. The extendedation model that now
supports the interaction of BDI driver agents was effetyivmplemented, and different
experiments were performed to test this approach in conmsaénarios.

MAS provides a process-driven approach that fosters the @asstruction of mod-
ular, robust, and scalable models, characteristics tltht ila former result-driven ap-
proaches. Its abstraction premises allow for a closer agsmtbetween the model and its
practical implementation. Uncertainty and variabilitg addressed in a straightforward
manner, as an easier representation of humanlike behawiotinin the driver structure is
provided by cognitive architectures, such as the BDI apgrased in this work. This way
MAS extends microscopic simulation of traffic to better aidrthe complexity inherent
in ITS technologies.

Keywords: Multi-agent systems, BDI architecture, decision-makimgelligent trans-
portation systems, traffic modelling, microscopic traffirnglation.



Uma abordagem baseada em modelos BDI para avaliagdo do pras® de deciséo de
motoristas no trafego urbano

RESUMO

O rapido crescimento das regifes urbanas tem impacto segnifi nos sistemas de
trafego e transportes. Politicas de gerenciamento e &gitatde planejamento alterna-
tivas sdo claramente necessarias para o tratamento dadafmtimitada, e cada vez
mais deficitaria, das redes viarias. O conceito de Sistentabgentes de Transportes
(ITS) surge neste cenario; mais do que procurar aumentgragicade por meio de mo-
dificagbes fisicas na infraestrutura, sua premissa basema utilizagdo de tecnologias
avancadas de comunicagdo e computacgdo para melhor gexaursas de trafego e trans-
portes atuais. Influenciar o padrdo do comportamento dagioste um desafio que tem
estimulado muita pesquisa na area de ITS, onde fatores lnsnp@ssam a ter grande
importancia na modelagem, simulacéo e avaliacdo dessdagj®in inovadora.

Este trabalho tem como foco a utilizagéo de Sistemas Meiltiggs (MAS) na repre-
sentagdo dos sistemas de trafego e transporte, com basevaasnmedidas de desempenho
impostas pelas tecnologias ITS. As caracteristicas deeggm grande potencial para
representar componentes geografica e funcionalmentédisgivs, como a maioria dos
elementos no dominio da aplicacdo. Uma arquitetura Bli€¢fs desires intentiong
€ apresentada como alternativa a modelos tradicionaidpsiggara representar o com-
portamento do motorista em simulacdo microscépica, cerailo-se a representacdo
explicita dos estados mentais dos usuarios.

Os conceitos basicos de ITS e MAS séo apresentados, assiones@mplos de apli-
cacodes relacionados com o tema do trabalho. Esta foi a matvyaara a extensdo de um
simulador microscoépico existente, no sentido de incorpasacaracteristicas dos MAS
para melhorar a representacéo dos motoristas. Assim, anderégyerada a partir de uma
populacdo de agentes, resultando da decisao sobre a rotargo tle partida ao longo
de varios dias. O modelo estendido, que passa a suportaragébd de motoristas BDI,
foi efetivamente implementado e foram executados difese@xperimentos para testar a
abordagem em cenarios de trafego urbano.

MAS permite uma abordagem direcionada a processos quiggf@odonstrucéo de re-
presentacdes modulares, robustas, e extensiveis, c@tcds pouco presentes em abor-
dagens voltadas ao resultado. Suas premissas de abstexgditepn uma associacao
direta entre modelo e implementagéo. Incerteza e vauaié sdo assim tratadas de
maneira mais intuitiva, uma vez que arquiteturas cograpermitem uma facil represen-
tacdo do comportamento humano na estrutura do motoristtaD@ma, MAS estende
a simulacdo microscopica de trafego no sentido de melhoeseptar a complexidade
inerente as tecnologias ITS.

Palavras-chave:sistemas multiagentes, arquitetura BDI, processo de &gcssstemas
inteligentes de transporte, modelagem de trafego, sialagcroscopica de trafego.
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1 INTRODUCTION

1.1 Overview

The rapid growth of urban areas has deserved special attefndm scientific and
technical communities over the last years. New managenodiotgs and planning strate-
gies are necessary to tackle the problems that arise froay®drban scenarios. Not
surprisingly, transportation and traffic systems are dbjet concern in many of these
problems as they play an important and indispensable raeritemporary society. How-
ever, road infrastructures are no longer sufficient to nteeirtcreasing demand and traffic
congestion is frequently encountered in most commutetshjgys. This implies consid-
erable economic, social, and environmental losses, witichld be minimised. Physical
modification to the road infrastructure is no longer the ladtgrnative to tackle such a
problem. Besides the high cost of implementation, they ealisruptions and can dam-
age the environment. Alternatively, some efforts have héentified in order to increase
road capacity by improving the efficiency of traffic contrgstems. Although such efforts
have addressed some of the problems arising from traffic, jimag are not considered to
be a lasting solution.

Nonetheless, researchers still seek alternative meanspe with traffic and trans-
portation specificities. The first attempts at improvingdr@apacity have relied on deal-
ing with the static part of the system, namely the road infuasure and control systems.
However, another approach has been experienced, whictheoather hand, relies on
maximising the use of the actual road capacity through thyrecfluencing users’ be-
haviour patterns. The concept of Intelligent Transpastatsystem (ITS) arises in this
scenario. The growing advances in communication, as weH asmputer technologies
have encouraged the use of such systems to tackle problethe ireld of traffic and
transportation engineering.

The underlying concept of ITS is to ensure productivity affeciency by making
better use of existing systems. It is mainly concerned withapplication of distributed
solutions; each of which deals with specific issues of useretls on an individual basis.
Modifying travel patterns through directly influencing ugehaviour can be seen as the
main premise within these technologies. Autonomy and ligeice are two concepts
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that should be present in such systems. Furthermore, atitegmall factors, both dynamic
and static, which can somehow effect the traffic flow is alsdre¢to ITS. So, computer
and communication technologies become key ingredientssiptocess of implementing
these systems. In this way, all components are expectedriotagether in a co-operative
environment to maximise the overall efficiency of traffic arahsportation.

Models used to represent traffic systems need to betterdnahdlacteristics such as
the human behaviour and the temporal—-dependent naturehahe brought to the user
decision level. Such a need forces the use of a lower-lewttadiion to describe traffic
systems that, on the other hand, leads to an increasing ewitypIThus, practitioners will
need systems capable of dealing with the new performancsuresabrought about by the
deployment of such intelligent and adaptable technologiesnan behaviour becomes a
variable of huge importance to be coped with, as it plays émral role in assessing pub-
lic acceptance for ITS. Owing the use of simplified approackeme traditional models
fail in representing these complex scenarios. Therefoamyrefforts have been identified
in order either to elaborate new models from scratch or tptamaditional ones to meet
the need for representing ITS requirements.

Since representing human behaviour in models for simulgiiwrpose becomes im-
perative, agent-based techniques could be consideredyasmgropriate approaches to
represent transportation and traffic systems. Multi-aggrstem (MAS) is a sub-field
of Distributed Artificial Intelligence (DAI), which has dessed an increasing interest in
the last decade. The rapid evolution in the available coatfmrtal resources, both in
hardware and in software, which support a widely physiadiyributed computing envi-
ronment, has contributed to that. Additionally, the insiag demand for suitable tools
to represent the complexity inherent in some applicatiomaias has motivated much
research on MAS.

The concept of MAS can be basically seen as a modelling apprdevised to rep-
resent systems whose entities, coined agents, exhibiligetgce, autonomy, and some
degree of interaction, both with one another and with tharenment. The abstraction
approach of MAS consists of representing a system by meléigents that exist in a com-
mon environment and interact in order to achieve specifitsgoehus, an agent can be
any entity capable of perceiving facts through sensors atidgaupon the environment
through effectors. Some degree of interactions will alsplynthe presence of communi-
cation capabilities. Furthermore, some agent-based appes present powerful tools for
representing mental attitudes, such as beliefs, desig=)jtions, emotions, and others,
which are intrinsic in human beings. Agent-based modelsdmal to deal with entities
that are geographically and functionally distributed, argbod ability of representing en-
tity ontology ensures agent-based models’ scalabilityrabdstness, which are desirable
characteristics for ITS models.
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1.2 Motivation

In traffic modelling it is possible to distinguish betweerotapproaches, namely the
macroscopic and the microscopic point of views. Macroscompdels rely on flow the-
ory rather than representing individual particles and atgally based on assignment al-
gorithms. A rigid structure, an origin—destination (OD)tmq is used to represent trip
distributions between all possible origins and destimatid he assignment is an iterative
process that seeks a steady state; in other words, a statéhstiche average travel time
for each link cannot be minimised by assigning trips to otbates between certain origin
and destination. To the contrary, microscopic models ralgmindividual representation
of each driver—vehicle particle, which moves throughoet letwork. OD matrices are
equally used in microscopic models to represent traveepattbetween different zones
within the traffic system.

In this scope of traffic representation, DRACULA is a toolttmplements a micro-
scopic model and will deserve a special attention in thisithérivers are extracted from
a population of potential drivers, which is estimated framQD matrix and will compose
the demand for travel on a certain day. The demand of a daydtance day, is formed
of drivers from the population that have effectively dedde make a trip on that day.
Therefore, in a hundred-day simulation, for instance edéht configurations for the de-
mand can be set on each day. Contrary to models based on arijxedhtrix, DRACULA
is based on a variable demand, where uncertainty and atyiae the underlying con-
cepts. So, the steady state can be identified within a disioito of probability rather than
being identified by a single value of flow. Drivers make theite choices accounting
for past experiences, which are stored in driver's memotgrims of travel time for each
link; it is then a quantitative assessment. However, sudpgnoach does not correspond
to reality as in most of the cases decisions are made withadegaualitative aspects that
drivers believe to be held within the system.

In order to illustrate the motivations for this work, one mayagine a situation in
a daily life of a traffic network user; in other words, certairiver named Joe. One of
Joe’s friends, say Mary, invites him to come over for a happyrton dayk, for instance.
However, Joe is not so familiar with the streets in Mary’sghéiourhood and does not
know for sure how he could get there. To cope with this posdibiitation, Joe decides
to ask for some help. He logs onto the Internet and accessa#ia information system
application.

Knowing where to get to and estimating the time he will neepgadorm the journey,
Joe can now plan his trip. Thus, he selects a course of adi@swill result in his
objective. He chooses a time to leave and a route to follovhabhe can arrive about
the time he has committed to Mary. Once he has planned hisgguhe can execute it.
While Joe has not found any obstacle within it, he can keepudiey his original plan.
However, he just finds that certain road on his itinerary isrimupted. As Joe is not able
to drive through that road any more, he has to reconsidergtisres and find another
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alternative route to get to Mary’s house. Therefore, Jo@atas his original plan and
starts executing the new one. In another point in time, Jserpalises that he has not
got enough petrol to get to his destination. Albeit he knoeswill probably be late, he
prioritises changing his plans once again in order to stopeschere to get more petrol.
After doing so, he is finally able to arrive at Mary’s home.

Analysing the simple story above, it is possible to idensfyme characteristics in
Joe’s behaviour that are very interesting to be featuredhendriver representation of
microscopic simulation models.

¢ the driver presentautonomyas he can identify on his own what his objectives are
and which actions he needs to perform to yield the expectaglts;

¢ through hissocial ability, as in the example above, a driver can ask for some help
in order to ease the execution of his actions, for instangesdmtacting a service
provider such as a traveller information centre;

e responding to traffic signals and breaking in order to avoitiding with others are
some well known examples whemreactivityis realised. Nonetheless, perceiving an
interruption and adopting another route can also be matlakea reaction by the
driver;

¢ the driver presentadaptabilityin the sense that he must be able to reconsider his
options and to adopt another strategy in order to accomplsigoals in the case
the original plan becomes inadequate;

e a driver also must be able to prioritise the execution of dioado the detriment
of his original plans, for instance, arriving later aftelopting another route that
is more convenient owing some other reason. In this senséyex gresentpro-
activity.

Considering these very human characteristics could bermety useful in tools aimed
at assessing drivers’ behaviour. However, it is not easgpoasent such features within
existing models; their structures are so rigid that scétglis a feature they lack. Bearing
this possible limitation in mind, modelling drivers as ¢ies fully endowed with reason-
ing abilities is the main motivation for this work.

1.3 Goals

This work is aimed at relevant aspects of the potentials ehtfased techniques
in modelling human behaviour within Intelligent Trans@idon Systems. Coping with
drivers’ decision-making in simulation frameworks is thégct of main concern. De-
vising a computational tool that allows for modelling, irapienting, and analysing this
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decision-making is the challenge for this work. This effegeks to ease the assessment
of new measures brought about by the deployment of ITS tdobiss.

However, the number of ITS scenarios are too vast and therscamany situations
drivers can be involved with and which demands their makihg wariety of decisions.
Thus, the focus of this thesis is given to commuter scendhniaisinvolve decisions such
as which route to take and what time to depart. A BDI-baseHitecture is proposed as
the underlying structure of the driver agent, which may séova wide range of purposes
within microscopic simulations. In order to test and dentiats the feasibility of the
approach, a framework is proposed on the basis of an extettssibe DRACULA model,
where demand can be characterised, evaluated, and analysieel basis of a population
of driver agents.

1.4 Methodology

The methodology adopted in order to reach the aim of theslaesl to accomplish its
goals is basically composed of the following parts.

¢ to describe the application domain by means of agents amdféfag¢ures. In order
to accomplish this, the basics of ITS and MAS are briefly pnees and potential
connections between these two fields are discussed. Exaarglgathered from the
literature, which illustrate the research efforts towasthg agent-based techniques
as a designing tool for simulation and evaluation enviromsi€Although a number
of possible applications have been identified, this stepdsided on representing
demand as a result of decision-making in two levels: routed@parture time;

¢ to devise a cognitive agent model to serve as the underlyingtare for modelling
the decision-making process. The ease for straightfotwalelscribing the con-
cepts of mental attitudes, such as beliefs, desires, ardtians, as well as their
relation within the cognitive process motivated the admp®f a BDI-based ap-
proach;

e to choose a BDI theory capable of supporting the practicaléementation of the
cognitive driver agent. Practical implementation of BDtlatectures has defied
researchers within the MAS research community. A greatiehgé with this con-
cern has been how to overcome the difficulties of applyindhsarc approach to
societies composed of a huge number of cognitive partitgpamainly those sorts
with a stringent time-dependent nature. Some scientifiksvbave been focused
on addressing such drawbacks and relatively recent conmhagent development
tools are featured with BDI models to support practical iempéntation;

e to design and to implement the cognitive driver agent aechuire with the neces-
sary mechanisms to allow interaction with others and withehvironment. The
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agent architecture herein proposed, though designed dsathework to base the
BDI reasoning, is also intended to support integration witfifferent levels for
different purposes in ITS;

¢ to design and to implement a microscopic simulation envirent aimed at testing
the feasibility of the approach proposed. Rather than dewey) it from scratch, the
environment is implemented on the basis of an extension éxiating microscopic
simulation model;

e to specify and to carry out simulation experiments withia tramework imple-
mented. Commuter scenarios are suggested to test the genefademand as a
result of decisions rationally made by the BDI agents thatpose the population
of drivers.

1.5 Challenging issues

One main idea herein presented is to see Intelligent Trategpn Systems as a
ground where theories from Computer Science can be not pplyea but also generated
and tested on an integrated basis. The different ways inhwhformation can be handled
and processed within ITS scenarios inspire the developarahideployment of a huge
range of technologies. This suggests that ITS can be seendifferent perspectives,
for example, from software to hardware, from local solusida the use of distributed
computer systems, and so forth. Modelling approaches &g ftom one another and
are very likely to be affected by different levels of gramitia for instance, dealing with
the system as entities in an agent society or modelling tteels®f an embedded system
on its own rights. Moreover, ITS can also be classified as bothand hard real-time
systems, depending on the several types of time constthiatare identified. And en-
dowing their components with autonomy, adaptability, tieétyg, and pro-activity, so that
they can be dealt altogether with as Intelligent Systemduraged ITS into an interesting
ground for Computer Science.

Although the use of agents seems to be very adequate to ctipeepiesenting speci-
ficities of today’s traffic and transportation scenariaiing ITS and MAS together poses
challenging issues.

e how to handle a large number of interacting heterogene@usegits, with different
goals, skills, reasoning capabilities, and degree of aurton

e how to address different levels of complexity, both withpest to inter- and to
intra-element interactions;

e as the driver becomes an important actor within ITS, how feeceith the com-
plex nature of humanlike behaviour, especially with thata@ning reasoning and
decision-making. This very feature of the driver is alse@etéd by whom it is in-
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teracting with, which implies it needs to dynamically switoetween reactive and
cognitive behaviours, in different levels;

e as there may potentially be a huge number of entities, botbpevation and com-
petition may arise from such a heterogeneous society. Sdliating situations
are very likely to happen and must be addressed in eitheiaelaln this sense,
communication and co-ordination need to be representegells

e how to represent the information flow throughout the systaohfzow such infor-
mation is interpreted by heterogeneous entities;

e the environment is very likely to be affected by the behawioliseveral of the
traffic components, and being capable of observing andarggng its instant state
is one main source of information. How to represent and patanse the traffic
environment so that involving components are able to peededm and act upon it.

The modular structure of a framework relying on agent-baselghiques seems to suit
the demands for testing and assessing different rationid@cial behaviours of ITS com-
ponents. The ease to represent communication, interacéasoning, decision-making,
planning, and learning, for instance, has motivated antoried the thought of MAS
as the starting ground where practitioners, engineersseaiedtists will devise, test, and
apply today’s traffic and transportation technologies.

1.6 Structure of the thesis

The remaining of this thesis is organised as follows. An waesv of Intelligent Trans-
portation Systems is presented in Chapter 2, which givesiapattention to Advanced
Traveller Information Systems (ATIS) as an important exumes source of information.
In Chapter 3, the basic concepts of Multi-agent Systems (V&8 introduced, as well
as some examples of agent-based techniques applied toltheffieaffic and transporta-
tion engineering. Mental attitudes such as beliefs, des@ed intentions, are the subjects
of main interest in Chapter 4, and a model to represent iioteaitdrivers within micro-
scopic simulation is presented in Chapter 5. An extensi@mtexisting microscopic sim-
ulation model, DRACULA, is proposed in Chapter 6. Such aredéd framework aims
at incorporating agent features in order to address thedbsuitable representations for
decision-making as an important instrument for demand &bion. It also presents and
discusses the results obtained by the implementation amdation of the MAS model
devised. Conclusions are drawn in Chapter 7, as are prestmteer developments and
some proposals for future works. The OD matrix and the nétwescription files used in
the experimental framework are made available in Appendand Appendix B, respec-
tively, whereas Appendix C is used to provide a brief expii@mmaon how incidents are
modelled in DRACULA. An extended abstract of the thesis, antéguese, is presented
in Appendix D.
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2 INTELLIGENT TRANSPORTATION SYSTEMS

2.1 Overview

The increasing demand in urban areas has awarded the@ttehimportant research
groups around the world. Notably, physically modifyindfiinfrastructures is no longer
the best way to improve services. Such an initiative leadsetmus economics, social,
and environmental problems. Other alternatives have breasiigated over the years in
order to optimise the limited capacity of traffic networks, instance, through improving
control systems. Another way relies on providing travslierth relevant information in
order to aid their decisions and, consequently, to influghee travel patterns. Intelli-
gent Transportation Systems (ITS) arise then from the grgwidvances in communi-
cation and in computing to overcome the more than ever loritgpacity of traffic and
transportation resources. Instead of intervening phitgjdhese systems are expected
to ensure productivity and efficiency by making better usexaéting resources. In gen-
eral, ITS has the potential to provide travellers with ugdate information suited to their
particular requirements through a wide variety of mechasiand technologies (CHAT-
TERJEE; MCDONALD, 1999).

So, creating intelligent systems that are able to commtm@ad to co-operate with
one another toward the improvement of capacity usage iseabelart of ITS (ADLER;
BLUE, 1998). This has motivated the development and widsspuse of such technolo-
gies. They require the collection of large amounts of data, them into ‘intelligence’ and
then convey relevant and timely information to managersusets (BARFIELD et al.,
1989). It is also important to bear in mind that the term cditeedescribe the application
of these systems is not restricted to ground traffic and pr@ms ITS involves all trans-
port modes, all transport users, and every kind of vehideyell as their management
and control. It reflects the recognition of all transpodatcomponents, both passive and
active, namely the environment, users, and service proide

Itis important to remember that more than being a topic daiesh, ITS is of paramount
importance and has great influence on peoples’ lives. Toexethe development of this
applied knowledge field has attracted the interest of bagtsthentific research commu-
nity and different sectors of the society (BOCHNER, 1998).
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2.2 Brief history

Although the term has just been coined, ITS applicationshmdated to the early
1970s. The first aim was at addressing control system istuesgh developing more
responsive traffic signals. This approach relied on respensss to meet the highly
varying demand in urban areas. Between the late 1980s and 98idk, in the United
States, such applied technologies were designated byigetsl Vehicle and Highway
Systems (IVHS), as earliest examples in that country wergtljneelated to highway and
expressway scenarios. Notably, in many parts of the woddhely the United States,
United Kingdom, Australia, and Japan, the road and vehndastries have been taking a
leading role both in developing and promoting ITS (GARRETY98).

From the late 1980s on, efforts to tackle the growing probé¢emming from urban
traffic congestion have been devoted to providing traveieith timely and suited in-
formation. The main assumption of this approach is concemi¢h increasing traffic
efficiency by means of influencing drivers’ behaviour paissfBARFIELD et al., 1989).
Hulse et al. (1998) give a broad view of how such technologssbe implemented and
used toward improving traffic systems.

Intelligent technologies applied to the field of traffic amanisportation engineering
have experienced a great evolution in the last decade. édthahuch has been done, ITS
is stillin its earliest ages and there are still great paddities to be exploited (BOCHNER,
1998).

2.3 Advantages of ITS

The Intelligent Transportation Systems have great patkttiprovide both users and
service providers with a wide range of benefits (BOCHNER,819%ome of them can
be already perceived, whereas others are expected to beeaiitg in the near future
(BOCHNER, 1998; GARRETT, 1998).

e safetyis one of the most important issues that concern ITS. Theasing number
of vehicles moving throughout a network has contributeddpandous and dan-
gerous scenarios, which must be forecasted and preventgméatic control of
vehicles could promote a high level of safety, as could camewgaided driving to
help individuals to take the right decisions at hazardotsaibns, especially for
inexperienced or less skilled drivers;

¢ the environmentis expected to benefit from ITS by means of two main factors,
namely the decreasing demand and more efficient vehicleg fdimer can be
achieved by pricing policies, both on road usage and on leiicccupancy, boost-
ing public transport modes. On the other hand, non-poltdtagis and alternative
works engines would contribute to minimi€&, emissions. Also, some other on-
board facilities are being investigated toward improvimgractions both with other
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vehicles and with network resources. This way, road capaught be enhanced as
platoons are formed by coupling mechanisms and electromta of travel speed,
in response to roads’ velocity limit;

e Although today’s ITS technologies are not accessible tonthele population, as
yet, equityis to be achieved as they prove to enable high quality, cdsttefe,
reliable and efficient information both to private and to fixikransport users, on
either individual or collective basis. Itis also importambear in mind that there are
efforts by government and industry toward consensuallyeaaiy ITS standards;

e inabroad perspective safe and eagybility, for both people and goods, is all ITS is
concerned with. Optimising transport modes, routes, aagetitime, for instance,
are the ways provided by ITS to overcome lack of mobility. ®®uelated to the
issue of equity, above, mobility must contemplate groupdisébled and elderly
people, as well;

e ITS technologies are likely to improve tefficiencyof road networks. They seek to
avoid, or at least to postpone, the need for physical motiiea to infrastructures.
The specificities of such intelligent systems will also irmpapecific operational
and maintenance requirements, which should be taken ictat, as well;

¢ business opportunitiegre likely to emerge, as ITS originates new trends for con-
sumers and service providers. Delivery, tourism, restdgaranotels, information
hosting and provision, and others will profit from efficieohemunication and data
processing granted by ITS.

2.4 Basic architecture for ITS

The Intelligent Transportation Systems basically relylemapplication of distributed
solutions, which address specific issues of traffic and pramation. And by working
together on a co-operative basis, they seek to maximiseséralbefficiency of the system
(BARFIELD et al., 1989). According to Mast (1998), a basiwsture of an ITS would
comprise the following modules, whose interactions ausitated in Figure 2.1.

e theAdvanced Traveller Information Syste(A31S) have emerged as a key compo-
nent of ITS. They include a number of facilities to providévdrs with real-time
and in-vehicle information, suited to their needs on eiihdividual or collective
basis. Such information can be related to navigation anterguidance, motorist
services, road signing, and hazard warnings, for instance;

¢ the concept oAdvanced Vehicle Control Syste(@/CS) refers to the mechanisms
that aid individuals in driving tasks, particularly in ethemergency or hazardous
situations. In more audacious approaches, such systerftsesan take over some
or all of the driver functions;
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Figure 2.1: Intelligent Transportation Systems.

e Commercial Vehicle Operatio€VO) comprise the ITS mechanisms to address

special needs of commercial roadway transportation, dwstuvehicle identifica-
tion, location tracking, weight-in-motion, clearance sieg, and record keeping, to
mention some. This way, ITS represents a great deal in twithi@ high costs in-
volved in such technologies into worthwhile outcomes, liottiansportation com-
panies and to drivers;

theAdvanced Traffic Management Systé&EMS) are responsible for monitoring,
controlling, and managing traffic on streets and highermomtzds. They play a cen-
tral role within the architecture. In general terms them@s to reduce congestion,
which is basically accomplished trough controlling andsteaining vehicles’ route
diversion. Some technologies encompassed in this modcliede route guidance,
automated traffic signal timing, variable message signs$y,Mnd priority control
systems;

Advanced Rural Transportation Syste(ARTS) are specially suited to the speci-
ficities of traffic and transport in rural areas. In large doies, these technologies
are of invaluable help to the countryside communities. Ey@ecy notification and
response, vehicle location via GPS, and traveller infoionaare some facilities
provided,;

on the other handddvanced Public Transportation Syste(A®TS) are concerned
with public transportation within large urban areas. APTfhances the effec-
tiveness, attractiveness, and the economics of publisp@tation and includes,
among others, fleet management, automated fare colleamoireal-time informa-
tion systems.
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Although each of these modules can be defined on its own tiggg, must rely on a
common and integrated framework. Only in this way will it bespible to profit from all
the advantages promised by an ITS architecture.

2.5 Some examples of ITS

Applications of Intelligent Transportation Systems haveady been turned into prac-
tice. Some of them can be considered as pioneering expesgas their appearance dates
to prior the term ITS had been formally coined. Undoubtetigytserved to motivate
much advance in this field. Examples that are already pareople’s daily lives are
reported in (CHATTERJEE; MCDONALD, 1999).

e area traffic control;

electronic tolling;

driver information;

trip planning systems;

automatic vehicle control.

Bochner (1998) also lists some practical examples of ITS& Most of them have
been focused on higher order roads as freeway systems imiitedlStates and the mo-
torway systems in the United Kingdom, for instance.

e detection and surveillance systems to help transportagemcies to identify inci-
dents;

e ramp metering systems consisting of mechanisms for psorg and expediting
through movements on freeways;

e electronic toll collection to improve payment by electtomeans;

e variable message signs to warn drivers about incidentsmilteir routes and to
post other useful information;

e responsive traffic control systems to meet variable demaddaprioritise special
services, such as ambulances and public transport;

e multi-jurisdictional transportation centres aimed at manting and managing trans-
portation operations in a highly efficient manner;

¢ information systems on the Internet to allow informationpevalent conditions
of urban networks to be accessed from service providers’siteb (LYONS; MC-
DONALD, 1998).
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Although much has already been put in practice, researshéinsork to identify ITS
potentialities. Chatterjee and McDonald (1999) point cuhe areas where ITS-based
solutions present a great deal of applicability.

¢ traffic management and control systems are mostly elected application field
where novel technologies are tested. Incident detectisg #@affic control, and
electronic tolling, for instance, are aimed at improvinge@gional efficiency and
are very likely to exert influence on drivers’ behaviour asytiperceive improve-
ments in travel costs;

e in-vehicle devices, such as automatic speed control amdalfision systems, seek
to improve safety and comfort, as well as operational efiicye They are also
found to have the potential of altering the perceived atitraness of a particular
mode;

e traveller information systems are intended to improve Kedge of travel alterna-
tives and network conditions, which is expected to play areénole in decision-
making.

Thinking about all the benefits of ITS architectures feedsithagination and makes
one envisage the future traffic and transportation systémd.evidence shows it is defi-
nitely not far in the future. This way, Garrett (1998) suggesme interesting forthcom-
ing scenarios for ITS.

¢ fully automated vehicle control;

e higher order roads as freeways, expressways, motorwagspramcipal arteries,
operating under fully automatic control, which means hawitigiriving;

e some roads operating under driving-assisted mode, alipf@nhands-on driving
aided by sophisticated warning systems;

e fullintegration of all transport modes in order to provitie bptimum mix of public
and private services;

e transport user charges will apply across all modes andcsasyi
¢ vehicles will be ‘smarter’ and safer. They will be equippeithwnformation and

navigation systems, collision avoidance mechanismsrggend Mayday alarms,
drowsiness detection, and black boxes to record and reparttdoehaviour.
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2.6 ITS related issues

Practical applications of ITS have proven to be of paramaupbrtance and indis-
pensable to society. However, there remain boundaries taveeeome. According to
Garrett (1998), researchers still have to tackle challergpsed by technical, cultural,
psychological, and economic issues, even though potdmiadfits of intelligent tech-
nologies are undoubtable. This has motivated much worlkghvhirned ITS into a multi-
disciplinary field to which not only researchers but the véhsdciety have been devoting
special interest.

e assessmein related to how benefits and impacts are to be evaluatelhyk p cen-
tral role in the process of designing and implementing IT&réntly, researchers
strive to devise adequate computational tools, both haxelasaad software, for as-
sessing the very complex nature of ITS applications;

e standardsave also become a technical matter of special concerningiadequate
means to ensure compatibility, inter-operability, andyagggrading of systems, as
well as avoiding conflicting communication protocols anghgmission media is
imperative. Enabling the interaction of legacy modelsteays, and services of dif-
ferent providers is also very important to grant interatad to the success of ITS
applications. Finding standards has been subject of waksed out by research
groups, technical organisations, and competent autesatiound the world.

Besides technical matters, Bochner (1998) also emphabise®ed for drawing gov-
ernment and public attention. The author suggests sontegitraapproaches to attract
such support.

e combining resources of different jurisdiction regions,iethis necessary to effi-
ciently manage transportation in an inter-jurisdictiostin. This has been initially
identified as a problem of countries with autonomous jucigoln units. However,
globalisation has brought that to inter-country level reihe European Community;

e contemplating local street systems, as most attention éas given to traffic con-
trol systems, which is not so evident for travelling pubtizainly public transport
users. These technologies become more evident when prguiders with individ-
ual benefits;

e prioritising critical areas within the city, which would @i implementing complete
systems in unusable segments. This might make benefits migienein a very
short-term;

e publishing successful experiences, especially thosebiraefit average travellers.
Publicity is always a good way for calling attention of publi
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Yet, Garrett (1998) presents an issue of a more social conedrich is privacy. It
is naturally a polemical subject. However, this topic isoalmportant and the author
suggests it should be considered in a sensitive and nonhenwady. Surveillance and
monitoring systems should work in a way such that individyaiivacy and safeguard are
ensured. And, in the era of telecommunication and the Ietewhich have been the great
boosters for the integration of information systems, thisdgs about theecuritymatters.
They have revealed to be a challenging technical subjecetmarchers, as data get more
and more exposed in such a world-wide web.

2.7 Advanced Traveller Information Systems

Grouping travellers in accordance with their common periees and characteristics,
identifying effective and potential behaviours, and usteErding humanlike decision-
making are the elements toward the development of Advanageller Information Sys-
tems (ATIS). These applications rely on their ability to ughce behaviour to tackle the
ever increasing congestions in urban traffic systems. hegetith ATMS, these tech-
nologies have proven to be very effective and to produce skoyt-term improvements
(ADLER; BLUE, 1998).

The main premise behind ATIS assumes that by providing wsignstimely and ap-
propriately designed information it is possible to modigcaion-making and to affect
behaviour patterns. These likely changes are expectechtmen the efficiency of trans-
portation facilities. Adler and Blue (1998) highlight somithe primary goals of provid-
ing travellers with information.

e better managing traffic flow;
e enhancing driving functionalities;
e improving traveller safety.

Accordingly to Barfield et al. (1989), the design of ATIS wdulave two main pur-
poses, namely to inform and to aid travellers.

¢ informingis achieved by collecting, designing, and delivering taak traffic in-
formation;

e on the other handaiding is performed on the basis of storing, displaying, and
delivering dynamic route guidance (DRG) and vehicle navageinformation.

Whether it is designed to inform or to aid, ATIS is always ectpd to yield short- and
long-term outcomes, both individually and collectivelpriexample, improving motorist
response to incidents and peak hour congestion is likelyetadhieved on a short-term
basis. However, modifying commuter behaviour patternsatoa a more efficient use of
existing transportation resources is expected to be atiemg-outcome.
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Although this specific technology has recently gained speaierest from scientific
community, applying information systems to the field offim&nd transportation dates
back to the 1950s. Since then, much work has been identifitieodevelopment of
surveillance and real-time information systems to overetnaific difficulties. About two
decades ago, in-vehicle route guidance facilities weredmgisaged, and centrally con-
trolled variable message signs are now becoming more comwitbim many metropoli-
tan areas (ADLER; BLUE, 1998). Over the history, studying anderstanding human
factors commence to be preponderant, as people interaggitsrto be much more facil-
itated. And it is also true for ITS, where such an interact®likely to be very affected
by the information provided through exogenous sources.aSggssing its applicability,
public acceptability, and its effects, becomes imperative

It is important to bear in mind that the term ATIS is used toiify systems that are
aimed at conveying information both to drivers and to gelneeaaellers. Some authors
prefer to distinguish between Driver Information SysteidtS) and Traveller Informa-
tion Systems. In this text the term Traveller Informationstg&yns (TIS) will be used
indifferently.

2.7.1 Advantages of using TIS

Information systems are the relying technologies that enid& with the ability to
change traffic patterns by directly exerting influence onrttoving elements, which are
the travellers. Such a perspective seems to generalisathigdnal approach of seeing as
moving element just drivers and vehicles, yet indistingalsly. In fact, it now considers
the occupancy factor encompassing collective transpodesiaas well. The deployment
of information systems promises a wide range of attracterefits, which are identified
in a number of works such as in (BARFIELD et al., 1989) and (AR, BLUE, 1998).

e in economic terms, if compared with traditional approachased on physical
modifications to road infrastructures, information sysieame considerably much
cheaper;

e collective benefits arise from the fact that potential niegaimpacts on major social
issues such as land use, environment impact, and air moilatie to be reduced.
However, yet related to equity as highlighted in (GARRET®98), accessibility
to new technologies remains to be a difficulty to overcome;

e by providing real-time information on individual basis, tagsts can enhance their
knowledge about the network, which will likely impact fueudecision-makings.
TIS has a great deal in assisting personal needs, not oniggdtire journey but
specially within the whole process of travel-planning. pigsof being an individ-
ual advantage, the effects of such an information coneiliort the more efficient
distribution of travellers’ routes, which may be percei@da collective basis, as
well;
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¢ the political benefits are quite related to the economic caepublic authorities are
more likely to opt for inexpensive solutions;

e public health is also expected to profit from TIS. These nagehnologies can
help reducing anxiety and stress associated with trawlnphg, way-finding, and
navigating throughout the network;

e improvement of the overall system performance is anothgomant contribution
of TIS. Reductions in travel time, delays, fuel consumptimd emissions are ex-
pected if a significant number of users adhere these tecgieslo

2.7.2 Categories of TIS

Adler and Blue (1998) grouped traveller information syssgffilS) into three cate-
gories, according to the kind of technologies applied.

e first-generation TISdating to the 1960s and 1970s, represent a first attempingt us
communication technologies for information disseminatio

e second-generation Tl®fers to today’s ATIS and encompasses a wide range of new
technologies. They have been designed to different puspsseh as dynamic route
guidance, informing current traffic condition on a realifasis, and conveying
other useful information as off-road traveller services;

¢ third-generation TISwill allow systems to more effectively respond to travedler
within-day travel-planning needs and to easily adapt theictioning to users’
travel preferences, ability to acquire spatial knowledge] attitudes over time.

The authors defend that, in spite of presenting some dedraatonomy, second-
generation TIS cannot be considered really intelligent.fgkghird-generation systems,
their ability to behave both autonomously and proactivelyard assisting users’ needs
seems to constitute a domain to which Al-based solutionsedninly be applied.

2.7.3 Types of information

Surveillance facilities of all sorts gather an enormous amaf data, which need
to be filtered and tailored so that travellers can use it. Heweproviding travellers
with suitable knowledge certainly poses the questi@hat is the important information,
when should it be delivered to users, and how should it beeptesl? Chatterjee and
McDonald (1999) group information into two basic types,@ding to the time users are
to receive it. They also mention some ways through whichrmédion can be presented.

e pre-trip informationis acquired before starting the trip. It is said totbstorical if
realised from travellers’ knowledge, which evolves overdi When the informa-
tion is acquired just moments prior to the journey, it is daithecontemporary It
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is also possible to accepeedictiveinformation, which is derived from the two oth-
ers. Pre-trip information has a direct effect on decisicakimg and drives departure
time, route, transport mode, and service choices;

e in-trip information, to the contrary, is acquired during the course of a jouriiég
staticinformation outside the vehicle is available to every mistoisuch as traf-
fic signs. With advances in telecommunicatidgnamicinformation is becoming
common through VMS or DRG, for instance. However, in-trifprmation is not
accessible to all travellers yet.

Much work is also reckoned on adequate channels throughhwhformation is to
be conveyed to travellers. They will mostly depend on thereskkd public and on the
way knowledge must be presented. Then, it is possible tdifgennumber of means to
provide travellers with information (CHATTERJEE; MCDONAI, 1999).

e mass mediasuch as newspaper, radio and television, and nowadaysthét
can provide advance warning or information about the ctistte of transportation
resources. Itis a collective information rather than deerfor individual purposes;

e throughmotorist in-tripchannels drivers can receive any kind of advise or warning
during the course of a journey. They can be basically preseby means of in-
vehicle and outside-the-vehicle facilities, for examplB®, navigation systems,
and VMS;

e public transport in-tripchannels are placed on strategic spots at stations, stups, a
interchange points to provide in-trip travellers with rale information. They
are intended to reduce the frustration and uncertaintyrexpeed by waiting trip-
makers;

e trip planning systemsncluding public terminals, telephone enquiry services]
home- and office-based systems, as cable television andtéraét are particularly
suited to provide public transport information. Trip plamg systems, specially
when available at origin, can be used both to plan the trigliraace and to check
conditions before setting off.

