UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

SUPERFÍCIES DE CURVATURA MÉDIA CONSTANTE EM $\mathbb{H}^2 \times \mathbb{R}$

Tese de Doutorado

Rodrigo Barbosa Soares

Porto Alegre, Dezembro de 2012.

Tese de Doutorado submetida por Rodrigo Barbosa Soares¹ como requisito parcial para a obtenção do grau de Doutor em Matemática pelo Programa de Pós-Graduação em Matemática do Instituto de Matemática da Universidade Federal do Rio Grande do Sul.

Professor Orientador:

Dr. Jaime Bruck Ripoll

Banca Examinadora:

Dr. Pedro Fusieger (UFSM)Dr. Leonardo Prange Bonorino (UFRGS)Dra. Maria Fernanda Elbert (UFRJ)Dr. Paulo Ricardo Zingano (UFRGS)

Data da Apresentação: 12 de Dezembro de 2012.

 $^{^1\}mathrm{Bolsista}$ da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Capes, de fevereiro de 2009 a agosto de 2010.

Resumo

Neste trabalho apresentamos resultados de existência e unicidade para gráficos de curvatura média constante em $\mathbb{H}^2 \times \mathbb{R}$, com bordo prescrito em planos paralelos, obtidos através da resolução de problemas de Dirichlet para a equação da curvatura média.

Palavras-chave:superfícies, curvatura média,

Abstract

In this work we investigate the existence and uniqueness of constant mean curvature graphs in $\mathbb{H}^2 \times \mathbb{R}$, with boundary in parallel planes, by solving a Dirichlet problems for the mean curvature equation.

Agradecimentos

Agradeço em primeiro lugar a Deus por ter me dado saúde para concluir este trabalho.

À minha mãe Marluce Soares e ao meu pai Waldenir Soares por sempre terem trabalhado muito para que eu pudesse estudar.

Aos meus irmãos Ligia e Marcelo, sobrinhos, cunhados, primos e amigos por todo o apoio concedido

Ao professor Jaime Ripoll pela paciência, conselhos e valiosa orientação. Aos professor Ari Aiofi, orientador de mestrado.

Aos professores Pedro Fusieger, Leonardo Bonorino e Paulo Zingano e à professora Maria Fernanda Elbert por terem aceitado participar da banca.

Aos colegas de doutorado da UFRGS por terem me acolhido de maneira extraordinária.

Aos meus colegas do IMEF-FURG por terem me possibilitado uma carga horária organizada, fato este, fundamental para a comclusão deste trabalho.

Por fim, agradeço à minha esposa Taina Chimieski, companheira nesta jornada desde o começo.

Sumário

1	Preliminares		
	1.1	O espaço ambiente $\mathbb{H}^2 \times \mathbb{R}$	9
	1.2	Operador Curvatura Média	10
	1.3	Método da Continuidade	12
2	Sup	erfícies Rotacionais de Curvatura Média Constante em	
	\mathbb{H}^2 >	$< \mathbb{R}$	17
	2.1	Caso $H = 0$	18
	2.2	Caso $H = \frac{1}{2}$	19
	2.3	Caso $H > \frac{1}{2}$	23
3	Resultados Principais 2		
	3.1	Caso $H \in [0, \frac{1}{2}]$	26
	3.2	Caso $H > \frac{1}{2}$	36
	3.3	Exemplo	45

Introdução

A existência de superfícies com curvatura média constante, tendo como bordo duas curvas dadas $\gamma \in \beta$, contidas em planos paralelos distintos, vem sendo objeto de estudo há muito tempo, especialmente o caso H = 0. Os catenóides e, mais geralmente, as superfícies mínimas de Riemann, são exemplos famosos nos quais $\gamma \in \beta$ são círculos. Shiffman em [20] provou que a intersecção de um anel mínimo cujo bordo são duas curvas convexas $\gamma \in \beta$, com um plano paralelo ao plano que contém $\gamma \in \beta$, é uma curva convexa. Meeks e White em [13] provaram que ou $\gamma \bigcup \beta$ não é o bordo de nenhuma superfície mínima conexa compacta ou $\gamma \bigcup \beta$ é o bordo de exatamente um anel mínimo ou $\gamma \bigcup \beta$ é o bordo de exatamente dois anéis mínimos.

Em meados da década de 90, Antonio Ros e Harold Rosenberg em [16] propuseram a seguinte questão:

Dadas duas curvas de Jordan $\gamma \in \beta$ em planos paralelos distintos, existe uma superfície com curvatura média constante, topologicamente um anel, que tem por bordo tais curvas?

Os mesmo autores conjecturaram que para o caso em que $\gamma \in \beta$ são convexas, a resposta seria sim. Desde então, vários artigos foram publicados, apresentando condições sobre as quais é possível obter uma resposta positiva para a questão colocada acima, no caso em que o espaço ambiente é o \mathbb{R}^3 .

Uma abordagem desta questão, em termos de superfícies dadas como gráficos verticais, é feita através da resolução de um Problema de Dirichlet, associado à equação das superfícies com curvatura média constante em \mathbb{R}^3 , no caso em que γ está contida no interior da região limitada cuja fronteira é β . Mais precisamente, dado $H \geq 0$, deve-se encontrar uma função $u \in C^2(\Omega) \bigcap C^0(\overline{\Omega})$ tal que

onde h é uma constante que depende, em geral, da geometria das curvas, da distância entre elas e do H que for dado, onde a curvatura média do gráfico de u calculada com relação ao campo unitário normal N satisfazendo $\langle N, \vec{e_3} \rangle \leq 0$ e Ω é uma região anelar tal que $\partial \Omega = \gamma \bigcup \beta$. Observe que, podemos supor ambas as curvas contidas no $\{z = 0\}$, e que impondo a condição $u|_{\gamma} = h$ recaimos sobre a situação da pergunta inicial.

Entre os artigos que tratam do sistema (P^H) citamos, [8] onde a pergunta acima foi respondida positivamente para o caso H = 0 em que γ e β não são necessariamente convexas e também para o caso H > 0 com γ convexa e β não necessariamente convexa. Cabe salientar que, nesse mesmo artigo, os autores não consideram somente duas curvas (Teoremas 2.1 e 2.5) e sim o caso de um número finito de curvas $\gamma_1, \gamma_2, ..., \gamma_n$ todas contidas no interior da região limitada cuja fronteira é β , impondo que u admita o valor h ao longo de cada curva $\gamma_i, i = 1, ..., n \in 0$ ao longo de β . Já em [2], [1] e [9] os autores consideraram as situações onde β é igual a projeção ortogonal de γ sobre um plano paralelo ao plano que contém γ e também o caso em que β é obtida por meio de um deslocamento horizontal da projeção ortogonal de γ . Observe que, nessas condições, a posição das curvas não permite que a superfície cujo bordo é $\gamma \bigcup \beta$ seja dada como gráfico sobre nenhum dos planos que contém as curvas. Sendo assim, foi conveniente, a utilização de gráficos sobre domínios anelares, contidos em uma esfera unitária, devidamente posicionada com relação as curvas. Esse tipo de gráfico é conhecido como gráfico radial e permitiu que fossem obtidos resultados de existência para anéis mínimos e de curvatura média constante, até mesmo, no caso em que γ_1 e γ_2 não são necessariamente convexas, novamente através de um Problema de Dirichlet, mas com uma expressão para o operador curvatura média diferente daquela apresentada em (P^H).

A busca pela adaptação ao espaço ambiente $\mathbb{H}^2 \times \mathbb{R}$, de alguns dos resultados contidos nos artigos citados acima, é o objetivo principal desta tese. Para isso, é natural considerar que serão necessárias algumas mudanças, ou seja, será usado o conjunto $\mathbb{H}^2 \times \{0\}$ ao invés do \mathbb{R}^2 com $\gamma \in \beta$ contidas em $\mathbb{H}^2 \times \{0\}$, γ contida no interior da região limitada cuja fronteira é β . Além disso, a noção de gráfico relacionada à $\mathbb{H}^2 \times \mathbb{R}$ será dada por

$$Graf(u) = \{(x, y, t) \in \mathbb{H}^2 \times \mathbb{R} \mid (x, y) \in \Omega, \ t = u(x, y)\}$$

onde $\Omega \subset \mathbb{H}^2 \times \{0\}$ e $u : \Omega \mapsto \mathbb{R}$ é uma função suficientemente suave. A principal alteração no sistema (P^H) quando considerado o espaço ambiente $\mathbb{H}^2 \times \mathbb{R}$, é dada pelo operador curvatura média. Mais precisamente temos:

$$(P^{H}) = \begin{cases} Q_{H}(u) = F \operatorname{div} \left(\frac{\nabla u}{\sqrt{1 + F |\nabla u|^{2}}} \right) + 2H = 0 \quad \text{em } \Omega \\ u|_{\beta} = 0 \quad u|_{\gamma} = h \quad u \in C^{2}(\Omega) \bigcap C^{0}(\overline{\Omega}) \end{cases}$$

onde h > 0 é uma constante, $F = F(x, y) = \left(\frac{1-(x^2+y^2)}{2}\right)^2$ e ∇ , div e |.| representam o gradiente, o divergente e a norma no sentido euclidiano e Ω é um domínio anelar tal que $\partial \Omega = \gamma \bigcup \beta$.

Uma característica comum entre os resultados citados com relação ao \mathbb{R}^3 é a utilização, durante as demonstrações, de pedaços de superfícies de rotação que possam ser descritos como gráficos de funções, definidas por exemplo, em domínios no plano z = 0. Sendo assim, qualquer estudo do sistema acima, que seja de certa forma semelhante àquele feito em \mathbb{R}^3 , sugere uma análise prévia do comportamento das superfícies de rotação do espaço em questão e para isso são fundamentais os seguintes artigos: [19] onde destacamos o fato dos autores estabelecerem equações explícitas de uma família a 1-parâmetro de superfícies rotacionais com curvatura média constante e [14], no qual aparece uma análise completa do comportamento das superfícies de acordo com o valor de sua curvatura média e a relação deste com o parâmetro da família.

Recentemente, em [3] de 2010, a autora estabeleceu uma versão do Teorema 2.1 de [8] para $\mathbb{H}^2 \times \mathbb{R}$, obtendo existência de solução para o sistema (P^H) no caso H = 0, por meio da aplicação do Método de Perron. Ainda no caso de domínios limitados e dados finitos no bordo é importante citar o Teorema 2.1 de [14], onde é considerado o caso em que o dado no bordo é identicamente nulo, a $\partial\Omega$ é de classe $C^{2,\alpha}$, com $\alpha \in (0,1)$, $H \in [-\frac{1}{2}, \frac{1}{2}]$ e a função u obtida é suave até a fronteira, ou seja, $u \in C^{2,\alpha}(\overline{\Omega})$. Em [11] também são obtidos resultados para domínios limitados, no entanto, nesse caso o dado no bordo é infinito. Já em [18], [4] e [7] o problema de Dirichlet associado a equação da curvatuta média é considerado sobre domínios ilimitados com $H = 0, H \in (0, \frac{1}{2})$ e $H = \frac{1}{2}$ respectivamente.

Sendo assim, até onde temos notícia, não foram considerados resultados relacionados a (P^H) , onde o domínio Ω tem fronteira suave formada por duas curvas, o dado no bordo é finito em cada componente conexa, a curvatura média é $H \ge 0$ e a função u é de classe $C^{2,\alpha}(\overline{\Omega})$ para algum $\alpha \in (0, 1)$. Através de hipóteses relacionando a geometria das curvas e o $H \ge 0$ dado, obtemos valores para o termo h, de tal forma que o sistema (P^H) tenha solução de classe $C^{2,\alpha}(\overline{\Omega})$, via Método da Continuidade. Em outras palavras, provamos

Teorema 3.1 Seja Ω um domínio anelar de classe $C^{2,\alpha}$, onde $\alpha \in (0,1)$, contido em $\mathbb{H}^2 \times \{0\}$ cujo bordo consiste de duas curvas $\gamma \in \beta$ com γ contida no interior da região limitada cuja fronteira é β . Sejam $r > 0 \in D < -1$ satisfazendo:

$$\ln(-D) < r < \cosh^{-1}(-D)$$

Suponha que diam(β) < r + R, onde R = cosh⁻¹(-D), que γ satisfaz a condição do círculo interior de raio r (isto é, dado $p \in \gamma$ existe um círculo de raio r passando por p e contido no fecho da região limitada por γ) e que $k_{\beta} \geq \operatorname{coth} R$. Denote por $d = d_{\mathbb{H}}(\gamma, \beta)$. Nessas condições, dados

$$0 \le h \le \frac{d(1-D^2)}{4D\sinh(r+\frac{d}{2})}$$

 $e \ H \in [0, \frac{1}{2}]$ existe uma única $u \in C^{2,\alpha}(\overline{\Omega})$ tal que $Q_H(u) = 0 \ em \ \Omega, \ u_{|\gamma} = h$

e $u_{|\beta} = 0$, onde a curvatura média é calculada com relação ao campo N, normal unitário (no sentido hiperbólico) satisfazendo $\langle N, \frac{\partial}{\partial t} \rangle_{\mathbb{H}^2 \times \mathbb{R}} \leq 0$.

