
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

TECHNISCHE UNIVERSITÄT DARMSTADT

FACHBEREICH 18 - ELEKTROTECHNIK UND

INFORMATIONSTECHNIK

A Framework Supporting Collaboration on
the Distributed Design of Integrated Systems

by

LEANDRO SOARES INDRUSIAK

Tese submetida à avaliação,

como requisito parcial para a obtenção do grau de

Doutor em Ciência da Computação

Prof. Dr. Ricardo Augusto da Luz Reis

Orientador

A thesis submitted to evaluation

in partial fulfillment of the requirements for the Degree of

Doctor of Engineering

Prof. Dr. Dr. h. c. mult. Manfred Glesner

Advisor

July, 2003.

2

CIP - CATALOGAÇÃO NA PUBLICAÇÃO

Indrusiak, Leandro Soares

 A Framework Supporting Collaboration on the Distributed Design of Integrated
Systems / por Leandro Soares Indrusiak.- Porto Alegre: PPGC da UFRGS, 2003.

 180f.: il.

 Tese (doutorado) - Universidade Federal do Rio Grande do Sul. Programa de Pós-
Graduação em Computação, Porto Alegre, BR-RS, 2003. Orientador: Reis, Ricardo A.L.

 1. Microeletrônica. 2. CAD. 3. Ambientes Distribuídos. 4. Apoio ao Projeto de
Circuitos Integrados. 5. Trabalho Colaborativo Suportado por Computador. 6. Java. I.
Reis, Ricardo A. L. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitora: Profa. Wrana Panizzi
Pró-Reitora Adjunta de Pós-Graduação: Jocélia Grazia
Diretor do Instituto de Informática: Prof. Philippe Olivier Alexandre Navaux
Coordenador do PPGC: Prof. Carlos Alberto Heuser
Bibliotecária-Chefe do Instituto de Informática: Beatriz Haro

3

Acknowledgments

I would like to gratefully acknowledge the support of Prof. Dr. Ricardo
Reis and Prof. Dr. Dr. h. c. mult. Manfred Glesner during this work. Both served as
thesis advisors, being friendly, patient and always ready to share their knowledge on
every matter. Prof. Reis was also the advisor during my studies towards the Master
degree and was really influential on my decision to work as a researcher. His
dedication and persistence always gave me encouragement to reach for higher goals.
Prof. Glesner received me in his institute for a temporary stay, but soon invited me to
join his staff and trusted me to take a position of great responsibility. Always
providing guidance when I most needed, he helped me to bring my research potential
to another level. Working with both of them was a truly rewarding experience.

The possibility of having two thesis advisors and a binational doctoral
degree was granted by a special agreement between the Universidade Federal do Rio
Grande do Sul (UFRGS) and the Technische Universität Darmstadt (TUD). I thank
Profa. Wrana Panizzi, rector of UFRGS, Prof. Dr.-Ing. Johann-Dietrich Wörner,
president of TUD, Prof. Dr. Carlos Alberto Heuser, coordinator of the Programa de
Pós-Graduação em Computação of UFRGS, Prof. Dr.-Ing. Ralf Steinmetz, dean of the
Fachbereich Elektrotechnik und Informationstechnik of TUD, and Prof. Dr.-Ing. Hans
Eveking, as well as their respective staff, for their support on preparing this
agreement.

The members of my thesis examination committee, Prof. Dr. Flávio
Rech Wagner, Prof. Dr. Ricardo Jacobi, Prof. Dr.-Ing. Rolf Jakoby and Prof. Dr.-Ing
Abdelhak Zoubir, are thanked for the stimulating discussions during the research
phase and for their valuable feedback on the thesis text and oral presentation.

I would like to thank my professors and colleagues for the excellent
working environment I had during the last five years. From the Microelectronic
Systems Institute in Darmstadt, I’d like to thank all post-doc and doctoral researchers,
secretaries and technicians, as well as the Diplom and Master students who supported
me on the implementation work related to the thesis. Special thanks to Prof. Dr.-Ing.
Juergen Becker (who provided me and my family with essential support on our arrival
to Darmstadt), Dr.-Ing. Alberto Garcia Ortiz, Dipl.-Ing. Tudor Murgan, Dipl.-Ing.
Ralf Ludewig, Dr.-Ing. Ulrich Mayer, Dr.-Ing. Thomas Hollstein, M.Sc. Abdulfattah
Obeid, Dr.-Ing. Peter Zipf, Dipl.-Ing. Clemens Schlachta, M.Sc. Juan Ocampo, Dipl.-
Ing. Octavian Mitrea and Dipl.-Ing. Florian Lubitz. I’d also like to thank all the
members of the UFRGS Microelectronics Group, specially M.Sc. Sandro Sawicki,
M.Sc. Lisane Brisolara, M.Sc. Márcio Kreutz, Prof. Dr. Luigi Carro, Prof. Dr.
Marcelo Johann, Prof. Dr. José Luís Güntzel, M.Sc. José Carlos Sant’Anna Palma,
Prof. Dr. João Baptista Martins, Profa. Dra. Fernanda Lima Kastensmidt, M.Sc. Ana
Cristina Pinto, Prof. Dr. Sergio Bampi, Prof. Dr. Altamiro Susin and B.Sc. Émerson
Hernandez. The staff of the network administration and library of Informatics Institute
at UFRGS are also thanked for being always friendly and attentive. For their support
on my language proficiency examination, I thank B.Sc. Jana Kaiser, Prof. Werner