Information systems have always been a challenging fiel@&mputer Science, and
so has TIS that, on its on right, offers a number of intergspaths for multidisciplinary
investigation. Considering the very presence of humangsdimthis scenario, it is impor-
tant to bear in mind that there are also pitfalls armed bymtespretation of information
contents. Yet, excess of elements and the frequency adMgewarnings are posted to
users may confuse one’s mind. Another function of TIS is terflargeted users from the
population altogether. What if everyone follows an altéx@aroute to avoid a congested
itinerary? The alternative would also become congestegl aatainly. So, reliability is
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an imperative quality for information, and it seems to beyvaffected by the interrog-
ativeswhat how, andwhen applied to its contents. Inaccurate information coulddyie
very hazardous situations.

2.7.4 Types of sources

As to sources of contents, Adler and Blue (1998) identifye¢hbasic types where
information is generated and from which it is delivered.

¢ historical experiencesf previous trips, gathered over time and inferred through
learning;

e current perceptionsf the network conditions;

e exogenous sourcewhich are all the facilities provided by TIS.

According to Chatterjee and McDonald (1999), it is usefuttmsider the essential
characteristics of the information rather than its soultevertheless, most issues related
to the contents also apply to the sources.

¢ in that related to availability, whether it is pre-trip orirnp information;

e according to the sort of transport, whether it is mainly aina¢ public or private
transport users;

e as to the currency of information content, whether it isistat dynamic;

e according to the targeted public, whether it is customisethdividuals or made
generic;

e concerning interactivity, whether it is passive or the wser interact with it;

e according to the typical nature information content, wkethis homogeneous or
heterogeneous.

In fact, what source to apply is much dependent on the feafrthe information it
gets to handle. So, this is also the subject for many resewawdks, which again involve
a number of different disciplines. Owing the existence dfedent systems, different
providers, and different manufacturers, it is necessasyandardise the way information
is dealt with to make it better understood, to ease acceddpagrant it reliability. Trust-
worthiness of sources can affect acceptance of users. ihiadtb the concerns above,
communication, social abilities, human-device interfaaee equally stimulating topics.
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2.7.5 Types of behaviour

Experience shows that traveller behaviour is likely to Heaéd by both prevalent
conditions of the environment and characteristics of tifi@mation. Finding a pattern in
a very complex, stochastic, and uncertain domain is redfligult, and so is influencing
and modifying it on a controlled basis. This is all researsheave been looking for.
Chatterjee and McDonald (1999) assert that it is quite detdp that some situations
will induce travellers to make specific decisions and belao®rdingly.

e congestion and incidents;

information systems;

prevalent situations;

control systems;
e other travellers’ behaviour;

e planning the trip.

In recent years there has been a significant increase ingkangh as to understand-
ing routing, way-finding, and navigation facilities. Therahas been basically to figure
out the role that TIS could play in providing travellers witie necessary information
(ADLER; BLUE, 1998). It is quite reckoned that decision-nrakis affected, in any
manner, by source, content, availability and currency,rafidbility of information.

Besides, the spatial knowledge of the network seems alsontilbute to the way
people commutes (ADLER; BLUE, 1998). It poses other intiangghoughts.

e arepresentation of the spatial orientation can be builhi@mind through either
observing maps or learning from repeated trig@ what extent would a driver
accept to be ‘blindly’ guided by an electronic device thrbagt a network it does
not know?

¢ the networks are of a very stochastic nature as traffic magneelidely differently
for many reasons. It seems that making repeated trips bates to the learning of
such variationsHow can network dynamics be represented and contributeeson
individual model? How can it affect decision-making?

e people present a natural tendency to mature and have thevioeir changed over
time owing to past experienceslow can this behavioural evolution be influenced
as the environment gets vastly populated with autonomailgitss? travellers will
have to be able to detect, understand, get used to, and Igarthem. On the other
hand, network dynamics is strongly associated to the waplpesmmute.How
can such an iteration be handled to yield a sustained optstatk?



36

Understanding spatial knowledge and network dynamics ligicdy a step toward
realising travellers’ behaviour patterns. This is of imalle help to figuring out a way to
alter it to some extent and, most important, on a controlbesid

Population must also be segmented as to users and non-tisgosmation resources.
Even among users it is necessary to consider those unwidlinge the content provided,
either because they trust more on their own knowledge abeutétwork or because they
consider the information is not reliable enough (CHATTER]JEMCDONALD, 1999).
Barfield et al. (1989) grouped commuters into four classesraing to their willingness
to adjust behaviour in response to the information supplied

e route changersare always willing to change routes either before or durimgrt
commute;

e non-changerare reluctant to change time, route, or transportation rabday time
within the journey;

e route and time changemre likely to change either route or departure time. They
can even change both;

e pre-trip changersare not likely to make en-route changes, but willing to cleang
time, route, or even mode prior to leaving their origins.

In this way, TIS-based solutions are commonly designedfexabne or more of four
aspects of travellers’ habitual practice, as reported iA8V, 1998).

e departure timeby influencing the time commuters live their origins, susthame,
work place, and others;

e means of transporis basically associated to users of public transport as bds a
train services. The private sector of car pooling is alsceemcing some advan-
tages of TIS technologies;

e inacommuter scenario tlpee-trip routechoice is less likely to be changed. Nonethe-
less, information specifically tailored to this end can makech difference. Sea-
sonal journeys, as on holidays and for entertaining puposgeneral, seem to
profit a lot from pre-trip advices;

e en-route diversiorseldom happens for commuters unless either an incidenk®loc
their usual itinerary or it gets to be adjusted for the sakarofinexpected purpose
elsewhere than the common destination. In-vehicle infeiondacilities may play
an important role in such situations.

There are at least two reasons that make people alter thpartdee time, as suggested
in (BARFIELD et al., 1989). If arrival time is flexible, trallers can delay their departure
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until after congestion has died out. Otherwise, they caggutithere are unusual delays
due to any incident or on-site maintenance works and leariereao as to meet their
arrival deadline.

The way people make travel choices, including destinatiayge, departure time, and
route, depends on their needs, personal preferences, amafdhmation available. The
ideal scenario would imply that travellers had a perfect ehad the system so that they
could make the optimum decision. It is definitely fictitiossthe environment is not com-
pletely accessible, which is prohibitive to individuals/imey such a perfect knowledge
(ADLER; BLUE, 1998). As to the strong association betweegrstion and behaviour,
three issues of primary concern are highlighted in (JACKS®984; ADLER; BLUE,
1998).

e identifying likely effects of cognition on behavioliris necessary to better under-
stand the processes by which a driver seeks to acquire argpasi&l knowledge
under normal conditions, which means without the aid of atggenous informa-
tion. Thus, itis critical that TIS mimic drivers’ cognitiaand reflect their behaviour;

e understanding cognitive representation of the environm&mne implicit goal of
TIS is to provide drivers with adequate means by which theytmald a perfect
model of the world. This is expected to aid drivers in tripsmhing;

e assessing acceptability for exogenous informatitins important to identify the
factors that may have the largest influence on deciding velnethaccept and rely
on exogenous information. Thus, TIS should work in such a its&gervices are
perceived to be personalised, timely, and relevant.

However, in order to allow for information-driven behawvisut is imperative that
users effectively use the information provided. This wag tlesign of an efficient TIS
will also depend much on the understanding of which and hawdrufactors contribute
to the effective use of such technologies, as suggestedARELD; MANNERING,
1993; ADLER; BLUE, 1998). This again poses another serigglef/ant concerns.

e whether travellers use such technologies;
¢ the reasons that would make travellers use the informatioviged;

how and when travellers are more likely to use the infornmgpimvided,;

the way travellers perceive sources of information;

how travellers perceive the likely consequences of usich systems.

Additionally, it is important to have a good comprehensionhmw the content is
understood by drivers. It is quite acceptable that diffednivers may have different
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interpretation of the same information. Adler and Blue @P8lso point out cost, com-

pliance, oversaturation, long-term effects, and drivenfast as complementary matters
to be addressed. Lots of research efforts have then beeeccaut in order to study trav-

eller behaviour according to a number of different factsmme of which are discussed
in (CHATTERJEE; MCDONALD, 1999). However, albeit their fimg)s have shown that

there is a great variability in responses, travellers tencely on their own knowledge

about the network conditions and dynamics.

In commuting scenarios, it has been shown that patternsiayely habitual in nature.
However, in spite of being a collective standard, it seeras ¢élach person tends to have
more than one ‘typical’ daily set of preferences (CHERREI9U98; CHATTERJEE; MC-
DONALD, 1999). As to departure time choices, commuters Hmen found to possess
route ‘strategies’ based on a series of home departure tiviesh allow them to arrive
at their destinations within an acceptable delay at eactind¢i®n. Such a perception of
lateness can be associated to some interpretation of césd, ¢hanges to the itinerary
chosen are mostly dependent on the conditions encountEnézimakes diversions to be
more likely to happen at specific ‘decision’ points withir lourney.

2.7.6 Requirements for TIS

TIS has proven to encompass much complexity on its own rigimsl to turn it
into reality it is imperative to deal with a wide range of paeters and their relations.
Barfield et al. (1989) summarise some premises, which arg¢lynegarded to commut-
ing specificities. They must be taken into account for theettgyment of effective driver
information systems.

e as to the heterogeneous nature of audience it is importd@aoin mind that com-
muters cannot be treated as a single and homogeneous grtaffiofinformation
users. This is concerned witthom to target for a particular type of informatipn

¢ specificities of information should be oriented in orderavé&an impact on drivers’
behaviour. The system must be capable of delivering theecbnéilored to the
particular driving decision faced by individuals duringtjourney. The issue is
thenhow to tailor the informatiorto impact the targeted group;

e sources of information must provide for a regular delivergacurately, timely, and
appropriately designed traffic information in order to prod a long-term positive
modification on commuters’ behaviour. That me&sv to deliver such informa-
tion at appropriate decision points within the journey.

The authors assert that a single successful informatiaesyis capable of meeting
the needs of a wide range of different drivers under varyorgidions and stages of travel.
With this aim, a single integrated driver information systshould consist of carefully
designed information modules oriented to address paaticadmmuting decisions of well
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defined subgroups of receptive commuters (BARFIELD et &89). Few examples are
already in use all over the world, mainly oriented to coileetise. Facilities for individual

needs have not yet reached most of the population and tHeatgfare expected to be
noticed on a long-term basis. Nonetheless, scientific conmiyjuas well as the industry
are striving to enhance TIS technologies as some requirsnaes still to be met toward
making their use popular (ADLER; BLUE, 1998).

e such systems must be affordable. Such technologies, m#ioge aimed at indi-
vidual use, are quite expensive at the moment;

e they must provide understandable and reliable informat@onfusing and exces-
sive contents are proven to yield misunderstanding by dijve

e the systems must contemplate within-day and day-to-daslteas’ preferences.
Behaviour cannot be generalised as some preferences atimbe seasonal and
apply weekly, monthly, and even annually, as for vacationsifstance;

e TIS must be exceptionally user-friendly. It is proven thasy-to-use interfaces are
partially responsible for the popular acceptance of neWwrtelogies;

e TIS must be capable of providing customised travel assistaand people must
perceive to be provided with personalised valuable service

The ability of TIS to broadcast valuable information hasrbegdely recognised as
significant advances are incorporated to vehicular teciyies and made available. Then,
users can already profit from facilities and services suchtasactive user interfaces,
vehicle location and intelligent mapping, path searchpyepage directory, multi-modal
information, and dynamic route guidance (ADLER; BLUE, 1998

2.7.7 Framework to assess ITS technologies

In order to submit these issues to expert appraisal, conakeptodels of driver be-
haviour under information have been proposed. It is definiteperative to devise ad-
equate tools to simulate and assess the performance meaduach solutions. Up to
a while ago, they were based on traditional techniques, wgheasily explained by the
constraints imposed by the computational resources &aithen. With the increasing
capacity of today’s hardware architectures and the avéijabf new computing method-
ologies, these models can now be implemented through thefaseide range of differ-
ent, robust, reliable, and intelligent ways. They have q@eposed for many purposes,
but some areas have awarded special interest (ADLER; BLOE3)L

e determining traveller preferences for information syssewhich is mainly dictated
by the type of information, the way information is receivediadentified by users,
and the presentation media;
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e modelling route choice and switching/hich serves for researches as a means of
understanding the influence that information can have orsideemakings;

e representing and modelling cognitipas the spatial representation in one’s mind
may affect routing behaviour and the need for information;

e assessing and evaluating effeigprobably the most important aims for evaluation
tools, as information systems are expected to exert grgaadhon the network
performance. Using traffic simulation environments is gtient practice;

e conceptualising dynamic modeds a means to handle and to understand the very
stochastic nature of traffic scenarios and the influencelfftattechnologies cer-
tainly have on system’s dynamics.

According to Chatterjee and McDonald (1999), the way sauafeinformation are
modelled is more or less of no importance. The authors alggesi that it is clearly
impractical to expect to be able to model all effects andeso&drivers’ responses. The
modelling efforts should concentrate on flagging up thospaases that are important
and likely to be measurable under some conditions. Routelapdrture time are likely
to be very affected by the quality of information, for instan Whether the contents are
made available pre-trip or in-trip and whether they are ssitde from inside or outside
the vehicle, what decisions are intended to be affectedchadnels through which the
information can be conveyed to drivers are some factorsstiaild be parameterised.

After gathering the necessary requirements to better itbesitre relations between be-
haviour and the information supplied, Chatterjee and Mci1i1999) proposed a gen-
eral framework to aid the design and assessment of ITS aothies. According to the
authors, existing modelling procedures do not explicidliget into account trip makers’
knowledge and have limited capabilities for assessing atgpaf information systems.
Besides that, there remains a lack of evidence of the impattthese systems have on
behaviour and travel patterns against traditional apresdor instance the enhancement
of physical infrastructures. Such a modelling frameworkupposed to meet two major
needs, namely incorporating support to assess responBes technologies and provid-
ing transport scientists and practitioners with a compatéed tool. Its components and
relations are depicted in Figure 2.2 and briefly commentdd|ksvs.

e household and person generateynthesises the population within the study area,
such as demographic data, vehicle ownership, work plaaesarforth. It could
use information from demographic simulation models or ftoamsport and land-
use relations, for instance;

o week activity plagenerates a plan for the forthcoming week, which is thergassi
to each individual of the population. It relies on the asstiompthat people tend to
arrange their lives on a weekly basis. Activity purposetidation, starting time,
and duration should be represented,;
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Figure 2.2: Framework for assessing ITS technologies,
adapted from (CHATTERJEE; MCDONALD, 1999).

day activity-travel plargenerates plans on daily basis, including the itinerarjpéo t
sites where each activity is to be performed. Purpose,raggin, starting time,
departure time and duration, mode, route and parking fi@slare some charac-
teristics to be explicitly represented. Daily planning denaffected by outcomes
of trips performed on the same day, which may force the rederetion of the
original options;

trip plan for activity ‘i’ selects the activity from the day plan to be performed next.
The trip plan for the subject activity can be affected by pieinformation, expe-
riences of performing the trip on previous days, and evemjeys made earlier on
the same day;

trip execution and outconmmipports the execution of the trip and outputs its perfor-
mance measures. This can be given in terms of travel timég rparking location,
and delays, for instance. Tleaperiencanodel is then updated accordingly to the
travel conditions and degree of satisfaction perceivedoAhe course of a journey
can be affected by in-trip information, as well as the premticonditions of the
network during the period the trip is being executed,

transport system stais the data representing the actual state of the transpbrt ne
work as trips are performed. It feeds the previous modulerigerd perceive the
environment conditions during their journeys, and alsebdleinformationsys-
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tems so that up-to-date contents can be provided to usdrpbstrip and in-trip;

¢ informationsimulates the operation of the information systems thapegsent in
the study network. Surveillance facilities ensures th& &ite able to provide re-
liable contents. Pre-trip information is delivered thrbuge modulérip plan for
activity ‘i’, whereas in-trip is enabled through ting execution and outcome

e experiencas the data representing the modifications, after eachitrifhe state of
people’s satisfaction, knowledge, and perceptions ottralternatives. It has great
influence in travellers’ preferences, learning, and denisnaking in all levels.

2.8 Summary

Major urban areas, as well as their suburbs and accesseadtaveusly experienced
an increase of the recurrent traffic flow. This has frequeyityded traffic congestions
that in turn contribute for waste of energy, for air pollutj@nd for excessive delays. In
general terms it has brought about economic and envirorah&sues that need to be
addressed through effective policies. Moreover, increasapacity by means of physical
modifications to the road infrastructure is even less féasib space lacks.

Resulting from the efforts to tackle traffic and transpaotaproblems, today’s sys-
tems have been considerably transformed by novel mecharasoh strategies of traffic
management. With respect to the ground traffic and transtant the Intelligent Trans-
portation Systems basically rely on the integration of aatoous processes aimed at
optimising the usage of limited capacity road networks. @amication and computing
techniques serve as the framework for such technologieheRthan intervening in the
static entities, namely roads and control systems, oneipeeoi ITS-based technologies
is to act directly upon the moving particle, which can be seea vehicle-driver unity.

Besides considerable advances in on-board devices toigidgitasks toward safety,
influencing drivers’ behaviour patterns is another key cioje of ITS. As drivers have
only a local access to the network conditions during a jogregogenous information
sources seem to be of valuable help. They provide drivets kvibwledge and advices
that can be used in building a model of the system as a wholeh &uo internal model
is expected to improve reasoning and decision-making ligdaut also it is expected to
enhance the overall system performance. Variable mesgage soute guidance systems,
the Internet, radio broadcast, and now mobile technologiesalready part of citizens’
daily lives.

Traffic network models and traffic theory will be, and cerbpmready are affected by
the Intelligent Transportation Systems. Representingpeformance measures in mod-
elling and simulating today’s traffic scenarios has rewetdee a tricky task, though. The
abstraction process has been brought to very detailedlevieich makes the microscopic
approach suitable to this end. However, traditional modetsmostly result-driven, are
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not so consonant with their implementation, and their rtgichakes scalability hard. On

the other hand, owing the very complex nature of certainiegipbns it is not possible to

dissociate the domain model from the data structures amgitdgs that base its imple-

mentation. Process-driven approaches usually rely on anassumption, which over-
comes difficulties of traditional models by easing scalgbdnd enhancing robustness,
for instance.

Modelling and simulating ITS-based technologies, as welhssessing their impacts
to the overall performance of traffic systems demand for sbbuethodologies to cope
with increasing levels of complexity. And this is specidhye case of models that involve
humanlike reasoning and decision-making.
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3 MULTI-AGENT SYSTEMS

3.1 Overview

In general terms, Artificial Intelligence (Al) is especiationcerned with the develop-
ment of computational models that mimic human intelligerd aational behaviour, and
encompasses a wide range of multidisciplinary knowledgasar Multi-agent systems
(MAS) is a sub-field of the Distributed Artificial Intelligere (DAI) whose abstraction
approach basically consists of representing the appicatomain by means of multiple
entities, coined agents. Contrary to the approach adogtarraditional Al, scientists
have been motivated by functional and spatial distribubbrtasks and components of
some complex systems. In this scenario, MAS constitutesyaatgesearch and appli-
cation area, which can be seen, at a first glance, as congndahBystems composed
of several software entities capable of mutual and enviemal interaction (WEISS,
1995). Although the main concern of MAS has relied on the ephof intelligent and
autonomous behaviour, defining what an agent is has beeadhs 6f much controversy.
Nonetheless, MAS has gained especial attention from bothpDter Science and other
knowledge fields.

This Chapter is aimed at giving a broad view on multi—-agestesys and autonomous
agents, as well as their potential application to the doro&imaffic and transportation
engineering.

3.2 Desired features in intelligent agents

Russell and Norvig (1995) define agents as any entity capafbperceiving facts
through sensors and acting upon the environment througistefs. Rationality allows
an intelligent agent to act toward making the right deciswhich should lead to suc-
cessfully achieving a goal. So, a key feature in multi-agsstems is autonomy. Au-
tonomous agents exist in the environment independentihefproblem to be solved
for the whole society (HUBNER, 1995; FROZZA, 1997). Accaglito Weiss (1996),
what really makes an object like a software program or anstréal robot to be an agent
are some properties like perceptual and cognitive skilsyraunicative and social abili-
ties, affection and emotions, and autonomy, in other wdaodsave self-control (WEISS,
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1995). An intelligent agent can possess a wide range of ctaistics, which will clearly
depend on the application the agent is designed for. Frd24¥{ points out some desir-
able features that an agent should present in some extent.

e an agent may represent either a real or a virtual entity;
e it must be inserted in the context of an environment;
e it must be capable to perceive the environment and othenwuding agents;

e an agent is capable to perform some actions in the environmarch can change
the state of the environment, the agent’s internal statidyeostate of other agents;

e an agent must present communication capabilities;
e it must present social ability;

e an agent possesses goals to be achieved, and should beraatmio carry out its
tasks toward accomplishing them;

e an agent is capable of reacting to changes in the environment
e it must present some degree of initiative in order to seelctomplish its goals;

e it must present adaptability, in other words, it must be bégpto adapt its behaviour
as the environment evolves;

e some degree of mobility is also desirable, as an agent woedd mo change its
physical location in the environment;

e an agent must have knowledge about itself, about the enmigot, and about other
agents. Also, an agent may have an initial knowledge, whachle extended as it
interacts with the environment and with other agents;

¢ the reasoning feature is also intended to give an agent thabday of making
inferences about the behaviour, tasks, and plans of otlegitsag

Whatever the features one may design for an agent, ratigraad autonomy may be
considered two major properties that deserve specialtatterAccording to Russell and
Norvig (1995), being rational at any given time dependsdadlyi on four aspects, namely
the performance measures that define degrees of succeseqghence of perceptions
at certain instant, which consists of everything the agast rerceived, the knowledge
about the environment, and the actions the agent is ablertorpe On the other hand,
autonomy would be concerned with situations in which indlisls did not need to rely
on any perceptions, as actions would be based solely onibdiftowledge. Russell and
Norvig (1995) also define autonomous systems as systemwlebsviour is determined
by previous experiences, as well. Such a definition sugdkatsautonomy should be
achieved through some sort of learning mechanism.
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3.3 Structure of an intelligent agent

With regard to their autonomous nature, intelligent agehtsuld possess a structure
that allows them to perform their tasks in order to achiewéi@adar goals. In this sense,
an agent perceives the environment and other agents themrgors. Effectors, on the
other hand, are the structures an agent uses in order to acttoe environment and to
interact with others, as suggested in (RUSSELL; NORVIG,5)99 he authors identify
three major elements that bounds the agent design, nangefgtnt behaviour, the agent
program, and the agent architecture.

e the agent behaviour can be understood as the action thatfmped after any
given sequence of perceptions. Such a behaviour can be baseither its own
experience or some sort of built-in knowledge;

e the agent program is the function that implements the magpgjpam perceptions to
actions such that the agent can play its role onto the envie;

e the agent architecture can be seen as the structure thatheiagent program. It
should present a means to receive information from the enwient, as well as to
properly effectuate agent’s actions.

Pragmatically, the structure of an agent comprises botprtbgram and the architec-
ture. It is provided with internal data structures that godated as the agent perceives
new information from the environment. Such data structeees be understood as the
knowledge of an intelligent agent. They are operated on lsystts-making procedures
to generate an action choice, which is executed throughgbeta architecture. Agent
programs are functions, which implement the mapping froreragption, or a sequence
of perceptions, to actions.

As suggested in (WERNER, 1991; FROZZA, 1997), the structfies» agent consists
of two major parts, one that is static and the other that isadyn.

e the static part is the agent architecture, which defines ¢peesentation of the
knowledge the agent is capable to keep and the way such a édgevis repre-
sented and handled. The way the knowledge is representelecerfluenced by
several factors, for instance: how the environment is segreed; capability of rep-
resenting what an agent can describe to other agents; prslaled goals an agent
needs to solve or achieve; plans to be followed by the agedtlikely choices and
decisions to make;

e the dynamic part corresponds to the processing methodeffleatively allow an
agent to behave in the environment. They can be groupedeatoning capabili-
ties, used by the agent to make inferences about its knoeJaagl decision-making
mechanisms, which allow the agent to make decisions in dodaccomplish its
goals.
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Although agent structures are presented in (RUSSELL; N@RUB95; WERNER,
1991; FROZZA, 1997) in different ways, there is a consenkasthe knowledge repre-
sentation and the functions, which can in any form transfiasncontent, are central to
Al and to agent designing. These two features of an agerdtsteiare also important to
define in which extent an agent is reactive or cognitive.

3.3.1 Reactive agents

Systems composed by reactive agents are generally sinmplethhose composed by
cognitive ones. This can be easily explained as reactivatagk not present mental
states. Also, planning and reasoning capabilities are tnohg characteristics and the
major idea behind such an approach is based on an emergevidiah The underlying
idea of emergent behaviour is to achieve complex, intelligefficient, and more organ-
ised behaviour through the combination of several simgleicctures, as exemplified in
(DROGOUL, 1993) through a model devised to represent a gabbrants. The overall
behaviour of a system rises from the interaction among agemd the individual perfor-
mance of their tasks. Some features presented in (FROZZ®%)1&e suggested to be
present in most of the systems formed of reactive agents.

e reactive systems are mostly inspired in ecological orgdiuss;

e knowledge about the environment and about others is intiglieipresented through
the reactive behaviour of the agents;

e such systems follow a behaviour-based approach, that lheaasiour is expressed
on the basis of the state of the environment. Any variatiothia state triggers
changes in the agents’ behaviour;

e agents behave on a stimuli—action basis. Actions are daoig as response to
predefined stimuli from the environment.

e agents present perception and communication capahildilesit these capabilities
are limited,

¢ they do not present complex reasoning or inference capiabjlneither memory of
past experiences and of results of previous actions;

a reactive agent society is generally composed by severabeies.

According to Frozza (1997), some considerations should &denwhile modelling
a domain by means of reactive agents. The phenomenon sheudédomposed into
a set of as simple and autonomous entities as possible, whicteract in order to
reproduce the system behaviour. Each entity is seen as ahwigie defined knowledge,
capabilities, and behaviour that will interact with othensl with the environment. So, and
accounting for the behaviour-based approach mentionegealioe environment should
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be well designed. It is equally important to take into acadbat there may be passive
agents, which do not possess neither action nor commumicedipabilities. With respect

to the architecture of a reactive agent, albeit it is mositgmded to be conceived as a
simple structure, it may be designed to cope with more coxtpleks. The subsumption

model, proposed by Brooks (1991a), is a traditional archute to represent reactive

agents that prioritises the execution of tasks distributeddifferent levels of complexity.

3.3.2 Cognitive agents

Cognitive agents are intended to acquire knowledge abeugrtliironment and about
the others, and are able to interact with each other and étkenvironment, as well. Per-
ception and communication play an important role as the\detaof a cognitive agent
is susceptible to be modified by exogenous information. &pjgroach is based on the
notion of mental states, such as intentions, beliefs, egstompromises, choices, goals,
and aptness, which are analogue or similar to those foundnmah beings (SHOHAM,
1990). Understanding the relation among them is of huge itapoe to better model
cognitive and decision-making mechanisms, which is thedaxf interest in the field of
cognitive systems. As with reactive agents, Frozza (1993gssts the following features
can be found in cognitive agents.

e they are based on models of social organisations;

e they have an explicit representation of knowledge abouetiveonment and about
other agents;

e they are capable to plan their actions;
e they may present accurate perception and communicati@bidies;

¢ they present mental states and can memorise past expeyjierdeh are taken into
account for future decisions;

e society composed by few members.

It is worth mentioning the features presented above and riles presented for the
reactive agents are complementary to each other in many. wWays, the combination of
both approaches makes reactive and cognitive agents leuitathandle most specificities
of a huge range of different application domains.

A general-purpose structure for a cognitive agent is prtesen (DEMAZEAU, 1991,
FROZZA, 1997), as depicted in Figure 3.1. The act of perogivaoth the environment
and other agents alone does not yield any modification, eeiththe environment nor to
the state of the agent itself. Nonetheless, such a capaikilinportant to gather relevant
information, which may enhance the agent’s knowledge.thisupdating of the agent’s
internal model that may influence future behaviour. The Kedge of a cognitive agent
can be viewed as a composition of three kinds of information.
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Figure 3.1: General structure for cognitive agents,
adapted from (FROZZA, 1997).

e initial knowledge (also referred to as the built-in knowdedf an agent), which is
defined in the modelling time;

¢ information gathered as the environment evolves;

¢ information gathered through the communication with otggnts.

The initial knowledge and the information got from percegyithe environment can
be seen as the accurate knowledge. On the other hand, infomgathered through
communication with other agents is considered to be unoekiaowledge. This sort
of classification seems to be related to the confidence thet &ge on the information
sources. The former refers to the information the agentlgettself. However, it cannot
state anything about the latter.

Executing an action, however, does cause changes eithiee tdte of the agent or
to the environment, including other agents. Specifyingabfam implies defining a goal
or a set of goals, a set of actions, and a description of thmlistate of the system.
A task-planning procedure finds a suitable sequence ofrectitat better results in the
changes that brings about intended states of affairs. Aechplsin can be delayed or even
reformulated for the sake of unexpected conditions thas da¢ favour its execution, for
instance. This could lead the agent to find a contingency. glasuch situations, some
mechanisms to ensure that plans can be constantly revised)dis execution are also
desired, so that unexpected results can be prevented @asanhknimised.

3.4 Basic architectures for intelligent agents

Choosing between reactive and cognitive architecturearf@gent will depend enor-
mously on the application the agent is being designed foceSihe earliest ages of MAS
research several models have been proposed as an attentjm@tlie requirements of
each application domain. An agent model can reach a wideerahgomplexity both in
structure and in functionality (WEISS, 1995). Russell armhiy (1995) suggest four ba-
sic types of agents, which can range from a simple reactiegenimre complex cognitive
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structure. Such basic models, namely simple reflex ageettdabat keeps track of the
world, goal-based agent, and utility-based agent can beasestart points for modelling
application-dependent structures. A traffic scenario eteedriver attempts to reach a
destination from an origin is regarded here as a means &irglie some conceptual ideas
behind these models. What time to depart and which route&keodee some examples of
decisions a driver needs to bother with in that scenario.

The simple reflex agent (Figure 3.2) relies on the concepbafiition-action rule.
Instead of building up a table that contains every possiblalination of perceptions
and actions, this type of structure should contain onlyasertommonly occurring input-
output associations. Some processing is done on the input tihe agent’s perception
in order to establish a condition, which triggers some éstiadd connection to spe-
cific action in the agent program. This connection is wellwnaas condition-action
rule and would be written as an expression of the féfngenerated conditignthen
(mapped action

Humans also make such connections between perceptions@oasasome of which
are learned responses and others are innate reflexes. Aesifipk agent uses condition—
action rules in order to make the connection between paorephd action. Although
such agents can be implemented very efficiently, they punsuted applicability.

e sensorsallow an agent to perceive its surrounding environment. él@s such
an information is not enough for a driver to make a pictureh# system as a
whole, as cost of travelling through roads are not knawpriori, for instance.
Nevertheless, some information could also be gatheredgirexogenous sources,
such as Traveller Information Systems;

¢ what the world is like nowepresents the actual state perceived by the driver. How-
ever, drivers are not likely to know about the exact stateaffic at a certain instant
prior to the journey start. Nevertheless, individuals daither forecast the system
conditions from previous experiences or realise it fromitii@mation supplied by
exogenous sources. In the former case drivers cannot &irdeasystem state as
simple reflex agent does not keep track of previous expergenc

¢ the decision owhat action should be done nasrmade as a function of available
established condition—action rules. For instanitethe cost is beyond a certain
prefixed valughenleave origin 15 minutes later;

¢ effectorswill perform the agent behaviour, which is to start the trighee chosen
time through the chosen route.

The simple reflex agent mentioned above will work well if tloerect decision can be
made on the basis of the current perception. In other wands;urrent perception should
produce a condition such that the agent can find some actsatiased to it.
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Figure 3.2: The simple reflex agent,
adapted from (RUSSELL; NORVIG, 1995).

The concept of internal state is concerned with how the systelves. Depending
on the complexity of the environment, sensors do not proaatess to the complete state
variables. Thus, the agent may need to maintain a model aysiem internally so that
it can distinguish between world states that generate thne ggerceptual input but that
are significantly different. In other situations this imtal state can be used as a means to
draw conclusions about trends in the world dynamics. Theaive of keeping track of
the world is to improve the quality of the agent’s knowledgsib. This is done combining
the old internal state with the current perception to getediee updated description of the
current state (Figure 3.3).

¢ information gathered througtensords memorised so that the driver can remem-
ber previous experiences. Thus, the driver sensibilityefgperienced costs can
now be considered a source of information about the enviemtstate, even if re-
garded just as past observations. Information from exogesources can also be
perceived;

e Wwith a proper representation what the world is like novhe driver can forecast the
actual system conditions and have qualitative notion abfmienvironment state
variables (road volumes, path travel time, waiting timeuatcfions, and so on).
Individuals also have a clear idea about how the world ewhmed about what
effects their actions may provoke;

¢ as for the simple reflex agent the decisionvamat action should be done nasva
function of available established condition—action rutasugh.

Knowing the current state of the environment may not be ehdaglecide on how
to behave, specially when the agent is facing several pdessitions. The right decision
may depend not only on the actual state of the environmembheSmrt of goal describing
desirable states of affairs to be brought about is also requSome times, an agent must
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Figure 3.3: A reflex agent with internal state,
adapted from (RUSSELL; NORVIG, 1995).

search for possible actions and plan action sequences @n tréchieve its goal. This
kind of structure is fundamentally different from the cammh—action rules mentioned
above. It involves some considerations about the futuré) belated to effectiveness
and to satisfaction (Figure 3.4). In reflex agents, thisnmi@ation is not explicitly used,
because the designer has pre-established the correct &mtiarious cases.

¢ the interpretation fowhat the world is like nows the same as in the previous
example. People will forecast the actual state from an mademodel, from the
knowledge about how the world evolves, and from experienEpsevious actions;

e Evaluatingwhat it will be like if action A is choseresults from weighting their
actions as they have a specific goal to achieve. For examiersi seek after a
minimum journey cost. Such an evaluation is a function ofvidedge about how
the world evolves and experiences on the effects of preyauseys, for instance;

e what action should be done nawa function of the agent’s goal, differently from
the previous structures, whereby the action usually is etfon of condition action—
rules. The need for arriving at work earlier on certain day mmfuence, and cer-
tainly does, the decision for using one route instead ofguaimother.

Yet in some situations, goals alone may not be enough to deeesion-making to
the best behaviour. An agent may be faced with the problenawahl to decide among
several ways of reaching its desired state of affairs. Timeept of utility represents the
degree of satisfaction an agent would have with respectdosihg any of them. This
could be implemented as a function that mapped a state td auedber, which would be
associated to the degree of happiness, for instance. 8ty céin be used as a means to
trade off between different ways of achieving the same daahe case of having several
goals, utility would provide a way in which the likelihood sficcess can be weighted up
against the importance of each of them (Figure 3.5).
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Figure 3.4: The goal-based agent,
adapted from (RUSSELL; NORVIG, 1995).
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Figure 3.5: The utility-based agent,
adapted from (RUSSELL; NORVIG, 1995).

¢ differently from the goal-based agenthat action should be done naesults from
an evaluation of the degree of satisfaction for executintpoeaction chosen out
of different alternatives. For example, the driver coultlr off between changing
departure time and changing route in order to minimise tvee. Depending on
the number of different possibilities, it can be an arduaskt

e what action should be done nasvthat which presents the highest degree of utility,
thus providing the agent with most satisfaction.
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3.5 Societies of agents: the multi-agent systems

A society of agents can be seen as a collection of autononmtitiee that behave ac-
cordingly in order to achieve the goals they are designeditsye. Also, they are able to
interact both with one another and with its surrounding Emment. Communication and
co-operation are key concepts in such a scenario, and d¢oatih of their behaviours
allows for sharing knowledge, goals, aptness, and plansigrtiem toward the solution
of problems. In MAS each individual’s behaviour resultafrthe knowledge represented
in its internal state, from its perception of the environtamd from its interaction with
others. Although this perspective leads to thinking of aetg®f agents as a co-operative
community, they may also have conflicting goals involvingnpetitive behaviours. In
either case, the following elements are of huge concerrhtBosMAS design.

¢ the agents that live in the same environment;
e the environment itself;
e interactions between agents and between an agent and thenenent;

¢ the society organisational methods.

In the majority of real applications, each agent possessesriplete, uncertain, and
partial knowledge of the environment and of its neighboorchorhis very uncertain na-
ture will demand carefully monitoring of the task executamd frequently updating its
course.

As suggested in (STEELS, 1990; FROZZA, 1997), agents cdaativeely exhibit an
emergent behaviourThis concept relies on the idea that each single agenttdibe+
ing a very simple structure can contribute to more complex @fficient behaviour of
the system as a whole. This approach has been used in a radgfent applications
and is mainly proposed to those with a huge number of inteig@components (DRO-
GOUL; FERBER, 1994). It has also been coupled with the Callédlutomata (CA)
theory (CODD, 1968; SMITH IIl, 1969) as the relying approdoh other applications
(HALPERN, 2002).

Self-organisation is also an important concept relatedtiety of agents. Creating
a society that is capable of evolving dynamically and autoowsly demands the im-
plementation of efficient self-organisation mechanismschSa concept could be useful
when a complex problem is to be solved by way of grouping idials with different
expertise. As reported in (FROZZA, 1997), self-organmatakes place through chang-
ing the topology of agents in an autonomous way both witheetsiop the environment, to
one another, and to the internal model of each one. This alfowadapting themselves
to the prevalent conditions of the system. Self-orgarosatan also be understood within
the same framework as of the evolution theory (BAR-YAM, 1p97
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3.5.1 Classifications and taxonomies for MAS

Much effort has been devoted to proposing classificatiods@xonomies as there is
a wide range of characteristics and applications that doelchodelled and implemented
by means of agent-based techniques. Some authors, specitie earlier ages of the
MAS society, have suggested different criteria for classg and categorising such sys-
tems. This effort has been of paramount importance to betganise concepts, to aid
identifying requirements for the whole designing processl to support the creation of
ground theories.