Observe que a altura h não depende do valor de H dado em $[0, \frac{1}{2}]$. Conforme veremos, isso decorre do fato das superfícies rotacionais de curvatura média constante $H = \frac{1}{2}$ serem gráficos ilimitados na direção t. **Teorema 3.2** Seja Ω um domínio anelar de classe $C^{2,\alpha}$, onde $\alpha \in (0,1)$, contido em $\mathbb{H}^2 \times \{0\}$ cujo bordo consiste de duas curvas $\gamma \ e \ \beta \ com \ \gamma \ contida$ no interior da região limitada cuja fronteira é β . Dado $H > \frac{1}{2}$ sejam

$$0 < r \le \frac{1}{2} \cosh^{-1} \left(\frac{4H^2(\frac{4H^2+1}{4H^2-1}) - \sqrt{4H^2(\frac{4H^2+1}{4H^2-1})^2 - (4H^2-1)}}{4H^2 - 1} \right)$$

e D < -2H satisfazendo:

$$\cosh^{-1}\left(\frac{2DH + \sqrt{1 - 4H^2 + D^2}}{1 - 4H^2}\right) < r < \cosh^{-1}\left(\frac{-D}{2H}\right)$$

Suponha que γ satisfaz a condição do circulo interior de raio r e que diam $(\beta) \leq r+R$, onde $R = \cosh^{-1}\left(\frac{-D}{2H}\right)$. Além disso, suponha que $k_{\beta} \geq \coth R$. Denote por $d = d_{\mathbb{H}}(\gamma, \beta)$. Nessas condições, dado

$$0 \le h \le \min\left\{\frac{d\left(\sinh(\cosh^{-1}\left(\frac{2DH + \sqrt{1 - 4H^2 + D^2}}{1 - 4H^2}\right)\right)}{2\sinh(r + \frac{d}{2})}, \frac{Hd(\cosh(R - \frac{d}{2}) - 1)}{2\sinh(R - \frac{d}{2})}\right\}$$

existe uma única $u \in C^{2,\alpha}(\overline{\Omega})$ tal que $Q_H(u) = 0$ em Ω , $u_{|\gamma} = h$ e $u_{|\beta} = 0$, onde a curvatura média é calculada com relação ao campo N, normal unitário (no sentido hiperbólico) satisfazendo $\langle N, \frac{\partial}{\partial t} \rangle_{\mathbb{H}^2 \times \mathbb{R}} \leq 0$.

Esta tese foi dividida em três capítulos. No Capítulo 1 exibimos o operador curvatura média para gráficos verticais em $\mathbb{H}^2 \times \mathbb{R}$ e apresentamos um resumo da teoria relativa e este operador necessária para o restante do texto, bem como sua relação com o Método da Continuidade. No Capítulo 2 tratamos de alguns resultados úteis para a construção de barreiras relativas ao operador citado acima. Em particular, apresentamos as equações das superfícies rotacionais de curvatura média constante em $\mathbb{H}^2 \times \mathbb{R}$, baseadas nas bibliografias [19] e [14]. Neste capítulo, fica clara a diferença de comportamento dessas superfícies no caso da curvatura média menor ou igual a $\frac{1}{2}$ e maior que $\frac{1}{2}$ e consequentemente o motivo pelo qual os resultados acima são divididos em $H \in [0, \frac{1}{2}]$ e $H > \frac{1}{2}$. No Capítulo 3 exibimos as demonstrações dos Teoremas 3.1 e 3.2 e também exemplos de domínios onde valem as hipóteses dos Teoremas acima.

É importante salientar, que no caso H = 0 do Teorema 3.1, o resultado obtido aqui não melhora o Teorema 2.1 de [3] pois a altura h do gráfico de u, em nosso caso, é menor que aquela obtida em [3] e, além disso, o domínio Ω , no qual trabalhamos, admite somente duas curvas formando sua fronteira.

1 Preliminares

Neste capítulo introduzimos o espaço ambiente $\mathbb{H}^2 \times \mathbb{R}$, o operador curvatura média constante (hiperbólico) no caso de gráficos verticais sobre domínios contidos em $\mathbb{H}^2 \times \{0\}$ e o Problema de Dirichlet associado e este operador. Além disso, apresentamos alguns resultados que serão utilizados durante as demonstrações que aparecem no Capítulo 3.

1.1 O espaço ambiente $\mathbb{H}^2 \times \mathbb{R}$

O modelo do plano hiperbólico \mathbb{H}^2 a ser utilizado nesta tese é conhecido como disco de Poincaré, isto é:

$$\mathbb{H}^2 = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1 \}$$

munido da seguinte métrica:

$$dr^{2} = \frac{4}{(1 - (x^{2} + y^{2}))^{2}}(dx^{2} + dy^{2}) = \frac{1}{F(x, y)}(dx^{2} + dy^{2}).$$

Usando a métrica acima é possível provar que \mathbb{H}^2 é uma variedade Riemanniana completa de curvatura seccional constante igual a -1 e que suas geodésicas neste modelo são ou diâmetros do disco aberto unitário centrado na origem ou arcos de circunferência que interceptam o bordo deste disco ortogonalmente. Entre as curvas contidas nessa variedade destacamos:

1) horociclos: círculos euclidianos tangentes a $\partial \mathbb{H}^2$ que tem como característica a curvatura geodésica hiperbólica constante igual a 1.

2) circulos hiperbólicos: são círculos euclidianos, contudo seu centro hiperbólico posiciona-se deslocado com relação ao centro euclidiano. A variedade produto $\mathbb{H}^2 \times \mathbb{R}$ on de serão desenvolvidos os resultados de existência é o conjunto:

$$\mathbb{H}^2 \times \mathbb{R} = \{ (x, y, t) \in \mathbb{R}^3 \mid (x, y) \in \mathbb{H}^2, t \in \mathbb{R} \}$$

munido da métrica ds^2 dada por

$$ds^{2} = \frac{1}{F(x,y)}(dx^{2} + dy^{2}) + dt^{2}$$

com a noção de gráfico dada pela:

Definição 1.1.1 Seja $\Omega \subset \mathbb{H}^2 \times \{0\}$ um domínio (subconjunto aberto e conexo) e $u : \Omega \mapsto \mathbb{R}$ uma função suave, chamamos Graf(u) ao conjunto

$$Graf(u) = \{ (x, y, t) \in \mathbb{H}^2 \times \mathbb{R} \mid (x, y) \in \Omega, \ t = u(x, y) \}$$

1.2 Operador Curvatura Média

Proposição 1.2.1 Dado $H \ge 0$ e $u \in C^2(\Omega)$, onde Ω é um domínio aberto e limitado contido em $\mathbb{H}^2 \times \{0\}$, as seguintes afirmações são equivalentes: i) Graf(u) tem curvatura média hiperbólica constante H com relação ao campo unitário normal N satisfazendo $\langle N, \frac{\partial}{\partial t} \rangle_{\mathbb{H}^2 \times \mathbb{R}} \le 0$ na métrica ds^2 . ii) $Q_H(u) = F \operatorname{div} \left(\frac{\nabla u}{\sqrt{1+F|\nabla u|^2}} \right) + 2H = 0$, onde ∇ , div e |.| representam o gradiente, divergente e a norma euclidianos. *Demonstração*. Ver [12].

Nos resultados que estamos interessados, para dado H, não nos basta encontrar $u \in C^2(\Omega)$ que satisfaça (ii) da Proposição acima, já que a função u deve satisfazer um valor prescrito na $\partial\Omega$, isto é, estamos interessados em soluções do seguinte sistema:

$$(P^{H}) = \begin{cases} Q_{H}(u) = F \operatorname{div} \left(\frac{\nabla u}{\sqrt{1 + F |\nabla u|^{2}}} \right) + 2H = 0 \quad \text{em } \Omega \\ u|_{\partial \Omega} = \varphi, \quad u \in C^{2}(\Omega) \cap C^{0}(\overline{\Omega}) \end{cases}$$

onde $\varphi : \partial \Omega \mapsto \mathbb{R}$ é uma função, a princípio somente contínua, dada a priori. O sistema acima é conhecido como problema de Dirichlet para a equação das superfícies de curvatura média hiperbólica constante em $\mathbb{H}^2 \times \mathbb{R}$. Note que a segunda linha do sistema exige que u estenda-se continuamente até o fecho de Ω . No entanto, na continuação deste trabalho passamos a procurar soluções de $Q_H(u) = 0$ com características mais "fortes", como por exemplo $u \in C^2(\overline{\Omega})$ ou ainda $u \in C^{2,\alpha}(\overline{\Omega})$ onde $\alpha \in (0,1)$ indica o coeficientes de Holder. Em geral, estamos interessados de fato no sistema

$$(P^{H}) = \begin{cases} Q_{H}(u) = F \operatorname{div} \left(\frac{\nabla u}{\sqrt{1 + F |\nabla u|^{2}}} \right) + 2H = 0 \quad \text{em } \Omega \\ u|_{\partial \Omega} = \varphi, \quad u \in C^{2,\alpha}(\overline{\Omega}) \end{cases}$$

onde $\varphi \in C^{2,\alpha}(\partial\Omega)$ é dada a priori e Ω é um domínio limitado cuja fronteira é de classe $C^{2,\alpha}$. Uma observação importante é que para o caso H = 0as funções constantes definidas sobre Ω são soluções de $Q_0(u) = 0$ e sendo assim podemos afirmar que as "fatias", $\mathbb{H}^2 \times \{l\}$ com $l \in \mathbb{R}$ de $\mathbb{H}^2 \times \mathbb{R}$, são superfícies de curvatura média constante H = 0 em $\mathbb{H}^2 \times \mathbb{R}$. Através da análise dos coeficientes das derivadas de ordem 2 da equação (ii) temos que o operador curvatura média (hiperbólico) é um operador quasilinear elíptico de segunda ordem. Esta classificação, juntamente com o fato do domínio Ω ser limitado, são características fundamentais para podermos utilizar o Método da Continuidade, sobre o qual falaremos na próxima seção.

1.3 Método da Continuidade

Antes de falarmos diretamente da abordagem de (P^H) através do Método da Continuidade são necessárias algumas definições.

Definição 1.3.1 (BARREIRAS) Seja Ω um domínio limitado cuja fronteira é de classe $C^{2,\alpha}$ contido em $\mathbb{H}^2 \times \{0\}$. Dizemos que $\varphi \in C^{2,\alpha}(\partial\Omega)$ admite barreiras relativas ao operador Q_H , em $p \in \partial\Omega$ se existem funções v_p (barreira por baixo) e w_p (barreira por cima) de classe $C^1(\overline{\Omega})$ e $M \ge 0$ (M independente p) tais que, para qualquer solução $u : \overline{\Omega} \to \mathbb{R}$ de (P^H) tenhamos:

$$v_p \leq u \leq w_p \quad \text{em} \quad \overline{\Omega},$$

$$w_p(p) = v_p(p) = \varphi(p)$$

 $\max\{|\nabla w_p(p)|, |\nabla v_p(p)|\} \le M \quad \forall p \in \partial \Omega.$

Observe que a limitação da norma do gradiente das funções v_p e w_p em p envolve somente termos euclidianos, mas isto não é problema, pois podemos estimar a norma hiperbólica do gradiente hiperbólico dessas funções lembrando que $||\nabla^{\mathbb{H}}(w_p)||_{\mathbb{H}}^2 = F|\nabla w_p|^2 \leq |\nabla w_p|^2$.

Encontrar barreiras, conforme a definição acima, não somente em $\mathbb{H}^2 \times \mathbb{R}$, mas até mesmo em outros espaços tem sido uma questão muito trabalhada na pesquisa em GEOMETRIA/EDP nos ultimos anos devido a sua relação direta com o Método da Continuidade e consequentemente com a existência de solução para (P^H). Não existe uma regra geral para obter tais funções, no entanto, a literatura nos mostra como candidatas naturais, tanto em \mathbb{R}^3 como em $\mathbb{H}^2 \times \mathbb{R}$, partes de superfícies de rotação dadas como gráficos verticais, com curvatura média constante. Vejamos alguns resultados que nos auxiliam na determinação de quais superfícies, servem ou não, como barreiras.

Teorema 1.3.1 (Princípio da Comparação)(Adaptação do Teorema 17.1 de [10]) Sejam $u \in v$ funções de classe $C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfazendo $Q_H(u) \ge Q_H(v) \text{ em } \Omega \in u \le v \text{ em } \partial \Omega$. Então $u \le v \text{ em } \Omega$. Demonstração. Ver [10].

Lema 1.3.2 Sejam u uma função de classe $C^2(\Omega)$ tal que o gráfico de u tem curvatura média constante hiperbólica H e $h \in [0, H)$. Então $Q_h(u) \leq 0$. (Analogamente temos $Q_h(u) \geq 0$ se $h \in [H, +\infty)$).

