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Abstract: UML may be used to describe both the structure and behavior of object-
oriented systems using a combination of notations. For the modeling of the dynamic
behavior, a number of different models are offered such as interaction, state and activ-
ity diagrams. Although compositional techniques for modeling computational processes
demand means of composing elements both in non-atomic or atomic ways, UML seems
to lack compositional constructs for defining atomic composites. We discuss proper
extensions for diagrams that are able to cope with the concept of atomic composition
as the basic element for describing transactions (in our settings the term “transac-
tion” denotes a certain operation of a system that might be atomically composed by
many, possibly concurrent, operations). Atomic compositions are then formally de-
fined through a special morphism between automata in a domain called Nonsequential
Automata.
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Category: F.3.2, F.1.1, D.2.0, D.1.5

1 Introduction

The Unified Modeling Language (UML) [Rumbaugh et al. 2004] may be used

to describe both the structure and behavior of object-oriented systems using a

combination of notations. For the modeling of the dynamic behavior, a number

of different models are offered such as interaction, state and activity diagrams.

When modeling concurrent or parallel systems with such diagrams, we must

be aware that basic activities of each system may be constituted by smaller

activities, i.e. transitions may be conceptually refined into transactions. This

important notion is present in different fields of computer science like operat-

ing system’s primitives, implementation of synchronization methods for critical

regions, database management systems and protocols for communications, just

to name a few. In this sense, when modeling computational processes, we need

means of composing subactivities both in a non-atomic or atomic way. Nev-

ertheless UML seems to lack compositional constructs for defining atomic ac-

tions/activities/operations and, nowadays, major information systems like web-

based shopping, web-services, e-busines, etc, are transactional in its majority

and are being modeled in UML (using activity and state machine diagrams)

without a notation for concerning which behaviors are transactional.
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In this work, we concentrate on describing groups of sequential or concurrent

activities that are responsible for performing a computation, and we address

the issue of modeling atomic compositions for transactions. We remark that

in our settings the term “transaction” denotes a certain atomic operation of

a system that might be composed by many, possibly concurrent, operations.

Although denoting atomic computations in a concurrent scenario by the term

“transaction” is a slight abuse of terminology (specially in the field of data-

bases), these abstract notion for transactions has also been employed by others

e.g. [Bruni and Montanari 2004]. Also, even though most commercial applica-

tions are based on transactions for which ACID properties (atomicity, consis-

tency, isolation and durability) must be guaranteed in some form, transactions

primitives are all based on the same idea of grouping series of actions in atomic

blocks. Algorithms for correctly implementing transactions may be found in

specialized topics on database systems [Ullman and Widom 2002] or operating

systems [Tanenbaum 2001].

In order to correctly introduce the notion of transactions, we need to analyze

the UML official documentation. The UML specification by OMG [OMG 2005b]

[OMG 2004] is built on a semi-formal semantics, composed by a set of metalan-

guage, restrictions and text in natural language. The metalanguage is basically

a set of class diagrams which describe the basic building blocks of UML models

(it can be seen as the abstract syntax of the language). The Object Constraint

Language (OCL) [OMG 2005a] further defines constraints over models so they

can be considered well-formed. In our approach, the idea is to focus only on

necessary constructs from the UML metamodel for exposing the behavior (to be

understood as a sequence of observable actions) of software artifacts. From this

set, we extend the metamodel with elements denoting atomic composites. The

graphical notations for the new composites are based on the non-atomic ones

and are further decorated with proper stereotypes. Also, new OCL expressions

are built to define new constraints over atomic compositions. Finally, the well-

formed models are mapped to nonsequential automata, thus formally defining

its semantics. In this paper we present the mapping to nonsequential automata

and we do not address the full UML profile for atomic composites.

Nonsequential Automata [Menezes et al. 1996] [Menezes et al. 1998] consti-

tute a non-interleaving semantic domain, with its foundations on category the-

ory, for reactive, communicating and concurrent systems. It follows the so-called

“Petri nets are monoids” approach [Meseguer and Montanari 1990] and is simi-

lar to Petri nets, but it is a more concrete model - it can be seen as computations

from a given place/transition net.