Among many ways of classifying autonomous agents, themed$aund in (FROZZA,
1997) that groups agents into two categories accordingetodie played in the system.

e an agent can be seen asamponentvhen it behaves as part of a system toward the
completion of specific tasks. The system goal is divided gmaller and simpler
sub-goals that are assigned to each component. So, thél gystam performance
is expected to be achieved on a co-operative basis;

e onthe other hand, an agent can be understood ay$itenitself when it behaves on
behalf of the user to achieve its own goal. There is no nebéerior co-operation
or for interaction. In this case, the agent is fully autonosiand its behaviour may
be not dependent on an external coordinator.

The aptness to solve problems and the architecture of art agealso features that
define two major categories of agents.

¢ thecognitive agents

¢ thereactive agents

Theoretically there exist well-defined boundaries sepayahese two types. How-
ever, in practical terms it is possible to develop systemgpliong features of both types.
In this way a single agent will present either cognitive @atéeve behaviour according to
the prevalent conditions of the environment.

As suggested in (OLIVEIRA, 1996; FROZZA, 1997) societiemgénts can be clas-
sified according to many criteria such as the type of agdmsyature of the environment,
and the behaviour of agents.

e according to theype of agenta system can be grouped inb@mogeneouand
heterogeneous The former characterises a society composed of entitiebheof
same type, which means agents present the same architédterktter consists of
agents of different types;

¢ thenature of the environmeiserves as a means to identify betwetseandopen
societies Agents are fixed in the environment in a close society, wasetkey are



56

allowed to migrate throughout different environments irogocieties. The latter
is the abstraction approach used within mobile agent fraones( KENDALL et al.,
1998);

the behaviour of agentss another criterion that identifies two possible societies
A rule-based societgxplicitly defines behaviour rules to be followed by all of
its components. In gociety without rulesgents are allowed to follow their own
behaviour. In the former case and given certain circumstsaa agent is expected
to behave in the same way, whereas it is not always true iratte.|

The social behaviour of an agent can also be classified wstbex to the tasks it is

expected to perform. This is presented in (SICHMAN; DEMAZEMBOISSIER, 1992)
on the basis of two criteria, both in the perspective of thenag@nd in the perspective of
the task.

¢ regarding theicapacity of performing a tasknautonomous agermian easily adapt

its behaviour to any kind of task. Aask-oriented agenton the other hand, is
capable only of performing the specific task it is designeg fo

¢ with respect to théocality of a taskt is calledlocal when a single agent is capable

of performing it by itself alone. Otherwise, the task is gamed and performed
by multiple agents, which interact one another to achiegaltsired results. In this
case, itis called distributed task

Four possible social behaviours in MAS are also identifie(DEMAZEAU, 1991;

FROZZA, 1997), which account for the fact that an agent bihancan be changed from
completely autonomous to specialised and tasks can ramgpeldcal to distributed.

e co-habitationcombines autonomous agents and local tasks. The agentmesrtioe

task individually albeit in the presence of other agents;

e co-operationcombines autonomous agents and distributed tasks. Suelvibah

can be necessary either when an agent cannot perform the vais&lby itself alone
or for the sake of efficiency. In this case, agents performhgfahe overall task;

collaborationcombines task-oriented agents and local tasks. It conggoisl
goals that can involve all of the agents in the system and eamdividually achieved.
An issue brought about in such a society is how to choose taetdag perform a
specific task;

distributioncombines task-oriented agents and distributed tasksntteras global
goals that can only be collectively achieved by multiplerdge In this case, an
important issue relies on dividing and distributing thektasong agents.
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According to Weiss (1996), multi-agent systems can diffedely in three key as-
pects namely the environment, the agent-agent and agembi@ment interactions, and
the agents themselves. For each of these important aspgeetauthor identify several
dimensions by which MAS can be classified.

e some features of thenvironmentould be used to qualify MAS such asailabil-
ity of resourceganging fromrestrictedto ample diversityranging frompoor to
rich, uncertaintyandpredictabilityranging frompredictableto unpredictable and
dynamic naturendstatus which could range fronfixedto variable

¢ the agent-agentindagent-environment interactions used to classify MAS with
respect to thérequencyranging fromlow to high, to thepersistenceanging from
short-termto long-term to thelevel of interactiorranging fromsignal-passingo
knowledge exchangéo the patternssuch asunstructuredand structured to the
variability ranging fromfixed to changeablgto the type of interactionnamely
whether it iscompetitiveor co-operativeand to thepurposenvolved, such asan-
domandgoal-oriented

¢ regarding theagentswithin the system some criteria are proposed on the basis of
features such as thmeimber of agenter granularity, thenumber of goalsssigned
to each agent, theompatibility between goalsvhich can be eithecontradicting
or complimentarythe uniformity, that means whether the agents hoenogenous
or heterogeneoysindindividual propertiesas well.

The environment definitely plays an important role in MAStHis extent, Russell and
Norvig (1995) suggest some features that must be consideredler to define agent-
environment relations. The underlying idea is to identifgather the environment is
accessibler inaccessibledeterministicor non-deterministicstaticor dynamic anddis-
creteor continuous Environments that are inaccessible, non-determindyicamic, and
continuous are the most challenging to be implemented agléntly encountered in
real applications.

The next criteria are concerned with the learning mechamawAS, as presented in
(WEISS, 1995). These are closely related to the informatiomagent is able to gather,
which is expected to influence the decision-making proaegssany ways.

e a learning mechanism may have two bgsicposes It may be aimed at the im-
provement of a single agent, its skills and abilities. It nadgo be aimed at im-
proving the interaction of all agents within the system,irttteherence, and co-
ordination;

e locality is concerned with the degree of distribution and paralieles a learning
mechanism. When only one of the available agents gets iadotvthe process the
learning steps are neither distributed nor parallel. Lisgrnan be ‘maximally’ dis-
tributed and paralleled when all agents within the systerigyaate in the process;
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¢ theinvolvemenbdf an agentin the learning process is also presented as amtamp
criterion. The involvement of certain agent may be not a se&®/ condition for
achieving the pursued learning goal. However, in an extr&gtoation, the learning
goal cannot be achieved without the involvement of such aipagent. Refine-
ment of this criterion is also possible if one considers péspects such as duration
and intensity of the involvement;

¢ as for thanteractionsrequired for the learning process, both agent-agent antt-age
environment ones must be taken into account. Such a dinrecaiorange from re-
quiring only a minimal degree of interaction to being untadéte without extensive
interaction. This criterion could be further refined wittspect to the frequency,
persistence, level, pattern, and type of interactions.

It is important to bear in mind that this plenty of criterigpresents the insights of re-
searchers into the potentials of applying MAS in a wide raofgéfferent domains. Some
classifications and taxonomies can overlap one anothess, Tihg reasonable to suggest
that other criteria can derive from combination of those noged above, as well as from
further refinement of ones on the basis of others. Nonethaleslerstanding the relations
between these dimensions would provide for valuable guegffor deciding which type
of multi-agent system is best or at least sufficiently welkexd to a given application. This
problem is sometimes called the multi-agent system-agipdic assignment problem, as
stated in (WEISS, 1995).

3.5.2 Organisational structures

Identifying relations between agents is a crucial task enfteld of multi-agent sys-
tems, and choosing an organisational structure is of panatnimportance to modelling
agent societies. As an attempt at aiding such processepasgible organisational struc-
tures are proposed in (LABIDI; LEJOUAD, 1993; FROZZA, 199#)ich might serve as
excellent starting points in MAS designing.

¢ in ahorizontal structureall agents of a society are in the same level of involvement.
For example, agents can be requested to execute diffeskst tmorder to solve a
common problem or to achieve a common goal,

e in avertical structure contrarily to the previous one, the agents are hierartifiica
disposed in different levels of involvement. This struetaan be viewed as a hi-
erarchy of horizontal structures. For example, the satutiba problem could be
partitioned into simpler subproblems, which would be dated to the agents at
lower levels in the hierarchy.
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3.6 Important issues in multi-agent systems

The increasing interest in applying agent-based techiesdg a wide range of do-
mains have stemmed a huge amount of research works withedifféocuses and aims.
These efforts have given rise to discussions on a numbeeofétic and practical imple-
mentation themes. Woodridge and Jennings (1995) groupissabs related to the use
of agents into three major areas of study, each of which caimeg aspects that demand
special care and attention.

e theory of agentss related to theoretical approaches that can be seen apdbe s
fication for an agent-based methodology; these serve taidesnathematical for-
malisms needed for modelling agents. An agent can be repessé terms of
attitudes, such as belief and knowledge, and pro-attifuglesh as desires and in-
tentions. The former representation is related to the médion an agent possesses
about the world, whereas the latter drives the agent’'s@gtipon the environment;

e architecturesrepresent models designed to support practical implerentaAc-
cording to what has been stated in (WOOLDRIDGE; JENNING®5)9they can
be classified into three basic types, nanmddjiberative reactive andhybrid. De-
liberative architectures are a classical approach to desagents in a society. In
such structures, an agent keeps a symbolic representatibexplicitly represents
every relevant fact within the world (JENNINGS, 1994). Oe tither hand, reac-
tive architectures are based on a behavioural approachnté\gee described in a
simpler way and do not possess neither a symbolic model afdhlel nor plans for
their actions (BROOKS, 1991a,b). Finally, the third typda&sed on the previous
ones. It seems to be more suitable to tailoring agent’s hetafor specificities
of actions needed to achieve different objectives. The mdga behind an hybrid
architecture is to enable agent’s actions to result from swlesystems, namely a
deliberative and a reactive, or from a combination of bothe Teliberative sub-
system keeps a symbolic representation of the world and snade of elaborated
task-planning and inference mechanisms. To the contratiyeireactive subsystem
the agent is able to choose a specific action from predefineuteof the environ-
ment in a linear way. This avoids the use of complex reasomaghanisms, as
actions are taken from directly mapping events to possédetions.

e languages of agentsave moved researchers into the challenging task of cgeatin
agent-oriented programming languages, which are softaystems designed to
implement agents. Shoham (1990) proposes agent-orierdgdagpnming as a new
paradigm for programming. The basis of this paradigm woeab the facilities
offered to define agents as an entity constituted of merttal@es, such as beliefs,
desires, and intentions, for instance.
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Besides the areas proposed in (WOOLDRIDGE; JENNINGS, 198&)ss (1996)
also points out a number of challenging and open subfieldsezamg specification, im-
plementation, handling, and assessment of MAS.

communication languages;

co-ordination mechanism;

negotiation and co-operation strategies;

organisation design;

planning and diagnosis of tasks;

problem decomposition and synthesis.

3.6.1 Learning

It is quite reasonable to say that learning plays vital ral®AS technology. This
topic has been the subject of both theoretical and practicgks as it is central in the
reasoning process, and the technical community agreeset\ks special attention on its
own right. Weiss (1996) identifies between two categoridearing.

e single-agen{or isolated learningconsists of a learning mechanism that does not
rely on the presence of multiple agents. This is the basicogmh adopted by the
traditional Al;

e on the other handnulti-agent(or interactivg learning requires the presence of
multiple agents and their interactions in order to achieveficient learning. More
specifically, it could be viewed as a process concerned oithysituations in which
several agents collectively pursue a common learning ghiahay also refer to
situations in which an agent, albeit pursuing its own leagrgoal, is affected by
other agents’ knowledge, beliefs, intentions, and so forth

The variety of possible forms learning can be thought of in $/1i& certainly enor-
mous. So, the effective implementation of such mechanissnsatds for some consider-
ations to be taken into account. Weiss (1996) also sugdestsitowing criteria to better
structure learning approaches.

¢ thelearning methoar strategyconcerns the process itself, used by a learning entity.
For example, rote learning, by repeatedly studying likéiyagions using memory
rather than understanding, learning from instruction anddvice taking, learning
from examples and by practice, learning from analogy, aahiag by discovery. A
major difference between all these methods relies on thauahad learning effort
required,;
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¢ thelearning feedbacknables the assessment of the degree of performance athieve

Three basic kinds of learning are identified according te thiterion. The super-
vised learning specifies the desired activity and it is airaethatching a desired
action as closely as possible. The reinforcement learrpegifies the utility of the
actual activity and it is aimed at maximising such a utiliginally, the unsuper-
vised learning where no explicit feedback is provided. lis tase, the learning
entity needs to find out useful and desired activities on #esoof trial-and-error
and self-organisation processes.

With respect to the criterion of learning feedback, it isumsed the performance level
to be achieved is provided by either the environment or tlemEgthemselves. With this
respect, three possible types of feedback providers angifigel in (WEISS, 1995).

e teachersare either the environment or agents that provide feedlbathe super-
vised learning scenario;

e providing feedback in reinforcement learning is a respaihi assigned taritics
that are, once more, either the environment or agents;

e in the case of unsupervised learning neither the envirobhmanother agents will
provide the learner with any feedback. They act jugt@ssive observers

3.6.2 Communication

Integration within an agent society may be dependent ondghemunication abilities
of its members. Thus, well-defined communication protoenésnecessary to establish
efficient and proper interaction between agents. Basicadijnmunication can be imple-
mented in two ways.

e direct communicatiomappens when agents know each other allowing them to ex-
change data. The message-passing mechanisms are goodesaimihis kind
of communication. The interaction happens on the basis tfdeéined protocols,
which specify the dialog process to be performed by the agewblved in the com-
munication. Different protocols are defined to differentds of interaction within
the agent society. Contract net protocol, for instanceldcba used to implement
such a kind of communication mechanism (SMITH, 1988);

e to the contraryjndirect communicatiormay be established between agents that
have no previous knowledge about each other. In this casemation is delivered
to and collected from a common directory, which is accesseeviery one within
the system. For example, blackboard architectures aredlasa data structure
divided into different levels of information. Agents canitgron or read from it. A
well-defined scheduling mechanism is necessary to managertcesses, which
should allow the consistency of information on the blackdq&OTH, 1984).
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Albeit perception is the basic mechanism through which @magathers information,
communication can be used to improve this process. In sopleapons it is even more
significant when the information is to be shared with othéfbere are three types of
information, which are very likely to be exchanged amongigef a society.

e an agent'knowledgemay depend much on its ability to sense the environment, on
its expertise and skills, and on its communication faeiiti Sharing this kind of
information through communication may help others in manyfs. For example,
one could provide information about the environment to atblagent;

e in an agent societyplansor possiblesolutions of specific problenteay be the
privilege of a reduced number of individuals. Expertise akidls could be shared
with others facing the same problem already solved by any leef the society,
in a co-operative scenario for instance;

e in certain societies, either homogeneous or heterogenagasats may need to ex-
ecute the same plan in order to speed up a system task or amna togaake the
solution of a problem uniform, for instance. In such sitoa$, the group of agents
should share the sanpéan choice which can happen through communication.

However, interaction is not only related to communicatittncan also be identified
with the purpose of controlling some sort of process. In abrperspective, a control
mechanism basically dictates and regulates data exchlgmginin the society. It can be
either distributed among several agents or centralisesgingde entity (FROZZA, 1997).

3.6.3 Co—operation and conflicts

Achieving a common goal is often one of the intentions fomademsed applications.
When this is the case, conflict and co-operation are certraiapts underlying agent in-
teraction, and can limit the execution of simultaneousastby different entities, as well.
Conflicting situations is the subject of much research infiiled of MAS (TEDESCO;
SELF, 2000), and can basically be grouped into two types.

e the conflict is said to bécal in the case it happens between only two conflicting
agents;

e it is said to beglobal in the case several individuals are found to be in conflicting
state.

In general terms, a conflict happens when one’s interest eatphditioned on the
behaviour of others. Béron et al. (1995) identifie some yikenflicting situations, which
are easily understood on their own right, namely conflictaxlg, conflict of results, and
conflict of resources.
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Coordinating activities and negotiating actions are intgoarmechanics to cope with
conflicts. They greatly influence task-planning as the omlerhich actions are executed
or the instant at which execution starts may in any form ayaoiténtial conflicting situa-
tions. As presented in (FROZZA, 1997), there are two bagic@grhes for planning that
minimise conflicts, if not to eradicate them.

e when a conflict is diagnosed, the task of addressing it carelegydted to or be the
duty of a single agent. Thus, it startdaxal planningto autonomously sort the
situation out;

e solving a conflict in the system may be also accomplished bgnsi@f ordering
actions performed by multiple agents. In this casglodal planningis necessary.

On the other hand, negotiation aims to address conflictsdstwndividuals through
their consensual co-operation. It is particularly intéresfor domains in which a group
of interacting agents associate their efforts to achies#re@ goals. Thus, conflicts may
arise for the sake of differing aptness and skills among tbag A negotiation process
can involve actions such as proposing, evaluating, changiocepting, and rejecting a
solution. In order to enhance efficiency and be successfetiypinated, the negotiation
should follow a protocol that facilitates the solution tangerge (LABIDI; LEJOUAD,
1993; FROZZA, 1997).

3.7 Agent—Based Simulation

With the advent of computers, computer simulation has badelywused as an im-
portant tool for understanding and assessing systems pingacomplexity and nature,
and has become the bridge between theory and experimentatwhal, training, and
entertainment purposes have also been among the subjentgbfresearch in this field,
which has gathered the attention and interest of sciergrsdspractitioners of different
disciplines.

The ability to represent system dynamics in a controlletigirenvironment has en-
couraged the application of simulation techniques in mafigrént areas, including nat-
ural sciences, engineering, industry, business and fiaamarket, the government and
the army, and social sciences. Albeit the computer simarathethodology has been
relatively kept on its original basis, its widespread aggdion and the improvement of
computers in recent years, both in processing and in grabinierface, have stimulated
the evolvement of different techniques, including agesddal simulation. One can refer
to computational prototyping as a scientific discipline tself, allowing a new way to
bridge theory and experiments, and enabling to go beyorid bot

Shannon (1975, 1992) presents in detail all the steps iadoin a computer simu-
lation study. Those can be basically summarised into thesergial phases. First, the
application domain is modelled through an abstractiongsscthat identifies the relevant
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characteristics and relations of the problem componertsor®l, the model is translated
to an executable form, and the experiments are executech&vae new information and
simulation results. Finally, results are assessed antpietied, and then can be used ac-
cordingly in the real system. It is important to bear in mihdttthese are parts of an
iterative process where modelling plays an essential ewld,should be addressed with
special care. In such an iterative process, one can evenufat@and test new models
with simulation techniques.

Not surprisingly, modelling has been the main focus of madsi@aaces in computer
simulation. Virtually, any programming language could Isedi to translate simulation
models into executable code. Nonetheless, some languagfeas Simula (BIRTWISTLE
etal., 1975), GPSS (SCHRIBER, 1990), and Simscript (CAGCDPRICTS COMPANY,
1983), which are specifically devised for general simutapiarposes, offer additional fa-
cilities for dealing with model specificities and enhancepatational prototyping. More
complex simulation frameworks have also been implemenseB@SE (MAK, 1991),
VISE (LINDSTAEDT, 1995), and SIMOO (COPSTEIN, 1997), whigitorporate the
concepts of Visual Interactive Modelling (VIM) and Visualtéractive Simulation (VIS)
(FREITAS, 1994). The use of object-oriented developmewuegaremarkable contribu-
tion in modelling techniques and, recently, the conceputd@omous agents has further
boosted the development of the computer simulation fieldNTB; GILBERT; SICH-
MAN, 1998).

Besides the concepts of encapsulation of properties anavimehr of objects, agent-
based modelling promotes an adequate means for reprag@utionomy and cognitive
capabilities within the system entities. Two perspectiwese initially assumed to base
what has become the agent-based simulation field (KLUGL1R0®@t a first point of
view, agents are responsible for carrying out simulatiopabdities (even though the
model is devised on the basis of other techniques). The dempproach is built up on
the basis of agent-based modelling, which represents thlecafpon domain in terms of
agents and their interactions. This has become the maianstezlopted by the agent
research community as the seed for cross-fertilisatiowdset computer simulation and
multi-agent systems, stimulating innovative researchhatintersection between these
two multidisciplinary areas (CONTE; GILBERT; SICHMAN, 189 In this way, much
research effort has also been devoted to the developmeimoliasion environments that
support the design of agent-based simulation models; a @rapsive description and
comparison of some of such environments is presented in (ABRTI, 2001).

Two important issues arises in the relatively recent agéiseodgent-based simulation
field. First, MAS modelling is still seen with a certain skiem when compared with
traditional approaches, such as equation-based teclmidueey both can ultimately be
translated into an executable form and differ basicallyeinmis of the abstraction used
to build the model and the way they are executed (PARUNAK; BAYRIOLO, 1998).
In agent-based modelling, the model consists of a set oftager execution consists
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of emulating their behaviours and interactions. In equebased modelling, the model
Is a set of equations and the execution consists of evatudiem. Parunak, Savit, and
Riolo (1998) then conclude that simulation is a general téyahapplies to both methods,
which are distinguished as agent-based emulation andieqtzdsed evaluation.

Whether to choose one or another simulation technique et much depend on the
purpose of the study and the nature of the problem. For exgrtiple-dependent appli-
cation domains may demand for efficient simulations in teofnsxecution time. In this
way data can be generated and assessed on a timely basisatitigmers can intervene
on the real system accordingly. On the other hand, when riesd@nd simulationists are
mainly concerned with the application domain abstractiba,choice would certainly be
better if headed to a more expressive approach (thoughdieffiin terms of execution
time), such as agent-based modelling. The detailed déiseripf the entities of a system
and their interactions can contribute enormously for theéemstanding of its dynamics.
The need for such a trade-off will be always present in anyigtron methodology.

Another interesting issue is that there is still a contreig@rdiscussion as to whether
adopting a more complex approach in the description of tle@taggasoning capabilities
is an adequate approach for agent-based simulation. itnaality, emergent functions are
modelled only among (simpler) reactive agents, as oppas@ddre complex) cognitive
agents able to deliberate about their joint goals and plamalftheir collective activities.
However, some works (CASTELFRANCHI; CONTE, 1992; CASTELARCHI, 1997)
strongly question such an opposition and defend that dolemtelligence and emerging
functionalities must also be modelled among cognitive &gerth limited knowledge and
rationality, and are not able to understand, predict, andidate all the global and com-
pound effects of their actions at the collective level. Thraept of Cognitive Emergence
(CE) is then presented to designate the emerging dynansegses of systems formed by
cognitive agents (CASTELFRANCHI, 1998). Castelfranct948) also argues that cer-
tain emerging phenomena in some complex domains, such ia$ @@anisations, cannot
be explained without CE. In addition, the author claims th&thas critical importance
in the process of immergence, that is how the resulting eemerstructure of the sys-
tem changes back the properties and then the behaviourshofredividual element at a
microscopic level.

3.8 Potential Applications of MAS in Traffic and Transportation

Examples of MAS applications are briefly presented in thasise. The aim is making
a survey on what has been done toward improving software foohssessing traffic and
transportation systems by way of agent-based approachei®uSly, there is a number of
examples reported in the literature, which are mainly comee with traffic management
and control systems, as well as with the microscopic reptaien of movement and
driver behaviour. Nonetheless, there is also an increasinger of examples that address
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other aspects of traffic and transportation. Although spetiention has been given to
those related to modelling the traffic phenomenon, some etteemples were found to be
worth mentioning.

3.8.1 Traffic Management and Control Systems

Traffic management and control have been traditionallytete@as an application
ground where scientists can develop, test, and apply thprmoaches and theories. The
need for certain degree of autonomy and intelligence in tevipg area of Advanced
Traffic Management Systems (ATMS) makes agent technolsgiésble to model such a
domain.

Haugeneder and Steiner (1994) applied agent-orientedhitpeds to address urban
traffic control (UTC) issues. The authors grouped UTC systato three different inter-
acting levels, namely the traffic flow control, the trafficdaince, and the integrated traffic
management. Focus was given to the second level, emplms@ific guidance on indi-
vidual basis. The MECCA/UTC system was presented as a despacific application
built under the MECCA framework (HAUGENEDER; STEINER, 199@%/here agents
were implemented in the MAI2L language (STEINER et al., 99e application of
MAS to traffic control was also explored in the work by Gabriék (1994). Their aim
was at testing and evaluating the adequacy of the approa&chinisMARS (Distributed
Multi-Agent Reasoning System) to real world problems.

A similar concern underlies the example reported in (PIRBR&S; BELO, 1997).
Their model was devised as a means for investigating antiywegithe applicability of
multi-agent systems to the field of traffic control systemS$). Important issues such as
control distribution, co-ordination and co-operationtpawls, as well as system modu-
larity were approached. Different kinds of agents with speskills were specified and
geographically distributed within zones of a city. Perfarmne measures included, for
instance, duration periods, the current traffic signakstaterage duration of green time,
and the messages associated to co-operation processeg simoiated junctions. The
functional architecture of the traffic agent was organised three layers with different
purposes, namely communication, inference and knowlegjresentation, and interface.
Linda (CARRIERO; GELERNTER, 1989) was used to support thel@mentation of the
distributed environment.

In (BAZZAN, 1997), a game-theoretic approach was used tdroahthe drawbacks
of co-ordination in traffic control systems. The author mregd a model to yield a co-
operative environment where controller agents were ableotordinate their actions.
While overcoming the disadvantages of traditional deedised approaches, the traffic
control co-ordination was achieved with reduced commuigna Game theory was also
the basis for the work reported in (CHAMPION; MANDIAU; ESPIKOLSKI, 2001;
CHAMPION; ESPIE; MANDIAU; KOLSKI, 2001).

Van Katwijk (2000) presented two examples through whichrredysed the potentials
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of autonomous agents for modelling traffic control and managnt instruments. The
author asserted this approach allowed for tuning the adfi@ach single device toward a
collaborative traffic control system, where co-ordinatoonthe level of devices might re-
duce the need for co-ordination on higher levels of contealtres. His work was inspired
by Bazzan’s previous research (BAZZAN, 1997) and approécleeordination issues on
the basis of communication and negotiation among contrajients.

The focus underlying the TraMas model (FERNANDES; OLIVEIRA99) was con-
cerned with using agent-based strategies for controlfaifj¢ signals in a distributed and
co-operating fashion. The model was presented as an dltert@traditional centralised-
based approaches. The system was represented in termslgfvehicles, traffic signals,
and traffic controllers, all implemented by means of obmatnted programming. Each
traffic controller was associated to the junction where i wiuated and was on duty for
locally controlling traffic signals. The authors adopteckadative approach based on the
Brooks’ subsumption architecture (BROOKS, 1991b), witteénhierarchical levels of
behaviour (see Figure 3.6). Co-operation was designedkéopi@ce by means of a sim-
ple communication protocol between adjacent traffic cdletragents. The microscopic
simulation environment, Magoo (FERNANDES, 1998), follalxtbe Cellular Automata
approach and was implemented in the Java language. A didlapproach for agent
simulation of traffic systems is also proposed and repome@@ANDAYYA; ZOBEL,
2000a,b).

agent

message level

perceptions local control level

I

coherence level > traffic signals

environment

Figure 3.6: The basic agent architecture for the TraMas inode

Real applications of agent-based techniques in Inteltigeaffic Management Sys-
tems were reported in (CUENA; OSSOWSKI, 1999) and (HERNANDESSOWSKI;
GARGIA-SERRANO, 2000). These examples were carried ouhiwithe European
KITS and the Spanish TRYS projects (CUENA; OSSOWSKI, 19980 multi-agent
systems with the purpose of performing decision supportdai-time traffic manage-
ment in urban highway networks, namely TRYS and TRYSA, warglemented on the
basis of different approaches and compared. On the one tamdientralised model
used in TRYS relied on the knowledge approach presentedUE (@&\; HERNANDEZ;
MOLINA, 1996). Agents were endowed with different types aofokvledge, organised
within knowledge units that might lead behaviour in difier@erspectives. All control
plan proposals resulted from individual reasoning of eaxctiroller and a coordinator was
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designed to mediate the process and to build global and eotsignal recommendations
for the whole network. On the other hand, TRYSA implementeteentralised model
where agents coordinated their tasks through the strdataraperation approach pre-
sented in (OSSOWSKI; GARCIA-SERRANO, 1998). Basically tentral coordinator
of the former model was replaced by the socially boundedreunty that agents enjoyed
within the structural co-operation of the latter. This noetblogy was applied to the ur-
ban motorway networks around Barcelona, as reported in ((#f8\fDEZ; OSSOWSKI;
GARGIA-SERRANO, 2000), and around Madrid, as reported idEBIA; OSSOWSKI,
1999). The centralised approach of TRYS was found to promibitgency for real-time
operation, whereas the decentralised approach used in AR¥®noted scalability.

3.8.2 Traffic Microscopic Simulation and Driver Behaviour

The growing complexity of abstraction levels used to repnéshe traffic domain has
encouraged the development of microscopic simulation tiso@&irmeinster, Doormann,
and Matyls (1997) claim that existing microscopic traffimsiation models can be en-
hanced with the agent concept. According to the authorsnejer advantage of such an
approach relies on a better commitment to the system ontahoginly with regard to the
driver representation. In their example, the domain wasesgmted as a society of cog-
nitive agents featuring the BDI model proposed in (HADDAD®93). Such a structure
was based on the COSY architecture (BURMEISTER; SUNDERMEYE91) as de-
picted in Figure 3.7, and the simulation framework was imm@ated under the DASEDIS
environment (BURMEISTER, 1993).

.
agent

Csensors H cognition Hactuaﬂors)
~—— communicaton }————

Figure 3.7: The COSY agent architecture.

SITRAS Smulation of Intelligent TRAnsport Systems) as presented in (HIDAS,
2000), is a microscopic transport simulation model thatlheen developed since 1995.
It was devised with the objective of providing engineers prattitioners with a general
evaluation tool for ITS applications, such as congestiahiaoident management, public
transport priority, and dynamic route guidance. The micopsc simulation model was
designed in terms of DVO units, which are driver-vehicleeal§. Although the DVO
has not originally been implemented on the basis of agertegun, the author defended
that it can in fact be seen as an autonomous agent. Hidas)(B@88d his analysis in
the light of the definitions given in (TOKORO, 1994) and theeagmodel proposed in
(CHAIB-DRAA; LEVELSQUE, 1994; RASMUSSEN, 1986). The auttemncluded that
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a DVO possessed most characteristics of autonomous adggassc behaviours such as
lane changing, merging, and car following while travelllmggween an origin and a desti-
nation were implemented within each driver-vehicle umtotder to allow the evaluation
of the effects that DRGS (Dynamic Route Guidance Systemghincause on the overall
system performance, two main classes of driver-vehicleaibjwere identified, namely
the unguided and the guided ones. This theme was furthetagpmcein (HIDAS, 2001).

The framework for anticipatory traffic forecast proposedkiUGL et al., 2000)
was aimed at providing drivers with information about théweek future state (through
VMS, for instance). In that work authors suggested that arctapproach might en-
hance decision-making and improve the quality of the tripe Thodel required a more
realistic representation of reasoning, as decisions inflee by exogenous information
were expected to considerably effect the level of recurdentand. A two-layered struc-
ture was proposed for the driver structure. Basic perceptaction behaviours, such as
car-following, lane-changing, and merging, were impletedrin the tactical layer. The
strategic one was designed to support more elaboratedtas@gnmiechanisms. The au-
thors suggested that BDI-based models would be ideal tesept such a strategic layer,
as similarly discussed in (ROSSETTI; BAMPI; LIU; VAN VLIETCYBIS, 2000a; ROS-
SETTI; LIU; VAN VLIET; BAMPI; CYBIS, 2000)

The microscopic simulation framework in (KLUGL et al., 2000as based on the
Nagel and Schreckenberg’s model inspired by the Cellulatoata (CA) theory
(NAGEL; SCHRECKENBERG, 1992), which was extended and imq@eted as a multi-
agent system in the SeSAntShel for Simulated Agent Systes) environment
(KLUGL; PUPPE, 1998; DEPARTMENT OF COMPUTER SCIENCE, UNIRBITY
WUERZBURG, 2002). Nonetheless, further work has beene@mwut to improve this
research as reported in (BAZZAN et al., 2001). They preskatdomain-specific frame-
work to support the microscopic simulation of driver agemtsthe basis of an object-
oriented approach. The environment representation hadalswed the CA approach
whereas the moving elements were designed to base moresgsogiad reasoning mech-
anisms. Another example using CA was reported in (HERTKORNGNER, 2000).

Dia and Purchase (1999) similarly envisaged the potenpili@ation of intelligent
agents to modelling dynamic driver behaviour. A framewodswonceptualised (DIA,
2000, 2001, 2002) to evaluate the effects of ATIS on the perémce of transportation
systems. This ongoing research started by a behaviouradysaf congestion on a traffic
commuting corridor. The data gathered from that surveyeskas the basis for mod-
elling driver agent features, such as travel behavioursqel preferences, and goals.
The preliminary results were reported in (DIA, 2002). Thppeoach consists of cou-
pling the dynamic driver behaviour with the microscopidficassimulation. The cognitive
agent proposal was inspired by the works presented in (SHOHE93; THOMAS,
1993) albeit it has not, as yet, been actually implement@édRAMICS (QUADSTONE
LIMITED, 2002), which is a commercial microscopic traffierailation framework, was
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elected to perform the traffic simulation.

In the research reported in (BRUGGEMANN; LEHMANN, 2000)ckandividual
was endowed with action-planning and decision-makinglodipas. The agent structure
was designed so that drivers could behave rationally ondbislof a multi-criteria assess-
ment model. Urban mobility was described in terms of sugjgyrand systems, where the
execution of individuals’ activities affects traffic geagon. The simulation framework
proposed basically comprises three stages, which inclcidedsiling activities on week
basis, performing scheduled activities, and evaluatimpp@ance measures. The be-
havioural model, inspired by the work presented in (COHERYESQUE, 1986, 1990),
was proposed as an alternative to using traditional opitiwis techniques.

Although FLOWSIM uzzy LOgic enhaced motdY¥ay traffic Simulation M odel)
(WU; MCDONALD; BRACKSTONE, 1998) did not explicitly use theoncept either
of agent or of multi-agent system, it relied on a microscagigresentation of drivers
endowed with reasoning capabilities. A fuzzy inferencerapph was used to support
the decision-making on both car-following and lane-chaggiituations. The model was
suited to assess various ITS measures, such as Autonontellgyémt Cruise Control
(AICC) and implemented within microscopic traffic simutatiframework.

3.8.3 Other Applications

Apart from the two major areas mentioned above, the growttheflTS field has
encouraged much research. It has deserved an increasengsinrom both Al and MAS
communities owing its complexity and very dynamic natutdwals been used as a ground
where theories and approaches have been tested.

After formally specifying a cognitive agent architectukdaddadi (1996) presented
a hypothetical scenario in the domain of transportationsmgping to demonstrate her
theory. In order to meet costumers demand, a shipping coynpaeds to optimise the
service allocation for its fleet and sometimes to recur tegbel sub-contractors. The
company coordinator and the sub-contractors were modafid®DI agents on the basis
of the theory proposed by the author. In this work, focus wesrgto communication as
a means to achieve co-operation in multi-agent systems.

A multi-agent model was devised and presented in (BURMERTHADDADI;
MATYLIS, 1997) to analyse different organisational stwets, fleet composition, and
technical apparatus for vehicles within a car pooling statiThe work was motivated
by the increasing traffic volume throughout road networkd @ne need for optimising
capacity usage, mainly in urban areas. The scenario wasli@da@ad implemented un-
der the dMARS environment (KINNY, 1993). Negotiation anchitol mechanisms for
successful dialogs are some issues addressed in that wbitf vollowed the generic
protocol proposed in (BURMEISTER; HADDADI; SUNDERMEYER9%5).

Rather than focusing on the representation of all physiemhents found in the real
traffic system, the model suggested by Adorni and Poggi (18@86e specially concerned
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with the guidance process itself. A route guidance systemadesigned in terms of dis-
tributed and interacting modules working on an on-boarddRdap Knowledge Base.
Each of such modules was modelled as an agent supportimgetitfcapabilities of the
system, ranging from specifying the car position and plagmoutes to providing com-
mands to actuators for autonomous car driving.

Garcia-Bulle (1990) applied the multi-agent concept torads the problem of net-
work equilibrium. Instead of using aggregate functions ésatibe the behaviour of the
flow as in traditional approaches, the author elaboratedradwork of individual objec-
tive functions. In his model, agents were shippers of a gooa given network. Each
agent was designed to determine the flow to be shipped in toaeaximise an objective
function accounting for the actions of the rest of the ageAtaong the examples given
by the author, the model was also used to tackle the traffidilequm problem.

The Pedestrian Crowds model proposed in (JIANG, 1998) waiseld to serve as
an aid to urban planning and designing. The interest in raeimg this work resides in
its representation of the application domain by means otiplelagents moving from
origins to destinations throughout a bounded-resource@mment. This approach was
inspired by the work reported in (DROGOUL; FERBER, 1994) anglemented under
the StarLogo suit (MIT MEDIA LABORATORY, 2002). In a very sitar work, Dijkstra
and Timmermans (2000) modelled people in terms of the civgrstructure proposed in
(FISCHER; MULLER; PISCHEL, 1998). In both examples CA wasdifo represent the
environment.

Modelling driver behaviour within driving simulators is@her application to which
agent-based techniques has been found to have great ptseAtents deployed in this
kind of experiments are intended to interact with the sutgjaeer in order to make its vir-
tual environment more realistic and less predictable (ALUHABI; MOURANT, 2001).
Al-Shihabi and Mourant (2001) presented a framework for etioty different kinds of
human driving behaviour to be used in autonomous vehicléisinva driving simula-
tor environment. The behaviour of the interacting virtuavers was modelled through
Fuzzy Logics. El Hadouaj, Espié, and Drogoul (2000) adaémssnflicts between drivers
within such environments. In their model, interaction damis are made on the basis of
an analysis of the traffic condition in the area around theckehwhich the authors des-
ignated as the the driver’s control field. This approachesebtin the work presented in
(SAAD; SCHNETZLER, 1994) and is focused on testing and re§jrbehaviour models,
testing man-machine interfaces, and testing driving aldggents.

In the examples reported in (BOTELHO; RAMOS, 2000) and (BOMDB, 2000), au-
thors were specially interested in demonstrating theamesgent interaction and commu-
nication. The architecture was conceptualised in a way &teilpents were endowed with
the concept of emotions, which was central to the interadtighaviours. Their approach
for interaction control and communication was applied witithe Monitorix framework,
a video-based multi-agent system aimed at traffic monigoaimd surveillance.
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3.9 Summary

By developing computer applications in either purely saftsvor hardware-software
design and development, one’s goal is that those applitatiust be able to perform the
tasks they were designed for in an autonomous way. Autonerimieraction has been
even more desired, and turning it into practice in diffelemels of complexity has been
the motivation of much research in the field of multi-agersteyns.