Demonstração. Como o gráfico de u tem curvatura média hiperbólica constante H então $Q_H(u) = 0$ e sendo assim

$$Q_h(u) = F \operatorname{div} \left(\frac{\nabla u}{\sqrt{1+F|\nabla u|^2}} \right) + 2h = -2H + 2h = -2(H-h) \le 0$$

Lema 1.3.3 Sejam Ω um domínio limitado com fronteria de classe $C^{2,\alpha}$, $p \in \partial \Omega$ e u, v e w funções de classe $C^1(\overline{\Omega})$ satisfazendo $v \leq u \leq w$ e v(p) = u(p) = w(p), então

$$|\nabla u(p)| \le \max\{|\nabla w(p)|, |\nabla v(p)|\}$$

Demonstração. Ver [15].

Uma combinação adequada do Lema 1.3.2 e do Teorema 1.3.1, nos sugere usar, como barreiras por baixo, relativas ao operador Q_H , funções cujos gráficos tem curvatura média menor que H e como barreiras por cima funções cujos gráficos tem curvatura média maior que H. Já o Lema 1.3.3 nos fornece uma maneira de relacionar a norma do gradiente (no bordo) das barreiras com a norma do gradiente de qualquer solução de (P^H) . Vejamos agora como funciona o Método da Continuidade. Esta técnica baseia-se em mergulhar o sistema

$$(P^{H}) = \begin{cases} Q_{H}(u) = F \operatorname{div} \left(\frac{\nabla u}{\sqrt{1 + F |\nabla u|^{2}}} \right) + 2H = 0 \quad \text{em } \Omega \\ u|_{\partial \Omega} = \varphi, \quad u \in C^{2,\alpha}(\overline{\Omega}) \end{cases}$$

onde $\varphi \in C^{2,\alpha}(\partial \Omega)$ é dada a priori e Ω é um domínio limitado cuja fronteira é de classe $C^{2,\alpha}$, em uma família de sistemas indexada pelo intervalo [0, 1] da seguinte maneira:

$$(P^{tH}) = \begin{cases} Q_{tH}(u) = F \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+F|\nabla u_t|^2}}\right) + 2Ht = 0 \quad \text{em } \Omega\\ u|_{\partial\Omega} = t\varphi, \quad u \in C^{2,\alpha}(\overline{\Omega}) \end{cases}$$

e considerar o conjunto W dado por

 $W = \{t \in [0,1] \mid (P^{tH}) \text{ tem solução}\}.$

Após definirmos o conjunto W o objetivo é mostrar que W = [0, 1]. O argumento usado para isso será garantir que W é não vazio, aberto e fechado. Usando a conexidade de [0, 1] teremos W = [0, 1] e assim (P^H) estará resolvido. Observe que W não é vazio pois t = 0 pertence a W, levando em conta que $\mathbb{H}^2 \times \{0\}$ tem curvatura média hiperbólica constante H = 0. O fato de W ser aberto decorre do Teorema das Funções Implícitas em Espaços de Banach, pois a derivada do operador Q_{tH} calculada em coordenadas locais é um homeomorfismo linear. Para o fechamento de W considere uma sequência $t_n \subset W$ tal que $t_n \longrightarrow t_0$. Como [0, 1] é compacto, $t_0 \in [0, 1]$, para garantir que W é fechado devemos mostrar que $t_0 \in W$. Seja u_{t_n} a sequência de soluções de (P^{t_nH}) associada a t_n . Dado $t \in [0, 1]$ e $p \in \partial\Omega$, admitindo a existência de barreiras $v_{p,t} \in w_{p,t}$, relativas ao operador Q_{tH} , por baixo e por cima respectivamente, obtemos uma estimativa *a priori* dada por

$$\sup_{\partial\Omega} |\nabla u| \le M$$

onde u é qualquer solução de (P^{tH}) . Em particular temos

$$\sup_{\partial\Omega} |\nabla u_{t_n}| \le M \quad \forall n \in \mathbb{N},$$

que juntamente com o resultado abaixo. (Lema 2.5 de [5])

Lema 1.3.4 Seja $u \in C^3(\Omega) \cap C^1(\overline{\Omega})$ solução de $Q_H = 0$ em Ω . Assuma que u é limitada em Ω e que |gradu| é limitado em $\partial\Omega$. Então |gradu| é limitado em Ω por uma constante que depende somente da $|u|_0$ e de $\sup_{\partial\Omega}|gradu|$.

Demonstração. Ver [5].

E lembrando que qualquer solução de $(P^{t_n H})$ é limitada em Ω , por uma constante que não depende de t_n , devido a existência das barreiras, nos permite estender a estimativa acima para Ω , isto é:

$$\sup_{\Omega} |\nabla u_{t_n}| \le \overline{M} \quad \forall n \in \mathbb{N}.$$

Através de reduções apropriadas para um problema linear elíptico, aplicando as estimativas de Holder para o gradiente (Teoremas 12.2 e 6.6 de [10]) obtemos uma estimativa uniforme da norma $C^{2,\alpha}$ da sequência u_{t_n} , isto é

$$|u_{t_n}|_{2,\alpha} \le K \ \forall n \in \mathbb{N}$$

e de posse dessa estimativa aplicando Arzelá - Ascoli temos que u_{t_n} possui uma subsequência que converge uniformemente na norma C^2 a uma função $u \in C^2(\overline{\Omega})$. A regularidade da $\partial\Omega$ e o Teorema 6.19 de [10] garantem que $u \in C^{2,\alpha}(\overline{\Omega})$. A continuidade do operador Q_{t_0H} assegura que u é solução de (P^{t_0H}) e sendo a assim $t_0 \in W$. Portanto, a parte da demonstração referente ao fechamento de W se resume a garantir a existência de barreiras relativas ao operador Q_{tH} para todo ponto $p \in \partial \Omega$ e para todo $t \in [0, 1]$.

No contexto desta tese, procuramos soluções do sistema (P^H) para o caso de um domínio anelar Ω , isto é, Ω é uma região limitada de $\mathbb{H}^2 \times \{0\}$ cuja fronteira é formada por duas curvas, digamos $\gamma \in \beta$, com γ contida no interior da região limitada cuja fronteira é β . Além disso, exigimos que as soluções, quando restritas a γ se anulem e quando restritas a β tenham uma determinada altura constante h. Sendo assim, é natural que as condições sobre as quais o sistema (P^H) tenha solução, dependam da geometria das curvas e da altura h. Uma das principais condições sobre a curva γ segue na definição abaixo:

Definição 1.3.5 Seja γ uma curva de Jordan de classe $C^{2,\alpha}$ contida em $\mathbb{H}^2 \times \{0\}$. Dizemos que γ satisfaz a condição do círculo interior de raio r se dado qualquer ponto $p \in \gamma$ existe um círculo de raio r tangente a γ em p e contido na região limitada cuja fronteria é γ .

As outras condições sobre as curvas serão dadas diretamente em termos da curvatura geodésica e das quantidades abaixo:

$$diam(\beta) = \sup\{d_{\mathbb{H}}(p,q), \ p,q \in \beta\}$$
$$d = d_{\mathbb{H}}(\gamma,\beta) = \inf\{d_{\mathbb{H}}(p,q) \ p \in \gamma, q \in \beta\}$$

onde $d_{\mathbb H}: \mathbb H^2 \times \mathbb H^2 \mapsto \mathbb R$ é a distância hiperbólica.

2 Superfícies Rotacionais de Curvatura Média Constante em $\mathbb{H}^2 \times \mathbb{R}$

Veremos que, levando em consideração as hipóteses das curvas envolvidas no resultados de existência, é conveniente usar como barreiras, pedaços de superfícies de rotação que tenham por bordo dois círculos em "fatias paralelas". Para isso é necessário o conhecimento do comportamento de tais superfícies neste espaço ambiente, principalmente através das equações que as definem. Como base para esse assunto utilizamos os artigos, [14], [19] e [17]. De acordo com os interesses desta tese, é suficiente considerar o estudo dessas superfícies de rotação, através de três situações, que serão estudadas em 3 casos separadamente: curvatura média constante H = 0, $H = \frac{1}{2} e H > \frac{1}{2}$.

Considere o modelo de $\mathbb{H}^2 \times \mathbb{R}$ do capítulo anterior, bem como a métrica associada e ele. Seja $\Gamma = \{(x,0) \in \mathbb{H}^2 \mid x \in (-1,1)\}$ uma geodésica completa passando por (0,0). A menos de uma isometria podemos supor que as superfícies de rotação de $\mathbb{H}^2 \times \mathbb{R}$ são geradas por curvas no plano geodésico $\mathbb{P} = \Gamma \times \mathbb{R}$ e que seu eixo de rotação é $\{(0,0)\} \times \mathbb{R}$. Considere uma curva $c(s) = (s, \lambda(s))$ contida em \mathbb{P} que seja um gráfico vertical sobre Γ , onde $s \in (0, \infty)$ é a distância hiperbólica até (0.0). Orientando a superfície de rotação S, obtida através de c(s), pelo campo unitário normal N com terceira componente maior ou igual a zero, temos que S tem curvatura média constante H se e somente se $\lambda(s)$ é dada por

$$\lambda_{H,r_0}(s) = \int_{r_0}^s \frac{D + 2H\cosh(t)}{\sqrt{\sinh^2 t - (D + 2H\cosh(t))^2}} dt.$$

onde D é um parâmetro e r_0 é o valor mínimo de t tal que

$$\sinh^2 t - (D + 2H\cosh(t))^2 \ge 0.$$

Para uma demonstração em detalhes ver [19].

2.1 Caso H = 0

Proposição 2.1.1 (Proposição 5.1 de [14] - adaptada) Para cada $D \ge 0$ existe M_D , uma superfície rotacional completa com curvatura média constante H = 0. A superfície M_0 é a fatia $\mathbb{H}^2 \times \{0\}$. Para D > 0 a superfície M_D é mergulhada, homeomorfa a um anel e a distância entre o eixo de rotação e a superfície M_D é $r_0 = \sinh^{-1} D$.

Demonstração.Basta fazer H=0na expressão de $\lambda_{H,r_0}(s)$ obtendo

Note que o denominador do integrando de $\lambda_{0,r_0}(s)$ se anula em $t = r_0$ e sendo assim a curva $\lambda_{0,r_0}(s)$ tem tangente vertical nesse ponto. Além disso, observe que a função acima está definida para todo $s \ge r_0$ e sendo assim

podemos escrever a superfície M_D como gráfico vertical de uma função de duas variáveis sobre o domínio $\Omega_{r_0} = \{q \in \mathbb{H}^2 \times \{0\} \mid d_{\mathbb{H}}(q, (0, 0)) \geq r_0\}$ quando consideramos a composta $\lambda_{0,r_0}(s(q))$ onde $s = s(q) = d_{\mathbb{H}}(q, (0, 0))$, ou seja:

$$\lambda_{0,r_0}(s(q)) = \int_{r_0}^{s(q)} \frac{D}{\sqrt{\sinh^2 t - D^2}} dt$$

ou ainda, através da substituição $\sinh r_0 = D$,

$$\lambda_{0,r_0}(s(q)) = \int_{r_0}^{s(q)} \frac{\sinh r_0}{\sqrt{\sinh^2 t - \sinh^2 r_0}} dt.$$

2.2 Caso $H = \frac{1}{2}$

Nessa caso a função λ_{H,r_0} tem o seguinte formato

$$\lambda_{\frac{1}{2},r_0}(s) = \int_{r_0}^s \frac{D + \cosh(t)}{\sqrt{\sinh^2 t - (D + \cosh(t))^2}} dt.$$

com três possibilidades para o parâmetro D<0 separadas através do resultado abaixo:

Lema 2.2.1 (Lema 5.2 de [14] - adaptado) Assuma que $H = \frac{1}{2}$ e D < 0. Então $\sinh^2 t - (D + \cosh(t))^2 \ge 0$ se e somente se, $t \ge \cosh^{-1}\left(\frac{1+D^2}{-2D}\right) = \ln(-D)$. Seja $r_0 \ge 0$ tal que $\ln(-D) = r_0$ então $\sinh^2 r_0 - (D + \cosh(r_0))^2 = 0$ e $r_0 = 0$ se e somente se D = -1.

(1) Se $D \in (-1,0)$, então $-D < \cosh r_0$. Consequentemente a função $\lambda_{\frac{1}{2},r_0}(s)$ é não decrescente para $s \ge r_0 > 0$ e tem derivada infinita em r_0 .

(2) Se D = -1, então $\lambda'_{\frac{1}{2}}(s) = \frac{1}{\sqrt{2}}\sqrt{\cosh(s) - 1}$ e $r_0 = 0$. Portanto a função $\lambda_{\frac{1}{2}}(s)$ está definida para todo $s \ge 0$, tem derivada 0 em s = 0 e é não decrescente para s > 0.