The rest of the paper is organized as follows. Section 2 briefly presents non-

sequential automata, which is going to be used as the semantics for atomic com-

position in UML. Section 3 introduces (through working examples) translation
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schemes for building nonsequential automata from activity and state machine

diagrams. Finally, sections 4 and 5 discusses the results and outlines possible

directions for future investigations.

2 Nonsequential Automata

Nonsequential Automata [Menezes et al. 1996] [Menezes et al. 1998] constitute a

categorical semantic domain around the concepts of state and transition follow-

ing the “Petri nets are monoids” approach by [Meseguer and Montanari 1990].

It was developed to supply a compositional domain with refinement capabilities

and it is a more concrete model than Petri nets (it can be seen as computations

from a given place/transition net).

To gently introduce the idea behind nonsequential automata, we start with

an example of a simple place/transition Petri net as presented in [Reisig 1985].

The Petri net in [Fig. 1] (left) has three places {A, B, C} and two transitions

{t, u}, in which t(u) consumes one token from place A(B) and produces one

token in place B(C).

Following the “token game” we can compute all possible reachable markings

from an initial marking by applying all transitions that are currently enabled.

In [Fig. 1] (right) we present a case graph depicting the reachable markings for

the Petri net of our example starting from the marking consisting of two tokens

in place A. Notice the graph shows that both transitions t and u may be fired

concurrently in a certain marking, i.e. t||u. This view of Petri nets as graphs was

based on the idea of nodes as elements of a commutative monoid over the set of

states (see the symbol ⊕ for monoidal operator in the states).

The [Fig. 1] depicted the behavior of the Petri net when starting with a spe-

cific marking. What then if we change the initial marking? We have to compute

all reachable markings again. But what if we could get a more concrete model

with all possible markings and capable of making explicit all implicit concur-

rencies in the net? This is the key for the nonsequential automaton (partially)

depicted in [Fig. 2].

In the next definitions CMon denotes the category of commutative monoids.

A monoid will be denoted 〈M,⊕, e〉, where M is a set, ⊕ is an associative binary

operation on M , and e is an identity for ⊕.

A nonsequential automaton NA = 〈V, T, δ0, δ1, ι, L, lab〉 is such that V =

〈V,⊕, 0〉, T = 〈T, ||, τ〉, L = 〈L, ||, τ〉 are CMon-objects of states, transitions

and labels respectively, δ0, δ1 : T → V are CMon-morphisms called source and

target respectively, ι : V → T is a CMon-morphism for mapping identities, and

lab : T → L is a CMon-morphism for labeling transitions such that lab(t) = τ

whenever there is v ∈ V where ι(v) = t. Therefore, a nonsequential automaton

can be seen as NA = 〈G, L, lab〉 where G = 〈V, T, δ0, δ1, ι〉 is a reflexive graph
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Figure 1: Place/transition Petri net (left) and corresponding case graph for initial

marking (right)

Figure 2: Nonsequential automaton

internal to CMon representing the automaton shape, L is a commutative monoid

representing the labels of transitions and lab is the labeling morphism associating

a label to each transition. In this definition, a transition labeled by τ represents

a hidden transition, and each state has an associated identity transition which

is interpreted as a “no operation” or “idle” (and by definition are labeled by τ).

According to the definition, the automaton consists of a reflexive graph with

monoidal structure on both states and transitions, and labeling on transitions.
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The interpretation of a structured state is the same as in Petri nets: it is viewed

as a “bag” of local states representing a notion of tokens to be consumed or

produced. For example, 〈{A, B, C}⊕, {t, u}||, δ0, δ1, ι, {t, u}
||, lab〉 with δ0, δ1, ι

determined by transitions t : A → B, u : B → C, and labeling t �→ t, u �→ u, is

represented in [Fig. 2] (identity arcs are omitted and, for a given node A and arcs

t : X → Y and ιA : A → A, the structured arc t||ιA : X ⊕ A → Y ⊕ A is simply

noted t : X ⊕ A → Y ⊕ A). This nonsequential automaton was not completely

drawn as it has infinite distinguished nodes, for they are elements of a freely

generated monoid chosen to represent its states. Also, structured transitions,

like t||u, explicitly determine the “independence square”, i.e. transitions t and u

are independent.

