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ABSTRACT

The rapid growth of urban areas has a significant impact on traffic and transporta-
tion systems. New management policies and planning strategies are clearly necessary to
cope with the more than ever limited capacity of existing road networks. The concept
of Intelligent Transportation System (ITS) arises in this scenario; rather than attempting
to increase road capacity by means of physical modificationsto the infrastructure, the
premise of ITS relies on the use of advanced communication and computer technolo-
gies to handle today’s traffic and transportation facilities. Influencing users’ behaviour
patterns is a challenge that has stimulated much research inthe ITS field, where human
factors start gaining great importance to modelling, simulating, and assessing such an
innovative approach.

This work is aimed at using Multi-agent Systems (MAS) to represent the traffic and
transportation systems in the light of the new performance measures brought about by
ITS technologies. Agent features have good potentialitiesto represent those components
of a system that are geographically and functionally distributed, such as most components
in traffic and transportation. A BDI (beliefs, desires, and intentions) architecture is pre-
sented as an alternative to traditional models used to represent the driver behaviour within
microscopic simulation allowing for an explicit representation of users’ mental states.

Basic concepts of ITS and MAS are presented, as well as some application examples
related to the subject. This has motivated the extension of an existing microscopic sim-
ulation framework to incorporate MAS features to enhance the representation of drivers.
This way demand is generated from a population of agents as the result of their decisions
on route and departure time, on a daily basis. The extended simulation model that now
supports the interaction of BDI driver agents was effectively implemented, and different
experiments were performed to test this approach in commuter scenarios.

MAS provides a process-driven approach that fosters the easy construction of mod-
ular, robust, and scalable models, characteristics that lack in former result-driven ap-
proaches. Its abstraction premises allow for a closer association between the model and its
practical implementation. Uncertainty and variability are addressed in a straightforward
manner, as an easier representation of humanlike behaviours within the driver structure is
provided by cognitive architectures, such as the BDI approach used in this work. This way
MAS extends microscopic simulation of traffic to better address the complexity inherent
in ITS technologies.

Keywords: Multi-agent systems, BDI architecture, decision-making,intelligent trans-
portation systems, traffic modelling, microscopic traffic simulation.



RESUMO

Uma abordagem baseada em modelos BDI para avaliação do processo de decisão de
motoristas no tráfego urbano

O rápido crescimento das regiões urbanas tem impacto significativo nos sistemas de
tráfego e transportes. Políticas de gerenciamento e estratégias de planejamento alterna-
tivas são claramente necessárias para o tratamento da capacidade limitada, e cada vez
mais deficitária, das redes viárias. O conceito de Sistemas Inteligentes de Transportes
(ITS) surge neste cenário; mais do que procurar aumentar a capacidade por meio de mo-
dificações físicas na infraestrutura, sua premissa baseia-se na utilização de tecnologias
avançadas de comunicação e computação para melhor gerir os recursos de tráfego e trans-
portes atuais. Influenciar o padrão do comportamento dos usuários é um desafio que tem
estimulado muita pesquisa na área de ITS, onde fatores humanos passam a ter grande
importância na modelagem, simulação e avaliação dessa abordagem inovadora.

Este trabalho tem como foco a utilização de Sistemas Multiagentes (MAS) na repre-
sentação dos sistemas de tráfego e transporte, com base nas novas medidas de desempenho
impostas pelas tecnologias ITS. As características de agentes têm grande potencial para
representar componentes geográfica e funcionalmente distribuídos, como a maioria dos
elementos no domínio da aplicação. Uma arquitetura BDI (beliefs, desires, intentions)
é apresentada como alternativa a modelos tradicionais, usados para representar o com-
portamento do motorista em simulação microscópica, considerando-se a representação
explícita dos estados mentais dos usuários.

Os conceitos básicos de ITS e MAS são apresentados, assim como exemplos de apli-
cações relacionados com o tema do trabalho. Esta foi a motivação para a extensão de um
simulador microscópico existente, no sentido de incorporar as características dos MAS
para melhorar a representação dos motoristas. Assim, a demanda é gerada a partir de uma
população de agentes, resultando da decisão sobre a rota e o tempo de partida ao longo
de vários dias. O modelo estendido, que passa a suportar a interação de motoristas BDI,
foi efetivamente implementado e foram executados diferentes experimentos para testar a
abordagem em cenários de tráfego urbano.

MAS permite uma abordagem direcionada a processos que facilita a construção de re-
presentações modulares, robustas, e extensíveis, características pouco presentes em abor-
dagens voltadas ao resultado. Suas premissas de abstração permitem uma associação
direta entre modelo e implementação. Incerteza e variabilidade são assim tratadas de
maneira mais intuitiva, uma vez que arquiteturas cognitivas permitem uma fácil represen-
tação do comportamento humano na estrutura do motorista. Desta forma, MAS estende
a simulação microscópica de tráfego no sentido de melhor representar a complexidade
inerente às tecnologias ITS.

Palavras-chave:sistemas multiagentes, arquitetura BDI, processo de decisão, sistemas
inteligentes de transporte, modelagem de tráfego, simulação microscópica de tráfego.
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1 INTRODUCTION

1.1 Overview

The rapid growth of urban areas has deserved special attention from scientific and

technical communities over the last years. New management policies and planning strate-

gies are necessary to tackle the problems that arise from today’s urban scenarios. Not

surprisingly, transportation and traffic systems are objects of concern in many of these

problems as they play an important and indispensable role incontemporary society. How-

ever, road infrastructures are no longer sufficient to meet the increasing demand and traffic

congestion is frequently encountered in most commuters’ journeys. This implies consid-

erable economic, social, and environmental losses, which should be minimised. Physical

modification to the road infrastructure is no longer the bestalternative to tackle such a

problem. Besides the high cost of implementation, they cause disruptions and can dam-

age the environment. Alternatively, some efforts have beenidentified in order to increase

road capacity by improving the efficiency of traffic control systems. Although such efforts

have addressed some of the problems arising from traffic jams, they are not considered to

be a lasting solution.

Nonetheless, researchers still seek alternative means to cope with traffic and trans-

portation specificities. The first attempts at improving road capacity have relied on deal-

ing with the static part of the system, namely the road infrastructure and control systems.

However, another approach has been experienced, which, on the other hand, relies on

maximising the use of the actual road capacity through directly influencing users’ be-

haviour patterns. The concept of Intelligent Transportation System (ITS) arises in this

scenario. The growing advances in communication, as well asin computer technologies

have encouraged the use of such systems to tackle problems inthe field of traffic and

transportation engineering.

The underlying concept of ITS is to ensure productivity and efficiency by making

better use of existing systems. It is mainly concerned with the application of distributed

solutions; each of which deals with specific issues of users’needs on an individual basis.

Modifying travel patterns through directly influencing user behaviour can be seen as the

main premise within these technologies. Autonomy and intelligence are two concepts
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that should be present in such systems. Furthermore, integrating all factors, both dynamic

and static, which can somehow effect the traffic flow is also central to ITS. So, computer

and communication technologies become key ingredients in the process of implementing

these systems. In this way, all components are expected to work together in a co-operative

environment to maximise the overall efficiency of traffic andtransportation.

Models used to represent traffic systems need to better handle characteristics such as

the human behaviour and the temporal–dependent nature, which are brought to the user

decision level. Such a need forces the use of a lower-level abstraction to describe traffic

systems that, on the other hand, leads to an increasing complexity. Thus, practitioners will

need systems capable of dealing with the new performance measures brought about by the

deployment of such intelligent and adaptable technologies. Human behaviour becomes a

variable of huge importance to be coped with, as it plays the central role in assessing pub-

lic acceptance for ITS. Owing the use of simplified approaches, some traditional models

fail in representing these complex scenarios. Therefore, many efforts have been identified

in order either to elaborate new models from scratch or to adapt traditional ones to meet

the need for representing ITS requirements.

Since representing human behaviour in models for simulation purpose becomes im-

perative, agent-based techniques could be considered as very appropriate approaches to

represent transportation and traffic systems. Multi-agentSystem (MAS) is a sub-field

of Distributed Artificial Intelligence (DAI), which has deserved an increasing interest in

the last decade. The rapid evolution in the available computational resources, both in

hardware and in software, which support a widely physicallydistributed computing envi-

ronment, has contributed to that. Additionally, the increasing demand for suitable tools

to represent the complexity inherent in some application domains has motivated much

research on MAS.

The concept of MAS can be basically seen as a modelling approach devised to rep-

resent systems whose entities, coined agents, exhibit intelligence, autonomy, and some

degree of interaction, both with one another and with the environment. The abstraction

approach of MAS consists of representing a system by multiple agents that exist in a com-

mon environment and interact in order to achieve specific goals. Thus, an agent can be

any entity capable of perceiving facts through sensors and acting upon the environment

through effectors. Some degree of interactions will also imply the presence of communi-

cation capabilities. Furthermore, some agent-based approaches present powerful tools for

representing mental attitudes, such as beliefs, desires, intentions, emotions, and others,

which are intrinsic in human beings. Agent-based models areideal to deal with entities

that are geographically and functionally distributed, anda good ability of representing en-

tity ontology ensures agent-based models’ scalability androbustness, which are desirable

characteristics for ITS models.
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1.2 Motivation

In traffic modelling it is possible to distinguish between two approaches, namely the

macroscopic and the microscopic point of views. Macroscopic models rely on flow the-

ory rather than representing individual particles and are usually based on assignment al-

gorithms. A rigid structure, an origin–destination (OD) matrix, is used to represent trip

distributions between all possible origins and destinations. The assignment is an iterative

process that seeks a steady state; in other words, a state such that the average travel time

for each link cannot be minimised by assigning trips to otherroutes between certain origin

and destination. To the contrary, microscopic models rely on an individual representation

of each driver–vehicle particle, which moves throughout the network. OD matrices are

equally used in microscopic models to represent travel patterns between different zones

within the traffic system.

In this scope of traffic representation, DRACULA is a tool that implements a micro-

scopic model and will deserve a special attention in this thesis. Drivers are extracted from

a population of potential drivers, which is estimated from an OD matrix and will compose

the demand for travel on a certain day. The demand of a day, forinstance dayk, is formed

of drivers from the population that have effectively decided to make a trip on that day.

Therefore, in a hundred-day simulation, for instance, different configurations for the de-

mand can be set on each day. Contrary to models based on a fixed trip matrix, DRACULA

is based on a variable demand, where uncertainty and variability are the underlying con-

cepts. So, the steady state can be identified within a distribution of probability rather than

being identified by a single value of flow. Drivers make their route choices accounting

for past experiences, which are stored in driver’s memory interms of travel time for each

link; it is then a quantitative assessment. However, such anapproach does not correspond

to reality as in most of the cases decisions are made with regard to qualitative aspects that

drivers believe to be held within the system.

In order to illustrate the motivations for this work, one mayimagine a situation in

a daily life of a traffic network user; in other words, certaindriver named Joe. One of

Joe’s friends, say Mary, invites him to come over for a happy hour on dayk, for instance.

However, Joe is not so familiar with the streets in Mary’s neighbourhood and does not

know for sure how he could get there. To cope with this possible limitation, Joe decides

to ask for some help. He logs onto the Internet and accesses a traffic information system

application.

Knowing where to get to and estimating the time he will need toperform the journey,

Joe can now plan his trip. Thus, he selects a course of actionsthat will result in his

objective. He chooses a time to leave and a route to follow so that he can arrive about

the time he has committed to Mary. Once he has planned his journey, he can execute it.

While Joe has not found any obstacle within it, he can keep executing his original plan.

However, he just finds that certain road on his itinerary is interrupted. As Joe is not able

to drive through that road any more, he has to reconsider his options and find another
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alternative route to get to Mary’s house. Therefore, Joe abandons his original plan and

starts executing the new one. In another point in time, Joe just realises that he has not

got enough petrol to get to his destination. Albeit he knows he will probably be late, he

prioritises changing his plans once again in order to stop somewhere to get more petrol.

After doing so, he is finally able to arrive at Mary’s home.

Analysing the simple story above, it is possible to identifysome characteristics in

Joe’s behaviour that are very interesting to be featured in the driver representation of

microscopic simulation models.

• the driver presentsautonomyas he can identify on his own what his objectives are

and which actions he needs to perform to yield the expecting results;

• through hissocial ability, as in the example above, a driver can ask for some help

in order to ease the execution of his actions, for instance, by contacting a service

provider such as a traveller information centre;

• responding to traffic signals and breaking in order to avoid colliding with others are

some well known examples wherereactivityis realised. Nonetheless, perceiving an

interruption and adopting another route can also be modelled as a reaction by the

driver;

• the driver presentsadaptabilityin the sense that he must be able to reconsider his

options and to adopt another strategy in order to accomplishhis goals in the case

the original plan becomes inadequate;

• a driver also must be able to prioritise the execution of an action to the detriment

of his original plans, for instance, arriving later after adopting another route that

is more convenient owing some other reason. In this sense, a driver presentspro-

activity.

Considering these very human characteristics could be extremely useful in tools aimed

at assessing drivers’ behaviour. However, it is not easy to represent such features within

existing models; their structures are so rigid that scalability is a feature they lack. Bearing

this possible limitation in mind, modelling drivers as entities fully endowed with reason-

ing abilities is the main motivation for this work.

1.3 Goals

This work is aimed at relevant aspects of the potentials of agent-based techniques

in modelling human behaviour within Intelligent Transportation Systems. Coping with

drivers’ decision-making in simulation frameworks is the subject of main concern. De-

vising a computational tool that allows for modelling, implementing, and analysing this
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decision-making is the challenge for this work. This effortseeks to ease the assessment

of new measures brought about by the deployment of ITS technologies.

However, the number of ITS scenarios are too vast and there are so many situations

drivers can be involved with and which demands their making of a variety of decisions.

Thus, the focus of this thesis is given to commuter scenariosthat involve decisions such

as which route to take and what time to depart. A BDI-based architecture is proposed as

the underlying structure of the driver agent, which may serve to a wide range of purposes

within microscopic simulations. In order to test and demonstrate the feasibility of the

approach, a framework is proposed on the basis of an extension to the DRACULA model,

where demand can be characterised, evaluated, and analysedon the basis of a population

of driver agents.

1.4 Methodology

The methodology adopted in order to reach the aim of the thesis and to accomplish its

goals is basically composed of the following parts.

• to describe the application domain by means of agents and their features. In order

to accomplish this, the basics of ITS and MAS are briefly presented and potential

connections between these two fields are discussed. Examples are gathered from the

literature, which illustrate the research efforts toward using agent-based techniques

as a designing tool for simulation and evaluation environments. Although a number

of possible applications have been identified, this step is focused on representing

demand as a result of decision-making in two levels: route and departure time;

• to devise a cognitive agent model to serve as the underlying structure for modelling

the decision-making process. The ease for straightforwardly describing the con-

cepts of mental attitudes, such as beliefs, desires, and intentions, as well as their

relation within the cognitive process motivated the adoption of a BDI-based ap-

proach;

• to choose a BDI theory capable of supporting the practical implementation of the

cognitive driver agent. Practical implementation of BDI architectures has defied

researchers within the MAS research community. A great challenge with this con-

cern has been how to overcome the difficulties of applying such an approach to

societies composed of a huge number of cognitive participants, mainly those sorts

with a stringent time-dependent nature. Some scientific works have been focused

on addressing such drawbacks and relatively recent commercial agent development

tools are featured with BDI models to support practical implementation;

• to design and to implement the cognitive driver agent architecture with the neces-

sary mechanisms to allow interaction with others and with the environment. The
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agent architecture herein proposed, though designed as theframework to base the

BDI reasoning, is also intended to support integration within different levels for

different purposes in ITS;

• to design and to implement a microscopic simulation environment aimed at testing

the feasibility of the approach proposed. Rather than developing it from scratch, the

environment is implemented on the basis of an extension to anexisting microscopic

simulation model;

• to specify and to carry out simulation experiments within the framework imple-

mented. Commuter scenarios are suggested to test the generation of demand as a

result of decisions rationally made by the BDI agents that compose the population

of drivers.

1.5 Challenging issues

One main idea herein presented is to see Intelligent Transportation Systems as a

ground where theories from Computer Science can be not only applied but also generated

and tested on an integrated basis. The different ways in which information can be handled

and processed within ITS scenarios inspire the developmentand deployment of a huge

range of technologies. This suggests that ITS can be seen from different perspectives,

for example, from software to hardware, from local solutions to the use of distributed

computer systems, and so forth. Modelling approaches also differ from one another and

are very likely to be affected by different levels of granularity, for instance, dealing with

the system as entities in an agent society or modelling the details of an embedded system

on its own rights. Moreover, ITS can also be classified as bothsoft and hard real-time

systems, depending on the several types of time constraintsthat are identified. And en-

dowing their components with autonomy, adaptability, reactivity, and pro-activity, so that

they can be dealt altogether with as Intelligent Systems hasturned ITS into an interesting

ground for Computer Science.

Although the use of agents seems to be very adequate to cope with representing speci-

ficities of today’s traffic and transportation scenarios, linking ITS and MAS together poses

challenging issues.

• how to handle a large number of interacting heterogeneous elements, with different

goals, skills, reasoning capabilities, and degree of autonomy;

• how to address different levels of complexity, both with respect to inter- and to

intra-element interactions;

• as the driver becomes an important actor within ITS, how to cope with the com-

plex nature of humanlike behaviour, especially with that concerning reasoning and

decision-making. This very feature of the driver is also affected by whom it is in-
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teracting with, which implies it needs to dynamically switch between reactive and

cognitive behaviours, in different levels;

• as there may potentially be a huge number of entities, both co-operation and com-

petition may arise from such a heterogeneous society. So, conflicting situations

are very likely to happen and must be addressed in either relation. In this sense,

communication and co-ordination need to be represented, aswell;

• how to represent the information flow throughout the system and how such infor-

mation is interpreted by heterogeneous entities;

• the environment is very likely to be affected by the behaviour of several of the

traffic components, and being capable of observing and interpreting its instant state

is one main source of information. How to represent and parameterise the traffic

environment so that involving components are able to perceive from and act upon it.

The modular structure of a framework relying on agent-basedtechniques seems to suit

the demands for testing and assessing different rational and social behaviours of ITS com-

ponents. The ease to represent communication, interaction, reasoning, decision-making,

planning, and learning, for instance, has motivated and reinforced the thought of MAS

as the starting ground where practitioners, engineers, andscientists will devise, test, and

apply today’s traffic and transportation technologies.

1.6 Structure of the thesis

The remaining of this thesis is organised as follows. An overview of Intelligent Trans-

portation Systems is presented in Chapter 2, which gives special attention to Advanced

Traveller Information Systems (ATIS) as an important exogenous source of information.

In Chapter 3, the basic concepts of Multi-agent Systems (MAS) are introduced, as well

as some examples of agent-based techniques applied to the field of traffic and transporta-

tion engineering. Mental attitudes such as beliefs, desires, and intentions, are the subjects

of main interest in Chapter 4, and a model to represent intentional drivers within micro-

scopic simulation is presented in Chapter 5. An extension toan existing microscopic sim-

ulation model, DRACULA, is proposed in Chapter 6. Such an extended framework aims

at incorporating agent features in order to address the lackof suitable representations for

decision-making as an important instrument for demand formation. It also presents and

discusses the results obtained by the implementation and simulation of the MAS model

devised. Conclusions are drawn in Chapter 7, as are presented further developments and

some proposals for future works. The OD matrix and the network description files used in

the experimental framework are made available in Appendix Aand Appendix B, respec-

tively, whereas Appendix C is used to provide a brief explanation on how incidents are

modelled in DRACULA. An extended abstract of the thesis, in Portuguese, is presented

in Appendix D.
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2 INTELLIGENT TRANSPORTATION SYSTEMS

2.1 Overview

The increasing demand in urban areas has awarded the attention of important research

groups around the world. Notably, physically modifying traffic infrastructures is no longer

the best way to improve services. Such an initiative leads toserious economics, social,

and environmental problems. Other alternatives have been investigated over the years in

order to optimise the limited capacity of traffic networks, for instance, through improving

control systems. Another way relies on providing travellers with relevant information in

order to aid their decisions and, consequently, to influencetheir travel patterns. Intelli-

gent Transportation Systems (ITS) arise then from the growing advances in communi-

cation and in computing to overcome the more than ever limited capacity of traffic and

transportation resources. Instead of intervening physically, these systems are expected

to ensure productivity and efficiency by making better use ofexisting resources. In gen-

eral, ITS has the potential to provide travellers with up-to-date information suited to their

particular requirements through a wide variety of mechanisms and technologies (CHAT-

TERJEE; MCDONALD, 1999).

So, creating intelligent systems that are able to communicate and to co-operate with

one another toward the improvement of capacity usage is at the heart of ITS (ADLER;

BLUE, 1998). This has motivated the development and widespread use of such technolo-

gies. They require the collection of large amounts of data, turn them into ‘intelligence’ and

then convey relevant and timely information to managers andusers (BARFIELD et al.,

1989). It is also important to bear in mind that the term coined to describe the application

of these systems is not restricted to ground traffic and transport. ITS involves all trans-

port modes, all transport users, and every kind of vehicle, as well as their management

and control. It reflects the recognition of all transportation components, both passive and

active, namely the environment, users, and service providers.

It is important to remember that more than being a topic of research, ITS is of paramount

importance and has great influence on peoples’ lives. Therefore, the development of this

applied knowledge field has attracted the interest of both the scientific research commu-

nity and different sectors of the society (BOCHNER, 1998).
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2.2 Brief history

Although the term has just been coined, ITS applications canbe dated to the early

1970s. The first aim was at addressing control system issues through developing more

responsive traffic signals. This approach relied on responsiveness to meet the highly

varying demand in urban areas. Between the late 1980s and mid1990s, in the United

States, such applied technologies were designated by Intelligent Vehicle and Highway

Systems (IVHS), as earliest examples in that country were mostly related to highway and

expressway scenarios. Notably, in many parts of the world, namely the United States,

United Kingdom, Australia, and Japan, the road and vehicle industries have been taking a

leading role both in developing and promoting ITS (GARRETT,1998).

From the late 1980s on, efforts to tackle the growing problemstemming from urban

traffic congestion have been devoted to providing travellers with timely and suited in-

formation. The main assumption of this approach is concerned with increasing traffic

efficiency by means of influencing drivers’ behaviour patterns (BARFIELD et al., 1989).

Hulse et al. (1998) give a broad view of how such technologiescan be implemented and

used toward improving traffic systems.

Intelligent technologies applied to the field of traffic and transportation engineering

have experienced a great evolution in the last decade. Although much has been done, ITS

is still in its earliest ages and there are still great potentialities to be exploited (BOCHNER,

1998).

2.3 Advantages of ITS

The Intelligent Transportation Systems have great potential to provide both users and

service providers with a wide range of benefits (BOCHNER, 1998). Some of them can

be already perceived, whereas others are expected to becomereality in the near future

(BOCHNER, 1998; GARRETT, 1998).

• safetyis one of the most important issues that concern ITS. The increasing number

of vehicles moving throughout a network has contributed to hazardous and dan-

gerous scenarios, which must be forecasted and prevented. Automatic control of

vehicles could promote a high level of safety, as could computer-aided driving to

help individuals to take the right decisions at hazardous situations, especially for

inexperienced or less skilled drivers;

• the environmentis expected to benefit from ITS by means of two main factors,

namely the decreasing demand and more efficient vehicles. The former can be

achieved by pricing policies, both on road usage and on vehicles’ occupancy, boost-

ing public transport modes. On the other hand, non-pollutant fuels and alternative

works engines would contribute to minimiseCO2 emissions. Also, some other on-

board facilities are being investigated toward improving interactions both with other
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vehicles and with network resources. This way, road capacity might be enhanced as

platoons are formed by coupling mechanisms and electronic control of travel speed,

in response to roads’ velocity limit;

• Although today’s ITS technologies are not accessible to thewhole population, as

yet, equity is to be achieved as they prove to enable high quality, cost effective,

reliable and efficient information both to private and to public transport users, on

either individual or collective basis. It is also importantto bear in mind that there are

efforts by government and industry toward consensually achieving ITS standards;

• in a broad perspective safe and easymobility, for both people and goods, is all ITS is

concerned with. Optimising transport modes, routes, and travel time, for instance,

are the ways provided by ITS to overcome lack of mobility. Quite related to the

issue of equity, above, mobility must contemplate groups ofdisabled and elderly

people, as well;

• ITS technologies are likely to improve theefficiencyof road networks. They seek to

avoid, or at least to postpone, the need for physical modifications to infrastructures.

The specificities of such intelligent systems will also impose specific operational

and maintenance requirements, which should be taken into account, as well;

• business opportunitiesare likely to emerge, as ITS originates new trends for con-

sumers and service providers. Delivery, tourism, restaurants, hotels, information

hosting and provision, and others will profit from efficient communication and data

processing granted by ITS.

2.4 Basic architecture for ITS

The Intelligent Transportation Systems basically rely on the application of distributed

solutions, which address specific issues of traffic and transportation. And by working

together on a co-operative basis, they seek to maximise the overall efficiency of the system

(BARFIELD et al., 1989). According to Mast (1998), a basic structure of an ITS would

comprise the following modules, whose interactions are illustrated in Figure 2.1.

• theAdvanced Traveller Information Systems(ATIS) have emerged as a key compo-

nent of ITS. They include a number of facilities to provide drivers with real-time

and in-vehicle information, suited to their needs on eitherindividual or collective

basis. Such information can be related to navigation and route guidance, motorist

services, road signing, and hazard warnings, for instance;

• the concept ofAdvanced Vehicle Control Systems(AVCS) refers to the mechanisms

that aid individuals in driving tasks, particularly in either emergency or hazardous

situations. In more audacious approaches, such systems could even take over some

or all of the driver functions;
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Figure 2.1: Intelligent Transportation Systems.

• Commercial Vehicle Operations(CVO) comprise the ITS mechanisms to address

special needs of commercial roadway transportation, including vehicle identifica-

tion, location tracking, weight-in-motion, clearance sensing, and record keeping, to

mention some. This way, ITS represents a great deal in turning the high costs in-

volved in such technologies into worthwhile outcomes, bothto transportation com-

panies and to drivers;

• theAdvanced Traffic Management Systems(ATMS) are responsible for monitoring,

controlling, and managing traffic on streets and higher order roads. They play a cen-

tral role within the architecture. In general terms their aim is to reduce congestion,

which is basically accomplished trough controlling and constraining vehicles’ route

diversion. Some technologies encompassed in this module include route guidance,

automated traffic signal timing, variable message signs (VMS), and priority control

systems;

• Advanced Rural Transportation Systems(ARTS) are specially suited to the speci-

ficities of traffic and transport in rural areas. In large countries, these technologies

are of invaluable help to the countryside communities. Emergency notification and

response, vehicle location via GPS, and traveller information are some facilities

provided;

• on the other hand,Advanced Public Transportation Systems(APTS) are concerned

with public transportation within large urban areas. APTS enhances the effec-

tiveness, attractiveness, and the economics of public transportation and includes,

among others, fleet management, automated fare collection,and real-time informa-

tion systems.
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Although each of these modules can be defined on its own right,they must rely on a

common and integrated framework. Only in this way will it be possible to profit from all

the advantages promised by an ITS architecture.

2.5 Some examples of ITS

Applications of Intelligent Transportation Systems have already been turned into prac-

tice. Some of them can be considered as pioneering experiences, as their appearance dates

to prior the term ITS had been formally coined. Undoubtedly they served to motivate

much advance in this field. Examples that are already part of people’s daily lives are

reported in (CHATTERJEE; MCDONALD, 1999).

• area traffic control;

• electronic tolling;

• driver information;

• trip planning systems;

• automatic vehicle control.

Bochner (1998) also lists some practical examples of ITS in use. Most of them have

been focused on higher order roads as freeway systems in the United States and the mo-

torway systems in the United Kingdom, for instance.

• detection and surveillance systems to help transportationagencies to identify inci-

dents;

• ramp metering systems consisting of mechanisms for prioritising and expediting

through movements on freeways;

• electronic toll collection to improve payment by electronic means;

• variable message signs to warn drivers about incidents within their routes and to

post other useful information;

• responsive traffic control systems to meet variable demand and to prioritise special

services, such as ambulances and public transport;

• multi-jurisdictional transportation centres aimed at monitoring and managing trans-

portation operations in a highly efficient manner;

• information systems on the Internet to allow information onprevalent conditions

of urban networks to be accessed from service providers’ websites (LYONS; MC-

DONALD, 1998).
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Although much has already been put in practice, researchersstill work to identify ITS

potentialities. Chatterjee and McDonald (1999) point out some areas where ITS-based

solutions present a great deal of applicability.

• traffic management and control systems are mostly elected asan application field

where novel technologies are tested. Incident detection, area traffic control, and

electronic tolling, for instance, are aimed at improving operational efficiency and

are very likely to exert influence on drivers’ behaviour as they perceive improve-

ments in travel costs;

• in-vehicle devices, such as automatic speed control and anti-collision systems, seek

to improve safety and comfort, as well as operational efficiency. They are also

found to have the potential of altering the perceived attractiveness of a particular

mode;

• traveller information systems are intended to improve knowledge of travel alterna-

tives and network conditions, which is expected to play a central role in decision-

making.

Thinking about all the benefits of ITS architectures feeds the imagination and makes

one envisage the future traffic and transportation systems.And evidence shows it is defi-

nitely not far in the future. This way, Garrett (1998) suggests some interesting forthcom-

ing scenarios for ITS.

• fully automated vehicle control;

• higher order roads as freeways, expressways, motorways, and principal arteries,

operating under fully automatic control, which means hands-off driving;

• some roads operating under driving-assisted mode, allowing for hands-on driving

aided by sophisticated warning systems;

• full integration of all transport modes in order to provide the optimum mix of public

and private services;

• transport user charges will apply across all modes and services;

• vehicles will be ‘smarter’ and safer. They will be equipped with information and

navigation systems, collision avoidance mechanisms, security and Mayday alarms,

drowsiness detection, and black boxes to record and report errant behaviour.
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2.6 ITS related issues

Practical applications of ITS have proven to be of paramountimportance and indis-

pensable to society. However, there remain boundaries to beovercome. According to

Garrett (1998), researchers still have to tackle challenges posed by technical, cultural,

psychological, and economic issues, even though potentialbenefits of intelligent tech-

nologies are undoubtable. This has motivated much work, which turned ITS into a multi-

disciplinary field to which not only researchers but the whole society have been devoting

special interest.

• assessmentis related to how benefits and impacts are to be evaluated. It plays a cen-

tral role in the process of designing and implementing ITS. Currently, researchers

strive to devise adequate computational tools, both hardware and software, for as-

sessing the very complex nature of ITS applications;

• standardshave also become a technical matter of special concern. Finding adequate

means to ensure compatibility, inter-operability, and easy upgrading of systems, as

well as avoiding conflicting communication protocols and transmission media is

imperative. Enabling the interaction of legacy models, systems, and services of dif-

ferent providers is also very important to grant interaction and to the success of ITS

applications. Finding standards has been subject of works carried out by research

groups, technical organisations, and competent authorities around the world.

Besides technical matters, Bochner (1998) also emphasisesthe need for drawing gov-

ernment and public attention. The author suggests some strategic approaches to attract

such support.

• combining resources of different jurisdiction regions, which is necessary to effi-

ciently manage transportation in an inter-jurisdiction fashion. This has been initially

identified as a problem of countries with autonomous jurisdiction units. However,

globalisation has brought that to inter-country level, as in the European Community;

• contemplating local street systems, as most attention has been given to traffic con-

trol systems, which is not so evident for travelling public,mainly public transport

users. These technologies become more evident when providing users with individ-

ual benefits;

• prioritising critical areas within the city, which would avoid implementing complete

systems in unusable segments. This might make benefits more evident in a very

short-term;

• publishing successful experiences, especially those thatbenefit average travellers.

Publicity is always a good way for calling attention of public.
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Yet, Garrett (1998) presents an issue of a more social concern, which is privacy. It

is naturally a polemical subject. However, this topic is also important and the author

suggests it should be considered in a sensitive and non-emotive way. Surveillance and

monitoring systems should work in a way such that individual’s privacy and safeguard are

ensured. And, in the era of telecommunication and the Internet, which have been the great

boosters for the integration of information systems, this brings about thesecuritymatters.

They have revealed to be a challenging technical subject forresearchers, as data get more

and more exposed in such a world-wide web.

2.7 Advanced Traveller Information Systems

Grouping travellers in accordance with their common preferences and characteristics,

identifying effective and potential behaviours, and understanding humanlike decision-

making are the elements toward the development of Advanced Traveller Information Sys-

tems (ATIS). These applications rely on their ability to influence behaviour to tackle the

ever increasing congestions in urban traffic systems. Together with ATMS, these tech-

nologies have proven to be very effective and to produce veryshort-term improvements

(ADLER; BLUE, 1998).

The main premise behind ATIS assumes that by providing userswith timely and ap-

propriately designed information it is possible to modify decision-making and to affect

behaviour patterns. These likely changes are expected to enhance the efficiency of trans-

portation facilities. Adler and Blue (1998) highlight someof the primary goals of provid-

ing travellers with information.

• better managing traffic flow;

• enhancing driving functionalities;

• improving traveller safety.

Accordingly to Barfield et al. (1989), the design of ATIS would have two main pur-

poses, namely to inform and to aid travellers.

• informing is achieved by collecting, designing, and delivering real-time traffic in-

formation;

• on the other hand,aiding is performed on the basis of storing, displaying, and

delivering dynamic route guidance (DRG) and vehicle navigation information.

Whether it is designed to inform or to aid, ATIS is always expected to yield short- and

long-term outcomes, both individually and collectively. For example, improving motorist

response to incidents and peak hour congestion is likely to be achieved on a short-term

basis. However, modifying commuter behaviour patterns towards a more efficient use of

existing transportation resources is expected to be a long-term outcome.
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Although this specific technology has recently gained special interest from scientific

community, applying information systems to the field of traffic and transportation dates

back to the 1950s. Since then, much work has been identified onthe development of

surveillance and real-time information systems to overcome traffic difficulties. About two

decades ago, in-vehicle route guidance facilities were first envisaged, and centrally con-

trolled variable message signs are now becoming more commonwithin many metropoli-

tan areas (ADLER; BLUE, 1998). Over the history, studying and understanding human

factors commence to be preponderant, as people interactiongets to be much more facil-

itated. And it is also true for ITS, where such an interactionis likely to be very affected

by the information provided through exogenous sources. So,assessing its applicability,

public acceptability, and its effects, becomes imperative.

It is important to bear in mind that the term ATIS is used to identify systems that are

aimed at conveying information both to drivers and to general travellers. Some authors

prefer to distinguish between Driver Information Systems (DIS) and Traveller Informa-

tion Systems. In this text the term Traveller Information Systems (TIS) will be used

indifferently.

2.7.1 Advantages of using TIS

Information systems are the relying technologies that endow ITS with the ability to

change traffic patterns by directly exerting influence on themoving elements, which are

the travellers. Such a perspective seems to generalise the traditional approach of seeing as

moving element just drivers and vehicles, yet indistinguishably. In fact, it now considers

the occupancy factor encompassing collective transport modes, as well. The deployment

of information systems promises a wide range of attractive benefits, which are identified

in a number of works such as in (BARFIELD et al., 1989) and (ADLER; BLUE, 1998).

• in economic terms, if compared with traditional approachesbased on physical

modifications to road infrastructures, information systems are considerably much

cheaper;

• collective benefits arise from the fact that potential negative impacts on major social

issues such as land use, environment impact, and air pollution are to be reduced.

However, yet related to equity as highlighted in (GARRETT, 1998), accessibility

to new technologies remains to be a difficulty to overcome;

• by providing real-time information on individual basis, motorists can enhance their

knowledge about the network, which will likely impact future decision-makings.

TIS has a great deal in assisting personal needs, not only during the journey but

specially within the whole process of travel-planning. Despite of being an individ-

ual advantage, the effects of such an information contribute for the more efficient

distribution of travellers’ routes, which may be perceivedon a collective basis, as

well;
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• the political benefits are quite related to the economic ones, as public authorities are

more likely to opt for inexpensive solutions;

• public health is also expected to profit from TIS. These noveltechnologies can

help reducing anxiety and stress associated with travel-planning, way-finding, and

navigating throughout the network;

• improvement of the overall system performance is another important contribution

of TIS. Reductions in travel time, delays, fuel consumption, and emissions are ex-

pected if a significant number of users adhere these technologies.

2.7.2 Categories of TIS

Adler and Blue (1998) grouped traveller information systems (TIS) into three cate-

gories, according to the kind of technologies applied.

• first-generation TIS, dating to the 1960s and 1970s, represent a first attempt at using

communication technologies for information dissemination;

• second-generation TISrefers to today’s ATIS and encompasses a wide range of new

technologies. They have been designed to different purposes, such as dynamic route

guidance, informing current traffic condition on a real-time basis, and conveying

other useful information as off-road traveller services;

• third-generation TISwill allow systems to more effectively respond to travellers’

within-day travel-planning needs and to easily adapt theirfunctioning to users’

travel preferences, ability to acquire spatial knowledge,and attitudes over time.

The authors defend that, in spite of presenting some degree of autonomy, second-

generation TIS cannot be considered really intelligent. Asfor third-generation systems,

their ability to behave both autonomously and proactively toward assisting users’ needs

seems to constitute a domain to which AI-based solutions cancertainly be applied.

2.7.3 Types of information

Surveillance facilities of all sorts gather an enormous amount of data, which need

to be filtered and tailored so that travellers can use it. However, providing travellers

with suitable knowledge certainly poses the question:what is the important information,

when should it be delivered to users, and how should it be presented? Chatterjee and

McDonald (1999) group information into two basic types, according to the time users are

to receive it. They also mention some ways through which information can be presented.

• pre-trip informationis acquired before starting the trip. It is said to behistorical if

realised from travellers’ knowledge, which evolves over time. When the informa-

tion is acquired just moments prior to the journey, it is saidto becontemporary. It
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is also possible to accesspredictiveinformation, which is derived from the two oth-

ers. Pre-trip information has a direct effect on decision-making and drives departure

time, route, transport mode, and service choices;

• in-trip information, to the contrary, is acquired during the course of a journey.The

static information outside the vehicle is available to every motorist, such as traf-

fic signs. With advances in telecommunication,dynamicinformation is becoming

common through VMS or DRG, for instance. However, in-trip information is not

accessible to all travellers yet.

Much work is also reckoned on adequate channels through which information is to

be conveyed to travellers. They will mostly depend on the addressed public and on the

way knowledge must be presented. Then, it is possible to identify a number of means to

provide travellers with information (CHATTERJEE; MCDONALD, 1999).