(3) Se D < -1 existe $R > r_0 > 0$ tal que $\cosh^{-1}(-D) = R$. Consequentemente a função $\lambda_{\frac{1}{2},r_0}(s)$ está definida para todo $s \ge r_0 > 0$ com derivada infinita em r_0 , é não crescente para $r_0 < s < R$, tem derivada 0 em R e é não decrescente para s > R.

(4) Para todo $D < 0 e r_0 \ge 0$ temos

$$\lim_{s\to+\infty}\lambda_{\frac{1}{2},r_0}(s)=+\infty$$

Demonstração. Basta analisar a integral que define a função $\lambda_{\frac{1}{2},r_0}(s)$ e sua derivada.

Cabe salientar, que nesse caso o valor de r_0 depende somente do parâmetro D, e além disso, que $D \rightarrow -1$ implica em $r_0 \rightarrow 0$. O conteúdo do Lema acima pode ser escrito em termos de superfícies conforme segue.

Proposição 2.2.2. (Proposição 5.2 de [14]) Existe uma família a um parâmetro S_D onde D < 0 de superfícies rotacionais completas com curvatura média hiperbólica constante $H = \frac{1}{2}$.

(1) Se D > -1, a superfície S_D é um anel propriamente mergulhado, simétrico com relação à $\mathbb{H}^2 \times \{0\}$ e cuja distância ao eixo de rotação é $\ln(-D)$.

(2) Se D = -1, então a superfície S_{-1} é um gráfico vertical inteiro tangente a $\mathbb{H}^2 \times \{0\}$ em (0, 0, 0) e contido em $\mathbb{H}^2 \times \{t\}$ com $t \ge 0$.

(3) Se D < -1, a superfície S_D é um anel propriamente imerso (e não mergulhado), simétrico com relação à $\mathbb{H}^2 \times \{0\}$ e cuja distância ao eixo de rotação é $\ln(-D)$.

(4) Em todos os casos anteriores a superfície é ilimitada na direção da coordenada t. Além disso, qualquer superfície rotacional com curvatura média constante $H = \frac{1}{2}$ é, a menos de uma isometria do ambiente, parte de alguma superfície desta família.

Demonstração. Consequência direta do Lema anterior.

DadoD<0,observe que a função abaixo está definida para todo $s\geq r_0=\ln(-D)$

$$\lambda_{\frac{1}{2},r_0}(s) = \int_{r_0}^s \frac{D + \cosh(t)}{\sqrt{\sinh^2 t - (D + \cosh(t))^2}} dt$$

e considere o domínio $\Omega_{r_0} = \{q \in \mathbb{H}^2 \times \{0\} \mid d_{\mathbb{H}}(q, (0, 0)) \geq r_0\}$. Defina a composta $\lambda_{\frac{1}{2}, r_0}(s(q))$, onde $s = s(q) = d_{\mathbb{H}}(q, (0, 0))$ e $r_0 = \ln(-D)$, por:

$$\lambda_{\frac{1}{2},r_0}(s(q)) = \int_{r_0}^{s(q)} \frac{D + \cosh(t)}{\sqrt{\sinh^2 t - (D + \cosh(t))^2}} dt$$

Sendo assim podemos escrever S_D como gráfico de $\lambda_{\frac{1}{2},r_0}(s(q))$ sobre Ω_{r_0} e além disso, para o caso D = -1 a expressão obtida para $\lambda_{\frac{1}{2},r_0}(s(q))$ admite a seguinte simplificação:

$$\lambda_{\frac{1}{2}}(s(q)) = \int_0^{s(q)} \frac{-1 + \cosh(t)}{\sqrt{\sinh^2 t - (-1 + \cosh(t))^2}} dt = 2\cosh\left(\frac{s(q)}{2}\right) - 2$$

com $\Omega_{r_0} = \mathbb{H}^2 \times \{0\}$ pois $r_0 = 0$.

2.3 Caso $H > \frac{1}{2}$

Nessa caso o parâmetro D admite somente valores tais que $D \leq -\sqrt{4H^2 - 1}$. Dentro dessa situação serão consideradas as possibilidades D < -2H, D = -2H e $-2H < D \leq -\sqrt{4H^2 - 1}$.

Lema 2.3.1 (Lema 5.3 de [14]) Sejam $H \in D$ satisfazendo $H > \frac{1}{2} \in D < -\sqrt{4H^2 - 1}$. Então existem números $0 \le r_0 < r_1$ tais que

$$r_0 = \cosh^{-1}\left(\frac{2DH + \sqrt{1 - 4H^2 + D^2}}{1 - 4H^2}\right)$$

е

$$r_1 = \cosh^{-1}\left(\frac{2DH - \sqrt{1 - 4H^2 + D^2}}{1 - 4H^2}\right)$$

Portanto $\sinh^2 t - (D + 2H\cosh(t))^2 > 0$ se e somente se, $r_0 < t < r_1$ e além disso $\sinh^2 r_0 - (D + 2H\cosh(r_0))^2 = \sinh^2 r_1 - (D + 2H\cosh(r_1))^2 = 0.$

(1) Se D < -2H, então $r_0 > 0$ e existe um único número $R \in (r_0, r_1)$ satisfazendo $D + 2H \cosh(R) = 0$. Além disso, $D + 2H \cosh(t) \leq 0$ em $[r_0, R)$ e $D + 2H \cosh(t) \geq 0$ em $(R, r_1]$. Consequentemente, a função $\lambda_{H,r_0}(s)$ está definida em $[r_0, r_1]$, tem derivada infinita em r_0 e r_1 , é não crescente em (r_0, R) e não decrescente em (R, r_1) .

(2) Se D = -2H, então $r_0 = 0$ e

$$\lambda'_{H}(s) = \frac{2H\sqrt{\cosh(s) - 1}}{\sqrt{(1 - 4H^2)\cosh(s) + 4H^2 + 1}}.$$

Consequentemente, a função $\lambda_H(s)$ está definida em $[0, r_1]$, tem derivada 0 em s = 0, é não decrescente e tem derivada infinita em r_1 .

(3) Se $-2H < D < -\sqrt{4H^2 - 1}$, então $r_0 > 0$ e $D + 2H \cosh(t) \ge 0$ em $[r_0, r_1]$. Portanto a função $\lambda_H(s)$ está definida em $[r_0, r_1]$, é não decrescente e tem derivada infinita em r_0 e r_1 .

Demonstração. Cálculos diretos aplicados a expressão de $\lambda_H(s)$.

Proposição 2.3.2 (Proposição 5.3 de [14]) Assuma que $H > \frac{1}{2}$. Então existe uma família a um parâmetro A_D de superfícies rotacionais completas com curvatura média hiperbólica constante H para $D \leq -\sqrt{4H^2 - 1}$. Além disso:

(1) Para D < -2H, a superfície A_D é um anel imerso (não mergulhado), contido no fecho da região limitada pelos dois cilindros verticais $s = r_0$ e $s = r_1$. Além disso, $r_0 \longrightarrow +\infty$ e $r_1 \longrightarrow +\infty$ quando $D \longrightarrow -\infty$ e $r_0 \longrightarrow 0$ e $r_1 \longrightarrow \cosh^{-1}\left(\frac{4H^2+1}{4H^2-1}\right)$ quando $D \longrightarrow -2H$. Essas superfícies são análogas aos nodóides de Delaunay em \mathbb{R}^3 .

(2) Para D = -2H, a superfície A_{-2H} é uma esfera mergulhada cuja distância máxima ao eixo de rotação é $r_1 = \cosh^{-1}\left(\frac{4H^2+1}{4H^2-1}\right)$. (A figura abaixo caracteriza a parte da superfície dada como gráfico)

(3) Para $-2H < D < -\sqrt{4H^2 - 1}$, a superfície A_D é um anel mergulhado, invariante por uma translação vertical e contido no fecho da região limitada pelos dois cilindros verticais $s = r_0$ e $s = r_1$. Além disso, $r_0 \longrightarrow 0$ e $r_1 \longrightarrow$ $\cosh^{-1}\left(\frac{4H^2+1}{4H^2-1}\right)$ quando $D \longrightarrow -2H$ e ambos r_0 e $r_1 \longrightarrow \cosh^{-1}\left(\frac{2H}{\sqrt{4H^2-1}}\right)$ quando $D \longrightarrow -\sqrt{4H^2 - 1}$. Além disso, $r_0 < \cosh^{-1}\left(\frac{2H}{\sqrt{4H^2 - 1}}\right) < r_1$. Essas superfícies são análogas aos ondulóides de Delaunay em \mathbb{R}^3 .

(4) Para $D = -\sqrt{4H^2 - 1}$, a superfície $A_{\sqrt{4H^2 - 1}}$ é um cilindro vertical sobre um círculo de raio hiperbólico $\cosh^{-1}\left(\frac{2H}{\sqrt{4H^2 - 1}}\right)$.

Demonstração.Uma consequência direta do Lema anterior.

3 Resultados Principais

Neste capítulo, apresentamos as demonstrações dos Teoremas 3.1 e 3.2 citados na Introdução. Além disso, na Seção 3.3, construimos um exemplo não trivial do domínio Ω relacionado aos resultados de existência.

3.1 Caso $H \in [0, \frac{1}{2}]$

Teorema 3.1. Seja Ω um domínio anelar de classe $C^{2,\alpha}$ onde $\alpha \in (0,1)$, contido em $\mathbb{H}^2 \times \{0\}$ cujo bordo consiste de duas curvas $\gamma \in \beta$ com γ contida no interior da região limitada cuja fronteira é β . Sejam $r > 0 \in D < -1$ satisfazendo:

$$\ln(-D) < r < \cosh^{-1}(-D)$$

Suponha que diam(β) < r + R, onde R = cosh⁻¹(-D), que γ satisfaz a condição do círculo interior de raio r e que $k_{\beta} \ge$ coth R. Denote por d = $d_{\mathbb{H}}(\gamma, \beta)$. Nessas condições, dados

$$0 \le h \le \frac{d(1-D^2)}{4D\sinh(r+\frac{d}{2})}$$

 $e \ H \in [0, \frac{1}{2}]$ existe $u \in C^{2,\alpha}(\overline{\Omega})$ tal que $Q_H(u) = 0$ em Ω , $u_{|\gamma} = h \ e \ u_{|\beta} = 0$, onde a curvatura média é calculada com relação ao campo N, normal unitário (no sentido hiperbólico) satisfazendo $\langle N, \frac{\partial}{\partial t} \rangle_{\mathbb{H}^2 \times \mathbb{R}} \leq 0$.

Demonstração. O primeiro passo da demonstração consiste em mergulhar o problema:

$$(P^{H}) = \begin{cases} Q_{H}(u) = F \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+F|\nabla u|^{2}}}\right) + 2H = 0 \quad \text{em } \Omega\\ u|_{\gamma} = h \quad u|_{\beta} = 0 \quad u \in C^{2,\alpha}(\overline{\Omega}) \end{cases}$$

em uma família de problemas do tipo:

$$(P^{tH}) = \begin{cases} Q_{tH}(u_t) = F \operatorname{div}\left(\frac{\nabla u_t}{\sqrt{1+F|\nabla u_t|^2}}\right) + 2Ht = 0 \quad \text{em } \Omega\\ u|_{\gamma} = \operatorname{th} \quad u|_{\beta} = 0 \quad u_t \in C^{2,\alpha}(\overline{\Omega}) \quad t \in [0,1] \end{cases}$$

onde $H \in [0, \frac{1}{2}], F = F(x, y) = \left(\frac{1 - (x^2 + y^2)}{2}\right)^2$, *h* é dado no enunciado e ∇ , div e |.| representam o gradiente, o divergente e a norma euclidianos. Considere o seguinte conjunto:

$$W = \{t \in [0,1] \mid (P^{tH}) \text{ tem solução}\}$$

Observe que W não é vazio pois t = 0 pertence a W. O fato de W ser aberto decorre do Teorema das Funções Implícitas em Espaços de Banach pois a derivada do operador Q_{tH} calculada em coordenadas locais é um homeomorfismo linear. Conforme antecipado no Capítulo 1 o fechamento de W depende da existência de barreiras relativas ao operador Q_{tH} em todos os pontos da $\partial\Omega$ para todo $t \in [0, 1]$. Como a $\partial\Omega$ é formada por duas curvas $\gamma \in \beta$ então é conveniente utilizar duas barreiras, uma por cima e outra por baixo, em cada ponto de cada uma das curvas para todo $t \in [0, 1]$. Começamos obtendo uma barreira por cima com relação à curva β . Considere $H \in [0, \frac{1}{2}], 0 \leq h \leq \frac{d(D^2-1)}{4D^2 sinh(r+\frac{d}{2})}$ e $t \in [0, 1]$. Sejam $p \in \beta$ e $R = \cosh^{-1}(-D)$. Considere L suficientemente grande tal que

$$L > R$$
,

e que

$$2\cosh\left(\frac{L}{2}\right) - 2\cosh\left(\frac{L-\frac{d}{2}}{2}\right) > h$$