In order to enrich the model we define next a notion of morphism. A nonse-

quential automaton morphism h : NA → NA′ with NA = 〈V, T, δ0, δ1, ι, L, lab〉

and NA′ = 〈V′, T′, δ′
0
, δ′

1
, ι′, L′, lab′〉 is a triple h = 〈hV , hT , hL〉 with hV : V →

V′, hT : T → T′, hL : L → L′ CMon-morphisms, such that hV ◦ δk = δ′
k
◦ hT

(for k ∈ {0, 1}), hT ◦ ι = ι′ ◦hV and hL ◦ lab = lab′ ◦hT . Nonsequential automata

and their morphisms constitute the category NAut.

We are able to define atomic composition of transitions through the concept

of refinement. It is defined as a special morphism of automata where the target

one (more concrete) is enriched with its computational closure (all the conceiv-

able sequential and nonsequential computations that can be split into permuta-

tions of original transitions). Considering the previous nonsequential automaton,

its computational closure is also partially depicted in [Fig. 3] (added transitions

were drawn with a dotted pattern). Please note a composition operator “;” ap-

peared in the structured transitions.

The computational closure tc of a nonsequential automaton is formally de-

fined as the composition of two adjoint functors between the NAut category and

the category CNAut of nonsequential automata enriched with it computations:

the first functor nc basically enriches an automaton with a composition oper-

ation on transitions, and the second functor cn forgets about the composition

operation. Then, the refinement morphism ϕ from NA into (the computations

of) NA′ can be defined as ϕ : NA → tcNA′. The transitive closure functor is

tc = cn ◦ nc : NAut → NAut. The functors cn and nc are defined next.

In the text that follows, the categories are built using the approach known

as internalization [Asperti and Longo 1990], leading to the notion of structured

(internal) graphs, where nodes and arcs may be objects of different categories.

The category of categories internal to CMon is denoted by Cat(CMon) and

RGr(CMon) is the category of reflexive graphs internal to CMon. Details on

defining these internal categories may be found in [Menezes et al. 1996].

A nonsequential automaton enriched with its computations CNA = 〈G, L, lab〉

is such that G, L are Cat(CMon)-objects and lab is a Cat(CMon)-morphism.
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Figure 3: Nonsequential automaton and its computational closure

Notice that in order to build the computations, we have enriched NAut by

the substitution of its shape from a reflexive internal graph G = 〈V, T, δ0, δ1, ι〉

to a Cat(CMon)-object G = 〈V, T, δ0, δ1, ι, ; 〉 with a composition operation,

and similarly with its labels. The composition operation was responsible for the

newly added transitions in [Fig. 3].

Let NA = 〈G, L, lab〉 be a NAut-object and h : NA → NA′ a NAut-

morphism. The functor nc : NAut → CNAut is such that:

– RGr(CMon)-object G = 〈V, T, δ0, δ1, ι〉 is taken into the Cat(CMon)-

object G′ = 〈V, T′, δ′
0
, δ′

1
, ι′, ; 〉 with ι′ induced by ι and T′, δ′

0
, δ′

1
, ; :

T′ × T′ → T′ inductively defined as follows

t : a → b ∈ T
t : a → b ∈ T′

t : a → b ∈ T′ u : b → c ∈ T′

t; u : a → c ∈ T′

t : a → b ∈ T′ u : c → d ∈ T′

t||u : a ⊕ c → b ⊕ d ∈ T′

subject to the following equational rules
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t ∈ T′

τ ; t = t t; τ = t
t : a → b ∈ T′

ιa; t = t t; ιb = t

t : a → b ∈ T′ u : b → c ∈ T′ v : c → d ∈ T′

t; (u; v) = (t; u); v

t ∈ T′

t||τ = t

ιa ∈ T′ ιb ∈ T′

ιa||ιb = ιa⊕b

t ∈ T′ u ∈ T′

t||u = u||t

t ∈ T′ u ∈ T′ v ∈ T′

t||(u||v) = (t||u)||v

– CMon-object L = 〈1, L, !, !, !ι〉 is taken into the Cat(CMon)-object L
′ =

〈1, L′, !, !, !ι, ; 〉 with L′ inductively defined as above, and ! and !ι meaning the

unique obvious mappings.