4

Heidermann and Prof. Éda Heloisa Pilla. I would also like to thank my former
colleagues and students at PUCRS in Uruguaiana, for their support on the early stage
of my doctoral work, specially Prof. Cleiton Tambellini Borges, Prof. Marcus Kindel,
Prof. Mauro Sopeña, M.Sc. Luciano Copello Ost and Clara Valim dos Santos.

During the years I worked on this thesis, I lived in four different cities,
two different countries, many temporary and permanent addresses, but my friends
were always able to find me and support me. I will have to thank all of them by
mentioning only a few: people from the Clã (Doro, Doneide, Wilker, Sandro, Lorene,
Carlos, Naban, Lulu, Cabeça…), from Dirty Job (Álisson, Bolli, Paulo, Drew…),
from the net (Erlon, Guilherme Kujawski, Claudio, Fabio, Raquel e Daniel, Andrea
Itano, Oggh, Bart…), from Santa Maria (Vera, Caporal, Daiane, Gibsy, Cris, Ana
Paula, Freddy, Sonia, Juliano, Nadine, Marcelo Mussoi and family, Marshal, Dani
Walty, Norberto Staggemeier…) and from Darmstadt (Ilina Murgan, Peter and
Lucrécia Edinger, Nicole Marx…).

Finally, and most importantly, I would like to thank my family. My
parents, Leon and Dalila, who gave me everything, whose example I will always
follow and whom I will never be able to thank enough. My brothers Daniel and
Lucas, for being my friends from the moment they’ve been born. My wife Giuliana,
for being by my side with love and support ever since we first met. My children, Ana
Laura and Luís Guilherme, for teaching me things I would never learn without them. I
am grateful to my aunts and uncles, specially Lygia (in memoriam), Leocádia and
Leoniza, for showing me the beauties of the world, the sciences and arts since my
early childhood. I’d also like to thank my uncle Leonardo, his wife Maria Luiza and
his daughters Antônia, Malvina and Francisca, for their hospitality and for bringing
good vibes during my thesis defense; and my aunt Ana and her husband Gilberto, for
their continuous support. Giuliana’s parents, Julio and Maria Ana, as well as her
sisters Márcia and Virgínia, her brother Luis Cláudio and her Peruvian grandmother
Antolina are thanked for being the best in-laws one could ask for. And I am extremely
grateful for the support I had from my grandfather Boleslau until his last days,
enlightening me with his wise and inspired words, as well as the encouragement I
have from my grandmother Malvina, giving me the best possible example of
dedication, strength and at the same time tenderness.

Leandro Soares Indrusiak

Stockstadt am Rhein, 2003.

5

Table of Contents
List of Abbreviations .. 8

List of Figures.. 9

List of Tables ... 11

Abstract.. 12

Resumo... 14

Kurzfassung... 17

1 Introduction.. 20

1.1 Motivation...20
1.2 Thesis Organization ...22

2 Design Automation Frameworks.. 24

2.1 Introduction..24
2.2 Integrated Systems Design ..24
2.2.1 Functional Specification and Validation...26
2.2.2 Partitioning..27
2.2.3 Software and Hardware Specification, Simulation and Implementation..........28
2.2.4 Hardware Synthesis ..29
2.3 Design Automation Tools ..30
2.4 CAD Frameworks: the Classical Concept ...30
2.4.1 Operating System Services ...32
2.4.2 Process Management Services..32
2.4.3 Data Representation and Management ...33
2.4.4 Design and Methodology Management Services ...34
2.4.5 Tool Integration and Encapsulation Services ...35
2.4.6 Data Versioning Services..36
2.4.7 User Interface Services ...36