Seja $C_L(\overline{p})$ um círculo de raio L, centro \overline{p} , tangente a β em p, contido em $\mathbb{H}^2 \times \{0\}$ e que contenha β . Considere a função

$$(\lambda_{\frac{1}{2},\overline{p}}^*) \circ s : \overline{B_{\overline{p}}} \mapsto \mathbb{R}$$

dada por

$$\left((\lambda_{\frac{1}{2},\overline{p}}^*)\circ s\right)(q) = \lambda_{\frac{1}{2},\overline{p}}^*(s(q)) = -2\cosh\left(\frac{s(q)}{2}\right) + 2\cosh\left(\frac{L}{2}\right)$$

onde $s = s(q) = d_{\mathbb{H}}(q, \overline{p})$ e $B_{\overline{p}} = \{q \in \mathbb{H}^2 \times \{0\} \mid d_{\mathbb{H}}(q, \overline{p}) < L\}$. Note que $\partial(B_{\overline{p}}) = C_L(\overline{p}),$

$$((\lambda^*_{\frac{1}{2},\overline{p}})\circ s)_{|_{\partial(B_{\overline{p}})}}=0, \ \ ((\lambda^*_{\frac{1}{2},\overline{p}})\circ s)_{|_{(B_{\overline{p}})}}>0$$

e em particular

$$\lambda_{\frac{1}{2},\overline{p}}^*(s(p)) = -2\cosh\left(\frac{L}{2}\right) + 2\cosh\left(\frac{L}{2}\right) = 0.$$

Como $\overline{\Omega} \cap \partial(B_{\overline{p}}) = \{p\}, \overline{\Omega} \subset \overline{B_{\overline{p}}} \in d = d_{\mathbb{H}}(\gamma, \beta)$ então γ está contida em um círculo de centro \overline{p} e raio $L - \frac{d}{2}$ pois todos os pontos de γ estão a uma distância pelo menos d de $C_L(\overline{p})$. Usando a segunda desigualdade acima envolvendo L temos que:

$$\lambda_{\frac{1}{2},\overline{p}}^{*}\left(L-\frac{d}{2}\right) = 2\cosh\left(\frac{L}{2}\right) - 2\cosh\left(\frac{L-\frac{d}{2}}{2}\right) > h \ge th$$

o que nos leva a

$$((\lambda_{\frac{1}{2},\overline{p}}^*) \circ s)_{|\gamma} > th, \quad ((\lambda_{\frac{1}{2},\overline{p}}^*) \circ s)_{|\beta} \ge 0$$

pois a função $\lambda_{\frac{1}{2},\overline{p}}^*(s(q))$ aumenta conforme os pontos q se aproximam de \overline{p} . Segue abaixo o gráfico da função $((\lambda_{\frac{1}{2},\overline{p}}^*) \circ s)(q)$.

Defina a seguinte função:

$$w_{p,t}^{-} = (\lambda_{\frac{1}{2},\overline{p}}^{*} \circ s)_{|_{\overline{\Omega}}} : \overline{\Omega} \mapsto \mathbb{R}$$

Note que a expressão de $(\lambda_{\frac{1}{2},\overline{p}}^*)$ não depende t e, portanto, $w_{p,t}^-$ também não, e isto significa, que a mesma função $((\lambda_{\frac{1}{2},\overline{p}}^*) \circ s)$ quando restrita a $\overline{\Omega}$, será usada como barreira de Q_{tH} para todo $t \in [0, 1]$. Em particular temos

$$w_{p,t}^{-}(p) = \lambda_{\frac{1}{2},\overline{p}}^{*}(s(p)) = 0$$

Como o gráfico de $w_{p,t}^-$ tem curvatura média hiperbólica constante $H = \frac{1}{2}$ (Ver capítulo anterior - Lema 2.2.1), o Lema 1.3.2 do Capítulo 1 garante que $Q_{tH}(w_{p,t}^-) \leq 0$ e pelas condições de $w_{p,t}^-$ sobre $\partial\Omega$ juntamente com o Princípio da Comparação (Teorema 1.3.1 do Capítulo 1) temos que $w_{p,t}^- \geq u_t$ para toda u_t solução de (P^{tH}) . Vejamos agora como obter uma barreira (por baixo) que se anule ao longo de β . Seja $p \in \beta$ e defina a seguinte função:

$$v_{p,t}^-:\overline{\Omega}\mapsto\mathbb{R}$$

dada por:

$$v_{p,t}^{-}(q) = 0 \ \forall q \in \overline{\Omega}$$

Como o gráfico de $v_{p,t}^-$ tem curvatura média hiperbólica constante H = 0temos que $Q_{tH}(v_{p,t}^-) \geq 0$, $v_{p,t}^-|_{\gamma} = v_{p,t}^-|_{\beta} = 0 \leq th$ então, novamente pelo Princípio da Comparação, $v_{p,t}^- \leq u_t$ para toda u_t solução (P^{tH}) . Agora passamos à situação em que devemos exibir uma barreira por cima com relação à curva γ . Seja $p \in \gamma$. Como γ satisfaz a condição do círculo interior de raio rpodemos considerar C_p^r um círculo de raio r contido na região limitada cuja fronteira é γ e tangente a γ em p. Denote por \overline{p} o centro de C_p^r . Considere a função

$$(\widetilde{\lambda}_{\frac{1}{2},r,t} \circ s) : B_{\overline{p}} \mapsto \mathbb{R}$$

dada por

$$(\widetilde{\lambda}_{\frac{1}{2},r,t}\circ s)(q) = \widetilde{\lambda}_{\frac{1}{2},r,t}(s(q)) = -\lambda_{\frac{1}{2},r_0}(s(q)) + \lambda_{\frac{1}{2},r_0}(r) + th$$

onde $s = s(q) = d_{\mathbb{H}}(q, \overline{p}), B_{\overline{p}} = \{q \in \mathbb{H}^2 \times \{0\} \mid r \leq d_{\mathbb{H}}(q, \overline{p}) \leq \cosh^{-1}(-D)\},$ $r_0 = \ln(-D) e$

$$\lambda_{\frac{1}{2},r_0}(s) = \int_{r_0}^s \frac{D + \cosh(t)}{\sqrt{\sinh^2 t - (D + \cosh(t))^2}} dt.$$

Como diam $(\beta) \leq r + \cosh^{-1}(-D)$ temos que $\overline{\Omega} \subset B_{\overline{p}}, \forall p \in \gamma$. Além disso

$$\widetilde{\lambda}_{\frac{1}{2},r,t}(s(p)) = -\lambda_{\frac{1}{2},r_0}(s(p)) + \lambda_{\frac{1}{2},r_0}(r) + th,$$

ou seja

$$\widetilde{\lambda}_{\frac{1}{2},r,t}(s(p)) = -\lambda_{\frac{1}{2},r_0}(r) + \lambda_{\frac{1}{2},r_0}(r) + th = th$$

Note que para $q\in\overline{\Omega}$ temos $s(q)=d_{\mathbb{H}}(q,\overline{p})\geq r$ e assim

$$\widetilde{\lambda}_{\frac{1}{2},r,t}(s(q)) = \underbrace{-\lambda_{\frac{1}{2},r_0}(s(q)) + \lambda_{\frac{1}{2},r_0}(r)}_{\geq 0} + th \geq th \geq 0,$$

 $\text{em particular } (\widetilde{\lambda}_{\frac{1}{2},r,t} \circ s)_{|_{\gamma}} \geq th \in (\widetilde{\lambda}_{\frac{1}{2},r,t} \circ s)_{|_{\beta}} \geq 0. \text{ Segue o gráfico de } (\widetilde{\lambda}_{\frac{1}{2},r,t} \circ s).$

Defina a seguinte função:

$$w_{p,t}^+ = (\widetilde{\lambda}_{\frac{1}{2},r,t} \circ s)_{|_{\overline{\Omega}}} : \overline{\Omega} \mapsto \mathbb{R}.$$

Note que $w_{p,t}^+(p) = \tilde{\lambda}_{\frac{1}{2},r,t}(s(p)) = -\lambda_{\frac{1}{2},r_0}(r) + \lambda_{\frac{1}{2},r_0}(r) + th = th$. Usando o mesmo argumento aplicado à função $w_{p,t}^-$ obtemos $w_{p,t}^+ \ge u_t$ para toda u_t solução de (P^{tH}) . Ainda no caso em que $p \in \gamma$ vejamos como obter uma barreira por baixo relacionada a esta curva. Seja C_p^r um círculo de raio rcontido na região limitada cuja fronteira é γ e tangente a γ em p. Denote por \overline{p} o centro de C_p^r . Considere a função

$$(\lambda_{0,r,t} \circ s) : B_{\overline{p}} \mapsto \mathbb{R}$$

dada por

$$(\widetilde{\lambda}_{0,r,t} \circ s)(q) = \widetilde{\lambda}_{0,r,t}(s(q)) = -\lambda_{0,r_0}(s(q)) + \lambda_{0,r_0}(r) + th$$

onde $s(q) = d_{\mathbb{H}}(q, \overline{p}), B_{\overline{p}} = \{q \in \mathbb{H}^2 \times \{0\} \mid d_{\mathbb{H}}(q, \overline{p}) \ge r\}, r_0 = \ln(-D)$ e

$$\lambda_{0,r_0}(s) = \int_{r_0}^s \frac{\sinh r_0}{\sqrt{\sinh^2 t - \sinh^2 r_0}} dt$$

Observe que $\overline{\Omega} \subset B_{\overline{p}}$ e que

$$\widetilde{\lambda}_{0,r,t}(s(p)) = -\lambda_{0,r_0}(s(p)) + \lambda_{0,r_0}(r) + th,$$

isto é,

$$\widetilde{\lambda}_{0,r,t}(s(p)) = -\lambda_{0,r_0}(r) + \lambda_{0,r_0}(r) + th = th.$$

Além disso, afirmamos que $\widetilde{\lambda}_{0,r,t}(s(q)) \leq 0$ para todo ponto q tal que $d_{\mathbb{H}}(q,\overline{p}) = (r + \frac{d}{2})$. De fato,

$$\lambda_{0,r_0} \left(r + \frac{d}{2} \right) - \lambda_{0,r_0}(r) = \int_{r_0}^{r + \frac{d}{2}} \frac{\sinh r_0}{\sqrt{\sinh^2 t - \sinh^2 r_0}} dt - \int_{r_0}^r \frac{\sinh r_0}{\sqrt{\sinh^2 t - \sinh^2 r_0}} dt$$

e o lado direito desta igualdade pode ser escrito como

$$\int_{r}^{r+\frac{d}{2}} \frac{\sinh r_0}{\sqrt{\sinh^2 t - \sinh^2 r_0}} dt$$

que por sua vez admite a seguinte desigualdade

$$\int_{r}^{r+\frac{d}{2}} \frac{\sinh r_0}{\sqrt{\sinh^2 t - \sinh^2 r_0}} dt \ge \left(r + \frac{d}{2} - r\right) \min_{t \in [r, r+\frac{d}{2}]} \frac{\sinh r_0}{\sqrt{\sinh^2 t - \sinh^2 r_0}}.$$

Mas

$$\left(r + \frac{d}{2} - r\right) \min_{t \in [r, r + \frac{d}{2}]} \frac{\sinh r_0}{\sqrt{\sinh^2 t - \sinh^2 r_0}} = \frac{d}{2} \frac{\sinh r_0}{\sqrt{\sinh^2 (r + \frac{d}{2}) - \sinh^2 r_0}}$$

e, assim

$$\frac{d}{2}\frac{\sinh r_0}{\sqrt{\sinh^2(r+\frac{d}{2})-\sinh^2 r_0}} \ge \frac{d}{2}\frac{\sinh r_0}{\sinh(r+\frac{d}{2})}$$

Substituindo r_0 por ln(-D) obtemos

$$\frac{d}{2}\frac{\sinh r_0}{\sinh(r+\frac{d}{2})} = \frac{d(\sinh(\ln(-D))}{2\sinh(r+\frac{d}{2})} = \frac{d(1-D^2)}{4D\sinh(r+\frac{d}{2})}$$

Por hipótese

$$\frac{d(1-D^2)}{4D\sinh(r+\frac{d}{2})} \ge h \ge th$$

logo

$$\lambda_{0,r_0}\left(r+\frac{d}{2}\right) - \lambda_{0,r_0}(r) - th \ge 0.$$

Portanto

$$-\lambda_{0,r_0}\left(r+\frac{d}{2}\right)+\lambda_{0,r_0}(r)+th\leq 0,$$

isto é, $\widetilde{\lambda}_{0,r,t}(s(q)) \leq 0 \text{ com } s(q) = d_{\mathbb{H}}(q,\overline{p}) = (r + \frac{d}{2})$ e, sendo assim,

$$\{graf(\widetilde{\lambda}_{0,r,t})\} \bigcap \{\mathbb{H}^2 \times \{0\}\} = \widetilde{C},$$

onde \widetilde{C} representa um círculo de raio $l \operatorname{com} l \leq r + (d/2)$ e centro \overline{p} . Levando em consideração o raio l, a posição de \overline{p} e a distância d entre γ e β temos que \widetilde{C} está contido no interior da região limitada cuja fronteira é β . Observe que $(\widetilde{\lambda}_{0,r,t} \circ s)_{|\gamma} \leq th$ e $(\widetilde{\lambda}_{0,r,t} \circ s)_{|\beta} < 0$ pois a função $(\widetilde{\lambda}_{0,r,t} \circ s)$ é decrescente.