• mass media, such as newspaper, radio and television, and nowadays the Internet

can provide advance warning or information about the current state of transportation

resources. It is a collective information rather than oriented for individual purposes;

• throughmotorist in-tripchannels drivers can receive any kind of advise or warning

during the course of a journey. They can be basically presented by means of in-

vehicle and outside-the-vehicle facilities, for example DRG, navigation systems,

and VMS;

• public transport in-tripchannels are placed on strategic spots at stations, stops, and

interchange points to provide in-trip travellers with real-time information. They

are intended to reduce the frustration and uncertainty experienced by waiting trip-

makers;

• trip planning systems, including public terminals, telephone enquiry services,and

home- and office-based systems, as cable television and the Internet are particularly

suited to provide public transport information. Trip planning systems, specially

when available at origin, can be used both to plan the trip in advance and to check

conditions before setting off.

Information systems have always been a challenging field forComputer Science, and

so has TIS that, on its on right, offers a number of interesting paths for multidisciplinary

investigation. Considering the very presence of human beings in this scenario, it is impor-

tant to bear in mind that there are also pitfalls armed by misinterpretation of information

contents. Yet, excess of elements and the frequency advisesand warnings are posted to

users may confuse one’s mind. Another function of TIS is to filter targeted users from the

population altogether. What if everyone follows an alternative route to avoid a congested

itinerary? The alternative would also become congested very certainly. So, reliability is
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an imperative quality for information, and it seems to be very affected by the interrog-

ativeswhat, how, andwhen, applied to its contents. Inaccurate information could yield

very hazardous situations.

2.7.4 Types of sources

As to sources of contents, Adler and Blue (1998) identify three basic types where

information is generated and from which it is delivered.

• historical experiencesof previous trips, gathered over time and inferred through

learning;

• current perceptionsof the network conditions;

• exogenous sources, which are all the facilities provided by TIS.

According to Chatterjee and McDonald (1999), it is useful toconsider the essential

characteristics of the information rather than its source.Nevertheless, most issues related

to the contents also apply to the sources.

• in that related to availability, whether it is pre-trip or in-trip information;

• according to the sort of transport, whether it is mainly aimed at public or private

transport users;

• as to the currency of information content, whether it is static or dynamic;

• according to the targeted public, whether it is customised to individuals or made

generic;

• concerning interactivity, whether it is passive or the usercan interact with it;

• according to the typical nature information content, whether it is homogeneous or

heterogeneous.

In fact, what source to apply is much dependent on the features of the information it

gets to handle. So, this is also the subject for many researchworks, which again involve

a number of different disciplines. Owing the existence of different systems, different

providers, and different manufacturers, it is necessary tostandardise the way information

is dealt with to make it better understood, to ease access, and to grant it reliability. Trust-

worthiness of sources can affect acceptance of users. In addition to the concerns above,

communication, social abilities, human-device interfaces are equally stimulating topics.
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2.7.5 Types of behaviour

Experience shows that traveller behaviour is likely to be affected by both prevalent

conditions of the environment and characteristics of the information. Finding a pattern in

a very complex, stochastic, and uncertain domain is really difficult, and so is influencing

and modifying it on a controlled basis. This is all researchers have been looking for.

Chatterjee and McDonald (1999) assert that it is quite acceptable that some situations

will induce travellers to make specific decisions and behaveaccordingly.

• congestion and incidents;

• information systems;

• prevalent situations;

• control systems;

• other travellers’ behaviour;

• planning the trip.

In recent years there has been a significant increase in the research as to understand-

ing routing, way-finding, and navigation facilities. The aim has been basically to figure

out the role that TIS could play in providing travellers withthe necessary information

(ADLER; BLUE, 1998). It is quite reckoned that decision-making is affected, in any

manner, by source, content, availability and currency, andreliability of information.

Besides, the spatial knowledge of the network seems also to contribute to the way

people commutes (ADLER; BLUE, 1998). It poses other interesting thoughts.

• a representation of the spatial orientation can be built in one’s mind through either

observing maps or learning from repeated trips.To what extent would a driver

accept to be ‘blindly’ guided by an electronic device throughout a network it does

not know?

• the networks are of a very stochastic nature as traffic may behave widely differently

for many reasons. It seems that making repeated trips contributes to the learning of

such variations.How can network dynamics be represented and contribute to one’s

individual model? How can it affect decision-making?

• people present a natural tendency to mature and have their behaviour changed over

time owing to past experiences.How can this behavioural evolution be influenced

as the environment gets vastly populated with autonomous facilities? travellers will

have to be able to detect, understand, get used to, and learn with them. On the other

hand, network dynamics is strongly associated to the way people commute.How

can such an iteration be handled to yield a sustained optimalstate?
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Understanding spatial knowledge and network dynamics is certainly a step toward

realising travellers’ behaviour patterns. This is of invaluable help to figuring out a way to

alter it to some extent and, most important, on a controlled basis.

Population must also be segmented as to users and non-users of information resources.

Even among users it is necessary to consider those unwillingto use the content provided,

either because they trust more on their own knowledge about the network or because they

consider the information is not reliable enough (CHATTERJEE; MCDONALD, 1999).

Barfield et al. (1989) grouped commuters into four classes according to their willingness

to adjust behaviour in response to the information supplied.

• route changersare always willing to change routes either before or during their

commute;

• non-changersare reluctant to change time, route, or transportation modeat any time

within the journey;

• route and time changersare likely to change either route or departure time. They

can even change both;

• pre-trip changersare not likely to make en-route changes, but willing to change

time, route, or even mode prior to leaving their origins.

In this way, TIS-based solutions are commonly designed to affect one or more of four

aspects of travellers’ habitual practice, as reported in (MAST, 1998).

• departure time, by influencing the time commuters live their origins, such as home,

work place, and others;

• means of transportis basically associated to users of public transport as bus and

train services. The private sector of car pooling is also experiencing some advan-

tages of TIS technologies;

• in a commuter scenario thepre-trip routechoice is less likely to be changed. Nonethe-

less, information specifically tailored to this end can makemuch difference. Sea-

sonal journeys, as on holidays and for entertaining purposes in general, seem to

profit a lot from pre-trip advices;

• en-route diversionseldom happens for commuters unless either an incident blocks

their usual itinerary or it gets to be adjusted for the sake ofan unexpected purpose

elsewhere than the common destination. In-vehicle information facilities may play

an important role in such situations.

There are at least two reasons that make people alter their departure time, as suggested

in (BARFIELD et al., 1989). If arrival time is flexible, travellers can delay their departure
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until after congestion has died out. Otherwise, they can judge if there are unusual delays

due to any incident or on-site maintenance works and leave earlier so as to meet their

arrival deadline.

The way people make travel choices, including destination,mode, departure time, and

route, depends on their needs, personal preferences, and the information available. The

ideal scenario would imply that travellers had a perfect model of the system so that they

could make the optimum decision. It is definitely fictitious as the environment is not com-

pletely accessible, which is prohibitive to individuals having such a perfect knowledge

(ADLER; BLUE, 1998). As to the strong association between cognition and behaviour,

three issues of primary concern are highlighted in (JACKSON, 1994; ADLER; BLUE,

1998).

• identifying likely effects of cognition on behaviour. It is necessary to better under-

stand the processes by which a driver seeks to acquire and usespecial knowledge

under normal conditions, which means without the aid of any exogenous informa-

tion. Thus, it is critical that TIS mimic drivers’ cognitionand reflect their behaviour;

• understanding cognitive representation of the environment. One implicit goal of

TIS is to provide drivers with adequate means by which they can build a perfect

model of the world. This is expected to aid drivers in trip-planning;

• assessing acceptability for exogenous information. It is important to identify the

factors that may have the largest influence on deciding whether to accept and rely

on exogenous information. Thus, TIS should work in such a wayits services are

perceived to be personalised, timely, and relevant.

However, in order to allow for information-driven behaviours it is imperative that

users effectively use the information provided. This way, the design of an efficient TIS

will also depend much on the understanding of which and how human factors contribute

to the effective use of such technologies, as suggested in (BARFIELD; MANNERING,

1993; ADLER; BLUE, 1998). This again poses another series ofrelevant concerns.

• whether travellers use such technologies;

• the reasons that would make travellers use the information provided;

• how and when travellers are more likely to use the information provided;

• the way travellers perceive sources of information;

• how travellers perceive the likely consequences of using such systems.

Additionally, it is important to have a good comprehension on how the content is

understood by drivers. It is quite acceptable that different drivers may have different
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interpretation of the same information. Adler and Blue (1998) also point out cost, com-

pliance, oversaturation, long-term effects, and driver comfort as complementary matters

to be addressed. Lots of research efforts have then been carried out in order to study trav-

eller behaviour according to a number of different factors;some of which are discussed

in (CHATTERJEE; MCDONALD, 1999). However, albeit their findings have shown that

there is a great variability in responses, travellers tend to rely on their own knowledge

about the network conditions and dynamics.

In commuting scenarios, it has been shown that patterns are largely habitual in nature.

However, in spite of being a collective standard, it seems that each person tends to have

more than one ‘typical’ daily set of preferences (CHERRETT,1998; CHATTERJEE; MC-

DONALD, 1999). As to departure time choices, commuters havebeen found to possess

route ‘strategies’ based on a series of home departure times, which allow them to arrive

at their destinations within an acceptable delay at each destination. Such a perception of

lateness can be associated to some interpretation of cost. Also, changes to the itinerary

chosen are mostly dependent on the conditions encountered.This makes diversions to be

more likely to happen at specific ‘decision’ points within the journey.

2.7.6 Requirements for TIS

TIS has proven to encompass much complexity on its own rights, and to turn it

into reality it is imperative to deal with a wide range of parameters and their relations.

Barfield et al. (1989) summarise some premises, which are mostly regarded to commut-

ing specificities. They must be taken into account for the development of effective driver

information systems.

• as to the heterogeneous nature of audience it is important tobear in mind that com-

muters cannot be treated as a single and homogeneous group oftraffic information

users. This is concerned withwhom to target for a particular type of information;

• specificities of information should be oriented in order to have an impact on drivers’

behaviour. The system must be capable of delivering the content tailored to the

particular driving decision faced by individuals during the journey. The issue is

thenhow to tailor the informationto impact the targeted group;

• sources of information must provide for a regular delivery of accurately, timely, and

appropriately designed traffic information in order to produce a long-term positive

modification on commuters’ behaviour. That meanshow to deliver such informa-

tion at appropriate decision points within the journey.

The authors assert that a single successful information system is capable of meeting

the needs of a wide range of different drivers under varying conditions and stages of travel.

With this aim, a single integrated driver information system should consist of carefully

designed information modules oriented to address particular commuting decisions of well
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defined subgroups of receptive commuters (BARFIELD et al., 1989). Few examples are

already in use all over the world, mainly oriented to collective use. Facilities for individual

needs have not yet reached most of the population and their effects are expected to be

noticed on a long-term basis. Nonetheless, scientific community, as well as the industry

are striving to enhance TIS technologies as some requirements are still to be met toward

making their use popular (ADLER; BLUE, 1998).

• such systems must be affordable. Such technologies, mainlythose aimed at indi-

vidual use, are quite expensive at the moment;

• they must provide understandable and reliable information. Confusing and exces-

sive contents are proven to yield misunderstanding by drivers;

• the systems must contemplate within-day and day-to-day travellers’ preferences.

Behaviour cannot be generalised as some preferences are found to be seasonal and

apply weekly, monthly, and even annually, as for vacations for instance;

• TIS must be exceptionally user-friendly. It is proven that easy-to-use interfaces are

partially responsible for the popular acceptance of new technologies;

• TIS must be capable of providing customised travel assistance, and people must

perceive to be provided with personalised valuable service.

The ability of TIS to broadcast valuable information has been widely recognised as

significant advances are incorporated to vehicular technologies and made available. Then,

users can already profit from facilities and services such asinteractive user interfaces,

vehicle location and intelligent mapping, path search, yellow page directory, multi-modal

information, and dynamic route guidance (ADLER; BLUE, 1998).

2.7.7 Framework to assess ITS technologies

In order to submit these issues to expert appraisal, conceptual models of driver be-

haviour under information have been proposed. It is definitely imperative to devise ad-

equate tools to simulate and assess the performance measures of such solutions. Up to

a while ago, they were based on traditional techniques, whatis easily explained by the

constraints imposed by the computational resources available then. With the increasing

capacity of today’s hardware architectures and the availability of new computing method-

ologies, these models can now be implemented through the useof a wide range of differ-

ent, robust, reliable, and intelligent ways. They have beenproposed for many purposes,

but some areas have awarded special interest (ADLER; BLUE, 1998).

• determining traveller preferences for information systems, which is mainly dictated

by the type of information, the way information is received and identified by users,

and the presentation media;
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• modelling route choice and switching, which serves for researches as a means of

understanding the influence that information can have on decision-makings;

• representing and modelling cognition, as the spatial representation in one’s mind

may affect routing behaviour and the need for information;

• assessing and evaluating effectsis probably the most important aims for evaluation

tools, as information systems are expected to exert great impact on the network

performance. Using traffic simulation environments is a frequent practice;

• conceptualising dynamic modelsas a means to handle and to understand the very

stochastic nature of traffic scenarios and the influence thatITS technologies cer-

tainly have on system’s dynamics.

According to Chatterjee and McDonald (1999), the way sources of information are

modelled is more or less of no importance. The authors also suggest that it is clearly

impractical to expect to be able to model all effects and scale of drivers’ responses. The

modelling efforts should concentrate on flagging up those responses that are important

and likely to be measurable under some conditions. Route anddeparture time are likely

to be very affected by the quality of information, for instance. Whether the contents are

made available pre-trip or in-trip and whether they are accessible from inside or outside

the vehicle, what decisions are intended to be affected, andchannels through which the

information can be conveyed to drivers are some factors thatshould be parameterised.

After gathering the necessary requirements to better describe the relations between be-

haviour and the information supplied, Chatterjee and McDonald (1999) proposed a gen-

eral framework to aid the design and assessment of ITS architectures. According to the

authors, existing modelling procedures do not explicitly take into account trip makers’

knowledge and have limited capabilities for assessing impacts of information systems.

Besides that, there remains a lack of evidence of the impact that these systems have on

behaviour and travel patterns against traditional approaches, for instance the enhancement

of physical infrastructures. Such a modelling framework issupposed to meet two major

needs, namely incorporating support to assess responses toITS technologies and provid-

ing transport scientists and practitioners with a computer-aided tool. Its components and

relations are depicted in Figure 2.2 and briefly commented asfollows.

• household and person generatorsynthesises the population within the study area,

such as demographic data, vehicle ownership, work place, and so forth. It could

use information from demographic simulation models or fromtransport and land-

use relations, for instance;

• week activity plangenerates a plan for the forthcoming week, which is then assigned

to each individual of the population. It relies on the assumption that people tend to

arrange their lives on a weekly basis. Activity purpose, destination, starting time,

and duration should be represented;
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Figure 2.2: Framework for assessing ITS technologies,

adapted from (CHATTERJEE; MCDONALD, 1999).

• day activity-travel plangenerates plans on daily basis, including the itinerary to the

sites where each activity is to be performed. Purpose, destination, starting time,

departure time and duration, mode, route and parking facilities are some charac-

teristics to be explicitly represented. Daily planning canbe affected by outcomes

of trips performed on the same day, which may force the reconsideration of the

original options;

• trip plan for activity ‘i’ selects the activity from the day plan to be performed next.

The trip plan for the subject activity can be affected by pre-trip information, expe-

riences of performing the trip on previous days, and even journeys made earlier on

the same day;

• trip execution and outcomesupports the execution of the trip and outputs its perfor-

mance measures. This can be given in terms of travel time, route, parking location,

and delays, for instance. Theexperiencemodel is then updated accordingly to the

travel conditions and degree of satisfaction perceived. Also, the course of a journey

can be affected by in-trip information, as well as the prevalent conditions of the

network during the period the trip is being executed;

• transport system stateis the data representing the actual state of the transport net-

work as trips are performed. It feeds the previous module as drivers perceive the

environment conditions during their journeys, and also bases theinformationsys-
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tems so that up-to-date contents can be provided to users both pre-trip and in-trip;

• informationsimulates the operation of the information systems that arepresent in

the study network. Surveillance facilities ensures that TIS are able to provide re-

liable contents. Pre-trip information is delivered through the moduletrip plan for

activity ‘i’ , whereas in-trip is enabled through thetrip execution and outcome;

• experienceis the data representing the modifications, after each trip,in the state of

people’s satisfaction, knowledge, and perceptions of travel alternatives. It has great

influence in travellers’ preferences, learning, and decision-making in all levels.

2.8 Summary

Major urban areas, as well as their suburbs and accesses havenotoriously experienced

an increase of the recurrent traffic flow. This has frequentlyyielded traffic congestions

that in turn contribute for waste of energy, for air pollution, and for excessive delays. In

general terms it has brought about economic and environmental issues that need to be

addressed through effective policies. Moreover, increasing capacity by means of physical

modifications to the road infrastructure is even less feasible as space lacks.

Resulting from the efforts to tackle traffic and transportation problems, today’s sys-

tems have been considerably transformed by novel mechanisms and strategies of traffic

management. With respect to the ground traffic and transportation, the Intelligent Trans-

portation Systems basically rely on the integration of autonomous processes aimed at

optimising the usage of limited capacity road networks. Communication and computing

techniques serve as the framework for such technologies. Rather than intervening in the

static entities, namely roads and control systems, one premise of ITS-based technologies

is to act directly upon the moving particle, which can be seenas a vehicle-driver unity.

Besides considerable advances in on-board devices to aid driving tasks toward safety,

influencing drivers’ behaviour patterns is another key objective of ITS. As drivers have

only a local access to the network conditions during a journey, exogenous information

sources seem to be of valuable help. They provide drivers with knowledge and advices

that can be used in building a model of the system as a whole. Such an internal model

is expected to improve reasoning and decision-making locally, but also it is expected to

enhance the overall system performance. Variable message signs, route guidance systems,

the Internet, radio broadcast, and now mobile technologiesare already part of citizens’

daily lives.

Traffic network models and traffic theory will be, and certainly already are affected by

the Intelligent Transportation Systems. Representing newperformance measures in mod-

elling and simulating today’s traffic scenarios has revealed to be a tricky task, though. The

abstraction process has been brought to very detailed levels, which makes the microscopic

approach suitable to this end. However, traditional modelsare mostly result-driven, are
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not so consonant with their implementation, and their rigidity makes scalability hard. On

the other hand, owing the very complex nature of certain applications it is not possible to

dissociate the domain model from the data structures and algorithms that base its imple-

mentation. Process-driven approaches usually rely on suchan assumption, which over-

comes difficulties of traditional models by easing scalability and enhancing robustness,

for instance.

Modelling and simulating ITS-based technologies, as well as assessing their impacts

to the overall performance of traffic systems demand for robust methodologies to cope

with increasing levels of complexity. And this is speciallythe case of models that involve

humanlike reasoning and decision-making.
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3 MULTI–AGENT SYSTEMS

3.1 Overview

In general terms, Artificial Intelligence (AI) is especially concerned with the develop-

ment of computational models that mimic human intelligent and rational behaviour, and

encompasses a wide range of multidisciplinary knowledge areas. Multi–agent systems

(MAS) is a sub-field of the Distributed Artificial Intelligence (DAI) whose abstraction

approach basically consists of representing the application domain by means of multiple

entities, coined agents. Contrary to the approach adopt in the traditional AI, scientists

have been motivated by functional and spatial distributionof tasks and components of

some complex systems. In this scenario, MAS constitutes a central research and appli-

cation area, which can be seen, at a first glance, as computational systems composed

of several software entities capable of mutual and environmental interaction (WEISS,

1995). Although the main concern of MAS has relied on the concept of intelligent and

autonomous behaviour, defining what an agent is has been the focus of much controversy.

Nonetheless, MAS has gained especial attention from both Computer Science and other

knowledge fields.

This Chapter is aimed at giving a broad view on multi–agent systems and autonomous

agents, as well as their potential application to the domainof traffic and transportation

engineering.

3.2 Desired features in intelligent agents

Russell and Norvig (1995) define agents as any entity capableof perceiving facts

through sensors and acting upon the environment through effectors. Rationality allows

an intelligent agent to act toward making the right decision, which should lead to suc-

cessfully achieving a goal. So, a key feature in multi-agentsystems is autonomy. Au-

tonomous agents exist in the environment independently of the problem to be solved

for the whole society (HÜBNER, 1995; FROZZA, 1997). According to Weiss (1996),

what really makes an object like a software program or an industrial robot to be an agent

are some properties like perceptual and cognitive skills, communicative and social abili-

ties, affection and emotions, and autonomy, in other words,to have self-control (WEISS,
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1995). An intelligent agent can possess a wide range of characteristics, which will clearly

depend on the application the agent is designed for. Frozza (1997) points out some desir-

able features that an agent should present in some extent.

• an agent may represent either a real or a virtual entity;

• it must be inserted in the context of an environment;

• it must be capable to perceive the environment and other surrounding agents;

• an agent is capable to perform some actions in the environment, which can change

the state of the environment, the agent’s internal state, orthe state of other agents;

• an agent must present communication capabilities;

• it must present social ability;

• an agent possesses goals to be achieved, and should be autonomous to carry out its

tasks toward accomplishing them;

• an agent is capable of reacting to changes in the environment;

• it must present some degree of initiative in order to seek to accomplish its goals;

• it must present adaptability, in other words, it must be capable to adapt its behaviour

as the environment evolves;

• some degree of mobility is also desirable, as an agent would need to change its

physical location in the environment;

• an agent must have knowledge about itself, about the environment, and about other

agents. Also, an agent may have an initial knowledge, which can be extended as it

interacts with the environment and with other agents;

• the reasoning feature is also intended to give an agent the capability of making

inferences about the behaviour, tasks, and plans of other agents.

Whatever the features one may design for an agent, rationality and autonomy may be

considered two major properties that deserve special attention. According to Russell and

Norvig (1995), being rational at any given time depends basically on four aspects, namely

the performance measures that define degrees of success, thesequence of perceptions

at certain instant, which consists of everything the agent has perceived, the knowledge

about the environment, and the actions the agent is able to perform. On the other hand,

autonomy would be concerned with situations in which individuals did not need to rely

on any perceptions, as actions would be based solely on built-in knowledge. Russell and

Norvig (1995) also define autonomous systems as systems whose behaviour is determined

by previous experiences, as well. Such a definition suggeststhat autonomy should be

achieved through some sort of learning mechanism.
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3.3 Structure of an intelligent agent

With regard to their autonomous nature, intelligent agentsshould possess a structure

that allows them to perform their tasks in order to achieve particular goals. In this sense,

an agent perceives the environment and other agents throughsensors. Effectors, on the

other hand, are the structures an agent uses in order to act upon the environment and to

interact with others, as suggested in (RUSSELL; NORVIG, 1995). The authors identify

three major elements that bounds the agent design, namely the agent behaviour, the agent

program, and the agent architecture.

• the agent behaviour can be understood as the action that is performed after any

given sequence of perceptions. Such a behaviour can be basedon either its own

experience or some sort of built-in knowledge;

• the agent program is the function that implements the mapping from perceptions to

actions such that the agent can play its role onto the environment;

• the agent architecture can be seen as the structure that runsthe agent program. It

should present a means to receive information from the environment, as well as to

properly effectuate agent’s actions.

Pragmatically, the structure of an agent comprises both theprogram and the architec-

ture. It is provided with internal data structures that are updated as the agent perceives

new information from the environment. Such data structurescan be understood as the

knowledge of an intelligent agent. They are operated on by decision-making procedures

to generate an action choice, which is executed through the agent’s architecture. Agent

programs are functions, which implement the mapping from a perception, or a sequence

of perceptions, to actions.

As suggested in (WERNER, 1991; FROZZA, 1997), the structureof an agent consists

of two major parts, one that is static and the other that is dynamic.

• the static part is the agent architecture, which defines the representation of the

knowledge the agent is capable to keep and the way such a knowledge is repre-

sented and handled. The way the knowledge is represented canbe influenced by

several factors, for instance: how the environment is represented; capability of rep-

resenting what an agent can describe to other agents; problems and goals an agent

needs to solve or achieve; plans to be followed by the agent; and likely choices and

decisions to make;

• the dynamic part corresponds to the processing methods thateffectively allow an

agent to behave in the environment. They can be grouped into reasoning capabili-

ties, used by the agent to make inferences about its knowledge, and decision-making

mechanisms, which allow the agent to make decisions in orderto accomplish its

goals.
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Although agent structures are presented in (RUSSELL; NORVIG, 1995; WERNER,

1991; FROZZA, 1997) in different ways, there is a consensus that the knowledge repre-

sentation and the functions, which can in any form transformits content, are central to

AI and to agent designing. These two features of an agent structure are also important to

define in which extent an agent is reactive or cognitive.

3.3.1 Reactive agents

Systems composed by reactive agents are generally simpler than those composed by

cognitive ones. This can be easily explained as reactive agents do not present mental

states. Also, planning and reasoning capabilities are not strong characteristics and the

major idea behind such an approach is based on an emergent behaviour. The underlying

idea of emergent behaviour is to achieve complex, intelligent, efficient, and more organ-

ised behaviour through the combination of several simpler structures, as exemplified in

(DROGOUL, 1993) through a model devised to represent a colony of ants. The overall

behaviour of a system rises from the interaction among agents and the individual perfor-

mance of their tasks. Some features presented in (FROZZA, 1997) are suggested to be

present in most of the systems formed of reactive agents.

• reactive systems are mostly inspired in ecological organisations;

• knowledge about the environment and about others is implicitly represented through

the reactive behaviour of the agents;

• such systems follow a behaviour-based approach, that meansbehaviour is expressed

on the basis of the state of the environment. Any variation inthis state triggers

changes in the agents’ behaviour;

• agents behave on a stimuli–action basis. Actions are carried out as response to

predefined stimuli from the environment.

• agents present perception and communication capabilities, albeit these capabilities

are limited;

• they do not present complex reasoning or inference capabilities, neither memory of

past experiences and of results of previous actions;

• a reactive agent society is generally composed by several members.

According to Frozza (1997), some considerations should be made while modelling

a domain by means of reactive agents. The phenomenon should be decomposed into

a set of as simple and autonomous entities as possible, whichwill interact in order to

reproduce the system behaviour. Each entity is seen as an agent with defined knowledge,

capabilities, and behaviour that will interact with othersand with the environment. So, and

accounting for the behaviour-based approach mentioned above, the environment should
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be well designed. It is equally important to take into account that there may be passive

agents, which do not possess neither action nor communication capabilities. With respect

to the architecture of a reactive agent, albeit it is mostly intended to be conceived as a

simple structure, it may be designed to cope with more complex tasks. The subsumption

model, proposed by Brooks (1991a), is a traditional architecture to represent reactive

agents that prioritises the execution of tasks distributedinto different levels of complexity.

3.3.2 Cognitive agents

Cognitive agents are intended to acquire knowledge about the environment and about

the others, and are able to interact with each other and with the environment, as well. Per-

ception and communication play an important role as the behaviour of a cognitive agent

is susceptible to be modified by exogenous information. Thisapproach is based on the

notion of mental states, such as intentions, beliefs, desires, compromises, choices, goals,

and aptness, which are analogue or similar to those found in human beings (SHOHAM,

1990). Understanding the relation among them is of huge importance to better model

cognitive and decision-making mechanisms, which is the focus of interest in the field of

cognitive systems. As with reactive agents, Frozza (1997) suggests the following features

can be found in cognitive agents.

• they are based on models of social organisations;

• they have an explicit representation of knowledge about theenvironment and about

other agents;

• they are capable to plan their actions;

• they may present accurate perception and communication capabilities;

• they present mental states and can memorise past experiences, which are taken into

account for future decisions;

• society composed by few members.

It is worth mentioning the features presented above and the ones presented for the

reactive agents are complementary to each other in many ways. Thus, the combination of

both approaches makes reactive and cognitive agents suitable to handle most specificities

of a huge range of different application domains.

A general-purpose structure for a cognitive agent is presented in (DEMAZEAU, 1991;

FROZZA, 1997), as depicted in Figure 3.1. The act of perceiving both the environment

and other agents alone does not yield any modification, neither to the environment nor to

the state of the agent itself. Nonetheless, such a capability is important to gather relevant

information, which may enhance the agent’s knowledge. It isthis updating of the agent’s

internal model that may influence future behaviour. The knowledge of a cognitive agent

can be viewed as a composition of three kinds of information.
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Figure 3.1: General structure for cognitive agents,

adapted from (FROZZA, 1997).

• initial knowledge (also referred to as the built-in knowledge of an agent), which is

defined in the modelling time;

• information gathered as the environment evolves;

• information gathered through the communication with otheragents.

The initial knowledge and the information got from perceiving the environment can

be seen as the accurate knowledge. On the other hand, information gathered through

communication with other agents is considered to be uncertain knowledge. This sort

of classification seems to be related to the confidence the agent has on the information

sources. The former refers to the information the agent getsby itself. However, it cannot

state anything about the latter.

Executing an action, however, does cause changes either to the state of the agent or

to the environment, including other agents. Specifying a problem implies defining a goal

or a set of goals, a set of actions, and a description of the initial state of the system.

A task-planning procedure finds a suitable sequence of actions that better results in the

changes that brings about intended states of affairs. A chosen plan can be delayed or even

reformulated for the sake of unexpected conditions that does not favour its execution, for

instance. This could lead the agent to find a contingency plan. In such situations, some

mechanisms to ensure that plans can be constantly revised during its execution are also

desired, so that unexpected results can be prevented or at least minimised.

3.4 Basic architectures for intelligent agents

Choosing between reactive and cognitive architectures foran agent will depend enor-

mously on the application the agent is being designed for. Since the earliest ages of MAS

research several models have been proposed as an attempt at fitting the requirements of

each application domain. An agent model can reach a wide range of complexity both in

structure and in functionality (WEISS, 1995). Russell and Norvig (1995) suggest four ba-

sic types of agents, which can range from a simple reactive toa more complex cognitive
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structure. Such basic models, namely simple reflex agent, agent that keeps track of the

world, goal-based agent, and utility-based agent can be seen as start points for modelling

application-dependent structures. A traffic scenario where a driver attempts to reach a

destination from an origin is regarded here as a means to illustrate some conceptual ideas

behind these models. What time to depart and which route to take are some examples of

decisions a driver needs to bother with in that scenario.

The simple reflex agent (Figure 3.2) relies on the concept of condition-action rule.

Instead of building up a table that contains every possible combination of perceptions

and actions, this type of structure should contain only certain commonly occurring input-

output associations. Some processing is done on the input from the agent’s perception

in order to establish a condition, which triggers some established connection to spe-

cific action in the agent program. This connection is well known as condition-action

rule and would be written as an expression of the formif 〈generated condition〉 then

〈mapped action〉.

Humans also make such connections between perceptions and actions, some of which

are learned responses and others are innate reflexes. A simple reflex agent uses condition–

action rules in order to make the connection between perception and action. Although

such agents can be implemented very efficiently, they pursuelimited applicability.

• sensorsallow an agent to perceive its surrounding environment. However, such

an information is not enough for a driver to make a picture of the system as a

whole, as cost of travelling through roads are not knowna priori, for instance.

Nevertheless, some information could also be gathered through exogenous sources,

such as Traveller Information Systems;

• what the world is like nowrepresents the actual state perceived by the driver. How-

ever, drivers are not likely to know about the exact state of traffic at a certain instant

prior to the journey start. Nevertheless, individuals could either forecast the system

conditions from previous experiences or realise it from theinformation supplied by

exogenous sources. In the former case drivers cannot forecast the system state as

simple reflex agent does not keep track of previous experiences;

• the decision onwhat action should be done nowis made as a function of available

established condition–action rules. For instance,if the cost is beyond a certain

prefixed valuethenleave origin 15 minutes later;

• effectorswill perform the agent behaviour, which is to start the trip at the chosen

time through the chosen route.

The simple reflex agent mentioned above will work well if the correct decision can be

made on the basis of the current perception. In other words, the current perception should

produce a condition such that the agent can find some action associated to it.
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Figure 3.2: The simple reflex agent,

adapted from (RUSSELL; NORVIG, 1995).

The concept of internal state is concerned with how the system evolves. Depending

on the complexity of the environment, sensors do not provideaccess to the complete state

variables. Thus, the agent may need to maintain a model of thesystem internally so that

it can distinguish between world states that generate the same perceptual input but that

are significantly different. In other situations this internal state can be used as a means to

draw conclusions about trends in the world dynamics. The objective of keeping track of

the world is to improve the quality of the agent’s knowledge basis. This is done combining

the old internal state with the current perception to generate the updated description of the

current state (Figure 3.3).

• information gathered throughsensorsis memorised so that the driver can remem-

ber previous experiences. Thus, the driver sensibility forexperienced costs can

now be considered a source of information about the environment state, even if re-

garded just as past observations. Information from exogenous sources can also be

perceived;

• with a proper representation ofwhat the world is like nowthe driver can forecast the

actual system conditions and have qualitative notion aboutthe environment state

variables (road volumes, path travel time, waiting time at junctions, and so on).

Individuals also have a clear idea about how the world evolves and about what

effects their actions may provoke;

• as for the simple reflex agent the decision onwhat action should be done nowis a

function of available established condition–action rules, though.

Knowing the current state of the environment may not be enough to decide on how

to behave, specially when the agent is facing several possible actions. The right decision

may depend not only on the actual state of the environment. Some sort of goal describing

desirable states of affairs to be brought about is also required. Some times, an agent must
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Figure 3.3: A reflex agent with internal state,

adapted from (RUSSELL; NORVIG, 1995).

search for possible actions and plan action sequences in order to achieve its goal. This

kind of structure is fundamentally different from the condition–action rules mentioned

above. It involves some considerations about the future, both related to effectiveness

and to satisfaction (Figure 3.4). In reflex agents, this information is not explicitly used,

because the designer has pre-established the correct action for various cases.

• the interpretation forwhat the world is like nowis the same as in the previous

example. People will forecast the actual state from an internal model, from the

knowledge about how the world evolves, and from experiencesof previous actions;

• Evaluatingwhat it will be like if action A is chosenresults from weighting their

actions as they have a specific goal to achieve. For example, drivers seek after a

minimum journey cost. Such an evaluation is a function of knowledge about how

the world evolves and experiences on the effects of previousjourneys, for instance;

• what action should be done nowis a function of the agent’s goal, differently from

the previous structures, whereby the action usually is a function of condition action–

rules. The need for arriving at work earlier on certain day may influence, and cer-

tainly does, the decision for using one route instead of using another.

Yet in some situations, goals alone may not be enough to drivedecision-making to

the best behaviour. An agent may be faced with the problem of having to decide among

several ways of reaching its desired state of affairs. The concept of utility represents the

degree of satisfaction an agent would have with respect to choosing any of them. This

could be implemented as a function that mapped a state to a real number, which would be

associated to the degree of happiness, for instance. So, utility can be used as a means to

trade off between different ways of achieving the same goal.In the case of having several

goals, utility would provide a way in which the likelihood ofsuccess can be weighted up

against the importance of each of them (Figure 3.5).
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Figure 3.4: The goal-based agent,

adapted from (RUSSELL; NORVIG, 1995).
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Figure 3.5: The utility-based agent,

adapted from (RUSSELL; NORVIG, 1995).

• differently from the goal–based agent,what action should be done nowresults from

an evaluation of the degree of satisfaction for executing certain action chosen out

of different alternatives. For example, the driver could trade off between changing

departure time and changing route in order to minimise travel time. Depending on

the number of different possibilities, it can be an arduous task;

• what action should be done nowis that which presents the highest degree of utility,

thus providing the agent with most satisfaction.
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3.5 Societies of agents: the multi-agent systems

A society of agents can be seen as a collection of autonomous entities that behave ac-

cordingly in order to achieve the goals they are designed to pursue. Also, they are able to

interact both with one another and with its surrounding environment. Communication and

co-operation are key concepts in such a scenario, and co-ordination of their behaviours

allows for sharing knowledge, goals, aptness, and plans among them toward the solution

of problems. In MAS each individual’s behaviour results from the knowledge represented

in its internal state, from its perception of the environment, and from its interaction with

others. Although this perspective leads to thinking of a society of agents as a co-operative

community, they may also have conflicting goals involving competitive behaviours. In

either case, the following elements are of huge concern for the MAS design.

• the agents that live in the same environment;

• the environment itself;

• interactions between agents and between an agent and the environment;

• the society organisational methods.

In the majority of real applications, each agent possesses incomplete, uncertain, and

partial knowledge of the environment and of its neighbourhood. This very uncertain na-

ture will demand carefully monitoring of the task executionand frequently updating its

course.

As suggested in (STEELS, 1990; FROZZA, 1997), agents can collectively exhibit an

emergent behaviour. This concept relies on the idea that each single agent albeit hav-

ing a very simple structure can contribute to more complex and efficient behaviour of

the system as a whole. This approach has been used in a range ofdifferent applications

and is mainly proposed to those with a huge number of interacting components (DRO-

GOUL; FERBER, 1994). It has also been coupled with the Cellular Automata (CA)

theory (CODD, 1968; SMITH III, 1969) as the relying approachfor other applications

(HALPERN, 2002).

Self-organisation is also an important concept related to society of agents. Creating

a society that is capable of evolving dynamically and autonomously demands the im-

plementation of efficient self-organisation mechanisms. Such a concept could be useful

when a complex problem is to be solved by way of grouping individuals with different

expertise. As reported in (FROZZA, 1997), self-organisation takes place through chang-

ing the topology of agents in an autonomous way both with respect to the environment, to

one another, and to the internal model of each one. This allows for adapting themselves

to the prevalent conditions of the system. Self-organisation can also be understood within

the same framework as of the evolution theory (BAR-YAM, 1997).
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3.5.1 Classifications and taxonomies for MAS

Much effort has been devoted to proposing classifications and taxonomies as there is

a wide range of characteristics and applications that couldbe modelled and implemented

by means of agent-based techniques. Some authors, specially in the earlier ages of the

MAS society, have suggested different criteria for classifying and categorising such sys-

tems. This effort has been of paramount importance to betterorganise concepts, to aid

identifying requirements for the whole designing process,and to support the creation of

ground theories.

Among many ways of classifying autonomous agents, there is one found in (FROZZA,

1997) that groups agents into two categories according to the role played in the system.

• an agent can be seen as acomponentwhen it behaves as part of a system toward the

completion of specific tasks. The system goal is divided intosmaller and simpler

sub-goals that are assigned to each component. So, the overall system performance

is expected to be achieved on a co-operative basis;

• on the other hand, an agent can be understood as thesystemitself when it behaves on

behalf of the user to achieve its own goal. There is no need either for co-operation

or for interaction. In this case, the agent is fully autonomous and its behaviour may

be not dependent on an external coordinator.

The aptness to solve problems and the architecture of an agent are also features that

define two major categories of agents.

• thecognitive agents;

• thereactive agents.

Theoretically there exist well-defined boundaries separating these two types. How-

ever, in practical terms it is possible to develop systems coupling features of both types.

In this way a single agent will present either cognitive or reactive behaviour according to

the prevalent conditions of the environment.

As suggested in (OLIVEIRA, 1996; FROZZA, 1997) societies ofagents can be clas-

sified according to many criteria such as the type of agents, the nature of the environment,

and the behaviour of agents.