– The NAut-object NA = 〈G, L, lab〉 is taken into the CNaut-object CNA =

〈G′, L′, lab′〉 where lab′ is the morphism induced by lab such that

t ∈ T
lab′(t) = lab(t)

t; u ∈ T′

lab′(t; u) = lab′(t); lab′(u)

t||u ∈ T′

lab′(t||u) = lab′(t)||lab′(u)

– The NAut-morphism h = 〈hV , hT , hL〉 is taken into the Cat(CMon)-

morphism h = 〈hV , hT ′ , 〈!, hL′〉〉 : CNA → CNA′ where hT ′ , hL′ are the

monoid morphisms generated by the monoid morphisms hT and hL, respec-

tively.

Let CNA = 〈G, L, lab〉 be a CNAut-object and h : CNA → CNA′ be a

CNAut-morphism. The functor cn : CNAut → NAut is such that:

– Cat(CMon)-object G = 〈V, T, δ0, δ1, ι, ; 〉 is taken into the RGr(CMon)-

object G′ = 〈V, T′, δ′
0
, δ′

1
, ι′〉, where T′ is T subject to the equational rule

t : a → b ∈ T′ u : b → c ∈ T′ t′ : a′ → b′ ∈ T′ u′ : b′ → c′ ∈ T′

(t; u)||(t′; u′) = (t||t′); (u||u′)

and δ′
0
, δ′

1
, ι′ are induced by δ0, δ1, ι, restricted to T′.

– The Cat(CMon)-object L = 〈V, L, δ0, δ1, ι, ; 〉 is taken into the CMon-

object L′, where L′ is L subject to the analogous equational rule.
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Figure 4: Refinement morphism between nonsequential automata

– The CNAut-object CNA = 〈G, L, lab〉 is taken into the NAut-object NA =

〈G′, L′, lab′〉 with lab′ the RGr(CMon)-morphism canonically induced by

the Cat(CMon)-morphism lab.

– The CNAut-morphism h = 〈hG, hL〉 with hG = 〈hGV
, hGT

〉, hL = 〈hLV
,

hLT
〉 is taken into the NAut-morphism h =

〈
hGV

, hG
T ′

, hL
T ′

〉
: NA → NA′

where hG
T ′

and hL
T ′

are the monoid morphisms induced by hGT
and hLT

respectively.

To illustrate the refinement morphism, given two nonsequential automata

NA and NA′ with free monoids on states and labeled transitions respectively

induced by transitions t : X → Y , and t0 : A → C, t1 : B → D, suppose we want

to build a transaction containing both t0 and t1. First we apply the transitive

closure functor tc. Then we build the refinement morphism by mapping the

corresponding states and transitions. The refinement ϕ : NA → tcNA′ is given

by X �→ A ⊕ B, Y �→ C ⊕ D, t �→ t0||t1 (see [Fig. 4]). Other mappings would

also be possible, e.g. t �→ t0; t1 or t �→ t1; t0.

3 Behavioral Diagrams

The Unified Modeling Language (UML) [Rumbaugh et al. 2004] is a graphical

language which offers a variety of graphical diagram models for specifying, visu-

alizing and documenting object-oriented systems. These models can be classified

as concerned with the static structure of systems and those concerned with the

dynamic behavior. For the modeling of the dynamic behavior, a number of dif-

ferent models are offered: activity diagrams, state machine diagrams, interaction

diagrams and use case diagrams. From this set of diagrams, this work will concen-

trate on activity diagrams and state machine diagrams for describing procedural

and parallel behavior.
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Figure 5: UML activity diagram without (left) and with composite state (right)

The following sections briefly presents the basics of each diagrams and the

corresponding semantic mapping to nonsequential automata. In order to simplify

the presentation, we chose to describe the mapping by the use of easy to follow

examples.