In their relatively recent ages, the interest in the emergigent-based techniques has
presented a crescent growth and their practical utility talehand simulate a wide range
of differing domains is reckoned to be evident. Since theAS\tommunity has worked
toward formalising agent theories, classifying and orgiag their types and features,
and devising ways for their practical implementation. Rarinore, what makes this field
even more stimulating is its commitment to the ontology dfteyns. This very feature
gifts MAS with the ability of representing different levets complexity. From pure
reactive to pure cognitive architectures, their suitépiid interact with others and with
the environment, to communicate, to learn and to plan tugests into a powerful tool to
model domains composed of geographically and functiortidiiributed entities.

Although advances in the processing power and memory okogmbrary computer
architectures have reached high-level standards, tucongplex models into practical
implementation is, as yet, a difficulty to overcome. From suledriven perspective,
contrary to the process-driven one, describing reasomdglacision-making in a detailed
level may become much more complicated, though. Such a dé\emplexity has still
been relegated to domains represented by means of a redurcdenof agents, whereas
the reactive approach has been preferred otherwise. Nalasth) hybrid architectures
have been suggested to address the cognitive approachairiesvb

The complexity of today’s transportation and traffic systemas definitely reached
very concerning configurations, and representing uncegytaind variability within sim-
ulation and assessing models is even more imperative. Asigaiymodifications be-
come more and more unpractical, deploying ITS solutionsigno about the need for
autonomous mechanisms that can in any manner lead the usagels’ limited capacity
to converging optimum levels. This scenario becomes deiti@ being represented by
means of the abstraction premises of MAS, and such a prdwisdeen verified in the
literature.

There is already a considerable body of work presented iliténature aimed at prac-
tically applying multi-agent systems to the specific domaitraffic and transportation
engineering. Traffic problems have always motivated rebess from a wide range of
disciplines for the most varied interests. If it is not foetbhallenging issues this field
poses, at least the relevance of its social and economigmaleexplain so. Two main
groups of examples can be identified, namely those dealittgmanagement and control
systems and the ones devoted to representing movement ar@scopic way. The former
group is traditionally elected as MAS has been already egpb other control systems
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scenarios, such as air traffic control, railway systemsysirg, and process control the-
ory in general. A real world’s application is reported in (REANDEZ; OSSOWSKI;
GARGIA-SERRANO, 2000).

The latter group is specially concerned with the microscoppresentation of move-
ment. Vehicles and drivers have been traditionally deathwmdistinguishably as a
vehicle-driver unity. Also in most agent-based models therenment is represented
by means of the cellular automata approach (CODD, 1968; &MIT, 1969), which
seems to be much simplified when compared with vectorial isod&s in (BAZZAN
et al., 2001), for instance, such a simplification is des&ed seeks to address the draw-
backs of other approaches. It is aimed at integrating thatdegsed model within an
on-line simulation loop, where time dependence is a camditg factor. Yet, in general
terms, the goal has been the microscopic representatiomeémment. Nonetheless, ITS
technologies have recently led some authors to envisagoep representation for hu-
man behaviours, which brings decision-making to the drigeel. This seems to be an
adequate approach to represent different driver taskerothan only driving. This may
certainly increase complexity, though.

Another group not so specific encompasses diverse applsativhich demonstrates
the potential of MAS and its ability to represent ITS in diffat levels as already sug-
gested in (BOUCHEFRA; REYNAUD; MAURIN, 1995; ROSSETTI; BARI, 1998a).
From modelling interaction with service providers to oralmbroute guidance systems,
as well as implementing personal assistants are some otampées found in the litera-
ture.

All of these examples show the potential of MAS to handle nnodeaffic and trans-
portation scenarios. Proper data structures and algasitmovide for robustness and
scalability, and constitute the natural abstraction to ehow simulate, and to assess the
new performance measures. Contrary to former resultdaraggproaches, agent-based
techniques are found to be very suitable process-drivehadetogies to cope with the
Intelligent Transportation Systems reality.
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4 BDI: A COGNITIVE APPROACH FOR MAS

4.1 Overview

One great advantage of cognitive models is their abilityeforesent the reasoning
mechanism. This provides for an ideal framework to undadstaore complex decision-
makings, which are inherent in human beings. This very ahfeature has motivated
researchers from philosophy, psychology, social scierarebsanthropology to co-operate
with computer scientists. Such a synergy has contributédeaesign of adequate data
structures and efficient algorithms that allow for the inmpémtation and computation of
their theories and formalisms. Definitely cognitive aptues privilege the representa-
tion of processes rather than focusing likely results.

As cognitive models cannot count on the simplicity of reactarchitectures, they
have been widely applied to societies of few agents only. tDdleeir complex nature and
representation of knowledge, applications encompasdergear number of reasoning en-
tities are seen as interesting challenges. They are evenahallenging when constraints,
such as time, are to be overcome.

BDI (beliefs, desires, andntentions) is a cognitive approach that basically relies on
mental states and their relations. As many other cognitieeets, it has favoured an
accurate representation of the reasoning process to thendet of higher abstraction
that eases implementation. This gave rise to the so-qugtetl between the theory and
its practical implementation. In this chapter the syntact s@mantics for beliefs, desires,
and intentions are presented as a means to model motosgsiniag. BDI is believed to
be the ideal tool for simulating and understanding humarmbielr and decision-making
within today’s traffic and transportation scenarios.

4.2 Beliefs, desires and intentions

The BDI model used in this thesis relies on the formalism sgggd by Rao and
Georgeff (1991). The authors present their theory on theslmdghe Bratman’s (1987)
work, which deals with intentions as an important elementdtional reasoning as beliefs
and desires. Three important aspects are worth to be medti@s pointed out by Rao
and Georgeff (1991), in order to base further discussiorte@in formalism.
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o firstly, as stated by Bratman (1987), intentions are treasdfirst-class citizens on a
par with beliefs and desires. Contrary to some reductiotiigaries, intentions are
considered as important as beliefs and desires in the rieg@sprocess;

e secondly, Rao and Georgeff (1991) distinguish between ltlog&ces an agent has
over the actions it can perform and the possibilities ofedldht outcomes of an
action. In the former case, an agent can choose among owaafraetions. To the
contrary, in the latter case, it is the environment thatmieitees the outcomes that a
course of action will bring about. As a possible interptietafor this premise, one
may consider that an agent chooses an action accountingef@otssible outcomes
it believes the action can bring about. However, it is tharemment dynamics that
dictates the outcomes that really result from executingahaon. This allows for
environment dynamics and nondeterminism;

e finally, an interrelation between beliefs, desires, andritibns is specified. This is
aimed at avoiding many of the problems that are usually @s®ocwith possible-
worlds formalisms, such as committing to unwanted sidecedfe

Beliefs, desires, and intentions constitute the main corapts in a BDI architecture.
Rao and Georgeff (1991) present an alternative possiblsiormalism for BDI mod-
els, which relies on these crucial components and the pesmientioned above. Such a
formalism resembles the Computational Tree Logic (CTLIYERSON; SRINIVASAN,
1988) to describe the concept of possible-words.

In the BDI formalism, the dynamics of the system is capturea iemporal structure,
called a time tree. This structure is composed of both asipgét and a branching time
future. Basically, a time point can be seen as a specific mbmeime that allows the
agent to be characterised by its state (see Figure 4.1)., @hpaticular time point in a
particular world is called a situation, which can be seenjrfstance, as the scenario the
agent is involved in at a particular moment in time.

The branches in a time tree can be viewed as representinghthees or options,
which are available to the agent at each moment in time andhthp to a possible future
state. Each branch is associated to an event, which is, astlibe hand, actions an agent
can perform. Therefore, event types are responsible fostoaming one time point into
another.Primitive eventsare directly performed by the agent and uniquely deterniiee t
next time point in a time treéNon-primitive eventcontrary to the previous ones, refer to
non-adjacent time points. They could be interpreted as sppetive of a far future, and
have the potential for being decomposed into primitive &vemmn this way, they can be
used to model hierarchical plan development. Nonethelkassmportant to bear in mind
that the execution of an event can either be successful orTimts, the execution of an
event does not mean necessarily its execution should bessfot

An agent, regarding its dynamic nature, has to act upon thieoement in order to
achieve its objectives. Thus, it is necessary to selectogpiaite actions or procedures to
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yield the effects it believes will result in the desired atbjees. The design of selection
functionallows the agent to choose an action, from the various opt@ailable, which
will enable it to achieve its goals. Basically, this is thesiisdor the interrelation among
beliefs, desires, and intentions.

Beliefscan be seen as the representation of what the agent effgdiivews about
the world, both dynamic and static aspects. As to selectioguase of action, there are
two types of input data required by the selection functiomtiomed above. On the one
hand, it is essential to acquire information about the stathe environment, which is
basically done through sensing actions. However, suchiirdon may not be enough
to capture the dynamic aspects of the environment, thoatedeto how the environment
is evolving over time, as well as which effects are producgadiing in a certain way,
for example, as in inaccessible traffic systems. The bela@ighe other hand, provide
the agent with a cognitive representation of the world. Sarctimternal model is updated
after every sensing action, and so can be used to deducetb®tthe system in a broad
perspective.

The motivational state of an agent is represented lyesséres It is quite intuitive that
the existence of an agent within an environment has an ends, The agent also needs
information about its goals and about what is necessary ¢omaplish them. Rao and
Georgeff (1991) distinguish between goals and desiresatwthile desires are inconsis-
tent with one another, the goals must be consistent. Alsoagent should believe that
the goal is achievable. Such a relation is referred to aprhygerty of realism(COHEN;
LEVESQUE, 1986). Therefore, goals are chosen desires @&dgbhat that are consistent.
For example, an agent might have both the desires of goingtk and of going to the
beach on a working day, which are inconsistent with resgeeath other.

Considering that the objectives or priorities of an agenildde generated instanta-
neously or as a result of a function, there is no reason why wwaild require a state
representation. However, some studies (RAO; GEORGEFR)11#8ve shown that the
way this selection is implemented and the approaches thassumed can bring about
unwanted situations. For example, due to the high demanddoessing the selection
function, an agent could be unable to accomplish a certajacte. Therefore, it is
important to achieve a trade-off between too much recoraiide and not enough.

This way, intentionsrepresent the state that an agent has committed to attempt to
realise. In other words, to cope with the unwanted situatie already mentioned, in-
tentions represent the currently chosen course of actiinslarly to the requirement for
belief-goal compatibility, the intentions of an agent miastcompatible with its goals. In
other words, the agent only can commit to some course ofreiidt is one of the agent’s
goals. Regarding this process of choosing to accomplishtaiceoal, one could identify
many types of commitment strategies. Such a classificasi@amportant to characterise
and analyse different reasoning behaviours of agents.
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Figure 4.1: Possible world of an agent as a time—tree streictu

The conceptual architecture of a BDI agent is depicted imiféigt.2, and briefly de-
scribed by Wooldridge (WOOLDRIDGE, 1999) as follows.

[ :

filter int&?ti@% action Heﬁector)
BDI agent
_eores J

Figure 4.2: Conceptual architecture of a BDI agent,
adapted from (WOOLDRIDGE, 1999).

At every perception from the environment, the agent’s batiefis set is updated. The
new configuration of beliefs is performed bybalief revision functio{BRF), which is
responsible for preserving the consistence of the agealisfb. An options function de-
termines the options available to the agent, which are gsele This function receives as
inputs the current configuration of the beliefs set, as wetha agent’s current intentions.
As further discussed in (GEORGEFF; LANSKY, 1987; GEORGERRO, 1996), an
agent is equipped with a library of plans that are used tcoperineans-ends reasoning.
Deliberation is achieved on the basis of instantiating raetscriptions of plans, which
generates the agent’s options and are able to modify itatiote structure dynamically
at run time. The desires represent possible course of actieailable to the agent, and
a simplification is generally made in the sense that conilictlesires are discarded and
only non-conflicting ones (the goals) are considered. Arfiiiection representing the
deliberation process determines new intentions on the lodsine agent’s current beliefs,
non-conflicting desires (goals), and the intentions culydreing performed. The inten-
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tions represent those states of affairs that an agent hasittad to trying to bring about.
An action selection function then executes the next acheraggent must perform on the
basis of its current intention.

4.3 The BDI logics

Practically, the first step to model a multi-agent systera @oose a logic language to
describe the agent’s behaviour and interactions. Theinatased to describe the various
components of the language is borrowed from the ones pexen{RAO; GEORGEFF,
1991; HADDADI, 1996; RUSSELL; NORVIG, 1995). The syntax ah@ semantics are
informally presented in this section.

Rao and Georgeff’'s (1991) formalism was presented as amsgte of the CLT*
logic as mentioned before. The authors suggested such anséx in two ways. First,
a first-order variant was proposed. Second, the logic wanded to a possible-worlds
framework by introducing modal operators for beliefs, goand intentions. It is im-
portant to note that a simplification was made, as only goasuaed to the detriment
of inconsistent desires. Thus, beliefs, goals, and iraestare represented as beliefs-,
goals-, and intentions-accessible worlds. The authoosdiftinguish between two types
of formulas, namely the state and path formulas. State flasrare evaluated at a specific
time point, whereas path formulas are evaluated over afspeaith in a given world.
Practically, whether a formula is a state or a path one carabiyadentified from its
semantics.

Considering a given path formulg, it is said to beoptionalif, at a particular time
point of a given worldy is true for at least one path emanating from that point. On the
other hand, ify is true for all the possible paths, the formula is said torawitable E
andA are used to designate optional and inevitable paths, regplgc This representation
obeys the convention of CTL*, as suggested in (RAO; GEORGHBB1). The standard
temporal operators, can be applied over both state and pattufas. A list of the com-
ponents of the logical language is given next, following shaene structure presented in
(RAO; GEORGEFF, 1991; HADDADI, 1996).

e propositional connectivess> , <, A, V;

e quantifiers¥, 3;

e equality operator=;

e negation operator: ;

e operator symbolssucceeds , fails , does , succeeded , failed , done ;

e modal operatorsBEL , GOAL , INTEND ;

e path operatorskE (optional) ,A (inevitable) ;

e temporal operators?) (next), (eventually)[] (always) ,% (until) ;
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e action operators; (disjoint), ; (sequence) ;
e a set Constants of constant symbdgent, Driver,, Link;, Eveng, and so forth;
e a set Variables of variable symbobgent driver, link, event and so forth;

e a set Predicates of predicate symbd@id:jacent Travel, and so forth.

The possible relations among the various components oatigubge are listed next.
It is important to bear in mind that both state and path foamwre evaluated in a given
accessible-world. To build a state formula, the followinges must be observed.

e any first-order formula is a state formula;

e if ¢ and @ are state formulas andis an individual or event variable, thefp,,
@A\ @, and3 x @ (x) are state formulas;

e if eis an event type thesucceeds(e), fails(e), does(e), succeeded(e), failed(e), and
done(e) are state formulas;

e if @is a state formula theBEL (¢), GOAL(@), andINTEND( @) are state formulas;

e if ¥ is a path formula, theB(y) andA(y) are state formulas.
Similarly, in order to build a path formula, the followingles must be observed:

e any state formula is also a path formula;

e if ¢ andg are path formulas, expressions similartg;, (@1 V @), (U @), 0@,
andJg are also path formulas.

4.4 Traffic system: the application domain

As mentioned before, the application domain of concern is Work is the traffic
system of urban areas. More specifically, it is focused orctdmmuter scenario where
decisions such as what time to depart and which route to tekengportant to meet
certain constraints as of fixed arrival time at destinati®ws modelling driver reasoning
is central, albeit TIS technologies are also to be represdntterms of agents.

Drivers are dealt with as rational and intentional entitié$ence, public transport
users, as well as other transport modes are not taken ingidsoation at the current
level of this research. It is the typical commuter scenar@re travellers are already to
possess some knowledge about the traffic network, its dyssarand its topology. The
uncertainty inherent in humanlike decision-making is thetdr to grant variability in
demand formation.

Each driver has the goal of reaching certain destinatisnyark place for instance,
departing from an origin within the traffic network, such sshome. Two basic deci-
sions have to be made in order to accomplish such a goal, yavhat time to depart and
which route to take. Bearing this situational configuratiommind, one can consider as
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basic arguments for this goal the origin, the destinatioa route, and the departure time
chosen. Nonetheless, it is getting to be a common practiog seme facilities that pro-
vide updated information about the actual state of the nétwamth prior and during the
journey. This represents an opportunity toward overcorttiegvery inaccessible nature
of the traffic environment, even for commuters. For examdio broadcast, variable
message signs (VMS), dynamic route guidance (DRG), anditieenlet are used in this
way. Other technologies, such as mobile communicationg maproved and made the
access to information easier.

Since individuals can access reliable and updated infeomabout the system state,
they now are able to make efficient decisions. This is coat®é/as exogenous sources
can improve the cognitive representation of the world witthiivers’ reasoning. For ex-
ample, one could avoid unwanted situations such as traffis,jar could choose the ideal
path in terms of different interpretations of cost to itstaeion. TIS will definitely influ-
ence the way drivers make decisions and behave as traffiorletsers. Therefore, some
level of interaction will also be necessary to some extergnes just to allow drivers to
receive information. With regard to this interactive natutwo kinds of such systems
can be identified, namely thpassiveand theinteractiveones. The former would include
those that only send information that is current. On the rofiaad, the latter would be
able to tailor contents to meet users’ needs and would presare degree of adaptability,
as well. Moreover, driver and information system couldraté in a co-operative way in
order to reach a certain destination efficiently. For exanah inquire-response mode of
co-operative interaction could entail a more precise mfation to fill the driver’s needs.

4.4.1 Description of traffic entities

An individual usually organises his knowledge of the traffyjstem in terms of net-
work topology and dynamics. Topology has a quite simpleasgntation, whereas dy-
namics is mostly associated with the recurrent traffic flowet, ¥uch an association is
mostly related to certain periods, for example, of the dayhe week, and even of the
moth and of the year. Beliefs such as “certain road is alwaysyested” or “that one
would have a free traffic because it is wider” reflects the dognnotion a driver may
have about the capacity of a link. These beliefs are usuallydn the basis of either the
physical description of the road or after experiencing theassary time to travel through
a certain part of the road. In this way and considering thenitvg picture of the en-
vironment the driver conceives, one can identify the elasi@mat compose the traffic
system.

The traffic network is usually organised in terms of roadsk@8) connected to each
other. In this way links form the network topology. Althougbmmuters are very familiar
with the system, their knowledge will be limited to few aftative routes that are identi-
fied as sequences of adjacent links. Each link is weightddawvitost, which is updated as
drivers realise a trip through it or receive any sort of infiation on it. The interpretation
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for cost, in this case, will depend widely on the purpose ef jdurney. For example,
as a work commuter travels it perceives the time it takes ttopa each link within the
route. However, the knowledge got from this very sensingsacbmmonly translated to
qualitative terms as the traffic was free or congested, &iaimce. The average travel time
for the entire journey is very likely memorised, though. Adividual could deduce that a
certain road would be congested from knowing the actua¢ stbhdjacent ones, as well.
Further, such an inference could result from simply cormrgagethe physical structure of a
link, for example, “that road is likely to have a free flow basa it has five traffic lanes”,
and “the other one is too narrow and will be probably blockedrdy lunch time”. So,
contrary to the way adopted in traditional models, driveeslikely to make qualitative
rather than quantitative assessments of the system.

In general terms, a traffic system can be seen as formed ofng@articles, which
are the vehicles and, implicitly, the driver, and of the ratwthat is the environment
(ROSSETTI, 1998). Basically, one can consider a populaifgotential commuters that
are able to perform a journey throughout the network. Imtlieis that have decided to
make a trip on a certain day will constitute the demand faretran that day. The network,
on its turn, is built up of links representing roads.

Thus,Driversis a constant that represents a set of drivers. It can baedfey as the
population of potential commuters in the traffic systéniver() is a unary predicate that
determines its argument is a driver.

Drivers= {dy,dp,ds,...,dy} neN
vd Driver(d) = d € Drivers

Similarly, Networkis a constant that represents a set of links connected toatheh
andLink() is a unary predicate that determines its argument is a link.

Network= {l1,l2,13,...,In} neN
VI Link(l) = | € Network

Itis equally important to identify the current state of thievdr. For example, it may be
stationary at an origin or a destination, or it may be movimguigh a link. The predicates
WaitingAt(d,l) andMovingOr(d, 1) could be used to denote the state of a drivevith
respect to a link. It is important to bear in mind that origins and destinasi@ne dealt
with as links, as well. This simplification is adopted as therection of source and drain
zones to the traffic network is usually represented by mebdarmmylinks.

A driver has the notion of adjacency, both for longer and &hgrarts of a road. For
example, an individual may know every transversal to centaad, such as the Ipiranga
Avenue, in Porto Alegre, whereas another knows only the muaintions to that road
ignoring all the others between them. For the sake of sintplia link is atomic, which



82

means no transversal is considered to exist. The other ggummade about links is that
they are directional. Hence, there is a downstream and aneaps node associated to
each of them. In other words, a link can be represented instefra directional segment
between two consecutive intersections (see Figure 4.3 fdllowing formula expresses
thatl, andl, are adjacent with regard to one another.

Vli,12  Adjacentl, ;) = Connecte@U pstreantl), Downstreanly))

Figure 4.3: Links of a traffic network

The same idea is used to represent routes, which are listskef A necessary condi-
tion, however, is that the links should be adjacent to edeér@nd consecutive. Similarly,
Routess a set ofoutesymbols, which represent the alternatives a driver is abt@bose
from. The unary predicatRoutdroute) relates its argument to a route objéct

Route= {origin,l1,l2,...,li,li11,...,In,destinatio i,neN
Vr Routdr)=-r € Routes

Vli,liv1 li,lit1 € Route= Connecte@U pstreantl;), Downstreanil; 1))

Every driver who is familiar with the network to some exteatha cost assigned to
each link within its internal model. However, contrary todbgquantitative notion, such a
cost gives a qualitative idea of the link. ThllspkStatess a set of constants representing
possible states of a link. In the commuter world, three diffié levels of cost could be
considered, to mention some. ThakStatélink,state predicate relates a link to its
actual state.

LinkStates= {CongestedNormal, Free}

LinkStatel;,Congestedl LinkStatél,, Normal) LinkStatéls, Free)

LAn important assumption made in this work is that routes agegipusly determined and are part of a
library for each agent. Routes can be built as a result of #epo’s shortest path algorithm (VAN VLIET,
1977).
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Temporal operators, such akvaysandeventually could be associated to these for-
mulas, as exemplified bellow.

OLinkStatél;,Congested

OLinkStatel,, Free)

Contrary to the qualitative assessment made over eachthekaverage travel time
may be assigned to the entire route. Thus, a possible ptedceaepresent this could be
TravelTiméroute time), which associates an average travel time to a certain route.
predicate such aslinute(value) could be used to denote that time is given in minutes.
Nonetheless, if the time unit is to be generalised, the ftarfivavel Timér, Minute(45))
could be simply written a$ ravel Timér,45).

Another important time dependent representation thatldhoe present in a com-
muter model, is the notion of time associated to the instaraction is performed. What
time a commuter needs to depart and what time it is supposauive at work, are good
examples. A possible inference as to such notions couldfbeéparted at that time and
got that route would | arrive at work in time?”. Instants aseially identified from within
the day. Thus, the predicatBe partAttime) andArriveAt(time) could be used to repre-
sent the instant such actions are to be performed. In the say®epartureTiméime)
andArrival Time(time) could be used to represent the instants those actions lgdtaak
pened. Besides, operator symbols could also be used t@fudétail actions representa-
tion.

4.4.2 An example of a logic traffic system

In order to illustrate the logics presented in the previcetiens, a simple example
was devised. It gives a little flavour of the logics adequaaynbdel humanlike behaviour
and decision-making in the traffic and transportation domaiThe system instance is
composed of a hypothetical network with three possiblea®fior an origin-destination
pair, as depicted in Figure 4.4.

Figure 4.4: A hypothetical traffic network

The network can be represented by means of a set of its limtdd adN;. So,
Ny = {0,l1,12,13,14,15,16,17,18,19,d} where the following conditions should be observed.
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Ad jacento,lq),

Ad jacently,l2), Adjacently,l9),

Ad jacentlq,l3), Adjacentls,ls), Ad jacentls,|7), Ad jacentl,lg),
Ad jacentlq,ls), Ad jacentls,l), Ad jacentls, lg), Ad jacentls, lo),
Ad jacentlg,d).

R; is the set formed of the three possible routes between ovigimd destinatiomnl,
and is given a®y = {rq1,r,r3}. These are the paths the driver actually knows for the
journey. Nonetheless, such a set might be expanded as ardumaliexperimented other
roads, searched in a map, or was otherwise advised by a Raudar@@e System, for
instance. Each route froRR, is described next.

ri=1{0,l,l2,le,d},
Mo = {07|17|37|57|77|97d}!
3= {O,|1,|4,|6,|8,|9,d}.

Considering a populatio®; of commuters, a certain drivef € D, could have the
following mental attitudes in a given moment in time.

BEL(d;,WaitingAt(d;,0)),

BEL(d;, TravelTimérp, Minute(45))),
BEL(d;, OLinkStatéls, Free)),
BEL(d;, OLinkStatél,, Congested),
GOAL(di,WaitingAt(d;,d)),

GOAL(d;, ArriveAt(t +x)).

The events are path formulas representing the course ohadtnat enable an agent
to reach a desired future state. In other words, they can & @& the strategy of an
individual to accomplish its goals. Such a commitment tdiseaertain course of actions
to the detriment of other possible ones is the abstractiothfbagent’s intention. In this
specific example, the driver commits to execute the foll@antions.

INTEND(d;, DepartAtt)),
INTEND(d;, TakeRout&3)).

Figure 4.5 depicts this simple example in terms of belig§®als-, and intentions-
accessible worlds.

4.4.3 Planning a trip

Basically, a initial planning task is executed to set the ponents of a trip. Thus, a
trip could be defined as the tuplaip(O,D,P,DAT,R DT). For the sake of simplicity,
the terms within the tuple were abbreviate@.represents a linlo which can be iden-
tified as the origin for the tripOrigin(o), whereadD is the destination linld, given by
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@ (b) ©

Figure 4.5: The possible worlds for the traffic example: (@)dis-accessible world;
(b) goals-accessible world; and (c) intentions-accessilalrld

Destinatior{d). The purpose for the journey, given By can be any from a set of possi-
ble motivations, such asork, leisure shopping and so forth. The reason for making a
journey commonly implies an arrival deadline, which thevdriattempts to meet. This is
the DAT (desired arrival time) term of the trip. In order to effeeliy accomplish its trip
end, the driver should choose a rolRefrom the set of routes it knows for the specific
OD pair, and a departure tinl@T. Thus, the desired arrival time can be seen as a goal
of a commuter. Route and departure time express the commiitmattempt to achieve
that goal, which results from the driver's decision-makiridence, this idea could be
represented in the following way.

GOAL(ArrivalAt(time)),
INTEND(DepartAttime)).
INTEND(TakeRoutéoute)),

The plans of a driver are pre-determined and possible rdugeseen origins and
destinations are stored in a plan library. This limit the t@mof options available to the
drivers, as in real life people are usually presented upreetior four route choices, at
Mmost.

4.4.4 Strategies for decision-making

Representing drivers’ behaviour and decision-making ispictof main interest in
works aimed at assessing variable demand. Some modelsasERACULA (LIU; VAN
VLIET; WATLING, 1995), deal with decision-making on the &®f past experiences.
This way, a driver is endowed with memory and is able to stoaeel experiences in
terms of cost, usually travel time for commuters. Thus, daxhof its internal model is
weighted by any form, which is a quantitative approach, gfoun practice, the cognitive
reasoning of human beings is mostly associated to quabtaspects of the environment
rather than exact numeric measures.
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It is intuitive that a driver does not explicitly remembeettravel time for each link,
and sometimes neither for the entire route. Neverthel¢ss,dossible to identify an
implicit cognition performed by individuals in order to agte the qualitative attributes
of any element within the system. This could be produced lyparisons. For example,
as to the link states a driver could make the following asgams.

e when travelling through a linkwith an average speesht least equal to the desired
speedy, the link could be associated with a free flow state;

Vs, s4,d,I  Speeds) A Speedsy) A Driver(d) A Link(l)
AHigher(s,DiseredSpee, sy)) = LinkStatél, Free)

e if the average speesperformed through a linkis lower than the desired spegg
but higher than certain value, sayk2/h, defining a stationary flow, thencould
be associated to a normal state;

Vs, &q,d,1  Speeds) A Speedsy) A Driver(d) A Link(l)
ALower(s, DiseredSpee@l, 4)) A Higher(s, Speed20)) = LinkStat€l, Normal)

e finally, a congestion can be associated to a limhen the average speesds equal
or lower than the value that characterise a stationary flow.

Vs, &q,d,1  Speeds) A Speedsy) A Driver(d) A Link(l)
ALower(s, Speed20)) = LinkStaté¢l,Congestedl

Contrary to the way routes are usually dealt with, the awveteayel time for the entire
journey is not evaluated on a link-by-link basis. Ratheis identified by the difference
between the arrival time at destination and the departare from origin. It could be
seen as a more intuitive way to represent the reality, albisijust a different manner to
write the sum of all link costs throughout the route.

vr,t,to,tqg  Routdr) ATimgt) A Timeto) A Timgty)
ATravelTimér,t) =t = Dif ferencéArrivalTime(ty), DepartureTimét,))

This way, many decisions could be made in terms of assessiggative aspects of
the options available to each driver. As to route choicessjnfstance, the driver would
evaluate quality of the flow through each link of the routejchihthe driver believes to
hold at the instant the decision is made. If an individuaildwels a link within certain path
is always congested, it very likely would take an alterrativay. Otherwise, the driver
could keep the usual route and opt for departing a little &ilier.
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Vri,ro,l1,12,d  Routéri) ARoutérp) ALink(I1) ALINK(I2) A l1€ri A laera A=(l1=15)

ABEL(d,OLinkStat€l;,Congested)) = TakeRoutéd,ry)

There are many other ways to represent human cognition imdar scenarios, as
are the different manners humans make decisions. For erathpl state of a link could
be associated to certain period of the day, or even could & itmel1 thought of as a re-
laxing one for the sake of landscape. This section serveliligirate how complex and
arduous it would be to describe the ontological level of desys And this is specially the
case of traffic and transportation domains when the tasknsael the system from the
perspective of drivers. Also, some epistemological natdirgystems can demand more
appropriate representation, as the one offered by fuzagdpfpr instance.

4.5 Practical ways to implement BDI models

A logical formalism allows for the efficient representatiohall the knowledge an
agent must possess about the world and how to reason on iteéowit is easy to re-
alise from the brief discussion in the last section that desg complex domains both
ontologically and epistemologically may become an arduang extensive task. Yet, it
is also central to MAS providing an operational model thagpsarts the implementation
of the agent architecture. BDI formalisms have demongdrateatural ability to design
humanlike cognitive behaviour. It is also commonsenseith&dct the so quoted ‘gap’
between modelling and practical implementation has disged using it despite its ex-
pressiveness power. Efforts have then been devoted to dgiadivay to bridge such a gap
and turn BDI models into real applications.

Méra et al. (1999) identify at least two basic approachesveyame limitations of
BDI formalisms. It is possible to extend existing logics hvappropriate operational
models, or one can use other logical formalism that is pavveriough both to provide a
cognitive representation of the domain and to offer openatl procedures for practically
building agents. In his thesis, Mora (1999) tackle the probbf devising computational
BDI models by following a similar way as adopted in (CORREAELHO, 1993). In-
stead of defining a new BDI logic or choosing an existing oneroter to extend it, the
notions of beliefs, desires, and intentions are defined ynmef a formalism that is both
well-defined and computational. This is achieved by meansswiglogic programming
extended with explicit negatiqiELP) andWell-Founded Semantics extended for explicit
negation(WFSX). In such a framework, an agent is defined as the t(RIB,1, TAX),
whereB is a set of beliefsD is a set of desired,is a set of intentions, antlAxis a set
of time axioms. Plans are built out from an explicit declemaif actions and the period
of time they should be carried out. This effort has also degairom Bratman’s (1987)
philosophical work as have other attempts to formalise amaglement BDI multi-agent
systems (HADDADI, 1996; RAO; GEORGEFF, 1991, 1995).
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Rao (1996) worked on an alternative formalisation of BDIra#geto devise an op-
erational and proof-theoretic language, AgentSpeak(hg lBnguage can be seen as an
abstraction of implemented BDI systems, such as PRS and dBJARich determines
the behaviour of the agents it implements. AgentSpeak(bjval programs to be writ-
ten and interpreted in a way similar to that of Horn-clausgde (SCHACHTE, 2002).
D’Inverno and Luck (1998) further discussed its primitiaesd semantics on the basis
of a Z specification. Curiously, despite these authors @diand formally demonstrated
the ability of AgentSpeak(L) to specify and allow for praeti implementation of BDI
agents, an interpreter for the language waited for relgtiomg time to be implemented.

After presenting a comparison between 3APL and other agagtulages (HINDRIKS
et al., 1997), Hindriks et al. (1998b,c) formally suggedtth is possible to simulate
the operational semantics of AgentSpeak(L) within 3APLother words, every agent
that can be programmed in Rao’s (1996) language can alscolgegonmed in 3APL. In
a similar approach to overcome the lack of an interpreteAfgentSpeak(L), Machado
and Bordini (2002) reported their experiences in runningtgpeak(L) programs within
SIM_AGENT framework (SLOMAN; POLI, 1995). SIM_Speak, agtauthors coined
their environment, is capable of converting AgentSpeakflecifications to SIM_AGENT
agent programs. The latter is based on previous extensidhe POP-11 language (SLO-
MAN, 1999; BARRETT; RAMSAY; SLOMAN, 1985), allowing SIM_AGNT to be a
general tool that leaves to programmers the task of detaighe architecture of the
agents (MACHADO; BORDINI, 2001).

Although approaching quite successfully the ‘bridging tjag’ between theory and
practice, Bordini and Machado (2002) also suggest that #ie advantage of a purpose-
builtinterpreter as opposed to running AgentSpeak(L) ep@ithin SIM_AGENT, would
be in terms of efficiency and practicality. This was to becowadity recently, as Bor-
dini et al. (2002) presented an interpreter to their Agea#&pXL), an extension proposed
to improve AgentSpeak(L) in various aspects and partibufar supporting the use of
Design-To-Criteria (DTC) scheduler (BORDINI et al., 20Q@a)allow the generation of
efficient intention selection functions. In both works (MAGDO; BORDINI, 2001;
BORDINI et al., 2002), authors left a remarkable contribatto the BDI community as
they presented further understandings on the operatiensstics of AgentSpeak(L) and
enhanced its interpreter as to AgentSpeak(XL).

It is also relatively recent that commercial tools for therelepment of multi-agent
systems have been claimed to support the practical impletiem of BDI-based mod-
els. JACKS Intelligent Agents (AGENTLINK, 2002; AOS, 200i8)a multi-agent sys-
tem development environment commercialised by AOS. It gedaon the JACK Agent
Language (JAL) that extends the Java language to allow edifiggdBDI-based reason-
ing within Java objects. Bee-gent (Bonding and Encapandinhancement Agent) is a
framework for the development of agent-based distribuystesns (KAWAMURA et al.,
1999; TOSHIBA CORPORATION, 1999), which has been develagaedOSHIBA Cor-
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poration’s Research and Development Center. A number ofsépports the implemen-
tation of two types of agents, namely the agent wrapper aadntbdiation agent, which
can be featured with BDI reasoning capabilities.

UMPRS (LEE et al., 1994) and JAM (HUBER, 1999a,b) are both BEzhitectures
that have been developed at Intelligent Reasoning Systath$&Jaiversity of Michigan
(INTELLIGENT REASONING SYSTEMS, 2002), and explicitly inae the original
BDI theories and specification of PRS (HUBER, 1999a; GEORGHRANSKY, 1987;
INGRAND; GEORGEFF; RAO, 1992). So, their constructors apdrational semantics
resemble enormously the ones of AgentSpeak(L) languag&ER) 2001, 1994). While
agents specified in UMPRS are parsed to C++ code, the onafieppat JAM are parsed
to Java code. In the special case of JAM, much effort have teeoted to provide users
with technical aid and documentation, and both framewor&syaade freely available for
non-profitable ends, such as academic works.

4.6 AgentSpeak(L): Specifying and Programming BDI Agents

AgentSpeak(L) is a language devised to bridge the gap batfeemal modelling and
practical implementation as far as BDI agents are conceihbdsically reduces the task
of modelling intentional agents to identifying base bedjgfoals and plans. Given its ex-
pressiveness and ease of use, AgentSpeak(L) is applietsivtink as an specification
language. Such a decision is based on the assertions by Maema Bordini (2002)
as to the fact that Rao (1996) also devised a proof theory gmm#Speak(L). Unfortu-
nately, neither the SIM_Speak framework nor the AgentS@€akinterpreter were effec-
tively available for use when this thesis’ proposal was @nésd. In order to experiment
and demonstrate the approach of this research, a choice ade toward implementing
AgentSpeak(L) drivers in JAM. Nonetheless, it is the stegaahto use AgentSpeak(XL)
in further developments.

Before going further on the specification of the commutenades presented in this
work, it is believed to be worthwhile presenting the syntévAgentSpeak(L), so as to
facilitate the understanding of the specification of the Hikg driver behaviour model.
The following definitions giving the syntax of the language t&ken from (RAO, 1996),
where AgentSpeak(L) was first specified, and are presenteddxactly as they were
given in his original work.

Definition 1 If b is a predicate symbol, ang,t .. t, are terms then fdy, ..., ty) or b(t) is
a belief atom. If Iot) and qs) are belief atoms, () A c(s), and—b(t) arebeliefs A belief
atom or its negation will be referred to aslzelief literal A ground belief atom will be
called a base belief.

Definition 2 If gis a predicate symbol, angt .., t, are terms thehg(ty, ..., t,) (or !g(t))
and?g(tl,...,tn) (or ?g(t)) aregoals
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Note that both beliefs and goals are predicate symbols gaadions, as seen later).
A predicate symbol is a goal if it is preceded by the operdtorsr *?’ (see Definition
2). Thus, an agerd may have theachievement goadf being in locationY in a future
state, expressed bjotation(a,Y). It may also check what its present position is, by the
test goal?ocation(a, X), given its set of base beliefs (updated through percepfidineo
environment).