• according to thetype of agentsa system can be grouped intohomogeneousand

heterogeneous. The former characterises a society composed of entities ofthe

same type, which means agents present the same architecture. The latter consists of

agents of different types;

• thenature of the environmentserves as a means to identify betweencloseandopen

societies. Agents are fixed in the environment in a close society, whereas they are
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allowed to migrate throughout different environments in open societies. The latter

is the abstraction approach used within mobile agent frameworks (KENDALL et al.,

1998);

• the behaviour of agentsis another criterion that identifies two possible societies.

A rule-based societyexplicitly defines behaviour rules to be followed by all of

its components. In asociety without rulesagents are allowed to follow their own

behaviour. In the former case and given certain circumstances an agent is expected

to behave in the same way, whereas it is not always true in the latter.

The social behaviour of an agent can also be classified with respect to the tasks it is

expected to perform. This is presented in (SICHMAN; DEMAZEAU; BOISSIER, 1992)

on the basis of two criteria, both in the perspective of the agent and in the perspective of

the task.

• regarding theircapacity of performing a task, anautonomous agentcan easily adapt

its behaviour to any kind of task. Atask-oriented agent, on the other hand, is

capable only of performing the specific task it is designed for;

• with respect to thelocality of a taskit is calledlocal when a single agent is capable

of performing it by itself alone. Otherwise, the task is partitioned and performed

by multiple agents, which interact one another to achieve the desired results. In this

case, it is called adistributed task.

Four possible social behaviours in MAS are also identified in(DEMAZEAU, 1991;

FROZZA, 1997), which account for the fact that an agent behaviour can be changed from

completely autonomous to specialised and tasks can range from local to distributed.

• co-habitationcombines autonomous agents and local tasks. The agent performs the

task individually albeit in the presence of other agents;

• co-operationcombines autonomous agents and distributed tasks. Such behaviour

can be necessary either when an agent cannot perform the whole task by itself alone

or for the sake of efficiency. In this case, agents perform part of the overall task;

• collaborationcombines task-oriented agents and local tasks. It concernsglobal

goals that can involve all of the agents in the system and can be individually achieved.

An issue brought about in such a society is how to choose the agent to perform a

specific task;

• distributioncombines task-oriented agents and distributed tasks. It concerns global

goals that can only be collectively achieved by multiple agents. In this case, an

important issue relies on dividing and distributing the task among agents.
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According to Weiss (1996), multi-agent systems can differ widely in three key as-

pects namely the environment, the agent-agent and agent-environment interactions, and

the agents themselves. For each of these important aspects,the author identify several

dimensions by which MAS can be classified.

• some features of theenvironmentcould be used to qualify MAS such asavailabil-

ity of resourcesranging fromrestricted to ample, diversity ranging frompoor to

rich, uncertaintyandpredictabilityranging frompredictableto unpredictable, and

dynamic natureandstatus, which could range fromfixedto variable;

• the agent-agentandagent-environment interactionsis used to classify MAS with

respect to thefrequency, ranging fromlow to high, to thepersistenceranging from

short-termto long-term, to thelevel of interactionranging fromsignal-passingto

knowledge exchange, to thepatternssuch asunstructuredandstructured, to the

variability ranging fromfixed to changeable, to the type of interactionnamely

whether it iscompetitiveor co-operative, and to thepurposeinvolved, such asran-

domandgoal-oriented;

• regarding theagentswithin the system some criteria are proposed on the basis of

features such as thenumber of agentsor granularity, thenumber of goalsassigned

to each agent, thecompatibility between goals, which can be eithercontradicting

or complimentary, theuniformity, that means whether the agents arehomogenous

or heterogeneous, andindividual properties, as well.

The environment definitely plays an important role in MAS. Inthis extent, Russell and

Norvig (1995) suggest some features that must be consideredin order to define agent-

environment relations. The underlying idea is to identify whether the environment is

accessibleor inaccessible, deterministicor non-deterministic, staticor dynamic, anddis-

creteor continuous. Environments that are inaccessible, non-deterministic,dynamic, and

continuous are the most challenging to be implemented and frequently encountered in

real applications.

The next criteria are concerned with the learning mechanismin MAS, as presented in

(WEISS, 1995). These are closely related to the informationan agent is able to gather,

which is expected to influence the decision-making process in many ways.

• a learning mechanism may have two basicpurposes. It may be aimed at the im-

provement of a single agent, its skills and abilities. It mayalso be aimed at im-

proving the interaction of all agents within the system, their coherence, and co-

ordination;

• locality is concerned with the degree of distribution and parallelism of a learning

mechanism. When only one of the available agents gets involved in the process the

learning steps are neither distributed nor parallel. Learning can be ‘maximally’ dis-

tributed and paralleled when all agents within the system participate in the process;
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• theinvolvementof an agent in the learning process is also presented as an important

criterion. The involvement of certain agent may be not a necessary condition for

achieving the pursued learning goal. However, in an extremesituation, the learning

goal cannot be achieved without the involvement of such a specific agent. Refine-

ment of this criterion is also possible if one considers other aspects such as duration

and intensity of the involvement;

• as for theinteractionsrequired for the learning process, both agent-agent and agent-

environment ones must be taken into account. Such a dimension can range from re-

quiring only a minimal degree of interaction to being untractable without extensive

interaction. This criterion could be further refined with respect to the frequency,

persistence, level, pattern, and type of interactions.

It is important to bear in mind that this plenty of criteria represents the insights of re-

searchers into the potentials of applying MAS in a wide rangeof different domains. Some

classifications and taxonomies can overlap one another. Thus, it is reasonable to suggest

that other criteria can derive from combination of those mentioned above, as well as from

further refinement of ones on the basis of others. Nonetheless, understanding the relations

between these dimensions would provide for valuable guidelines for deciding which type

of multi-agent system is best or at least sufficiently well-suited to a given application. This

problem is sometimes called the multi-agent system-application assignment problem, as

stated in (WEISS, 1995).

3.5.2 Organisational structures

Identifying relations between agents is a crucial task in the field of multi-agent sys-

tems, and choosing an organisational structure is of paramount importance to modelling

agent societies. As an attempt at aiding such processes, twopossible organisational struc-

tures are proposed in (LABIDI; LEJOUAD, 1993; FROZZA, 1997)which might serve as

excellent starting points in MAS designing.

• in ahorizontal structure, all agents of a society are in the same level of involvement.

For example, agents can be requested to execute different tasks in order to solve a

common problem or to achieve a common goal;

• in a vertical structure, contrarily to the previous one, the agents are hierarchically

disposed in different levels of involvement. This structure can be viewed as a hi-

erarchy of horizontal structures. For example, the solution of a problem could be

partitioned into simpler subproblems, which would be delegated to the agents at

lower levels in the hierarchy.
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3.6 Important issues in multi-agent systems

The increasing interest in applying agent-based technologies to a wide range of do-

mains have stemmed a huge amount of research works with different focuses and aims.

These efforts have given rise to discussions on a number of theoretic and practical imple-

mentation themes. Woodridge and Jennings (1995) group suchissues related to the use

of agents into three major areas of study, each of which concerning aspects that demand

special care and attention.

• theory of agentsis related to theoretical approaches that can be seen as the speci-

fication for an agent-based methodology; these serve to describe mathematical for-

malisms needed for modelling agents. An agent can be represented in terms of

attitudes, such as belief and knowledge, and pro-attitudes, such as desires and in-

tentions. The former representation is related to the information an agent possesses

about the world, whereas the latter drives the agent’s actions upon the environment;

• architecturesrepresent models designed to support practical implementation. Ac-

cording to what has been stated in (WOOLDRIDGE; JENNINGS, 1995), they can

be classified into three basic types, namelydeliberative, reactive, andhybrid. De-

liberative architectures are a classical approach to describe agents in a society. In

such structures, an agent keeps a symbolic representation that explicitly represents

every relevant fact within the world (JENNINGS, 1994). On the other hand, reac-

tive architectures are based on a behavioural approach. Agents are described in a

simpler way and do not possess neither a symbolic model of theworld nor plans for

their actions (BROOKS, 1991a,b). Finally, the third type isbased on the previous

ones. It seems to be more suitable to tailoring agent’s behaviour for specificities

of actions needed to achieve different objectives. The major idea behind an hybrid

architecture is to enable agent’s actions to result from twosubsystems, namely a

deliberative and a reactive, or from a combination of both. The deliberative sub-

system keeps a symbolic representation of the world and makes use of elaborated

task-planning and inference mechanisms. To the contrary, in the reactive subsystem

the agent is able to choose a specific action from predefined events of the environ-

ment in a linear way. This avoids the use of complex reasoningmechanisms, as

actions are taken from directly mapping events to possible reactions.

• languages of agentshave moved researchers into the challenging task of creating

agent-oriented programming languages, which are softwaresystems designed to

implement agents. Shoham (1990) proposes agent-oriented programming as a new

paradigm for programming. The basis of this paradigm would be on the facilities

offered to define agents as an entity constituted of mental attitudes, such as beliefs,

desires, and intentions, for instance.
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Besides the areas proposed in (WOOLDRIDGE; JENNINGS, 1995), Weiss (1996)

also points out a number of challenging and open subfields concerning specification, im-

plementation, handling, and assessment of MAS.

• communication languages;

• co-ordination mechanism;

• negotiation and co-operation strategies;

• organisation design;

• planning and diagnosis of tasks;

• problem decomposition and synthesis.

3.6.1 Learning

It is quite reasonable to say that learning plays vital role in MAS technology. This

topic has been the subject of both theoretical and practicalworks as it is central in the

reasoning process, and the technical community agrees it deserves special attention on its

own right. Weiss (1996) identifies between two categories oflearning.

• single-agent(or isolated) learningconsists of a learning mechanism that does not

rely on the presence of multiple agents. This is the basic approach adopted by the

traditional AI;

• on the other hand,multi-agent(or interactive) learning requires the presence of

multiple agents and their interactions in order to achieve an efficient learning. More

specifically, it could be viewed as a process concerned only with situations in which

several agents collectively pursue a common learning goal.It may also refer to

situations in which an agent, albeit pursuing its own learning goal, is affected by

other agents’ knowledge, beliefs, intentions, and so forth.

The variety of possible forms learning can be thought of in MAS is certainly enor-

mous. So, the effective implementation of such mechanisms demands for some consider-

ations to be taken into account. Weiss (1996) also suggests the following criteria to better

structure learning approaches.

• thelearning methodorstrategyconcerns the process itself, used by a learning entity.

For example, rote learning, by repeatedly studying likely situations using memory

rather than understanding, learning from instruction and by advice taking, learning

from examples and by practice, learning from analogy, and learning by discovery. A

major difference between all these methods relies on the amount of learning effort

required;
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• thelearning feedbackenables the assessment of the degree of performance achieved.

Three basic kinds of learning are identified according to this criterion. The super-

vised learning specifies the desired activity and it is aimedat matching a desired

action as closely as possible. The reinforcement learning specifies the utility of the

actual activity and it is aimed at maximising such a utility.Finally, the unsuper-

vised learning where no explicit feedback is provided. In this case, the learning

entity needs to find out useful and desired activities on the basis of trial-and-error

and self-organisation processes.

With respect to the criterion of learning feedback, it is assumed the performance level

to be achieved is provided by either the environment or the agents themselves. With this

respect, three possible types of feedback providers are identified in (WEISS, 1995).

• teachersare either the environment or agents that provide feedback in the super-

vised learning scenario;

• providing feedback in reinforcement learning is a responsibility assigned tocritics

that are, once more, either the environment or agents;

• in the case of unsupervised learning neither the environment nor other agents will

provide the learner with any feedback. They act just aspassive observers.

3.6.2 Communication

Integration within an agent society may be dependent on the communication abilities

of its members. Thus, well-defined communication protocolsare necessary to establish

efficient and proper interaction between agents. Basically, communication can be imple-

mented in two ways.

• direct communicationhappens when agents know each other allowing them to ex-

change data. The message-passing mechanisms are good examples of this kind

of communication. The interaction happens on the basis of well-defined protocols,

which specify the dialog process to be performed by the agents involved in the com-

munication. Different protocols are defined to different kinds of interaction within

the agent society. Contract net protocol, for instance, could be used to implement

such a kind of communication mechanism (SMITH, 1988);

• to the contrary,indirect communicationmay be established between agents that

have no previous knowledge about each other. In this case information is delivered

to and collected from a common directory, which is accessed by every one within

the system. For example, blackboard architectures are based on a data structure

divided into different levels of information. Agents can write on or read from it. A

well-defined scheduling mechanism is necessary to manage this processes, which

should allow the consistency of information on the blackboard (ROTH, 1984).
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Albeit perception is the basic mechanism through which an agent gathers information,

communication can be used to improve this process. In some applications it is even more

significant when the information is to be shared with others.There are three types of

information, which are very likely to be exchanged among agents of a society.

• an agent’sknowledgemay depend much on its ability to sense the environment, on

its expertise and skills, and on its communication facilities. Sharing this kind of

information through communication may help others in many forms. For example,

one could provide information about the environment to a ‘blind’ agent;

• in an agent society,plans or possiblesolutions of specific problemsmay be the

privilege of a reduced number of individuals. Expertise andskills could be shared

with others facing the same problem already solved by any member of the society,

in a co-operative scenario for instance;

• in certain societies, either homogeneous or heterogeneous, agents may need to ex-

ecute the same plan in order to speed up a system task or as a means to make the

solution of a problem uniform, for instance. In such situations, the group of agents

should share the sameplan choice, which can happen through communication.

However, interaction is not only related to communication.It can also be identified

with the purpose of controlling some sort of process. In a broad perspective, a control

mechanism basically dictates and regulates data exchanging within the society. It can be

either distributed among several agents or centralised in asingle entity (FROZZA, 1997).

3.6.3 Co–operation and conflicts

Achieving a common goal is often one of the intentions for agent-based applications.

When this is the case, conflict and co-operation are central concepts underlying agent in-

teraction, and can limit the execution of simultaneous actions by different entities, as well.

Conflicting situations is the subject of much research in thefield of MAS (TEDESCO;

SELF, 2000), and can basically be grouped into two types.

• the conflict is said to belocal in the case it happens between only two conflicting

agents;

• it is said to beglobal in the case several individuals are found to be in conflicting

state.

In general terms, a conflict happens when one’s interest can be conditioned on the

behaviour of others. Béron et al. (1995) identifie some likely conflicting situations, which

are easily understood on their own right, namely conflict of goals, conflict of results, and

conflict of resources.
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Coordinating activities and negotiating actions are important mechanics to cope with

conflicts. They greatly influence task-planning as the orderin which actions are executed

or the instant at which execution starts may in any form avoidpotential conflicting situa-

tions. As presented in (FROZZA, 1997), there are two basic approaches for planning that

minimise conflicts, if not to eradicate them.

• when a conflict is diagnosed, the task of addressing it can be delegated to or be the

duty of a single agent. Thus, it starts alocal planningto autonomously sort the

situation out;

• solving a conflict in the system may be also accomplished by means of ordering

actions performed by multiple agents. In this case, aglobal planningis necessary.

On the other hand, negotiation aims to address conflicts between individuals through

their consensual co-operation. It is particularly interesting for domains in which a group

of interacting agents associate their efforts to achieve desired goals. Thus, conflicts may

arise for the sake of differing aptness and skills among the group. A negotiation process

can involve actions such as proposing, evaluating, changing, accepting, and rejecting a

solution. In order to enhance efficiency and be successfullyterminated, the negotiation

should follow a protocol that facilitates the solution to converge (LABIDI; LEJOUAD,

1993; FROZZA, 1997).

3.7 Agent–Based Simulation

With the advent of computers, computer simulation has been widely used as an im-

portant tool for understanding and assessing systems of varying complexity and nature,

and has become the bridge between theory and experiment. Educational, training, and

entertainment purposes have also been among the subjects ofmuch research in this field,

which has gathered the attention and interest of scientistsand practitioners of different

disciplines.

The ability to represent system dynamics in a controlled virtual environment has en-

couraged the application of simulation techniques in many different areas, including nat-

ural sciences, engineering, industry, business and financial market, the government and

the army, and social sciences. Albeit the computer simulation methodology has been

relatively kept on its original basis, its widespread application and the improvement of

computers in recent years, both in processing and in graphical interface, have stimulated

the evolvement of different techniques, including agent-based simulation. One can refer

to computational prototyping as a scientific discipline on itself, allowing a new way to

bridge theory and experiments, and enabling to go beyond both.

Shannon (1975, 1992) presents in detail all the steps involved in a computer simu-

lation study. Those can be basically summarised into three essential phases. First, the

application domain is modelled through an abstraction process that identifies the relevant
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characteristics and relations of the problem components. Second, the model is translated

to an executable form, and the experiments are executed to generate new information and

simulation results. Finally, results are assessed and interpreted, and then can be used ac-

cordingly in the real system. It is important to bear in mind that these are parts of an

iterative process where modelling plays an essential role,and should be addressed with

special care. In such an iterative process, one can even formulate and test new models

with simulation techniques.

Not surprisingly, modelling has been the main focus of most advances in computer

simulation. Virtually, any programming language could be used to translate simulation

models into executable code. Nonetheless, some languages such as Simula (BIRTWISTLE

et al., 1975), GPSS (SCHRIBER, 1990), and Simscript (CACI PRODUCTS COMPANY,

1983), which are specifically devised for general simulation purposes, offer additional fa-

cilities for dealing with model specificities and enhance computational prototyping. More

complex simulation frameworks have also been implemented as DOSE (MAK, 1991),

VISE (LINDSTAEDT, 1995), and SIMOO (COPSTEIN, 1997), whichincorporate the

concepts of Visual Interactive Modelling (VIM) and Visual Interactive Simulation (VIS)

(FREITAS, 1994). The use of object-oriented development gave a remarkable contribu-

tion in modelling techniques and, recently, the concept of autonomous agents has further

boosted the development of the computer simulation field (CONTE; GILBERT; SICH-

MAN, 1998).

Besides the concepts of encapsulation of properties and behaviour of objects, agent-

based modelling promotes an adequate means for representing autonomy and cognitive

capabilities within the system entities. Two perspectiveswere initially assumed to base

what has become the agent-based simulation field (KLÜGL, 2001). At a first point of

view, agents are responsible for carrying out simulation capabilities (even though the

model is devised on the basis of other techniques). The second approach is built up on

the basis of agent-based modelling, which represents the application domain in terms of

agents and their interactions. This has become the main stream adopted by the agent

research community as the seed for cross-fertilisation between computer simulation and

multi-agent systems, stimulating innovative research at the intersection between these

two multidisciplinary areas (CONTE; GILBERT; SICHMAN, 1998). In this way, much

research effort has also been devoted to the development of simulation environments that

support the design of agent-based simulation models; a comprehensive description and

comparison of some of such environments is presented in (ADAMATTI, 2001).

Two important issues arises in the relatively recent ages ofthe agent-based simulation

field. First, MAS modelling is still seen with a certain skepticism when compared with

traditional approaches, such as equation-based techniques. They both can ultimately be

translated into an executable form and differ basically in terms of the abstraction used

to build the model and the way they are executed (PARUNAK; SAVIT; RIOLO, 1998).

In agent-based modelling, the model consists of a set of agents and execution consists
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of emulating their behaviours and interactions. In equation-based modelling, the model

is a set of equations and the execution consists of evaluating them. Parunak, Savit, and

Riolo (1998) then conclude that simulation is a general termthat applies to both methods,

which are distinguished as agent-based emulation and equation-based evaluation.

Whether to choose one or another simulation technique will very much depend on the

purpose of the study and the nature of the problem. For example, time-dependent appli-

cation domains may demand for efficient simulations in termsof execution time. In this

way data can be generated and assessed on a timely basis and practitioners can intervene

on the real system accordingly. On the other hand, when modellers and simulationists are

mainly concerned with the application domain abstraction,the choice would certainly be

better if headed to a more expressive approach (though inefficient in terms of execution

time), such as agent-based modelling. The detailed description of the entities of a system

and their interactions can contribute enormously for the understanding of its dynamics.

The need for such a trade-off will be always present in any simulation methodology.

Another interesting issue is that there is still a controversial discussion as to whether

adopting a more complex approach in the description of the agent reasoning capabilities

is an adequate approach for agent-based simulation. Traditionally, emergent functions are

modelled only among (simpler) reactive agents, as opposed to (more complex) cognitive

agents able to deliberate about their joint goals and plans for all their collective activities.

However, some works (CASTELFRANCHI; CONTE, 1992; CASTELFRANCHI, 1997)

strongly question such an opposition and defend that collective intelligence and emerging

functionalities must also be modelled among cognitive agents with limited knowledge and

rationality, and are not able to understand, predict, and dominate all the global and com-

pound effects of their actions at the collective level. The concept of Cognitive Emergence

(CE) is then presented to designate the emerging dynamic processes of systems formed by

cognitive agents (CASTELFRANCHI, 1998). Castelfranchi (1998) also argues that cer-

tain emerging phenomena in some complex domains, such as social organisations, cannot

be explained without CE. In addition, the author claims thatCE has critical importance

in the process of immergence, that is how the resulting emergent structure of the sys-

tem changes back the properties and then the behaviours of each individual element at a

microscopic level.

3.8 Potential Applications of MAS in Traffic and Transportat ion

Examples of MAS applications are briefly presented in this section. The aim is making

a survey on what has been done toward improving software tools for assessing traffic and

transportation systems by way of agent-based approaches. Curiously, there is a number of

examples reported in the literature, which are mainly concerned with traffic management

and control systems, as well as with the microscopic representation of movement and

driver behaviour. Nonetheless, there is also an increasingnumber of examples that address
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other aspects of traffic and transportation. Although special attention has been given to

those related to modelling the traffic phenomenon, some other examples were found to be

worth mentioning.

3.8.1 Traffic Management and Control Systems

Traffic management and control have been traditionally elected as an application

ground where scientists can develop, test, and apply their approaches and theories. The

need for certain degree of autonomy and intelligence in the growing area of Advanced

Traffic Management Systems (ATMS) makes agent technologiessuitable to model such a

domain.

Haugeneder and Steiner (1994) applied agent-oriented techniques to address urban

traffic control (UTC) issues. The authors grouped UTC systems into three different inter-

acting levels, namely the traffic flow control, the traffic guidance, and the integrated traffic

management. Focus was given to the second level, emphasising traffic guidance on indi-

vidual basis. The MECCA/UTC system was presented as a domain-specific application

built under the MECCA framework (HAUGENEDER; STEINER, 1993), where agents

were implemented in the MAI2L language (STEINER et al., 1993). The application of

MAS to traffic control was also explored in the work by Gabrié et al. (1994). Their aim

was at testing and evaluating the adequacy of the approach used in dMARS (Distributed

Multi-Agent Reasoning System) to real world problems.

A similar concern underlies the example reported in (PIRES;DIAS; BELO, 1997).

Their model was devised as a means for investigating and verifying the applicability of

multi-agent systems to the field of traffic control systems (TCS). Important issues such as

control distribution, co-ordination and co-operation protocols, as well as system modu-

larity were approached. Different kinds of agents with specific skills were specified and

geographically distributed within zones of a city. Performance measures included, for

instance, duration periods, the current traffic signal state, average duration of green time,

and the messages associated to co-operation processes among simulated junctions. The

functional architecture of the traffic agent was organised into three layers with different

purposes, namely communication, inference and knowledge representation, and interface.

Linda (CARRIERO; GELERNTER, 1989) was used to support the implementation of the

distributed environment.

In (BAZZAN, 1997), a game-theoretic approach was used to confront the drawbacks

of co-ordination in traffic control systems. The author proposed a model to yield a co-

operative environment where controller agents were able toco-ordinate their actions.

While overcoming the disadvantages of traditional decentralised approaches, the traffic

control co-ordination was achieved with reduced communication. Game theory was also

the basis for the work reported in (CHAMPION; MANDIAU; ESPIÉ; KOLSKI, 2001;

CHAMPION; ESPIÉ; MANDIAU; KOLSKI, 2001).

Van Katwijk (2000) presented two examples through which he analysed the potentials
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of autonomous agents for modelling traffic control and management instruments. The

author asserted this approach allowed for tuning the actionof each single device toward a

collaborative traffic control system, where co-ordinationon the level of devices might re-

duce the need for co-ordination on higher levels of control centres. His work was inspired

by Bazzan’s previous research (BAZZAN, 1997) and approached co-ordination issues on

the basis of communication and negotiation among controller agents.

The focus underlying the TraMas model (FERNANDES; OLIVEIRA, 1999) was con-

cerned with using agent-based strategies for controlling traffic signals in a distributed and

co-operating fashion. The model was presented as an alternative to traditional centralised-

based approaches. The system was represented in terms of roads, vehicles, traffic signals,

and traffic controllers, all implemented by means of object-oriented programming. Each

traffic controller was associated to the junction where it was situated and was on duty for

locally controlling traffic signals. The authors adopted a reactive approach based on the

Brooks’ subsumption architecture (BROOKS, 1991b), with three hierarchical levels of

behaviour (see Figure 3.6). Co-operation was designed to take place by means of a sim-

ple communication protocol between adjacent traffic controller agents. The microscopic

simulation environment, Magoo (FERNANDES, 1998), followed the Cellular Automata

approach and was implemented in the Java language. A distributed approach for agent

simulation of traffic systems is also proposed and reported in (TANDAYYA; ZOBEL,

2000a,b).
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Figure 3.6: The basic agent architecture for the TraMas model.

Real applications of agent-based techniques in Intelligent Traffic Management Sys-

tems were reported in (CUENA; OSSOWSKI, 1999) and (HERNÁNDEZ; OSSOWSKI;

GARGÍA-SERRANO, 2000). These examples were carried out within the European

KITS and the Spanish TRYS projects (CUENA; OSSOWSKI, 1999).Two multi-agent

systems with the purpose of performing decision support forreal-time traffic manage-

ment in urban highway networks, namely TRYS and TRYSA, were implemented on the

basis of different approaches and compared. On the one hand,the centralised model

used in TRYS relied on the knowledge approach presented in (CUENA; HERNÁNDEZ;

MOLINA, 1996). Agents were endowed with different types of knowledge, organised

within knowledge units that might lead behaviour in different perspectives. All control

plan proposals resulted from individual reasoning of each controller and a coordinator was
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designed to mediate the process and to build global and coherent signal recommendations

for the whole network. On the other hand, TRYSA implemented adecentralised model

where agents coordinated their tasks through the structural co-operation approach pre-

sented in (OSSOWSKI; GARCÍA-SERRANO, 1998). Basically, the central coordinator

of the former model was replaced by the socially bounded autonomy that agents enjoyed

within the structural co-operation of the latter. This methodology was applied to the ur-

ban motorway networks around Barcelona, as reported in (HERNÁNDEZ; OSSOWSKI;

GARGÍA-SERRANO, 2000), and around Madrid, as reported in (CUENA; OSSOWSKI,

1999). The centralised approach of TRYS was found to promoteefficiency for real-time

operation, whereas the decentralised approach used in TRYSA promoted scalability.

3.8.2 Traffic Microscopic Simulation and Driver Behaviour

The growing complexity of abstraction levels used to represent the traffic domain has

encouraged the development of microscopic simulation models. Burmeinster, Doormann,

and Matyls (1997) claim that existing microscopic traffic simulation models can be en-

hanced with the agent concept. According to the authors, themajor advantage of such an

approach relies on a better commitment to the system ontology, mainly with regard to the

driver representation. In their example, the domain was represented as a society of cog-

nitive agents featuring the BDI model proposed in (HADDADI,1993). Such a structure

was based on the COSY architecture (BURMEISTER; SUNDERMEYER, 1991) as de-

picted in Figure 3.7, and the simulation framework was implemented under the DASEDIS

environment (BURMEISTER, 1993).
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Figure 3.7: The COSY agent architecture.

SITRAS (Simulation of Intelligent TRAnsportSystems) as presented in (HIDAS,

2000), is a microscopic transport simulation model that hasbeen developed since 1995.

It was devised with the objective of providing engineers andpractitioners with a general

evaluation tool for ITS applications, such as congestion and incident management, public

transport priority, and dynamic route guidance. The microscopic simulation model was

designed in terms of DVO units, which are driver-vehicle objects. Although the DVO

has not originally been implemented on the basis of agent concepts, the author defended

that it can in fact be seen as an autonomous agent. Hidas (2000) based his analysis in

the light of the definitions given in (TOKORO, 1994) and the agent model proposed in

(CHAIB-DRAA; LEVELSQUE, 1994; RASMUSSEN, 1986). The author concluded that
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a DVO possessed most characteristics of autonomous agents.Basic behaviours such as

lane changing, merging, and car following while travellingbetween an origin and a desti-

nation were implemented within each driver-vehicle unit. In order to allow the evaluation

of the effects that DRGS (Dynamic Route Guidance Systems) might cause on the overall

system performance, two main classes of driver-vehicle objects were identified, namely

the unguided and the guided ones. This theme was further developed in (HIDAS, 2001).

The framework for anticipatory traffic forecast proposed in(KLÜGL et al., 2000)

was aimed at providing drivers with information about the network future state (through

VMS, for instance). In that work authors suggested that suchan approach might en-

hance decision-making and improve the quality of the trip. The model required a more

realistic representation of reasoning, as decisions influenced by exogenous information

were expected to considerably effect the level of recurrentdemand. A two-layered struc-

ture was proposed for the driver structure. Basic perception-reaction behaviours, such as

car-following, lane-changing, and merging, were implemented in the tactical layer. The

strategic one was designed to support more elaborated cognitive mechanisms. The au-

thors suggested that BDI-based models would be ideal to represent such a strategic layer,

as similarly discussed in (ROSSETTI; BAMPI; LIU; VAN VLIET;CYBIS, 2000a; ROS-

SETTI; LIU; VAN VLIET; BAMPI; CYBIS, 2000)

The microscopic simulation framework in (KLÜGL et al., 2000) was based on the

Nagel and Schreckenberg’s model inspired by the Cellular Automata (CA) theory

(NAGEL; SCHRECKENBERG, 1992), which was extended and implemented as a multi-

agent system in the SeSAm (Shell for Simulated Agent Systems) environment

(KLÜGL; PUPPE, 1998; DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY

WUERZBURG, 2002). Nonetheless, further work has been carried out to improve this

research as reported in (BAZZAN et al., 2001). They presented a domain-specific frame-

work to support the microscopic simulation of driver agentson the basis of an object-

oriented approach. The environment representation has also followed the CA approach

whereas the moving elements were designed to base more sophisticated reasoning mech-

anisms. Another example using CA was reported in (HERTKORN;WAGNER, 2000).

Dia and Purchase (1999) similarly envisaged the potential application of intelligent

agents to modelling dynamic driver behaviour. A framework was conceptualised (DIA,

2000, 2001, 2002) to evaluate the effects of ATIS on the performance of transportation

systems. This ongoing research started by a behavioural survey of congestion on a traffic

commuting corridor. The data gathered from that survey served as the basis for mod-

elling driver agent features, such as travel behaviour, personal preferences, and goals.

The preliminary results were reported in (DIA, 2002). This approach consists of cou-

pling the dynamic driver behaviour with the microscopic traffic simulation. The cognitive

agent proposal was inspired by the works presented in (SHOHAM, 1993; THOMAS,

1993) albeit it has not, as yet, been actually implemented. PARAMICS (QUADSTONE

LIMITED, 2002), which is a commercial microscopic traffic simulation framework, was
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elected to perform the traffic simulation.

In the research reported in (BRUGGEMANN; LEHMANN, 2000), each individual

was endowed with action-planning and decision-making capabilities. The agent structure

was designed so that drivers could behave rationally on the basis of a multi-criteria assess-

ment model. Urban mobility was described in terms of supply-demand systems, where the

execution of individuals’ activities affects traffic generation. The simulation framework

proposed basically comprises three stages, which include scheduling activities on week

basis, performing scheduled activities, and evaluating performance measures. The be-

havioural model, inspired by the work presented in (COHEN; LEVESQUE, 1986, 1990),

was proposed as an alternative to using traditional optimisation techniques.

Although FLOWSIM (Fuzzy LOgic enhaced motorWay traffic SImulationModel)

(WU; MCDONALD; BRACKSTONE, 1998) did not explicitly use theconcept either

of agent or of multi-agent system, it relied on a microscopicrepresentation of drivers

endowed with reasoning capabilities. A fuzzy inference approach was used to support

the decision-making on both car-following and lane-changing situations. The model was

suited to assess various ITS measures, such as Autonomous Intelligent Cruise Control

(AICC) and implemented within microscopic traffic simulation framework.

3.8.3 Other Applications

Apart from the two major areas mentioned above, the growth ofthe ITS field has

encouraged much research. It has deserved an increasing interest from both AI and MAS

communities owing its complexity and very dynamic nature. It has been used as a ground

where theories and approaches have been tested.

After formally specifying a cognitive agent architecture,Haddadi (1996) presented

a hypothetical scenario in the domain of transportation andshipping to demonstrate her

theory. In order to meet costumers demand, a shipping company needs to optimise the

service allocation for its fleet and sometimes to recur to private sub-contractors. The

company coordinator and the sub-contractors were modelledas BDI agents on the basis

of the theory proposed by the author. In this work, focus was given to communication as

a means to achieve co-operation in multi-agent systems.

A multi-agent model was devised and presented in (BURMEISTER; HADDADI;

MATYLIS, 1997) to analyse different organisational structures, fleet composition, and

technical apparatus for vehicles within a car pooling station. The work was motivated

by the increasing traffic volume throughout road networks and the need for optimising

capacity usage, mainly in urban areas. The scenario was modelled and implemented un-

der the dMARS environment (KINNY, 1993). Negotiation and control mechanisms for

successful dialogs are some issues addressed in that work, which followed the generic

protocol proposed in (BURMEISTER; HADDADI; SUNDERMEYER, 1995).

Rather than focusing on the representation of all physical elements found in the real

traffic system, the model suggested by Adorni and Poggi (1996) were specially concerned
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with the guidance process itself. A route guidance system was designed in terms of dis-

tributed and interacting modules working on an on-board Road Map Knowledge Base.

Each of such modules was modelled as an agent supporting different capabilities of the

system, ranging from specifying the car position and planning routes to providing com-

mands to actuators for autonomous car driving.

Garcia-Bulle (1990) applied the multi-agent concept to address the problem of net-

work equilibrium. Instead of using aggregate functions to describe the behaviour of the

flow as in traditional approaches, the author elaborated a framework of individual objec-

tive functions. In his model, agents were shippers of a good in a given network. Each

agent was designed to determine the flow to be shipped in orderto maximise an objective

function accounting for the actions of the rest of the agents. Among the examples given

by the author, the model was also used to tackle the traffic equilibrium problem.

The Pedestrian Crowds model proposed in (JIANG, 1998) was devised to serve as

an aid to urban planning and designing. The interest in mentioning this work resides in

its representation of the application domain by means of multiple agents moving from

origins to destinations throughout a bounded-resource environment. This approach was

inspired by the work reported in (DROGOUL; FERBER, 1994) andimplemented under

the StarLogo suit (MIT MEDIA LABORATORY, 2002). In a very similar work, Dijkstra

and Timmermans (2000) modelled people in terms of the cognitive structure proposed in

(FISCHER; MÜLLER; PISCHEL, 1998). In both examples CA was used to represent the

environment.

Modelling driver behaviour within driving simulators is another application to which

agent-based techniques has been found to have great potentials. Agents deployed in this

kind of experiments are intended to interact with the subject driver in order to make its vir-

tual environment more realistic and less predictable (AL-SHIHABI; MOURANT, 2001).

Al-Shihabi and Mourant (2001) presented a framework for modelling different kinds of

human driving behaviour to be used in autonomous vehicles within a driving simula-

tor environment. The behaviour of the interacting virtual drivers was modelled through

Fuzzy Logics. El Hadouaj, Espié, and Drogoul (2000) addressed conflicts between drivers

within such environments. In their model, interaction decisions are made on the basis of

an analysis of the traffic condition in the area around the vehicle, which the authors des-

ignated as the the driver’s control field. This approach relies on the work presented in

(SAAD; SCHNETZLER, 1994) and is focused on testing and refining behaviour models,

testing man-machine interfaces, and testing driving aid equipments.

In the examples reported in (BOTELHO; RAMOS, 2000) and (BOTELHO, 2000), au-

thors were specially interested in demonstrating theorieson agent interaction and commu-

nication. The architecture was conceptualised in a way so that agents were endowed with

the concept of emotions, which was central to the interaction behaviours. Their approach

for interaction control and communication was applied within the Monitorix framework,

a video-based multi-agent system aimed at traffic monitoring and surveillance.
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3.9 Summary

By developing computer applications in either purely software or hardware-software

design and development, one’s goal is that those applications must be able to perform the

tasks they were designed for in an autonomous way. Autonomous interaction has been

even more desired, and turning it into practice in differentlevels of complexity has been

the motivation of much research in the field of multi-agent systems.

In their relatively recent ages, the interest in the emerging agent-based techniques has

presented a crescent growth and their practical utility to model and simulate a wide range

of differing domains is reckoned to be evident. Since then, MAS community has worked

toward formalising agent theories, classifying and organising their types and features,

and devising ways for their practical implementation. Furthermore, what makes this field

even more stimulating is its commitment to the ontology of systems. This very feature

gifts MAS with the ability of representing different levelsof complexity. From pure

reactive to pure cognitive architectures, their suitability to interact with others and with

the environment, to communicate, to learn and to plan turns agents into a powerful tool to

model domains composed of geographically and functionallydistributed entities.

Although advances in the processing power and memory of contemporary computer

architectures have reached high-level standards, turningcomplex models into practical

implementation is, as yet, a difficulty to overcome. From a result-driven perspective,

contrary to the process-driven one, describing reasoning and decision-making in a detailed

level may become much more complicated, though. Such a levelof complexity has still

been relegated to domains represented by means of a reduced number of agents, whereas

the reactive approach has been preferred otherwise. Nonetheless, hybrid architectures

have been suggested to address the cognitive approach drawbacks.

The complexity of today’s transportation and traffic systems has definitely reached

very concerning configurations, and representing uncertainty and variability within sim-

ulation and assessing models is even more imperative. As physical modifications be-

come more and more unpractical, deploying ITS solutions brought about the need for

autonomous mechanisms that can in any manner lead the usage of roads’ limited capacity

to converging optimum levels. This scenario becomes suitable for being represented by

means of the abstraction premises of MAS, and such a practicehas been verified in the

literature.

There is already a considerable body of work presented in theliterature aimed at prac-

tically applying multi-agent systems to the specific domainof traffic and transportation

engineering. Traffic problems have always motivated researchers from a wide range of

disciplines for the most varied interests. If it is not for the challenging issues this field

poses, at least the relevance of its social and economic rolemay explain so. Two main

groups of examples can be identified, namely those dealing with management and control

systems and the ones devoted to representing movement in a microscopic way. The former

group is traditionally elected as MAS has been already applied to other control systems
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scenarios, such as air traffic control, railway systems, industry, and process control the-

ory in general. A real world’s application is reported in (HERNÁNDEZ; OSSOWSKI;

GARGÍA-SERRANO, 2000).