3 Previous Work.. 38

3.1 Introduction..38
3.2 NELSIS ...38
3.3 Version Server..40
3.4 STAR...41
3.5 Ulysses and Odyssey ..42
3.6 WELD ...42
3.7 OmniFlow ...44
3.8 ASTAI(R)..46
3.9 Moscito ..47
3.10 PPP ..48
3.11 JavaCAD...49
3.12 Ptolemy II ...50
3.13 Cave...51

6

3.14 Comparison of reviewed approaches ...53

4 Cave2 Foundations .. 55

4.1 Introduction..55
4.2 Object Orientation...55
4.2.1 Object Oriented Frameworks..57
4.2.2 Design Patterns ...58
4.3 Architectural Evolution - from hyperdocuments to OO................................61
4.4 Cave2 Architecture ..62
4.5 Java-based Approach ..66

5 Framework Core .. 68

5.1 Introduction..68
5.2 Design tool primitives ..69
5.3 Design data primitives ...73

6 Supporting Distributed Design... 79

6.1 Introduction..79
6.2 Resource Distribution Architecture ...81
6.3 Service Space ..85
6.3.1 Repository Service ..86
6.3.2 Collaboration Service ...98
6.3.3 Authentication Service..99
6.3.4 Prototyping Service...99
6.3.5 Additional Services...102

7 Supporting Collaborative Design ... 103

7.1 Introduction..103
7.2 Design visualization issues...104
7.3 Concurrency control issues ...107
7.4 Versioning Support..115
7.5 Metadata Support ..118

8 Case Studies.. 119

8.1 Introduction..119
8.2 Prototyping Service..119
8.3 IBlaDe..121
8.3.1 Interface-based Design..122
8.3.2 Supporting Interface-based Design...124
8.3.3 Implementation Issues ..129
8.4 Educational Metadata ...131

9 Conclusions and Future Work.. 135

9.1 Conclusions...135
9.1.1 CAD Frameworks ...135
9.1.2 Design Databases ..137
9.1.3 Collaborative Design ..138
9.1.4 Summary ...140
9.2 Future Work...141

7

Appendix 1 Cave Development Timeline .. 143

Appendix 2 Cave UML Class Diagrams.. 147

Appendix 3 Cave2 Code Statistics.. 150

Appendix 4 Cave2 Code Documentation... 151

Appendix 5 Summary in Portuguese Language152

References .. 165

8

List of Abbreviations

API Application Programming Interface
ASIC Application Specific Integrated Circuit
CAD Computer-Aided Design

CIF Caltech Intermediate Format
CSCW Computer Supported Collaborative Work

EDA Electronic Design Automation
GUI Graphical User Interface
HCI Human-Computer Interaction

HDL Hardware Description Language
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

IBD Interface-based Design
IP Intelectual Property

JNI Java Native Interface
JFC Java Foundation Classes

JVM Java Virtual Machine
MVC Model-View-Controller
NCSS Non-Commented Source Statements

OS Operating System
PC Personal Computer
RF Radio Frequency

RHS Reconfigurable Hardware Service
RMI Remote Method Invocation

RTOS Real-Time Operating System
SOC System-on-Chip

TCP/IP Transfer Control Protocol / Internet Protocol
URL Universal Resource Locator

VHDL VHSIC Hardware Description Language
VLSI Very Large Scale Integration

VRML Virtual Reality Modelling Language
WWW World Wide Web

XML Extensible Markup Language

9

List of Figures

FIGURE 2.1 – Technologies integrated on SoC in the standard CMOS process...... 25
FIGURE 2.2 – Simplified System Design Flow.. 26
FIGURA 2.3 – CAD Framework architecture ... 31
FIGURE 3.1 – NELSIS Design Flow Browser ... 39
FIGURE 3.2 – A flow-map example ... 39
FIGURE 3.3 – An hierarchical flow-map example ... 40
FIGURE 3.4 – Versioning in the STAR Framework .. 41
FIGURE 3.5 – WELD Architecture... 43
FIGURE 3.6 – OmniFlow Graphical User Interface ... 45
FIGURE 3.7 – OmniFlow Task Instance Architecture.. 45
FIGURE 3.8 – ASTAI(R) Workflow Editor.. 46
FIGURE 3.8 – MOSCITO Software Architecture.. 47
FIGURE 3.9 – Client-server architecture on PPP.. 48
FIGURE 3.10 – Platform independent IP simulation .. 50
FIGURE 3.11 – Ptolemy II Kernel class diagram (partial) 51
FIGURE 3.12 – Information Flow on Cave System.. 53
FIGURE 4.1 – Object-Oriented Frameworks .. 58
FIGURE 4.2 – Observers and Subject ... 59
FIGURE 4.3 – UML representation of the Observer design pattern structure 60
FIGURE 4.4 – Proposed architecture for resource distribution................................. 64
FIGURE 4.5 – UML use-case diagram modeling interaction between user and design

environment ... 66
FIGURE 5.1 – UML Class diagram of GUI primitives (partial) 72
FIGURE 5.2 – UML Class diagram of visual primitives for design representation