Definition 3 If b(t) is a belief atom!g(t) and?g(t) are goals, then-b(t), —b(t), +!g(t),
+29(t), —!g(t), —?g(t) aretriggering events

Agents go through repeated cycles where they observe tli®ement and, based on
their observations and goals, they execute certain adi@isnay change the state of the
environment. This may influence the agents’ beliefs as wdich need to be revised.

Definition 4 If ais an action symbol andt...,t, are first-order terms, then(&l, ..., tn)
or a(t) is anaction

Definition 5 If e is a triggering event, f...,by, are belief literals, and k..., h, are
goals or actions then eb1 A ... Abym < hg;...;hyis aplan The expression to the left of
the arrow is referred to as thieeadof the plan and the expression to the right of the arrow
is referred to as théodyof the plan. The expression to the right of the colon in thedhea
of a plan is referred to as theontext For convenience, an empty body is rewritten with
the expression true.

Rao (1996) further mentions that a plan specifies the meandlmh an agent should
satisfy an end. However, in none of the known work conceriggntSpeak(L) (RAO,
1996; D'INVERNO; LUCK, 1998) the authors approach the issfidow beliefs and
intentions are updated during the execution of a lan

Definition 6 Anagentis given by a tupldE,B,P,|,A, %, %s,.7+), Where E is a set of
events, B is a set of base beliefs, P is a set of plans, | is afsetemtions, and A is a
set of actions. The selection functiofi: selects an event from the set E; the selection
function.#, selects an option or an applicable pldrirom a set of applicable plans; and
.7 selects an intention from the set I.

Definition 7 The set | is a set of intentions. Eaictientionis a stack ofpartially instan-
tiated plansi.e., plans where some of the variables have been instadtign intention

2It is referred here to the updating of beliefs and deletiointéntions directly from the execution of
a plan, not (in the case of beliefs) through changing therenment by means of actions and subsequent
perception of the environment and the ensuing belief updatén the case of intentions) executing sub-
plans. Although, in some of the examples given in the papefgpears that this is possible, formally a plan

is only formed of goals and actions, not triggering events (addition and deletion of beliefs).
3Rao (1996) presents applicable plans in Definition 10 of higiral work.
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is denoted byp; f...$p;], where g is the bottom and jis the top of the stack. The ele-
ments of the stack are delimited byFor convenience, Rao (1996) refers to the intention
[+!true: true<- true] as the true intention, and denotes itby

Definition 8 The set E consists of events. Each event is a tigpig where e is a trigger-
ing event and i is an intention. If the intention i is ttnee intentionthe event is called an
external eventotherwise it is annternal even{and i is the intention that has generated
the event e).

As described in (D'INVERNO; LUCK, 1998), there are two basiodels of opera-
tion, which essentially involve either updating the intentset, reflected by responding
to an event, or actually executing intentions. When upddtie intention set, the agent
selects an ever® from the set of event, and generates all the plans whose invocation
conditions, identified by the triggering event at the headhefplan, match this event.
These plans are threlevant plans Then, if the context part of a relevant plan is a logical
consequence of the set of base beliefs, it will be selecteshapplicable planand will
form a plan instance that is the agentitsended meansEnding the cycle, the agent up-
dates its set of intentioris If the event selected, which started the cycle, is an eatern
event, a new intention is generated and inserted into teatioin set. Otherwise, the event
is internal and the plan instance is added to the head of taetion that posted the event.

In the second model, the agent selects an intention frormtieation set. The plan
at the top of the selected intention is now #ecuting planand the next formula in
the body of the plan is thexecuting formula Depending on the selected intention and
the executing formula of the executing plan, the agentsstare of the possible courses
of action. If the executing formula is an achieving goal, avrgoal event is generated
and posted to the event st and the intention is suspended until the goal has been
achieved. In case the executing formula is a query goalntieernation retrieved is used
to instantiate the corresponding terms in the executing.pkinally, if the executing
formula is an action, the action is posted to the actionAsetwaiting execution. In the
last two situations, the executing formula is removed fromexecuting plan. If there is
no further formula in the executing plan, the agent stagsettecution of the next plan in
the selected intention. If there is no next plan, then thentibn has succeeded and can
be removed from the intention set.

It is important to note that an AgentSpeak(L) agent is spetgimply as a set of base
beliefs and a set of non-instantiated plans, which turnakk of modelling quite easier.
Intentions are generated automatically from triggeringngs. This process is detailed in
(RAO, 1996; D'INVERNO; LUCK, 1998). Also, Machado and Bond(2002) give a
remarkable insight into AgentSpeak(L) operational semant

In this thesis, the focus is given only to those elements d@natnecessary to char-
acterise the BDI agents, as presented above. As suggetéddh@®HADO; BORDINI,
2001), and already experimented in (ROSSETTI; BORDINI; BAX; BAMPI; LIU;
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VAN VLIET, 2002; ROSSETTI; LIU; CYBIS; BAMPI, 2002), Agentgak(L) will be
used to specify BDI-like driver behaviours.

4.7 Summary

One main premise of ITS is to optimise traffic flow through emtiag driver be-
haviour patterns. This gives rise to the use of informatechhologies as the instru-
ment to accomplish such an aim. Therefore, describing hlikeafactors is the basis
that allows for modelling, simulating, and assessing theaiat and efficiency of TIS. As
travellers enrich their knowledge about the very inactassraffic and transportation en-
vironment, decision-making is now to yield optimised clesic So, models should cope
not only with reactive aspects, which are well-handled inithe car-following and lane-
changing representations, but also with the cognitionl Ilé¥ewever, very little work has
succeeded in either addressing human behaviour or pr@pasireans to overcome their
very complex nature (WATLING, 1994).

The BDI approach was presented in this chapter, which relieBratman’s (1987)
work. Contrary to many reductionist authors, intelligegeats are dealt with as inten-
tional rather than only rational entities. In this way, miens become an important com-
ponent for reasoning, as are beliefs and desires. An agemtishmotivated by its goals
and commits to certain courses of actions in order to acasimgiiem. Despite its ability
to represent cognition, BDI-based models have not beenlyvigeed. The lack of effec-
tive implementation tools for a while since it was first prepd can perhaps explain this.
Nonetheless, some alternatives extending the BDI logie® theen successfully used
within domain-specific applications, such as the one pteseim (TEDESCO; SELF,
2000). Yet in this way, only societies with a reduced numldezlements have profited
from the potentialities of such an approach.

It is relatively recent that people have again demonstrsd@de interest in using BDI
models within a variety of applications. Two main reasong joatify this trend. Firstly,
advances in computer architectures have enhanced botbgsing and memory capac-
ities. More or less dependent on the former, developingrenments now support the
effective implementation of BDI-based agents. Some of tiaiee commercially avail-
able. However, using it within domains formed of severabogang entities has not, as
yet, been actually experienced. This is specially the paed this work.

In order to model drivers as reasoning agents, the decisas made toward us-
ing Rao’s (1996) AgentSpeak(L) language rather than dayisi domain-specific ex-
tension of BDI logics from scratch. Its syntax and semanigdg entirely on Rao and
Georgeff’s (1991) formalism . Additionally, the languagespesses a proof theory, which
suits perfectly specification purposes (MACHADO; BORDIRQ01). Curiously, no in-
terpreter was made available until very recently, as reyloirt (BORDINI et al., 2002).
To turn around this very absence, The JAM architecture (HRBES99a,b) was used
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for practical implementation of the BDI-based drivers. ®oofiits constructors keep the
same semantics and relations as in AgentSpeak(L). Foltpthie approach suggested in
(HINDRIKS et al., 1998a, 1997) it is possible to simulate Rg@996) language func-
tioning in JAM. This way, drivers will be endowed with a BDI rkeel to support their
reasoning ability. This is expected to improve behavioudatiing and ease the assess-
ment of decision-making on a variety of scenarios.
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5 A BDI MODEL OF COMMUTER SCENARIOS

5.1 Overview

One goal of this work is to present a methodological apprdadid the modelling
and implementation of driver behaviours in commuter sdesarMachado and Bordini
(MACHADO; BORDINI, 2001) claim that the AgentSpeak(L) lamgge is suitable as
a specification tool, despite the absence of a purposeibteltpreter for the language
and therefore could be used to suit this end. This assersidrased on the fact that
Rao (RAO, 1996) devised the language on the basis of both aratignal and proof-
theoretic semantics. Some experiences of using Agent8pefak specification purpose
are reported in (ROSSETTI; BORDINI; BAZZAN; BAMPI; LIU; VANVLIET, 2002;
ROSSETTI; LIU; CYBIS; BAMPI, 2002).

This chapter, initially addresses how AgentSpeak(L) islusespecify BDI commut-
ing drivers. Commuters are expected to be familiar with th#it system, hence routes
are chosen from a limited set of options. Also, for most cortars) there may be a sort
of rigid arrival time that should be met to the extent of thegmse of the journey. Thus,
the basic decisions a driver agent has to make are as to whutd to take and what time
to depart so that it can achieve its trip objectives.

Different premises may be assumed when people are reasaamingaking decisions.
In this sense, it is also likely that different individualdogt different strategies to com-
plete a certain goal. Such strategies will be grouped intedpersonalities, which dic-
tates the way an individual reasons about his/her baseffeliree initial personalities
were devised on the basis of intuitive considerations, mathe random, the choosy, and
the conservative ones. A fourth personality coined thetbabdriver was devised on the
basis of the driver behaviour currently implemented in DRA@®, as described in (LIU;
VAN VLIET; WATLING, 1995). Further extensions to the hahatipersonalities are also
proposed.

5.2 Traffic domain from a multi-agent system perspective

The task of assessing ITS technologies brought about tltefoea more robust means
to model the real world (CHATTERJEE; MCDONALD, 1999). MASeses to be able to
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give an enormous contribution to this end owing its poweskgressiveness for ontologi-
cal and epistemological representation of complex syst&maring in mind the structure
for traffic systems in urban areas, it is possible to idenhir basic components, namely
the environment and the moving particles. The environmantle viewed as the road
network itself and the control systems (such as traffic dggmad traffic signs), which dic-
tates the movement rules. Vehicles are the moving entig@gelling throughout the road
network (ROSSETTI, 1998; ROSSETTI; BAMPI, 1998b, 1999). netheless, today’s
traffic and transportation are increasingly influenced leygresence of ITS technologies,
which should be taken into account and integrated into tiver@mment, as well. In a
demand-supply perspective, the environment with all g®ueces can be seen as the sup-
ply for a demand formed of moving individuals that seek taomaeplish their trip goals.

A traffic system is notably formed by heterogeneous entitisch are geographi-
cally and functionally distributed over the environmenheir very nature suggests that
such components can be easily recognised as agents in aageifti system. Owing the
complexity and dimensions of the domain, urban areas am@lygslivided into zones. In
turn, zones within a city could be seen as open agent sagigti®ugh which individuals
are able to move from one to the other.

Accounting for the ITS premise of being able to influence siseehaviours, drivers
start playing a crucial role in the system and modelling ibasagent deserves special
attention. Nonetheless, the other elements within theegyste equally important. Some
of the environment components have already been subjeatedhier reactive or cog-
nitive modelling approaches, as seen in Section 3.8. Hayewuher views cannot be
simply applied to driver agents. Drivers could be undemdi@®behaving in both reactive
and cognitive ways. When answering to control systems qroreding to some stimuli
brought about by the presence of surrounding vehiclesedyibehaviour is basically re-
active. The car-following and lane-changing models amitimnal representation of such
a reactive behaviour. In these models, drivers are spetifiadeans of rules that map
actions to specific events, such as red light of a traffic $ignd the break light of the
vehicle ahead. However, when planning a trip, choosingerant departure time, or even
even when deciding whether to divert in the presence of &drjam, drivers must exert
their reasoning capabilities that strongly rely on mentatles such as beliefs, desires, and
intentions.

All of the agents in a traffic domain will interact with eacthet and with the envi-
ronment in order to improve the system performance, allzahef which has specific
task and goals. Interaction between agents and betweereahaul the environment is
a factor of huge importance to the exchanging of informainoa traffic system. Besides
the built-in knowledge of drivers, they can acquire infotioa by accessing an ATIS
and by observing the environment in previous experiencesothfer important issue is
the time-dependent nature of interactions that makes giplesto see traffic systems as
a real-time domain. This characteristic becomes more avided significant with the
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adoptions of ITS technologies, as the communication is aféature in such a concept.
Both soft and hard real-time features can be identified. Asequence of failure in a
Traveller Information System, drivers would experienca@ases in travel cost by virtue
of an unexpected traffic jam, for example. This scenario d¢adfine a soft real-time
system. However, some ITS technologies are strongly depetrah the reliability of the
system. In automated cruise control systems, embeddeghsysire in control of the ve-
hicle navigation. A failure in these systems could resullriastic consequences, such as
crashing. In this case, ITS technologies can be seen asédrdrtime systems.

5.2.1 The driver agent architecture

Drivers are autonomous in the sense they can make decismotiem own in order
to accomplish their objectives. This way demand is built siphee result of the decision-
making process carried out on a decentralised basis (ROBSEIU; CYBIS; BAMPI,
2002). So, it is the driver's own responsibility to identitg needs, to manage its re-
sources, and to make its decisions. Drivers are also iotegtin the sense that decisions
are made as a result of a reasoning chain performed on drivemtal attitudes, such as
beliefs, desires, and intentions. This process ends atijpgra goal and committing to
an attempt at achieving it.

In this work, drivers are dealt with as cognitive entitiesotigh the use of a BDI
approach, where the internal model of each agent is refdexbbny sets of beliefs, goals,
and intentions (see Figure 5.1). The reasoning module afardrosts a BDI interpreter,
which evaluates driver’'s mental attitudes in order to mad@sions, as initially proposed
in (ROSSETTI; BORDINI; BAZZAN; BAMPI, 2001). The presencé @mmunication
facilities allows drivers to interact with different IT teoologies and in the specific case
of this work with ATIS agents, which act as ‘mediators’ in erdo sort out conflicting
situations. In this way, some IT agents should have a gloloalaiof the world.

The main protagonist within this model is the driver. It ipresented in terms of an

front vehicle
slows down

incident

1 cost of travelling

message receiving through a link
sensor P~ - -
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information

(beliefs, plans, BDI interpreter)

reactive layer decelerate

(rules, mapping function) message sending change lane
effector — D
basic action keep route

| change route

start journey

ask route advice

Figure 5.1: The driver agent architecture.



97

autonomous agent, capable of making decisions on its ownvoAldyered architecture
is devised to base this model. So, the driver is able to etxbdih reactive and cognitive
behaviours. The reactive layer relies on a simple set osrthlat map perceptions to
actions. The car-following and lane-changing behaviovesimplemented in this layer.
However, it seems to be not suitable enough to representeoanplex decisions, such as
whether to travel, which itinerary to follow, and what tineedepart at. This is addressed
in the cognitive layer instead, which is built on the basishef BDI logics.

Figure 5.1 roughly depicts the architecture of a driver. Ashe basic structure of
an agent (RUSSELL; NORVIG, 1995), drivers can perceivesfotough sensors and act
onto the environment through effectors. The communicathality is also present, which
is modelled in terms of message passing. Messages are smrghibasic actions and re-
ceived as perceptions, as suggested in (ROSSETTI; BORBINIZAN; BAMPI; LIU;
VAN VLIET, 2002). When a change in the environment happems aigents’ knowledge
base is updated. This can either be associated to the prefragegerception-action rule,
in the reactive layer, or trigger a more sophisticated neagpprocess, at the cognitive
level. At the current stage, the reactive and the cogniéiyels are restricted to the supply
and demand stages of the simulation, respectively. Nolesthe@mplementing a dynamic
selection mechanism between these two approaches is thaesdrstep in this research.

According to the AgentSpeak(L) language, the driver agergpresented by the tuple
(E,B,PI1,A Y%, S¢,-”s), WhereE, B, P, |, andA are sets of events, base beliefs, plans,
intentions, and basic actions, respectiveli,, .7, and.¥, are selection function for
events, applicable plans, and intentions, in this ordez Befinition 6 in Section 4.6).
The task of defining an agent in AgentSpeak(L) is basicalljuced to identifying the
sets of base beliefs and plans. The perception of triggesregts allows intentions to be
dynamically generated.

5.3 The BDI Driver Modelled in AgentSpeak(L)

The main reason for modelling driver behaviour on its owrhtrig to provide an
adequate means for assessing how individual decision guoeg can be affected toward
optimising the overall system performance. Expressiveaesl scalability are desired
features of such a model, which must serve for designingestthy various components
of ATIS, such as source, content, and media of the informairovided.

Three basic scenarios are possibly envisaged as to whettievizen a driver effec-
tively uses exogenous information. In the first and simesnario, an individual relies
solely on its own cognitive representation of the world. Feeof base beliefs of a driver
is updated as it executes the trips and evaluates theirtguillo exogenous information
is made available in this case. In a second scenario, comsrate able to access some
sort of exogenous information prior to starting a journelge Tontent may be tailored to
help drivers to plan the journey before departure. Somerateapplications are already
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available for this purpose (LYONS; MCDONALD, 1998). In arthiscenario, travellers
are provided with some sort of informative content during ¢burse of a journey. Radio
broadcast, variable message signs (VMS), and personagsstance through dynamic
route guidance systems (DRGS) are some examples of sohatesan help drivers to
constantly evaluate the quality of the journey during itea@xion. In-trip diversions
could be considered for avoiding congested roads and nmsmmidelays. The follow-
ing AgentSpeak(L) models are aimed at demonstrating thiflix and expressiveness
of Rao’s language (RAO, 1996) and its ability to represeatdbmplexity inherent in ITS
interactions.

5.3.1 Basic strategies for decision—making

In order to plan a daily journey, as initially suggested iis thork, the commuter driver
will basically make decisions on what time to depart and Whaute to take. A cognitive
process is carried out in away so as to find a combination ¢f &ltdwing drivers to reach
destination by a desirable arrival time. Representing thegss of such decision-makings
is the aim of the following models. To ease the represemtatidunches of different be-
haviours, some characteristics are set within persoeslibiat drive individual's choices.
Three initial personalities were devised on the basis afitive considerations, nhamely
the random, the choosy, and the conservative drivers. Attiquersonality coined the
habitual driver is the one currently implemented in DRACULaSs described in (LIU;
VAN VLIET; WATLING, 1999). Further extensions to the halatiupersonality are also
proposed. Mathematical formulations of each behavioupsgsented prior to specifying
commuter scenarios in AgentSpeak(L), which aims to fatéitunderstanding drivers’
personalities and their cognitive mechanisms. A summatii®tiescription of the main
symbols used in this section is presented in Table 5.1.

A trip for a driverm, on dayk, is given by the tuple'l'rip%'?) = (i, j, p,a,rd), where
i is the origin, j is the destinationp is the purpose (or the activit to be pursued by
the driver at destination) is the desired arrival time;, is the route to be followed,
andd is the departure time at which the journey is suposed to. stlagt setRijm =
{ra,ro,...,re,ripa,...,rgt, where(f,g) € N, to represent the route options known by
a driverm. Thus, each route withiRjjy, for instance ¢, is given by a set of adjacent and
consecutive links, such that = {l4,l2,...,ly,lus1,---,Iv}, where(u,v) € N. Therefore,
the cost for route s is the sum of the travel timeZ.7 of all links within the route, as
given in Equation 5.1.

F(re) = imm 5.1)

In order to ease representation, it is convenient to consim®e properties for the set
Rijm. There is a routejjm, such thatijm € Rijm, which represents the usual route from
origini to destinationj for a driverm. Also, there is a routejjm, such thatijm € Rijm,
which represents the best route frota j and believed by drivento be the less expensive
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path in terms of expected travel time. In this worky, is assigned randomly to each
driver, whereas Expression 5.2 gives the meaning for thierbete.

fim=r¢ | €(r¢) =min{€(r1),...,€(rg)} (5.2)

Instant and period of time are given in minutes, and are sgoted by real numbers.
Therefore,(ai(}%,di(j'f%,ti(j'f%) € R, which represent desired arrival time, chosen departure
time, and travel time, respectively, for a trip frarto j on dayk, relative to a drivem.

5.3.1.1 Random

The characteristic that better describes random drivéneiack of a specific strategy
for choosing a route on each day. An interpretation for suodheaviour can be associated
to different activities a driver may decide to perform withhe journey, before reaching
final destination. For instance, a driver may decide to pgss $ervice station to supply
vehicle with petrol on one day, and opts for a certain paththenother day the driver
may have to drop children at school, and should opt for amiffepath. In either case,
it tends to adjust its departure time accordingly to thenestied travel time for the route
chosen. Consideringjm = {r1,r2,...,r¢,rf4+1,...,rg}, the route choice is made as given
in Expression 5.3,

1
="t | 20 =3 (5.3)
where & is the probability for a routes € Rjm to be selected, assuming a uniform
distribution. After choosingi(j'%, the departure time is adjusted as a function of the desired
arrival timeai(}% and the estimated travel cost fltﬁf) , as given in Expression 5.4.
k k k
di(jn)1 = ai(jrzn - Cg(ri(jr%) (5.4)

In this work, the estimated travel cost of a route givendyis assumed to be the
travel time experienced by the driver the last time it treagethrough that path.

5.3.1.2 Choosy

A choosy driver is fastidiously selective. It always try tboose the route that is
believed to have the lowest travel cost. Considering thRggtand the definition for best
route given in Equation 5.2, the route choice is simply mad®bows.

I’i(j?] = fijm (5.5)

After selecting routei(jﬂ, the departure time choice also follows the same adjustment

approach as for random drivers (see Equation 5.4).
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5.3.1.3 Conservative

A conservative driver, in turn, is always predisposed tontaan the usual route what-
ever the cost for that path is believed to be. This could ssrethe inertia for changing
habits that most users familiar with the network very likekhibit. Considering the set
Rijm and the definition for usual route, the route choice is sinmpide by selecting the
usual option, as given in Expression 5.6.

I’i(j?] = Tijm (5.6)

Again, the adjustment for departure time is the same as olorarand choosy person-
alities (see Equation 5.4).

5.3.1.4 Habitual

The habitual personality is proposed on the basis of a detisiaking approach cur-
rently implemented in DRACULA, as presented in (LIU; VAN ET; WATLING, 1995,
1999). According to Ben-Akiva (BEN-AKIVA; DE PALMA; KANARG5LOU, 1986),
individuals use information gathered on dayn making their choices on next d&wy- 1.
Thus, considering tha,%':% is the travel time realised for a trip from origirio destination

j, the absolute delag?,(jn)1 a driverm experiences on dayis given as in Equation 5.7.
k k k k
6I(er)1 = di(jn)1 +ti(jr21 - ai(jrzw (5.7)
Also, a habitual driver is assumed to be indifferent to anass ofjjm -ti(j':%. The term
&jm is a tolerance factor, and in this work it is assumed to beoumifto all drivers in the
population. Thus, the perceived Iateneﬁ% is given as in Equation 5.8.
k k k
D = 50 — &jm Xt (5.8)
As suggested in (LIU; VAN VLIET; WATLING, 1999), drivers afi&kely to be indif-
ferent to early arrivals. In this sense, travel time onkla is adjusted as in Equation 5.9.

K (K
gkt _ di(jn)17 'fAi(jr)nSO (5.9)
L T N N '
ijm — Bijm: T Bjjm >

The route choice model for the habitual driver, currentlpiemented in DRACULA,
follows the ‘bounded rational choice’ (SIMON, 1956), as gegted by Mahmassani and
Jayakrishnan (MAHMASSANI; JAYAKRISHNAN, 1991). Individis are assumed to
use the same route as on the previous day unless the costezkfmcthe best route (see
Equation 5.2) is significantly better. The route choice tsasan Equation 5.10.

. : k . k
k+1) ) Fijm, if %(ri(j%) — € (fijm) > max{n x %(ri(j%),r}
jmo (k)

Fijm>

" (5.10)

otherwise
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The parameten is a threshold level that, according to Mahmassani and Jeyadan
(MAHMASSANI; JAYAKRISHNAN, 1991), may be interpreted as ngeptual factors,
preferential indifference, or persistence and aversiemitching with respect to the travel
time experienced. On the other hamds an absolute minimum travel time improvement
below which driverm will not switch routes. This is also provided in order to eta
meaningful threshold effect and avoid unintended switgHor shorter itineraries, for
instance.

This model, as it will be seen later on, in Chapter 6, seems tmuiite flexible as toler-
ance is evaluated with respect to the travel time expertnthis means that the longer
the trip lasts, the more tolerant the driver will be with rejeo lateness. Intuitively, com-
muters are very unlikely to present such a flexible arrivakti This is especially the case
for those making home—work journeys. Moreover the modelmetely disregards early
arrivals, which suggests the need for extending its indialcture toward supporting the
definition of an earliness—lateness tolerance window. mcéxtended abstraction con-
siders one top lateness and one bottom earliness threstvitgis which no adjustment to
departure is required. And in turn, any arrival experieneegived outside these bounds
should be considered in future journeys. In this way twoargrbehaviours are derived
from the habitual personality, namely the habitual drivéthwelative lateness—earliness
tolerance window, and the habitual driver with absolutenass—earliness tolerance win-
dow. They both differ from one another basically in terms ofvHateness and earliness
thresholds are identified. In the former case limits are dréfam the total travel time,
whereas in the latter boundaries are given in absolute terms

As to the relative lateness—earliness windowAlg be the earliness tolerance factor
as &jm still represents the lateness tolerance factor, botheeltd a driverm. As in
the original habitual behaviour, perceived lateness aniheas will be drawn from trip
cost asgjjm -ti(j'f% andAjjm -ti(j':%, respectively. The tern';(j'f])1 refers to the total travel time
fromi to j on dayk. The sign of the absolute dela‘i,%ﬁ (as defined in Equation 5.7) is
also important as it allows one to identify whether the drivas arrived earlier or later.
Bearing in mind the definition for perceived Iatenﬂﬁg] (see Equation 5.8), I@i(}ﬂ] be
the perceived earliness, as given in the Expression 5.11.

k K K
Ofn = || — Aim < 1 (5.11)
One should notice that the absolute valuedaé used instead as its sign is negative

meaning the agent was earlier. Thus, the departure timeeneakt dayk+ 1 is then
adjusted according to the following criterion.

d® _A® i 50 S 0 anda™ > 0

|Jm |jm’ IJm |Jm
k )
dim” = d¥ + 0 if &% <0andef >0 (5.12)
d® otherwise

ijm>
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A similar approach is used for the absolute lateness—eadiwindow. Let;jm be the
absolute lateness angm be the absolute earliness tolerances. Then, the percaited |
ness/’, and perceived earlinesd, are given as in Expression 5.13 and Expression 5.14,
respectively.

N = &~ ijm (5.13)
o' = |8im| — viim (5.14)

The adjustment for departure time on day 1 happens at the same conditions as in
the case of the relative lateness—earliness toleranceowi(récall Expression 5.14).

d® A0 i 50 S g andy® >0

ijm m> 1jm ijm
k )
dim = d¥ + ol it 51 <0ando' >0 (5.15)
d® otherwise

ijm>
It is important to notice that both relative and absoluternass and earliness factors
are very likely to depend on the trip rather than being gl@aahmeters. In this sense, all
factors are given in terms of the origimnd the destinationpthey are related to.
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Table 5.1: Summary of symbols

Description

trip performed by a drivem on dayk

set of alternative routes from origirio destinationjy known
by a driverm

a route identifier

a link identifier

travel time through a link

travel cost through a route

usual route for a drivermwhen travelling from origin to
destinationj

best route for a driverm when travelling from origin to
destinationj

desired arrival time for a drivan when travelling from ori-
gini to destinationj on dayk

chosen departure time for a driverwhen travelling from
origin i to destinationj on dayk

travel time experienced by a driver after travelling from
origini to destinationj on dayk

probability for choosing route

absolute delay experienced by a drivarafter travelling
from origini to destinationj on dayk

lateness tolerance factor, relative to travel time when a
drivermis travelling from origini to destinationj

perceived lateness of a driverafter travelling from origin

| to destinationj on dayk

threshold level that forces route switching

absolute minimum travel improvement necessary for route
switching

earliness tolerance factor, relative to travel time when a
drivermis travelling from origini to destination

perceived earliness of a driverafter travelling from origin
| to destinationj on dayk

absolute lateness tolerance factor, when a drivisrtravel-
ling from origini to destination

absolute earliness tolerance factor, when a drvés trav-
elling from origini to destination|

absolute perceived lateness of a driverafter travelling
from origini to destinationj on dayk

absolute perceived earliness of a driverafter travelling
from origini to destinationj on dayk

set of the natural numbers

set of the real numbers
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5.3.2 The first scenario

In the first scenario, drivers are expected to make everysaecvith respect to the
trip before they start the journey. Afterwards, diversians not allowed. It is also as-
sumed that no information is provided to individuals, neitbefore nor during the trip.
Therefore, decisions are based solely on their set of bdsddhe

Before going through plan specifications, it is worth to explsome basic conven-
tions. Plans are identified by a number, indicating the stenfllowed by consecutive
letters. They are presented in an order so as to ease th@atiptaof the decision-making
process and the group of drivers they are applicable to.Heosame reason plans are also
gathered in terms of the specific aspect of the decision rggkincess they are designed
to address. Itis important to notice that AgentSpeak(L¥yssilar convention as in the
Prolog language, namely variables start with capitals eéiconstants and predicates
begin with lower-case letters. Thus, as plans are pariiatgntiated, capitals are used to
indicate variable terms. The AgentSpeak(L) syntax is aldergled to allow for integer
constants, relational operators, and list notation to lee uss suggested in (MACHADO;
BORDINI, 2001; ROSSETTI; BORDINI; BAZZAN; BAMPI; LIU; VAN WLIET, 2002).
These simple extensions permits more clear specificatiinally, the symbot— is used
throughout the text to split a long line of textirypewr i t er font. This typographical
convention is adopted due to the limits imposed by the ledtraght margins of the page.

Plan 1.aStarting the dayPerceiving that a new day starts is an external stimulugtwh
is represented by the eveptoday(day), in Line 1. This perception causes the set of base
beliefs to be updated, and triggers a cognitive chain on ¢heday that starts.

01. +today(Day)

02. : triplnfo(Day, Purpose, Zoneps, Ti Mepy)
03. <- !planTrip(Zonepsy, TiNMey);
04. 'move( Zonegs, ZONnepg:).

If the driver has any motivation for a trip on a certainy, expressed by the context
in Line 2, it then commits to perform a course of actions teadipected to bring about
a desired state of affairs. The beltefplnfo(day, purposezongs,timeyr,) denotes the
mental state of the driver with respect to its reason for mgl trip. So, on the subject
day, owing to a givenpurpose an individual may need to perform a trip to destination
zongg:. The traveller is expected to arrivetahey, so that thepur posefor the trip can be
satisfied. If there is no reason for making a trip then, thenégeehaviour is not affected
at all. This happens when the agent either hasripdn f o entry in its set of base beliefs
or nodayterm of any of itsriplnfo entries unifies with the value held by thayterm
in today(day). In the case the driver has committed to make the trip, it kheet out
how to do so, by performing the achievement ggabhTrip(zongg;, timeyry), and later
on by trying to achieve the goal of moving from its currentdtion to its destination site,
identified by the achievement goahbvezonegyy, zongs) (see Line 4 of Plan 1.a).
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It is assumed that there is useful meaning for planning adrgongg; only if that is
not the agent’s curretbcation(zongyg). Also, the way a traveller carries out the cogni-
tive process to set out the trip depends orpissonalityp). Thus, according to the ba-
sic strategies presented in Section 5.p.tan be any ofrandomchoosyconservative
habitual}, meaning the driver will behave according to the model deffoeeach person-
ality. To differentiate between the habitual behaviougworally implemented in DRAC-
ULA and its extensions as proposed in this work, the notatiabituak,, andhabitual
are used to designate whether the driver is adopting an#bsot a relative lateness-
earliness tolerance window.

Trip is planned basically by means of choosing a route angbartigre time. However,
the strategy fohabitualcommuters is slightly different from the formers. While dam,
choosy, and conservative drivers select the path at firsttaamthe departure time, the
habitual drivers do exactly the contrary. This can be regresd as in Plans 1.b and 1.c,
as follows.

Plan 1.b Planning the trip After realising it is not at destination already, by way of
comparingzongg to zongsg; in Line 3, the driver seeks to achieve the goals of finding
a route tozongs; and a departure time to start the journey, in this order. Oweilsgl
notice that in Line 4 personality is set ¢hhoosy This means that only when the belief
personalitychoosy holds in the agent’s set of base beliefs this plan can beledtaom

the agent’s knowledge. Thus, the same plan is writteamd omandconservativelrivers

as the condition in Line 4 s replaced bypersonalityrandom and
personalityconservativg respectively. This sort of design allows one to specify agyn
behavioral strategies as it is possible to set out from bg&erous entities of a system.

01. +!'planTrip(Zonepst, Ti NMepy)

02. : location(Zonegy)

03. & (not(Zonegs = ZOnepgt))

04. & personality(choosy)

05. <- !chooseRout e(choosy, Zoneg,, Zoneps);

06. ' chooseDeparture(choosy, Zonegy, Zonepst, TiNMBpy).

Plan 1.cPlanning the trip for habitual drivers The only difference for planning a trip

between habitual drivers and former personalities is tderaas for whether to choose the
route or departure time first. As defined in Section 5.3.1adjthhal drivers set departure
prior to choosing a path.

01. +!'planTrip(Zonepst, Ti Meypy)
02. : location(Zonegy)

03. & (not(Zonegs = ZOnepst))
04. & personality(habitual)
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05. <- !chooseDeparture(habitual, Zoneg,, Zoneps, Tinmeyy),;
06. I chooseRout e( habi tual , Zonegy,, Zonepgt).

The achievement goathooseRoutig@ersonalityzongyg, zongs;) induces the driver
to find a way of selecting a path fromone,g to zongs:. The selected course of actions
depends on itpersonality as well. In addition, selecting a departure time to arrive a
zongs by timeyry, as meant bydhooseDe parturgersonalityzongrgzongst, timeary),
is understood as depending on mental calculation ratharahly on a qualitative assess-
ment.

The predicateoute(zongrg, ZONgs;, timee, [links]) is used to represent the paths a
driver recognises for going frormongyg to zongs. An agent has as many clauses of
such a kind as is the number of routes it is familiar with. Téerttimgte denotes the
expected travel time associated to the path, which is repted by the lisflinks| contain-
ing consecutive and adjacent segments of roads. For theofakadability and to ease
exchanging parameters among plans, a variable ternR,sayised to capture an instance
of the link list of route(zongg, ZoNGst, timate, [links]). So, wherR is instantiated, it is
assigned the content fifnks|.

The belief predicatéripRoutgzoneyg, zongs, [links)) is used to represent the par-
ticular itinerary chosen by the driver, so as it is able to entiie move fronzongg to
zongg. Thus, whenever a route is selected, the set of base bdiefgsdated and the
belieftripRouteis added to represent the driver’s selection.

Plan 1.d Choosing any route A random driver may have several applicable plans for
selecting a path as every route clause it knows, fromgg to zong, will generate an
instance for this plan. Thus, the selection functigf, as defined in Section 4.6, may
select any of them. To confirm the selection, an update toghefdase beliefs occurs
with the addition of theripRouteclause, in Line 3.

01. +!chooseRout e(random Zoneg;;, Zoneps:)
02. : route(Zonegy, ZONepgy, TiMBgee, R)
03. <- +tripRoute(Zonegy Zoneps, R).

The belief predicatexpectedTravel Tinfezonerg, zongs, time) is used to represent
the expected travel time fromongyg to zongs When no path is considered. In other
words, a driver may have an estimation of the necessary tmeath a certain destination
without considering any route, at a first glance.

Plan 1.eFinding out the best routeln the context part, the agent evaluates whether the
travel time for the route it is considering for selectionasver than the travel time it is
currently expecting to experience. In a first execution of stub-plan, before considering
any alternative, the driver has a “pessimistic behaviond sets a very high value for its
expected travel time (so as to set reasonable expectedditeesvhatever first attempt is
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made). The agent keeps making attempts at finding the bestlbguwecalling the plan in
Line 7. One must notice that the context part of the plan, &sie 4, will not be satisfied
once the best route has been found, thus finishing the recursi

01. +!chooseRout e(choosy, Zoneg;;, Zoneps:)

02. : route(Zonegys, ZONe€psy, TiMBgte, R)

03. & expectedTravel Ti me(Zonegrs, ZONe€pst, Ti MBExpected)
04. & (Tinmerte < Texpected)

05. <- +tripRoute(Zoneg, Zoneps, R);

06. +expect edTravel Ti me( Zonegys, ZONe€psy, Ti MBgye);
07. ' chooseRout e(choosy, Zonegr,, Zonepst).

Plan 1.f Keeping the instantiation for the best roufighis plan finally keeps the instantia-
tions of the appropriate parameters fapRoutewhen the recursion in Plan 1.e finishes.
Thus, when all attempts to satisfy the context part of Planfdil, the best route then
instantiated is the one to be chosen.

01. +!chooseRout e(choosy, Zoneg;;, Zonepg:)
02. : true <- true.

Plan 1.g Choosing the usual routeAs stipulated for the conservative behaviour (see
Section 5.3.1.2), each driver in the population is assignpteferred route fromongyg

to zongs:. The belief predicatasualRoutézoneq, zongs, [links]) is used to identify the
agent’s usual path within a given OD pair. The decision isiaple as setting the usual
path as the trip route, as in Line 3.

01. +!chooseRout e(conservative, Zonegy,, ZONEpst)
02. : usual Route(Zonegys, Zoneps:, R)
03. <- +tripRoute(Zonegy Zoneps, R).

Choosing a route option for habitual drivers demands sontldu considerations,
though. Both the threshold levgl and the absolute improvementseem to be rather
related to the trip, as presented in Section 5.3.1.4. Thassisthe case for the tolerance
factor €. Hence, all these parameters were considered to be bettetifield as terms
within the tripInfo belief predicate. So, all the information on the journey dwea
certaindayis memorised awiplnfo(day, purposezongg,timeyy, £,1n, 7). Yet another
important consideration is that habitual drivers choosér ttoutes on the perspective of
both the best and the usual path, so both should be identified.