The latter group is specially concerned with the microscopic representation of move-

ment. Vehicles and drivers have been traditionally dealt with indistinguishably as a

vehicle-driver unity. Also in most agent-based models the environment is represented

by means of the cellular automata approach (CODD, 1968; SMITH III, 1969), which

seems to be much simplified when compared with vectorial models. As in (BAZZAN

et al., 2001), for instance, such a simplification is desiredand seeks to address the draw-

backs of other approaches. It is aimed at integrating the agent-based model within an

on-line simulation loop, where time dependence is a conditioning factor. Yet, in general

terms, the goal has been the microscopic representation of movement. Nonetheless, ITS

technologies have recently led some authors to envisaging proper representation for hu-

man behaviours, which brings decision-making to the driverlevel. This seems to be an

adequate approach to represent different driver tasks, others than only driving. This may

certainly increase complexity, though.

Another group not so specific encompasses diverse applications, which demonstrates

the potential of MAS and its ability to represent ITS in different levels as already sug-

gested in (BOUCHEFRA; REYNAUD; MAURIN, 1995; ROSSETTI; BAMPI, 1998a).

From modelling interaction with service providers to on-board route guidance systems,

as well as implementing personal assistants are some other examples found in the litera-

ture.

All of these examples show the potential of MAS to handle modern traffic and trans-

portation scenarios. Proper data structures and algorithms provide for robustness and

scalability, and constitute the natural abstraction to model, to simulate, and to assess the

new performance measures. Contrary to former result-driven approaches, agent-based

techniques are found to be very suitable process-driven methodologies to cope with the

Intelligent Transportation Systems reality.
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4 BDI: A COGNITIVE APPROACH FOR MAS

4.1 Overview

One great advantage of cognitive models is their ability to represent the reasoning

mechanism. This provides for an ideal framework to understand more complex decision-

makings, which are inherent in human beings. This very natural feature has motivated

researchers from philosophy, psychology, social sciences, and anthropology to co-operate

with computer scientists. Such a synergy has contributed tothe design of adequate data

structures and efficient algorithms that allow for the implementation and computation of

their theories and formalisms. Definitely cognitive approaches privilege the representa-

tion of processes rather than focusing likely results.

As cognitive models cannot count on the simplicity of reactive architectures, they

have been widely applied to societies of few agents only. Dueto their complex nature and

representation of knowledge, applications encompassing alarger number of reasoning en-

tities are seen as interesting challenges. They are even more challenging when constraints,

such as time, are to be overcome.

BDI (beliefs,desires, andintentions) is a cognitive approach that basically relies on

mental states and their relations. As many other cognitive models, it has favoured an

accurate representation of the reasoning process to the detriment of higher abstraction

that eases implementation. This gave rise to the so-quoted ‘gap’ between the theory and

its practical implementation. In this chapter the syntax and semantics for beliefs, desires,

and intentions are presented as a means to model motorist reasoning. BDI is believed to

be the ideal tool for simulating and understanding human behaviour and decision-making

within today’s traffic and transportation scenarios.

4.2 Beliefs, desires and intentions

The BDI model used in this thesis relies on the formalism suggested by Rao and

Georgeff (1991). The authors present their theory on the basis of the Bratman’s (1987)

work, which deals with intentions as an important element for rational reasoning as beliefs

and desires. Three important aspects are worth to be mentioned, as pointed out by Rao

and Georgeff (1991), in order to base further discussions ontheir formalism.
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• firstly, as stated by Bratman (1987), intentions are treatedas first-class citizens on a

par with beliefs and desires. Contrary to some reductionismtheories, intentions are

considered as important as beliefs and desires in the reasoning process;

• secondly, Rao and Georgeff (1991) distinguish between the choices an agent has

over the actions it can perform and the possibilities of different outcomes of an

action. In the former case, an agent can choose among outcomes of actions. To the

contrary, in the latter case, it is the environment that determines the outcomes that a

course of action will bring about. As a possible interpretation for this premise, one

may consider that an agent chooses an action accounting for the possible outcomes

it believes the action can bring about. However, it is the environment dynamics that

dictates the outcomes that really result from executing that action. This allows for

environment dynamics and nondeterminism;

• finally, an interrelation between beliefs, desires, and intentions is specified. This is

aimed at avoiding many of the problems that are usually associated with possible-

worlds formalisms, such as committing to unwanted side effects.

Beliefs, desires, and intentions constitute the main components in a BDI architecture.

Rao and Georgeff (1991) present an alternative possible-worlds formalism for BDI mod-

els, which relies on these crucial components and the premises mentioned above. Such a

formalism resembles the Computational Tree Logic (CTL*) (EMERSON; SRINIVASAN,

1988) to describe the concept of possible-words.

In the BDI formalism, the dynamics of the system is captured in a temporal structure,

called a time tree. This structure is composed of both a single past and a branching time

future. Basically, a time point can be seen as a specific moment in time that allows the

agent to be characterised by its state (see Figure 4.1). Thus, a particular time point in a

particular world is called a situation, which can be seen, for instance, as the scenario the

agent is involved in at a particular moment in time.

The branches in a time tree can be viewed as representing the choices or options,

which are available to the agent at each moment in time and that map to a possible future

state. Each branch is associated to an event, which is, on theother hand, actions an agent

can perform. Therefore, event types are responsible for transforming one time point into

another.Primitive eventsare directly performed by the agent and uniquely determine the

next time point in a time tree.Non-primitive events, contrary to the previous ones, refer to

non-adjacent time points. They could be interpreted as a perspective of a far future, and

have the potential for being decomposed into primitive events. In this way, they can be

used to model hierarchical plan development. Nonetheless,it is important to bear in mind

that the execution of an event can either be successful or not. Thus, the execution of an

event does not mean necessarily its execution should be successful.

An agent, regarding its dynamic nature, has to act upon the environment in order to

achieve its objectives. Thus, it is necessary to select appropriate actions or procedures to



76

yield the effects it believes will result in the desired objectives. The design of aselection

functionallows the agent to choose an action, from the various options available, which

will enable it to achieve its goals. Basically, this is the basis for the interrelation among

beliefs, desires, and intentions.

Beliefscan be seen as the representation of what the agent effectively knows about

the world, both dynamic and static aspects. As to selecting acourse of action, there are

two types of input data required by the selection function mentioned above. On the one

hand, it is essential to acquire information about the stateof the environment, which is

basically done through sensing actions. However, such information may not be enough

to capture the dynamic aspects of the environment, those related to how the environment

is evolving over time, as well as which effects are produced by acting in a certain way,

for example, as in inaccessible traffic systems. The beliefs, on the other hand, provide

the agent with a cognitive representation of the world. Suchan internal model is updated

after every sensing action, and so can be used to deduce the state of the system in a broad

perspective.

The motivational state of an agent is represented by itsdesires. It is quite intuitive that

the existence of an agent within an environment has an end. Thus, the agent also needs

information about its goals and about what is necessary to accomplish them. Rao and

Georgeff (1991) distinguish between goals and desires in that while desires are inconsis-

tent with one another, the goals must be consistent. Also, the agent should believe that

the goal is achievable. Such a relation is referred to as theproperty of realism(COHEN;

LEVESQUE, 1986). Therefore, goals are chosen desires of theagent that are consistent.

For example, an agent might have both the desires of going to work and of going to the

beach on a working day, which are inconsistent with respect to each other.

Considering that the objectives or priorities of an agent could be generated instanta-

neously or as a result of a function, there is no reason why they would require a state

representation. However, some studies (RAO; GEORGEFF, 1995) have shown that the

way this selection is implemented and the approaches that are assumed can bring about

unwanted situations. For example, due to the high demand foraccessing the selection

function, an agent could be unable to accomplish a certain objective. Therefore, it is

important to achieve a trade-off between too much reconsideration and not enough.

This way, intentionsrepresent the state that an agent has committed to attempt to

realise. In other words, to cope with the unwanted situations as already mentioned, in-

tentions represent the currently chosen course of actions.Similarly to the requirement for

belief-goal compatibility, the intentions of an agent mustbe compatible with its goals. In

other words, the agent only can commit to some course of actions if it is one of the agent’s

goals. Regarding this process of choosing to accomplish a certain goal, one could identify

many types of commitment strategies. Such a classification is important to characterise

and analyse different reasoning behaviours of agents.
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Figure 4.1: Possible world of an agent as a time–tree structure.

The conceptual architecture of a BDI agent is depicted in Figure 4.2, and briefly de-

scribed by Wooldridge (WOOLDRIDGE, 1999) as follows.

sensor


BDI agent


effector


brf
 options


filter
 action


beliefs


desires


intentions


Figure 4.2: Conceptual architecture of a BDI agent,

adapted from (WOOLDRIDGE, 1999).

At every perception from the environment, the agent’s base beliefs set is updated. The

new configuration of beliefs is performed by abelief revision function(BRF), which is

responsible for preserving the consistence of the agent’s beliefs. An options function de-

termines the options available to the agent, which are its desires. This function receives as

inputs the current configuration of the beliefs set, as well as the agent’s current intentions.

As further discussed in (GEORGEFF; LANSKY, 1987; GEORGEFF;RAO, 1996), an

agent is equipped with a library of plans that are used to perform means-ends reasoning.

Deliberation is achieved on the basis of instantiating meta-descriptions of plans, which

generates the agent’s options and are able to modify its intention structure dynamically

at run time. The desires represent possible course of actions available to the agent, and

a simplification is generally made in the sense that conflicting desires are discarded and

only non-conflicting ones (the goals) are considered. A filter function representing the

deliberation process determines new intentions on the basis of the agent’s current beliefs,

non-conflicting desires (goals), and the intentions currently being performed. The inten-



78

tions represent those states of affairs that an agent has committed to trying to bring about.

An action selection function then executes the next action the agent must perform on the

basis of its current intention.

4.3 The BDI logics

Practically, the first step to model a multi-agent system is to choose a logic language to

describe the agent’s behaviour and interactions. The notation used to describe the various

components of the language is borrowed from the ones presented in (RAO; GEORGEFF,

1991; HADDADI, 1996; RUSSELL; NORVIG, 1995). The syntax andthe semantics are

informally presented in this section.

Rao and Georgeff’s (1991) formalism was presented as an extension of the CLT*

logic as mentioned before. The authors suggested such an extension in two ways. First,

a first-order variant was proposed. Second, the logic was extended to a possible-worlds

framework by introducing modal operators for beliefs, goals, and intentions. It is im-

portant to note that a simplification was made, as only goals are used to the detriment

of inconsistent desires. Thus, beliefs, goals, and intentions are represented as beliefs-,

goals-, and intentions-accessible worlds. The authors also distinguish between two types

of formulas, namely the state and path formulas. State formulas are evaluated at a specific

time point, whereas path formulas are evaluated over a specific path in a given world.

Practically, whether a formula is a state or a path one can be easily identified from its

semantics.

Considering a given path formulaψ, it is said to beoptional if, at a particular time

point of a given world,ψ is true for at least one path emanating from that point. On the

other hand, ifψ is true for all the possible paths, the formula is said to beinevitable. E

andA are used to designate optional and inevitable paths, respectively. This representation

obeys the convention of CTL*, as suggested in (RAO; GEORGEFF, 1991). The standard

temporal operators, can be applied over both state and path formulas. A list of the com-

ponents of the logical language is given next, following thesame structure presented in

(RAO; GEORGEFF, 1991; HADDADI, 1996).

• propositional connectives:⇒ ,⇔ , ∧ , ∨;

• quantifiers:∀ , ∃ ;

• equality operator:= ;

• negation operator:¬ ;

• operator symbols:succeeds , fails , does , succeeded , failed , done ;

• modal operators:BEL , GOAL , INTEND ;

• path operators:E (optional) ,A (inevitable) ;

• temporal operators:© (next),♦ (eventually),� (always) ,U (until) ;
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• action operators:| (disjoint), ; (sequence) ;

• a set Constants of constant symbols:Agent1, Driver2, Link1, Event1, and so forth;

• a set Variables of variable symbols:agent, driver, link, event, and so forth;

• a set Predicates of predicate symbols:Ad jacent, Travel, and so forth.

The possible relations among the various components of the language are listed next.

It is important to bear in mind that both state and path formulas are evaluated in a given

accessible-world. To build a state formula, the following rules must be observed.

• any first-order formula is a state formula;

• if φ1 andφ2 are state formulas andx is an individual or event variable, then¬φ1,

φ1∧φ2, and∃ x φ1(x) are state formulas;

• if e is an event type thensucceeds(e), fails(e), does(e), succeeded(e), failed(e), and

done(e) are state formulas;

• if φ is a state formula thenBEL(φ), GOAL(φ), andINTEND(φ) are state formulas;

• if ψ is a path formula, thenE(ψ) andA(ψ) are state formulas.

Similarly, in order to build a path formula, the following rules must be observed:

• any state formula is also a path formula;

• if φ1 andφ2 are path formulas, expressions similar to¬φ1, (φ1∨φ2), (φ1∪φ2), ♦φ ,

and�φ are also path formulas.

4.4 Traffic system: the application domain

As mentioned before, the application domain of concern in this work is the traffic

system of urban areas. More specifically, it is focused on thecommuter scenario where

decisions such as what time to depart and which route to take are important to meet

certain constraints as of fixed arrival time at destinations. So, modelling driver reasoning

is central, albeit TIS technologies are also to be represented in terms of agents.

Drivers are dealt with as rational and intentional entities. Hence, public transport

users, as well as other transport modes are not taken into consideration at the current

level of this research. It is the typical commuter scenario where travellers are already to

possess some knowledge about the traffic network, its dynamics, and its topology. The

uncertainty inherent in humanlike decision-making is the factor to grant variability in

demand formation.

Each driver has the goal of reaching certain destination, its work place for instance,

departing from an origin within the traffic network, such as its home. Two basic deci-

sions have to be made in order to accomplish such a goal, namely what time to depart and

which route to take. Bearing this situational configurationin mind, one can consider as
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basic arguments for this goal the origin, the destination, the route, and the departure time

chosen. Nonetheless, it is getting to be a common practice using some facilities that pro-

vide updated information about the actual state of the network, both prior and during the

journey. This represents an opportunity toward overcomingthe very inaccessible nature

of the traffic environment, even for commuters. For example,radio broadcast, variable

message signs (VMS), dynamic route guidance (DRG), and the Internet are used in this

way. Other technologies, such as mobile communication, have improved and made the

access to information easier.

Since individuals can access reliable and updated information about the system state,

they now are able to make efficient decisions. This is conceivable as exogenous sources

can improve the cognitive representation of the world within drivers’ reasoning. For ex-

ample, one could avoid unwanted situations such as traffic jams, or could choose the ideal

path in terms of different interpretations of cost to its destination. TIS will definitely influ-

ence the way drivers make decisions and behave as traffic network users. Therefore, some

level of interaction will also be necessary to some extent, even as just to allow drivers to

receive information. With regard to this interactive nature, two kinds of such systems

can be identified, namely thepassiveand theinteractiveones. The former would include

those that only send information that is current. On the other hand, the latter would be

able to tailor contents to meet users’ needs and would present some degree of adaptability,

as well. Moreover, driver and information system could interact in a co-operative way in

order to reach a certain destination efficiently. For example, an inquire-response mode of

co-operative interaction could entail a more precise information to fill the driver’s needs.

4.4.1 Description of traffic entities

An individual usually organises his knowledge of the trafficsystem in terms of net-

work topology and dynamics. Topology has a quite simple representation, whereas dy-

namics is mostly associated with the recurrent traffic flow. Yet, such an association is

mostly related to certain periods, for example, of the day, of the week, and even of the

moth and of the year. Beliefs such as “certain road is always congested” or “that one

would have a free traffic because it is wider” reflects the cognitive notion a driver may

have about the capacity of a link. These beliefs are usually built on the basis of either the

physical description of the road or after experiencing the necessary time to travel through

a certain part of the road. In this way and considering the cognitive picture of the en-

vironment the driver conceives, one can identify the elements that compose the traffic

system.

The traffic network is usually organised in terms of roads (links) connected to each

other. In this way links form the network topology. Althoughcommuters are very familiar

with the system, their knowledge will be limited to few alternative routes that are identi-

fied as sequences of adjacent links. Each link is weighted with a cost, which is updated as

drivers realise a trip through it or receive any sort of information on it. The interpretation
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for cost, in this case, will depend widely on the purpose of the journey. For example,

as a work commuter travels it perceives the time it takes to perform each link within the

route. However, the knowledge got from this very sensing actis commonly translated to

qualitative terms as the traffic was free or congested, for instance. The average travel time

for the entire journey is very likely memorised, though. An individual could deduce that a

certain road would be congested from knowing the actual state of adjacent ones, as well.

Further, such an inference could result from simply considering the physical structure of a

link, for example, “that road is likely to have a free flow because it has five traffic lanes”,

and “the other one is too narrow and will be probably blocked during lunch time”. So,

contrary to the way adopted in traditional models, drivers are likely to make qualitative

rather than quantitative assessments of the system.

In general terms, a traffic system can be seen as formed of moving particles, which

are the vehicles and, implicitly, the driver, and of the network that is the environment

(ROSSETTI, 1998). Basically, one can consider a populationof potential commuters that

are able to perform a journey throughout the network. Individuals that have decided to

make a trip on a certain day will constitute the demand for travel on that day. The network,

on its turn, is built up of links representing roads.

Thus,Drivers is a constant that represents a set of drivers. It can be referred to as the

population of potential commuters in the traffic system.Driver() is a unary predicate that

determines its argument is a driver.

Drivers= {d1,d2,d3, . . . ,dn} n∈ N

∀d Driver(d)⇒ d ∈Drivers

Similarly, Networkis a constant that represents a set of links connected to eachother

andLink() is a unary predicate that determines its argument is a link.

Network= {l1, l2, l3, . . . , ln} n∈ N

∀l Link(l)⇒ l ∈Network

It is equally important to identify the current state of the driver. For example, it may be

stationary at an origin or a destination, or it may be moving through a link. The predicates

WaitingAt(d, l) andMovingOn(d, l) could be used to denote the state of a driverd with

respect to a linkl . It is important to bear in mind that origins and destinations are dealt

with as links, as well. This simplification is adopted as the connection of source and drain

zones to the traffic network is usually represented by means of dummylinks.

A driver has the notion of adjacency, both for longer and shorter parts of a road. For

example, an individual may know every transversal to certain road, such as the Ipiranga

Avenue, in Porto Alegre, whereas another knows only the mainjunctions to that road

ignoring all the others between them. For the sake of simplicity, a link is atomic, which
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means no transversal is considered to exist. The other assumption made about links is that

they are directional. Hence, there is a downstream and an upstream node associated to

each of them. In other words, a link can be represented in terms of a directional segment

between two consecutive intersections (see Figure 4.3). The following formula expresses

that l1 andl2 are adjacent with regard to one another.

∀l1, l2 Ad jacent(l1, l2)⇒Connected(U pstream(l1),Downstream(l2))
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Figure 4.3: Links of a traffic network

The same idea is used to represent routes, which are lists of links. A necessary condi-

tion, however, is that the links should be adjacent to each other and consecutive. Similarly,

Routesis a set ofroutesymbols, which represent the alternatives a driver is able to choose

from. The unary predicateRoute(route) relates its argument to a route object1.

Route= {origin, l1, l2, . . . , l i, l i+1, . . . , ln,destination} i,n∈ N

∀r Route(r)⇒ r ∈ Routes

∀l i , l i+1 l i , l i+1 ∈Route⇒Connected(U pstream(l i),Downstream(l i+1))

Every driver who is familiar with the network to some extent has a cost assigned to

each link within its internal model. However, contrary to bea quantitative notion, such a

cost gives a qualitative idea of the link. Thus,LinkStatesis a set of constants representing

possible states of a link. In the commuter world, three different levels of cost could be

considered, to mention some. TheLinkState(link,state) predicate relates a link to its

actual state.

LinkStates= {Congested,Normal,Free}

LinkState(l1,Congested) LinkState(l2,Normal) LinkState(l3,Free)

1An important assumption made in this work is that routes are previously determined and are part of a

library for each agent. Routes can be built as a result of the Desopo’s shortest path algorithm (VAN VLIET,

1977).
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Temporal operators, such asalwaysandeventually, could be associated to these for-

mulas, as exemplified bellow.

�LinkState(l1,Congested)

♦LinkState(l2,Free)

Contrary to the qualitative assessment made over each link,the average travel time

may be assigned to the entire route. Thus, a possible predicate to represent this could be

TravelTime(route, time), which associates an average travel time to a certain route.A

predicate such asMinute(value) could be used to denote that time is given in minutes.

Nonetheless, if the time unit is to be generalised, the formula TravelTime(r,Minute(45))

could be simply written asTravelTime(r,45).

Another important time dependent representation that should be present in a com-

muter model, is the notion of time associated to the instant an action is performed. What

time a commuter needs to depart and what time it is supposed toarrive at work, are good

examples. A possible inference as to such notions could be “if I departed at that time and

got that route would I arrive at work in time?”. Instants are usually identified from within

the day. Thus, the predicatesDepartAt(time) andArriveAt(time) could be used to repre-

sent the instant such actions are to be performed. In the sameway,DepartureTime(time)

andArrivalTime(time) could be used to represent the instants those actions actually hap-

pened. Besides, operator symbols could also be used to further detail actions representa-

tion.

4.4.2 An example of a logic traffic system

In order to illustrate the logics presented in the previous sections, a simple example

was devised. It gives a little flavour of the logics adequacy to model humanlike behaviour

and decision-making in the traffic and transportation domains. The system instance is

composed of a hypothetical network with three possible routes for an origin-destination

pair, as depicted in Figure 4.4.
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Figure 4.4: A hypothetical traffic network

The network can be represented by means of a set of its links, denoted asN1. So,

N1 = {o, l1, l2, l3, l4, l5, l6, l7, l8, l9,d} where the following conditions should be observed.
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Ad jacent(o, l1),

Ad jacent(l1, l2), Ad jacent(l2, l9),

Ad jacent(l1, l3), Ad jacent(l3, l5), Ad jacent(l5, l7), Ad jacent(l7, l9),

Ad jacent(l1, l4), Ad jacent(l4, l6), Ad jacent(l6, l8), Ad jacent(l8, l9),

Ad jacent(l9,d).

R1 is the set formed of the three possible routes between origino and destinationd,

and is given asR1 = {r1, r2, r3}. These are the paths the driver actually knows for the

journey. Nonetheless, such a set might be expanded as an individual experimented other

roads, searched in a map, or was otherwise advised by a Route Guidance System, for

instance. Each route fromR1 is described next.

r1 = {o, l1, l2, l9,d},

r2 = {o, l1, l3, l5, l7, l9,d},

r3 = {o, l1, l4, l6, l8, l9,d}.

Considering a populationD1 of commuters, a certain driverdi ∈ D1 could have the

following mental attitudes in a given moment in time.

BEL(di ,WaitingAt(di,o)),

BEL(di ,TravelTime(r2,Minute(45))),

BEL(di ,♦LinkState(l5,Free)),

BEL(di ,�LinkState(l2,Congested)),

GOAL(di,WaitingAt(di,d)),

GOAL(di,ArriveAt(t +x)).

The events are path formulas representing the course of actions that enable an agent

to reach a desired future state. In other words, they can be seen as the strategy of an

individual to accomplish its goals. Such a commitment to realise certain course of actions

to the detriment of other possible ones is the abstraction for the agent’s intention. In this

specific example, the driver commits to execute the following actions.

INTEND(di,DepartAt(t)),

INTEND(di,TakeRoute(r3)).

Figure 4.5 depicts this simple example in terms of beliefs-,goals-, and intentions-

accessible worlds.

4.4.3 Planning a trip

Basically, a initial planning task is executed to set the components of a trip. Thus, a

trip could be defined as the tupleTrip〈O,D,P,DAT,R,DT〉. For the sake of simplicity,

the terms within the tuple were abbreviated.O represents a linko which can be iden-

tified as the origin for the trip,Origin(o), whereasD is the destination linkd, given by
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Figure 4.5: The possible worlds for the traffic example: (a) beliefs-accessible world;

(b) goals-accessible world; and (c) intentions-accessible world

Destination(d). The purpose for the journey, given byP, can be any from a set of possi-

ble motivations, such aswork, leisure, shopping, and so forth. The reason for making a

journey commonly implies an arrival deadline, which the driver attempts to meet. This is

theDAT (desired arrival time) term of the trip. In order to effectively accomplish its trip

end, the driver should choose a routeR, from the set of routes it knows for the specific

OD pair, and a departure timeDT. Thus, the desired arrival time can be seen as a goal

of a commuter. Route and departure time express the commitment to attempt to achieve

that goal, which results from the driver’s decision-making. Hence, this idea could be

represented in the following way.

GOAL(ArrivalAt(time)),

INTEND(DepartAt(time)).

INTEND(TakeRoute(route)),

The plans of a driver are pre-determined and possible routesbetween origins and

destinations are stored in a plan library. This limit the number of options available to the

drivers, as in real life people are usually presented up to three or four route choices, at

most.

4.4.4 Strategies for decision-making

Representing drivers’ behaviour and decision-making is a topic of main interest in

works aimed at assessing variable demand. Some models, suchas DRACULA (LIU; VAN

VLIET; WATLING, 1995), deal with decision-making on the basis of past experiences.

This way, a driver is endowed with memory and is able to store travel experiences in

terms of cost, usually travel time for commuters. Thus, eachlink of its internal model is

weighted by any form, which is a quantitative approach, though. In practice, the cognitive

reasoning of human beings is mostly associated to qualitative aspects of the environment

rather than exact numeric measures.
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It is intuitive that a driver does not explicitly remember the travel time for each link,

and sometimes neither for the entire route. Nevertheless, it is possible to identify an

implicit cognition performed by individuals in order to acquire the qualitative attributes

of any element within the system. This could be produced by comparisons. For example,

as to the link states a driver could make the following associations.

• when travelling through a linkl with an average speedsat least equal to the desired

speedsd, the link could be associated with a free flow state;

∀s,sd,d, l Speed(s)∧Speed(sd)∧Driver(d)∧Link(l)

∧Higher(s,DiseredSpeed(d,sd))⇒ LinkState(l ,Free)

• if the average speedsperformed through a linkl is lower than the desired speedsd,

but higher than certain value, say 20km/h, defining a stationary flow, thenl could

be associated to a normal state;

∀s,sd,d, l Speed(s)∧Speed(sd)∧Driver(d)∧Link(l)

∧Lower(s,DiseredSpeed(d,sd))∧Higher(s,Speed(20))⇒ LinkState(l ,Normal)

• finally, a congestion can be associated to a linkl when the average speeds is equal

or lower than the value that characterise a stationary flow.

∀s,sd,d, l Speed(s)∧Speed(sd)∧Driver(d)∧Link(l)

∧Lower(s,Speed(20))⇒ LinkState(l ,Congested)

Contrary to the way routes are usually dealt with, the average travel time for the entire

journey is not evaluated on a link-by-link basis. Rather, itis identified by the difference

between the arrival time at destination and the departure time from origin. It could be

seen as a more intuitive way to represent the reality, albeitit is just a different manner to

write the sum of all link costs throughout the route.

∀r, t, to, td Route(r)∧Time(t)∧Time(to)∧Time(td)

∧TravelTime(r, t)⇒ t = Di f f erence(ArrivalTime(td),DepartureTime(to))

This way, many decisions could be made in terms of assessing qualitative aspects of

the options available to each driver. As to route choices, for instance, the driver would

evaluate quality of the flow through each link of the route, which the driver believes to

hold at the instant the decision is made. If an individual believes a link within certain path

is always congested, it very likely would take an alternative way. Otherwise, the driver

could keep the usual route and opt for departing a little bit earlier.
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∀r1, r2, l1, l2,d Route(r1)∧Route(r2)∧Link(l1)∧Link(l2)∧ l1∈r1∧ l2∈r2∧¬(l1 = l2)

∧BEL(d,�LinkState(l1,Congested))⇒ TakeRoute(d, r2)

There are many other ways to represent human cognition in commuter scenarios, as

are the different manners humans make decisions. For example, the state of a link could

be associated to certain period of the day, or even could a route be thought of as a re-

laxing one for the sake of landscape. This section served to illustrate how complex and

arduous it would be to describe the ontological level of a system. And this is specially the

case of traffic and transportation domains when the task is tomodel the system from the

perspective of drivers. Also, some epistemological natureof systems can demand more

appropriate representation, as the one offered by fuzzy logics, for instance.

4.5 Practical ways to implement BDI models

A logical formalism allows for the efficient representationof all the knowledge an

agent must possess about the world and how to reason on it. However, it is easy to re-

alise from the brief discussion in the last section that describing complex domains both

ontologically and epistemologically may become an arduousand extensive task. Yet, it

is also central to MAS providing an operational model that supports the implementation

of the agent architecture. BDI formalisms have demonstrated a natural ability to design

humanlike cognitive behaviour. It is also commonsense thatin fact the so quoted ‘gap’

between modelling and practical implementation has discouraged using it despite its ex-

pressiveness power. Efforts have then been devoted to finding a way to bridge such a gap

and turn BDI models into real applications.

Móra et al. (1999) identify at least two basic approaches to overcome limitations of

BDI formalisms. It is possible to extend existing logics with appropriate operational

models, or one can use other logical formalism that is powerful enough both to provide a

cognitive representation of the domain and to offer operational procedures for practically

building agents. In his thesis, Móra (1999) tackle the problem of devising computational

BDI models by following a similar way as adopted in (CORRÊA; COELHO, 1993). In-

stead of defining a new BDI logic or choosing an existing one inorder to extend it, the

notions of beliefs, desires, and intentions are defined by means of a formalism that is both

well-defined and computational. This is achieved by means ofusinglogic programming

extended with explicit negation(ELP) andWell-Founded Semantics extended for explicit

negation(WFSX). In such a framework, an agent is defined as the tuple〈B,D, I ,TAx〉,

whereB is a set of beliefs,D is a set of desires,I is a set of intentions, andTAx is a set

of time axioms. Plans are built out from an explicit declaration of actions and the period

of time they should be carried out. This effort has also departed from Bratman’s (1987)

philosophical work as have other attempts to formalise and implement BDI multi-agent

systems (HADDADI, 1996; RAO; GEORGEFF, 1991, 1995).
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Rao (1996) worked on an alternative formalisation of BDI agents to devise an op-

erational and proof-theoretic language, AgentSpeak(L). The language can be seen as an

abstraction of implemented BDI systems, such as PRS and dMARS, which determines

the behaviour of the agents it implements. AgentSpeak(L) allows programs to be writ-

ten and interpreted in a way similar to that of Horn-clause logics (SCHACHTE, 2002).

D’Inverno and Luck (1998) further discussed its primitivesand semantics on the basis

of a Z specification. Curiously, despite these authors claimed and formally demonstrated

the ability of AgentSpeak(L) to specify and allow for practical implementation of BDI

agents, an interpreter for the language waited for relatively long time to be implemented.

After presenting a comparison between 3APL and other agent languages (HINDRIKS

et al., 1997), Hindriks et al. (1998b,c) formally suggest that it is possible to simulate

the operational semantics of AgentSpeak(L) within 3APL. Inother words, every agent

that can be programmed in Rao’s (1996) language can also be programmed in 3APL. In

a similar approach to overcome the lack of an interpreter forAgentSpeak(L), Machado

and Bordini (2002) reported their experiences in running AgentSpeak(L) programs within

SIM_AGENT framework (SLOMAN; POLI, 1995). SIM_Speak, as the authors coined

their environment, is capable of converting AgentSpeak(L)specifications to SIM_AGENT

agent programs. The latter is based on previous extensions to the POP-11 language (SLO-

MAN, 1999; BARRETT; RAMSAY; SLOMAN, 1985), allowing SIM_AGENT to be a

general tool that leaves to programmers the task of determining the architecture of the

agents (MACHADO; BORDINI, 2001).

Although approaching quite successfully the ‘bridging thegap’ between theory and

practice, Bordini and Machado (2002) also suggest that the main advantage of a purpose-

built interpreter as opposed to running AgentSpeak(L) agents within SIM_AGENT, would

be in terms of efficiency and practicality. This was to becomereality recently, as Bor-

dini et al. (2002) presented an interpreter to their AgentSpeak(XL), an extension proposed

to improve AgentSpeak(L) in various aspects and particularly for supporting the use of

Design-To-Criteria (DTC) scheduler (BORDINI et al., 2001)to allow the generation of

efficient intention selection functions. In both works (MACHADO; BORDINI, 2001;

BORDINI et al., 2002), authors left a remarkable contribution to the BDI community as

they presented further understandings on the operational semantics of AgentSpeak(L) and

enhanced its interpreter as to AgentSpeak(XL).

It is also relatively recent that commercial tools for the development of multi-agent

systems have been claimed to support the practical implementation of BDI-based mod-

els. JACKS Intelligent Agents (AGENTLINK, 2002; AOS, 2002)is a multi-agent sys-

tem development environment commercialised by AOS. It is based on the JACK Agent

Language (JAL) that extends the Java language to allow embedding BDI-based reason-

ing within Java objects. Bee-gent (Bonding and Encapsulation Enhancement Agent) is a

framework for the development of agent-based distributed systems (KAWAMURA et al.,

1999; TOSHIBA CORPORATION, 1999), which has been developedat TOSHIBA Cor-
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poration’s Research and Development Center. A number of APIsupports the implemen-

tation of two types of agents, namely the agent wrapper and the mediation agent, which

can be featured with BDI reasoning capabilities.

UMPRS (LEE et al., 1994) and JAM (HUBER, 1999a,b) are both BDIarchitectures

that have been developed at Intelligent Reasoning Systems and University of Michigan

(INTELLIGENT REASONING SYSTEMS, 2002), and explicitly include the original

BDI theories and specification of PRS (HUBER, 1999a; GEORGEFF; LANSKY, 1987;

INGRAND; GEORGEFF; RAO, 1992). So, their constructors and operational semantics

resemble enormously the ones of AgentSpeak(L) language (HUBER, 2001, 1994). While

agents specified in UMPRS are parsed to C++ code, the ones specified in JAM are parsed

to Java code. In the special case of JAM, much effort have beendevoted to provide users

with technical aid and documentation, and both frameworks are made freely available for

non-profitable ends, such as academic works.

4.6 AgentSpeak(L): Specifying and Programming BDI Agents

AgentSpeak(L) is a language devised to bridge the gap between formal modelling and

practical implementation as far as BDI agents are concerned. It basically reduces the task

of modelling intentional agents to identifying base beliefs, goals and plans. Given its ex-

pressiveness and ease of use, AgentSpeak(L) is applied in this work as an specification

language. Such a decision is based on the assertions by Machado and Bordini (2002)

as to the fact that Rao (1996) also devised a proof theory for AgentSpeak(L). Unfortu-

nately, neither the SIM_Speak framework nor the AgentSpeak(XL) interpreter were effec-

tively available for use when this thesis’ proposal was presented. In order to experiment

and demonstrate the approach of this research, a choice was made toward implementing

AgentSpeak(L) drivers in JAM. Nonetheless, it is the step ahead to use AgentSpeak(XL)

in further developments.

Before going further on the specification of the commuter scenarios presented in this

work, it is believed to be worthwhile presenting the syntax of AgentSpeak(L), so as to

facilitate the understanding of the specification of the BDI-like driver behaviour model.

The following definitions giving the syntax of the language are taken from (RAO, 1996),

where AgentSpeak(L) was first specified, and are presented here exactly as they were

given in his original work.

Definition 1 If b is a predicate symbol, and t1, . . . , tn are terms then b(t1, . . . , tn) or b(t) is

a belief atom. If b(t) and c(s) are belief atoms, b(t)∧c(s), and¬b(t) arebeliefs. A belief

atom or its negation will be referred to as abelief literal. A ground belief atom will be

called a base belief.

Definition 2 If g is a predicate symbol, and t1, . . . , tn are terms then!g(t1, . . . , tn) (or !g(t))

and?g(t1, . . . , tn) (or ?g(t)) aregoals.
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Note that both beliefs and goals are predicate symbols (as are actions, as seen later).

A predicate symbol is a goal if it is preceded by the operators‘!’ or ‘?’ (see Definition

2). Thus, an agenta may have theachievement goalof being in locationY in a future

state, expressed by !location(a,Y). It may also check what its present position is, by the

test goal?location(a,X), given its set of base beliefs (updated through perception of the

environment).

Definition 3 If b(t) is a belief atom,!g(t) and?g(t) are goals, then+b(t),−b(t), +!g(t),

+?g(t),−!g(t),−?g(t) are triggering events.

Agents go through repeated cycles where they observe the environment and, based on

their observations and goals, they execute certain actionsthat may change the state of the

environment. This may influence the agents’ beliefs as well,which need to be revised.

Definition 4 If a is an action symbol and t1, . . . , tn are first-order terms, then a(t1, . . . , tn)

or a(t) is anaction.

Definition 5 If e is a triggering event, b1, . . . ,bm are belief literals, and h1, . . . ,hn are

goals or actions then e: b1∧ . . .∧bm← h1; . . . ;hn is a plan. The expression to the left of

the arrow is referred to as theheadof the plan and the expression to the right of the arrow

is referred to as thebodyof the plan. The expression to the right of the colon in the head

of a plan is referred to as thecontext. For convenience, an empty body is rewritten with

the expression true.

Rao (1996) further mentions that a plan specifies the means bywhich an agent should

satisfy an end. However, in none of the known work concerningAgentSpeak(L) (RAO,

1996; D’INVERNO; LUCK, 1998) the authors approach the issueof how beliefs and

intentions are updated during the execution of a plan2.

Definition 6 Anagentis given by a tuple〈E,B,P, I ,A,SE ,SO ,SI 〉, where E is a set of

events, B is a set of base beliefs, P is a set of plans, I is a set of intentions, and A is a

set of actions. The selection functionSE selects an event from the set E; the selection

functionSO selects an option or an applicable plan3 from a set of applicable plans; and

SI selects an intention from the set I.

Definition 7 The set I is a set of intentions. Eachintentionis a stack ofpartially instan-

tiated plans, i.e., plans where some of the variables have been instantiated. An intention

2It is referred here to the updating of beliefs and deletion ofintentions directly from the execution of

a plan, not (in the case of beliefs) through changing the environment by means of actions and subsequent

perception of the environment and the ensuing belief update, or (in the case of intentions) executing sub-

plans. Although, in some of the examples given in the papers it appears that this is possible, formally a plan

is only formed of goals and actions, not triggering events (i.e., addition and deletion of beliefs).
3Rao (1996) presents applicable plans in Definition 10 of his original work.
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is denoted by[p1 ‡ . . .‡ pz], where p1 is the bottom and pz is the top of the stack. The ele-

ments of the stack are delimited by‡. For convenience, Rao (1996) refers to the intention

[+!true : true<-true] as the true intention, and denotes it byT.