(partial)... 73
FIGURE 5.3 – Example of hierarchical construct ... 74
FIGURE 5.4 – 5-box Data Representation Model... 75
FIGURE 5.5 – Example of inheritance construct .. 76
FIGURE 5.6 – UML Class diagram of the proposed design data model 77
FIGURE 6.1 – Evolution of distributed systems ... 80
FIGURE 6.2 – Example on task distribution ... 80
FIGURE 6.3 – Middleware architecture.. 82
FIGURE 6.4 – Resource lookup protocol.. 83
FIGURE 6.5 – Service space architecture ... 86
FIGURE 6.6 – Alternatives on Design Data Repository ... 90
FIGURE 6.7 – Repository ServiceUML Sequence Diagram 92
FIGURE 6.8 – Overview of the Repository Service implementation 95
FIGURE 6.9 – Design data identification keys ... 97
FIGURE 6.10 – UML sequence diagram for the prototyping service..................... 101
FIGURE 6.11 – Abstraction layers between object domain and hardware domain 101
FIGURE 7.1 – Implementation alternatives for the visualization of design data.... 106
FIGURE 7.2 – Collaboration Service Overview ... 111
FIGURE 7.3 – Collaborative Service UML Sequence Diagram 114
FIGURE 7.4 – Embedding versioning information within identification keys 117
FIGURE 8.1 – Case study on reconfigurable computing on demand...................... 120
FIGURE 8.2 – Exemplifying Interface-based Design ... 123

10

FIGURE 8.3 – Communication transaction among system parts 124
FIGURE 8.4 – Modeling structural and functional semantics................................. 125
FIGURE 8.5 – Modeling structural hierarchy ... 127
FIGURE 8.6 – Interface definitions in hierarchical blocks 128
FIGURE 8.7 – IBlaDE GUI snapshot - structural view... 130
FIGURE 8.8 – IBlaDE GUI snapshot - structural and functional view 130
FIGURE 8.9 – Course Editor GUI... 134
FIGURE 8.10 – Case Study: Metadata as training material 134
FIGURE A2.1 – Cave2 Design Tool Primitives (partial).. 147
FIGURE A2.2 – Cave2 Design Data Primitives (partial).. 148
FIGURE A2.3 – Cave2 Repository and Collaboration Services (partial) 149

11

List of Tables

TABLE 1.1 – CSCW Time-space Taxonomy ..21
TABLE 3.1 – Comparison between CAD systems supporting distributed,

multi-user design of integrated systems ...54
TABLE 6.1 – Comparison between CAD systems supporting abstraction of the

CAD resource distribution ...85
TABLE 8.1 – DES algorithm implementation comparison.................................121
TABLE 8.2 – Occurrence of Transactions ...128
TABLE 9.1 – Comparison between CAD systems supporting distributed,

multi-user design of integrated systems ...140

12

Abstract

The work described in this thesis aims to support the distributed design of integrated
systems and considers specifically the need for collaborative interaction among
designers. Particular emphasis was given to issues which were only marginally
considered in previous approaches, such as the abstraction of the distribution of
design automation resources over the network, the possibility of both synchronous
and asynchronous interaction among designers and the support for extensible design
data models.
Such issues demand a rather complex software infrastructure, as possible solutions
must encompass a wide range of software modules: from user interfaces to
middleware to databases. To build such structure, several engineering techniques
were employed and some original solutions were devised. The core of the proposed
solution is based in the joint application of two homonymic technologies: CAD
Frameworks and object-oriented frameworks. The former concept was coined in the
late 80's within the electronic design automation community and comprehends a
layered software environment which aims to support CAD tool developers, CAD
administrators/integrators and designers. The latter, developed during the last decade
by the software engineering community, is a software architecture model to build
extensible and reusable object-oriented software subsystems. In this work, we
proposed to create an object-oriented framework which includes extensible sets of
design data primitives and design tool building blocks. Such object-oriented
framework is included within a CAD Framework, where it plays important roles on
typical CAD Framework services such as design data representation and management,
versioning, user interfaces, design management and tool integration.
The implemented CAD Framework - named Cave2 - followed the classical layered
architecture presented by Barnes, Harrison, Newton and Spickelmier, but the
possibilities granted by the use of the object-oriented framework foundations allowed
a series of improvements which were not available in previous approaches:
- object-oriented frameworks are extensible by design, thus this should be also true
regarding the implemented sets of design data primitives and design tool building
blocks. This means that both the design representation model and the software
modules dealing with it can be upgraded or adapted to a particular design
methodology, and that such extensions and adaptations will still inherit the
architectural and functional aspects implemented in the object-oriented framework
foundation;
- the design semantics and the design visualization are both part of the object-oriented
framework, but in clearly separated models. This allows for different visualization
strategies for a given design data set, which gives collaborating parties the flexibility
to choose individual visualization settings;
- the control of the consistency between semantics and visualization - a particularly
important issue in a design environment with multiple views of a single design - is
also included in the foundations of the object-oriented framework. Such mechanism is
generic enough to be also used by further extensions of the design data model, as it is
based on the inversion of control between view and semantics. The view receives the
user input and propagates such event to the semantic model, which evaluates if a state
change is possible. If positive, it triggers the change of state of both semantics and
view. Our approach took advantage of such inversion of control and included an layer