3.1 Activity Diagrams

Activity diagrams are one of the means for describing behavior of systems within

UML focused on the flow of control from activity to activity. The most basic

node is the action node, which represents an atomic action. Activities are repre-

sented by non-atomic composites of sequential or concurrent actions/activities.

The control flow is described by special nodes as fork/join for concurrency, de-

cision/merge for alternative paths of execution and initial/final nodes.

Our working example ([Fig. 5] - left) depicts a simple activity diagram for

a sequence of operations. Suppose we are interested in defining the sequence of

actions “C” and “D” as atomic. To overcome the lack of an atomic activity com-

posite, we introduce a new notation based on the idea of atomic transaction. The

new composite activity is decorated with the stereotype “<<transaction>>” as

depicted in [Fig. 5] (right).
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Figure 6: Mapping for sequential composition of action nodes

The semantics for activity diagrams take into account the fact it comprises

a token game similar to Petri nets (according to the definition in [OMG 2005b]

page 314). So, the semantic mappings from activity diagrams into nonsequential

automata are targeted into constructing local transitions for a nonsequential au-

tomaton (see [Fig. 13] for local transitions obtained from our working example).

Before applying the mapping we need to transform the activity diagram in

such a way each action node has only one incoming/outgoing edge. We do this as

a precaution to avoid misinterpretation of activities control flow because implicit

merging/joining of edges has changed from previous UML versions [Bock 2003].

Previous versions were based on implicit merging of edges, and the current def-

inition applies an implicit join.

Each action node consumes/produces control tokens as the steps of compu-

tation progress through the activity diagram. For nonsequential automata, this

semantics belongs to transitions. Thus, each action node corresponds to a non-

sequential automaton transition, whose origin denotes the necessary tokens for

its firing (preconditions), and whose destiny denotes the tokens produced after

its firing (postconditions), taking into account the different kind of nodes from

its incoming/outgoing edges.

In [Fig. 6], an outgoing edge from action node and the corresponding incom-

ing edge in the target action node represent sequential composition by sharing

a nonsequential automaton state. The example shows a fragment of an activity

diagram ([Fig. 6] left) with two action nodes “A” and “B” which are sequentially

composed by a direct edge (which we are going to name “AB”). As the UML

description implies whenever action node “A” completes its execution, a token

is put in its outgoing edge; thus, in terms of nonsequential automata, the state

“AB” is the target of the local transition “A” ([Fig. 6] right). Accordingly, an

action node is enabled whenever there is a token in its incoming edge, and so

the edge “AB” were represented as the source state “AB” of the nonsequential

atomaton transition “B” ([Fig. 6] right).

The set of initial states of the nonsequential automaton are the ones marked

by initial nodes in the activity diagram (see, for example, the state “IA” in

[Fig. 7]). On the other hand, final states are the ones related to activity final

nodes in the activity diagram (see, for example, the state “AF” in [Fig. 8]).

967Pereira Machado J., Blauth Menezes P.: Defining Atomic Composition ...



Figure 7: Mapping for initial nodes

Figure 8: Mapping for final nodes

As pointed previously, edges and control nodes are mapped to a consistent

set of nonsequential automaton states according to its purpose. Next we define

the mappings for parallel composition and merge of flows.

Fork/join nodes in figures [Fig. 9] and [Fig. 10] demand the use of nonsequen-

tial automaton structured states in order to represent concurrent actions. The

idea is to use the monoidal operator on nonsequential automaton states in order

to get the UML concept of concurrently enabled edges by the presence of multi-

ple tokens. The fork node produces a structured state with all tokens necessary

for its outgoing edges, representing the duplicate of tokens across the outgoing

edges of the activity diagram. In the example, the activity diagram control node

([Fig. 9] left) is to be interpreted as an hyperedge with one single action node

(“A”) as source and multiple action nodes (“B” and “C”) as target, in such a

way the compound edge is represented by nonsequential automaton states “AB”

and “AC” ([Fig. 9] right). Similarly, the join node synchronize different control

flows through a structured state aggregating each incoming edge.