Definition 8 The set E consists of events. Each event is a tuple〈e, i〉, where e is a trigger-

ing event and i is an intention. If the intention i is thetrue intention, the event is called an

external event; otherwise it is aninternal event(and i is the intention that has generated

the event e).

As described in (D’INVERNO; LUCK, 1998), there are two basicmodels of opera-

tion, which essentially involve either updating the intention set, reflected by responding

to an event, or actually executing intentions. When updating the intention set, the agent

selects an evente, from the set of eventsE, and generates all the plans whose invocation

conditions, identified by the triggering event at the head ofthe plan, match this event.

These plans are therelevant plans. Then, if the context part of a relevant plan is a logical

consequence of the set of base beliefs, it will be selected asanapplicable planand will

form a plan instance that is the agent’sintended means. Ending the cycle, the agent up-

dates its set of intentionsI . If the event selected, which started the cycle, is an external

event, a new intention is generated and inserted into the intention set. Otherwise, the event

is internal and the plan instance is added to the head of the intention that posted the event.

In the second model, the agent selects an intention from the intention setI . The plan

at the top of the selected intention is now theexecuting plan, and the next formula in

the body of the plan is theexecuting formula. Depending on the selected intention and

the executing formula of the executing plan, the agent starts one of the possible courses

of action. If the executing formula is an achieving goal, a new goal event is generated

and posted to the event setE, and the intention is suspended until the goal has been

achieved. In case the executing formula is a query goal, the information retrieved is used

to instantiate the corresponding terms in the executing plan. Finally, if the executing

formula is an action, the action is posted to the action setA, awaiting execution. In the

last two situations, the executing formula is removed from the executing plan. If there is

no further formula in the executing plan, the agent starts the execution of the next plan in

the selected intention. If there is no next plan, then the intention has succeeded and can

be removed from the intention set.

It is important to note that an AgentSpeak(L) agent is specified simply as a set of base

beliefs and a set of non-instantiated plans, which turn the task of modelling quite easier.

Intentions are generated automatically from triggering events. This process is detailed in

(RAO, 1996; D’INVERNO; LUCK, 1998). Also, Machado and Bordini (2002) give a

remarkable insight into AgentSpeak(L) operational semantics.

In this thesis, the focus is given only to those elements thatare necessary to char-

acterise the BDI agents, as presented above. As suggested in(MACHADO; BORDINI,

2001), and already experimented in (ROSSETTI; BORDINI; BAZZAN; BAMPI; LIU;
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VAN VLIET, 2002; ROSSETTI; LIU; CYBIS; BAMPI, 2002), AgentSpeak(L) will be

used to specify BDI-like driver behaviours.

4.7 Summary

One main premise of ITS is to optimise traffic flow through enhancing driver be-

haviour patterns. This gives rise to the use of information technologies as the instru-

ment to accomplish such an aim. Therefore, describing humanlike factors is the basis

that allows for modelling, simulating, and assessing the impact and efficiency of TIS. As

travellers enrich their knowledge about the very inaccessible traffic and transportation en-

vironment, decision-making is now to yield optimised choices. So, models should cope

not only with reactive aspects, which are well-handled within the car-following and lane-

changing representations, but also with the cognition level. However, very little work has

succeeded in either addressing human behaviour or proposing a means to overcome their

very complex nature (WATLING, 1994).

The BDI approach was presented in this chapter, which relieson Bratman’s (1987)

work. Contrary to many reductionist authors, intelligent agents are dealt with as inten-

tional rather than only rational entities. In this way, intentions become an important com-

ponent for reasoning, as are beliefs and desires. An agent then is motivated by its goals

and commits to certain courses of actions in order to accomplish them. Despite its ability

to represent cognition, BDI-based models have not been widely used. The lack of effec-

tive implementation tools for a while since it was first proposed can perhaps explain this.

Nonetheless, some alternatives extending the BDI logics have been successfully used

within domain-specific applications, such as the one presented in (TEDESCO; SELF,

2000). Yet in this way, only societies with a reduced number of elements have profited

from the potentialities of such an approach.

It is relatively recent that people have again demonstratedsome interest in using BDI

models within a variety of applications. Two main reasons may justify this trend. Firstly,

advances in computer architectures have enhanced both processing and memory capac-

ities. More or less dependent on the former, developing environments now support the

effective implementation of BDI-based agents. Some of which are commercially avail-

able. However, using it within domains formed of several reasoning entities has not, as

yet, been actually experienced. This is specially the purpose of this work.

In order to model drivers as reasoning agents, the decision was made toward us-

ing Rao’s (1996) AgentSpeak(L) language rather than devising a domain-specific ex-

tension of BDI logics from scratch. Its syntax and semanticsrely entirely on Rao and

Georgeff’s (1991) formalism . Additionally, the language possesses a proof theory, which

suits perfectly specification purposes (MACHADO; BORDINI,2001). Curiously, no in-

terpreter was made available until very recently, as reported in (BORDINI et al., 2002).

To turn around this very absence, The JAM architecture (HUBER, 1999a,b) was used
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for practical implementation of the BDI-based drivers. Some of its constructors keep the

same semantics and relations as in AgentSpeak(L). Following the approach suggested in

(HINDRIKS et al., 1998a, 1997) it is possible to simulate Rao’s (1996) language func-

tioning in JAM. This way, drivers will be endowed with a BDI kernel to support their

reasoning ability. This is expected to improve behaviour modelling and ease the assess-

ment of decision-making on a variety of scenarios.
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5 A BDI MODEL OF COMMUTER SCENARIOS

5.1 Overview

One goal of this work is to present a methodological approachto aid the modelling

and implementation of driver behaviours in commuter scenarios. Machado and Bordini

(MACHADO; BORDINI, 2001) claim that the AgentSpeak(L) language is suitable as

a specification tool, despite the absence of a purpose-builtinterpreter for the language

and therefore could be used to suit this end. This assertion is based on the fact that

Rao (RAO, 1996) devised the language on the basis of both an operational and proof-

theoretic semantics. Some experiences of using AgentSpeak(L) for specification purpose

are reported in (ROSSETTI; BORDINI; BAZZAN; BAMPI; LIU; VANVLIET, 2002;

ROSSETTI; LIU; CYBIS; BAMPI, 2002).

This chapter, initially addresses how AgentSpeak(L) is used to specify BDI commut-

ing drivers. Commuters are expected to be familiar with the traffic system, hence routes

are chosen from a limited set of options. Also, for most commuters, there may be a sort

of rigid arrival time that should be met to the extent of the purpose of the journey. Thus,

the basic decisions a driver agent has to make are as to which route to take and what time

to depart so that it can achieve its trip objectives.

Different premises may be assumed when people are reasoningand making decisions.

In this sense, it is also likely that different individuals adopt different strategies to com-

plete a certain goal. Such strategies will be grouped into driver personalities, which dic-

tates the way an individual reasons about his/her base beliefs. Three initial personalities

were devised on the basis of intuitive considerations, namely the random, the choosy, and

the conservative ones. A fourth personality coined the habitual driver was devised on the

basis of the driver behaviour currently implemented in DRACULA, as described in (LIU;

VAN VLIET; WATLING, 1995). Further extensions to the habitual personalities are also

proposed.

5.2 Traffic domain from a multi–agent system perspective

The task of assessing ITS technologies brought about the need for a more robust means

to model the real world (CHATTERJEE; MCDONALD, 1999). MAS seems to be able to
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give an enormous contribution to this end owing its powerfulexpressiveness for ontologi-

cal and epistemological representation of complex systems. Bearing in mind the structure

for traffic systems in urban areas, it is possible to identifytheir basic components, namely

the environment and the moving particles. The environment can be viewed as the road

network itself and the control systems (such as traffic signals and traffic signs), which dic-

tates the movement rules. Vehicles are the moving entities travelling throughout the road

network (ROSSETTI, 1998; ROSSETTI; BAMPI, 1998b, 1999). Nonetheless, today’s

traffic and transportation are increasingly influenced by the presence of ITS technologies,

which should be taken into account and integrated into the environment, as well. In a

demand-supply perspective, the environment with all its resources can be seen as the sup-

ply for a demand formed of moving individuals that seek to accomplish their trip goals.

A traffic system is notably formed by heterogeneous entities, which are geographi-

cally and functionally distributed over the environment. Their very nature suggests that

such components can be easily recognised as agents in a multi-agent system. Owing the

complexity and dimensions of the domain, urban areas are usually divided into zones. In

turn, zones within a city could be seen as open agent societies, through which individuals

are able to move from one to the other.

Accounting for the ITS premise of being able to influence users’ behaviours, drivers

start playing a crucial role in the system and modelling it asan agent deserves special

attention. Nonetheless, the other elements within the system are equally important. Some

of the environment components have already been subjected to either reactive or cog-

nitive modelling approaches, as seen in Section 3.8. However, either views cannot be

simply applied to driver agents. Drivers could be understood as behaving in both reactive

and cognitive ways. When answering to control systems or responding to some stimuli

brought about by the presence of surrounding vehicles, drivers’ behaviour is basically re-

active. The car-following and lane-changing models are traditional representation of such

a reactive behaviour. In these models, drivers are specifiedby means of rules that map

actions to specific events, such as red light of a traffic signal and the break light of the

vehicle ahead. However, when planning a trip, choosing route and departure time, or even

even when deciding whether to divert in the presence of a traffic jam, drivers must exert

their reasoning capabilities that strongly rely on mental states such as beliefs, desires, and

intentions.

All of the agents in a traffic domain will interact with each other and with the envi-

ronment in order to improve the system performance, albeit each of which has specific

task and goals. Interaction between agents and between an agent and the environment is

a factor of huge importance to the exchanging of informationin a traffic system. Besides

the built-in knowledge of drivers, they can acquire information by accessing an ATIS

and by observing the environment in previous experiences. Another important issue is

the time-dependent nature of interactions that makes it possible to see traffic systems as

a real-time domain. This characteristic becomes more evident and significant with the
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adoptions of ITS technologies, as the communication is a keyfeature in such a concept.

Both soft and hard real-time features can be identified. As consequence of failure in a

Traveller Information System, drivers would experience increases in travel cost by virtue

of an unexpected traffic jam, for example. This scenario could define a soft real-time

system. However, some ITS technologies are strongly dependent on the reliability of the

system. In automated cruise control systems, embedded systems are in control of the ve-

hicle navigation. A failure in these systems could result indrastic consequences, such as

crashing. In this case, ITS technologies can be seen as hard real-time systems.

5.2.1 The driver agent architecture

Drivers are autonomous in the sense they can make decisions on their own in order

to accomplish their objectives. This way demand is built up as the result of the decision-

making process carried out on a decentralised basis (ROSSETTI; LIU; CYBIS; BAMPI,

2002). So, it is the driver’s own responsibility to identifyits needs, to manage its re-

sources, and to make its decisions. Drivers are also intentional in the sense that decisions

are made as a result of a reasoning chain performed on driver’s mental attitudes, such as

beliefs, desires, and intentions. This process ends at pursuing a goal and committing to

an attempt at achieving it.

In this work, drivers are dealt with as cognitive entities through the use of a BDI

approach, where the internal model of each agent is represented by sets of beliefs, goals,

and intentions (see Figure 5.1). The reasoning module of a driver hosts a BDI interpreter,

which evaluates driver’s mental attitudes in order to make decisions, as initially proposed

in (ROSSETTI; BORDINI; BAZZAN; BAMPI, 2001). The presence of communication

facilities allows drivers to interact with different IT technologies and in the specific case

of this work with ATIS agents, which act as ‘mediators’ in order to sort out conflicting

situations. In this way, some IT agents should have a global model of the world.

The main protagonist within this model is the driver. It is represented in terms of an

reactive layer

(rules, mapping function)


cognitive layer

(beliefs, plans, BDI interpreter)


sensor

message receiving


simple sensing


effector

message sending


basic action


front vehicle

slows down


---

incident


---

cost of travelling


through a link

---


exogenous

information


decelerate

change lane


---

keep route


change route

---


start journey

---


ask route advice


Figure 5.1: The driver agent architecture.
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autonomous agent, capable of making decisions on its own. A two-layered architecture

is devised to base this model. So, the driver is able to exhibit both reactive and cognitive

behaviours. The reactive layer relies on a simple set of rules that map perceptions to

actions. The car-following and lane-changing behaviours are implemented in this layer.

However, it seems to be not suitable enough to represent morecomplex decisions, such as

whether to travel, which itinerary to follow, and what time to depart at. This is addressed

in the cognitive layer instead, which is built on the basis ofthe BDI logics.

Figure 5.1 roughly depicts the architecture of a driver. As in the basic structure of

an agent (RUSSELL; NORVIG, 1995), drivers can perceive facts through sensors and act

onto the environment through effectors. The communicationability is also present, which

is modelled in terms of message passing. Messages are sent through basic actions and re-

ceived as perceptions, as suggested in (ROSSETTI; BORDINI;BAZZAN; BAMPI; LIU;

VAN VLIET, 2002). When a change in the environment happens, the agents’ knowledge

base is updated. This can either be associated to the premiseof a perception-action rule,

in the reactive layer, or trigger a more sophisticated reasoning process, at the cognitive

level. At the current stage, the reactive and the cognitive layers are restricted to the supply

and demand stages of the simulation, respectively. Nonetheless, implementing a dynamic

selection mechanism between these two approaches is the very next step in this research.

According to the AgentSpeak(L) language, the driver agent is represented by the tuple

〈E,B,P, I ,A,SE ,SO ,SI 〉, whereE, B, P, I , andA are sets of events, base beliefs, plans,

intentions, and basic actions, respectively.SE , SO , andSI are selection function for

events, applicable plans, and intentions, in this order (see Definition 6 in Section 4.6).

The task of defining an agent in AgentSpeak(L) is basically reduced to identifying the

sets of base beliefs and plans. The perception of triggeringevents allows intentions to be

dynamically generated.

5.3 The BDI Driver Modelled in AgentSpeak(L)

The main reason for modelling driver behaviour on its own right is to provide an

adequate means for assessing how individual decision procedures can be affected toward

optimising the overall system performance. Expressiveness and scalability are desired

features of such a model, which must serve for designing and testing various components

of ATIS, such as source, content, and media of the information provided.

Three basic scenarios are possibly envisaged as to whether and when a driver effec-

tively uses exogenous information. In the first and simplestscenario, an individual relies

solely on its own cognitive representation of the world. Theset of base beliefs of a driver

is updated as it executes the trips and evaluates their quality. No exogenous information

is made available in this case. In a second scenario, commuters are able to access some

sort of exogenous information prior to starting a journey. The content may be tailored to

help drivers to plan the journey before departure. Some Internet applications are already
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available for this purpose (LYONS; MCDONALD, 1998). In a third scenario, travellers

are provided with some sort of informative content during the course of a journey. Radio

broadcast, variable message signs (VMS), and personalisedassistance through dynamic

route guidance systems (DRGS) are some examples of sources that can help drivers to

constantly evaluate the quality of the journey during its execution. In-trip diversions

could be considered for avoiding congested roads and minimising delays. The follow-

ing AgentSpeak(L) models are aimed at demonstrating the flexibility and expressiveness

of Rao’s language (RAO, 1996) and its ability to represent the complexity inherent in ITS

interactions.

5.3.1 Basic strategies for decision–making

In order to plan a daily journey, as initially suggested in this work, the commuter driver

will basically make decisions on what time to depart and which route to take. A cognitive

process is carried out in a way so as to find a combination of both allowing drivers to reach

destination by a desirable arrival time. Representing the process of such decision-makings

is the aim of the following models. To ease the representation of bunches of different be-

haviours, some characteristics are set within personalities that drive individual’s choices.

Three initial personalities were devised on the basis of intuitive considerations, namely

the random, the choosy, and the conservative drivers. A fourth personality coined the

habitual driver is the one currently implemented in DRACULA, as described in (LIU;

VAN VLIET; WATLING, 1999). Further extensions to the habitual personality are also

proposed. Mathematical formulations of each behaviour arepresented prior to specifying

commuter scenarios in AgentSpeak(L), which aims to facilitate understanding drivers’

personalities and their cognitive mechanisms. A summary ofthe description of the main

symbols used in this section is presented in Table 5.1.

A trip for a driverm, on dayk, is given by the tupleTrip(k)
m = 〈i, j, p,a, r,d〉, where

i is the origin, j is the destination,p is the purpose (or the activit to be pursued by

the driver at destination),a is the desired arrival time,r is the route to be followed,

and d is the departure time at which the journey is suposed to start. Let setRi jm =

{r1, r2, . . . , r f , r f+1, . . . , rg}, where( f ,g) ∈ N, to represent the route options known by

a driverm. Thus, each route withinRi jm, for instancer f , is given by a set of adjacent and

consecutive links, such thatr f = {l1, l2, . . . , lu, lu+1, . . . , lv}, where(u,v) ∈ N. Therefore,

the cost for router f is the sum of the travel timeT T of all links within the route, as

given in Equation 5.1.

C (r f ) =
v

∑
u=1

T T (lu) (5.1)

In order to ease representation, it is convenient to consider some properties for the set

Ri jm. There is a route ¯r i jm, such that ¯r i jm ∈ Ri jm, which represents the usual route from

origin i to destinationj for a driverm. Also, there is a route ˆr i jm, such that ˆr i jm ∈ Ri jm,

which represents the best route fromi to j and believed by drivermto be the less expensive
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path in terms of expected travel time. In this work, ˆr i jm is assigned randomly to each

driver, whereas Expression 5.2 gives the meaning for the best route.

r̂ i jm = r f | C (r f ) = min{C (r1), . . . ,C (rg)} (5.2)

Instant and period of time are given in minutes, and are represented by real numbers.

Therefore,(a(k)
i jm,d(k)

i jm, t(k)i jm) ∈ R, which represent desired arrival time, chosen departure

time, and travel time, respectively, for a trip fromi to j on dayk, relative to a driverm.

5.3.1.1 Random

The characteristic that better describes random drivers isthe lack of a specific strategy

for choosing a route on each day. An interpretation for such abehaviour can be associated

to different activities a driver may decide to perform within the journey, before reaching

final destination. For instance, a driver may decide to pass by a service station to supply

vehicle with petrol on one day, and opts for a certain path; onthe other day the driver

may have to drop children at school, and should opt for a different path. In either case,

it tends to adjust its departure time accordingly to the estimated travel time for the route

chosen. ConsideringRi jm = {r1, r2, . . . , r f , r f+1, . . . , rg}, the route choice is made as given

in Expression 5.3,

r(k)
i jm = r f | P(r f ) =

1
g

(5.3)

whereP is the probability for a router f ∈ Ri jm to be selected, assuming a uniform

distribution. After choosingr(k)
i jm, the departure time is adjusted as a function of the desired

arrival timea(k)
i jm and the estimated travel cost forr(k)

i jm, as given in Expression 5.4.

d(k)
i jm = a(k)

i jm−C (r(k)
i jm) (5.4)

In this work, the estimated travel cost of a route given byC , is assumed to be the

travel time experienced by the driver the last time it travelled through that path.

5.3.1.2 Choosy

A choosy driver is fastidiously selective. It always try to choose the route that is

believed to have the lowest travel cost. Considering the setRi jm and the definition for best

route given in Equation 5.2, the route choice is simply made as follows.

r(k)
i jm = r̂ i jm (5.5)

After selecting router(k)
i jm, the departure time choice also follows the same adjustment

approach as for random drivers (see Equation 5.4).
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5.3.1.3 Conservative

A conservative driver, in turn, is always predisposed to maintain the usual route what-

ever the cost for that path is believed to be. This could represent the inertia for changing

habits that most users familiar with the network very likelyexhibit. Considering the set

Ri jm and the definition for usual route, the route choice is simplymade by selecting the

usual option, as given in Expression 5.6.

r(k)
i jm = r̄ i jm (5.6)

Again, the adjustment for departure time is the same as in random and choosy person-

alities (see Equation 5.4).

5.3.1.4 Habitual

The habitual personality is proposed on the basis of a decision-making approach cur-

rently implemented in DRACULA, as presented in (LIU; VAN VLIET; WATLING, 1995,

1999). According to Ben-Akiva (BEN-AKIVA; DE PALMA; KANAROGLOU, 1986),

individuals use information gathered on dayk in making their choices on next dayk+1.

Thus, considering thatt(k)i jm is the travel time realised for a trip from origini to destination

j, the absolute delayδ (k)
i jm a driverm experiences on dayk is given as in Equation 5.7.

δ (k)
i jm = d(k)

i jm + t(k)i jm−a(k)
i jm (5.7)

Also, a habitual driver is assumed to be indifferent to a lateness ofεi jm · t
(k)
i jm. The term

εi jm is a tolerance factor, and in this work it is assumed to be uniform to all drivers in the

population. Thus, the perceived lateness∆(k)
i jm is given as in Equation 5.8.

∆(k)
i jm = δ (k)

i jm− εi jm× t(k)i jm (5.8)

As suggested in (LIU; VAN VLIET; WATLING, 1999), drivers arelikely to be indif-

ferent to early arrivals. In this sense, travel time on dayk+1 is adjusted as in Equation 5.9.

d(k+1)
i jm =







d(k)
i jm, if ∆(k)

i jm ≤ 0

d(k)
i jm−∆(k)

i jm, if ∆(k)
i jm > 0

(5.9)

The route choice model for the habitual driver, currently implemented in DRACULA,

follows the ‘bounded rational choice’ (SIMON, 1956), as suggested by Mahmassani and

Jayakrishnan (MAHMASSANI; JAYAKRISHNAN, 1991). Individuals are assumed to

use the same route as on the previous day unless the cost expected for the best route (see

Equation 5.2) is significantly better. The route choice is set as in Equation 5.10.

r(k+1)
i jm =







r̂ i jm, if C (r(k)
i jm)−C (r̂ i jm) > max{η×C (r(k)

i jm),τ}

r(k)
i jm, otherwise

(5.10)
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The parameterη is a threshold level that, according to Mahmassani and Jayakrishnan

(MAHMASSANI; JAYAKRISHNAN, 1991), may be interpreted as perceptual factors,

preferential indifference, or persistence and aversion toswitching with respect to the travel

time experienced. On the other hand,τ is an absolute minimum travel time improvement

below which driverm will not switch routes. This is also provided in order to retain a

meaningful threshold effect and avoid unintended switching for shorter itineraries, for

instance.

This model, as it will be seen later on, in Chapter 6, seems to be quite flexible as toler-

ance is evaluated with respect to the travel time experienced. This means that the longer

the trip lasts, the more tolerant the driver will be with regard to lateness. Intuitively, com-

muters are very unlikely to present such a flexible arrival time. This is especially the case

for those making home–work journeys. Moreover the model completely disregards early

arrivals, which suggests the need for extending its initialstructure toward supporting the

definition of an earliness–lateness tolerance window. Suchan extended abstraction con-

siders one top lateness and one bottom earliness thresholds, within which no adjustment to

departure is required. And in turn, any arrival experience perceived outside these bounds

should be considered in future journeys. In this way two variant behaviours are derived

from the habitual personality, namely the habitual driver with relative lateness–earliness

tolerance window, and the habitual driver with absolute lateness–earliness tolerance win-

dow. They both differ from one another basically in terms of how lateness and earliness

thresholds are identified. In the former case limits are drawn from the total travel time,

whereas in the latter boundaries are given in absolute terms.

As to the relative lateness–earliness window, letλi jm be the earliness tolerance factor

as εi jm still represents the lateness tolerance factor, both related to a driverm. As in

the original habitual behaviour, perceived lateness and earliness will be drawn from trip

cost asεi jm · t
(k)
i jm andλi jm · t

(k)
i jm, respectively. The termt(k)i jm refers to the total travel time

from i to j on dayk. The sign of the absolute delayδ (k)
i jm (as defined in Equation 5.7) is

also important as it allows one to identify whether the driver has arrived earlier or later.

Bearing in mind the definition for perceived lateness∆(k)
i jm (see Equation 5.8), letΘ(k)

i jm be

the perceived earliness, as given in the Expression 5.11.

Θ(k)
i jm =

∣

∣

∣
δ (k)

i jm

∣

∣

∣
−λi jm× t(k)i jm (5.11)

One should notice that the absolute value ofδ is used instead as its sign is negative

meaning the agent was earlier. Thus, the departure time on the next dayk+ 1 is then

adjusted according to the following criterion.

d(k+1)
i jm =



















d(k)
i jm−∆(k)

i jm, if δ (k)
i jm > 0 and∆(k)

i jm > 0

d(k)
i jm +Θ(k)

i jm, if δ (k)
i jm < 0 andΘ(k)

i jm > 0

d(k)
i jm, otherwise

(5.12)
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A similar approach is used for the absolute lateness–earliness window. Letιi jm be the

absolute lateness andνi jm be the absolute earliness tolerances. Then, the perceived late-

ness,∆′, and perceived earliness,Θ′ are given as in Expression 5.13 and Expression 5.14,

respectively.

∆′(k)i jm = δ (k)
i jm− ιi jm (5.13)

Θ′(k)i jm =
∣

∣

∣
δ (k)

i jm

∣

∣

∣
−νi jm (5.14)

The adjustment for departure time on dayk+1 happens at the same conditions as in

the case of the relative lateness–earliness tolerance window (recall Expression 5.14).

d(k+1)
i jm =



















d(k)
i jm−∆′(k)i jm, if δ (k)

i jm > 0 and∆′(k)i jm > 0

d(k)
i jm +Θ′(k)i jm, if δ (k)

i jm < 0 andΘ′(k)i jm > 0

d(k)
i jm, otherwise

(5.15)

It is important to notice that both relative and absolute lateness and earliness factors

are very likely to depend on the trip rather than being globalparameters. In this sense, all

factors are given in terms of the origini and the destinationj they are related to.
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Table 5.1: Summary of symbols
Symbol Description

Trip(k)
m trip performed by a driverm on dayk

Ri jm set of alternative routes from origini to destinationj known
by a driverm

r a route identifier
l a link identifier

T T (l) travel time through a linkl
C (r) travel cost through a router
r̄ i jm usual router for a driverm when travelling from origini to

destinationj
r̂ i jm best router for a driverm when travelling from origini to

destinationj

a(k)
i jm desired arrival time for a drivermwhen travelling from ori-

gin i to destinationj on dayk

d(k)
i jm chosen departure time for a driverm when travelling from

origin i to destinationj on dayk

t(k)i jm travel time experienced by a driverm after travelling from
origin i to destinationj on dayk

P(r) probability for choosing router

δ (k)
i jm absolute delay experienced by a driverm after travelling

from origin i to destinationj on dayk
εi jm lateness tolerance factor, relative to travel time when a

driverm is travelling from origini to destinationj

∆(k)
i jm perceived lateness of a driverm after travelling from origin

i to destinationj on dayk
η threshold level that forces route switching
τ absolute minimum travel improvement necessary for route

switching
λi jm earliness tolerance factor, relative to travel time when a

driverm is travelling from origini to destinationj

Θ(k)
i jm perceived earliness of a drivermafter travelling from origin

i to destinationj on dayk
ιi jm absolute lateness tolerance factor, when a driverm is travel-

ling from origin i to destinationj
νi jm absolute earliness tolerance factor, when a driverm is trav-

elling from origin i to destinationj

∆′(k)i jm absolute perceived lateness of a driverm after travelling
from origin i to destinationj on dayk

Θ′(k)i jm absolute perceived earliness of a driverm after travelling
from origin i to destinationj on dayk

N set of the natural numbers
R set of the real numbers
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5.3.2 The first scenario

In the first scenario, drivers are expected to make every decision with respect to the

trip before they start the journey. Afterwards, diversionsare not allowed. It is also as-

sumed that no information is provided to individuals, neither before nor during the trip.

Therefore, decisions are based solely on their set of base beliefs.

Before going through plan specifications, it is worth to explain some basic conven-

tions. Plans are identified by a number, indicating the scenario, followed by consecutive

letters. They are presented in an order so as to ease the explanation of the decision-making

process and the group of drivers they are applicable to. For the same reason plans are also

gathered in terms of the specific aspect of the decision making process they are designed

to address. It is important to notice that AgentSpeak(L) uses similar convention as in the

Prolog language, namely variables start with capitals whereas constants and predicates

begin with lower-case letters. Thus, as plans are partiallyinstantiated, capitals are used to

indicate variable terms. The AgentSpeak(L) syntax is also extended to allow for integer

constants, relational operators, and list notation to be used, as suggested in (MACHADO;

BORDINI, 2001; ROSSETTI; BORDINI; BAZZAN; BAMPI; LIU; VAN VLIET, 2002).

These simple extensions permits more clear specifications.Finally, the symbol←֓ is used

throughout the text to split a long line of text intypewriter font. This typographical

convention is adopted due to the limits imposed by the left and right margins of the page.

Plan 1.aStarting the day. Perceiving that a new day starts is an external stimulus, which

is represented by the event+today(day), in Line 1. This perception causes the set of base

beliefs to be updated, and triggers a cognitive chain on the new day that starts.

01. +today(Day)

02. : tripInfo(Day, Purpose, ZoneDst, TimeArv)

03. <- !planTrip(ZoneDst, TimeArv);

04. !move(ZoneOrg, ZoneDst).

If the driver has any motivation for a trip on a certainday, expressed by the context

in Line 2, it then commits to perform a course of actions that is expected to bring about

a desired state of affairs. The belieftripIn f o(day, purpose,zonedst, timearv) denotes the

mental state of the driver with respect to its reason for making a trip. So, on the subject

day, owing to a givenpurpose, an individual may need to perform a trip to destination

zonedst. The traveller is expected to arrive attimearv so that thepurposefor the trip can be

satisfied. If there is no reason for making a trip then, the agent’s behaviour is not affected

at all. This happens when the agent either has notripIn f o entry in its set of base beliefs

or noday term of any of itstripIn f o entries unifies with the value held by theday term

in today(day). In the case the driver has committed to make the trip, it should set out

how to do so, by performing the achievement goal !planTrip(zonedst, timearv), and later

on by trying to achieve the goal of moving from its current location to its destination site,

identified by the achievement goal !move(zoneorg,zonedst) (see Line 4 of Plan 1.a).
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It is assumed that there is useful meaning for planning a tripto zonedst only if that is

not the agent’s currentlocation(zoneorg). Also, the way a traveller carries out the cogni-

tive process to set out the trip depends on itspersonality(p). Thus, according to the ba-

sic strategies presented in Section 5.3.1,p can be any of{random,choosy,conservative,

habitual}, meaning the driver will behave according to the model defined for each person-

ality. To differentiate between the habitual behaviour originally implemented in DRAC-

ULA and its extensions as proposed in this work, the notationshabitualaw andhabitualrw
are used to designate whether the driver is adopting an absolute or a relative lateness-

earliness tolerance window.

Trip is planned basically by means of choosing a route and a departure time. However,

the strategy forhabitualcommuters is slightly different from the formers. While random,

choosy, and conservative drivers select the path at first andthen the departure time, the

habitual drivers do exactly the contrary. This can be represented as in Plans 1.b and 1.c,

as follows.

Plan 1.b Planning the trip. After realising it is not at destination already, by way of

comparingzoneorg to zonedst in Line 3, the driver seeks to achieve the goals of finding

a route tozonedst and a departure time to start the journey, in this order. One should

notice that in Line 4 personality is set tochoosy. This means that only when the belief

personality(choosy) holds in the agent’s set of base beliefs this plan can be entailed from

the agent’s knowledge. Thus, the same plan is written torandomandconservativedrivers

as the condition in Line 4 is replaced bypersonality(random) and

personality(conservative), respectively. This sort of design allows one to specify as many

behavioral strategies as it is possible to set out from heterogenous entities of a system.

01. +!planTrip(ZoneDst, TimeArv)

02. : location(ZoneOrg)

03. & (not(ZoneOrg = ZoneDst))

04. & personality(choosy)

05. <- !chooseRoute(choosy, ZoneOrg, ZoneDst);

06. !chooseDeparture(choosy, ZoneOrg, ZoneDst, TimeArv).

Plan 1.cPlanning the trip for habitual drivers. The only difference for planning a trip

between habitual drivers and former personalities is the order as for whether to choose the

route or departure time first. As defined in Section 5.3.1.4, habitual drivers set departure

prior to choosing a path.

01. +!planTrip(ZoneDst, TimeArv)

02. : location(ZoneOrg)

03. & (not(ZoneOrg = ZoneDst))

04. & personality(habitual)
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05. <- !chooseDeparture(habitual, ZoneOrg, ZoneDst, TimeArv);

06. !chooseRoute(habitual, ZoneOrg, ZoneDst).

The achievement goal !chooseRoute(personality,zoneorg,zonedst) induces the driver

to find a way of selecting a path fromzoneorg to zonedst. The selected course of actions

depends on itspersonality, as well. In addition, selecting a departure time to arrive at

zonedst by timearv, as meant by !chooseDeparture(personality,zoneorgzonedst, timearv),

is understood as depending on mental calculation rather than only on a qualitative assess-

ment.

The predicateroute(zoneorg,zonedst, timerte, [links]) is used to represent the paths a

driver recognises for going fromzoneorg to zonedst. An agent has as many clauses of

such a kind as is the number of routes it is familiar with. The term timerte denotes the

expected travel time associated to the path, which is represented by the list[links] contain-

ing consecutive and adjacent segments of roads. For the sakeof readability and to ease

exchanging parameters among plans, a variable term, sayR, is used to capture an instance

of the link list of route(zoneorg,zonedst, timerte, [links]). So, whenR is instantiated, it is

assigned the content of[links].

The belief predicatetripRoute(zoneorg,zonedst, [links]) is used to represent the par-

ticular itinerary chosen by the driver, so as it is able to make the move fromzoneorg to

zonedst. Thus, whenever a route is selected, the set of base beliefs is updated and the

belief tripRouteis added to represent the driver’s selection.

Plan 1.d Choosing any route. A random driver may have several applicable plans for

selecting a path as every route clause it knows, fromzoneorg to zonedst, will generate an

instance for this plan. Thus, the selection functionSO , as defined in Section 4.6, may

select any of them. To confirm the selection, an update to the set of base beliefs occurs

with the addition of thetripRouteclause, in Line 3.

01. +!chooseRoute(random, ZoneOrg, ZoneDst)

02. : route(ZoneOrg, ZoneDst, TimeRte, R)

03. <- +tripRoute(ZoneOrg, ZoneDst, R).

The belief predicateexpectedTravelTime(zoneorg,zonedst, time) is used to represent

the expected travel time fromzoneorg to zonedst when no path is considered. In other

words, a driver may have an estimation of the necessary time to reach a certain destination

without considering any route, at a first glance.

Plan 1.eFinding out the best route. In the context part, the agent evaluates whether the

travel time for the route it is considering for selection is lower than the travel time it is

currently expecting to experience. In a first execution of this sub-plan, before considering

any alternative, the driver has a “pessimistic behaviour” and sets a very high value for its

expected travel time (so as to set reasonable expected timesafter whatever first attempt is
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made). The agent keeps making attempts at finding the best route by recalling the plan in

Line 7. One must notice that the context part of the plan, as inLine 4, will not be satisfied

once the best route has been found, thus finishing the recursion.

01. +!chooseRoute(choosy, ZoneOrg, ZoneDst)

02. : route(ZoneOrg, ZoneDst, TimeRte, R)

03. & expectedTravelTime(ZoneOrg, ZoneDst, TimeExpected)

04. & (TimeRte < TExpected)

05. <- +tripRoute(ZoneOrg, ZoneDst, R);

06. +expectedTravelTime(ZoneOrg, ZoneDst, TimeRte);

07. !chooseRoute(choosy, ZoneOrg, ZoneDst).

Plan 1.f Keeping the instantiation for the best route. This plan finally keeps the instantia-

tions of the appropriate parameters fortripRoutewhen the recursion in Plan 1.e finishes.

Thus, when all attempts to satisfy the context part of Plan 1.e fail, the best route then

instantiated is the one to be chosen.

01. +!chooseRoute(choosy, ZoneOrg, ZoneDst)

02. : true <- true.

Plan 1.g Choosing the usual route. As stipulated for the conservative behaviour (see

Section 5.3.1.2), each driver in the population is assigneda preferred route fromzoneorg

to zonedst. The belief predicateusualRoute(zoneorg,zonedst, [links]) is used to identify the

agent’s usual path within a given OD pair. The decision is as simple as setting the usual

path as the trip route, as in Line 3.

01. +!chooseRoute(conservative, ZoneOrg, ZoneDst)

02. : usualRoute(ZoneOrg, ZoneDst, R)

03. <- +tripRoute(ZoneOrg, ZoneDst, R).

Choosing a route option for habitual drivers demands some further considerations,

though. Both the threshold levelη and the absolute improvementτ seem to be rather

related to the trip, as presented in Section 5.3.1.4. This isalso the case for the tolerance

factor ε. Hence, all these parameters were considered to be better identified as terms

within the tripIn f o belief predicate. So, all the information on the journey dueon a

certainday is memorised astripIn f o(day, purpose,zonedst, timearv,ε,η,τ). Yet another

important consideration is that habitual drivers choose their routes on the perspective of

both the best and the usual path, so both should be identified.

Plan 1.h Identifying the best route by habitual drivers. Habitual drivers identify the best

route following the same recursive design of Plan 1.e, except for the fact that the personal-

ity is habitual. The addition of thetripRoutebelief in the agent’s knowledge base works

a sort of as a temporary container of the decision until a finalchoice is made.
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01. +!chooseRoute(habitual, ZoneOrg, ZoneDst)

02. : route(ZoneOrg, ZoneDst, TimeRte, R)

03. & expectedTravelTime(ZoneOrg, ZoneDst, TimeExpected)

04. & (TimeRte < TimeExpected)

05. <- +tripRoute(ZoneOrg, ZoneDst, R);

06. +expectedTravelTime(ZoneOrg, ZoneDst, TimeRte);

07. !chooseRoute(habitual, ZoneOrg, ZoneDst).

Plan 1.i Assessing best route with respect to the absolute improvement τ. After evaluat-

ing max{η ×C (r(k)
i jm),τ} in Line 7, the agent decides whether the improvement is good

enough for a route switch, in Line 8, so as to keep the best route and terminate recursion.

01. +!chooseRoute(habitual, ZoneOrg, ZoneDst)

02. : tripInfo(Day, Purpose, ZoneDst, TimeArv, ←֓

Epsilon, Eta, Tau)

03. & tripRoute(ZoneOrg, ZoneDst, RBst)

04. & route(ZoneOrg, ZoneDst, TimeBst, RBst)

05. & usualRoute(ZoneOrg, ZoneDst, RUsl)

06. & route(ZoneOrg, ZoneDst, TimeUsl, RUsl)

07. & ((Eta * TimeUsl) < Tau)

08. & ((TimeUsl - TimeBst) > Tau)

09. <- true.

Plan 1.j Assessing best route with respect to the threshold levelη. As in Plan 1.i, this

plan evaluates the improvement expected, in Line 8, after checkingmax{η×C (r(k)
i jm),τ}

in Line 7, and decides to switch.

