Este trabalho tem por objetivo mostrar um algoritmo utilizado para fatoração de polinômios univariados sobre corpos finitos. Esse algoritmo é dividido em três etapas: fatoração livre de quadrados, fatoração em graus distintos e fatoração em graus iguais. Seja f(x) um polinômio com coeficientes em Fq[x], onde Fq é um corpo finito. A fatoração livre de quadrados elimina os fatores repetidos de f. A fatoração de graus distintos separa f em blocos de polinômios de graus menores agrupados de acordo com o seu grau e assim, pode-se escrever f como $f = f_1f_2f_3...f_k$ onde cada f_i , i = 1,...,k é um bloco de polinômios irredutíveis de grau f i. O trabalho focará na última etapa que é a fatoração em graus iguais e esta consiste em fatorar cada bloco f i, f i=1,...,f que é um produto de polinômios irredutíveis de grau f i, em blocos de polinômios de mesmo grau. Para tal, utiliza-se o separador chamado Cantor e Zassenhaus, que consiste em tomar um polinômio f i e um inteiro d que seja divisor do grau de f i e analisar o mdc entre a e f i, obtendo assim um polinômio f is e f i dividir f i por f e assim obter um fator de f i; calcular, através do algoritmo de Euclides,

o resto da divisão de f_i por a $\frac{q_1-q_2}{2}$ e, por fim, calcular o mdc entre a $\frac{q_1-q_2}{2}-1$ e f_i , obtendo assim g_2 ; se $g_2 \neq 1$ e $g_2 \neq f_i$ dividir f_i por g_2 para se ter um fator de f_i . Assim, para cada escolha do inteiro d e do polinômio a(x) obtém-se a fatoração de f_i como produto de polinômios mônicos irredutíveis de grau d e mostra-se que a probabilidade de o algoritmo devolver os fatores de f_i procurados mesmo utilizando um polinômio a(x) aleatório é satisfatória, o que completa o algoritmo.