For decision/merge nodes (see [Fig. 11] and [Fig. 12]), we took an alternative

approach. Analogous to fork/join node, the control node is seen as an hyperedge,

but it induces several local nonsequential automata transitions, one for each

Figure 9: Mapping for fork nodes
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Figure 10: Mapping for join nodes

Figure 11: Mapping for decision nodes

alternative path. For the activity diagram fragment in [Fig. 11](left), the edges

attached to the decision node are represented by nonsequential automata states

“AB” and “AC”, and the action node gives rise to labels “A”, “B” and “C”.

We have not used the term transition because the mapping of outgoing edges

was based on the idea of reducing the choice (according to guards attached to

these edges) to nondeterminism in the corresponding nonsequential automaton

by using different transitions labeled with the same label (this is the case of

the two transitions whose targets are states “AB” and “AC” labled with “A” in

[Fig. 11] right).

The central core of the composite transaction node makes use of nonse-

quential automata refinement. The source automaton corresponds to the basic

translation using the previous mappings, where the composite node is viewed as

only one nonsequential automaton transition. The target automaton corresponds

to the translation taking into account the subactivity nodes of the composite.

Figure 12: Mapping for merge nodes
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Figure 13: Local transitions for the nonsequential automaton

The refinement then maps the more abstract transition into the concrete im-

plementation of the transaction obtained via the computational closure of the

target automaton. Actually, the source automaton is obtained by a sequence

of functorial operations (relabeling and restriction) over the target automaton

(see [Menezes et al. 1996] and [Menezes et al. 1998] for definition of these oper-

ations). [Fig. 14] partially depicts the automata (based on local transitions from

[Fig. 13]) and refinement (dashed arrows for transition refinement, the mapping

of states were not shown) for our working example of activity diagrams. No-

tice it does explicit all possible computational paths, including the transaction

state (labeled “T” in the source automaton) represented by the atomic sequen-

tial composition “C;D”. Also, the fork of control flow in the activity diagram is

correctly depicted by the independence square “B||T” mapped to “B||(C;D)”.

3.2 State Machine Diagrams

State machine diagrams are one of the means for describing behavior of systems

within UML focused on a number of states an object may hold during its lifetime.

It is one of the most intuitive diagrams because its foundations on automata,

Mealy and Moore machines are well known.

A state machine is a graph of states and transitions. Transitions connect

different states and are fired by triggering events. The response to events may

include the execution of an effect (an action or activity) and a change to a new

state. The most basic set of nodes are the state node and initial/final state

nodes, representing the basic units of control for this diagram. The transition

flow between states, specified by transitions, may be modified by special nodes

(called pseudo-states) such as fork/join for concurrency, junction for sequential

composition of effects and choice for alternative paths. Also, composite states

are present as a mean to simplify the reuse of transitions and introduce the

possibility of concurrency among different states.

Here we are interested in using state machines to describe sequence of observ-

able effects/activities of a system. We are not focusing on the sequence of valid
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Figure 14: Nonsequential automata refinement for activity diagram with atomic

composite in [Fig. 5]

states or the sequence of events that trigger transitions between states. Thus, the

state machine view we are employing is related to descriptions of dynamic behav-

ior of uses cases, collaborations and methods as pointed in [Rumbaugh et al. 2004]

and, for these objects, a state represents a computation step in its execution.

Our working example ([Fig. 15] - left) depicts a simple state machine diagram

in which the flow between states are by completion transitions. This diagram

may be seen as specifying a sequence of actions (“A”, “B” and “C”) much

like an activity diagram, except it includes the states in which an action is

valid and the resulting state. Suppose we are interested in defining some kind of

transactional composite state in which compounded state transitions cannot be

interrupted by transitions crossing boundaries to any state outside the composite

“E1”, resulting an atomic sequence of actions “A” and “B”. We introduce a

new notation to regions inside composite states decorated with the stereotype

“<<transaction>>” ([Fig. 15] - right).

When defining the semantic mapping, we followed the premise of compat-

ibility between the state machine view and the activity diagram view. This is

important because states may carry a notion of ongoing activity and its be-

havior should be compatible to activities expressed in activity diagrams. This
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Figure 15: UML state machine diagram without (left) and with transactional

composite (right)

Figure 16: Mapping for basic states and transitions

notion of compatibility may be formally described by an equivalence relation on

nonsequential automata.