13

between semantics and view to take into account the possibility of multi-view
consistency;
- to optimize the consistency control mechanism between views and semantics, we
propose an event-based approach that captures each discrete interaction of a designer
with his/her respective design views. The information about each interaction is
encapsulated inside an event object, which may be propagated to the design semantics
- and thus to other possible views - according to the consistency policy which is being
used. Furthermore, the use of event pools allows for a late synchronization between
view and semantics in case of unavailability of a network connection between them;
- the use of proxy objects raised significantly the abstraction of the integration of
design automation resources, as either remote or local tools and services are accessed
through method calls in a local object. The connection to remote tools and services
using a look-up protocol also abstracted completely the network location of such
resources, allowing for resource addition and removal during runtime;
- the implemented CAD Framework is completely based on Java technology, so it
relies on the Java Virtual Machine as the layer which grants the independence
between the CAD Framework and the operating system.
All such improvements contributed to a higher abstraction on the distribution of
design automation resources and also introduced a new paradigm for the remote
interaction between designers. The resulting CAD Framework is able to support fine-
grained collaboration based on events, so every single design update performed by a
designer can be propagated to the rest of the design team regardless of their location
in the distributed environment. This can increase the group awareness and allow a
richer transfer of experiences among them, improving significantly the collaboration
potential when compared to previously proposed file-based or record-based
approaches.
Three different case studies were conducted to validate the proposed approach, each
one focusing one a subset of the contributions of this thesis. The first one uses the
proxy-based resource distribution architecture to implement a prototyping platform
using reconfigurable hardware modules. The second one extends the foundations of
the implemented object-oriented framework to support interface-based design. Such
extensions - design representation primitives and tool blocks - are used to implement
a design entry tool named IBlaDe, which allows the collaborative creation of
functional and structural models of integrated systems. The third case study regards
the possibility of integration of multimedia metadata to the design data model. Such
possibility is explored in the frame of an online educational and training platform.

Keywords: Microeletronics, Computer-Aided Design, Distributed Sistems, Electronic
Design Automation, Computer Supported Collaborative Work, Java.

14

TÍTULO: "UM FRAMEWORK DE APOIO À COLABORAÇÃO NO PROJETO
DISTRIBUÍDO DE SISTEMAS INTEGRADOS"