Plan 1.hlIdentifying the best route by habitual driveridabitual drivers identify the best
route following the same recursive design of Plan 1.e, edfoehe fact that the personal-
ity is habitual. The addition of theéripRoutebelief in the agent’s knowledge base works
a sort of as a temporary container of the decision until a halce is made.
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01. +!chooseRout e( habitual, Zoneg,, Zoneps:)

02. : route(Zonegys, ZONnepsy, TiMBgte, R)

03. & expectedTravel Ti me(Zonegys, ZONe€pst, Ti MBExpected)
04. & (Tinepee < Ti MBExpected)

05. <- +tripRoute(Zonegy Zoneps, R);

06. +expect edTravel Ti me( Zonegys, ZONe€pst, Ti MBgye);
07. I chooseRout e( habi tual , Zonegy,, Zonepst).

Plan 1.i Assessing best route with respect to the absolute impravem@dfter evaluat-
ing max{n x %(ri(jﬂ), T} in Line 7, the agent decides whether the improvement is good
enough for a route switch, in Line 8, so as to keep the beseraud terminate recursion.

01. +!chooseRout e( habitual, Zoneg,, Zoneps:)

02. : triplnfo(Day, Purpose, Zoneps, TiNMEppy, <«
Epsil on, Eta, Tau)

03. & tripRoute(Zonegy, Zoneps:, Rast)

04. & route(Zonegrs, ZONepgy, TiMepse, Rast)

05. & usual Rout e(Zonegys, Zoneps:, Rys1)

06. & route(Zonegys, ZONnepsy, TiMBysy, Rusi)

07. & ((Eta * Timeys) < Tau)

08. & ((Tinmeysy - Tinegsy) > Tau)

09. <- true.

Plan 1.j Assessing best route with respect to the threshold lgveAs in Plan 1.i, this
plan evaluates the improvement expected, in Line 8, afteckihgmaxn x %(ri(jk%), T}
in Line 7, and decides to switch.

01. +!chooseRout e( habitual, Zoneg,, Zonep:)

02. : triplnfo(Day, Purpose, Zoneps, TiNMBppy, <«
Epsil on, Eta, Tau)

03. & tripRoute(Zonegys, Zoneps:, Rast)

04. & route(Zonegrs, ZONepgy, TiMepse, Rast)

05. & usual Rout e( Zonegys, ZOneps:, Rys1)

06. & route(Zonegrs, ZOnepgy, TiMBysy, Rusi)

07. & ((Eta * Timeys) >= Tau)

08. & ((Tinmeysy - Tinmegs) > (Eta * Tineys))

09. <- true.

Plan 1.k Choosing the usual routeln the case any improvement is to be discarded as
Plans 1.i and 1.j fails to instantiate, the habitual drivddrsose the usual route in the same
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way as conservative travellers (see Plan 1.g). This plam telsninates the recursion
started in Plan 1.h, as would Plan 1.i and Plan 1.j if eitheceaded.

01. +!chooseRout e( habitual, Zoneg.,, Zoneps:)
02. : usual Route(Zonegys, Zoneps:, R)
03. <- +tripRote(Zonegy, Zoneps:, R).

Plan 1.1 Choosing departure timeRandom, choosy, and conservative behaviours imple-
ment the same strategy for selecting departure time. Thedfiérence is that Line 1
should be rewritten with the corregersonalityterm. The predicatéripDeparture
(zongrg, zong, timeypy) is used to denote the agent intends to start its journey from
origin zongyg to destinatiorzongs; attimey pt.

01. +!chooseDeparture(random Zoneg,, ZONneps, TiMEyy)

02. : tripRoute(Zonegy, Zoneps;, R)

03. & route(Zonegys, ZOnepgy, TiMBgte, R)

04. <- +tripDeparture(Zonegy Zonepsy, (TiMey, - TiMBgre)).

As for habitual drivers, one should bear in mind that the sleaimaking process
on departure time is carried out prior to selecting the jeyrpath. Thus, Plans 1.h,
1., 1., and 1.k are evaluated after the agent has goneghr®lans 1.m and 1.n. As
it was originally proposed for this behaviour (see Sectidh®b4), a lateness tolerance
with respect to the travel time in the previous journey (ghactor) should be taken into
account, as well. This is assumed to be processed by the dsyrire mental calculation,
hence some intermediate parameters are only identified-oimesfly rather than stored in
bunches of other belief clauses.

Plan 1.mEvaluating scheduled delays already mentioned above, the tolerance fagtor
is associated to the trip and its purpose rather than beingjdered to be an independent
parameter. Hence s retrieved from within theriplnfo belief clause. It is important to
notice that departure, path, and travel time of the prevjoushey are given within belief
predicatesripRoute route, andtripDeparture in Lines 3, 4, and 5. The absolute delay
0 is represented by the predicaerivalCost(zongs, timeyry), in Line 6, with respect

to the actual arrival atongg; the last time a trip was executed to that destination. The
traveller evaluates whether the perceived délay significant, in Line 7, and updates the
tripDe parturefor next journey accordingly.

01. +!chooseDeparture(habitual, Zoneg,, Zoneps, Timey)

02. : triplnfo(Day, Purpose, Zoneps, TiNMBppy, <«
Epsilon, Eta, Tau)

03. & tripRoute(Zonegy, Zoneps, R)

04. & route(Zonegys, ZOnepg, TiMBgte, R)
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05. & tripDeparture(Zonegy, ZOnepsy, TiMepy)

06. & arrival Cost(Zonegy, Tinmepy)

07. & ((Tinmepyy - (Epsilon * Timege)) > 0.0)

08. <- +tripDeparture(Zonegy, Zonepss, (TimMepy - «
(Epsilon * Tinmeg))) .

Plan 1.nKeeping previous departure timé the case the perceived delay is considered
to be irrelevant, as Line 7 of Plan 1.m fails and the plan iscoosidered to be applicable,
the driver then keeps the previous departure choice.

01. +!chooseDeparture(habitual, Zonegy,, Zoneps, TinMeay)
02. : true <- true.

The same approach used for the original habitual behavsoapplied to the exten-
sions proposed in Section 5.3.1.4, namely the habituaMi@awith a relative lateness—
earliness tolerance window and the one with an absolutedate-earliness tolerance win-
dow. So,¢, A, 1, andv factors are to be included into thaplinfo predicate associ-
ated to the respective behaviodriplnfo(day, purposezongg,timey, £,A,n,T) and
tripInfo(day, purposezongg,timeyy, I, Vv, 11, T) denotes the trip information for the rel-
ative and absolute window-based behaviours, respectively

Plan 1.0 Adjusting departure according to relative latenesshe belief given by the
predicatearrivalCost(zongsg, timeyly) serves as an indicator of whether the driver is late
or early, asd < 0 ord > 0. This is tested in Line 7, whereas the perceived latefass
evaluated in Line 8. In the case of being late, which meanstiver has arrived beyond
the top boundary of the relative lateness-earliness wintden departure is adjusted.

01. +!chooseDeparture(habitual ;y, Zoneg,, Zonepg, TiNMeyy)

02. : triplnfo(Day, Purpose, Zoneps, TiNMBppy, <«
Epsi | on, Lanbda, Eta, Tau)

03. & tripRoute(Zonegy, Zoneps;, R)

04. & route(Zonegys, ZONnepgy, TiMBgee, R)

05. & tripDeparture(Zonegy, ZOnepss, TiMepyy)

06. & arrival Cost(Zonegy, Tinmepy)

07. & (Tinmepy < 0.0)

08. & (((abs(Tinmepy)) - (Epsilon * Tinmege)) > 0.0)

09. <- +tripDeparture(Zonegy Zoneps, (TimMepy - «

((abs(Timepy)) - (Epsilon * Tinege))).

Plan 1.p Adjusting departure according to relative earlineds the case of being early,
as evaluated in Line 7, the agent checks whe@her significant and it is worth to change
departure time, in Line 8.



111

01. +!chooseDeparture(habitual ;y, Zoneg,s, Zonepg, TiMeyy)
02. : triplnfo(Day, Purpose, Zoneps, TiNMEppy, <«
Epsi | on, Lanbda, Eta, Tau)

03. & tripRoute(Zonegy, Zoneps, R)

04. & route(Zonegys, ZONepgy, TiMBgee, R)

05. & tripDeparture(Zonegy Zoneps, TiMepyy)

06. & arrival Cost(Zonegy, Tinmepy)

07. & (Tinmepy; > 0.0)

08. & ((Tinepy - (Lanbda * Timege)) > 0.0 )

09. <- +tripDeparture(Zonegy, Zoneps,, (TimMep, +
(Timepyy - (Lanmbda * Tinege)))).

Plan 1.9 Adjusting departure according to absolute lateness in Plans 1.0 and 1.p, the
value of9d is used to evaluate, in Line 7, whether the driver is late dye@n the basis of
an absolute top lateness threshold, the driver considesghef’ is tolerable, in Line 8.

01. +!chooseDeparture(habitual .5, Zoneg,s, Zonepg, TiMeyy)

02. : triplnfo(Day, Purpose, Zoneps, TiNMEpy, <«
lota, Nu, Eta, Tau)

03. & tripRoute(Zonegy, Zoneps:, R)

04. & route(Zonegys, ZOnepgy, TiMBgee, R)

05. & tripDeparture(Zonegy, ZOnepsy, TiMepy)

06. & arrival Cost(Zonegy, Tinmepy)

07. & (Tinmepy < 0.0)

08. & (((abs(Tinepy)) - lota) > 0.0)

09. <- +tripDeparture(Zonegy, Zoneps, (TimMepy - «

((abs(Tinmepy)) - lota))).

Plan 1.r Adjusting departure according to absolute earlineg®r early arrivals, as the
agent realise® > 0 in Line 7, the perceived earliness is evaluated with rdsgethe
bottom threshold in Line 8, and the departure time is adjusted accordingly.

01. +!chooseDeparture(habitual ,s, Zoneg,s, Zonepg, TiMeyy)

02. : triplnfo(Day, Purpose, Zonepgs, Tine,y, lota, <
Nu, Eta, Tau)

03. & tripRoute(Zonegy, Zoneps;, R)

04. & route(Zonegys, ZONepgy, TiMBgee, R)

05. & tripDeparture(Zonegy, ZOnepsy, TiMepyy)

06. & arrival Cost(Zonegy, Tinmepy)

07. & (Tinmepy; > 0.0)
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08. & ((Tinmepy - Nu) > 0.0)
09. <- +tripDeparture(Zonegy Zonepsy, (Timep, + «
(Tl rreDly - NU) )) .

If the arrival time suits either the relative or the absolateness-earliness tolerance
window, as neither Plans 1.0 and 1.p nor Plans 1.q and 1.roasdered to be applica-
ble, the driver agent keeps its previous departure choités decision is confirmed by
means of a plan similar to Plan 1.n. The terimadbitual,, andhabituak, should be used
accordingly, though.

After planing the trip, by means of selecting a route and adepe time, the driver
seeks to reach destination, as denoted by the achievemahingovezone,g, zongs;)
in Line 4 of Plan 1.a. The beligimeNowtime) is used to represent the notion of in-
stant. Therefore, as time goes by the knowledge base of andundl is constantly being
updated as for such a belief.

Plan 1.sMoving to destination The agent pursues this plan until time for departure is
perceived and the context part, as conditioned in Line Jtisfeed.

01. +!nove(Zonegys, ZONepst)

02. : tripRoute(Zonegy, Zoneps, R)

03. & tripDeparture(Zonegy, ZOnepss, TiMepyy)
04. & tinmeNow Tine)

05. & (Tinme = Timepy)

06. <- noveAl ong(R).

Plan 1.t Ending day trip Reaching destination is perceived as an external eventlaym
of sensing the new current location, as given in Line 1. Thestiter then checks the time
(the instant of arrival) by performing the test gotihfeNowtime) in Line 5. As a result,
botharrivalCost(zongs; timeyy) and path conditions as given iaute(zongg, Zongs,
timeyte, [links]) are updated so as to reflect the driver’'s day experience. ingdsnotice
thetripInfois in its simplest form, which means this plan is only apgsiegfor random,
choosy, and conservative drivers. Line 2 should then beittewrfor habitual drivers,
though.

01. +l ocation(Zonepst)

02. : triplnfo(Day, Purpose, Zoneps, TiNMeyy)

03. & tripRoute(Zonegy, Zoneps:, R)

04. & tripDeparture(Zonegy, ZOnepsy, TiMepyy)

05. <- ?tinmeNow Ti nepg) ;

06. +arrival Cost (Zonepst, (Timepse - Ti MBpy) )

07. +rout e( Zonegrs, ZONepgy, (TiMepse - TiMepp), R).
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5.3.3 Communication and exogenous information

Before going on with further plan specifications, it is imiamt to make some consid-
erations on communication abilities in the multi-agenfficaystem. Inter-agent commu-
nication is accomplished through message passing in theaqipadopted in this thesis.
Sending a message is assumed to be a basic action, whereigggea message causes,
as with perception, the addition of a belief entry in the dgeset of base beliefs. Re-
ceiving a message may in turn trigger a plan execution. Som@lanner applications
on the Internet are examples of information sources frontlwkiavellers can enhance
knowledge on the current prevailing conditions of the nekwo

The communication mechanisms is assumed to be as followsnsi@ that
b(t,...,tn) is a belief predicate as presented in Definition 1 (see Seeti6). Thus,
communicatéag, “b(ts,...,tn)”), requestag,“b(ty,...,tn)”), and broadcast“b(tl,...,
tn)”) are special cases of basic action predicates. The &gris used to identify the
agent to which the message is addressed, whet®gs." . t,)” represents the proposi-
tional content of the message. Toemmunicateredicate is used to serd) the belief
b(t,...,tn). Therequestpredicate asks ageag for b(ty,...,ty). In this case, it is as-
sumed thaag (as an information system, for instance) presents a “bdeet/doehaviour
and always replies to the request made (as by a driver, ftaring). There is no agent
addressed in the broadcast predicate, though. In such atbassntent is sent to all of
the agents in the multi-agent system.

To illustrate such a communication mechanismaleto be an ATIS agent that sends
a messagé(t) to a traveller, which isa;. Then,a; executecommunicatéa2,“b(t)”)

(or broadcast“b(t)”) to all drivers in the system). Whes receives the message, an
event+b(t) occurs and(t) is added to the set of its base beliefs, as with perception. So
ap cannot distinguish whethekb(t) is a simple perception or a message passed through
communication. In such a situation, it is also assumed tiabelief revision function
checks whethea; is trustworthy. Ifa; is considered to be trustworthy, besides adding
b(t) to the belief base, the function adds another belief préglidaformedas,b(t)),
indicating who has informed, aboutb(t). Thus, it is possible to have plans associated
both to the content of the message and to the informing ageonsidering the sender is
relevant.

With respect to interactive information sources, two magjaups of drivers are iden-
tified. The first group is formed of drivers who are eligibleuge the information system,
either because they are subscribers or because they appeduo receive the informa-
tion in an interactive way. Those drivers who are not usensfofmation systems are
gathered into the second group. In order to consider suclaorein the model, the be-
lief predicategpreTriplnfoUsef) andenRoutelnfoUsé) are used to identify whether
drivers are users of pre-trip and en-route informationesyst respectively.

However, saying whether the driver is user or non-user airmétion systems is not
meaningful enough to guarantee that the information pexyiill be considered in the
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decision-making process. In order to make this criteriomglete, the belief predicate
acceptanceWillingneégalue) is used to represent whether the driver is willing to ac-
cept and to use the information provided. The temueis a random number used to
capture the probability of a driver to accept an advice, Whitay be associated to its
personality in some way. A combination of both being usemébrimation sources and
willingness of using the content provided can be the way tdwacessing contemporary
ATIS technologies.

On the other hand, non-interactive information sourcesaareed at reaching most
users. Contrary to interactive systems, as drivers are@alohake a request in order to get
information, communication happens in one direction odypod examples of this kind
of sources are the mass media, as hewspapers, radio, asitaleviraffic signs and re-
cently VMS also have the ability to reach most drivers triwglthroughout the network.
In the commuter world herein proposed, information progigemapped to either link or
route states. In practical terms, drivers will associatedbntent of information to pos-
sible states for links and routes. For example, whenevetief bimkStatélink, state is
updated, an event is generated to indicate that a messagedraseceived; in this case it
is just a reminder that sontmk has a certain prevailingtate not a response to a request
previously made. As mentioned before, it is thief revision functiorthat checks the
trustworthiness of the information source, and an everi@type+informedag, b(t))
is also posted to the base beliefs. At that moment, the dmasr either accept or ignore
it, on the basis on its acceptance willingness.

5.3.4 The second scenario

In the second scenario drivers are allowed to access infammaefore starting a
trip, which is expected to improve the decision-making pssc No en-route diversion is
possible, though. It is also assumed that users of exogenfmumation cannot interact
with sources, and content may be regarded to either link wterstates. In addition to
the predicatdinkStatélink,state and in order to distinguish between qualitative and
quantitative notions of routes, a predicabeiteStaté[links|, state is used to denote that
a given pathlinkg| is found to be in a certain prevalesttate Hence whenever a driver
receives information prior to starting a journey, it may sioler the option of avoiding the
corresponding path on the basis of its acceptance willisgine

Plan 2.aUsing information on link stateConsidering the current state of a certhnk is
found to be “congested” and that it has been broadcast, aatialStat€link, congestedl
is posted to a pre-trip information user’s set of base belilef such a situation the driver
may consider the chance of selecting the best path it knaws fong,g to zong; to
avoid the warned link. Then, finding the best route follonessghme iteration as previously
suggested in the first scenario. The agent tries to figure bather thdink warned is in
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[links], so as to avoid it (Lines 3 and 4). The prediciate(see Line 4) is a function that
evaluates tarueif L is in setR and tofalseotherwise. This plan could be valid for any
personality as represented by the variable term in Line 1.

01. +!chooseRout e(Personality, Zoneg,, Zoneps:)

02. : route(Zonegys, ZONe€psy, TiMBgte, R)

03. & linkState(Link, congested)

04. & (not(in(Link, R))

05. & expectedTravel Ti me(Zonegrs, ZONe€pst, Ti MBExpected)
06. & (Tinmerte < Ti MBExpected)

07. & preTriplnfoUser()

08. & acceptanceW !l lingness(V) & (V <= threshol d)
09. <- +tripRoute(Zonegy Zoneps, R);

10. +expect edTravel Ti me( Zonegys, ZONe€pst, Ti MBgye);
11. I chooseRout e(Personal ity, Zonegy, Zonepst).

Plan 2.b Keeping the best alternative with regard to the warned.litdsing the same
approach as in Plan 1.f, the best route as storédpiRouteis confirmed, if any is found
to not passing through the warnkak.

01. +!chooseRoute(Personality, Zoneg.,, Zoneps)

02. : preTriplnfoUser()

03. & acceptanceW !l lingness(V) & (V <= threshol d)
04. <- true.

Plan 2.cSelecting the usual route instealth the case of lacking a better alternative, the
option of using the usual path is adopted in a plan similadao B.g.

01. +!chooseRout e(Personality, Zoneg,, Zoneps:)

02. : preTriplnfoUser()

03. & acceptanceWl!lingness(V) & (V <= threshol d)
04. & usual Rout e( Zonegys, Zoneps:, R)

05. <- +tripRoute(Zonegy Zoneps:, R).

Plan 2.d Using information on route statén this case, the information broadcast causes
routeStat€[links|, congestegito be added to the agent’s base beliefs. The only difference
from Plan 2.a is that routes are evaluated with respect tamedaoute, therefore having

a different condition in the context part as in Lines 3 and 4.

1The function predicati verifies whethet. "R # 0.
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01. +!chooseRout e(Personality, Zoneg,, Zoneps:)

02. : route(Zonegys, ZONne€pgsy, TiMBgte, R)

03. & routeState(Ryarmed, CoONngest ed)

04. & (not (R = Ryarned))

05. & expectedTravel Ti me(Zonegrs, ZONe€pst, Ti MBExpected)
06. & (Tinmerte < Ti MBExpected)

07. & preTriplnfoUser()

08. & acceptanceWl!llingness(V) & (V <= threshol d)
09. <- +tripRoute(Zonegy Zoneps, R);

10. +expect edTravel Ti me( Zonegrs, ZONe€pst, Ti MBgye);
11. I chooseRout e(Personal ity, Zonegy, Zonepst).

Plans 2.b and 2.c are used in the same way to confirm the béstvihtrespect the
the route information provided (if any is found) and the sat of the usual choice if
no alternative is available, respectively. In the case afigp@reTriplnfoUserand not
willing to use the information provided, the agent may adtgphormal decision-making
strategy as defined for its corresponding personality model

5.3.5 The third scenario

In the third scenario, drivers can receive information botior to starting (on the
basis of what has been discussed for the second scenariajuaimg) the course of a
journey. VMS and DRGS are examples of exogenous sourcesdhabe used during
the trip. In addition drivers can also interact with the pdar as it is allowed to ask for
advice, as well. Being able to divert original route choicedsume the journey through
an alternative path would imply that the BDI driver was abl@lay its cognitive abilities
within the microscopic simulation of the movement, not anlyrip-planing time.

Contrary to what has been assumed in the two previous sosn#re formulation for
the basic action predicateoveAlongroute) should be updated tmoveAlonglink). Such
an adaptation is important so as to allow for representiagribvement on a link-by-link
basis.

Every time themoveAlongaction is executed, the driver is able to register its experi
ence through that link, mainly on the basis of the travel observed (such as travel time,
delays, and so on). After performing the journey through,lithe set of base beliefs
is updated through the perception of the evehdcation(link), as a result of such an ac-
tion. Then, the driver is positioned at the upstream nodaehextlink getting ready to
move again to its downstream node, and so on, so forth. Inathys drivers are able to
re-evaluate the quality of the trip during the journey.

Plan 3.aStarting the trip At departure time, the driver enters the network to efiety
execute the trip planned. Bottong:y andzongs; are said to be dummy links in the
sense they are used just to connect origin and destinatitdmetoetwork, respectively.
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Therefore, drivers will actually move only through thieks] in the pathR?. As the driver
sets its location to the first link of the path, in Line 8, thekk in the tail of the list are
regarded as the remaining path for trip completion.

01. +!nove(Zonegys, ZONepst)

02. : tripRoute(Zonegy Zoneps, R)

03. & tripDeparture(Zonegy, ZOnepsy, TiMepy)
04. & timeNow Tine)

05. & (Tinme = Timepy)

06. & (R = [L]|Links])

07. <- +tripRoute(Zonegy Zoneps;, Links);
08. noveAl ong(L).

The Prolog notation is used to manipulate lists. Thus, traf@taR = [L|Linkd in the
context part of Plan 3.a, in Line 6, is used to instantiatevireablesL. andLinks which
are the first and the remaining linksRf respectively. Hence, thieipRouteis updated in
Line 7. This is done to represent the fact that drivers keegmaon on the links to come,
whereas passed links are left behind.

Plan 3.b Moving through the remaining links of the routé&/henever the driver updates
its current location to the next link within the path to gogftectively moves as the basic
actionmoveAlongs invoked in Line 5. This action causes an updating to thenége
location to the next link irLinks, which is again perceived adocation(L) is added to its
base beliefs, after the action is terminated. In this wayndividual keeps moving until
reaching destination. The remaining path is also updatéderagent’s base beliefs, in
Line 4.

01. +location(L)

02. : tripRoute(Zopyg Zpst, R

03. & (R = [L|Links])

04. <- +tripRoute(Zorg Zpst, Links);
05. nmoveAl ong(L).

Plan 3.cReaching destinationAfter performing all links within the path, the agent gets
to the end of the journey. This is identified when moving tlgtothe last link inR results

in positioning the agent in the connector lidlbnegs;, thus updating the base beliefs by
+location(Zonegyst).

01. +l ocation(Zonepst)
02. : tripRoute(Zonegy, Zoneps:, R)
03. <- true.

2It is important to remember th& = [links| has been adopted to ease representation.
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Such a cognitive representation of movent in this third adenis essential so that
drivers can consider diversions as exogenous informagipnavided.

Plan 3.d Making a request during the course of a triast reaching a new link within the
trip path, the driver may consider to ask for an aid (to DR@®jristance). In this case
an alternative route from the agent’s current locationddiital destination is considered.
Such information is provided by the system under request ftee driver, as represented
in Line 6 by a basic action invocation. Then the agent expeatsceive from the source
the clausesysRoutgorigin, destination[links|), which is an alternative suggestion from
the information system.

01. +location(L)

02. : tripRoute(Zonegy, Zoneps;, R)

03. & (R = [L|Links])

04. & enRoutel nfoUser ()

05. & acceptanceWl!lingness(V) & (V <= threshol d)
06. <- request(atis, "sysRoute(L, Zoneps;, Rsys)");
07. +tri pRout e( Zonegys, ZOnepg;, Links);

08. noveAl ong(L).

Plan 3.e Accepting the information requested When the answer arrives, as
+sysRoutéorigin, destination[links]) is perceived, the driver may consider either to ac-
cept it or to retain its original choice. However, accepting suggested itinerary depends
very much on whether it is still meaningful for use. Othemyig is automatically dis-
carded, as the context part of the plan will not be satisfiedother words, this plan is
only applicable if the driver is still moving through the lif..

01. +sysRoute(L, Zoneps:, Rsys)

02. : tripRoute(Zonegy, Zoneps, R)

03. & location(L)

04. & enRout el nfoUser ()

05. & acceptanceWl!lingness(V) & (V <= threshol d)
06. <- +tripRoute(Zonegy Zpst, Rays) -

Notice that the remaining path is updated with the itinesarggested, which is suffi-
cient to guarantee the driver will update its future locatacordingly when the current
execution of actiomoveAlongdlink) terminates.

Plan 3.flgnoring the information requestedhe plan to ignore the information provided
is as simple as doing nothing.

01. +sysRoute(L, Zoneps, Rsys)
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02. : enRoutel nfoUser()
03. & acceptanceWl!llingness(V) & (V > threshol d)
04. <- true.

5.4 Summary

Modelling and simulating traffic and transportation systetan undoubtedly profit
from MAS-based methodologies. The abstraction offered bitiragent approaches al-
lows for representing most entities and processes in thicapipn domain in a straight-
forward manner. Most important, it preserves hierarchamaifigurations and interac-
tions. Its ability to mimic cognitive reasoning and knowgedrepresentation gives tradi-
tional structures of drivers an ideal framework to expentrend investigate humanlike
behaviour. Moreover, as the number of autonomous andigeel artifacts used to inter-
act within the contemporary traffic systems increasesjmpserative to extend traditional
modelling and simulating methodologies to contemplatenthe performance measures
brought about by ITS. This way, theory should rely on an adégmeans to implement,
to validate, and to deploy such advanced technologies.

Endowing the driver structure with a BDI reasoning kernet fexcilitated the rep-
resentation of knowledge and cognition. Three commutenates were devised by
means of using AgentSpeak(L) as an specification tool, agestgd by Machado and
Bordini (2001) and following the same modelling approadhafly presented in (ROS-
SETTI; BORDINI; BAZZAN; BAMPI; LIU; VAN VLIET, 2002; ROSSETTI; LIU; CY-
BIS; BAMPI, 2002). The scenarios are intended to cover ifié aspects of contem-
porary traffic systems, mainly with regard to human behavand its interaction with
advanced technologies. The methodology seems to be flexildepport the represen-
tation of different driver profiles and decision-makingaségies within several personal-
ities. The predicate logics used in the BDI architecturaslinowledge representation
closer to humanlike cognition. Nonetheless, the plansemtesl in this chapter do not
represent a unique design alternative, but rather are osgéeihhonstrate the potential of
AgentSpeak(L) to represent and to specify the complexayiginherent in real systems,
such as the traffic and transportation domain. In additignurpaose-built interpreter inte-
grated within a simulation framework, could turn AgentSgéainto a powerful API for
developing and testing different behavioural approacbeBItS assessment.
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6 MADAM-+DRACULA: A FRAMEWORK TO ASSESS
VARIABLE DEMAND

6.1 Overview

The MADAM (Multi-AgentDemAnd M odel) model is devised on the basis of the
cognitive methodological approach presented in the pusvahapter. Starting from the
perspective of seeing contemporary traffic systems anddél®logies as a multi-agent
world, drivers are represented in terms of cognitive agenkss abstraction is the rely-
ing approach used to build a population of BDI commuter asgyehich are capable of
making decisions on the basis of mental attitudes such s&ffedesires, and intentions.
Then, travels are generated as the result of decisions nsamenghich route to take and
what time to depart.

In order to demonstrate the methodological approach stegesthis thesis, MADAM
was integrated into the microscopic simulation environh@nDRACULA (Dynamic
Route AssignmentCombiningUserL earning and microsimiltion). This way the BDI
commuters can perform their trips by means of carrying oeir fourneys through the
selected path on a vehicle-by-vehicle basis. Such a mioppssimulated environment
allows individuals to evaluate the quality of their decisaday after day. Some experi-
ments were designed on the basis of the first and the secomargxsespecified in AgentS-
peak(L) and simulated in the MADAMDRACULA framework. Aggregate travel time
is the main performance measure used in the discussionsofeged results.

6.2 The DRACULA model

DRACULA is a framework in which special emphasis is given e microscopic
simulation of individual trip makers and individual vehasl This environment comprises
basically two main models: the demand and the supply. Bottheih are based on a
microscopic simulation approach. In the demand modeletiens are individually repre-
sented, and demand is predicted from a full population oémid! drivers. In the supply
model, movement is simulated throughout the network on #sgshof individual vehicles
that follow their chosen routes toward their desired desitom.
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6.2.1 The within-day decision-making and day-to-day dynancs

The integration of demand and supply gives rise to the mamgses in DRACULA,
namely the within—day decision—making process and thetdaglay dynamics. These are
two important concepts that deserve special attention idatiag traffic systems with
regard to users’ behaviour.

The within-day formulation focuses on the travel choiceslenly individuals. These
choices are made with regard to each specific journey to tiaee @t a given time on a
given day. All trip preferences, such as travel goals angpqae, travel needs, and other
traveller parameters, such as perceptions, behaviourdéreies, and cognitive abilities
that influence the decision-making process are reflectitbeo$tate of those variables at
the instant the choice is being undertaken. The dynamicutation, on the other hand,
is concerned with modelling how the state of the network glearfrom one day to the
other and evolves over time. In addition, the spatial kndg&eof a driver is constantly
evolving in response to travel made throughout the netwbigure 6.1 roughly depicts
the DRACULA framework on the basis of the concepts menticaigalve. Such a struc-
ture has been used as an attempt at improving the repraserdad simulation of the
complexity and the uncertainty inherent in traffic domains.

smmmm=m=mmmmeeee day-to-day dynamics =~ -~ ===

e within-day dynamics -

(DEMAND) (SUPPLY)

for each drivers launched

individual driver trough the
network

microscopic traffic
simulation model

departure time
route choice

learning model K———————costs perceived

Figure 6.1: DRACULA: an example of demand—supply models.

6.2.2 The structure of DRACULA

The DRACULA basic structure, as presented in Figure 6.1 eapldwn up into sub-
models, which are oriented to specific tasks within the satoh process. Figure 6.2
illustrates the basic DRACULA schema, and a detailed exgtian of the simulation
process can be encountered elsewhere (LIU; VAN VLIET; WANGI, 1995; LIU, 2001;
LIU; VAN VLIET; WATLING, 1999; WATLING, 1995).

Roughly, travellers are individually represented in dechaile where daily trip pa-
rameters are set up. Departure time and route choices are amthe basis of both
past travel cost experiences and perceived knowledge afdtweork conditions. Con-
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Demand Generation learning
generetes demand from population ~ K—— costs perceived
of potential drivers (i=i+1) onday '

l

Departure Time Choice
sets departure time for each driver
onday 'i'

l

Route Choice
sets route option for each driver
onday i

Supply Variability Traffic Loading
sets environment ——| performs microscopic simulation
conditions on day ‘i of movement on day ‘i'

terminate
simulation?

yes

end of simulation

Figure 6.2: The basic structure of DRACULA framework.

trary to models based on a fixed matrix approach, the demage giredicts the level
of individual demand for a dal from a full population of potential drivers (LIU; VAN
VLIET; WATLING, 1995). In the supply model, on the other hanahicles are indi-
vidually moved throughout the network. They are launchet time network and follow
drivers’ chosen routes according to both car-following &re-changing rules. The re-
sulting travel conditions for the subject d&yand costs experienced by drivers are then
re-entered into their individual knowledge basis. Such aadyic knowledge will affect
the demand model for the next period, that is #ay 1. This process continues for a
pre-specified number of days before simulation is termahate

After each journey drivers make use of the experienced aisieged from each link
performed along the chosen route to update their informadimout the network condi-
tions. This is the way individuals’ spatial knowledge is ntained and it can be seen as
the learning mechanism associated to each driver stryatlnieh is discussed later on.
A supply variability module ensures the stochastic natdifta® environment, providing
different perceptions of traffic conditions on each day aher simulation period. It is
also important to mention that route choices are taken poitine journey, which means
that drivers will keep their chosen routes to their destomest and will not make en-route
diversion in order to avoid either any incident or any acotdevhich may compromise
the expected journey time. Hence, once drivers leave thigms they are not able to
change their paths within the journey. Nonetheless, dyoamite choice and supplying
drivers with route advice during the journey are interggtiapabilities to be added to the
DRACULA model.
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6.2.3 The learning and decision-making processes

Historical costs are used to build a knowledge basis, whatpddrivers at drawing an
expectation for the network state so that they can use it ppoe their decision-making
process. There are a number of ways cost can be referreddan #me commuter world
it is basically regarded as travel time. In DRACULA, the &btime from each link used
along the chosen path is recorded for future considerafitims can be done simply by
keeping only the last experience, or by providing driverthvéd memory capacity for
computing the average travel time over a pre-specified nuofisays.

There are basically two ways to assign departure time choiBlRACULA, as it is
implemented so far (LIU; VAN VLIET; WATLING, 1999). Neverdless, the system is
open to deal with departure time issues in a number of diftesays. The first and sim-
plest method is to randomly assign a desired departure timesath potential driver in the
modelled population. When drivers choose to travel on aseday, they will depart at
that desired departure time independently of route chaickeamy previous experiences.
The departure time profile could be flat or distributed acemydo some user-specified
model. The second method incorporated into DRACULA, andequiore complex, im-
plements the choice in response to travellers’ experiefités is the model detailed in
Section 5.3.1.4. Departure time is chosen prior to evergn@yion the basis of both trav-
ellers’ preferred arrival time and previous experiencess@en before, drivers will try to
adjust next departure every time arrival is beyond a scleeddlay. However, the model
completely disregards early arrivals.

As for the route choice, one model currently implemented RACGULA is based
on the works reported in (MAHMASSANI; JAYAKRISHNAN, 1991;BN-AKIVA; DE
PALMA; KANAROGLOU, 1986), and assumes a ‘bounded rationadice’ (SIMON,
1956; MAHMASSANI; JAYAKRISHNAN, 1991) (this model was im@mented as the
habitual behaviour, as described in Section 5.3.1.4).

6.3 The MADAM Model

MADAM is an agent-based model aimed at representing vditiaim traffic demand
by means of a population of driver agents. This approackgean an extension to the
DRACULA framework, as initially proposed in (ROSSETTI; BAM, LIU; VAN VLIET;
CYBIS, 2000b), to support the microscopic simulation oftitafic environment.

Rather than building demand through centralised procedtirat assign values to
global parameters of data structures, MADAM allows for agtmous behaviour and
decision-making on the basis of individual preferencesmBxed results from a popu-
lation of traveller agents with their own profile and behavad model. In this work,
each individual is implemented according to the architecfwoposed in Section 5.2.1. A
BDI model drives the cognitive behaviour used in choosinggdieire time and trip route,
whereas movementis performed by means of a reactive steudthis model is specially
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oriented to representing the stochastic nature of travekahel, and is assumed to coexist
within a multi-agent environment. Hence, social abilitydanulti-agent interaction are
two major features of the model.

The original schema of DRACULA (see Figure 6.2) can be adhpt® the schema
presented in Figure 6.3 to support the MADAM approach.

MAS-based Demand
ITS results from decisions made by driver learning

technologies to aid K— agents as to which route to take and K—— costs perceived
travellers what time to depart on day 'i'

(this is a decentralised process)

Supply Variability Traffic Loading
sets environment —— performs microscopic simulation
conditions on day 'i' of movement on day ‘i'

no

terminate
simulation?

yes

end of simulation

Figure 6.3: The extended DRACULA schema.

At each simulation iteration, demand is given rise as BDehs make their choices
on the basis of their individual trip preferences. Departiime and route are assigned
on individual basis by means of a cognitive procedure caduoigt by each member of the
population. At traffic loading, drivers are launched thrbagt the network to perform
their trips along chosen paths starting at desired deationes. A reactive behaviour
drives the movement on the basis of car-following and lameaging predefined rules.
As individuals execute their journeys, cost and other imition from the environment
are perceived through sensing and are used to enrich driméernal model of the world
(represented in BDI agents by means of a set of base bel@ts)trary to drivers, that
have restrict access to the whole world, the multi-agentesysllows for the presence
of ITS agentsas well. The ITS agent is the abstraction used to represktaciinolo-
gies available within Intelligent Transportation Systesisch as ATIS. Depending on its
purpose, an ITS agent may possess a considerably broad ofdatiel world. This can
therefore be used to anticipate updated information on ystes state to aid drivers’
decision-making. Conceptually, such an interaction coake place both prior and dur-
ing the journey.

6.4 MADAM +-DRACULA: the simulation framework

In order to simulate and test the approach proposed in taghMADAM was inte-
grated into the DRACULA framework. It replaces the formem@md side as depicted in
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Figure 6.4: MADAM+DRACULA simulation framework.

the conceptual structure of Figure 6.4.

Bothdemandandsupplyare originally implemented as stand-alone facilities twem-
municate to one another via file exchange. & Initialisation module synthesises the
population for the experiment from &D matrixand different alternatives of paths are
assigned to each driver from a list of possiBleutesor each origin and destination pair.
The initial set of base beliefs is generated in the formahefJAM BDI kernel for each
individual in the population. Thénput MAfile gathers drivers’ decisions on route and
departure time, so that they can be launched onto the netageérform their journeys at
the departure time selected. Such decisions may have bigmiced by the information
provided by aratis agentthat keeps a global model of the traffic environment coaditi
On the other hand, th@utput MAfile returns the travel costs experienced by each driver
in terms of realised travel time. The perceptions gatheugohd the course of the journey
simulated in DRACULA are used in the updating of the basesbskts. On the follow-
ing day, drivers will rely on their updated beliefs to makeid®mns all over again. This
process is repeated for a specified number of days beforéntiéasion is terminated.