01. +!chooseRoute(habitual, ZoneOrg, ZoneDst)

02. : tripInfo(Day, Purpose, ZoneDst, TimeArv, ←֓

Epsilon, Eta, Tau)

03. & tripRoute(ZoneOrg, ZoneDst, RBst)

04. & route(ZoneOrg, ZoneDst, TimeBst, RBst)

05. & usualRoute(ZoneOrg, ZoneDst, RUsl)

06. & route(ZoneOrg, ZoneDst, TimeUsl, RUsl)

07. & ((Eta * TimeUsl) >= Tau)

08. & ((TimeUsl - TimeBst) > (Eta * TimeUsl))

09. <- true.

Plan 1.k Choosing the usual route. In the case any improvement is to be discarded as

Plans 1.i and 1.j fails to instantiate, the habitual driverschoose the usual route in the same
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way as conservative travellers (see Plan 1.g). This plan also terminates the recursion

started in Plan 1.h, as would Plan 1.i and Plan 1.j if either succeeded.

01. +!chooseRoute(habitual, ZoneOrg, ZoneDst)

02. : usualRoute(ZoneOrg, ZoneDst, R)

03. <- +tripRote(ZoneOrg, ZoneDst, R).

Plan 1.l Choosing departure time. Random, choosy, and conservative behaviours imple-

ment the same strategy for selecting departure time. The only difference is that Line 1

should be rewritten with the correctpersonalityterm. The predicatetripDeparture

(zoneorg,zonedst, timedpt) is used to denote the agent intends to start its journey from

origin zoneorg to destinationzonedst at timedpt.

01. +!chooseDeparture(random, ZoneOrg, ZoneDst, TimeArv)

02. : tripRoute(ZoneOrg, ZoneDst, R)

03. & route(ZoneOrg, ZoneDst, TimeRte, R)

04. <- +tripDeparture(ZoneOrg, ZoneDst, (TimeArv - TimeRte)).

As for habitual drivers, one should bear in mind that the decision-making process

on departure time is carried out prior to selecting the journey path. Thus, Plans 1.h,

1.i, 1.j, and 1.k are evaluated after the agent has gone through Plans 1.m and 1.n. As

it was originally proposed for this behaviour (see Section 5.3.1.4), a lateness tolerance

with respect to the travel time in the previous journey (theε factor) should be taken into

account, as well. This is assumed to be processed by the driver as pure mental calculation,

hence some intermediate parameters are only identified on on-the-fly rather than stored in

bunches of other belief clauses.

Plan 1.mEvaluating scheduled delay. As already mentioned above, the tolerance factorε
is associated to the trip and its purpose rather than being considered to be an independent

parameter. Henceε is retrieved from within thetripIn f o belief clause. It is important to

notice that departure, path, and travel time of the previousjourney are given within belief

predicatestripRoute, route, andtripDeparture, in Lines 3, 4, and 5. The absolute delay

δ is represented by the predicatearrivalCost(zonedst, timedly), in Line 6, with respect

to the actual arrival atzonedst the last time a trip was executed to that destination. The

traveller evaluates whether the perceived delay∆ is significant, in Line 7, and updates the

tripDeparturefor next journey accordingly.

01. +!chooseDeparture(habitual, ZoneOrg, ZoneDst, TimeArv)

02. : tripInfo(Day, Purpose, ZoneDst, TimeArv, ←֓

Epsilon, Eta, Tau)

03. & tripRoute(ZoneOrg, ZoneDst, R)

04. & route(ZoneOrg, ZoneDst, TimeRte, R)
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05. & tripDeparture(ZoneOrg, ZoneDst, TimeDpt)

06. & arrivalCost(ZoneOrg, TimeDly)

07. & ((TimeDly - (Epsilon * TimeRte)) > 0.0)

08. <- +tripDeparture(ZoneOrg, ZoneDst, (TimeDpt - ←֓

(Epsilon * TimeRte))).

Plan 1.nKeeping previous departure time. In the case the perceived delay is considered

to be irrelevant, as Line 7 of Plan 1.m fails and the plan is notconsidered to be applicable,

the driver then keeps the previous departure choice.

01. +!chooseDeparture(habitual, ZoneOrg, ZoneDst, TimeArv)

02. : true <- true.

The same approach used for the original habitual behaviour is applied to the exten-

sions proposed in Section 5.3.1.4, namely the habitual behaviour with a relative lateness–

earliness tolerance window and the one with an absolute lateness–earliness tolerance win-

dow. So,ε, λ , ι, andν factors are to be included into thetripIn f o predicate associ-

ated to the respective behaviour;tripIn f o(day, purpose,zonedst, timearv,ε,λ ,η,τ) and

tripIn f o(day, purpose,zonedst, timearv, ι,ν,η,τ) denotes the trip information for the rel-

ative and absolute window-based behaviours, respectively.

Plan 1.o Adjusting departure according to relative lateness. The belief given by the

predicatearrivalCost(zonedst, timedly) serves as an indicator of whether the driver is late

or early, asδ < 0 or δ > 0. This is tested in Line 7, whereas the perceived lateness∆ is

evaluated in Line 8. In the case of being late, which means thedriver has arrived beyond

the top boundary of the relative lateness-earliness window, then departure is adjusted.

01. +!chooseDeparture(habitualrw, ZoneOrg, ZoneDst, TimeArv)

02. : tripInfo(Day, Purpose, ZoneDst, TimeArv, ←֓

Epsilon, Lambda, Eta, Tau)

03. & tripRoute(ZoneOrg, ZoneDst, R)

04. & route(ZoneOrg, ZoneDst, TimeRte, R)

05. & tripDeparture(ZoneOrg, ZoneDst, TimeDpt)

06. & arrivalCost(ZoneOrg, TimeDly)

07. & (TimeDly < 0.0)

08. & (((abs(TimeDly)) - (Epsilon * TimeRte)) > 0.0)

09. <- +tripDeparture(ZoneOrg, ZoneDst, (TimeDpt - ←֓

((abs(TimeDly)) - (Epsilon * TimeRte))).

Plan 1.p Adjusting departure according to relative earliness. In the case of being early,

as evaluated in Line 7, the agent checks whetherΘ is significant and it is worth to change

departure time, in Line 8.
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01. +!chooseDeparture(habitualrw, ZoneOrg, ZoneDst, TimeArv)

02. : tripInfo(Day, Purpose, ZoneDst, TimeArv, ←֓

Epsilon, Lambda, Eta, Tau)

03. & tripRoute(ZoneOrg, ZoneDst, R)

04. & route(ZoneOrg, ZoneDst, TimeRte, R)

05. & tripDeparture(ZoneOrg, ZoneDst, TimeDpt)

06. & arrivalCost(ZoneOrg, TimeDly)

07. & (TimeDly > 0.0)

08. & ((TimeDly - (Lambda * TimeRte)) > 0.0 )

09. <- +tripDeparture(ZoneOrg, ZoneDst, (TimeDpt + ←֓

(TimeDly - (Lambda * TimeRte)))).

Plan 1.qAdjusting departure according to absolute lateness. As in Plans 1.o and 1.p, the

value ofδ is used to evaluate, in Line 7, whether the driver is late or early. On the basis of

an absolute top lateness threshold, the driver considers whether∆′ is tolerable, in Line 8.

01. +!chooseDeparture(habitualaw, ZoneOrg, ZoneDst, TimeArv)

02. : tripInfo(Day, Purpose, ZoneDst, TimeArv, ←֓

Iota, Nu, Eta, Tau)

03. & tripRoute(ZoneOrg, ZoneDst, R)

04. & route(ZoneOrg, ZoneDst, TimeRte, R)

05. & tripDeparture(ZoneOrg, ZoneDst, TimeDpt)

06. & arrivalCost(ZoneOrg, TimeDly)

07. & (TimeDly < 0.0)

08. & (((abs(TimeDly)) - Iota) > 0.0 )

09. <- +tripDeparture(ZoneOrg, ZoneDst, (TimeDpt - ←֓

((abs(TimeDly)) - Iota))).

Plan 1.r Adjusting departure according to absolute earliness. For early arrivals, as the

agent realisesδ > 0 in Line 7, the perceived earliness is evaluated with respect to the

bottom thresholdν in Line 8, and the departure time is adjusted accordingly.

01. +!chooseDeparture(habitualaw, ZoneOrg, ZoneDst, TimeArv)

02. : tripInfo(Day, Purpose, ZoneDst, TimeArv, Iota, ←֓

Nu, Eta, Tau)

03. & tripRoute(ZoneOrg, ZoneDst, R)

04. & route(ZoneOrg, ZoneDst, TimeRte, R)

05. & tripDeparture(ZoneOrg, ZoneDst, TimeDpt)

06. & arrivalCost(ZoneOrg, TimeDly)

07. & (TimeDly > 0.0)
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08. & ((TimeDly - Nu) > 0.0)

09. <- +tripDeparture(ZoneOrg, ZoneDst, (TimeDpt + ←֓

(TimeDly - Nu))).

If the arrival time suits either the relative or the absolutelateness-earliness tolerance

window, as neither Plans 1.o and 1.p nor Plans 1.q and 1.r are considered to be applica-

ble, the driver agent keeps its previous departure choice. This decision is confirmed by

means of a plan similar to Plan 1.n. The termshabitualrw andhabitualaw should be used

accordingly, though.

After planing the trip, by means of selecting a route and a departure time, the driver

seeks to reach destination, as denoted by the achievement goal !move(zoneorg,zonedst)

in Line 4 of Plan 1.a. The belieftimeNow(time) is used to represent the notion of in-

stant. Therefore, as time goes by the knowledge base of an individual is constantly being

updated as for such a belief.

Plan 1.sMoving to destination. The agent pursues this plan until time for departure is

perceived and the context part, as conditioned in Line 5, is satisfied.

01. +!move(ZoneOrg, ZoneDst)

02. : tripRoute(ZoneOrg, ZoneDst, R)

03. & tripDeparture(ZoneOrg, ZoneDst, TimeDpt)

04. & timeNow(Time)

05. & (Time = TimeDpt)

06. <- moveAlong(R).

Plan 1.tEnding day trip. Reaching destination is perceived as an external event by means

of sensing the new current location, as given in Line 1. The traveller then checks the time

(the instant of arrival) by performing the test goal ?timeNow(time) in Line 5. As a result,

botharrivalCost(zonedst, timedly) and path conditions as given inroute(zoneorg,zonedst,

timerte, [links]) are updated so as to reflect the driver’s day experience. One should notice

thetripIn f o is in its simplest form, which means this plan is only applicable for random,

choosy, and conservative drivers. Line 2 should then be rewritten for habitual drivers,

though.

01. +location(ZoneDst)

02. : tripInfo(Day, Purpose, ZoneDst, TimeArv)

03. & tripRoute(ZoneOrg, ZoneDst, R)

04. & tripDeparture(ZoneOrg, ZoneDst, TimeDpt)

05. <- ?timeNow(TimeDst);

06. +arrivalCost(ZoneDst, (TimeDst - TimeArv));

07. +route(ZoneOrg, ZoneDst, (TimeDst - TimeDpt), R).
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5.3.3 Communication and exogenous information

Before going on with further plan specifications, it is important to make some consid-

erations on communication abilities in the multi-agent traffic system. Inter-agent commu-

nication is accomplished through message passing in the approach adopted in this thesis.

Sending a message is assumed to be a basic action, whereas receiving a message causes,

as with perception, the addition of a belief entry in the agent’s set of base beliefs. Re-

ceiving a message may in turn trigger a plan execution. Some trip planner applications

on the Internet are examples of information sources from which travellers can enhance

knowledge on the current prevailing conditions of the network.

The communication mechanisms is assumed to be as follows. Consider that

b(t1, . . . , tn) is a belief predicate as presented in Definition 1 (see Section 4.6). Thus,

communicate(ag, “b(t1, . . . , tn)”), request(ag, “b(t1, . . . , tn)”), and broadcast(“b(t1, . . .,

tn)”) are special cases of basic action predicates. The termag is used to identify the

agent to which the message is addressed, whereas “b(t1, . . . , tn)” represents the proposi-

tional content of the message. Thecommunicatepredicate is used to sendag the belief

b(t1, . . . , tn). The requestpredicate asks agentag for b(t1, . . . , tn). In this case, it is as-

sumed thatag (as an information system, for instance) presents a “benevolent” behaviour

and always replies to the request made (as by a driver, for instance). There is no agent

addressed in the broadcast predicate, though. In such a case, the content is sent to all of

the agents in the multi-agent system.

To illustrate such a communication mechanism, leta1 to be an ATIS agent that sends

a messageb(t) to a traveller, which isa2. Then,a1 executescommunicate(a2, “b(t)”)

(or broadcast(“b(t)”) to all drivers in the system). Whena2 receives the message, an

event+b(t) occurs andb(t) is added to the set of its base beliefs, as with perception. So,

a2 cannot distinguish whether+b(t) is a simple perception or a message passed through

communication. In such a situation, it is also assumed that the belief revision function

checks whethera1 is trustworthy. Ifa1 is considered to be trustworthy, besides adding

b(t) to the belief base, the function adds another belief predicate, in f ormed(a1,b(t)),

indicating who has informeda2 aboutb(t). Thus, it is possible to have plans associated

both to the content of the message and to the informing agent,if considering the sender is

relevant.

With respect to interactive information sources, two majorgroups of drivers are iden-

tified. The first group is formed of drivers who are eligible touse the information system,

either because they are subscribers or because they are equipped to receive the informa-

tion in an interactive way. Those drivers who are not users ofinformation systems are

gathered into the second group. In order to consider such a relation in the model, the be-

lief predicatespreTripIn f oUser() andenRouteIn f oUser() are used to identify whether

drivers are users of pre-trip and en-route information systems, respectively.

However, saying whether the driver is user or non-user of information systems is not

meaningful enough to guarantee that the information provided will be considered in the
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decision-making process. In order to make this criterion complete, the belief predicate

acceptanceWillingness(value) is used to represent whether the driver is willing to ac-

cept and to use the information provided. The termvalue is a random number used to

capture the probability of a driver to accept an advice, which may be associated to its

personality in some way. A combination of both being user of information sources and

willingness of using the content provided can be the way toward accessing contemporary

ATIS technologies.

On the other hand, non-interactive information sources areaimed at reaching most

users. Contrary to interactive systems, as drivers are ableto make a request in order to get

information, communication happens in one direction only.Good examples of this kind

of sources are the mass media, as newspapers, radio, or television. Traffic signs and re-

cently VMS also have the ability to reach most drivers travelling throughout the network.

In the commuter world herein proposed, information provided is mapped to either link or

route states. In practical terms, drivers will associate the content of information to pos-

sible states for links and routes. For example, whenever a belief linkState(link,state) is

updated, an event is generated to indicate that a message hasbeen received; in this case it

is just a reminder that somelink has a certain prevailingstate, not a response to a request

previously made. As mentioned before, it is thebelief revision functionthat checks the

trustworthiness of the information source, and an event of the type+in f ormed(ag,b(t))

is also posted to the base beliefs. At that moment, the drivermay either accept or ignore

it, on the basis on its acceptance willingness.

5.3.4 The second scenario

In the second scenario drivers are allowed to access information before starting a

trip, which is expected to improve the decision-making process. No en-route diversion is

possible, though. It is also assumed that users of exogenousinformation cannot interact

with sources, and content may be regarded to either link or route states. In addition to

the predicatelinkState(link,state) and in order to distinguish between qualitative and

quantitative notions of routes, a predicaterouteState([links],state) is used to denote that

a given path[links] is found to be in a certain prevalentstate. Hence whenever a driver

receives information prior to starting a journey, it may consider the option of avoiding the

corresponding path on the basis of its acceptance willingness.

Plan 2.aUsing information on link state. Considering the current state of a certainlink is

found to be “congested” and that it has been broadcast, a clauselinkState(link,congested)

is posted to a pre-trip information user’s set of base beliefs. In such a situation the driver

may consider the chance of selecting the best path it knows from zoneorg to zonedst to

avoid the warned link. Then, finding the best route follows the same iteration as previously

suggested in the first scenario. The agent tries to figure out whether thelink warned is in
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[links], so as to avoid it (Lines 3 and 4). The predicatein1 (see Line 4) is a function that

evaluates totrue if L is in setR and to f alseotherwise. This plan could be valid for any

personality, as represented by the variable term in Line 1.

01. +!chooseRoute(Personality, ZoneOrg, ZoneDst)

02. : route(ZoneOrg, ZoneDst, TimeRte, R)

03. & linkState(Link, congested)

04. & (not(in(Link, R)))

05. & expectedTravelTime(ZoneOrg, ZoneDst, TimeExpected)

06. & (TimeRte < TimeExpected)

07. & preTripInfoUser()

08. & acceptanceWillingness(V) & (V <= threshold)

09. <- +tripRoute(ZoneOrg, ZoneDst, R);

10. +expectedTravelTime(ZoneOrg, ZoneDst, TimeRte);

11. !chooseRoute(Personality, ZoneOrg, ZoneDst).

Plan 2.b Keeping the best alternative with regard to the warned link. Using the same

approach as in Plan 1.f, the best route as stored intripRouteis confirmed, if any is found

to not passing through the warnedlink.

01. +!chooseRoute(Personality, ZoneOrg, ZoneDst)

02. : preTripInfoUser()

03. & acceptanceWillingness(V) & (V <= threshold)

04. <- true.

Plan 2.cSelecting the usual route instead. In the case of lacking a better alternative, the

option of using the usual path is adopted in a plan similar to Plan 1.g.

01. +!chooseRoute(Personality, ZoneOrg, ZoneDst)

02. : preTripInfoUser()

03. & acceptanceWillingness(V) & (V <= threshold)

04. & usualRoute(ZoneOrg, ZoneDst, R)

05. <- +tripRoute(ZoneOrg, ZoneDst, R).

Plan 2.dUsing information on route state. In this case, the information broadcast causes

routeState([links],congested) to be added to the agent’s base beliefs. The only difference

from Plan 2.a is that routes are evaluated with respect to a warned route, therefore having

a different condition in the context part as in Lines 3 and 4.

1The function predicatein verifies whetherL∩R 6= /0.
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01. +!chooseRoute(Personality, ZoneOrg, ZoneDst)

02. : route(ZoneOrg, ZoneDst, TimeRte, R)

03. & routeState(Rwarned, congested)

04. & (not(R = Rwarned))

05. & expectedTravelTime(ZoneOrg, ZoneDst, TimeExpected)

06. & (TimeRte < TimeExpected)

07. & preTripInfoUser()

08. & acceptanceWillingness(V) & (V <= threshold)

09. <- +tripRoute(ZoneOrg, ZoneDst, R);

10. +expectedTravelTime(ZoneOrg, ZoneDst, TimeRte);

11. !chooseRoute(Personality, ZoneOrg, ZoneDst).

Plans 2.b and 2.c are used in the same way to confirm the best path with respect the

the route information provided (if any is found) and the selection of the usual choice if

no alternative is available, respectively. In the case of being preTripIn f oUserand not

willing to use the information provided, the agent may adoptits normal decision-making

strategy as defined for its corresponding personality model.

5.3.5 The third scenario

In the third scenario, drivers can receive information bothprior to starting (on the

basis of what has been discussed for the second scenario) andduring the course of a

journey. VMS and DRGS are examples of exogenous sources thatcan be used during

the trip. In addition drivers can also interact with the provider as it is allowed to ask for

advice, as well. Being able to divert original route choice to resume the journey through

an alternative path would imply that the BDI driver was able to play its cognitive abilities

within the microscopic simulation of the movement, not onlyin trip-planing time.

Contrary to what has been assumed in the two previous scenarios, the formulation for

the basic action predicatemoveAlong(route) should be updated tomoveAlong(link). Such

an adaptation is important so as to allow for representing the movement on a link-by-link

basis.

Every time themoveAlongaction is executed, the driver is able to register its experi-

ence through that link, mainly on the basis of the travel costobserved (such as travel time,

delays, and so on). After performing the journey through a link, the set of base beliefs

is updated through the perception of the event+location(link), as a result of such an ac-

tion. Then, the driver is positioned at the upstream node of the nextlink getting ready to

move again to its downstream node, and so on, so forth. In thisway, drivers are able to

re-evaluate the quality of the trip during the journey.

Plan 3.aStarting the trip. At departure time, the driver enters the network to effectively

execute the trip planned. Bothzoneorg and zonedst are said to be dummy links in the

sense they are used just to connect origin and destination tothe network, respectively.
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Therefore, drivers will actually move only through the[links] in the pathR2. As the driver

sets its location to the first link of the path, in Line 8, the links in the tail of the list are

regarded as the remaining path for trip completion.

01. +!move(ZoneOrg, ZoneDst)

02. : tripRoute(ZoneOrg, ZoneDst, R)

03. & tripDeparture(ZoneOrg, ZoneDst, TimeDpt)

04. & timeNow(Time)

05. & (Time = TimeDpt)

06. & (R = [L|Links])

07. <- +tripRoute(ZoneOrg, ZoneDst, Links);

08. moveAlong(L).

The Prolog notation is used to manipulate lists. Thus, the formulaR= [L|Links] in the

context part of Plan 3.a, in Line 6, is used to instantiate thevariablesL andLinks, which

are the first and the remaining links ofR, respectively. Hence, thetripRouteis updated in

Line 7. This is done to represent the fact that drivers keep attention on the links to come,

whereas passed links are left behind.

Plan 3.b Moving through the remaining links of the route. Whenever the driver updates

its current location to the next link within the path to go, iteffectively moves as the basic

actionmoveAlongis invoked in Line 5. This action causes an updating to the agent’s

location to the next link inLinks, which is again perceived as+location(L) is added to its

base beliefs, after the action is terminated. In this way, anindividual keeps moving until

reaching destination. The remaining path is also updated inthe agent’s base beliefs, in

Line 4.

01. +location(L)

02. : tripRoute(ZOrg, ZDst, R)

03. & (R = [L|Links])

04. <- +tripRoute(ZOrg, ZDst, Links);

05. moveAlong(L).

Plan 3.cReaching destination. After performing all links within the path, the agent gets

to the end of the journey. This is identified when moving through the last link inR results

in positioning the agent in the connector linkZoneDst, thus updating the base beliefs by

+location(ZoneDst).

01. +location(ZoneDst)

02. : tripRoute(ZoneOrg, ZoneDst, R)

03. <- true.
2It is important to remember thatR= [links] has been adopted to ease representation.
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Such a cognitive representation of movent in this third scenario is essential so that

drivers can consider diversions as exogenous information is provided.

Plan 3.dMaking a request during the course of a trip. At reaching a new link within the

trip path, the driver may consider to ask for an aid (to DRGS, for instance). In this case

an alternative route from the agent’s current location to its final destination is considered.

Such information is provided by the system under request from the driver, as represented

in Line 6 by a basic action invocation. Then the agent expectsto receive from the source

the clausesysRoute(origin,destination, [links]), which is an alternative suggestion from

the information system.

01. +location(L)

02. : tripRoute(ZoneOrg, ZoneDst, R)

03. & (R = [L|Links])

04. & enRouteInfoUser()

05. & acceptanceWillingness(V) & (V <= threshold)

06. <- request(atis, "sysRoute(L, ZoneDst, RSys)");

07. +tripRoute(ZoneOrg, ZoneDst, Links);

08. moveAlong(L).

Plan 3.e Accepting the information requested. When the answer arrives, as

+sysRoute(origin,destination, [links]) is perceived, the driver may consider either to ac-

cept it or to retain its original choice. However, acceptingthe suggested itinerary depends

very much on whether it is still meaningful for use. Otherwise, it is automatically dis-

carded, as the context part of the plan will not be satisfied. In other words, this plan is

only applicable if the driver is still moving through the link L.

01. +sysRoute(L, ZoneDst, RSys)

02. : tripRoute(ZoneOrg, ZoneDst, R)

03. & location(L)

04. & enRouteInfoUser()

05. & acceptanceWillingness(V) & (V <= threshold)

06. <- +tripRoute(ZoneOrg, ZDst, RSys).

Notice that the remaining path is updated with the itinerarysuggested, which is suffi-

cient to guarantee the driver will update its future location accordingly when the current

execution of actionmoveAlong(link) terminates.

Plan 3.f Ignoring the information requested. The plan to ignore the information provided

is as simple as doing nothing.

01. +sysRoute(L, ZoneDst, RSys)
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02. : enRouteInfoUser()

03. & acceptanceWillingness(V) & (V > threshold)

04. <- true.

5.4 Summary

Modelling and simulating traffic and transportation systems can undoubtedly profit

from MAS-based methodologies. The abstraction offered by multi-agent approaches al-

lows for representing most entities and processes in the application domain in a straight-

forward manner. Most important, it preserves hierarchicalconfigurations and interac-

tions. Its ability to mimic cognitive reasoning and knowledge representation gives tradi-

tional structures of drivers an ideal framework to experiment and investigate humanlike

behaviour. Moreover, as the number of autonomous and intelligent artifacts used to inter-

act within the contemporary traffic systems increases, it isimperative to extend traditional

modelling and simulating methodologies to contemplate thenew performance measures

brought about by ITS. This way, theory should rely on an adequate means to implement,

to validate, and to deploy such advanced technologies.

Endowing the driver structure with a BDI reasoning kernel has facilitated the rep-

resentation of knowledge and cognition. Three commuter scenarios were devised by

means of using AgentSpeak(L) as an specification tool, as suggested by Machado and

Bordini (2001) and following the same modelling approach initially presented in (ROS-

SETTI; BORDINI; BAZZAN; BAMPI; LIU; VAN VLIET, 2002; ROSSETTI; LIU; CY-

BIS; BAMPI, 2002). The scenarios are intended to cover different aspects of contem-

porary traffic systems, mainly with regard to human behaviour and its interaction with

advanced technologies. The methodology seems to be flexibleto support the represen-

tation of different driver profiles and decision-making strategies within several personal-

ities. The predicate logics used in the BDI architecture turns knowledge representation

closer to humanlike cognition. Nonetheless, the plans presented in this chapter do not

represent a unique design alternative, but rather are used to demonstrate the potential of

AgentSpeak(L) to represent and to specify the complexity that is inherent in real systems,

such as the traffic and transportation domain. In addition, apurpose-built interpreter inte-

grated within a simulation framework, could turn AgentSpeak(L) into a powerful API for

developing and testing different behavioural approaches for ITS assessment.
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6 MADAM+DRACULA: A FRAMEWORK TO ASSESS

VARIABLE DEMAND

6.1 Overview

The MADAM (Multi-AgentDemAnd Model) model is devised on the basis of the

cognitive methodological approach presented in the previous chapter. Starting from the

perspective of seeing contemporary traffic systems and ITS technologies as a multi-agent

world, drivers are represented in terms of cognitive agents. This abstraction is the rely-

ing approach used to build a population of BDI commuter drivers, which are capable of

making decisions on the basis of mental attitudes such as beliefs, desires, and intentions.

Then, travels are generated as the result of decisions made as to which route to take and

what time to depart.

In order to demonstrate the methodological approach suggested in this thesis, MADAM

was integrated into the microscopic simulation environment of DRACULA (Dynamic

RouteAssignmentCombiningUserLearning and microsimulAtion). This way the BDI

commuters can perform their trips by means of carrying out their journeys through the

selected path on a vehicle-by-vehicle basis. Such a microscopic simulated environment

allows individuals to evaluate the quality of their decisions day after day. Some experi-

ments were designed on the basis of the first and the second scenarios specified in AgentS-

peak(L) and simulated in the MADAM+DRACULA framework. Aggregate travel time

is the main performance measure used in the discussions of simulated results.

6.2 The DRACULA model

DRACULA is a framework in which special emphasis is given to the microscopic

simulation of individual trip makers and individual vehicles. This environment comprises

basically two main models: the demand and the supply. Both ofthem are based on a

microscopic simulation approach. In the demand model, travellers are individually repre-

sented, and demand is predicted from a full population of potential drivers. In the supply

model, movement is simulated throughout the network on the basis of individual vehicles

that follow their chosen routes toward their desired destination.
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6.2.1 The within-day decision-making and day-to-day dynamics

The integration of demand and supply gives rise to the main premisses in DRACULA,

namely the within–day decision–making process and the day–to–day dynamics. These are

two important concepts that deserve special attention in modelling traffic systems with

regard to users’ behaviour.

The within-day formulation focuses on the travel choices made by individuals. These

choices are made with regard to each specific journey to take place at a given time on a

given day. All trip preferences, such as travel goals and purpose, travel needs, and other

traveller parameters, such as perceptions, behavioural tendencies, and cognitive abilities

that influence the decision-making process are reflective ofthe state of those variables at

the instant the choice is being undertaken. The dynamic formulation, on the other hand,

is concerned with modelling how the state of the network changes from one day to the

other and evolves over time. In addition, the spatial knowledge of a driver is constantly

evolving in response to travel made throughout the network.Figure 6.1 roughly depicts

the DRACULA framework on the basis of the concepts mentionedabove. Such a struc-

ture has been used as an attempt at improving the representation and simulation of the

complexity and the uncertainty inherent in traffic domains.

(DEMAND)


for each

individual driver


departure time

route choice


(SUPPLY)


microscopic traffic

simulation model


drivers launched

trough the

network


costs perceived
learning model


within-day dynamics


day-to-day dynamics


Figure 6.1: DRACULA: an example of demand–supply models.

6.2.2 The structure of DRACULA

The DRACULA basic structure, as presented in Figure 6.1 can be blown up into sub-

models, which are oriented to specific tasks within the simulation process. Figure 6.2

illustrates the basic DRACULA schema, and a detailed explanation of the simulation

process can be encountered elsewhere (LIU; VAN VLIET; WATLING, 1995; LIU, 2001;

LIU; VAN VLIET; WATLING, 1999; WATLING, 1995).

Roughly, travellers are individually represented in demand side where daily trip pa-

rameters are set up. Departure time and route choices are made on the basis of both

past travel cost experiences and perceived knowledge of thenetwork conditions. Con-
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Figure 6.2: The basic structure of DRACULA framework.

trary to models based on a fixed matrix approach, the demand stage predicts the level

of individual demand for a dayk from a full population of potential drivers (LIU; VAN

VLIET; WATLING, 1995). In the supply model, on the other hand, vehicles are indi-

vidually moved throughout the network. They are launched onto the network and follow

drivers’ chosen routes according to both car-following andlane-changing rules. The re-

sulting travel conditions for the subject dayk and costs experienced by drivers are then

re-entered into their individual knowledge basis. Such a dynamic knowledge will affect

the demand model for the next period, that is dayk+ 1. This process continues for a

pre-specified number of days before simulation is terminated.

After each journey drivers make use of the experienced cost gathered from each link

performed along the chosen route to update their information about the network condi-

tions. This is the way individuals’ spatial knowledge is maintained and it can be seen as

the learning mechanism associated to each driver structure, which is discussed later on.

A supply variability module ensures the stochastic nature of the environment, providing

different perceptions of traffic conditions on each day overthe simulation period. It is

also important to mention that route choices are taken priorto the journey, which means

that drivers will keep their chosen routes to their destinations and will not make en-route

diversion in order to avoid either any incident or any accident, which may compromise

the expected journey time. Hence, once drivers leave their origins they are not able to

change their paths within the journey. Nonetheless, dynamic route choice and supplying

drivers with route advice during the journey are interesting capabilities to be added to the

DRACULA model.
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6.2.3 The learning and decision-making processes

Historical costs are used to build a knowledge basis, which helps drivers at drawing an

expectation for the network state so that they can use it to improve their decision-making

process. There are a number of ways cost can be referred to, and in the commuter world

it is basically regarded as travel time. In DRACULA, the travel time from each link used

along the chosen path is recorded for future consideration.This can be done simply by

keeping only the last experience, or by providing drivers with a memory capacity for

computing the average travel time over a pre-specified number of days.

There are basically two ways to assign departure time choicein DRACULA, as it is

implemented so far (LIU; VAN VLIET; WATLING, 1999). Nevertheless, the system is

open to deal with departure time issues in a number of different ways. The first and sim-

plest method is to randomly assign a desired departure time for each potential driver in the

modelled population. When drivers choose to travel on a certain day, they will depart at

that desired departure time independently of route choice and any previous experiences.

The departure time profile could be flat or distributed according to some user-specified

model. The second method incorporated into DRACULA, and quite more complex, im-

plements the choice in response to travellers’ experience.This is the model detailed in

Section 5.3.1.4. Departure time is chosen prior to every journey on the basis of both trav-

ellers’ preferred arrival time and previous experiences. As seen before, drivers will try to

adjust next departure every time arrival is beyond a scheduled delay. However, the model

completely disregards early arrivals.

As for the route choice, one model currently implemented in DRACULA is based

on the works reported in (MAHMASSANI; JAYAKRISHNAN, 1991; BEN-AKIVA; DE

PALMA; KANAROGLOU, 1986), and assumes a ‘bounded rational choice’ (SIMON,

1956; MAHMASSANI; JAYAKRISHNAN, 1991) (this model was implemented as the

habitual behaviour, as described in Section 5.3.1.4).

6.3 The MADAM Model

MADAM is an agent-based model aimed at representing variability in traffic demand

by means of a population of driver agents. This approach relies on an extension to the

DRACULA framework, as initially proposed in (ROSSETTI; BAMPI; LIU; VAN VLIET;

CYBIS, 2000b), to support the microscopic simulation of thetraffic environment.

Rather than building demand through centralised procedures that assign values to

global parameters of data structures, MADAM allows for autonomous behaviour and

decision-making on the basis of individual preferences. Demand results from a popu-

lation of traveller agents with their own profile and behavioural model. In this work,

each individual is implemented according to the architecture proposed in Section 5.2.1. A

BDI model drives the cognitive behaviour used in choosing departure time and trip route,

whereas movement is performed by means of a reactive structure. This model is specially
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oriented to representing the stochastic nature of travel demand, and is assumed to coexist

within a multi-agent environment. Hence, social ability and multi-agent interaction are

two major features of the model.

The original schema of DRACULA (see Figure 6.2) can be adapted into the schema

presented in Figure 6.3 to support the MADAM approach.

MAS-based Demand

results from decisions made by driver

agents as to which route to take and


what time to depart

(
this is a decentralised process
)


Traffic Loading

performs microscopic simulation


of movement on day 'i'


Supply Variability

sets environment


conditions on day 'i'


initialisation


terminate

simulation?


end of simulation


yes


learning

costs perceived


on day 'i'


no


ITS

technologies to aid


travellers


Figure 6.3: The extended DRACULA schema.

At each simulation iteration, demand is given rise as BDI drivers make their choices

on the basis of their individual trip preferences. Departure time and route are assigned

on individual basis by means of a cognitive procedure carried out by each member of the

population. At traffic loading, drivers are launched throughout the network to perform

their trips along chosen paths starting at desired departure times. A reactive behaviour

drives the movement on the basis of car-following and lane-changing predefined rules.

As individuals execute their journeys, cost and other information from the environment

are perceived through sensing and are used to enrich driver’s internal model of the world

(represented in BDI agents by means of a set of base beliefs).Contrary to drivers, that

have restrict access to the whole world, the multi-agent system allows for the presence

of ITS agentsas well. The ITS agent is the abstraction used to represent all technolo-

gies available within Intelligent Transportation Systems, such as ATIS. Depending on its

purpose, an ITS agent may possess a considerably broad modelof the world. This can

therefore be used to anticipate updated information on the system state to aid drivers’

decision-making. Conceptually, such an interaction couldtake place both prior and dur-

ing the journey.

6.4 MADAM +DRACULA: the simulation framework

In order to simulate and test the approach proposed in this thesis, MADAM was inte-

grated into the DRACULA framework. It replaces the former demand side as depicted in
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Figure 6.4: MADAM+DRACULA simulation framework.

the conceptual structure of Figure 6.4.

Bothdemandandsupplyare originally implemented as stand-alone facilities thatcom-

municate to one another via file exchange. TheMA Initialisationmodule synthesises the

population for the experiment from anOD matrixand different alternatives of paths are

assigned to each driver from a list of possibleRoutesfor each origin and destination pair.

The initial set of base beliefs is generated in the format of the JAM BDI kernel for each

individual in the population. TheInput MA file gathers drivers’ decisions on route and

departure time, so that they can be launched onto the networkto perform their journeys at

the departure time selected. Such decisions may have been influenced by the information

provided by anatis agent, that keeps a global model of the traffic environment condition.

On the other hand, theOutput MAfile returns the travel costs experienced by each driver

in terms of realised travel time. The perceptions gathered during the course of the journey

simulated in DRACULA are used in the updating of the base belief sets. On the follow-

ing day, drivers will rely on their updated beliefs to make decisions all over again. This

process is repeated for a specified number of days before the simulation is terminated.

The simulation framework is implemented in C/C++ programming languages, fol-

lowing the same development strategy as adopted for DRACULA. However, a different

strategy was adopted in the development of the cognitive layer of the driver agent, which

is implemented in the Java language. That was necessary as a means to base the JAM BDI

kernel that drives the cognitive abilities of motorists.

6.5 Experiments and Result Analysis

Some experiments were carried out in order to demonstrate the methodological ap-

proach proposed in this thesis. A small network within the Otley urban area was selected

for this purpose. The network topology has 54 links (roads segments), which are con-

nected through 14 junctions. Most road junctions follow a priority regime whereas two

of which are controlled by means of traffic signals. The network description file is pre-

sented in Appendix B. A snapshot of the network being simulated in the DRACULA
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Figure 6.5: A snapshot of the Otley network.

environment is presented in Figure 6.5, whereas a schematicrepresentation is depicted in

Figure 6.6 containing node (junctions and zones) identification numbers.

Demand for travel results from the decision-making processperformed by BDI driver

agents in the population of commuters. The population is derived from the total number of

trips described in an OD matrix, considering each trip as a driver. For this work, the total

number of drivers from the selected OD matrix is 2323. Trips distributions among OD

pairs within the network are detailed in Appendix A where theOD matrix description file

is presented. Due to the lack of full integration of both demand and supply models within

MADAM +DRACULA framework, only the first and second scenarios are considered in

the simulation experiments. Some different configurationsof the population by means of

varying parameters and compositions of driver personalities were used in some of these

experiments.

The main performance measure used in the discussion of experiments is the travel

time of selected origin–destination pairs, on both individual and aggregate basis. Also, the

quality of individual trips is evaluated for different behaviours in terms of both desired and

actual arrival times. Each experiment consists of 101 runs of demand–supply iterations

corresponding today0 throughday100. The morning peak period starting at hour 8 is

considered for each day. In addition, a desired arrival timeis assigned to each driver of

the population on the basis of a uniform distribution. Thus,individuals are expected to

arrive at their destinations by the stipulated arrival time, which is between minutes 45 and
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Figure 6.6: Otley network schematic representation.
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60 after the starting hour. Such a short arrival period is suggested in order to induce the

generation of more congestion throughout the network.

