MINERALIZAÇÕES DE ELEMENTOS TERRAS RARAS (ETR) ASSOCIADAS AO CARBONATITO DE LAGES (SC)

Cristine Schuck¹, Tamara Reginatto Manfredi¹, Vitor Paulo Pereira¹, Artur Cezar Bastos Neto¹

¹ UFRGS – Instituto de Geociências, Departamento de Mineralogia e Petrologia

INTRODUÇÃO E OBJETIVOS

Os elementos terras raras (ETR) são imprescindíveis na indústria eletrônica e no desenvolvimento de produtos com tecnologia de ponta, como os carros elétricos. As maiores reservas destes elementos ocorrem associadas a carbonatitos. Este estudo busca caracterizar o comportamento dos ETR no carbonatito de Lages e verificar se este corpo tem potencial para ser uma jazida.

LOCALIZAÇÃO E CONTEXTO GEOLÓGICO

O Carbonatito Fazenda Varela localiza-se na cidade de Correia Pinto, SC, a norte da cidade de Lages, tendo coordenadas geográfica 27°39S e 50°17'W. O corpo localiza-se na porção centro-oeste do Domo de Lages e está associado à formação do complexo alcalino de Lages, que foi datado em 65 Ma (Scheibe, 1986) e intrude rochas sedimentares da Formação Rio Bonito da Bacia do Paraná.

O corpo carbonatítico está associado a uma brecha quartzo feldspática, que tem uma área aproximadamente circular, com cerca de 500m de diâmetro. O carbonatito foi verificado em dois morros, sendo que na parte superior destes são observados como um complexo de veios que se entrelaçam e cortam a brecha. Um furo de sonda realizado por Scheibe (1986) possibilitou verificar que a existência de um corpo carbonatítico com no mínino 100 metros de profundidade.

METODOLOGIA

No trabalho de campo foi realizado reconhecimento da área de estudo e a amostragem do carbonatito e da brecha quartzo feldspática. Estas amostras foram descritas em lupa binocular e por microscopia óptica (luz transmitida e refletida). Também foram realizadas análises em microscópio eletrônico de varredura (MEV) e por microssonda eletrônica. A determinação da composição química da rocha total foi por ICP-MS e a das paragêneses teve o apoio em análises por difratometria de raios X (DRX). Esta técnica também foi utilizada em concentrado mineral obtido por líquidos densos e separador isodinâmico Frantz.

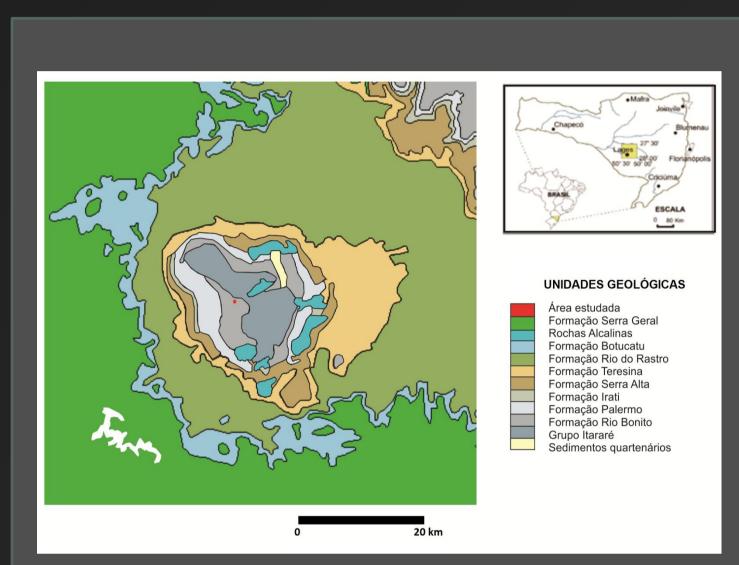


Fig. 1: Mapa Geológico do Domo de Lages

	0045		
La	384,5	2324,5	4285,7
Ce	693,5	4129,7	5519,2
Pr	69,5	413,89	419,69
Nd	227,1	1362,9	1057,6
Sm	31,02	220,95	102,13
Eu	8,73	78,33	24,74
Gd	19,7	230,78	66,18
Tb	2,96	52,64	5,66
Dy	13,74	331,31	18,68
Но	2,54	72,01	1,91
Er	6,66	174,09	3,62
Tm	0,96	21,56	0,47
Yb	5,31	103,97	3,19
Lu	0,72	12,27	0,39
Total	1466,94	9528,9	11509,16

Fig. 2: Tabela com os valores de ETR em ppm de análise em rocha total do carbonatito por IPC – MS.