The semantic mappings from state machine diagrams into nonsequential au-

tomata are targeted into constructing local transitions for a nonsequential au-

tomaton (see [Fig. 24] for local transitions obtained from our working example).

The basic mapping is such that states from the UML diagram are mapped to

nonsequential automata states, and transitions labeled with effects are mapped

to nonsequential automata transitions. Following [van der Aalst 2000], our se-

mantics for state machines has abstracted away events for communicating with

the system environment. In this paper, only completion events are being con-

sidered. Completion events are implicitly associated to transitions that lack an

explicit trigger event. Thus, the notion of completion is represented by nonse-

quential states which are “consumed” much like the token game in Petri nets,

and the effect appear as a transition in the corresponding automaton. [Fig. 16]

shows local transitions for nonsequential automata obtained from simple state

and basic transitions.

Initial states (see [Fig. 17]) are the ones marked with initial pseudo-states in

the state machine diagram, and final states (see [Fig. 18]) are the ones related to

final states in the diagram. In both cases, the mapping is analogous to basic states

and transitions, and the resulting states will play an important role in composite

states (defined next). The outermost initial state in the state machine diagram

will be marked as the automaton initial state (the same for the final state).

For composite states that have been decomposed into regions (either nonor-

thogonal with only one region, or orthogonal with two or more concurrent re-
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Figure 17: Mapping for initial states

Figure 18: Mapping for final states

gions), the chosen domain (and mapping) for state machines bring as side ef-

fect an abstraction from the state hierarchy implied from composites. What

we get is a flat view of the machine where implicit transitions from compos-

ites have become explicit for every compounded state. Although not presented

here, a flattening should first be applied before the mappings because of implicit

transitions generated by composite states much like the procedure described in

[Eshuis and Wieringa 2003]. In [Fig. 19] (left), concurrent orthogonal regions are

entered explicitly (by applying fork pseudo-states) and implicitly (by using tran-

sitions into the enclosing composite state). Notice the semantics makes use of

nonsequential automata structured states from representing distributed concur-

rency. The idea for the mapping is, again, to manipulate the transition as an

hyperedge with one source and several target. For join pseudo-nodes and comple-

tion transitions from composite states (see [Fig. 20]) the mapping is analogous.

Although both constructions were presented, we advocate the use of implicit

transitions into composite states, once this construction is compositional and

avoids crossing state boundaries.

The central core of the new composite transaction state makes use of non-

sequential automata refinement, following the same ideas developed for activ-

ity diagrams. The source automaton corresponds to the basic translation using

the previous mappings, where the composite state induces only one nonsequen-

tial automaton transition. The target automaton corresponds to the translation

taking into account the substates of the composite. In [Fig. 21] the composite

transaction involved in the refinement mapping were shown in dashed pattern,

representing the sequential flow of effects “A” and “B” (this transition is the

result of the calculus of the nonsequential automaton closure and will be the
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Figure 19: Mapping for composite states and fork pseudo-states

Figure 20: Mapping for composite states and join pseudo-states

target in the refinement morphism). The figure also highlights the fact the com-

posite is now atomic and transitions that cross boundaries are not permitted (in

other words, the only exit point is the final state, which acts as a commit).

Besides the explicit transaction composite states, an intrinsic notion of atomic

composition can be found in the “run-to-completion” mechanism of state ma-

chine diagrams and also in composition of steps in some pseudo-states. Run-

to-completion may be defined as “a transition or series of actions that must be

Figure 21: Mapping for transaction region in composite state
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Figure 22: Mapping for entry and exit activities

completed in its entirety” [Rumbaugh et al. 2004]. Shortly, the firing of a tran-

sition is accomplished by a sequence of steps: the current state is exited and

the exit activity of the state is executed; then the effect of the transition is ex-

ecuted; finally the entry activity of the state being entered is executed. This

behavior is depicted in [Fig. 22]. Notice the mapping introduce “dummy” states

(labeled with “I” for input and “O” for output) wherever there is states with

entry and/or exit activities. Again, the dashed pattern were used to highlight

the atomic compositions to be used in the refinement.