Resumo

O trabalho de pesquisa apresentado nesta tese tem por objetivo apoiar o projeto
distribuído de sistemas integrados, considerando especificamente a necessidade de
interação colaborativa entre os projetistas. O trabalho enfatiza particularmente alguns
problemas que foram considerados apenas marginalmente em abordagens anteriores,
como a abstração da distribuição em rede dos recursos de automação de projeto, a
possibilidade de interação síncrona e assíncrona entre projetistas e o suporte a
modelos extensíveis de dados de projeto.
Tais problemas requerem uma infra-estrutura de software significativamente
complexa, pois possíveis soluções envolvem diversos módulos, desde interfaces com
o usuário até bancos de dados e middleware. Para construir tal infra-estrutura, várias
técnicas de engenharia foram empregadas e algumas soluções originais foram
desenvolvidas. A idéia central da solução proposta é baseada no emprego conjunto de
duas tecnologias homônimas: CAD Frameworks (ambientes integrados de apoio ao
projeto) e frameworks orientados a objeto. O primeiro conceito foi criado no final da
década de 80 na área de automação de projeto de sistemas eletrônicos e define uma
arquitetura de software em níveis, voltada ao apoio a desenvolvedores de ferramentas
de projeto, administradores de ambientes de projeto e projetistas. O segundo,
desenvolvido na última década na área de engenharia de software, é um modelo para
arquiteturas de software visando o desenvolvimento de sub-sistemas reusáveis de
software orientado a objeto. No presente trabalho, propõe-se a criação de um
framework orientado a objetos que inclui conjuntos extensíveis de primitivas de dados
de projeto bem como de blocos para a construção de ferramentas de CAD. Esse
framework orientado a objeto é agregado a um CAD Framework, onde ele passa a
desempenhar funções tipicamente encontradas em tal ambiente, tais como
representação e administração de dados de projeto, versionamento, interface com
usuário, administração de projeto e integração de ferramentas.
O CAD Framework implementado dentro do escopo desta tese foi chamado Cave2 e
seguiu a clássica arquitetura em níveis apresentada por Barnes, Harrison, Newton e
Spickelmier. Durante o projeto e a implementação do Cave2, uma série de avanços
em relação as abordagens anteriores foi obtida com a exploração das vantagens
advindas do uso de um framework orientado a objetos:
- frameworks orientados a objetos são extensíveis por definição, então o mesmo pode
ser dito a respeito das implementações dos conjuntos de primitivas de dados de
projeto bem como de blocos para a construção de ferramentas de CAD. Isso implica
que tanto o modelo de representação de projeto quanto os módulos de software
processando tal modelo podem ser atualizados ou adaptados para uma metodologia de
projeto específica, e que essas atualizações e adaptações ainda herdarão os aspectos
arquiteturais e funcionais implementados nos elementos básicos do framework
orientado a objetos;
- ambos os aspectos relativos à semântica do projeto e à visualização do projeto são
partes do framework orientado a objetos, mas em modelos claramente separados. Isso
possibilita o uso de várias estratégias para a visualização de um conjunto de dados de

15

projeto, o que dá aos participantes de uma sessão de projeto colaborativo a
flexibilidade de escolha individual de estratégia de visualização;
- o controle de consistência entre semântica e visualização - uma questão
particularmente importante em um ambiente de projeto onde coexistem múltiplas
visualizações de cada projeto - também está incluído nas fundações do framework
orientado a objetos implementado. Esse mecanismo é genérico o bastante para ser
usado também pelas possíveis extensões do modelo de dados de projeto, uma vez que
ele é baseado na inversão de controle entre a visualização e a semântica. A
visualização recebe a intenção do usuário e propaga esse evento ao modelo da
semântica, o qual avalia a possibilidade de uma mudança de estado. Se positivo, ele
dispara a mudança de estado em ambos os modelos de visualização e semântica. A
abordagem proposta nesta tese usa tal inversão de controle para incluir um nível
adicional de processamento entre a semântica e a visualização, visando o controle de
consistência nos casos de múltiplas visualizações;
- para otimizar o mecanismo de controle de consistência entre semântica e
visualização, uma abordagem baseada em eventos foi proposta, buscando discretizar
cada interação entre o projetista e suas visualizações do projeto. A informação sobre
cada uma das interações é encapsulada em um objeto-evento, que pode ser propagado
para o modelo da semântica do projeto - e então para as demais possíveis
visualizações - de acordo com a política de consistência que esteja sendo usada. Além
disso, o uso de eventos permite que as interações do usuário com a visualização sejam
acumuladas para uma posterior sincronização com a semântica do projeto, caso haja
indisponibilidade de conexão entre elas;
- o uso de objetos de proxy aumentou significativamente o nível de abstração da
integração de recursos de automação de projeto, pois tanto ferramentas e serviços
remotos quanto os instalados localmente são acessados através de chamadas de
métodos em um objeto local. A conexão aos serviços e ferramentas remotos é obtida
através de um protocolo de look-up, abstraíndo completamente a localização de tais
recursos na rede e permitindo a adição e remoção em tempo de execução;
- o CAD Framework foi implementato completamente usando a tecnologia Java,
usando dessa forma a Java Virtual Machine como intermediário entre o sistema
operacional e o CAD Framework, garantindo dessa forma a independência de
plataforma.
Todas as contribuições listadas anteriormente contribuiram com o aumento do nível
de abstração da distribuição de recursos de automação de projeto e também
apresentaram um novo paradigma para a interação remota entre projetistas. O CAD
Framework no qual tais contribuições foram aplicadas é capaz de suportar
colaboração de granularidade fina baseada em eventos, onde cada atualização feita
por um projetista pode ser propagada para o restante da equipe, mesmo que estejam
todos geograficamente distribuídos. Isto pode aumentar a sinergia de grupo entre os
projetistas e permitir uma troca mais rica de experiências entre eles, aumentando
significativamente o potencial de colaboração quando comparado com abordages
baseadas em acesso a arquivos e registros propostas anteriormente.
Três estudos de caso diferentes foram realizados para validar a abordagem proposta,
cada um deles envolvendo um sub-conjunto das contribuições da presente tese. O
primeiro utiliza a arquitetura de distribuição de recursos baseada em proxies para
implementar uma plataforma de prototipação usando módulos de hardware
reconfigurável. O segundo estende as fundações do framework orientado a objetos
visando suportar projeto baseado em interfaces. Essas extensões - primitivas de