The simulation framework is implemented in C/C++ programgnianguages, fol-
lowing the same development strategy as adopted for DRACWHd@wever, a different
strategy was adopted in the development of the cognitiverlaf/the driver agent, which
is implemented in the Java language. That was necessaryeasito base the JAM BDI
kernel that drives the cognitive abilities of motorists.

6.5 Experiments and Result Analysis

Some experiments were carried out in order to demonstratend#thodological ap-
proach proposed in this thesis. A small network within thieurban area was selected
for this purpose. The network topology has 54 links (roadgrsmts), which are con-
nected through 14 junctions. Most road junctions follow @ity regime whereas two
of which are controlled by means of traffic signals. The neknaescription file is pre-
sented in Appendix B. A snapshot of the network being sinedlah the DRACULA



126

Figure 6.5: A snapshot of the Otley network.

environment is presented in Figure 6.5, whereas a scheragtiesentation is depicted in
Figure 6.6 containing node (junctions and zones) identiioanumbers.

Demand for travel results from the decision-making propestormed by BDI driver
agents in the population of commuters. The population ivdéfrom the total number of
trips described in an OD matrix, considering each trip as\edrFor this work, the total
number of drivers from the selected OD matrix is 2323. Trigdridbbutions among OD
pairs within the network are detailed in Appendix A where @ matrix description file
is presented. Due to the lack of full integration of both dathand supply models within
MADAM +DRACULA framework, only the first and second scenarios aresitered in
the simulation experiments. Some different configuratmittie population by means of
varying parameters and compositions of driver persoealitvere used in some of these
experiments.

The main performance measure used in the discussion ofimg@s is the travel
time of selected origin—destination pairs, on both indincand aggregate basis. Also, the
quality of individual trips is evaluated for different betaurs in terms of both desired and
actual arrival times. Each experiment consists of 101 rdrdemand—supply iterations
corresponding talayO throughday100. The morning peak period starting at hour 8 is
considered for each day. In addition, a desired arrival isressigned to each driver of
the population on the basis of a uniform distribution. Thuasjviduals are expected to
arrive at their destinations by the stipulated arrival timbich is between minutes 45 and
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60 after the starting hour. Such a short arrival period igyssted in order to induce the
generation of more congestion throughout the network.

6.5.1 First Scenario

The experiments in the first scenario are focused on the wdugan of the behaviours
suggested in Section 5.3.1. The first set of experimentsderssthat the population is
fully composed of drivers exhibiting the same personalitye single agent is selected out
from each of the random, choosy, conservative, and halptyallations to illustrate how
personalities evolve over time as the driver makes its dew@sand performs the journey.
Despite trips are distributed all over a total of eleven ODgaithin the traffic network,
only trips from origin 109 to destination 105 are initiallgresidered. In this case, three
possible routes are regarded for selection by the driverdepicted in Figure 6.7.

Route 1 Route 2 Route 3

Figure 6.7: Route options from origin 109 to destination.105

Random drivers do not care on route selection and may chaoyseféhose path the
driver is familiar with. Departure time, in turn, is adjudten the basis of the expected
travel time for the chosen itinerary. The random behavidw driver is depicted in the
graphs of Figure 6.8. It is possible to notice from the gratitad the agent keeps no
relation between route option and its expected cost, wisithd total travel time realised
the last time the route was selected. Also, owing a verytddasired arrival time as no
tolerance for being either earlier or later is admitted,ttheel time experienced on each
day fluctuates considerably.

The same observation is carried out for the remaining bas@lours, namely the
choosy, the conservative, and the habitual ones. The bmlvavi a choosy driver is illus-
trated in graphs of Figure 6.9. Contrary to the random pexggrpreviously discussed,
the route selection strongly depends on the expected cesichf path. However, the cost
is similarly given in terms of the travel time realised thstlame the route was used. For
the subject OD pair, the agent is able to opt among threenalige itineraries and keeps
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Figure 6.9: The choosy behaviour of a driver.
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its choice until it finds out a better alternative. In this wehe expected travel time of a
route remains the same and is updated only if it is selectddltmwing days. Also, the
number of route switches seems to be quite lower than it isgiodom drivers. This is
basically due to the explicit use of selecting strategies.

Yet, as in the random behaviour, there is a considerableifition in the agent’s actual
arrival time owing to the same reason. The strict desiradaitime forces the driver to
continuously adjust its departure time as an attempt to iteeeip objectives. In the case
of being any later, the agent anticipates its previous deparchoice accordingly, and
may experience a very short journey that results in an earlygh In turn, the agent sets
its departure for a later time on the next day. This behawseems to repeat indefinitely,
which does not seem to correspond to the reality.

As for the conservative personality, travellers keep theespath option for the total
period simulated, which means in practical terms that tipeeted cost for each journey is
the travel time realised on the day before. Similarly to whatbserved from random and
choosy behaviours, conservative commuters also seem {a &hieving destination at
desired arrival time, as presented in Figure 6.10. Despfiging the route choice always
at the same option, adjusting departure according to tharival delay demonstrates to
be an efficient means to accomplish trip objectives.

The habitual driver, which is currently implement in DRACHALrelies on a more
flexible approach both to departure time and to route choi€&saphs in Figure 6.11
are used to illustrate how the habitual behaviour evolves timme. The parametels
n, andt are set to @, 0.2, and Imin, respectively. These values are selected as sug-
gested in (BEN-AKIVA; DE PALMA; KANAROGLOU, 1986) and in (MAIMASSANI;
JAYAKRISHNAN, 1991). Owing to the lateness tolerance of thedel, drivers can ex-
perience a smoother arrival after few days from the stati@kimulation. The departure
choice remains the same unless new delay beyond what islitgdoy the driver is per-
ceived. This means that stabilising arrival much earlisults in keeping the same de-
parture choice. However, featuring agents with such a utdarearliness tolerance may
not be exactly the case for real commuters, specially dunaming journeys. Switching
routes is also constrained by an improvement factor, whieams drivers do not make
other option unless the gain for taking a better itinerargaasiderably advantageous.
Such a sort of behaviour with regard to path selection seerhe tore prudent than the
fastidious choosy personality.

Aggregate travel times are observed for trips from origi® 1® destination 105, as
previously suggested, to represent how individual behasioan effect the system overall
performance (see Figure 6.12). The values for mganand standard deviatio(o)
relative to the averaged travel time observed for the sul)Bcpair are listed in Table 6.1.
A population estimation factor equals ta0lis used to emulate the population of BDI
agents from the flow distribution described in the OD matilikis way the total flow is
mapped to the total number of drivers in the population orbties of the 1 : 1 rate. So,
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a total of 285 drivers perform their journeys from zone 102daoe 105.
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Figure 6.12: Average travel for homogenous populations.
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Figure 6.13: Average travel for mixed populations.

Populations fully formed of random, choosy, and conseveadrivers present similar
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values foru and o, as presented in Table 6.1. Despite of presenting someicntéor
route and departure time selection, the inflexible arridahdividuals makes aggregate
travel time quite fluctuating with respect to the habitudideaour (presenting the lowest
value forg). Another interesting observation is the high value forrtitemn average travel
time of the habitual populatiorn 18min) with respect to the other behaviours. Owing
to its very flexible arrival time, habitual drivers tend toeketheir travel preferences even
in the case of experiencing longer journeys. Then, it isegpdssible for the system to
stabilise the average travel time at higher levels provitied drivers can arrive at least
before a certain scheduled delay. It is solely an effect gpced by motorists that try to
minimise their individual notion of cost. In the case of lahl agents, they only need to
arrive before the tolerable lateness. Such a flexibilityasverified for random, choosy,
and conservative personalities. As no tolerance is coreid@en, neither to lateness nor
to earliness, departure time is set as the result of the 'agexpectation to take the exact
travel time as to arrive at destination on schedule.

Table 6.1: Populations formed solely by drivers of samequeakty.

Personalitiey u g
Random | 11.0020| 3.0288
Choosy | 11.5581| 4.3239

Conservativg 11.3508| 3.2675
Habitual | 18.0609| 0.6176

Undoubtedly the populations of travellers in any urban aseather of a very het-
erogenous nature. Thus, considering that all drivers keelrathe same way is very un-
likely to correspond with reality. In this sense, anothéiosexperiments is suggested and
different populations are built up by means of mixing the bemof drivers of the same
behavioral stereotype, as suggested in Table 6.2. The s&npaiDis selected for the ob-
servations and average travel times are depicted in thégiag-igure 6.13. The number
of random drivers is kept constant in a very low rate (10% gdiation) for all composi-
tions. As mentioned in Section 5.3.1 such a behaviour magsemt commuters that need
to use different paths. Some times people plan to take aelifteinerary, for example, to
drop kids at school or supply vehicle with petrol. Howeveis iintuitively very unlikely
that most commuting users will behave in this way. The remgipart of the populations
is composed of fractions of choosy, conservative, and habégents. These behaviours
are equitably distributed in Population 1, whereas a greate (70%) is considered for
each personality in populations 2, 3, and 4. This assumjgisnggested as a means to
observe how prevailing behaviours can effect the overaliesy performance.

From the graphs of Figure 6.13 and from the valuesgf@and o (see Table 6.2), it
is possible to observe that all population compositionsgméfluctuations in the average
travel time. Populations 1, 2, and 3 are still affected byrtba-flexible arrival time as
discussed above. Nonetheless, the prevailing habituaMi@ir of Population 4 seems to
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Table 6.2: Different compositions for mixed populations.

Populations Compositions u o
random| choosy| conservativg habitual

Population 1] 10% 30% 30% 30% | 11.3096| 3.1331

Population 2| 10% 70% 10% 10% | 11.3084| 2.8119

Population 3] 10% 10% 70% 10% | 11.0243| 2.7316

Population 4/ 10% 10% 10% 70% | 10.6749| 1.3884

smoothen the average travel time for the subject OD paito,Ads possibly a side-effect
of the other personalities in the same population, the maamlttime drops with respect
to the first experiment considering the population formdelgdy habitual commuters.

However, it is very important to bear in mind the very flexilelgliness tolerance of the
habitual personality. Stability could be observed at argrage travel time level provided

drivers reached destination within the lateness toleréimashold. In spite of that, this

may suggest non-flexible behaviours can condition at wragkllsuch an stable state is
to be settled.

As discussed above, the habitual driver seems to be quitbl#exith regard to earli-
ness. Also lateness tolerance increases for longer josagy is assumed to be relative to
travel time. However, commuters tend to have rather strictad constraints and arriving
much earlier may be disregarded for morning trips. Two esiters to the habitual per-
sonality are then suggested, namely the habitual drivdr avitelative lateness-earliness
tolerance window and the one presenting an absolute laterstness tolerance. The
former only extends the concept of relative tolerance tcswhar an earliness threshold
with respect to the travel time realised. The latter is lesslfle in the sense lateness and
earliness thresholds are considered to be constant incitew long the journey may
take. To illustrate how these extended behaviours possNmjve over time, different
configurations for the tolerance window are suggested. bieT8.3 lateness threshold
is fixed in 20% of travel time, whereas different values argigaged to earliness toler-
ance factor. The behaviour of a single instance of a habdadr presenting a relative
lateness-earliness tolerance to desired arrival timepsctil in Figure 6.14. The fluc-
tuation of the agent’s arrival time is considerably highere¥or the[20% 100% relative
window size. In this specific behaviour, when the driverdrie adjust its departure to
avoid lateness, for example by means of departing mucheedtlmay realise a consider-
ably short journey yielding a very restrictive tolerances thAresholds are dynamic, even
if the driver experiences longer journeys some times, inss® be very difficult to reach
a steady state.

A similar experiment was carried out for the latter extensaggested, which is the
habitual driver with absolute lateness-earliness tolmramndow. The different configu-
rations for the absolute window are presented in Table @dsidering most commuters
are constrained by strict arrival times, lateness toleanfixed in Ininwhereas earliness
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Figure 6.14: Habitual driver with relative lateness-ewa$s tolerance.
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is different for each population.

The graphs in Figure 6.15 are used to illustrate how thisvaebhaevolves over time.
In this case, as the window boundaries are static all ovepéhied simulated, it is easier
for the driver to meet its lateness-earliness thresholts af number of iterations and
keeping this state for a longer period of time. The wider tistathce between the upper
and lower boundaries, the more tolerable the agent will beéhé same way the original
habitual behaviour can settle in a steady state owing itfbfkexature, can the driver with
an wide absolute tolerance window. Thus, it seems to be ictipedle to predict at which
level a population with such characteristics may stahiliseay be at any level, provided
travellers can meet the window thresholds.

The average travel times for the populations presentedbie®3 and Table 6.4 are
depicted in Figure 6.16. This aggregate assessment is midldeespect to trips from
zone 109 to zone 105, as well. The presence of an earliness/eetolerance makes
the average travel time quite more fluctuating with regaroriginal specification for the
habitual behaviour. On the other hand, absolute latenakgsantiness tolerances tend to
converge to a certain level at which average travel timdsstarsettle down. Intuitively,
absolute tolerance windows seem to keep closer relatidretogality of commuters than
relative ones.



N w
(6] o

travel time (min)
= = N
o o o

o

N w
ul o

N
o

travel time (min)
= =
o (4]

(9]

Table 6.3: Relative lateness-earliness tolerance windows

Populations| Lateness Tolerancel Earliness Tolerance
€ (relativeto77) | A (relative to.7 .7)
Population 1 0.20 0.20
Population 2 0.20 0.30
Population 3 0.20 0.50
Population 4 0.20 1.00

Table 6.4: Absolute lateness-earliness tolerance windows

Populations| Lateness ToleranceEarliness Tolerance
1 (min) v (min)
Population 1 5 5
Population 2 5 10
Population 3 5 20
Population 4 5 30
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Figure 6.16: Average travel times for relative and absdioiterance windows.
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6.5.2 Second Scenario

Recalling from Section 5.3.4, drivers are allowed to reg@wormation on the current
state of traffic prior to starting daily journeys. This waynomuters can consider using the
content interpreted to improve the decision-making precétwever, travellers are not
supposed to interact with exogenous sources and contengssmmed to be perceived as
a broadcast from mass media, for instance. In additiqd®®, 105) OD pair, trips from
zone 105 to zone 104 and trips from zone 101 to zone 002 arevellsas well. Both
(105,104) and(101,002) OD pairs can be performed through two possible itinerarges a
presented in Figure 6.17 and Figure 6.18, respectively.d»ehs built out from homoge-
neous population of habitual drivers, which means all fiax®in the population exhibit
the same personality.

Different populations are set out in Table 6.5 and simulateatder to illustrate the

Route 1 Route 2
Figure 6.17: Route options from origin 105 to destinatiosd.10

Route 1 Route 2
Figure 6.18: Route options from origin 101 to destinatiod.00
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potentialities of the approach presented in this thesisatalle such a scenario. Popula-
tions are configured in terms of the total number of drivers #e fractions of pre-trip
information users. Incidents were artificially producedviro links of the network affect-
ing the current supply conditions for the recurrent demanhbis is yielded by way of
suppressing one traffic lane from both lif& 15) and link (31,21). The pairs represent
upstream and downstream nodes in this order, which giveditbetion of the suppressed
lanes. In the supply model of DRACULA, incidents can be gaspresented by means
of defining a reserved lane and the purpose for such a regar{aee Appendix 7.5 for
further explanations). The incidents have direct effectoth trips from zone 109 to
zone 105 and trips from zone 105 to zone 104. This is ensuradeast one path of each
OD pair contains the links with lanes suppression. Tripsifamne 101 to zone 002 are
also expected to be indirectly affected by the incident ¢egged in link (9,15). This is
assumed on the basis of the high flow induced in that link, wmay produce queues that
extrapolate to link (5,9) blocking right-turning maneus@&om link (9,5) to link (5,6).

An atis agentis responsible for broadcasting the information on theenirstate of
links (9,15) and (31,21). The perspective of incidents cadreegments is interpreted
as possible congestion, and such information is posteddaretivironment on day 50.
Thus, the base beliefs of driver agents are updated thrdwegpdrception of the clause

Table 6.5: Different compositions for populations witharhed drivers.

Compositions
Populations| population| number of trips for fraction of
factor agents each OD pair | informed users

(109,105 142 0%

25%

Population 1 0.5 1159 (105104) 101 50%
75%
(101002 6 100%

(109,105 228 0%

25%

Population 2 0.8 1860 (105104) 162 50%
75%
(101,002) 9 100%

(109,105 285 0%

25%

Population 3 1.0 2323 (105,104) 202 50%
75%
(101,002) 12 100%

(109,105 342 0%

25%

Population 4 1.2 2792 | (105104) 243 50%
75%
(101,002 14 100%
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linkSatélink,congestedl This new entry in the beliefs set may then be accounted for
during the route choice process. If the agent is a pre-tfigrination user and has the
willingness of effectively using its content, it will defiely make an attempt at avoiding
routes that include the congested link. The incidents tastife whole period simulated
on each day, and thais agentkeep posting the messages until day 100.

The simulation results are given in terms of average travedd relative to the subject
OD pairs and are presented in the graphs of Figures 6.19rd=&j80, and Figure 6.21.
Each population as presented in Table 6.5 is identified bgdtsesponding population
factor within the figures. It is possible to observe from theeé set of graphs that the
travel time for all the populations tends to settled down iffeent steady states after
the incidents are introduced onto the network. Howeverpésidnot necessarily mean
travel time will be brought to worse levels, as observed guFe 6.20. This can be seen
from the perspective of the Braess'’s paradox (BRAESS, 189RCHLAND, 1970;
SHEFFI, 1985). Such a seemingly counter-intuitive resatt be explained by the fact
that a motorist try to minimise her/his own notion of cost.ushndividual choices are
carried out with no consideration of the effect of this actom other network users. And,
according to Sheffi (1985), there would be no reason to expedotal travel time to be
worse or better on certain circumstances.

Graphs also demonstrate that non-informed configuratibdemand are very likely
to produce the worst situations. On the other hand, diftdrantions of informed drivers
may produce difference levels of stability. However, imhamg all drivers will not always
produce the best result. Also, the experiments suggestdeat penetration factors of
information technologies may depend very much on demanfigroation. This idea
relies basically on the number of trips for each OD pair ofrieéwvork and the resulting
graphs of figures 6.19, 6.20, and 6.21.
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Table 6.6: Summary of statistics for the (109,105) OD pair.

population fraction of day 0-49 day 50-100
factor informed drivers u g u g
0% 7.7947 | 0.4047
25% 7.4257 | 0.2797
0.5 50% 3.9208 | 0.2118| 7.3244 | 0.2871
75% 6.7835 | 0.2597
100% 7.1613 | 0.2579
0% 17.2555| 0.7399
25% 16.2070| 0.5947
0.8 50% 11.7635| 0.6085| 17.5906| 0.6872
75% 15.9085| 0.2506
100% 16.5513| 0.5727
0% 22.0349| 1.3894
25% 23.0566| 1.7372
1.0 50% 15.9480| 1.4969| 18.9515| 1.3005
75% 20.8037| 0.6656
100% 21.4670| 0.7124
0% 30.6920| 1.1712
25% 29.5433| 1.7634
1.2 50% 14.9382| 1.2390| 29.1563| 1.9296
75% 26.5099| 2.0541
100% 21.6514| 0.8437
population factor = 0.5 population factor = 0.8
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Figure 6.19: Average travel times relative to (109,105) Gib.p
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Table 6.7: Summary of statistics for the (105,104) OD pair.

population fraction of day 0-49 day 50-100
factor informed drivers u g u g
0% 5.1545 | 0.6021
25% 4.6389 | 0.7725
0.5 50% 5.7834 | 0.7476| 3.1522 | 0.5461
75% 1.9141 | 0.3065
100% 1.5964 | 0.0691
0% 10.7561| 0.9537
25% 10.4312| 0.8537
0.8 50% 13.0971| 1.0560| 8.1870 | 0.7314
75% 7.2055 | 0.4432
100% 5.3103 | 0.2213
0% 12.3670| 0.9086
25% 11.2024| 0.9258
1.0 50% 17.7321| 2.0563| 11.0965| 0.7030
75% 8.9645 | 0.6181
100% 7.7936 | 0.1683
0% 13.9007| 0.9027
25% 12.9853| 0.7712
1.2 50% 18.2241) 2.1711| 12.6078| 1.1480
75% 9.9759 | 0.4274
100% 8.3903 | 0.1774
population factor = 0.5 population factor = 0.8
8 20
<6 €15
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Figure 6.20: Average travel times relative to (105,104) GiD.p
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Table 6.8: Summary of statistics for the (101,002) OD pair.

population fraction of day 0-49 day 50-100
factor informed drivers u g u g
0% 4.2603 | 0.1168
25% 4.2707 | 0.1012
0.5 50% 4.4034 | 0.6327| 4.2456 | 0.1149
75% 4.2418 | 0.0843
100% 4.2917 | 0.1435
0% 12.8585| 0.2374
25% 13.1715| 0.3220
0.8 50% 14.2028| 2.5614| 12.6788| 0.2802
75% 12.2342| 0.1238
100% 12.2416| 0.1309
0% 27.2554| 2.5552
25% 22.6639| 1.4758
1.0 50% 22.2409| 2.4364| 22.8205| 0.8266
75% 20.1541| 0.1735
100% 19.8509| 0.1410
0% 11.5785| 0.8933
25% 10.4111| 0.3332
1.2 50% 11.7650| 3.7378| 10.6383| 0.4780
75% 10.5401| 0.4221
100% 9.8394 | 0.1551
population factor = 0.8
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Figure 6.21: Average travel times relative to (101,002) Gib.p
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6.5.3 Simulation performance

The simulation sets presented in this chapter were cartieoth@C computers. Hard-
ware and software characteristics are presented in Table 6.

Table 6.9: Simulation software and hardware environment.
HW and SW characteristics

Processor AMD Athlon at 1100MHz
RAM capacity 256Mb
Operating System MS Windows 2000, Service Pack 2
Java Runtime EnvironmentJava 2 RE Standard Edition v.1.3.1_01
JAM Parser Version 0.65+0.76i

simulation performance
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Figure 6.22: Simulation performance (number of agentsuge@PU time/101 days).

The simulation performance for hardware and software isss&sl in terms of CPU
time used to run populations with different number of BDMériagents for a total of 101
days (from day O to day 100). Results are presented in Fig@2 6At a first glance,
the performance of the agent-based approach may be fouredddh disappointing, as
the the necessary CPU time increases considerably forrlpagrilations. Nonetheless,
the adoption of other software development strategieggusancurrent and parallel pro-
cessing may improve the framework performance. A fullygnéed environment is also
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a step toward this improvement, which can avoid the excessivnber of file exchange
between MADAM and DRACULA.

6.6 Summary

The flexible structure of AgentSpeak(L) used as an spedditédnguage gives rise to
further improvements of legacy microscopic simulatiomfeavorks, allowing engineers
and practitioners to devise and implement different behaal models. The MADAM-
DRACULA framework is an example of how cognitive agents carpbactically applied
to implement the humanlike reasoning commuter structunestiaeir interactions with
today’s ITS technologies. This multi-agent-base methagipkan be used to address the
lack of suitable tools for simulating and assessing conteary traffic scenarios.

The different experiments proposed and the simulatioritearte initially intended to
demonstrate the methodology flexibility and its adequaaofee with the traffic domain.
However, scenarios are hypothetical and may not have so oangdspondence with real-
ity. In spite of that the intuitive syntax of AgentSpeak(Lasvalso used to specify and run
the habitual personality, showing it is suitable to impletether models as well. Inte-
grating a purpose-built interpreter for AgentSpeak(L)hivitthe MADAM+DRACULA
simulation framework can base the use of its syntax and tpeeh semantics as a pow-
erful API through which different behaviours can be implenteel and tested.

As for the second scenario tested in this chapter, it was egrusers of exogenous
information sources may rely on the information providedrder to improve the quality
of their decisions and the outcomes of their journeys. Se,ftamework contributes to
assessing the impact that exogenous information may habe ioverall performance of
the traffic system, the quality of the information providead the quality of decisions
made by users. Also, it can give invaluable insights intoaldes dependence and great
contribution in the calibration and validation of drivetria&iour models.
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7/ CONCLUSIONS

7.1 Overview

The problems arising from the increasing demand in traffstesys mainly in urban
areas have been challenging not only researchers but @sehble society all over the
world. Alternative solutions are then necessary to tacktdhgroblems. Physical modi-
fications to increase capacity have revealed to get even difficeilt as space lacks, and
very expensive to implement, as well. Besides, such praesdoften result in serious
disruptions to the society and damages to the natural enwieat. Visual, atmospheric,
and noise pollution are drawbacks to be avoided. Effortptoose control systems have
resulted in considerable improvements in many situatidymart from successful expe-
riences, they alone are not sufficient to cope with the eveneasing demand in urban
areas. The use of advanced communication and computeieges has brought about
the concept of Intelligent Transportation Systems. On@efiTS premises relies on op-
timising the use of the road capacity by directly influenciursgrs’ behaviour in order to
modify travel patterns. Other key aspect of ITS is the irdégn of different technologies
aimed at supplying users’ needs on an individual basis.

Using simulation models to aid the assessment and desigaffif systems is an in-
dispensable practice (BARCELO, 2001). So, tools should beeraxpressive and should
present the adequate means to cope with reproducing thdexitgf ITS scenarios. In
this way, many efforts have been identified in order eithetaborate models from scratch
or to adapt traditional ones to meet ITS requirements. Heweraditional models have
shown to be inadequate to handle the innate variability am@ainty of contemporary
traffic and transportation systems (WATLING, 1994). Thispecially the case while
modelling humanlike behaviours and decision-making mees, which has challenged
both researchers and practitioners.

Agent-based techniques seem to be a very appropriate approaepresent such a
domain. MAS presents a great potential to represent systdmse entities are geo-
graphically and functionally distributed. Moreover, thés an explicit commitment of Al
approaches to the ontological and epistemological reptasen of systems. The BDI
formalism through its specification of beliefs, desires] artentions, as well as of their
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relations, turns modelling humanlike behaviour and deoishaking mechanisms into a
straightforward and intuitive process. Such a framewoeuees a robust and flexible
way of specifying human cognition, which is desirable foSldssessing tools.

Some efforts in applying multi-agent techniques to the fedltraffic and transporta-
tion engineering are presented in the literature. Many eiffritare aimed at dealing with
isolated issues, though. Traffic control systems and reptegy car-following and lane-
changing behaviours in microscopic models are some exanoplapplications that can
profit from agent features. However, integrating modelseai@t specific aspects in order
to lead to more detailed representations of the entire sysi@s not been the purpose,
as yet. Nonetheless, it is also necessary to offer mecharssch that practitioners can
evaluate how the real system evolves under the presencevop@rormance measures
brought about by the very integrated ITS technologies.

7.2 Contributions of this thesis

There are three main areas in which the contributions ofr#ssarch are identified.

e it suggests a close coupling between ITS and MAS fiéldBowing the same en-
visaging defended in (BOUCHEFRA; REYNAUD; MAURIN, 1995)T$ tech-
nologies, their components, and interactions can encoimiAS the appropriate
means to represent their complex nature in different levktdetail. Further, it is
possible to identify the potential for a mutual benefit anokerfertilisation, as can
both fields profit from the advances of each other. Given itsgex and stochas-
tic nature, and the autonomy desired for its componentschrSserves MAS as a
ground where theories are devised and tested in a real anticateenvironment.
In turn, as the level of detail in simulating traffic scenari@s increased in order to
cope with new measures brought about by the ITS premisasyitpractical to dis-
sociate the design of data structures and algorithms fromhettiog the dynamics
of the real world,;

e it reinforces the feasibility of applying BDI to real-worttbmains with a relatively
large number of reasoning entitieSurning BDI models into real applications have
challenged researchers for a long time. Just quite rectrligap’ between theory
and practical implementation has been overcome, as dewelaframeworks and
architectures for multi-agent systems now support thect¥ie use of BDI agents.
However, as the use of cognitive approaches has suggebe®@Lil theory has
been relegated to representing domains with a few entitigs(GIRAFFA, 1999;
TEDESCO; SELF, 2000). In this work, a reasonable number off @ers have
been modelled, implemented, and run quite successfully;

e microscopic traffic simulation can profit from agent-baseodeiling and simula-
tion techniques toward providing robust and flexible meamsasessing human-
like behaviour of drivers One premise of ITS presented as an alternative to the
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increasing of capacity by physical means and to advancetad@ystems is to op-

timise the use of existing traffic and transportation resesithrough influencing
users behaviour patterns. This implies dealing with themernature of human

reasoning and decision-making process. Microscopic sitil models have been
specially devised to permit the representation of movermemdividual basis and
then tried to incorporate driver characteristics. The apph initially adopted in

some models was to represent driver and vehicle indistafiguoly, as a vehicle-
driver unit (HIDAS, 2000). This has been suitable to simellegactive aspects
of the movement, such as car-following and lane-changifmgeurs. However,

when the issue is to model more complex reasoning and deacisaking toward a

more effective comprehension of the interactions betweensuand ITS technolo-
gies, these models are no longer adequate. This researcudpgessted to model
travellers in general as a single agent structure, whichpslsle of presenting hu-
manlike reasoning through the use of the BDI approach.

The methodology applied in this thesis can serve to a widgeaaf applications,
both in the field of traffic and transportation engineeringg & the field of multi-agent
systems. Understanding driver behaviour, assessing {b&cinof different ITS technolo-
gies, devising strategies for information provision, asggy quality of information con-
tent and users’ acceptance for different information madéssome examples of potential
applications of the simulation framework devised in thise@rch. Assessing manage-
ment strategies, such as inducing the use of a certain mottansiport, applying road
pricing, and motivating car polling investments, can alsséen as potentialities for real-
world scenarios. On the other hand, the multi-agent comty@an also profit from the
knowledge gathered in designing applications of this sbttilti-agent interaction and
social ability models can be applied to travellers, pedastt and even to autonomous
assistants that co-operate with users. Communicationgutst is another subject of im-
portance as travellers now may access exogenous sourcgsrofiation and can interact
with them. Also, the use of the limited capacity of the trasrsgtion infrastructure gives
rise to likely conflicting situations, which should be sort®ut. As to the perspective of
a single reasoning entity, many other issues can be apmdabnough MAS, such as
learning, planning, and decision-making mechanisms ieralyield results that may be
used in other knowledge domains, as well.

7.3 Further developments

The methodological approach devised in this research atlaw extend the DRAC-
ULA microscopic model to support demand generation as theltref decision-making
processes carried out by BDI driver agents from within theD®M model. Although the
integration between the demand and the supply has beervadtieesome extent, which
demonstrated the suitability of using a cognitive-basetligecture to improve the driver
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representation, further developments are suggested ar twdenhance the multi-agent
simulation framework presented.

e use of AgentSpeak(XL) to implement the BDI drivddsfortunately, neither the
SIM_Speak framework nor the AgentSpeak(XL) interpreteranedfectively avail-
able during the course of this research in time of being usbdn, the implemen-
tation of the AgentSpeak(L) specifications in JAM was thempthosen in order
to demonstrate this work’s approach. Nonetheless, theadtepd is to incorporate
the AgentSpeak(XL) interpreter within the BDI driver stuie, so that it will be
possible to profit from the advantages of a purpose-buirpreter, such as effi-
ciency and practicality, as claimed in (MACHADO; BORDINR@1). In addition,
AgentSpeak(L) syntax and operational semantics can seryes environment as
a powerful API through which different behaviours can belenpented and tested,;

e full integration with DRACULA The rigid structure of DRACULA is formed of
‘black-box’ modules that interact with each other via fileleange. MADAM was
initially implemented on the same basis, and replaced tiggnat demand module
used in DRACULA. However, this limits likely interactionshich may emanate,
for example, from using Dynamic Route Guidance during therjey. This would
imply that the BDI driver could use its reasoning capal@gitwithin the supply
model as well. In order to accomplish so, it is necessaryterwene into the sup-
ply model and make it fully integrated with the demand sidénisTdiscards the
drawbacks of exchanging files between modules;

e implementation of the third scenari®n the basis of the full integrated demand-
supply framework, it is possible to avoid any discontinaitythe reasoning stream
of an entity. This way drivers can behave cognitively at argmment within the
entire simulation period, including while making in-trigelsions. This facilitates
the implementation of the third scenario proposed, as tvermis able to exhibit
cognitive abilities while interacting with other elemenfghe environment, such as
exogenous information sources. Thus, the effects of VM8adhyic route guidance
and advice, radio broadcast, and personal assistant sys@mbe modelled and
simulated.

¢ validation of more realistic behaviours and calibration parameters In this
work, BDI models have been applied just to the specific stesaf commuting
drivers, and has proved to be a powerful tool to model and Isimthumanlike
reasoning and decision-making processes. Nonethelessiuthhber of possible
interactions between humans and autonomous technologpegasing the Intelli-
gent Transportation Systems is considerably vast. In aa@vestigate the im-
pact of such technologies and assess their efficiency, matheluld be validated
against real world, which means they should reflect what &éapn reality. Col-
lecting real-world data in traffic systems has been a difficagk and much ef-
fort has been made to automate it. In some application danaurch as traffic
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and transportation, it is sometimes necessary to submjgstistio virtual environ-
ments so that information on behavioral factors can be gathm a controlled
way (AL-SHIHABI; MOURANT, 2001; BONSALL et al., 1997). Anber man-
ner to gain insight into the way people behave is through twgpnethodologies
that are based on revealed and stated preference anal@giy¥ ROROPOULOU
etal., 1996a,b; KHATTAK; POLYDOROPOULOU; BEN-AKIVA, 199&DLER;
RECKER; MCNALLY, 1992). A methodological approach to mddweg driver be-
haviour for a multi-agent implementation is also suggestg®IA, 2002). More-
over, model parameters should be calibrated so that siionlatodels can accu-
rately represent field measured or observed conditionseofetal world (MILAM;
CHOA, 2001; HELLINGA, 1998; RAKHA et al., 1996).

e concurrent and distributed execution of agentdndoubtedly, the more detail a
reasoning model is capable of representing and procedsenmore computing re-
source and time it will consume. And this is also the case for Biodels, spe-
cially when applied to domains formed of several reasoninigties. Improve-
ments to memory and processing of today’s computer ar¢hres certainly has
motivated and contributed to the application of Al theoaesl models, in general.
Nonetheless, further enhancements are believed to bebpmoegsih the concurrent
and distributed execution of agent programs. This can ograve the scalability
of multi-agent systems and reduce processing time to megideal constraints.
Some aspects of the Intelligent Transportation Systemklqoofit from such an
implementation strategy.

7.4 Future work

Coupling ITS and MAS in such a close way inspires a wide rarigesgarch subjects
that can be approached in both fields. Some examples in #ratlite, as discussed in
Section 3.8, illustrate the potential of this synergy. le $ipecial case of the present work,
some topics are discussed next as the following-up studies pursued.

e |learning mechanismsAlthough commuters are expected to be familiar with the
traffic environment and make habitual decisions, expemgnanusual conditions
on currency basis may lead individuals to behave diffeyeridodelling learning
mechanisms (WEISS, 1999) as part of the driver cognitionlmaan interesting
tool toward understanding long-term effects of ITS tecbgas, for instance;

e dynamic planning A BDI agent is basically specified by means of its base ®lief
and the plans it can pursue (RAO, 1996; MACHADO; BORDINI, 2R(Nonethe-
less, it is not rare for a driver to divert from the originalosen path owing, for
example, a will to avoid the blocked roads. In such circumsta, the agent must
be able to replan its journey. Otherwise, it very likely vekperience long delays.
However, this can constitute a trick subject as sometimeefrédveller is bounded to
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temporal constraints and inefficient replanning could beeainpracticable (RUS-
SELL; NORVIG, 1995; BARBER; MARTIN, 1999);

e driver architecture This work presents a relatively simple hybrid architeettor
the driver agent. The driver can behave on a reactive bass \phrforming the
journey throughout the network, as implemented in the clowing and lane-
changing models. Also, it can exhibit cognitive capal@ktwhen making deci-
sions on the basis of a BDI reasoning kernel. Layered strestbas been pro-
posed (FERNANDES, 1998; KLUGL et al., 2000) that allows fdifestent lev-
els of decisions. The complex nature of the Intelligent $ptation Systems
and the wide range of different information that is invohagygest that different
Al approaches may be more suitable to one or another interacGome exam-
ples are encountered in the literature as in (WU; MCDONALRALCKSTONE,
1998; NIITTYMAKI, 2002; NITTYMAKI; KIKUCHI, 1998; CHEN; GRANT-
MULLER, 2001; KANOH; NAKAMURA, 2000). Thus, a meta specifigan of
a multi-layered traveller architecture could be a meangyaand test different
Al theories and approaches. Also such a structure mighivahe driver to be-
have accordingly in different situations by means of dyreaity recognising and
switching the execution to the control of the most apprapdaayer. This selection
could be made on the basis of either detailed and accurateioeins or efficient
behaviours with respect to some constraints. These layeis @lso be oriented
to specific purposes, such as acting upon the environmeingaecisions on
actions, learning, planning, and communicating.

e Multi-agent environment for ITA fully integrated multi-agent framework for as-
sessing ITS applications should rely on a well-designediragent environment.
A parameterised environment and meta specifications oftagelnitectures are the
ingredients to support the perfect integration of travellend different ITS tech-
nologies, as suggested in Section 5.2. Every time a diftdaei of traveller or
ITS-technology agent is integrated into the environmdrg adequate mechanisms
should be provided for dynamic recognition of communiaagootocols, level of
accessibility to the environment, and likely effects of #yent’s actions. The CA-
TIA framework (ROSSETTI, 1998; ROSSETTI; BAMPI, 1998b, BY%®ffers an
open object-oriented data model, which will be used as tisesldar such an inte-
grated multi-agent environment.