Defina a função

$$v_{p,t}^+ = (\widetilde{\lambda}_{0,r,t} \circ s)_{|_{\overline{\Omega}}} : \overline{\Omega} \mapsto \mathbb{R}.$$

Note que $v_{p,t}^+(p) = \tilde{\lambda}_{0,r}(s(p)) = th$. Pelo fato do gráfico de $v_{p,t}^+$ ter curvatura média constante H = 0 e pelo comportamento da função $v_{p,t}^+$ em $\partial\Omega$ temos que $v_{p,t}^+ \leq u_t$ para toda u_t solução de (P^{tH}) . Levando em conta o comportamento das funções $v_{p,t}^-, w_{p,t}^-, v_{p,t}^+$ e $w_{p,t}^+$ com relação a qualquer solução u_t de (P^{tH}) temos:

$$v_{p,t}^{-} \leq u_t \leq w_{p,t}^{-} em \overline{\Omega},$$
$$v_{p,t}^{+} \leq u_t \leq w_{p,t}^{+} em \overline{\Omega},$$

$$v_{p,t}^{-}(p) = w_{p,t}^{-}(p) = 0 \text{ se } p \in \beta,$$

$$v_{p,t}^+(p) = w_{p,t}^+(p) = th \text{ se } p \in \gamma.$$

Além disso, afirmamos que existe $M \geq 0$ tal que

$$\max\{|\nabla v_{p,t}^{\pm}(p)|, |\nabla w_{p,t}^{\pm}(p)|\} \le M \quad \forall p \in \partial\Omega, \ \forall t \in [0,1].$$

O artificio usado para garantir a afirmação será baseado na análise do ângulo entre o vetor normal unitário (no sentido euclidiano) e o vetor $\frac{\partial}{\partial t} = (0, 0, 1)$. De fato, fixado $t \in [0, 1]$, para qualquer $p \in \gamma$, por construção, mais precisamente do fato de que $r > r_0 = \ln(-D)$ temos

$$|\langle \overline{N}(w_{p,t}^+(p)), \frac{\partial}{\partial t}\rangle| > 0$$

onde $\overline{N}(w_{p,t}^+(p))$ é o vetor normal (no sentido euclidiano) ao gráfico da função $w_{p,t}^+$ no ponto $(p, w_{p,t}^+(p))$ e $\langle . \rangle$ representa o produto interno euclidiano. Por continuidade, existem $\delta_p > 0$ e uma vizinhança V_p de p em γ tal que

$$|\langle \overline{N}(w_{q,t}^+(q)), \frac{\partial}{\partial t} \rangle| \ge \delta_p > 0 \ \forall q \in V_p.$$

Por compacidade, podemos cobrir γ por um número finito de vizinhanças $V_{p_1}, V_{p_2}, ..., V_{p_n}$. Sendo $\delta = \min\{\delta_{p_1}, \delta_{p_2}, ..., \delta_{p_n}\}$, então

$$|\langle \overline{N}(w_{q,t}^+(q)), \frac{\partial}{\partial t} \rangle| \ge \delta > 0 \ \forall q \in \gamma.$$

A princípio, δ poderia depender de t, mas isto não ocorre pois a diferença entre as funções w_{q,t_0}^+ e w_{q,t_1}^+ com $t_0 \neq t_1$ é uma translação vertical e isto não altera o valor de $|\langle \overline{N}(w_{q,t}^+(q)), \frac{\partial}{\partial t} \rangle|$. Portanto,

$$|\langle \overline{N}(w_{q,t}^+(q)), \frac{\partial}{\partial t} \rangle| \ge \delta > 0 \ \forall q \in \gamma \ \forall t \in [0,1].$$

Disto segue que existe $M_1 \ge 0$ tal que

$$|\nabla w_{p,t}^+(p)| \le M_1 \quad \forall p \in \gamma, \ \forall t \in [0,1].$$

Analogamente, para $w_{q,t}^- e v_{q,t}^{\pm}$ obtemos constantes M_2 , $M_3 e M_4$. Definindo $M = \max\{M_1, M_2, M_3, M_4\}$ decorre a afirmação. Nessas condições podemos afirmar que as funções $v_{p,t}^-, w_{p,t}^-, v_{p,t}^+ e w_{p,t}^+$ são barreiras relativas ao operador Q_{tH} com gradiente limitado em p para todo $p \in \partial \Omega$ e para todo $t \in [0, 1]$ por uma mesma constante M (independente de p e de t). Sendo assim, usando o Lema 1.3.3, temos

$$|\nabla u_t(p)| \le \max\{|\nabla v_{p,t}^{\pm}(p)|, |\nabla w_{p,t}^{\pm}(p)|\} \le M \quad \forall p \in \partial\Omega \ \forall t \in [0,1].$$

Portanto

$$\sup_{\partial\Omega} |\nabla u_t| \le M \ \forall t \in [0,1].$$

Observe que a constante M é a mesma para toda solução u_t de (P^{tH}) , sendo assim podemos usar os mesmos argumentos apresentados na subseção 1.3 do Capítulo 1, garantido que W é fechado e encerrando assim a demonstração.

3.2 Caso $H > \frac{1}{2}$

Teorema 3.2. Seja Ω um domínio anelar de classe $C^{2,\alpha}$ onde $\alpha \in (0,1)$, contido em $\mathbb{H}^2 \times \{0\}$ cujo bordo consiste de duas curvas $\gamma \in \beta$ com γ contida no interior da região limitada cuja fronteira é β . Dado $H > \frac{1}{2}$ sejam

$$0 < r \le \frac{1}{2} \cosh^{-1} \left(\frac{4H^2(\frac{4H^2+1}{4H^2-1}) - \sqrt{4H^2(\frac{4H^2+1}{4H^2-1})^2 - (4H^2-1)}}{4H^2 - 1} \right)$$

e D < -2H satisfazendo:

$$\cosh^{-1}\left(\frac{2DH + \sqrt{1 - 4H^2 + D^2}}{1 - 4H^2}\right) < r < \cosh^{-1}\left(\frac{-D}{2H}\right)$$

Suponha que γ satisfaz a condição do circulo interior de raio r e que diam $(\beta) \leq r+R$, onde $R = \cosh^{-1}\left(\frac{-D}{2H}\right)$. Além disso, suponha que $k_{\beta} \geq \coth R$. Denote por $d = d_{\mathbb{H}}(\gamma, \beta)$. Nessas condições, dado

$$0 \le h \le \min\left\{\frac{d\left(\sinh(\cosh^{-1}\left(\frac{2DH + \sqrt{1 - 4H^2 + D^2}}{1 - 4H^2}\right)\right)}{2\sinh(r + \frac{d}{2})}, \frac{Hd(\cosh(R - \frac{d}{2}) - 1)}{2\sinh(R - \frac{d}{2})}\right\}$$

existe $u \in C^{2,\alpha}(\overline{\Omega})$ tal que $Q_H(u) = 0$ em Ω , $u_{|\gamma} = h$ e $u_{|\beta} = 0$, onde a curvatura média é calculada com relação ao campo N, normal unitário (no sentido hiperbólico) satisfazendo $\langle N, \frac{\partial}{\partial t} \rangle_{\mathbb{H}^2 \times \mathbb{R}} \leq 0$.

Demonstração.Dado $H>\frac{1}{2},$ sejam $d,\,r$
eD<-2H conforme o enunciado. Dado

$$0 \le h \le \min\left\{\frac{d\left(\sinh(\cosh^{-1}\left(\frac{2DH + \sqrt{1 - 4H^2 + D^2}}{1 - 4H^2}\right)\right)}{2\sinh(r + \frac{d}{2})}, \frac{Hd(\cosh(R - \frac{d}{2}) - 1)}{2\sinh(R - \frac{d}{2})}\right\}$$

Considere a seguinte família de problemas

$$(P^{tH}) = \begin{cases} Q_{tH}(u_t) = Fdiv \left(\frac{\nabla u_t}{\sqrt{1+F|\nabla u_t|^2}}\right) + 2Ht = 0 \quad \text{em } \Omega\\ u|_{\gamma} = \text{th} \quad u|_{\beta} = 0 \quad u_t \in C^{2,\alpha}(\overline{\Omega}) \quad t \in [0,1] \end{cases}$$

e o conjunto W dado por

 $W = \{t \in [0,1] \mid (P^{tH}) \text{ tem solução}\},\$

onde $F = F(x, y) = \left(\frac{1-(x^2+y^2)}{2}\right)^2$, ∇ , $div \in |.|$ representam o gradiente, o divergente e a norma euclidianos. As principais mudanças dessa demonstração com relação à anterior são as funções $v_{p,t}^+$, $v_{p,t}^-$, $w_{p,t}^+$, $w_{p,t}^-$: $\overline{\Omega} \mapsto \mathbb{R}$, com $p \in \partial\Omega$, a serem consideradas como barreiras. Vejamos então quem serão essas funções nesse caso. Dado $t \in [0, 1]$ começamos obtendo uma barreira por cima para relacionada a curva β . Sejam $p \in \beta$ e $R = \cosh^{-1}(\frac{-D}{2H})$. Como $k_{\beta} \geq \coth R$, podemos considerar $C_R(\overline{p})$ um círculo de raio R centro \overline{p} tangente a β em p, contido em $\mathbb{H}^2 \times \{0\}$ e que contenha β . Considere a função

$$(\lambda_H^*) \circ s : \overline{B_p} \mapsto \mathbb{R}$$

dada por

$$((\lambda_H^*) \circ s)(q) = \lambda_H^*(s(q)) = -\lambda_H(s(q)) + \lambda_H(R)$$

onde $s = s(q) = d_{\mathbb{H}}(q, \overline{p}), \ B_{\overline{p}} = \{q \in \mathbb{H}^2 \times \{0\} \mid 0 \le d_{\mathbb{H}}(q, \overline{p}) < R\}$ e

$$\lambda_H(s) = \int_0^s \frac{-2H + 2H\cosh(t)}{\sqrt{\sinh^2 t - (-2H + 2H\cosh(t))^2}} dt.$$

Observe que $\partial(B_{\overline{p}}) = C_R(\overline{p}), \, \Omega \subset B_{\overline{p}} \in \overline{\Omega} \bigcap \overline{B_{\overline{p}}} = \{p\}.$

Defina a seguinte função

$$w_{p,t}^- = (\lambda_H^* \circ s)_{|_{\overline{\Omega}}} : \overline{\Omega} \mapsto \mathbb{R}.$$

Observe que a expressão de $((\lambda_H^*) \circ s)$ não depende t, e isto significa que a mesma função $((\lambda_H^*) \circ s)$ quando restrita a $\overline{\Omega}$, será usada como barreira (por cima) de Q_{tH} para todo $t \in [0, 1]$. Além disso,

$$w_{p,t}^{-}|_{C_{R}(\overline{p})} = \lambda_{H}^{*}(C_{R}(\overline{p})) = -\lambda_{H}(R) + \lambda_{H}(R) = 0.$$

Em particular

$$w_{p,t}^{-}(p) = \lambda_H^*(R) = -\lambda_H(R) + \lambda_H(R) = 0.$$

Como a função é decrescente o valor de $\lambda_H^*(s(q))$ aumenta conforme os pontos q se aproximam de \overline{p} e sendo assim $w_{p,t}^-|_{\beta} \ge 0$. Por outro lado, como $d = d_{\mathbb{H}}(\gamma,\beta)$ temos que γ está contida em um círculo de raio R - d e centro \overline{p} . Seja $C_{R-d}(\overline{p})$ esse círculo. Sendo assim

$$\lambda_H^*(C_{R-d}(\overline{p})) = -\lambda_H(R-d) + \lambda_H(R) > -\lambda_H\left(R - \frac{d}{2}\right) + \lambda_H(R).$$

Mas

$$-\lambda_H\left(R-\frac{d}{2}\right)+\lambda_H(R)$$

é igual a

$$\int_{0}^{R} \frac{-2H + 2H\cosh(t)}{\sqrt{\sinh^{2}t - (-2H + 2H\cosh(t))^{2}}} dt - \int_{0}^{R - \frac{d}{2}} \frac{-2H + 2H\cosh(t)}{\sqrt{\sinh^{2}t - (-2H + 2H\cosh(t))^{2}}} dt$$