16

representação de projeto e partes de ferramentas - são usadas na implementação de
uma ferramenta chamada IBlaDe, que permite a criação colaborativa de modelos
funcionais e estruturais de sistemas integrados. O terceiro estudo de caso aborda a
possibilidade de integração de metadados multimídia ao modelo de dados de projeto.
Essa possibilidade é explorada no contexto de uma plataforma online de educação e
treinamento.

Palavras-chave: Microeletrônica, CAD, Ambientes Distribuídos, Apoio ao Projeto
de Circuitos Integrados, Trabalho Colaborativo Suportado por Computador, Java.

17

TITEL: "EIN FRAMEWORK ZUR UNTERSTÜTZUNG DER KOOPERATION
BEIM VERTEILTER ENTWURF INTEGRIERTER SYSTEME"

Kurzfassung

Die vorliegenden Arbeit beschäftigt sich mit der Unterstützung des verteilten
Entwurfs von integrierten Systemen und speziell mit den Bedarf an
gemeinschaftlicher Interaktion zwischen den Designern. Ein besonderer Schwerpunkt
wurde dabei auf Themen gelegt, die in früheren Lösungsansätzen nur am Rande
betrachtet wurden, wie die Abstraktion der Verteilung der Entwurfswerkzeuge im
Netzwerk, die Möglichkeit von sowohl synchroner als auch asynchroner Interaktion
zwischen den Designern und die Unterstützung von erweiterbare Datenmodelle für
die Entwürfe.
Diese Themen benötigen eine recht komplexe Softwareinfrastruktur, da mögliche
Lösungen eine Vielzahl verschiedener Softwaremodule umfassen müssen: von der
Benutzerschnittstelle über die Middleware bis zur Datenbank. Um eine solchen
Infrastruktur aufzubauen wurden verschiedene Techniken aus den
Ingenieurwissenschaften genutzt und einige neuartige Lösungen entwickelt. Der Kern
der vorgeschlagenen Lösung basiert auf der Verschmelzung von zwei Techniken:
CAD-Frameworks und objektorientierte Frameworks. Das erstgenannte Konzept
wurde durch den rechnergestützten Schaltungsentwurf in den späten 80'er Jahren
geprägt und beinhaltet ein in Schichten aufgebautes Softwaresystem, das dazu
gedacht war, CAD-Softwareentwickler, CAD-Administratoren und
Schaltungsdesigner zu unterstützen. Das zweite Konzept, das während der letzten
Dekade im Bereich der Informatik entwickelt wurde, stellt ein Architekturmodell für
Software dar, dass benutzt werden kann, um erweiterbare und wiederverwendbare
objektorientierte Softwaresubsysteme zu erstellen. In dieser Arbeit wird ein
objektorientiertes Entwurfssystem vorgeschlagen, das einen erweiterbare Satz von
primitiven Datentyp für Entwurfsdaten und von Bausteine für Entwurfswerkzeuge
enthält. Dieses objektorientierte Framework wird in ein CAD-Framework
eingebunden und übernimmt eine wichtige Rolle bei typischen CAD-Framework-
Diensten wie die Repräsentation und Verwaltung der Entwurfsdaten, die
Versionsverwaltung, die Benutzerschnittstelle, das Designmanagement und die
Werkzeugintegration.
Das im Rahmen dieser Arbeit implementierte CAD-Framework namens 'Cave2' ist
nach der klassischen Schichtenarchitektur, die von Barnes, Harrison, Newton und
Spickelmier vorgeschlagen wurde, aufgebaut, allerdings erlauben die Möglichkeiten,
die die Nutzung von objektorientierten Konzepten eröffnen, eine Reihe von
Verbesserungen, die in früheren Ansätzen nicht realisierbar waren:
- objektorientierte Systeme sind schon vom Ansatz her erweiterbar, daher sollte dies
auch für die implementierten Sätze von primitiven Datentypen für die Entwurfsdaten
und für die Bausteine für Entwurfswerkzeuge möglich sein. Das bedeutet, das sowohl
die Repräsentationsmodell des Entwurfs als auch die Softwaremodule die damit
verbunden sind, erneuert oder an eine bestimmte Designmethode angepasst werden
können und das diese Erweiterungen und Anpassungen weiterhin die Architektur und
die funktionalen Teile erben, die innerhalb des objektorientierten Systems
implementiert wurden.