6.5.1 First Scenario

The experiments in the first scenario are focused on the observation of the behaviours

suggested in Section 5.3.1. The first set of experiments considers that the population is

fully composed of drivers exhibiting the same personality.One single agent is selected out

from each of the random, choosy, conservative, and habitualpopulations to illustrate how

personalities evolve over time as the driver makes its decisions and performs the journey.

Despite trips are distributed all over a total of eleven OD pairs within the traffic network,

only trips from origin 109 to destination 105 are initially considered. In this case, three

possible routes are regarded for selection by the drivers, as depicted in Figure 6.7.

109


105


Route 1


109


105


Route 3


109


105


Route 2


Figure 6.7: Route options from origin 109 to destination 105.

Random drivers do not care on route selection and may choose any of those path the

driver is familiar with. Departure time, in turn, is adjusted on the basis of the expected

travel time for the chosen itinerary. The random behaviour of a driver is depicted in the

graphs of Figure 6.8. It is possible to notice from the graphsthat the agent keeps no

relation between route option and its expected cost, which is the total travel time realised

the last time the route was selected. Also, owing a very strict desired arrival time as no

tolerance for being either earlier or later is admitted, thetravel time experienced on each

day fluctuates considerably.

The same observation is carried out for the remaining basic behaviours, namely the

choosy, the conservative, and the habitual ones. The behaviour of a choosy driver is illus-

trated in graphs of Figure 6.9. Contrary to the random personality previously discussed,

the route selection strongly depends on the expected cost ofeach path. However, the cost

is similarly given in terms of the travel time realised the last time the route was used. For

the subject OD pair, the agent is able to opt among three alternative itineraries and keeps
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Figure 6.8: The random behaviour of a driver.
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Figure 6.9: The choosy behaviour of a driver.
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its choice until it finds out a better alternative. In this way, the expected travel time of a

route remains the same and is updated only if it is selected onfollowing days. Also, the

number of route switches seems to be quite lower than it is forrandom drivers. This is

basically due to the explicit use of selecting strategies.

Yet, as in the random behaviour, there is a considerable fluctuation in the agent’s actual

arrival time owing to the same reason. The strict desired arrival time forces the driver to

continuously adjust its departure time as an attempt to meetits trip objectives. In the case

of being any later, the agent anticipates its previous departure choice accordingly, and

may experience a very short journey that results in an early arrival. In turn, the agent sets

its departure for a later time on the next day. This behaviourseems to repeat indefinitely,

which does not seem to correspond to the reality.

As for the conservative personality, travellers keep the same path option for the total

period simulated, which means in practical terms that the expected cost for each journey is

the travel time realised on the day before. Similarly to whatis observed from random and

choosy behaviours, conservative commuters also seem to fail in achieving destination at

desired arrival time, as presented in Figure 6.10. Despite of fixing the route choice always

at the same option, adjusting departure according to the full arrival delay demonstrates to

be an efficient means to accomplish trip objectives.

The habitual driver, which is currently implement in DRACULA, relies on a more

flexible approach both to departure time and to route choices. Graphs in Figure 6.11

are used to illustrate how the habitual behaviour evolves over time. The parametersε,

η, andτ are set to 0.2, 0.2, and 1min, respectively. These values are selected as sug-

gested in (BEN-AKIVA; DE PALMA; KANAROGLOU, 1986) and in (MAHMASSANI;

JAYAKRISHNAN, 1991). Owing to the lateness tolerance of themodel, drivers can ex-

perience a smoother arrival after few days from the start of the simulation. The departure

choice remains the same unless new delay beyond what is tolerable by the driver is per-

ceived. This means that stabilising arrival much earlier results in keeping the same de-

parture choice. However, featuring agents with such a unlimited earliness tolerance may

not be exactly the case for real commuters, specially duringmorning journeys. Switching

routes is also constrained by an improvement factor, which means drivers do not make

other option unless the gain for taking a better itinerary isconsiderably advantageous.

Such a sort of behaviour with regard to path selection seems to be more prudent than the

fastidious choosy personality.

Aggregate travel times are observed for trips from origin 109 to destination 105, as

previously suggested, to represent how individual behaviours can effect the system overall

performance (see Figure 6.12). The values for mean(µ) and standard deviation(σ)

relative to the averaged travel time observed for the subject OD pair are listed in Table 6.1.

A population estimation factor equals to 1.0 is used to emulate the population of BDI

agents from the flow distribution described in the OD matrix.This way the total flow is

mapped to the total number of drivers in the population on thebasis of the 1 : 1 rate. So,
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Figure 6.10: The conservative behaviour of a driver.
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Figure 6.11: The habitual behaviour of a driver.
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a total of 285 drivers perform their journeys from zone 109 tozone 105.
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Figure 6.12: Average travel for homogenous populations.
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Figure 6.13: Average travel for mixed populations.

Populations fully formed of random, choosy, and conservative drivers present similar



133

values forµ andσ , as presented in Table 6.1. Despite of presenting some criterion for

route and departure time selection, the inflexible arrival of individuals makes aggregate

travel time quite fluctuating with respect to the habitual behaviour (presenting the lowest

value forσ ). Another interesting observation is the high value for themean average travel

time of the habitual population (≈ 18min) with respect to the other behaviours. Owing

to its very flexible arrival time, habitual drivers tend to keep their travel preferences even

in the case of experiencing longer journeys. Then, it is quite possible for the system to

stabilise the average travel time at higher levels providedthat drivers can arrive at least

before a certain scheduled delay. It is solely an effect produced by motorists that try to

minimise their individual notion of cost. In the case of habitual agents, they only need to

arrive before the tolerable lateness. Such a flexibility is not verified for random, choosy,

and conservative personalities. As no tolerance is considered then, neither to lateness nor

to earliness, departure time is set as the result of the agent’s expectation to take the exact

travel time as to arrive at destination on schedule.

Table 6.1: Populations formed solely by drivers of same personality.

Personalities µ σ
Random 11.0020 3.0288

Choosy 11.5581 4.3239

Conservative 11.3508 3.2675

Habitual 18.0609 0.6176

Undoubtedly the populations of travellers in any urban areais rather of a very het-

erogenous nature. Thus, considering that all drivers behave in the same way is very un-

likely to correspond with reality. In this sense, another set of experiments is suggested and

different populations are built up by means of mixing the number of drivers of the same

behavioral stereotype, as suggested in Table 6.2. The same OD pair is selected for the ob-

servations and average travel times are depicted in the graphs of Figure 6.13. The number

of random drivers is kept constant in a very low rate (10% of population) for all composi-

tions. As mentioned in Section 5.3.1 such a behaviour may represent commuters that need

to use different paths. Some times people plan to take a different itinerary, for example, to

drop kids at school or supply vehicle with petrol. However, it is intuitively very unlikely

that most commuting users will behave in this way. The remaining part of the populations

is composed of fractions of choosy, conservative, and habitual agents. These behaviours

are equitably distributed in Population 1, whereas a greater rate (70%) is considered for

each personality in populations 2, 3, and 4. This assumptionis suggested as a means to

observe how prevailing behaviours can effect the overall system performance.

From the graphs of Figure 6.13 and from the values forµ andσ (see Table 6.2), it

is possible to observe that all population compositions present fluctuations in the average

travel time. Populations 1, 2, and 3 are still affected by thenon-flexible arrival time as

discussed above. Nonetheless, the prevailing habitual behaviour of Population 4 seems to
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Table 6.2: Different compositions for mixed populations.

Populations Compositions µ σ
random choosy conservative habitual

Population 1 10% 30% 30% 30% 11.3096 3.1331

Population 2 10% 70% 10% 10% 11.3084 2.8119

Population 3 10% 10% 70% 10% 11.0243 2.7316

Population 4 10% 10% 10% 70% 10.6749 1.3884

smoothen the average travel time for the subject OD pair. Also, as possibly a side-effect

of the other personalities in the same population, the mean travel time drops with respect

to the first experiment considering the population formed solely by habitual commuters.

However, it is very important to bear in mind the very flexibleearliness tolerance of the

habitual personality. Stability could be observed at any average travel time level provided

drivers reached destination within the lateness tolerancethreshold. In spite of that, this

may suggest non-flexible behaviours can condition at which level such an stable state is

to be settled.

As discussed above, the habitual driver seems to be quite flexible with regard to earli-

ness. Also lateness tolerance increases for longer journeys as it is assumed to be relative to

travel time. However, commuters tend to have rather strict arrival constraints and arriving

much earlier may be disregarded for morning trips. Two extensions to the habitual per-

sonality are then suggested, namely the habitual driver with a relative lateness-earliness

tolerance window and the one presenting an absolute lateness-earliness tolerance. The

former only extends the concept of relative tolerance to consider an earliness threshold

with respect to the travel time realised. The latter is less flexible in the sense lateness and

earliness thresholds are considered to be constant in spiteof how long the journey may

take. To illustrate how these extended behaviours possiblyevolve over time, different

configurations for the tolerance window are suggested. In Table 6.3 lateness threshold

is fixed in 20% of travel time, whereas different values are assigned to earliness toler-

ance factor. The behaviour of a single instance of a habitualdriver presenting a relative

lateness-earliness tolerance to desired arrival time is depicted in Figure 6.14. The fluc-

tuation of the agent’s arrival time is considerably high, even for the[20%,100%] relative

window size. In this specific behaviour, when the driver tries to adjust its departure to

avoid lateness, for example by means of departing much earlier, it may realise a consider-

ably short journey yielding a very restrictive tolerance. As thresholds are dynamic, even

if the driver experiences longer journeys some times, it seems to be very difficult to reach

a steady state.

A similar experiment was carried out for the latter extension suggested, which is the

habitual driver with absolute lateness-earliness tolerance window. The different configu-

rations for the absolute window are presented in Table 6.4; considering most commuters

are constrained by strict arrival times, lateness tolerance is fixed in 5minwhereas earliness



135

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

day

tr
av

el
 ti

m
e 

(m
in

)
relative window [20%, 20%]

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

day

tr
av

el
 ti

m
e 

(m
in

)

relative window [20%, 30%]

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

day

tr
av

el
 ti

m
e 

(m
in

)

relative window [20%, 50%]

actual arrival     
desired arrival    
lateness tolerance 
earliness tolerance
actual departure   

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

day

tr
av

el
 ti

m
e 

(m
in

)

relative window [20%, 100%]

Figure 6.14: Habitual driver with relative lateness-earliness tolerance.
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Figure 6.15: Habitual driver with absolute lateness-earliness tolerance.
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is different for each population.

The graphs in Figure 6.15 are used to illustrate how this behaviour evolves over time.

In this case, as the window boundaries are static all over theperiod simulated, it is easier

for the driver to meet its lateness-earliness thresholds after a number of iterations and

keeping this state for a longer period of time. The wider the distance between the upper

and lower boundaries, the more tolerable the agent will be. In the same way the original

habitual behaviour can settle in a steady state owing its flexible nature, can the driver with

an wide absolute tolerance window. Thus, it seems to be impracticable to predict at which

level a population with such characteristics may stabilise. It may be at any level, provided

travellers can meet the window thresholds.

The average travel times for the populations presented in Table 6.3 and Table 6.4 are

depicted in Figure 6.16. This aggregate assessment is made with respect to trips from

zone 109 to zone 105, as well. The presence of an earliness relative tolerance makes

the average travel time quite more fluctuating with regard tooriginal specification for the

habitual behaviour. On the other hand, absolute lateness and earliness tolerances tend to

converge to a certain level at which average travel time starts to settle down. Intuitively,

absolute tolerance windows seem to keep closer relation to the reality of commuters than

relative ones.
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Table 6.3: Relative lateness-earliness tolerance windows.
Populations Lateness Tolerance Earliness Tolerance

ε (relative toT T ) λ (relative toT T )

Population 1 0.20 0.20

Population 2 0.20 0.30

Population 3 0.20 0.50

Population 4 0.20 1.00

Table 6.4: Absolute lateness-earliness tolerance windows.
Populations Lateness ToleranceEarliness Tolerance

ι (min) ν (min)

Population 1 5 5

Population 2 5 10

Population 3 5 20

Population 4 5 30
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Figure 6.16: Average travel times for relative and absolutetolerance windows.
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6.5.2 Second Scenario

Recalling from Section 5.3.4, drivers are allowed to receive information on the current

state of traffic prior to starting daily journeys. This way commuters can consider using the

content interpreted to improve the decision-making process. However, travellers are not

supposed to interact with exogenous sources and contents are assumed to be perceived as

a broadcast from mass media, for instance. In addition to(109,105) OD pair, trips from

zone 105 to zone 104 and trips from zone 101 to zone 002 are observed as well. Both

(105,104) and(101,002) OD pairs can be performed through two possible itineraries as

presented in Figure 6.17 and Figure 6.18, respectively. Demand is built out from homoge-

neous population of habitual drivers, which means all travellers in the population exhibit

the same personality.

Different populations are set out in Table 6.5 and simulatedin order to illustrate the

Route 2
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104


Route 1


105


104


Figure 6.17: Route options from origin 105 to destination 104.

Route 1
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002
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Figure 6.18: Route options from origin 101 to destination 002.
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potentialities of the approach presented in this thesis to handle such a scenario. Popula-

tions are configured in terms of the total number of drivers and the fractions of pre-trip

information users. Incidents were artificially produced intwo links of the network affect-

ing the current supply conditions for the recurrent demand.This is yielded by way of

suppressing one traffic lane from both link(9,15) and link(31,21). The pairs represent

upstream and downstream nodes in this order, which gives thedirection of the suppressed

lanes. In the supply model of DRACULA, incidents can be easily represented by means

of defining a reserved lane and the purpose for such a reservation (see Appendix 7.5 for

further explanations). The incidents have direct effects on both trips from zone 109 to

zone 105 and trips from zone 105 to zone 104. This is ensured asat least one path of each

OD pair contains the links with lanes suppression. Trips from zone 101 to zone 002 are

also expected to be indirectly affected by the incident generated in link(9,15). This is

assumed on the basis of the high flow induced in that link, which may produce queues that

extrapolate to link (5,9) blocking right-turning maneuvers from link (9,5) to link (5,6).

An atis agentis responsible for broadcasting the information on the current state of

links (9,15) and (31,21). The perspective of incidents on road segments is interpreted

as possible congestion, and such information is posted in the environment on day 50.

Thus, the base beliefs of driver agents are updated through the perception of the clause

Table 6.5: Different compositions for populations with informed drivers.
Compositions

Populations population number of trips for fraction of
factor agents each OD pair informed users

(109,105) 142 0%
25%

Population 1 0.5 1159 (105,104) 101 50%
75%

(101,002) 6 100%
(109,105) 228 0%

25%
Population 2 0.8 1860 (105,104) 162 50%

75%
(101,002) 9 100%

(109,105) 285 0%
25%

Population 3 1.0 2323 (105,104) 202 50%
75%

(101,002) 12 100%
(109,105) 342 0%

25%
Population 4 1.2 2792 (105,104) 243 50%

75%
(101,002) 14 100%
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linkSate(link,congested). This new entry in the beliefs set may then be accounted for

during the route choice process. If the agent is a pre-trip information user and has the

willingness of effectively using its content, it will definitely make an attempt at avoiding

routes that include the congested link. The incidents last for the whole period simulated

on each day, and theatis agentkeep posting the messages until day 100.

The simulation results are given in terms of average travel times relative to the subject

OD pairs and are presented in the graphs of Figures 6.19, Figure 6.20, and Figure 6.21.

Each population as presented in Table 6.5 is identified by itscorresponding population

factor within the figures. It is possible to observe from the three set of graphs that the

travel time for all the populations tends to settled down at different steady states after

the incidents are introduced onto the network. However, it does not necessarily mean

travel time will be brought to worse levels, as observed in Figure 6.20. This can be seen

from the perspective of the Braess’s paradox (BRAESS, 1969;MURCHLAND, 1970;

SHEFFI, 1985). Such a seemingly counter-intuitive result can be explained by the fact

that a motorist try to minimise her/his own notion of cost. Thus individual choices are

carried out with no consideration of the effect of this action on other network users. And,

according to Sheffi (1985), there would be no reason to expectthe total travel time to be

worse or better on certain circumstances.

Graphs also demonstrate that non-informed configurations of demand are very likely

to produce the worst situations. On the other hand, different fractions of informed drivers

may produce difference levels of stability. However, informing all drivers will not always

produce the best result. Also, the experiments suggest thatideal penetration factors of

information technologies may depend very much on demand configuration. This idea

relies basically on the number of trips for each OD pair of thenetwork and the resulting

graphs of figures 6.19, 6.20, and 6.21.
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Table 6.6: Summary of statistics for the (109,105) OD pair.
population fraction of day 0–49 day 50–100

factor informed drivers µ σ µ σ
0% 7.7947 0.4047
25% 7.4257 0.2797

0.5 50% 3.9208 0.2118 7.3244 0.2871
75% 6.7835 0.2597
100% 7.1613 0.2579
0% 17.2555 0.7399
25% 16.2070 0.5947

0.8 50% 11.7635 0.6085 17.5906 0.6872
75% 15.9085 0.2506
100% 16.5513 0.5727
0% 22.0349 1.3894
25% 23.0566 1.7372

1.0 50% 15.9480 1.4969 18.9515 1.3005
75% 20.8037 0.6656
100% 21.4670 0.7124
0% 30.6920 1.1712
25% 29.5433 1.7634

1.2 50% 14.9382 1.2390 29.1563 1.9296
75% 26.5099 2.0541
100% 21.6514 0.8437
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Figure 6.19: Average travel times relative to (109,105) OD pair.
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Table 6.7: Summary of statistics for the (105,104) OD pair.
population fraction of day 0–49 day 50–100

factor informed drivers µ σ µ σ
0% 5.1545 0.6021
25% 4.6389 0.7725

0.5 50% 5.7834 0.7476 3.1522 0.5461
75% 1.9141 0.3065
100% 1.5964 0.0691
0% 10.7561 0.9537
25% 10.4312 0.8537

0.8 50% 13.0971 1.0560 8.1870 0.7314
75% 7.2055 0.4432
100% 5.3103 0.2213
0% 12.3670 0.9086
25% 11.2024 0.9258

1.0 50% 17.7321 2.0563 11.0965 0.7030
75% 8.9645 0.6181
100% 7.7936 0.1683
0% 13.9007 0.9027
25% 12.9853 0.7712

1.2 50% 18.2241 2.1711 12.6078 1.1480
75% 9.9759 0.4274
100% 8.3903 0.1774
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Figure 6.20: Average travel times relative to (105,104) OD pair.
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Table 6.8: Summary of statistics for the (101,002) OD pair.
population fraction of day 0–49 day 50–100

factor informed drivers µ σ µ σ
0% 4.2603 0.1168
25% 4.2707 0.1012

0.5 50% 4.4034 0.6327 4.2456 0.1149
75% 4.2418 0.0843
100% 4.2917 0.1435
0% 12.8585 0.2374
25% 13.1715 0.3220

0.8 50% 14.2028 2.5614 12.6788 0.2802
75% 12.2342 0.1238
100% 12.2416 0.1309
0% 27.2554 2.5552
25% 22.6639 1.4758

1.0 50% 22.2409 2.4364 22.8205 0.8266
75% 20.1541 0.1735
100% 19.8509 0.1410
0% 11.5785 0.8933
25% 10.4111 0.3332

1.2 50% 11.7650 3.7378 10.6383 0.4780
75% 10.5401 0.4221
100% 9.8394 0.1551
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Figure 6.21: Average travel times relative to (101,002) OD pair.
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6.5.3 Simulation performance

The simulation sets presented in this chapter were carried out in PC computers. Hard-

ware and software characteristics are presented in Table 6.9.

Table 6.9: Simulation software and hardware environment.

HW and SW characteristics

Processor AMD Athlon at 1100MHz

RAM capacity 256Mb

Operating System MS Windows 2000, Service Pack 2

Java Runtime EnvironmentJava 2 RE Standard Edition v.1.3.1_01

JAM Parser Version 0.65+0.76i
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Figure 6.22: Simulation performance (number of agents versus CPU time/101 days).

The simulation performance for hardware and software is assessed in terms of CPU

time used to run populations with different number of BDI driver agents for a total of 101

days (from day 0 to day 100). Results are presented in Figure 6.22. At a first glance,

the performance of the agent-based approach may be found to be a bit disappointing, as

the the necessary CPU time increases considerably for larger populations. Nonetheless,

the adoption of other software development strategies using concurrent and parallel pro-

cessing may improve the framework performance. A fully integrated environment is also



145

a step toward this improvement, which can avoid the excessive number of file exchange

between MADAM and DRACULA.

6.6 Summary

The flexible structure of AgentSpeak(L) used as an specification language gives rise to

further improvements of legacy microscopic simulation frameworks, allowing engineers

and practitioners to devise and implement different behavioural models. The MADAM+

DRACULA framework is an example of how cognitive agents can be practically applied

to implement the humanlike reasoning commuter structures and their interactions with

today’s ITS technologies. This multi-agent-base methodology can be used to address the

lack of suitable tools for simulating and assessing contemporary traffic scenarios.

The different experiments proposed and the simulation results are initially intended to

demonstrate the methodology flexibility and its adequacy tocope with the traffic domain.

However, scenarios are hypothetical and may not have so muchcorrespondence with real-

ity. In spite of that the intuitive syntax of AgentSpeak(L) was also used to specify and run

the habitual personality, showing it is suitable to implement other models as well. Inte-

grating a purpose-built interpreter for AgentSpeak(L) within the MADAM+DRACULA

simulation framework can base the use of its syntax and operational semantics as a pow-

erful API through which different behaviours can be implemented and tested.

As for the second scenario tested in this chapter, it was seenthat users of exogenous

information sources may rely on the information provided inorder to improve the quality

of their decisions and the outcomes of their journeys. So, this framework contributes to

assessing the impact that exogenous information may have inthe overall performance of

the traffic system, the quality of the information provided,and the quality of decisions

made by users. Also, it can give invaluable insights into variables dependence and great

contribution in the calibration and validation of driver behaviour models.
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7 CONCLUSIONS

7.1 Overview

The problems arising from the increasing demand in traffic systems mainly in urban

areas have been challenging not only researchers but also the whole society all over the

world. Alternative solutions are then necessary to tackle such problems. Physical modi-

fications to increase capacity have revealed to get even moredifficult as space lacks, and

very expensive to implement, as well. Besides, such procedures often result in serious

disruptions to the society and damages to the natural environment. Visual, atmospheric,

and noise pollution are drawbacks to be avoided. Efforts to optimise control systems have

resulted in considerable improvements in many situations.Apart from successful expe-

riences, they alone are not sufficient to cope with the ever increasing demand in urban

areas. The use of advanced communication and computer technologies has brought about

the concept of Intelligent Transportation Systems. One of the ITS premises relies on op-

timising the use of the road capacity by directly influencingusers’ behaviour in order to

modify travel patterns. Other key aspect of ITS is the integration of different technologies

aimed at supplying users’ needs on an individual basis.

Using simulation models to aid the assessment and design of traffic systems is an in-

dispensable practice (BARCELÓ, 2001). So, tools should be more expressive and should

present the adequate means to cope with reproducing the complexity of ITS scenarios. In

this way, many efforts have been identified in order either toelaborate models from scratch

or to adapt traditional ones to meet ITS requirements. However, traditional models have

shown to be inadequate to handle the innate variability and uncertainty of contemporary

traffic and transportation systems (WATLING, 1994). This isspecially the case while

modelling humanlike behaviours and decision-making processes, which has challenged

both researchers and practitioners.

Agent-based techniques seem to be a very appropriate approach to represent such a

domain. MAS presents a great potential to represent systemswhere entities are geo-

graphically and functionally distributed. Moreover, there is an explicit commitment of AI

approaches to the ontological and epistemological representation of systems. The BDI

formalism through its specification of beliefs, desires, and intentions, as well as of their
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relations, turns modelling humanlike behaviour and decision-making mechanisms into a

straightforward and intuitive process. Such a framework features a robust and flexible

way of specifying human cognition, which is desirable for ITS assessing tools.

Some efforts in applying multi-agent techniques to the fieldof traffic and transporta-

tion engineering are presented in the literature. Many of them are aimed at dealing with

isolated issues, though. Traffic control systems and representing car-following and lane-

changing behaviours in microscopic models are some examples of applications that can

profit from agent features. However, integrating models aimed at specific aspects in order

to lead to more detailed representations of the entire system has not been the purpose,

as yet. Nonetheless, it is also necessary to offer mechanisms such that practitioners can

evaluate how the real system evolves under the presence of new performance measures

brought about by the very integrated ITS technologies.

7.2 Contributions of this thesis

There are three main areas in which the contributions of thisresearch are identified.

• it suggests a close coupling between ITS and MAS fields. Following the same en-

visaging defended in (BOUCHEFRA; REYNAUD; MAURIN, 1995), ITS tech-

nologies, their components, and interactions can encounter in MAS the appropriate

means to represent their complex nature in different levelsof detail. Further, it is

possible to identify the potential for a mutual benefit and cross-fertilisation, as can

both fields profit from the advances of each other. Given its complex and stochas-

tic nature, and the autonomy desired for its components, ITScan serves MAS as a

ground where theories are devised and tested in a real and practical environment.

In turn, as the level of detail in simulating traffic scenarios has increased in order to

cope with new measures brought about by the ITS premises, it is unpractical to dis-

sociate the design of data structures and algorithms from modelling the dynamics

of the real world;

• it reinforces the feasibility of applying BDI to real-worlddomains with a relatively

large number of reasoning entities. Turning BDI models into real applications have

challenged researchers for a long time. Just quite recentlythe ‘gap’ between theory

and practical implementation has been overcome, as development frameworks and

architectures for multi-agent systems now support the effective use of BDI agents.

However, as the use of cognitive approaches has suggested, the BDI theory has

been relegated to representing domains with a few entities only (GIRAFFA, 1999;

TEDESCO; SELF, 2000). In this work, a reasonable number of BDI drivers have

been modelled, implemented, and run quite successfully;

• microscopic traffic simulation can profit from agent-based modelling and simula-

tion techniques toward providing robust and flexible means for assessing human-

like behaviour of drivers. One premise of ITS presented as an alternative to the
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increasing of capacity by physical means and to advanced control systems is to op-

timise the use of existing traffic and transportation resources through influencing

users behaviour patterns. This implies dealing with the complex nature of human

reasoning and decision-making process. Microscopic simulation models have been

specially devised to permit the representation of movementon individual basis and

then tried to incorporate driver characteristics. The approach initially adopted in

some models was to represent driver and vehicle indistinguishably, as a vehicle-

driver unit (HIDAS, 2000). This has been suitable to simulate reactive aspects

of the movement, such as car-following and lane-changing behaviours. However,

when the issue is to model more complex reasoning and decision making toward a

more effective comprehension of the interactions between users and ITS technolo-

gies, these models are no longer adequate. This research hassuggested to model

travellers in general as a single agent structure, which is capable of presenting hu-

manlike reasoning through the use of the BDI approach.

The methodology applied in this thesis can serve to a wide range of applications,

both in the field of traffic and transportation engineering, and in the field of multi-agent

systems. Understanding driver behaviour, assessing the impact of different ITS technolo-

gies, devising strategies for information provision, assessing quality of information con-

tent and users’ acceptance for different information mediaare some examples of potential

applications of the simulation framework devised in this research. Assessing manage-

ment strategies, such as inducing the use of a certain mode oftransport, applying road

pricing, and motivating car polling investments, can also be seen as potentialities for real-

world scenarios. On the other hand, the multi-agent community can also profit from the

knowledge gathered in designing applications of this sort.Multi-agent interaction and

social ability models can be applied to travellers, pedestrians, and even to autonomous

assistants that co-operate with users. Communication protocols is another subject of im-

portance as travellers now may access exogenous sources of information and can interact

with them. Also, the use of the limited capacity of the transportation infrastructure gives

rise to likely conflicting situations, which should be sorted out. As to the perspective of

a single reasoning entity, many other issues can be approached through MAS, such as

learning, planning, and decision-making mechanisms in order to yield results that may be

used in other knowledge domains, as well.

7.3 Further developments

The methodological approach devised in this research allowed to extend the DRAC-

ULA microscopic model to support demand generation as the result of decision-making

processes carried out by BDI driver agents from within the MADAM model. Although the

integration between the demand and the supply has been achieved to some extent, which

demonstrated the suitability of using a cognitive-based architecture to improve the driver
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representation, further developments are suggested in order to enhance the multi-agent

simulation framework presented.

• use of AgentSpeak(XL) to implement the BDI drivers. Unfortunately, neither the

SIM_Speak framework nor the AgentSpeak(XL) interpreter were effectively avail-

able during the course of this research in time of being used.Then, the implemen-

tation of the AgentSpeak(L) specifications in JAM was the option chosen in order

to demonstrate this work’s approach. Nonetheless, the stepahead is to incorporate

the AgentSpeak(XL) interpreter within the BDI driver structure, so that it will be

possible to profit from the advantages of a purpose-built interpreter, such as effi-

ciency and practicality, as claimed in (MACHADO; BORDINI, 2001). In addition,

AgentSpeak(L) syntax and operational semantics can serve in this environment as

a powerful API through which different behaviours can be implemented and tested;

• full integration with DRACULA. The rigid structure of DRACULA is formed of

‘black-box’ modules that interact with each other via file exchange. MADAM was

initially implemented on the same basis, and replaced the original demand module

used in DRACULA. However, this limits likely interactions which may emanate,

for example, from using Dynamic Route Guidance during the journey. This would

imply that the BDI driver could use its reasoning capabilities within the supply

model as well. In order to accomplish so, it is necessary to intervene into the sup-

ply model and make it fully integrated with the demand side. This discards the

drawbacks of exchanging files between modules;

• implementation of the third scenario. On the basis of the full integrated demand-

supply framework, it is possible to avoid any discontinuityon the reasoning stream

of an entity. This way drivers can behave cognitively at any moment within the

entire simulation period, including while making in-trip decisions. This facilitates

the implementation of the third scenario proposed, as the driver is able to exhibit

cognitive abilities while interacting with other elementsof the environment, such as

exogenous information sources. Thus, the effects of VMS, dynamic route guidance

and advice, radio broadcast, and personal assistant systems can be modelled and

simulated.

• validation of more realistic behaviours and calibration ofparameters. In this

work, BDI models have been applied just to the specific scenarios of commuting

drivers, and has proved to be a powerful tool to model and simulate humanlike

reasoning and decision-making processes. Nonetheless, the number of possible

interactions between humans and autonomous technologies composing the Intelli-

gent Transportation Systems is considerably vast. In orderto investigate the im-

pact of such technologies and assess their efficiency, models should be validated

against real world, which means they should reflect what happens in reality. Col-

lecting real-world data in traffic systems has been a difficult task and much ef-

fort has been made to automate it. In some application domains, such as traffic
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and transportation, it is sometimes necessary to submit subjects to virtual environ-

ments so that information on behavioral factors can be gathered in a controlled

way (AL-SHIHABI; MOURANT, 2001; BONSALL et al., 1997). Another man-

ner to gain insight into the way people behave is through adopting methodologies

that are based on revealed and stated preference analysis (POLYDOROPOULOU

et al., 1996a,b; KHATTAK; POLYDOROPOULOU; BEN-AKIVA, 1996; ADLER;

RECKER; MCNALLY, 1992). A methodological approach to modelling driver be-

haviour for a multi-agent implementation is also suggestedin (DIA, 2002). More-

over, model parameters should be calibrated so that simulation models can accu-

rately represent field measured or observed conditions of the real world (MILAM;

CHOA, 2001; HELLINGA, 1998; RAKHA et al., 1996).

• concurrent and distributed execution of agents. Undoubtedly, the more detail a

reasoning model is capable of representing and processing the more computing re-

source and time it will consume. And this is also the case for BDI models, spe-

cially when applied to domains formed of several reasoning entities. Improve-

ments to memory and processing of today’s computer architectures certainly has

motivated and contributed to the application of AI theoriesand models, in general.

Nonetheless, further enhancements are believed to be possible with the concurrent

and distributed execution of agent programs. This can both improve the scalability

of multi-agent systems and reduce processing time to meet temporal constraints.

Some aspects of the Intelligent Transportation Systems could profit from such an

implementation strategy.

7.4 Future work

Coupling ITS and MAS in such a close way inspires a wide range of research subjects

that can be approached in both fields. Some examples in the literature, as discussed in

Section 3.8, illustrate the potential of this synergy. In the special case of the present work,

some topics are discussed next as the following-up studies to be pursued.

• learning mechanisms. Although commuters are expected to be familiar with the

traffic environment and make habitual decisions, experiencing unusual conditions

on currency basis may lead individuals to behave differently. Modelling learning

mechanisms (WEISS, 1999) as part of the driver cognition canbe an interesting

tool toward understanding long-term effects of ITS technologies, for instance;

• dynamic planning. A BDI agent is basically specified by means of its base beliefs

and the plans it can pursue (RAO, 1996; MACHADO; BORDINI, 2001). Nonethe-

less, it is not rare for a driver to divert from the original chosen path owing, for

example, a will to avoid the blocked roads. In such circumstances, the agent must

be able to replan its journey. Otherwise, it very likely willexperience long delays.

However, this can constitute a trick subject as sometimes the traveller is bounded to
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temporal constraints and inefficient replanning could become unpracticable (RUS-

SELL; NORVIG, 1995; BARBER; MARTIN, 1999);

• driver architecture. This work presents a relatively simple hybrid architecture for

the driver agent. The driver can behave on a reactive basis when performing the

journey throughout the network, as implemented in the car-following and lane-

changing models. Also, it can exhibit cognitive capabilities when making deci-

sions on the basis of a BDI reasoning kernel. Layered structures has been pro-

posed (FERNANDES, 1998; KLÜGL et al., 2000) that allows for different lev-

els of decisions. The complex nature of the Intelligent Transportation Systems

and the wide range of different information that is involvedsuggest that different

AI approaches may be more suitable to one or another interaction. Some exam-

ples are encountered in the literature as in (WU; MCDONALD; BRACKSTONE,

1998; NIITTYMÄKI, 2002; NIITTYMÄKI; KIKUCHI, 1998; CHEN; GRANT-

MULLER, 2001; KANOH; NAKAMURA, 2000). Thus, a meta specification of

a multi-layered traveller architecture could be a means to apply and test different

AI theories and approaches. Also such a structure might allow the driver to be-

have accordingly in different situations by means of dynamically recognising and

switching the execution to the control of the most appropriated layer. This selection

could be made on the basis of either detailed and accurate behaviours or efficient

behaviours with respect to some constraints. These layers could also be oriented

to specific purposes, such as acting upon the environment, making decisions on

actions, learning, planning, and communicating.

• Multi-agent environment for ITS. A fully integrated multi-agent framework for as-

sessing ITS applications should rely on a well-designed multi-agent environment.

A parameterised environment and meta specifications of agent architectures are the

ingredients to support the perfect integration of travellers and different ITS tech-

nologies, as suggested in Section 5.2. Every time a different kind of traveller or

ITS-technology agent is integrated into the environment, the adequate mechanisms

should be provided for dynamic recognition of communication protocols, level of

accessibility to the environment, and likely effects of theagent’s actions. The CA-

TIA framework (ROSSETTI, 1998; ROSSETTI; BAMPI, 1998b, 1999) offers an

open object-oriented data model, which will be used as the basis for such an inte-

grated multi-agent environment.