Observe que a expressão acima pode ser escrita como

$$\int_{R-\frac{d}{2}}^{R} \frac{-2H + 2H\cosh(t)}{\sqrt{\sinh^2 t - (-2H + 2H\cosh(t))^2}} dt$$

e que o termo obtido admite a seguinte desigualdade:

$$\int_{R-\frac{d}{2}}^{R} \frac{-2H + 2H\cosh(t)}{\sqrt{\sinh^{2}t - (-2H + 2H\cosh(t))^{2}}} dt \ge \left(R - \left(R - \frac{d}{2}\right)\right) \min_{t \in [R - \frac{d}{2}, R]} \frac{-2H + 2H\cosh(t)}{\sqrt{\sinh^{2}t - (-2H + 2H\cosh(t))^{2}}}$$

Como o argumento da integral é uma função crescente, a segunda linha da deigualdade acima é

$$\frac{d}{2} \frac{-2H + 2H\cosh(R - \frac{d}{2})}{\sqrt{\sinh^2(R - \frac{d}{2}) - (-2H + 2H\cosh(R - \frac{d}{2}))^2}}$$

Mas

$$\frac{d}{2} \frac{-2H + 2H\cosh(R - \frac{d}{2})}{\sqrt{\sinh^2(R - \frac{d}{2}) - (-2H + 2H\cosh(R - \frac{d}{2}))^2}} \ge \frac{d}{2} \frac{(-2H + 2H\cosh(R - \frac{d}{2}))}{\sinh(R - \frac{d}{2})}$$

e o lado direito da desigualdade acima é

$$\frac{Hd[\cosh(R-\frac{d}{2})-1]}{\sinh(R-\frac{d}{2})}.$$

Por hipotese,

$$\frac{Hd[\cosh(R-\frac{d}{2})-1]}{\sinh(R-\frac{d}{2})} \ge h \ge th.$$

Portanto $\lambda_{H}^{*}(C_{R-d}(\overline{p})) \geq th$, e novamente pelo fato da função $((\lambda_{H}^{*}) \circ s)$ ser decrescente temos $w_{p,t}^{-}|_{\gamma} \geq th$. Usando o Princípio da Comparação e o fato do gráfico de $w_{p,t}^{-} = ((\lambda_{H}^{*}) \circ s)|_{\overline{\Omega}}$ ter curvatura média hiperbólica constante H segue que $w_{p,t}^{-} \geq u_{t}$ para toda u_{t} solução de (P^{tH}) . Como

$$r < \cosh^{-1}\left(\frac{4H^2(\frac{4H^2+1}{4H^2-1}) - \sqrt{4H^2(\frac{4H^2+1}{4H^2-1})^2 - (4H^2-1)}}{4H^2 - 1}\right)$$

tem-se $D > -2H(\frac{4H^2+1}{4H^2-1})$ pois a função $f_H: (-\infty, -2H] \mapsto \mathbb{R}$ dada por

$$f_H(t) = \cosh^{-1}\left(\frac{2tH + \sqrt{1 - 4H^2 + t^2}}{1 - 4H^2}\right)$$

é decrescente,

$$f_H\left(-2H\left(\frac{4H^2+1}{4H^2-1}\right)\right) = \cosh^{-1}\left(\frac{4H^2(\frac{4H^2+1}{4H^2-1}) - \sqrt{4H^2(\frac{4H^2+1}{4H^2-1})^2 - (4H^2-1)}}{4H^2-1}\right)$$

e, por hipótese,

$$f_H(D) < r < f_H\left(-2H\left(\frac{4H^2+1}{4H^2-1}\right)\right)$$

Mas

$$D > -2H\left(\frac{4H^2 + 1}{4H^2 - 1}\right) \Rightarrow 0 < \frac{-D}{2H} < \frac{4H^2 + 1}{4H^2 - 1}$$

e assim

$$R = \cosh^{-1}\left(\frac{-D}{2H}\right) < \cosh^{-1}\left(\frac{4H^2 + 1}{4H^2 - 1}\right)$$

Observe que a função λ_H (definida por uma integral) possui derivada infinita em $s = \cosh^{-1} \left(\frac{4H^2+1}{4H^2-1} \right)$ tendo em vista que o denoninador de λ'_H se anula nesse valor. Sendo assim a reta tangente ao gráfico nesse ponto é vertical e, portanto, o vetor normal (no sentido euclidiano) ao gráfico de $(\lambda^*_H \circ s)$ (superfície de rotação gerada por λ_H) no mesmo ponto forma um ângulo de 90° com $\frac{\partial}{\partial t}$. No entanto, a função $(\lambda^*_H \circ s)$ definida no domínio $\overline{B_p}$ exclui do gráfico pontos nos quais o vetor unitário normal (euclidiano) tem o esse comportamento, garantindo assim que a derivada de $(\lambda^*_H \circ s)$ é finita ao longo do conjunto $\overline{B_p}$. Ainda no caso em que $p \in \beta$ vejamos como obter uma barreira por baixo. Considere a seguinte função:

$$v_{p,t}^-:\overline{\Omega}\mapsto\mathbb{R}$$

dada por:

$$v_{n,t}^{-}(q) = 0 \ \forall q \in \overline{\Omega} \ \forall t \in [0,1]$$

Como o gráfico de $v_{p,t}^-$ tem curvatura média hiperbólica constante H = 0, $v_{p,t}^-|_{\gamma} = v_{p,t}^-|_{\beta} = 0 \leq th$ então, novamente pelo Princípio da Comparação para Operadores Quasilineares, $v_{p,t}^- \leq u$ para toda u solução (P^{tH}) . Agora considere $p \in \gamma$ e vejamos como obter uma barreira por cima com relação à curva γ . Seja C_p^r um círculo de raio r contido na região limitada cuja fronteira é γ e tangente a γ em p. Denote por \overline{p} o centro de C_p^r . Considere a função

$$(\widetilde{\lambda}_{H,r,t} \circ s) : B_{\overline{p}} \mapsto \mathbb{R}$$

dada por

$$(\widetilde{\lambda}_{H,r,t} \circ s)(q) = \widetilde{\lambda}_{H,r,t}(s(q)) = -\lambda_{H,r_0}(s(q)) + \lambda_{H,r_0}(r) + th$$

onde $s = s(q) = d_{\mathbb{H}}(q, \overline{p}), \ B_{\overline{p}} = \{q \in \mathbb{H}^2 \times \{0\} \setminus r \le d_{\mathbb{H}}(q, \overline{p}) \le \cosh^{-1}(\frac{-D}{2H})\},\$

$$r_0 = \cosh^{-1}\left(\frac{2DH + \sqrt{1 - 4H^2 + D^2}}{1 - 4H^2}\right)$$

е

$$\lambda_{H,r_0}(s) = \int_{r_0}^s \frac{D + 2H\cosh(t)}{\sqrt{\sinh^2 t - (D + 2H\cosh(t))^2}} dt$$

Como diam $(\beta) \leq r + \cosh^{-1}(\frac{-D}{2H})$ temos que $\overline{\Omega} \subset \overline{B_{\overline{p}}}, \forall p \in \gamma$. Além disso

$$\widetilde{\lambda}_{H,r,t}(s(p)) = -\lambda_{H,r_0}(s(p)) + \lambda_{H,r_0}(r) + th = -\lambda_{H,r_0}(r) + \lambda_{H,r_0}(r) + th = th.$$

Note que para $q\in\overline{\Omega}$ temos $s(q)=d_{\mathbb{H}}(q,\overline{p})\geq r$ e assim

$$\widetilde{\lambda}_{H,r,t}(s(q))|_{\overline{\Omega}} = \underbrace{-\lambda_{H,r_0}(s(q)) + \lambda_{H,r_0}(r)}_{\geq 0} + th \geq th \geq 0,$$

em particular $(\widetilde{\lambda}_{H,r,t} \circ s)_{|_{\gamma}} \ge th \in (\widetilde{\lambda}_{H,r,t} \circ s)_{|_{\beta}} \ge 0.$

Defina a seguinte função:

$$w_{p,t}^+ = (\widetilde{\lambda}_{H,r,t} \circ s)_{|_{\overline{\Omega}}} : \overline{\Omega} \mapsto \mathbb{R}.$$

Usando o mesmo argumento aplicado anteriormente obtemos $w_{p,t}^+ \ge u_t$ para toda u_t solução de (P^{tH}) . Ainda no caso em que $p \in \gamma$ vejamos como obter uma barreira por baixo. Sejam $C_p^r \in \overline{p}$ definidos acima. Considere a função

$$(\widetilde{\lambda}_{0,r,t} \circ s) : B_{\overline{p}} \mapsto \mathbb{R}$$

dada por

$$(\widetilde{\lambda}_{0,r,t} \circ s)(q) = \widetilde{\lambda}_{0,r,t}(s(q)) = -\lambda_{0,r_0}(s(q)) + \lambda_{0,r_0}(r) + th$$

onde $s = s(q) = d_{\mathbb{H}}(q, \overline{p}), \ B_{\overline{p}} = \{q \in \mathbb{H}^2 \times \{0\} \mid d_{\mathbb{H}}(q, \overline{p}) \ge r\},\$

$$r_0 = \cosh^{-1}\left(\frac{2DH + \sqrt{1 - 4H^2 + D^2}}{1 - 4H^2}\right)$$

е

$$\lambda_{0,r_0}(s) = \int_{r_0}^s \frac{\sinh r_0}{\sqrt{\sinh^2 t - \sinh^2 r_0}} dt.$$

Observe que $\overline{\Omega} \subset B_{\overline{p}}$ e que

$$\widetilde{\lambda}_{0,r,t}(s(p)) = -\lambda_{0,r_0}(s(p)) + \lambda_{0,r_0}(r) + th$$

isto é

$$\widetilde{\lambda}_{0,r,t}(s(p)) = -\lambda_{0,r_0}(r) + \lambda_{0,r_0}(r) + th = th.$$

Além disso, segue do Teorema 3.1 que

$$\lambda_{0,r_{0}}\left(r+\frac{d}{2}\right) - \lambda_{0,r_{0}}(r) \ge \frac{d}{2} \frac{\sinh r_{0}}{\sinh(r+\frac{d}{2})}.$$

Substituindo r_{0} por $\cosh^{-1}\left(\frac{2DH+\sqrt{1-4H^{2}+D^{2}}}{1-4H^{2}}\right)$ obtemos
$$\frac{d}{2} \frac{\sinh r_{0}}{\sinh(r+\frac{d}{2})} = \frac{d\left(\sinh(\cosh^{-1}\left(\frac{2DH+\sqrt{1-4H^{2}+D^{2}}}{1-4H^{2}}\right)\right)}{2\sinh(r+\frac{d}{2})}.$$

Por hipótese

$$\frac{d\left(\sinh(\cosh^{-1}\left(\frac{2DH+\sqrt{1-4H^2+D^2}}{1-4H^2}\right)\right)}{2\sinh(r+\frac{d}{2})} \ge h \ge th$$

logo

$$\lambda_{0,r_0}\left(r+\frac{d}{2}\right) - \lambda_{0,r_0}(r) - th \ge 0.$$

Portanto

$$-\lambda_{0,r_0}\left(r+\frac{d}{2}\right)+\lambda_{0,r_0}(r)+th\leq 0,$$

isto é, $\widetilde{\lambda}_{0,r,t}(s(q)) \leq 0 \text{ com } s(q) = d_{\mathbb{H}}(q,\overline{p}) = (r + \frac{d}{2})$ e, sendo assim,

$$\{graf(\widetilde{\lambda}_{0,r,t})\} \bigcap \{\mathbb{H}^2 \times \{0\}\} = \widetilde{C},$$

onde \widetilde{C} representa um círculo de raio $l \operatorname{com} l \leq r + (d/2)$ e centro \overline{p} . Levando em consideração o raio l, a posição de \overline{p} e a distância d entre $\gamma \in \beta$ temos que \widetilde{C} está contido no interior da região limitada cuja fronteira é β . Observe que $(\widetilde{\lambda}_{0,r,t} \circ s)_{|\gamma} \leq th$ e $(\widetilde{\lambda}_{0,r,t} \circ s)_{|\beta} < 0$ pois a função $(\widetilde{\lambda}_{0,r,t} \circ s)$ é decrescente. O gráfico desta função tem o mesmo aspecto daquele considerado no resultado anterior. Defina a função

$$v_{p,t}^+ = (\widetilde{\lambda}_{0,r,t} \circ s)_{|_{\overline{\Omega}}} : \overline{\Omega} \mapsto \mathbb{R}$$

Note que $v_{p,t}^+(p) = \tilde{\lambda}_{0,r}(s(p)) = th$. Pelo fato do gráfico de $v_{p,t}^+$ ter curvatura média constante H = 0 e pelo comportamento da função $v_{p,t}^+$ em $\partial\Omega$ temos que $v_{p,t}^+ \leq u_t$ para toda u_t solução de (P^{tH}) . A constante M que fornece a estimativa procurada com relação à norma do gradiente das barreiras em $p \in \partial\Omega$ também é obtida como no Teorema anterior, encerrando assim esta demonstração.