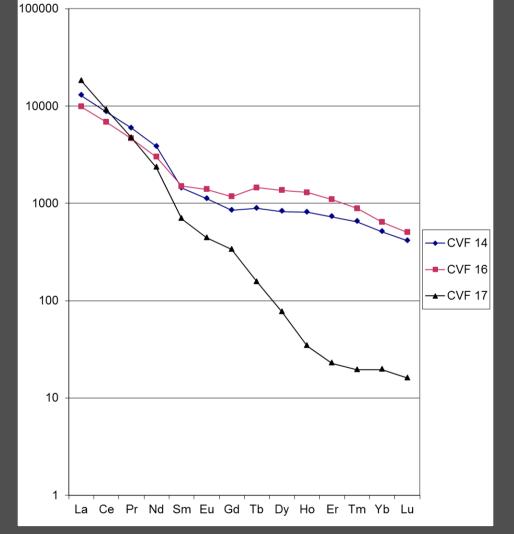


Fig. 3: Padrão dos valores de ETR de análises do carbonatito normalizados para o condrito C1 (Anders & Grevesse, 1989).

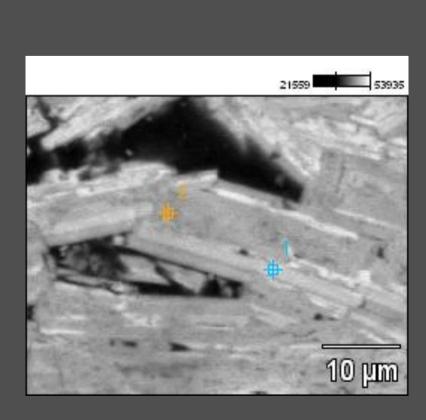


Fig. 4: Imagem de policristais de synchysita/parisita com crescimento sintaxial em MEV.

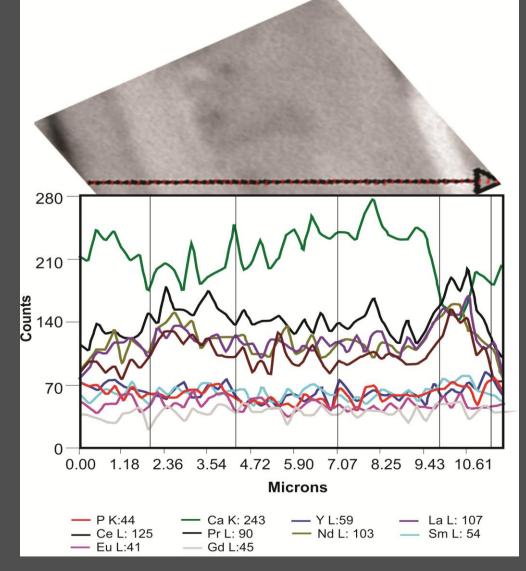


Fig. 5: Imagem detalhada do fluorcarboneto de ETR, com o gráfico de variação dos teores de Ca e ETR em MEV.

RESULTADOS PRELIMINARES

As análises petrográficas possibilitaram a determinação da paragênese do carbonatito, onde foi verificado a presença de (i) Carbonatos: ankerita, dolomita férrica, com quantidades variadas de magnésio e synchysita/parisita; (ii) Outros minerais: ortoclásio, quartzo, barita, pirita, hematita, pirocloro, apatita e monazita. Os resultados das análises químicas em rocha total possibilitaram classificar a rocha como ferrocarbonatito (Wooley e Kempe, 1989) e revelaram que algumas amostras do carbonatito e da brecha quartzo feldspática apresentam elevados teores de ETR (> 10.000ppm), principalmente de ETRL (Figura 2 e 3).

Vários minerais são portadores de ETR, porém o principal é a parisita, que tem crescimento sintaxial com a synchysita (Figura 4) e que ocorre nos estágios finais de cristalização do carbonatito. A variação nos teores de Ca e ETR possibilitam diferenciar estas duas fases minerais que forma policristais com composição complexa (Figura 5).

A fórmula mineral foi calculada com base em três cátions, porque a parisita é a fase predominante, e pode ser expressa como:

 $(Y_{0-0,8} \text{ La}_{0,31-,052} \text{ Ce}_{0,78-1,25} \text{ Nd}_{0,19-0,27} \text{ Sm}_{0,02-,003} \text{ Gd}_{0-0,03}) \text{ F}_{1,23} \text{ CO}_3$ $\bullet (\text{Ca}_{0,96-1,38} \text{ Sr}_{0,01-0,06} \text{ Ba}_{0-0,1}) \text{ CO}_3$

CONSIDERAÇÕES FINAIS

Os teores de ETR das amostras analisadas confirmam que a área pode ser uma importante reserva destes elementos, sendo necessário a continuidade do estudo. Observa-se também que as concentrações de P são importantes, assim como a presença de pirocloro (Nb).

REFERÊNCIAS