7.5 Final comments and remarks

The abstraction premises of MAS and its process-driven approach to systems mod-

elling turns this multidisciplinary field into a precious tool to aid the representation and

assessment of complex domains with very stochastic and dynamic nature. Allied to the

microscopic perspective, as suggested in (SCHLEIFFER, 2000), agent-based techniques
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are a step toward the understanding of new performance measures brought about ITS-

based solutions. In the specific case of this work, the use of acognitive model on the

basis of the BDI theory has demonstrated a great potential todescribe reasoning mech-

anisms behind the decision-making processes. This way it ispossible to overcome the

disadvantages of traditional approaches relying on the vehicle-driver unit view. At the

same time it provides the ways to yield invaluable insights into the behavioural patterns

and responses to Advanced Traveller Information Systems.
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APPENDIX A
The OD matrix description file in DRACULA syntax

The OD matrix description file is a text file that specifies how trips are distributed

among each origin-destination pair within the network. In the DRACULA environment

the file is usually named<project_name>.mat, where<project_name> is the

name for the project being simulated, followed by the extension<mat> that identifies the

file format. Figure A.1 depicts the content for the fileotley.mat, used in this thesis.
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PARAMETERS

nzones=11

nlevel=1

END

002 0.000 0.000 9.430 0.000 0.110 0.000 126.480 13.280 12.910 0.000 0.000

003 0.000 0.000 4.130 0.000 1.820 7.990 43.170 0.000 0.000 0.000 10.280

101 11.760 7.531 0.000 0.000 2.397 0.000 16.833 0.000 0.000 228.480 240.410

102 0.000 1.301 0.000 0.000 18.963 0.000 0.000 0.000 0.000 0.000 0.000

103 0.010 0.020 0.580 14.600 0.000 7.640 48.460 0.000 0.000 0.000 0.500

104 0.000 54.980 0.000 0.000 29.400 0.000 64.350 0.000 0.000 0.000 0.000

105 67.499 44.388 46.698 0.000 2.380 202.391 0.000 0.000 0.000 0.000 145.420

106 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

107 35.941 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 32.882

108 0.000 0.000 88.980 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

109 52.980 0.000 248.684 94.426 1.920 0.000 285.000 0.000 0.000 0.000 0.000
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APPENDIX B
The network description file in DRACULA syntax

The description of the network follows the same approach as it is defined for OD

matrices. The network characteristics are also described within a text file following the

format described in (LIU, 2001). The network description file in the DRACULA environ-

ment is named in the same way as<project_name>.net, where<project_name>

is the name for the project being simulated, followed by the extension<net>, which

identifies it as a network description file. Figure B.1 depicts the content for the file

otley.net, used in this thesis. Again, the symbol←֓ is used throughout the text to

split a long line of text intypewriter font, due to the space limit imposed by the left

and right margins of the page.

options list...
&OPTION

PLOD=F,

&END

parameters list...
&PARAM

PRINTF=T,

BUSPCU=3.0,

SPEEDS=T,

XYUNIT=1,

LTP=60,

MAXZN=110,

NITS=12,

NITA=20,

MASL=10,

SAVEIT=T,

QUANTA=F,

&END
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network topology...
11111

1 1 0

0 5 1 40 125

3 1 0

0 6 1 30 70

5 3 1 0 0 0 0 0 0

1 1 40 125 900 1 1 1200 1 1

6 0 30 115 0 0 0 0 0 0

9 1 40 90 1200 1 1 700X 1 1

6 3 1 0 0 0 0 0 0

5 2 25 115 900G 1 1 700G 2 2

3 1 30 70 900 1 1 0 0 0

7 1 30 12 0 0 0 900 1 1

7 3 1 0 0 0 0 0 0

6 1 30 12 900 1 1 500X 1 1

10 1 30 120 500 1 1 900 1 1

8 1 20 10 500G 1 1 500G 1 1

8 1 0 0 0 0 0 0 0

7 1 20 10

9 3 1 0 0 101 0 0 0

5 1 40 90 0 0 0 1200 1 1

10 1 25 110 600G 1 1 500G 1 1

15 1 25 110 1200 1 1 0 0 0

10 4 1 0 0 93 0 0 0

7 1 30 120 800 1 1 900 1 1 700X 1 1

11 1 30 170 800G 1 1 900G 1 1 700G 1 1

17 1 30 65 800 1 1 900 1 1 700X 1 1

9 0 30 110 0 0 0 0 0 0 0 0 0

11 1 0

0 10 1 30 170

14 1 0

0 15 1 30 110

15 4 3 4 0 102 0 0 0

9 2 25 110 900 1 1 1500 1 1 800X 2 2

16 1 30 135 900 1 1 1300 1 1 800 1 1

28 2 30 190 900 1 1 1500 1 2 700X 2 2

14 1 30 110 1300 1 1 1500 1 1 1000 1 1

38 3 6 14 9 14 16 14 28

20 3 6 16 28 16 14 16 9

13 0 6 9 16 9 28 9 14
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21 3 12 9 16 9 28 9 ←֓

14 28 14 28 9

28 16

16 3 1 0 0 93 0 0 0

15 1 30 135 1300 1 1 0 0 0

17 1 30 30 0 0 0 1300 1 1

24 -2 20 130 500G 1 1 500G 2 2

17 4 3 4 0 93 0 0 0

16 2 30 30 700 1 1 1500 1 2 800X 2 2

10 1 30 65 900 1 1 1100 1 1 900 1 1

18 2 36 190 1000 1 1 1500 1 1 800X 2 2

24 1 40 130 1100 1 1 1200 1 1 1000 1 1

14 8 6 24 16 24 10 24 18

25 6 6 10 18 10 24 10 16

24 0 12 16 10 16 18 16 ←֓

24 18 24 18 16

18 10

8 8 6 16 10 16 18 16 24

18 2 0

0 21 2 40 160

0 17 2 40 190

21 3 1 0 0 0 0 0 0

18 1 40 160 900 1 1 1000 1 1

31 2 30 145 900G 1 1 900G 2 2

24 1 30 85 1000 1 1 800X 1 1

24 4 1 0 0 93 0 0 0

16 -1 20 130 0 0 0 0 0 0 500G 1 1

17 2 40 130 800 1 1 1100 1 2 500X 2 2

21 2 30 85 1000G 1 1 0 0 0 900G 2 2

30 2 30 85 500 1 1 1100 1 2 800X 2 2

27 1 0

0 37 1 30 290

28 3 1 0 0 101 0 0 0

37 1 30 10 800G 1 1 800G 1 1

15 2 30 190 1200 1 2 600X 2 2

30 2 40 108 800 1 1 1200 1 2

30 3 1 0 0 0 0 0 0

28 2 40 108 800 1 1 1200 1 2

24 2 30 85 800G 1 1 800G 2 2

31 1 30 90 1200 1 1 600X 1 1
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31 3 1 0 0 0 0 0 0

30 2 30 90 900 1 1 1200 1 2

21 1 30 145 800G 1 1 600G 1 1

35 1 35 130 1200 1 1 900X 1 1

35 1 0

0 31 1 40 130

37 3 1 0 0 0 0 0 0

27 1 30 290 1100 1 1 800X 1 1

28 2 30 10 900 1 1 1100 1 2

29 2 20 150 800G 1 1 800G 2 2

29 1 0

0 37 1 20 150

99999

zone information...
22222

2 8 7

3 21 31 31 21

101 14 15

102 27 37

103 29 37

104 18 21

105 35 31

106 3 6

107 11 10

108 18 17

109 1 5

99999

nodes and zones’ co-ordinates...
55555

1 3515 3840

3 3672 3820

5 3560 3720

6 3672 3757

7 3678 3720

8 3645 3715

9 3578 3635

10 3690 3630

11 3865 3650

14 3440 3520

15 3533 3570
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16 3665 3574

17 3695 3575

18 3880 3590

21 3750 3495

24 3680 3454

27 3315 3265

28 3570 3370

29 3596 3206

30 3680 3368

31 3765 3355

35 3802 3240

37 3500 3369

C 2 3640 3715

C 3 3785 3473

99999

gap acceptance parameters...
&GAP

31 21 10 5 60 180

99999

Figure B.1: Otley OD matrix description file.
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APPENDIX C
Modelling incidents in DRACULA

Incidents in DRACULA can be modelled by means of reserved lanes. In practical

terms, when a lane of a link is marked as reserved, it can only be used by vehicles that

are contemplated in the reservation criterion. A number of types are defined and a com-

bination of them can also be used — see (LIU, 2001) for a detailed list. Thus, an incident

can be modelled as a blocked lane, for example, by setting it as reserved. This is sim-

ply yielded by means of defining the reservation criterion ina text file usually named

<project_name>.pub, which is used to configure public transport details, as bus

services, routes, and stops. Information on reserved lanesare coded under section 8 of

the.pub file, as illustrated in Figure C.1.

01. 88888

02. 9 15 1

03. 0 0 0 0 0 5400

04. 31 21 1

05. 0 0 0 0 0 5400

06. 99999

Figure C.1: Code for reserved lane.

The example presented in Figure C.1 is extracted from the fileotley.pub used in

this work. The key88888 in Line 1 opens the section8 so as data of reserved lanes

can be read. The downstream and upstream nodes, as well as thenumber of lanes to be

marked as reserved are specified in Lines 2 and 4. Fields in Lines 3 and 5 are used to

identify the position of the lane, the section length to be reserved, and the period of time

such a situation should last. Key99999 closes the section.
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APPENDIX D

Uma abordagem baseada em modelos BDI para
avaliação de processos de decisão de motoristas

no tráfego urbano

Introdução

O rápido crescimento das regiões metropolitanas tem um impacto significativo nos

sistemas de tráfego e transportes. Tem-se verificado um aumento acentuado da demanda

que utiliza redes viárias cuja capacidade torna-se cada vezmais limitada. Além de atrasos,

a ocorrência freqüente de congestionamentos tem contribuído para perda da qualidade de

vida em centros urbanos, assim como provocado prejuízos econômicos, sociais, ambien-

tais e de saúde, muitas vezes irreparáveis. As primeiras tentativas de solução do problema

basearam-se na modificação direta da infraestrutura viária, com o objetivo de aumentar a

capacidade de atendimento dos fluxos crescentes. A escassezde espaço tem inviabilizado

este tipo de solução, tornando-a muito dispendiosa. Nas últimas décadas, uma solução

alternativa tem focado a otimização dos sistemas de controle como meio de melhorar a

qualidade dos sistemas existentes. Os excelentes resultados desta estratégia motivaram

a evolução dos mecanismos de controle. Entretanto, não se pode concluir que se tenha

chegado a uma solução definitiva. Recentemente, tem-se observado a utilização crescente

de técnicas de computação e comunicação, que passam a fazer parte do quotidiano dos

usuários dos sistemas de tráfego e transportes. Estas soluções inovadoras são denomina-

das de Sistemas Inteligentes de Transportes (ITS), e procuram assegurar a produtividade

do sistema através da utilização eficiente dos seus recursos. Estas tecnologias partem da

utilização de soluções distribuídas orientadas às necessidades individuais dos usuários.

Uma das suas principais premissas é otimizar o desempenho dosistema a partir da in-

fluência direta do padrão de comportamento de quem o utiliza,transformando a natureza

de dependência temporal e o comportamento humano em fatoresde grande importância

para modelagem, simulação e avaliação desta abordagem inovadora. O desenvolvimento

de ferramentas capazes de auxiliar o processo de avaliação edesenvolvimento da área

multidisciplinar de ITS tem sido tema de vários trabalhos, efaz parte da motivação da

pesquisa desenvolvida nesta tese.
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O comportamento dos usuários de sistemas de tráfego e transportes é complexo por

natureza e algumas propriedades são facilmente identificadas na avaliação e caracteriza-

ção deste comportamento. Um indivíduo (motorista, por exemplo) apresenta autonomia

quando planeja sua viagem, e ao interagir com sistemas de informação (que passam a

incorporar características do comportamento humano) e comoutros usuários, manifesta

sua habilidade social. É reativo, por exemplo, quando evitaa colisão com outro veículo,

e adaptável ao modificar seu comportamento de viagem para evitar os congestionamentos

característicos de certas horas do dia. Quando restabeleceas prioridades do seu plano de

viagens para atingir seus objetivos de forma mais eficiente,o indivíduo também apresenta

um comportamento pró-ativo. Estas são algumas característica que pesquisadores da área

de Sistemas Multiagentes (MAS) buscam implementar em agentes de software. MAS

é uma subárea da Inteligência Artificial Distribuída (DAI) com uma característica forte-

mente multidisciplinar. Um interesse que tem motivado muita pesquisa neste campo, mais

do que solucionar um determinado problema, é a representação do raciocínio envolvido

na elaboração da solução. Torna-se, portanto, necessário dispor de técnicas adequadas de

abstração e representação do conhecimento, em vários níveis.

A estrutura básica de um agente compreende sensores para captação de informação

do ambiente através de percepção, e atuadores através dos quais o agente é capaz de rea-

lizar suas ações. Por meio desta estrutura conceitual, também deve ser capaz de interagir

com outros agentes, assim como com o ambiente onde está inserido, podendo inclusive

alterar seu estado. Dois tipos básicos de agentes podem ser identificados, segundo o ní-

vel de raciocínio implementado para deliberação do seu comportamento. As estruturas

reativas são as mais simples, baseadas na associação diretade percepções básicas a ações

pré-definidas que o agente está apto a executar. Este tipo de estrutura é geralmente utili-

zada para representar domínios constituídos por um grande número de elementos, onde o

desempenho global do sistema resulta do comportamento emergente dos indivíduos que o

formam. Por outro lado, as estruturas cognitivas são complexas e implementam mecanis-

mos de raciocínio mais elaborados sobre a representação do conhecimento. Geralmente

são utilizadas para representar domínios constituídos apenas por um número reduzido de

elementos. Entretanto, no intuito de representar mais realisticamente o comportamento

humano, em muitas aplicações de agentes de software interessa que estes sejam capazes

de apresentar tanto comportamento reativo como cognitivo,dependendo da situação em

que estejam envolvidos.

De maneira geral, a premissa de abstração dos modelos baseados em agentes favorece

a representação de sistemas cujos elementos componentes estejam geográfica e funcional-

mente distribuídos, como são os componentes nos domínios detráfego e transportes. Esta

perspectiva tem motivado inúmeros trabalhos que sugerem a aplicação de MAS nestes do-

mínios. Na Seção 3.7 do texto da tese, são apresentados alguns exemplos da literatura que

reportam potencialidades interessantes das técnicas baseadas em agentes. Estes trabalhos

podem ser agrupados em três categorias principais. Um grupotem focado a aplicação de
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agentes em sistemas de controle e gerência de tráfego, que tem sido um dos temas mais

abordados. A simulação microscópica e a representação do comportamento do motorista

têm motivado outro grande grupo de trabalhos. Entretanto, oenfoque principal ainda tem

sido a representação do movimento individual em modelos tradicionais como veículo se-

guidor e mudança de faixas, onde motorista e veículo são tratados indistintamente. Um

terceiro grupo de trabalhos engloba aplicações diversas, como representação de pedestres,

implementação de sistemas embarcados de auxílio ao processo de condução, e interação

com usuários reais em ambientes virtuais simulados.

Objetivo e metodologia do trabalho

Embora se tenha observado a proliferação da aplicação das técnicas baseadas em agen-

tes nos domínios de tráfego e transporte, e se reconheça sua utilidade como ferramenta de

avaliação desses domínios em diferentes níveis, pouco se tem evoluído no que diz respeito

à representação do motorista como um elemento cognitivo. Alguns trabalhos (KLÜGL

et al., 2000; DIA, 2002) têm sugerido a utilização de representações mais adequadas para

o processo de decisão do motorista sem, entretanto, terem apresentado sua implementa-

ção efetiva. Esta característica torna-se cada vez mais desejada em modelos voltados à

avaliação das novas medidas de desempenho impostas pela tecnologia de ITS, onde os

padrões de comportamento humano passam a desempenhar papelfundamental.

Este trabalho tem como objetivo principal contribuir para odesenvolvimento de ferra-

mentas computacionais orientadas à modelagem e avaliação do comportamento do moto-

rista, bem como dos efeitos de sua interação com os sistemas inteligentes de transportes

em cenários urbanos. A abordagem proposta, em oposição às metodologias tradicionais

de representação microscópica do tráfego, trata o motorista como uma entidade inten-

cional, capaz de executar um processo cognitivo na tomada dedecisões. Uma arquite-

tura BDI (beliefs, desires, intentions) é utilizada como base das habilidades cognitivas do

agente motorista. A lógica BDI foi inicialmente proposta por Rao e Georgeff (1991), ins-

pirada no trabalho filosófico de Bratman (1987). Uma das suas características principais

é considerar as intenções como fatores tão importantes no processo cognitivo como as

crenças e os desejos. Baseados nesta premissa, os autores formalizam sua teoria estabele-

cendo as relações entre os estados mentais de crenças, desejos e intenções. A metodologia

adotada neste trabalho é basicamente composta pelas seguintes partes: descrição do do-

mínio da aplicação por meio de agentes e suas características; elaboração de um modelo

cognitivo para suportar a representação do processo de decisão dos motoristas; escolher

uma teoria BDI capaz de suportar a implementação prática do modelo cognitivo do agente

motorista; especificar e implementar a arquitetura para o agente motorista cognitivo; im-

plementar um ambiente de simulação microscópica para testar a abordagem proposta;

elaborar e executar experimentos de simulação a partir da abordagem sugerida.
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Organização do texto

O texto da tese está estruturado em sete capítulos e quatro anexos. No primeiro ca-

pítulo apresenta-se uma breve introdução sobre a motivaçãodo trabalho realizado, enfo-

cando o problema do crescente aumento da demanda no tráfego urbano em regiões metro-

politanas que resulta na alta incidência de congestionamentos. Os objetivos do trabalho

bem como a metodologia utilizada durante sua elaboração também são apresentados. Os

principais conceitos dos Sistemas Inteligentes de Transportes, com ênfase nos Sistemas

Avançados de Informação aos Viajantes, são brevemente apresentados no segundo capí-

tulo. A área dos Sistemas Multiagentes é introduzida no terceiro capítulo, onde também

são apresentados exemplos de aplicação das técnicas baseadas em agentes nos domínios

específicos da engenharia de tráfego e transportes. As relações entre os estados mentais

de crença, desejo e intenções, que servem de base à especificação da arquitetura BDI uti-

lizada neste trabalho como núcleo cognitivo dos agentes motoristas, são apresentadas no

quarto capítulo. A especificação completa modelo cognitivodesenvolvido é apresentada

no quinto capítulo. Este modelo foi implementado como uma extensão a um ambiente de

simulação microscópica existente. O ambiente de simulaçãoé descrito no sexto capítulo,

onde também são apresentados e comentados resultados de umasérie de simulações re-

alizadas, com intuito de testar a abordagem que é sugerida nesta tese de doutorado. As

conclusões do trabalho são apresentadas e discutidas no sétimo capítulo, seguidas de al-

gumas sugestões para aprimoramento do modelo desenvolvidoe idéias de tópicos para

futuros tralhos de pesquisa. No primeiro anexo é apresentada a matriz OD utilizada na

geração da população de agentes das simulações, seguida da apresentação da descrição

da rede viária de Otley, no segundo anexo, e da descrição do mecanismo de geração de

incidentes, no terceiro anexo. No quarto e último anexo do texto, é apresentada uma

síntese do texto e dos principais resultados da tese, em língua portuguesa, visando uma

apresentação formal do trabalho na língua nativa do autor. Não se trata, portanto, da tra-

dução deste trabalho na sua totalidade, mas de um resumo da sua organização, principais

características e contribuições.

O modelo multiagente

O domínio de aplicação pode ser representado em termos de múltiplos agentes que

interagem entre si e com o ambiente no sentido de melhorar o desempenho do sistema.

Assim, todos os componentes de uma arquitetura ITS, como apresentado na Seção 2.4,

e ilustrado na Figura 2.1, podem ser descritos a partir de umaarquitetura multiagente,

em diferentes níveis de abstração. O enfoque deste trabalho, entretanto, será orientado

à estrutura do motorista e ao seu processo de tomada de decisão. Assim, a demanda re-

corrente resultará das escolhas de cada indivíduo da população de agentes motoristas, de

forma descentralizada (ROSSETTI; BORDINI; BAZZAN; BAMPI;LIU; VAN VLIET,

2002). Portanto, é atribuído ao próprio motorista autonomia para identificar suas necessi-
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dades, gerir seus recursos, e tomar suas decisões.

Neste trabalho, motoristas são representados a partir de uma abordagem cognitiva,

baseada na lógica BDI. A arquitetura do agente motorista é ilustrada na Figura 5.1 e está

estruturada em duas camadas principais. A primeira camada éreativa e implementa o

movimento do agente através da rede até seu destino. Interações com outros motoristas,

como as descritas em modelos de veículo seguidor e mudança defaixa, são implementa-

dos nesta camada. A segunda camada é cognitiva e suporta a execução de um interpreta-

dor BDI. Esta camada é responsável pela execução dos processos de tomada de decisão do

motorista durante o planejamento de uma viagem, como a escolha da rota a ser utilizada

e o instante em que a viagem deve começar. O comportamento de um agente motorista é

exteriorizado a partir de sensores, que lhe permitem perceber a dinâmica do ambiente, e

atuadores, que lhe permitem executar suas ações e exercer seu papel no ambiente. A ca-

pacidade de comunicação com outros agentes também é implementada nesta arquitetura,

a partir de um mecanismo simples de troca de mensagens. O envio de mensagens por

um agente é implementado como uma simples ação, enquanto toda mensagem recebida é

identificada a partir de uma percepção. Desta forma, o processo de comunicação pode ser

incorporado à semântica operacional do interpretador BDI com facilidade.

Como objetivos e intenções são gerados dinamicamente durante o tempo de execução

do agente, a especificação da estrutura cognitiva de um motorista restringe-se à identifica-

ção das suas crenças iniciais e de um conjunto de planos não instanciados. Neste trabalho

foram implementados diferentes comportamentos, identificados por personalidades, que

são basicamente caracterizados pelo grupo de planos que um agente pode vir a execu-

tar durante seu processo deliberativo. Esses diferentes comportamentos são descritos em

detalhe na Seção 5.3, e especificados com recurso à sintaxe dalinguagem AgentSpeak(L).

A seguir, apresenta-se sucintamente cada uma das personalidades e suas principais

características. No comportamento aleatório (random), motoristas não possuem qualquer

tipo de preferência na escolha da rota a ser utilizada, podendo optar por qualquer uma

das que conhece nos sucessivos dias do período de simulação.Após selecionado o cami-

nho, a hora de partida para início da viagem é avaliada com relação ao tempo de chegada

desejado e o tempo de viagem esperado para a rota escolhida, que é igual ao tempo ex-

perimentado durante a última jornada realizada pelo itinerário selecionado. O tempo de

partida será então igual ao tempo de chegada desejado menos otempo de viagem pre-

visto. O motorista seletivo (choosy), por outro lado, sempre tentará encontrar a melhor

rota em termos de tempo de viagem. Esta estratégia é implementada a partir da com-

paração sucessiva de todos os tempos estimados para cada rota conhecida. Identificada

a melhor rota, a escolha do tempo de partida segue a mesma abordagem implementada

no comportamento aleatório. A terceira personalidade é identificada pelo comportamento

conservador (conservative). Um motorista conservador nunca altera sua opção de rota,

selecionando sempre o seu itinerário usual, ainda que este seja a pior opção em termos de

tempo de viagem. Sua seleção de tempo de partida também seguea estratégia dos dois
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comportamentos anteriores. As três personalidades apresentadas acima foram modeladas

a partir de uma avaliação intuitiva de possíveis padrões de comportamentos de motoristas,

mas não correspondem à realidade de forma plena.

Uma quarta personalidade, representada pelo comportamento habitual (habitual), foi

implementada a partir das estratégias de escolha de tempo departida e de rota sugeridas

em (LIU; VAN VLIET; WATLING, 1999). Ao contrário dos comportamentos anteriores,

a primeira decisão de um motorista habitual é sobre o tempo departida para início da

viagem. Esta seleção é sempre realizada em função de uma percepção de atraso, da

última viagem realizada. A percepção de atraso é definida como a diferença entre o atraso

absoluto e uma tolerância, avaliada em relação ao tempo de viagem experimentado no

dia. Assim, o tempo de partida para a próxima viagem, que serárealizada no dia seguinte,

será ajustado apenas pela diferença do atraso percebido, seeste for maior que zero. Desta

forma, um motorista habitual tenderá a manter seu último tempo de partida sempre que

seu atraso percebido no dia anterior não for maior do que uma dada tolerância. Uma

característica importante deste comportamento é sua indiferença às chegadas antecipadas,

ou seja, anteriores ao tempo de chegada desejado; neste casonenhum ajuste é computado

ao tempo de partida. A rota será sempre a usual, a menos que a melhor rota, em termos de

tempo de viagem, seja consideravelmente melhor. Esta avaliação é feita tanto em termos

relativos, considerando um ganho relativo ao tempo de viagem estimado para a rota usual,

como em termos absolutos. O motorista utiliza o maior ganho,entre relativo e absoluto,

para condicionar sua eventual mudança de rota.

A personalidade representada pelo comportamento habitualaproxima-se mais do que

se verifica em sistemas reais. Entretanto, sua indiferença àchegada antecipada e sua to-

lerância condicionada ao tempo de viagem experimentado motivaram a extensão deste

modelo. A primeira modificação implementada para este comportamento foi conside-

rar também uma tolerância à antecipação, em adição à tolerância ao atraso, ainda que

em termos relativos ao tempo de viagem experimentado. Uma segunda modificação im-

plementada foi considerar as tolerâncias à antecipação e aoatraso em termos absolutos.

Desta forma, em ambas modificações, a indiferença, tanto à antecipação como ao atraso,

é função do nível de tolerância assumido pelo motorista. Os comportamentos apresenta-

dos acima foram implementados como planos não instanciados, descritos em detalhe nas

seções 5.3.2 e 5.3.3 do texto da tese.

O ambiente de simulação MADAM+DRACULA

Com intuito de testar a abordagem proposta, foi desenvolvido um ambiente de simu-

lação microscópica, proposto inicialmente em (ROSSETTI; BAMPI; LIU; VAN VLIET;

CYBIS, 2000b) como uma extensão ao modelo de simulação implementado no ambiente

DRACULA (Dynamic Route Assignment Combining User Learningand microsimulA-

tion) apresentado em (LIU; VAN VLIET; WATLING, 1999). O simulador DRACULA

tem sido desenvolvido na Universidade de Leeds desde 1995, ebaseia-se em dois concei-
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tos principais: demanda (demand) e oferta (supply). A demanda representa a dinâmica

de formação dos fluxos recorrentes em cada dia, enquanto oferta está associada ao de-

sempenho de cada arco da rede. A relação entre estes dois conceitos fundamentais está

ilustrada na Figura 6.1, constituindo um processo iterativo que proporciona ao modelo

de simulação a representação das dinâmicas do sistema durante um dia (within-day dy-

namics) e ao longo de vários dias consecutivos (day-to-day dynamics). Este processo é

representado em mais detalhes na Figura 6.2. Após a geração da população de motoristas

no início da simulação, a demanda diária é formada a partir daatribuição de tempos de

partida e opção de rota para cada indivíduo. Esta atribuiçãoé realizada a partir de funções

que implementam alguma distribuição definida pelo usuário,de forma centralizada, alte-

rando os valores de parâmetros das estruturas. Cada motorista é então posto a executar

sua viagem na rede, iniciando-a no tempo de partida e itinerário que lhe foram atribuídos.

Finalizada a viagem, as medidas de desempenho experimentadas durante o seu curso são

“memorizadas” para que possam ser utilizadas pela função deatribuição na próxima ite-

ração. Durante cada dia, um modelo de variabilidade de oferta é aplicado sobre a rede

para emular a dinâmica do sistema ao longo de vários dias.

Na extensão proposta para o modelo de simulação implementado no DRACULA, de-

manda é gerada como resultado do processo de tomada de decisão autônomo, executado

individualmente pelos agentes motoristas. Depois de escolher rota e tempo de partida, o

agente iniciará sua trajetória ao destino desejado. Outra característica da estrutura pro-

posta, como representado na Figura 6.3, é a presença de agentes que implementam o

comportamento inteligente das novas soluções baseadas em tecnologias ITS. Estes agen-

tes, como por exemplo os sistemas de informação, poderão estar integrados à iteração de

simulação durante a formação da demanda assim como durante aexecução microscópica

do movimento.

MADAM (Multi-Agent DemAnd Model) é a implementação do modelo de demanda

desenvolvido neste trabalho, baseado em uma população multiagente, integrado ao am-

biente de simulação DRACULA, como representado na Figura 6.4. A interface entre os

dois modelos, de demanda e de oferta, é implementada com basena troca de arquivos com

sintaxe comum aos dois módulos. A população de agentes é estimada a partir da distribui-

ção de fluxos representada em uma matriz origem-destino (OD). As opções de rotas entre

cada par OD também são associadas aos motoristas durante a formação da população. Du-

rante os dias que constituem o período de simulação desejado(onde cada dia representa

uma iteração da relação demanda-oferta), os agentes da população escolhem suas opções

de rota e tempo de partida, a partir da execução de um processodeliberativo baseado na

lógica BDI. Estas opções são colecionadas em um arquivo (Input MA) que alimenta o

modelo de oferta. Todas as percepções dos agentes durante o curso das suas viagens indi-

viduais (descritas em um arquivoOutput MA) integrarão a base de conhecimento de cada

agente e poderão ser utilizadas para melhorar a qualidade desuas decisões nas iterações

futuras. O ambiente de simulação foi implementado nas linguagens C/C++, seguindo a
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mesma estratégia de implementação adotada no desenvolvimento da estrutura inicial do

DRACULA. Entretanto, a camada cognitiva do agente motorista foi implementada em

Java, permitindo assim a utilização do interpretador BDI JAM (HUBER, 1999a,b), no

processo deliberativo.

Experimentos e análise de resultados

Dois cenários básicos foram criados para ilustrar a aplicação da abordagem proposta,

e simulados com diferentes configurações. Os experimentos,apresentados na Seção 6.5,

foram realizados para a rede de Otley, ilustrada na Figura 6.6, com população sintetizada a

partir da matriz OD descrita no Apêndice A, durante um período de 101 dias (transcorrido

entre os dias 0 e 100).

Primeiro cenário

No primeiro cenário não foi considerada a presença de qualquer tipo de sistema de in-

formação capaz de auxiliar os motoristas no planejamento daviagem antes do seu início

ou durante seu curso. Foram analisadas as viagens realizadas entre as zonas 109 e 105. As

três opções de rotas consideradas são apresentadas na Figura 6.7. Inicialmente apenas po-

pulações formadas por motoristas de mesma personalidade foram simuladas. Os gráficos

das Figuras 6.8, 6.9, 6.10 e 6.11, são utilizados para ilustrar o comportamento individual

das personalidades aleatória, seletiva, conservadora, e habitual, respectivamente, a partir

dos dados relativos a um único motorista da população. É possível observar nos gráficos

mencionados a evolução das escolhas de tempo de partida e de rota, para cada comporta-

mento. O motorista aleatório apresenta grande oscilação naescolha entre as três opções

de rota. O motorista seletivo, que escolhe a melhor rota em termos de expectativa de

tempo de viagem, apresenta menor alternação nas opções selecionadas. Apesar das três

opções de rota, o motorista conservador mantém a mesma seleção ao longo dos dias simu-

lados. Nos três comportamentos, entretanto, verifica-se uma grande oscilação na escolha

do tempo de partida. Dada a rigidez da estratégia de seleção de tempo de partida, que não

considera qualquer tolerância à antecipação ou ao atraso procurando sempre chegar exata-

mente no horário desejado, o motorista tende a ajustar diariamente seu tempo de partida.

Por outro lado, a flexibilidade do comportamento habitual (Figura 6.11), caracterizada

pela tolerância ao atraso e indiferença à antecipação, permite maior constância na seleção

do tempo de partida. A mesma tendência é verificada na seleçãode rota, condicionada

pela necessidade de uma melhoria significativa.

Os gráficos da Figura 6.12 ilustram os tempos de viagem médiospara cada população

homogênea. A grande oscilação do tempo de viagem individualdos motoristas aleatórios,

seletivos e conservadores é refletida no tempo médio de viagem para o par OD. O mesmo

acontece com o comportamento habitual, onde a pequena oscilação dos tempos de viagem

experimentados pelos indivíduos da população resultam em pequena variação do tempo

médio de viagem para o mesmo par OD. Os valores de tempos médios e respectivos



169

desvios padrão são apresentados na Tabela 6.1. Uma observação interessante é o alto

valor da média verificada para a população de motoristas habituais, em relação às outra

populações. A flexibilidade característica deste comportamento permite que tempos de

viagem elevados sejam tolerados, desde que a condição de chegada anterior ao limite

tolerado de atraso seja satisfeita.

Certamente que populações homogêneas representam situações hipotéticas que não

são verificadas em sistemas reais. Uma segunda série de experimentos foi realizada, onde

a composição da população foi variada em termos da fração de motoristas de mesma

personalidade, como apresentado na Tabela 6.2. Os gráficos da Figura 6.13 ilustram a

variação do tempo de viagem média para cada configuração de população, considerando

as viagens realizadas entre as zonas 109 e 105 da rede simulada neste trabalho. Em todas

as situações, verifica-se uma oscilação nos valores dos tempos médios, mesmo para a po-

pulação com predominância de motoristas habituais. Ainda que neste caso se verifique o

menor desvio padrão, a população é afetada pela rigidez do comportamento de motoristas

como os aleatórios, seletivos e conservadores.

Nos gráficos das Figuras 6.14 e 6.15, ilustra-se o comportamento de escolha de tempo

de partida para as duas extensões propostas ao comportamento habitual, ou seja, motoris-

tas com tolerâncias à antecipação e ao atraso relativas ao tempo de viagem, e motoristas

com tolerâncias à antecipação e ao atraso absolutas, respectivamente. Nesta série de expe-

rimentos, apenas populações homogêneas foram consideradas. Na Tabela 6.3 encontram-

se listados os valores para as tolerâncias relativas, enquanto valores para as tolerâncias

absolutas encontram-se na Tabela 6.4. Verifica-se uma grande variação na escolha do

tempo de partida para motoristas com tolerâncias relativas, ainda que se aumente o ní-

vel de tolerância à antecipação para 100% do tempo de viagem experimentado. Como

a tolerância é condicionada pelo tempo de viagem, para tempos longos a tolerância será

maior, e será menor para tempos mais curtos. A oscilação dos tempos de viagens experi-

mentados fazem com que os limites superior e inferior de tolerância do motorista também

apresentem grande variabilidade, dificultando que o tempo de chegada verificado perma-

neça entre esses dois limites (Figura 6.14). Para tolerâncias absolutas, como os limites

inferior e superior de tolerância não dependem do tempo de viagem e permanecem cons-

tantes ao longo do período de simulação, torna-se cada vez mais fácil fazer com que o

tempo de chegada verificado permaneça entre esses limites (Figura 6.15). As variações

dos tempos médios de viagem são apresentadas nos gráficos da Figura 6.16.

Segundo cenário

No segundo cenário considera-se a presença de sistemas de informação capazes de

antecipar ao motorista o estado predominante da rede. Nenhuma interação do motorista

com a fonte de informação é possível, entretanto. Além das viagens realizadas no par OD

109-105, também foram analisadas as viagens dos pares 105-104 e 101-002, com duas

opções de rotas para cada par, apresentadas nas Figuras 6.17e 6.18, respectivamente.
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Com o objetivo de verificar o impacto das informações antecipadas sobre o estado do sis-

tema, dois incidentes foram provocados em dois arcos da redeapós o qüinquagésimo dia,

permanecendo até o fim do período de simulação. Os incidentesforam inseridos na rede

a partir da exclusão de uma das faixas de tráfego nos arcos 9-15 e 31-21. As populações

utilizadas neste experimento são homogêneas, formadas pormotoristas habituais. Dois

parâmetros foram variados: o número total de agentes em cadapopulação, a partir de um

fator de multiplicação (population factor) aplicado ao número total de viagens da ma-

triz OD original; e a fração de motoristas informados sobre os incidentes. As diferentes

configurações de população são apresentadas na Tabela 6.5.

Os gráficos das Figuras 6.19, 6.20 e 6.21 ilustram os tempos médios de viagem para os

pares 109-105, 105-104, e 101-002, respectivamente. Em todas as situações, verifica-se

uma tendência dos tempos médios de viagens de estabilizaremem patamares diferentes

do patamar original, anterior à aplicação dos incidentes noqüinquagésimo dia. Interes-

sante observar que, no caso do par 105-104 (Figura 6.20), o sistema passa a estabilizar em

patamares até mesmo inferiores à situação anterior aos incidentes. Alguns fatores podem

estar associados a este comportamento, como por exemplo, a influência de outras rotas

em arcos comuns aos das opções de rotas para este par OD, ou ainda a própria flexibi-

lidade do comportamento dos motoristas habituais, que são indiferentes à antecipação.

Observa-se contudo que, em quase todas as situações (para ostrês pares OD), uma po-

pulação desinformada sobre incidentes na rede configuram ospiores casos, estabilizando

quase sempre nos piores patamares. Por outro lado, como no par 109-105 (Figura 6.19),

informar todos os motoristas da população pode não ser a melhor estratégia. A variação

do número de motoristas na rede, para os três pares OD, tambémparece exercer influência

na configuração do sistema após a aplicação dos incidentes, não se verificando o mesmo

padrão de reorganização do sistema para o mesmo par OD.

Conclusões

As características dos sistemas multiagentes, principalmente no que refere à sua pre-

missa dirigida ao processo, torna este campo multidisciplinar um terreno fértil para a

emergência de ferramentas orientadas à modelagem e à avaliação de sistemas complexos

de natureza fortemente dinâmica. Aliados à abordagem de representação microscópica do

tráfego, MAS apresentam-se como uma metodologia adequada que pode contribuir para

o entendimento das novas medidas de desempenho impostas pelas soluções baseadas em

tecnologias ITS.

Principais contribuições do trabalho

No caso específico deste trabalho, o uso de um modelo cognitivo baseado em uma

teoria BDI demonstrou um grande potencial na descrição dos mecanismos de raciocínio

envolvidos no processo de decisão. Três principais contribuições são identificadas neste

trabalho. Em primeiro, o tema abordado nesta pesquisa promove uma associação mais
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estreita entre duas áreas multidisciplinares, MAS e ITS, sugerindo uma interface que pro-

duz benefícios mútuos. As tecnologias ITS encontram em MAS meios adequados para

representarem sua natureza complexa, em diferentes níveisde abstração. Por outro lado,

ITS também apresenta-se como um domínio de aplicação desafiador para os especialistas

de MAS, onde podem testar suas técnicas e métodos em problemas reais, estimulando

o desenvolvimento dos sistemas multiagentes. Em segundo, aaplicação de uma teoria

BDI na elaboração do modelo cognitivo do motorista, sua implementação efetiva, e sua

aplicação e simulação em diferentes cenários de tráfego, demonstram que é factível a uti-

lização de agentes BDI para representação e simulação de sistemas compostos por um

grande número de elementos cognitivos. Ao contrário de abordagens tradicionais, que

optam pela utilização de agentes reativos na representaçãoe simulação de sistemas com

muitos elementos, as simulações de populações compostas com um considerável número

de motoristas BDI foram realizadas com êxito. Este resultado também serve para motivar

a utilização de abordagens baseadas em agentes BDI em aplicações reais similares. Final-

mente, este trabalho demonstra a validade de modelos e simulação baseados em agentes

como ferramenta adequada à representação do comportamentohumano em simulação mi-

croscópica de tráfego. A representação e avaliação das características humanas têm papel

fundamental no entendimento do impacto das tecnologias ITS, e grande esforço ainda tem

sido orientado no desenvolvimento de modelos e ferramentascapazes de considerar e tra-

tar as novas medidas de desempenho relacionadas com o perfil do usuário. O ambiente de

simulação implementado representa uma grande contribuição neste sentido, permitindo

a representação explícita do comportamento humano e sua interação com as tecnologias

ITS.

Propostas para desenvolvimentos e trabalhos futuros

A abordagem metodológica sugerida permitiu a extensão do modelo microscópico

do DRACULA que passa a suportar a geração de demanda por grande número de agen-

tes. Entretanto, alguns desenvolvimentos ainda precisam ser realizados. Um primeiro

passo seria a integração de interpretador capaz de executaros planos especificados em

AgentSpeak(L). No momento, a camada cognitiva do agente motorista é implementada

em Java, integrando um interpretador JAM usado para emular asemântica operacional da

linguagem desenvolvida por Rao (1996). Como solução, a arquitetura do agente passará

a incorporar o interpretador AgentSpeak(XL), apresentadoem (BORDINI et al., 2002).

Há também a necessidade de melhorar a integração operacional entre a implementação

do modelo de demanda, MADAM, e o software DRACULA. A interface entre os dois

módulos é implementada a partir da troca de arquivos, o que dificulta a extensão do mo-

delo multiagente. Esta integração permitirá a implementação do terceiro cenário, que

considera a interação do agente motorista com fontes exógenas de informação durante

a execução da viagem, permitindo-lhe corrigir seu curso adequadamente. No momento,

não é permitido aos agentes alterar seus itinerários, que são definidos antes do início da
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viagem. No que se refere aos modelos de comportamento, é necessária a validação e

calibração para que possam ser utilizados em cenários reais. Outros modelos também po-

dem ser facilmente integrados. Neste sentido, a linguagem AgentSpeak(L) poderá servir

como uma interface de programação (API) para a implementação e simulação de diferen-

tes estratégias de decisão. Por fim, sugere-se a utilização de técnicas de programação e

desenvolvimento que permitam melhorar o tempo de execução das simulações, como, por

exemplo, a execução distribuída ou paralela de agentes.

Além das propostas de aprimoramento do trabalho realizado durante o programa de

doutorado, os resultados obtidos com sua conclusão motivaram algumas sugestões que

podem ser utilizadas como temas de novos projetos de pesquisa. A implementação de di-

ferentes mecanismos de aprendizagem e buscar capacitar os agentes a elaborar seus planos

dinamicamente podem contribuir no desenvolvimento de modelos de comportamento dos

motoristas. O desenvolvimento de uma meta-arquitetura para o agente motorista, capaz de

suportar diferentes representações do conhecimento e processos de raciocínio (não apenas

BDI) pode facilitar a integração de diferentes níveis de tomada de decisão. Por fim, a cri-

ação de um ambiente multiagente integrado, para modelagem,simulação e avaliação de

diferentes tecnologias ITS, representa um desafio motivante para um futuro projeto neste

domínio de pesquisa.
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