3.3 Exemplo

Do fato da métrica de \mathbb{H}^2 ser conforme à métrica euclidiana existe uma relação especial entre suas conexões, vejamos que relação é essa. Se indicarmos por \overline{g} a métrica hiperbólica, por g a métrica euclidiana temos a seguinte relação:

$$\overline{g} = \frac{1}{F}g$$

que nos leva a:

$$\langle \overline{\nabla}_Y X, Z \rangle_{\mathbb{H}} = \frac{1}{F} \langle \overline{D}_Y X, Z \rangle + \frac{1}{F^{\frac{3}{2}}} \{ \langle p, Y \rangle \langle Z, X \rangle + \langle p, X \rangle \langle Z, Y \rangle - \langle p, Z \rangle \langle X, Y \rangle \}$$

onde $F = F(x, y) = \frac{(1-(x^2+y^2))^2}{4}$, \overline{D} é a derivação de campos no sentido euclidiano, \langle, \rangle indica o produto interno euclidiano e os campos X, Y Z e suas derivadas são calculados no ponto p. Considere uma curva diferenciável γ contida em \mathbb{H}^2 . Através da relação acima podemos obter uma expressão para a curvatura geodésica hiperbólica de γ por meio de sua curvatura euclidiana. Mais precisamente temos:

$$k_{\overline{g}} = \sqrt{F}k_g - Fd\left(\frac{1}{\sqrt{F}}\right)\left(\overrightarrow{n}\right)$$

onde $d(\frac{1}{\sqrt{F}})(\overrightarrow{n}) = \langle \nabla \frac{1}{\sqrt{F(\gamma)}}, n \rangle = \langle \gamma, n \rangle$ indica a derivada da função $\frac{1}{\sqrt{F}}$ na direção do vetor \overrightarrow{n} normal unitário interior a γ no sentido euclidiano ao longo da curva γ . Usando a expressão acima para um círculo euclidiano centrado na origem de raio l obtemos:

$$k_{\overline{g}}(C_l) = \sqrt{F(C_l)} \left(\frac{1}{l}\right) - (-r) = \frac{1 - l^2}{2l} + l = \frac{1 + l^2}{2l}$$

Lembrando que a relação entre o raio euclidiano l e o raio hiperbólico ρ é $\rho = 2 \arg \tanh(l)$, ou seja $l = \tanh \frac{\rho}{2}$, temos que a curvatura hiperbólica de um circulo hiperbólico de centro na origem de \mathbb{H}^2 e raio ρ é

$$k_{\overline{g}}(C_{\varrho}) = \frac{1 + (\tanh \frac{\varrho}{2})^2}{2 \tanh \frac{\varrho}{2}} = \coth(\varrho).$$

Sejamr>0eD<-1 satisfazendo:

$$\ln(-D) < r < \cosh^{-1}(-D) = R.$$

Considere δ suficientemente pequeno tal que $2r<2r+\delta< R+r$ e defina $\gamma:[0,2\pi]\mapsto \mathbb{H}^2$ por

$$\gamma(t) = \left(\tanh\left(\frac{r}{2} + \frac{\delta}{4}\right) \cos(t), \tanh\left(\frac{r}{2}\right) \sin(t) \right)$$

Note que a curva γ é uma elipse euclidiana contida em \mathbb{H}^2 de centro (0,0)com eixo maior e eixo menor de medida euclidiana $\tanh(\frac{r}{2} + \frac{\delta}{4})$ e $\tanh(\frac{r}{2})$ respectivamente. Além disso existe um círculo hiperbólico centrado em (0,0)de raio hiperbólico r contido na região limitada cuja fronteira é γ e tangente a mesma curva nos pontos $(0, \pm r)$. Como as geodésicas de \mathbb{H}^2 partindo de (0,0) são raios então o diâmetro hiperbólico de γ é $2r + \delta$. Vejamos como obter a curvatura hiperbólica de γ através de sua curvatura euclidiana. Para simplificar a notação usamos:

$$A = \tanh\left(\frac{r}{2}\right) < 1$$
$$A + \overline{\delta} = \tanh\left(\frac{r}{2} + \frac{\delta}{4}\right) < 1$$

1

com $\overline{\delta}$ suficientemente pequeno. Nessas condições, lembramos que a curvatura euclidiana k_g de γ com relação ao campo unitário normal interior n é dada por

$$k_g(\gamma) = \frac{A(A+\delta)}{[(A+\bar{\delta})^2 \sin^2(t) + A^2 \cos^2(t)]^{\frac{3}{2}}}$$

Aplicando essa expressão em $k_{\overline{g}}$ obtemos:

$$k_{\overline{g}}(\gamma) = \frac{1 - |\gamma|^2}{2} k_g(\gamma) - \langle \gamma, n \rangle,$$

$$=\frac{1-|\gamma|^2}{2}\frac{A(A+\overline{\delta})}{\left[(A+\overline{\delta})^2\sin^2(t)+A^2\cos^2(t)\right]^{\frac{3}{2}}}-\langle\gamma,n\rangle$$

 $e \ como$

$$\langle \gamma, n \rangle = \frac{-A(A+\overline{\delta})}{[(A+\overline{\delta})^2 \sin^2(t) + A^2 \cos^2(t)]^{\frac{1}{2}}}$$

tem-se

$$k_{\overline{g}}(\gamma) = \frac{1 - |\gamma|^2}{2} \frac{A(A + \overline{\delta})}{[(A + \overline{\delta})^2 \sin^2(t) + A^2 \cos^2(t)]^{\frac{3}{2}}} + \frac{A(A + \overline{\delta})}{[(A + \overline{\delta})^2 \sin^2(t) + A^2 \cos^2(t)]^{\frac{1}{2}}}$$

Aplicando as coordenadas de γ em $(1{-}|\gamma|^2)$ obtemos

$$\frac{(1 - [(A + \overline{\delta})^2 \cos^2(t) + A^2 \sin^2(t)])(A + \overline{\delta})A}{2[(A + \overline{\delta})^2 \sin^2(t) + A^2 \cos^2(t)]^{\frac{3}{2}}} + \frac{A(A + \overline{\delta})}{[(A + \overline{\delta})^2 \sin^2(t) + A^2 \cos^2(t)]^{\frac{1}{2}}}$$

e desenvolvendo o produto dentro do colchete chegamos a

$$k_{\bar{g}}(\gamma) = \frac{\left[1 - A^2 \cos^2(t) - 2A\bar{\delta}\cos^2(t) - \bar{\delta}^2 \cos^2(t) - A^2 \sin^2(t)\right](A + \bar{\delta})A}{2\left[(A + \bar{\delta})^2 \sin^2(t) + A^2 \cos^2(t)\right]^{\frac{3}{2}}}$$

$$+\frac{A(A+\overline{\delta})}{[(A+\overline{\delta})^2\sin^2(t)+A^2\cos^2(t)]^{\frac{1}{2}}}$$

cuja simplificação usando $\sin^2(t)+\cos^2(t)=1$ nos dá

$$k_{\overline{g}}(\gamma) = \frac{\left[1 - A^2 - 2A\overline{\delta}\cos^2(t) - \overline{\delta}^2\cos^2(t)\right](A + \overline{\delta})A}{2\left[1 + 2A\overline{\delta}\sin^2(t) + \overline{\delta}^2\sin^2(t)\right]^{\frac{3}{2}}} + \frac{A(A + \overline{\delta})}{\left[1 + 2A\overline{\delta}\sin^2(t) + \overline{\delta}^2\sin^2(t)\right]^{\frac{1}{2}}}.$$

Sendo assim

$$k_{\overline{g}}(\gamma) \le \frac{[1-A^2](A+\overline{\delta})A}{2} + (A+\overline{\delta})A$$

e como $0 < (A + \overline{\delta}) < 1$ então

$$k_{\overline{g}}(\gamma) \le \frac{[1-A^2]A}{2} + A = \frac{[1-A^2]A^2}{2A} + A.$$

Mas $A^2 < 1$ logo

$$k_{\overline{g}}(\gamma) \leq \frac{[1-A^2]}{2A} + A = \frac{[1+A^2]}{2A}$$

e, substituindo A por $\tanh(\frac{r}{2})$, temos

$$k_{\overline{g}}(\gamma) \le \frac{\left[1 + \left(\tanh\left(\frac{r}{2}\right)\right)^2\right]}{2\left(\tanh\left(\frac{r}{2}\right)\right)} = \coth(r)$$

Sendo assim a curvatura hiperbólica de γ é menor ou igual a curvatura do circulo de centro (0,0) e raio hiperbólico r em todos os pontos de γ , o que nos permite afirmar que a curva γ definida acima satisfaz a condição do círculo interior de raio r. Além disso vimos que o diâmetro de γ é menor que r + R. Para obter um exemplo da curva β do Teorema 3.1 considere um círculo hiperbólico centrado em (0,0) de raio $\frac{R+r}{2}$. No caso das curvas do Teorema 3.2 o raciocínio é análogo.

Referências

- Aiolfi, A.; Fusieger, P. Some Existence results about Radial Graphs with Boundary in Parallel Planes, Annals of Global Analysis and Geometry 34 (2008) pp.415-430.
- [2] Aiolfi, A. ; Fusieger, P. e Ripoll, J. A Note on Doubly Connected Surfaces of Constant Mean Curvature with Prescribed Boundary, Annals of Global Analysis and Geometry, 29 (2006) pp. 145-156.
- [3] Barbosa, A.- Gráficos Verticais Minímos Compactos com Bordo Não Conexo em Hⁿ × ℝ Tese de doutorado, UFRJ (2010).
- [4] Citti, G. ; Senni, C. Constant Mean Curvature Graphs on Exterior Domains of the Hyperbolic Plane, Disponível em http://arxiv.org/abs/1103.4564v2 (2011). Acesso em 29/05/2012.
- [5] Dajczer, M.; Ripoll, J. An Extension of a Theorem of Serrin to Graphs in Warped Products, Journal of Geometric Analysis, 15 (2005) No2, pp. 193-205.
- [6] Do Carmo, M. Geometria Riemanniana Editora do IMPA, Rio de Janeiro, (1988) Segunda Edição.
- [7] Elbert, M.; Nelli, B. e Sa Earp, R. Exsitence of Vertical Ends of Mean Curvature ¹/₂ in H² × ℝ, Trans. Amer. Mat. Soc. **364** (2012) pp. 1179-1191.
- [8] Espírito Santo, N.; Ripoll, J. Some Existence and Nonexistence Theorems for Compact Graphs of Constant Mean Curvature with Boundary in Parallel Planes, J. Geom. Analysis, 11 (2001) No4, pp. 601-617.

- [9] Fusieger, P.; Ripoll J. Radial Graphs of Constant Mean Curvature and Doubly Connected Minimal Surfaces with Prescribed Boundary, Annals of Global Analysis and Geometry, 23 (2003) pp. 373-400.
- [10] Gilbarg, D. and Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.
- [11] Hauswirth, L.; Rosenberg, H. e Spruck, J. Infinite Boundary Value Problems For Constant Mean Curvature Graphs in H² × ℝ and S² × ℝ, American Journal of Mathematics, 131, (2009) No 1, pp. 195-226
- [12] Mathias, C.- Gráficos Parabólicos de Curvatura Média Constante em H³ com bordo Prescrito satisfazendo a Condição de Declividade Limitada Tese de doutorado, UFRGS (2009)
- [13] Meeks III, W.; White, B. Minimal Surfaces Bounded by Convex Curves in Parallel Planes, Comment Math. (1991), pp. 265-278.
- [14] Nelli, B. ; Sa Earp, R. ; Santos, W. e Toubiana, E. Uniqueness of 𝔄 - Surfaces in 𝔄² × 𝔅, |H| ≤ ½, with Boundary One or Two Parallel Horizontal Circles, Annals of Global Analysis and Geometry, 233 (2008) No4 pp. 307-321.
- [15] Ripoll, J.-Um Guia para Resolver Equações Diferenciais Parciais Elípticas de Segunda Ordem em Dimensão Dois, preprint, (2003).
- [16] Ros, A.; Rosenberg, H. Constant Mean Curvature Surfaces in a Half-Space of ℝ³ with boundary in the boundary of the Half Space, Journal of Differential Geometry, 44 (1996) No4, pp. 807-817.
- [17] Sa Earp, R. Parabolic and Hiperbolic Screw Motion Surfaces in H²×R, Journal of the Australian Math. Society, 85 (2008) pp. 113-143.

- [18] Sa Earp, R.; Toubiana, E. An Asymptotic Theorem for Minimal Surfaces and Existence Results for Minimal Graphs in H²×ℝ, Mathematische Annalen 342, (2008) pp.309-331.
- [19] Sa Earp, R. ; Toubiana, E. Screw Motion Surfaces in $\mathbb{H}^2 \times \mathbb{R} \ e \ \mathbb{S}^2 \times \mathbb{R}$, Illinois Jour. of Math. **49** No4 (2005) pp. 1323-1362.
- [20] Shiffman, M. On Surfaces of Stationary Area Bounded by two Circles, or Convex Curves, in Parallel Planes, Ann. of Math. (1956), pp. 77-90.