Pseudo-states that imply run-to-completion include junction states and choice

states. Junction and choice states are vertices that are used to chain together

multiple transitions between states. In [Fig. 23] compound transitions are shown

for junctions. In the mapping, each state generate a nonsequential automaton

state and each junction pseudo-state generate a “dummy” nonsequential au-

tomaton state just for the sake of building the composite paths. The resulting

nonsequential automaton explicits the atomic sequential composition of alterna-

tive paths to be taken. Please notice that in this version we are not dealing with

variables in the state space and consequently the mapping for choice pseudo-

states will be analogous.

Going back to our working example, we are now able to build the local tran-

sitions for the nonsequential automaton (see [Fig. 24] for the set of transitions).

[Fig. 25] partially depicts the automata and refinement (dashed arrows) for our

working example of state machine diagram. Notice it does explicit the computa-

tional path “A;B” for the atomic sequential composition from transaction state

“E1”(labeled “TE1” in the source automaton).
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Figure 23: Mapping for junction pseudo-states

Figure 24: Local transitions for the nonsequential automaton

4 Other Approaches

Some approaches to translating UML diagrams into formal models based on Petri

nets are closely related to this work. For example, [Gehrke et al. 1998] describes

a formal translation of activity and collaboration diagrams into place/transition

Petri nets and [Eshuis and Wieringa 2003] compares different proposals for the

semantics based on Petri nets targeting workflow models based on activity dia-

grams.

Although such works have succeeded in defining semantics for activity di-

agrams, one further important question remained open - the need for models

that include the diagonal compositionality requirement as stated by Gorrieri

[Gorrieri 1990]. Therefore, we should be able to further define levels of abstrac-

tions of systems before or after a synchronization/refinement composition in
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Figure 25: Nonsequential automata refinement for state machine diagram with

atomic composite in [Fig. 15]

order to obtain the same resulting system. Here, again, we are in a delicate sit-

uation because, as shown in [Menezes and Costa 1996], most Petri net models

do not imply the diagonal compositionality requirement. Our goal, thus, have

been to apply a semantic model for describing compositional constructs that

could cope with the diagonal compositionality requirement, and nonsequential

automata have shown this desired property.

Regarding the semantic domain, Zero-Safe Nets [Bruni and Montanari 1997]

[Bruni and Montanari 2001] are an approach to the modeling of transactions

built on top of ordinary place/transition Petri nets extended with a mechanism

for transition synchronization. The constructions for computational closure and

refinement are very similar to nonsequential automata and are also based on

category theory. In this model, zero-places are used for coordinating the atomic

execution of several transitions, which, from an abstract point of view, will ap-

pear as synchronized (or belonging to a transaction). In fact, the relation be-

tween nonsequential automata and zero-safe nets must be further investigated
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following the approach by [Winskel and Nielsen 1995] where a scene for a formal

classification of models for concurrency was set.

The main differences between this proposal and related works may be sum-

marized as follows: we are based on the UML 2.0 specification, in which activity

diagrams have been decoupled from state diagrams; the applied semantic do-

main is compositional, in contrast to domains based on Petri nets or statecharts

semantics; we are dealing with mechanisms for atomic compositions and not just

non-atomic composites.

5 Concluding Remarks

Transactions are an important part of today systems and they deserve a first

class mechanism in modeling languages, especially UML. Following that premise,

this work presented an extension to UML diagrams centered on constructions for

defining atomic composition of actions/activities/operations. The use of nonse-

quential automata specifies the semantics unambiguously and enables an elegant

definition for atomicity. Regarding previous works [Machado and Menezes 2004],

this is the first time we present the ideas for activity and state machine diagrams

in a compatible way. Also, this paper is an extended version from the paper

[Machado and Menezes 2006].

In this paper we have not dealt with event handling. Generally speaking,

for Petri net related models, events may be modeled as tokens or transitions

with different consequences on the resulting behavior (see [Eshuis 2002] for a

discussion on both alternatives). We are currently working on adding events

into the semantic mapping.

Also, for a complete presentation of atomic compositions we are working on

the definition of a UML profile based on the semantics presented in this paper.
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