7.5 Final comments and remarks

The abstraction premises of MAS and its process-drivenagmbr to systems mod-
elling turns this multidisciplinary field into a preciousoldo aid the representation and
assessment of complex domains with very stochastic andnagnaature. Allied to the
microscopic perspective, as suggested in (SCHLEIFFERQR@@ent-based techniques
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are a step toward the understanding of new performance mesastought about ITS-
based solutions. In the specific case of this work, the useanigaitive model on the
basis of the BDI theory has demonstrated a great potent@désoribe reasoning mech-
anisms behind the decision-making processes. This waypibssible to overcome the
disadvantages of traditional approaches relying on théckeriver unit view. At the
same time it provides the ways to yield invaluable insighte the behavioural patterns
and responses to Advanced Traveller Information Systems.
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APPENDIX A
The OD matrix description file in DRACULA syntax

The OD matrix description file is a text file that specifies hoips are distributed
among each origin-destination pair within the network. Ha DRACULA environment
the file is usually nameepr oj ect _name>. mat , where<pr oj ect _nane> is the
name for the project being simulated, followed by the extansnat > that identifies the
file format. Figure A.1 depicts the content for the filel ey. mat , used in this thesis.
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APPENDIX B
The network description file in DRACULA syntax

The description of the network follows the same approach &sdefined for OD
matrices. The network characteristics are also describtédnva text file following the
format described in (LIU, 2001). The network descriptioa fit the DRACULA environ-
ment is named in the same waygs 0] ect _nane>. net ,where<pr oj ect _nane>
is the name for the project being simulated, followed by tkie@sion<net >, which
identifies it as a network description file. Figure B.1 depitie content for the file
ot | ey. net, used in this thesis. Again, the symbet is used throughout the text to
split a long line of text it ypewr i t er font, due to the space limit imposed by the left
and right margins of the page.

options list...
&OPTI ON

PLOD=F,
&END

parameters list...
&PARAM

PRI NTF=T,
BUSPCU=3. 0,
SPEEDS=T,
XYUNI T=1,
LTP=60,
MAXZN=110,
NI TS=12,
NI TA=20,
MASL=10,
SAVEI T=T,
QUANTA=F,
&END
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30
30
35
40
30
30
20

20

31

90
145
130
130
290

10
150

150

21

31 3 1
30 2
21 1
35 1
35 1 0
0 31 1
37 3 1
27 1
28 2
29 2
29 1 0
0 37 1
99999
zone information...
22222
2 8 7
3 21 31
101 14 15
102 27 37
103 29 37
104 18 21
105 35 31
106 3 6
107 11 10
108 18 17
109 1 5
99999
nodes and zones’ co-ordinates...
55555
1 3515 3840
3 3672 3820
5 3560 3720
6 3672 3757
7 3678 3720
8 3645 3715
9 3578 3635
10 3690 3630
11 3865 3650
14 3440 3520
15 3533 3570
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16
17
18
21
24
27
28
29
30
31
35
37
c 2
c 3
99999

gap acceptance parameters...

&GAP
31
99999

3665
3695
3880
3750
3680
3315
3570
3596
3680
3765
3802
3500
3640
3785

21

3574
3575
3590
3495
3454
3265
3370
3206
3368
3355
3240
3369
3715
3473

10 5 60 180

Figure B.1: Otley OD matrix description file.
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APPENDIX C
Modelling incidents in DRACULA

Incidents in DRACULA can be modelled by means of reserve@gdann practical
terms, when a lane of a link is marked as reserved, it can anlyded by vehicles that
are contemplated in the reservation criterion. A numbeypés are defined and a com-
bination of them can also be used — see (LIU, 2001) for a aetdist. Thus, an incident
can be modelled as a blocked lane, for example, by setting ieserved. This is sim-
ply yielded by means of defining the reservation criterioraitext file usually named
<pr oj ect _name>. pub, which is used to configure public transport details, as bus
services, routes, and stops. Information on reserved lamesoded under section 8 of
the. pub file, as illustrated in Figure C.1.

01. 88888

02. 9 15 1

03. 0 0 0 0 0 5400
04. 31 21 1

05. 0 0 0 0 0 5400
06. 99999

Figure C.1: Code for reserved lane.

The example presented in Figure C.1 is extracted from thefileey. pub used in
this work. The key88888 in Line 1 opens the sectiod so as data of reserved lanes
can be read. The downstream and upstream nodes, as well msntteer of lanes to be
marked as reserved are specified in Lines 2 and 4. Fields iesL3nand 5 are used to
identify the position of the lane, the section length to lsereed, and the period of time
such a situation should last. K&@999 closes the section.
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APPENDIX D

Uma abordagem baseada em modelos BDI para
avaliacao de processos de deciséo de motoristas
no trafego urbano

Introducéao

O rapido crescimento das regides metropolitanas tem umcitosagnificativo nos
sistemas de trafego e transportes. Tem-se verificado umnto@meentuado da demanda
que utiliza redes viarias cuja capacidade torna-se cadaaisdimitada. Além de atrasos,
a ocorréncia frequiente de congestionamentos tem comtalpaira perda da qualidade de
vida em centros urbanos, assim como provocado prejuizo®BBoos, sociais, ambien-
tais e de saude, muitas vezes irreparaveis. As primeirtiters de solucdo do problema
basearam-se na modificac&o direta da infraestrutura vi@nma o objetivo de aumentar a
capacidade de atendimento dos fluxos crescentes. A esdassgzaco tem inviabilizado
este tipo de solucéo, tornando-a muito dispendiosa. Nasadtdécadas, uma solucéo
alternativa tem focado a otimizacao dos sistemas de centooho meio de melhorar a
qualidade dos sistemas existentes. Os excelentes remitfadta estratégia motivaram
a evolugado dos mecanismos de controle. Entretanto, ndodeeqoocluir que se tenha
chegado a uma solucéo definitiva. Recentemente, tem-sevatiea utilizacéo crescente
de técnicas de computacédo e comunicacdo, que passam adazred@ quotidiano dos
usuarios dos sistemas de trafego e transportes. Esta$aslnpvadoras sdo denomina-
das de Sistemas Inteligentes de Transportes (ITS), e @nocassegurar a produtividade
do sistema através da utilizagéo eficiente dos seus recltstas tecnologias partem da
utilizacéo de solugdes distribuidas orientadas as neleeless individuais dos usuarios.
Uma das suas principais premissas € otimizar o desempensigtdma a partir da in-
fluéncia direta do padréo de comportamento de quem o utitem@sformando a natureza
de dependéncia temporal e o comportamento humano em fa®iggande importancia
para modelagem, simulacao e avaliacdo desta abordageadorav O desenvolvimento
de ferramentas capazes de auxiliar o processo de avaliag@seavolvimento da area
multidisciplinar de ITS tem sido tema de vérios trabalhofgzeparte da motivacdo da
pesquisa desenvolvida nesta tese.
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O comportamento dos usuarios de sistemas de trafego edréesg complexo por
natureza e algumas propriedades séo facilmente identBaaal avaliagdo e caracteriza-
cao deste comportamento. Um individuo (motorista, por gkeapresenta autonomia
quando planeja sua viagem, e ao interagir com sistemas aenafdo (que passam a
incorporar caracteristicas do comportamento humano) eatros usuarios, manifesta
sua habilidade social. E reativo, por exemplo, quando evitalisio com outro veiculo,
e adaptavel ao modificar seu comportamento de viagem pasa @gicongestionamentos
caracteristicos de certas horas do dia. Quando restalaigr®ridades do seu plano de
viagens para atingir seus objetivos de forma mais eficieritalividuo também apresenta
um comportamento pro-ativo. Estas sdo algumas caraaterigte pesquisadores da area
de Sistemas Multiagentes (MAS) buscam implementar em egeatd software. MAS
€ uma subarea da Inteligéncia Atrtificial Distribuida (DAbnt uma caracteristica forte-
mente multidisciplinar. Um interesse que tem motivado enpésquisa neste campo, mais
do que solucionar um determinado problema, € a represent@céaciocinio envolvido
na elaboracao da solugdo. Torna-se, portanto, necessrar de técnicas adequadas de
abstracédo e representacdo do conhecimento, em varios.nivei

A estrutura basica de um agente compreende sensores ptaeacage informacao
do ambiente através de percepcéo, e atuadores atravésaio® qgente é capaz de rea-
lizar suas agfes. Por meio desta estrutura conceitualétardbve ser capaz de interagir
com outros agentes, assim como com o ambiente onde esti@angerdendo inclusive
alterar seu estado. Dois tipos basicos de agentes podedeséficados, segundo o ni-
vel de raciocinio implementado para deliberacédo do seu odaipento. As estruturas
reativas sdo as mais simples, baseadas na associacaadipetaepcdes basicas a agcdes
pré-definidas que o agente est4 apto a executar. Este tigtrdeuea € geralmente utili-
zada para representar dominios constituidos por um gramdern de elementos, onde o
desempenho global do sistema resulta do comportamentgenteidos individuos que o
formam. Por outro lado, as estruturas cognitivas sdo comple implementam mecanis-
mos de raciocinio mais elaborados sobre a representacambeaimento. Geralmente
sao utilizadas para representar dominios constituidogager um namero reduzido de
elementos. Entretanto, no intuito de representar maistieamente o comportamento
humano, em muitas aplicacées de agentes de software Bdaefae estes sejam capazes
de apresentar tanto comportamento reativo como cogndeafpendendo da situacdo em
que estejam envolvidos.

De maneira geral, a premissa de abstragéo dos modelos bassadgentes favorece
arepresentacdo de sistemas cujos elementos componeejasegeogréafica e funcional-
mente distribuidos, como sdo 0os componentes nos dominic&ego e transportes. Esta
perspectiva tem motivado inGmeros trabalhos que sugergiitagio de MAS nestes do-
minios. Na Secao 3.7 do texto da tese, sado apresentados atgmplos da literatura que
reportam potencialidades interessantes das técnicaadassem agentes. Estes trabalhos
podem ser agrupados em trés categorias principais. Um ¢eaptocado a aplicacdo de
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agentes em sistemas de controle e geréncia de trafego,qusde um dos temas mais
abordados. A simulacdo microscopica e a representacaagmoctamento do motorista
tém motivado outro grande grupo de trabalhos. Entretargofague principal ainda tem
sido a representagcédo do movimento individual em modeldgtomais como veiculo se-
guidor e mudanca de faixas, onde motorista e veiculo s@atatindistintamente. Um
terceiro grupo de trabalhos engloba aplica¢ées diversay) cepresentacéo de pedestres,
implementacédo de sistemas embarcados de auxilio ao poodes®nducdo, e interagdo
com usuarios reais em ambientes virtuais simulados.

Objetivo e metodologia do trabalho

Embora se tenha observado a proliferacao da aplicacaoatésas baseadas em agen-
tes nos dominios de trafego e transporte, e se reconhecélglszala como ferramenta de
avaliacdo desses dominios em diferentes niveis, poucms/tduido no que diz respeito
a representacdo do motorista como um elemento cognitivgunsl trabalhos (KLUGL
et al., 2000; DIA, 2002) tém sugerido a utilizacédo de repreg@es mais adequadas para
0 processo de decisdo do motorista sem, entretanto, tereseapado sua implementa-
cao efetiva. Esta caracteristica torna-se cada vez magadasem modelos voltados a
avaliacdo das novas medidas de desempenho impostas peltotga de ITS, onde os
padrdes de comportamento humano passam a desempenhdupdpaiental.

Este trabalho tem como objetivo principal contribuir padesenvolvimento de ferra-
mentas computacionais orientadas a modelagem e avaliag@orportamento do moto-
rista, bem como dos efeitos de sua interagdo com os sistameligentes de transportes
em cenarios urbanos. A abordagem proposta, em oposicactadatogias tradicionais
de representacdo microscopica do trafego, trata 0 maarsho uma entidade inten-
cional, capaz de executar um processo cognitivo na tomadaadsdes. Uma arquite-
tura BDI (beliefs desiresintentiong é utilizada como base das habilidades cognitivas do
agente motorista. A l6gica BDI foi inicialmente proposta Pao e Georgeff (1991), ins-
pirada no trabalho filoséfico de Bratman (1987). Uma das sar@eteristicas principais
€ considerar as intencdes como fatores tdo importantesacegso cognitivo como as
crencgas e os desejos. Baseados nesta premissa, os auto@dzéon sua teoria estabele-
cendo as relagdes entre os estados mentais de crengass@dségncoes. A metodologia
adotada neste trabalho é basicamente composta pelastesgartes: descricdo do do-
minio da aplicacdo por meio de agentes e suas caractesjstlaboracdo de um modelo
cognitivo para suportar a representacdo do processo dgidatns motoristas; escolher
uma teoria BDI capaz de suportar a implementacao praticaodielm cognitivo do agente
motorista; especificar e implementar a arquitetura paraeatagnotorista cognitivo; im-
plementar um ambiente de simulacdo microscopica para @sthordagem proposta;
elaborar e executar experimentos de simulacao a partiratdadpem sugerida.
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Organizacéao do texto

O texto da tese esta estruturado em sete capitulos e quattosarNo primeiro ca-
pitulo apresenta-se uma breve introducdo sobre a motidi&rabalho realizado, enfo-
cando o problema do crescente aumento da demanda no tréfiegmem regides metro-
politanas que resulta na alta incidéncia de congestionasie®s objetivos do trabalho
bem como a metodologia utilizada durante sua elaboracawétarséo apresentados. Os
principais conceitos dos Sistemas Inteligentes de Tratespacom énfase nos Sistemas
Avancados de Informacéo aos Viajantes, sdo brevementsespaelos no segundo capi-
tulo. A area dos Sistemas Multiagentes é introduzida ne@iercapitulo, onde também
sdo apresentados exemplos de aplicagédo das técnicasdmeeadgentes nos dominios
especificos da engenharia de trafego e transportes. Aéeslagtre os estados mentais
de crenca, desejo e intengdes, que servem de base a espacitieaarquitetura BDI uti-
lizada neste trabalho como nucleo cognitivo dos agentegristats, sdo apresentadas no
quarto capitulo. A especificagdo completa modelo cogndesenvolvido é apresentada
no quinto capitulo. Este modelo foi implementado como untareséo a um ambiente de
simulag&o microscopica existente. O ambiente de simulaci&scrito no sexto capitulo,
onde também séo apresentados e comentados resultados dérigrde simulagdes re-
alizadas, com intuito de testar a abordagem que é sugeritia tese de doutorado. As
conclusdes do trabalho sé&o apresentadas e discutidasmo sépitulo, seguidas de al-
gumas sugestdes para aprimoramento do modelo desenvelviiias de topicos para
futuros tralhos de pesquisa. No primeiro anexo é aprese@tadatriz OD utilizada na
geracao da populacédo de agentes das simulagdes, seguipieeskendéacéo da descricdo
da rede viaria de Otley, no segundo anexo, e da descri¢do canmmo de geragdo de
incidentes, no terceiro anexo. No quarto e ultimo anexo gtmte apresentada uma
sintese do texto e dos principais resultados da tese, emalipgrtuguesa, visando uma
apresentacéo formal do trabalho na lingua nativa do autw.9¥ trata, portanto, da tra-
ducéo deste trabalho na sua totalidade, mas de um resuma degsinizacao, principais
caracteristicas e contribuicdes.

O modelo multiagente

O dominio de aplicacdo pode ser representado em termos diplogihgentes que
interagem entre si e com o ambiente no sentido de melhorasengeenho do sistema.
Assim, todos os componentes de uma arquitetura ITS, conesequado na Secéo 2.4,
e ilustrado na Figura 2.1, podem ser descritos a partir dearqatetura multiagente,
em diferentes niveis de abstragdo. O enfoque deste tralmitretanto, sera orientado
a estrutura do motorista e ao seu processo de tomada deade&sim, a demanda re-
corrente resultara das escolhas de cada individuo da pépule agentes motoristas, de
forma descentralizada (ROSSETTI; BORDINI; BAZZAN; BAMRIIU; VAN VLIET,
2002). Portanto, é atribuido ao préprio motorista autoagrara identificar suas necessi-
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dades, gerir seus recursos, e tomar suas decisdes.

Neste trabalho, motoristas séo representados a partir deabordagem cognitiva,
baseada na légica BDI. A arquitetura do agente motoristass&dda na Figura 5.1 e esta
estruturada em duas camadas principais. A primeira camaglatiéa e implementa o
movimento do agente atraves da rede até seu destino. ésragm outros motoristas,
como as descritas em modelos de veiculo seguidor e mudarigxaesdo implementa-
dos nesta camada. A segunda camada é cognitiva e suportauga@xele um interpreta-
dor BDI. Esta camada é responsavel pela execucéo dos pecestomada de decisdo do
motorista durante o planejamento de uma viagem, como ahesdalrota a ser utilizada
e o instante em que a viagem deve comecar. O comportamento dgante motorista é
exteriorizado a partir de sensores, que lhe permitem per@tdinamica do ambiente, e
atuadores, que lhe permitem executar suas acdes e exergap no ambiente. A ca-
pacidade de comunicagdo com outros agentes também € inméetaanesta arquitetura,
a partir de um mecanismo simples de troca de mensagens. @ égmvnensagens por
um agente € implementado como uma simples acao, enquaatmrgsagem recebida é
identificada a partir de uma percepgao. Desta forma, o ppoaEscomunicacao pode ser
incorporado a semantica operacional do interpretador BBl facilidade.

Como objetivos e intengdes sdo gerados dinamicamentetduré@mpo de execucao
do agente, a especificacdo da estrutura cognitiva de umistatastringe-se a identifica-
céo das suas crencas iniciais e de um conjunto de planosstandirados. Neste trabalho
foram implementados diferentes comportamentos, idestifis por personalidades, que
sao basicamente caracterizados pelo grupo de planos qugeantegode vir a execu-
tar durante seu processo deliberativo. Esses diferentegartamentos sdo descritos em
detalhe na Sec¢éo 5.3, e especificados com recurso a sintixgudagem AgentSpeak(L).

A seguir, apresenta-se sucintamente cada uma das pedsaoleglie suas principais
caracteristicas. No comportamento aleatéramdon), motoristas ndo possuem qualquer
tipo de preferéncia na escolha da rota a ser utilizada, pledeptar por qualquer uma
das que conhece nos sucessivos dias do periodo de simuggEoselecionado o cami-
nho, a hora de partida para inicio da viagem é avaliada cagaelao tempo de chegada
desejado e o tempo de viagem esperado para a rota escolinidé,igual ao tempo ex-
perimentado durante a Ultima jornada realizada pelo é@nmeiselecionado. O tempo de
partida sera entédo igual ao tempo de chegada desejado méswpo de viagem pre-
visto. O motorista seletivachioosy, por outro lado, sempre tentara encontrar a melhor
rota em termos de tempo de viagem. Esta estratégia € impladaea partir da com-
paracao sucessiva de todos os tempos estimados para Gadanbecida. ldentificada
a melhor rota, a escolha do tempo de partida segue a mesndagbor implementada
no comportamento aleatorio. A terceira personalidaderéifdmda pelo comportamento
conservadordonservative Um motorista conservador nunca altera sua opcao de rota,
selecionando sempre 0 seu itinerario usual, ainda queegata pior opcdo em termos de
tempo de viagem. Sua selecdo de tempo de partida tambémaegtratégia dos dois
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comportamentos anteriores. As trés personalidades apaess acima foram modeladas
a partir de uma avaliacao intuitiva de possiveis padroesuiportamentos de motoristas,
mas nao correspondem a realidade de forma plena.

Uma quarta personalidade, representada pelo comportatmaipitual babitual), foi
implementada a partir das estratégias de escolha de tenymartitéa e de rota sugeridas
em (LIU; VAN VLIET; WATLING, 1999). Ao contrario dos compaatmentos anteriores,
a primeira decisdo de um motorista habitual é sobre o temyzadila para inicio da
viagem. Esta selecdo € sempre realizada em funcdo de unepg@ocde atraso, da
ultima viagem realizada. A percepcao de atraso é definida eotiferenca entre o atraso
absoluto e uma tolerancia, avaliada em relagédo ao tempoademi experimentado no
dia. Assim, o tempo de partida para a proxima viagem, quasalidada no dia seguinte,
sera ajustado apenas pela diferenca do atraso percebakieder maior que zero. Desta
forma, um motorista habitual tendera a manter seu Ultimgtede partida sempre que
seu atraso percebido no dia anterior ndo for maior do que wda thlerancia. Uma
caracteristica importante deste comportamento é su@iedifa as chegadas antecipadas,
ou seja, anteriores ao tempo de chegada desejado; nesteecdsmn ajuste é computado
ao tempo de partida. A rota sera sempre a usual, a menos qulkea no¢a, em termos de
tempo de viagem, seja consideravelmente melhor. Estaagéialié feita tanto em termos
relativos, considerando um ganho relativo ao tempo de maggtimado para a rota usual,
como em termos absolutos. O motorista utiliza o0 maior gaehwe relativo e absoluto,
para condicionar sua eventual mudanca de rota.

A personalidade representada pelo comportamento habpuakima-se mais do que
se verifica em sistemas reais. Entretanto, sua indiferenbagada antecipada e sua to-
lerancia condicionada ao tempo de viagem experimentadivanain a extensao deste
modelo. A primeira modificacdo implementada para este caiaupento foi conside-
rar também uma tolerancia a antecipacédo, em adicdo a toleraa atraso, ainda que
em termos relativos ao tempo de viagem experimentado. Uguanda modificagéo im-
plementada foi considerar as tolerancias a antecipacé@tasm em termos absolutos.
Desta forma, em ambas modificacdes, a indiferenca, tantteaipacdo como ao atraso,
é funcéo do nivel de tolerancia assumido pelo motorista.oBgortamentos apresenta-
dos acima foram implementados como planos néo instangiddssritos em detalhe nas
secOes 5.3.2 e 5.3.3 do texto da tese.

O ambiente de simulacdo MADAM+DRACULA

Com intuito de testar a abordagem proposta, foi desenvwlwia ambiente de simu-
lacdo microscopica, proposto inicialmente em (ROSSETANMBI; LIU; VAN VLIET;
CYBIS, 2000b) como uma extensao ao modelo de simulacao mguitado no ambiente
DRACULA (Dynamic Route Assignment Combining User Learnargd microsimulA-
tion) apresentado em (LIU; VAN VLIET; WATLING, 1999). O sirtador DRACULA
tem sido desenvolvido na Universidade de Leeds desde 19@5ega-se em dois concei-
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tos principais: demandaé¢mand e oferta supply. A demanda representa a dinamica
de formacéo dos fluxos recorrentes em cada dia, enquanta efté associada ao de-
sempenho de cada arco da rede. A relagdo entre estes dogtesrfisndamentais esta
ilustrada na Figura 6.1, constituindo um processo itesajiye proporciona ao modelo
de simulacéo a representacdo das dinamicas do sistemdedunardia (vithin-day dy-
namic9 e ao longo de varios dias consecutivday-to-day dynamigs Este processo é
representado em mais detalhes na Figura 6.2. Apos a gerag@pdlacdo de motoristas
no inicio da simulagéo, a demanda diaria € formada a partitritauicdo de tempos de
partida e opcéo de rota para cada individuo. Esta atribéicéalizada a partir de funcdes
que implementam alguma distribuicédo definida pelo usudedprma centralizada, alte-
rando os valores de parametros das estruturas. Cada reotoBatdo posto a executar
sua viagem narede, iniciando-a no tempo de partida e itioarée lhe foram atribuidos.
Finalizada a viagem, as medidas de desempenho experirasmtadnte 0 seu curso séo
“memorizadas” para que possam ser utilizadas pela funcatritéeicdo na proxima ite-
racdo. Durante cada dia, um modelo de variabilidade deaoéedplicado sobre a rede
para emular a dindmica do sistema ao longo de varios dias.

Na extensao proposta para o0 modelo de simulacdo implentemétaldRACULA, de-
manda é gerada como resultado do processo de tomada deodmdi8domo, executado
individualmente pelos agentes motoristas. Depois de lescabta e tempo de partida, o
agente iniciara sua trajetoria ao destino desejado. Oatexteristica da estrutura pro-
posta, como representado na Figura 6.3, é a presenca desagemet implementam o
comportamento inteligente das novas solu¢des baseada&srotagias ITS. Estes agen-
tes, como por exemplo os sistemas de informacao, podeid@umsigrados a iteracdo de
simulacéo durante a formag&o da demanda assim como durexgews;ao microscopica
do movimento.

MADAM (Multi-Agent DemAnd Model) é a implementacdo do modele demanda
desenvolvido neste trabalho, baseado em uma populacé@agemnite, integrado ao am-
biente de simulagdo DRACULA, como representado na Figura/ interface entre os
dois modelos, de demanda e de oferta, € implementada comédasea de arquivos com
sintaxe comum aos dois médulos. A populacdo de agentesréadstia partir da distribui-
céo de fluxos representada em uma matriz origem-destino @»pcdes de rotas entre
cada par OD também séo associadas aos motoristas duranteagdo da populacdo. Du-
rante os dias que constituem o periodo de simulacéo dedgjade cada dia representa
uma iteracdo da relagdo demanda-oferta), os agentes diag@pescolhem suas opcdes
de rota e tempo de partida, a partir da execucédo de um prodeberativo baseado na
l6gica BDI. Estas op¢bes sdo colecionadas em um arquipat MA) que alimenta o
modelo de oferta. Todas as percep¢des dos agentes duramgmalas suas viagens indi-
viduais (descritas em um arqui@utput MA integrardo a base de conhecimento de cada
agente e poderao ser utilizadas para melhorar a qualidasigadedecisdes nas iteragdes
futuras. O ambiente de simulacéo foi implementado nas éiggns C/C++, seguindo a
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mesma estratégia de implementacdo adotada no desenvolginee estrutura inicial do
DRACULA. Entretanto, a camada cognitiva do agente mowifist implementada em
Java, permitindo assim a utilizagdo do interpretador BOMJAIUBER, 1999a,b), no
processo deliberativo.

Experimentos e analise de resultados

Dois cenérios béasicos foram criados para ilustrar a a@lwda abordagem proposta,
e simulados com diferentes configuracdes. Os experimaypossentados na Secéo 6.5,
foram realizados para a rede de Otley, ilustrada na Figéraém populacéo sintetizada a
partir da matriz OD descrita no Apéndice A, durante um pertel101 dias (transcorrido
entre os dias 0 e 100).

Primeiro cenario

No primeiro cenario nao foi considerada a presenca de getaligpo de sistema de in-
formacao capaz de auxiliar os motoristas no planejamentiadam antes do seu inicio
ou durante seu curso. Foram analisadas as viagens realaatia as zonas 109 e 105. As
trés opcoOes de rotas consideradas sao apresentadas red-fgunicialmente apenas po-
pulacdes formadas por motoristas de mesma personalidaae simuladas. Os graficos
das Figuras 6.8, 6.9, 6.10 e 6.11, sao utilizados paraalugtcomportamento individual
das personalidades aleatéria, seletiva, conservadoedhitial, respectivamente, a partir
dos dados relativos a um tinico motorista da populacéo. Bvyabsbservar nos gréaficos
mencionados a evolucao das escolhas de tempo de partida@deara cada comporta-
mento. O motorista aleatério apresenta grande oscilac@sawha entre as trés opcdes
de rota. O motorista seletivo, que escolhe a melhor rota emotede expectativa de
tempo de viagem, apresenta menor alternacao nas opc¢oesisatias. Apesar das trés
opcOes de rota, 0 motorista conservador mantém a mesmasale{ongo dos dias simu-
lados. Nos trés comportamentos, entretanto, verifica-segrande oscilacao na escolha
do tempo de partida. Dada a rigidez da estratégia de seleg@&owbo de partida, que néo
considera qualquer tolerancia & antecipagéo ou ao atraserpndo sempre chegar exata-
mente no horario desejado, 0 motorista tende a ajustaadiarite seu tempo de partida.
Por outro lado, a flexibilidade do comportamento habituajyfa 6.11), caracterizada
pela tolerancia ao atraso e indiferenca a antecipacaojteermaior constancia na selecao
do tempo de partida. A mesma tendéncia € verificada na seliecémia, condicionada
pela necessidade de uma melhoria significativa.

Os gréficos da Figura 6.12 ilustram os tempos de viagem mpdiascada populacao
homogénea. A grande oscilacdo do tempo de viagem indivithsainotoristas aleatérios,
seletivos e conservadores é refletida no tempo médio demmipgea o par OD. O mesmo
acontece com o comportamento habitual, onde a pequenagéxdos tempos de viagem
experimentados pelos individuos da populacdo resultamegmena variagdo do tempo
médio de viagem para 0 mesmo par OD. Os valores de tempos snédEspectivos
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desvios padrdo sao apresentados na Tabela 6.1. Uma oldsemtgyessante é o alto
valor da média verificada para a populacdo de motoristasuaddiem relacdo as outra
populacdes. A flexibilidade caracteristica deste compwetdo permite que tempos de
viagem elevados sejam tolerados, desde que a condicdo gadehanterior ao limite
tolerado de atraso seja satisfeita.

Certamente que populacbes homogéneas representam sguagdtéticas que ndo
sao verificadas em sistemas reais. Uma segunda série damexmtes foi realizada, onde
a composicao da populacéo foi variada em termos da fracdootleristas de mesma
personalidade, como apresentado na Tabela 6.2. Os graéidegura 6.13 ilustram a
variacao do tempo de viagem média para cada configuracagodéapéo, considerando
as viagens realizadas entre as zonas 109 e 105 da rede simakdd trabalho. Em todas
as situacgodes, verifica-se uma oscilagdo nos valores dossamgdios, mesmo para a po-
pulacdo com predominéncia de motoristas habituais. Aingangste caso se verifique o
menor desvio padréo, a populacao € afetada pela rigidezdpatamento de motoristas
como os aleatdérios, seletivos e conservadores.

Nos graficos das Figuras 6.14 e 6.15, ilustra-se o compontande escolha de tempo
de partida para as duas extensdes propostas ao compoxdrabittial, ou seja, motoris-
tas com tolerancias a antecipacao e ao atraso relativas@o tde viagem, e motoristas
com tolerancias a antecipacao e ao atraso absolutas, tieapemte. Nesta série de expe-
rimentos, apenas populagcées homogéneas foram consiselal@abela 6.3 encontram-
se listados os valores para as tolerancias relativas, stqualores para as tolerancias
absolutas encontram-se na Tabela 6.4. Verifica-se uma @rarécdo na escolha do
tempo de partida para motoristas com tolerancias relatairagda que se aumente o ni-
vel de tolerancia a antecipacéo para 100% do tempo de viagpenimentado. Como
a tolerancia é condicionada pelo tempo de viagem, para t®fopgos a tolerancia sera
maior, e sera menor para tempos mais curtos. A oscilaca@®oys de viagens experi-
mentados fazem com que os limites superior e inferior deinéa do motorista também
apresentem grande variabilidade, dificultando que o tereprhdgada verificado perma-
neca entre esses dois limites (Figura 6.14). Para tolesuatisolutas, como os limites
inferior e superior de tolerancia ndo dependem do tempoatgem e permanecem cons-
tantes ao longo do periodo de simulacédo, torna-se cada \isZao# fazer com que o
tempo de chegada verificado permaneca entre esses limgesg(l6.15). As variacdes
dos tempos médios de viagem sdo apresentadas nos graficgsidad-16.

Segundo cenario

No segundo cenario considera-se a presenca de sistemd®mheaigio capazes de
antecipar ao motorista o estado predominante da rede. Nenimieracdo do motorista
com a fonte de informac&o é possivel, entretanto. Além dagewis realizadas no par OD
109-105, também foram analisadas as viagens dos pares0#08-101-002, com duas
opcOes de rotas para cada par, apresentadas nas Figuras @1, respectivamente.
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Com o obijetivo de verificar o impacto das informacdes anéetap sobre o estado do sis-
tema, dois incidentes foram provocados em dois arcos daEdeo qlinquagésimo dia,
permanecendo até o fim do periodo de simulacdo. Os incidiemées inseridos na rede
a partir da exclusédo de uma das faixas de trafego nos arco®31-21. As populacdes
utilizadas neste experimento sdo homogéneas, formadangioristas habituais. Dois
parametros foram variados: o nimero total de agentes enpoaddacao, a partir de um
fator de multiplicacdogopulation factoy aplicado ao namero total de viagens da ma-
triz OD original; e a fracdo de motoristas informados solsréncidentes. As diferentes
configuracdes de populacéo sédo apresentadas na Tabela 6.5.

Os gréficos das Figuras 6.19, 6.20 e 6.21 ilustram os tempdi®swe viagem para 0s
pares 109-105, 105-104, e 101-002, respectivamente. Eas tslsituacdes, verifica-se
uma tendéncia dos tempos médios de viagens de estabilizangpatamares diferentes
do patamar original, anterior & aplicacdo dos incidentegimoquagésimo dia. Interes-
sante observar que, no caso do par 105-104 (Figura 6.2@}e0os passa a estabilizar em
patamares até mesmo inferiores a situacao anterior aoenies. Alguns fatores podem
estar associados a este comportamento, como por exemplity@ncia de outras rotas
em arcos comuns aos das opc¢des de rotas para este par ODdawa gropria flexibi-
lidade do comportamento dos motoristas habituais, quersifeientes a antecipagao.
Observa-se contudo que, em quase todas as situacdes (feda pares OD), uma po-
pulacéo desinformada sobre incidentes na rede configurgm@s casos, estabilizando
guase sempre nos piores patamares. Por outro lado, como h09a05 (Figura 6.19),
informar todos os motoristas da populacéo pode néo ser anesltratégia. A variacao
do nimero de motoristas na rede, para os trés pares OD, tapavéoe exercer influéncia
na configuracdo do sistema apdés a aplicacdo dos incideatesgnverificando 0 mesmo
padréo de reorganizagao do sistema para o mesmo par OD.

Conclusodes

As caracteristicas dos sistemas multiagentes, princgrgkmo que refere a sua pre-
missa dirigida ao processo, torna este campo multidis@plim terreno fértil para a
emergéncia de ferramentas orientadas a modelagem e aawvali@ sistemas complexos
de natureza fortemente dindmica. Aliados a abordagem desestacao microscopica do
trafego, MAS apresentam-se como uma metodologia adequedaagle contribuir para
0 entendimento das novas medidas de desempenho impostaspleicoes baseadas em
tecnologias ITS.

Principais contribui¢cdes do trabalho

No caso especifico deste trabalho, o uso de um modelo cagbdiseado em uma
teoria BDI demonstrou um grande potencial na descricdo amanismos de raciocinio
envolvidos no processo de decisdo. Trés principais camdls sédo identificadas neste
trabalho. Em primeiro, o tema abordado nesta pesquisa peoma associacdo mais
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estreita entre duas areas multidisciplinares, MAS e IT§e8ndo uma interface que pro-
duz beneficios mutuos. As tecnologias ITS encontram em MA&Bsnadequados para
representarem sua natureza complexa, em diferentes dévaisstracdo. Por outro lado,
ITS também apresenta-se como um dominio de aplicacdo dksgi@ra os especialistas
de MAS, onde podem testar suas técnicas e métodos em prabiemis, estimulando
o desenvolvimento dos sistemas multiagentes. Em segurajaicacéo de uma teoria
BDI na elaboracdo do modelo cognitivo do motorista, suaemgintacdo efetiva, e sua
aplicacao e simulacdo em diferentes cenérios de trafegmmsram que é factivel a uti-
lizacdo de agentes BDI para representacdo e simulacaotdmagscompostos por um
grande numero de elementos cognitivos. Ao contrario dedalgens tradicionais, que
optam pela utilizacdo de agentes reativos na represergagiitulacéo de sistemas com
muitos elementos, as simulac¢des de popula¢des compostage@onsideravel nimero
de motoristas BDI foram realizadas com éxito. Este resoltachbém serve para motivar
a utilizacéo de abordagens baseadas em agentes BDI entépBgaais similares. Final-
mente, este trabalho demonstra a validade de modelos eagfoubaseados em agentes
como ferramenta adequada a representagcédo do comportamersaoo em simulagcéo mi-
croscopica de trafego. A representacao e avaliacao dagexdsticas humanas tém papel
fundamental no entendimento do impacto das tecnologiasl§&nde esforco ainda tem
sido orientado no desenvolvimento de modelos e ferrameafzzes de considerar e tra-
tar as novas medidas de desempenho relacionadas com o pediiério. O ambiente de
simulacdo implementado representa uma grande contrdugste sentido, permitindo
a representacdo explicita do comportamento humano e swagéb com as tecnologias
ITS.

Propostas para desenvolvimentos e trabalhos futuros

A abordagem metodoldgica sugerida permitiu a extenséo dielmanicroscopico
do DRACULA que passa a suportar a geracado de demanda poregnantero de agen-
tes. Entretanto, alguns desenvolvimentos ainda precisamealizados. Um primeiro
passo seria a integracao de interpretador capaz de exesupdaeinos especificados em
AgentSpeak(L). No momento, a camada cognitiva do agenteriatat € implementada
em Java, integrando um interpretador JAM usado para ematnéantica operacional da
linguagem desenvolvida por Rao (1996). Como solucéo, atatgra do agente passara
a incorporar o interpretador AgentSpeak(XL), apreseneaddBORDINI et al., 2002).
Ha também a necessidade de melhorar a integracdo opefaireaa implementacao
do modelo de demanda, MADAM, e o software DRACULA. A intedaentre os dois
maddulos é implementada a partir da troca de arquivos, o dicelth a extensdo do mo-
delo multiagente. Esta integracdo permitira a impleméatalp terceiro cenario, que
considera a interacdo do agente motorista com fontes eadgininformacdo durante
a execucédo da viagem, permitindo-lhe corrigir seu cursq@atgamente. No momento,
nao € permitido aos agentes alterar seus itinerarios, quéesidos antes do inicio da



172

viagem. No que se refere aos modelos de comportamento, ésaeieea validagdo e
calibracéo para que possam ser utilizados em cenarios @#i®s modelos também po-
dem ser facilmente integrados. Neste sentido, a linguaggemtSpeak(L) podera servir
como uma interface de programacéo (API) para a implementas@nulacéo de diferen-
tes estratégias de decisdo. Por fim, sugere-se a utilizacticas de programacao e
desenvolvimento que permitam melhorar o tempo de execwg@sighulagdes, como, por
exemplo, a execuc¢do distribuida ou paralela de agentes.

Além das propostas de aprimoramento do trabalho realizadnte o programa de
doutorado, os resultados obtidos com sua conclusdo memivalgumas sugestdes que
podem ser utilizadas como temas de novos projetos de pas@uisiplementacao de di-
ferentes mecanismos de aprendizagem e buscar capacitgriesa elaborar seus planos
dinamicamente podem contribuir no desenvolvimento de toedk comportamento dos
motoristas. O desenvolvimento de uma meta-arquitetueagpagente motorista, capaz de
suportar diferentes representacdes do conhecimentoegsaxde raciocinio (ndo apenas
BDI) pode facilitar a integragéo de diferentes niveis deadande decisdo. Por fim, a cri-
acdo de um ambiente multiagente integrado, para modelayemlacao e avaliagao de
diferentes tecnologias ITS, representa um desafio moéy@ara um futuro projeto neste
dominio de pesquisa.
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