18

- die Semantik und die Visualisierung des Entwurfs sind Teile des objektorientierten
System, benutzen aber klar getrennte Modelle. Dies ermöglicht verschiedene
Visualisierungsstrategien für einen gegebenen Datensatz und ermöglicht damit den
zusammenarbeitenden Parteien individuelle Einstellungen für die Visualisierung zu
wählen.
- die Kontrolle der Konsistenz zwischen Semantik und Visualisierung, die sehr
wichtig ist für eine Entwurfsumgebung mit mehrere Ansichten desselben Entwurfes,
ist in dem objektorientierten Framework enthalten. Solch ein Mechanismus ist
generisch genug, um in späteren Erweiterungen des Datenmodells für die Entwürfe
benutzt zu werden, da er die Kontrollrichtung zwischen Ansicht und Semantik
umkehrt. Die Ansicht empfängt eine Benutzereingabe und reicht dieses Ereignis an
das semantische Modell weiter, dass dann die Möglichkeit einer Zustandsänderung
bewertet. Ist diese möglich, so wird eine Änderung des Zustandes von sowohl
Semantik als auch der Ansicht eingeleitet. Dabei wird die Änderung der
Kontrollrichtung ausgenutzt und eine Schicht zwischen dem semantischen Modell
und der Ansicht eingefügt, um die Konsistenz bei mehreren Ansichten sicherzustellen.
- zur Optimierung der Konsistenzkontrollmechanismen zwischen der Ansicht und der
Semantik wird ein ereignisbasierter Ansatz vorgeschlagen, der alle diskreten
Interaktionen des Designers mit der jeweiligen Ansicht speichert. Die Information
über jede Interaktion ist in einem Ereignisobjekt gekapselt, das zu der Semantik des
Entwurfs und auch zu möglichen anderen Ansichten weitergeleitet werden kann, je
nach den Konsistenzregeln, die zu dieser Zeit benutzt werden. Weiterhin ermöglicht
die Nutzung von Ereignisspeichern die spätere Synchronisierung zwischen der
Ansicht und der Semantik, falls zwischen diesen temporär keine Netzwerkverbindung
zur Verfügung steht.
- die Nutzung von Proxy-Objekten steigert die Abstraktion der Integration von
Ressourcen zum rechnergestützten Schaltungsentwurfs signifikant, da sowohl auf
entfernte als auch lokale Werkzeuge und Diensten durch Methodenaufrufe in einem
lokale Objekt zugegriffen werden kann. Für die Verbindungen zu den entfernten
Werkzeugen und Diensten wird ein Look-Up Protokoll benutzt, das ebenfalls
komplett von der Position der Ressourcen im Netzwerk abstrahiert. Dies ermöglicht
außerdem ein Hinzufügen und Entfernen von Ressourcen zur Laufzeit.
- das implementierte CAD-Framework basiert ausschließlich auf Java-Technologie.
Daher benutzt es die Java Virtual Machine als Schicht, die die Unabhängigkeit
zwischen CAD-Framework und dem Betriebssystem sicher stellt.
Diese Verbesserungen garantieren einen höheren Grad der Abstraktion bei der
Verteilung von Ressourcen zum rechnergestützten Schaltungsentwurfs und führen ein
neues Paradigma für die entfernte Interaktion zwischen Designer ein. Das
resultierende CAD-Framework unterstützt die feingranulare Zusammenarbeit, die auf
Ereignissen basiert, so dass jede einzelne Entwurfsänderung, die von einem Designer
durchgeführt wird, an den Rest des Entwicklungsteams weitergeleitet wird,
unabhängig von ihrer Position in dem verteilten Umgebung. Dies kann das
Gruppenbewusstsein stärken und ermöglicht einen besseren Erfahrungsaustausch, was
das Potential zur Zusammenarbeit, im Vergleich zu früher vorgeschlagenen
dateibasierten oder recordbasierten Ansätzen, signifikant verbessert.
Drei verschiedene Fallstudien wurden durchgeführt um die Gültigkeit des
vorgeschlagenen Ansatzes zu überprüfen, bei der jede auf einen Teil der Beträge
dieser Arbeit fokussiert ist. Die Erste benutzt die Proxy-basierte Architektur zur
Ressourcenverteilung um eine Prototyping-Plattform mit rekonfigurierbaren

19

Hardwaremodulen zu erstellen. Die Zweite erweitert die Grundlagen des
implementierten objektorientierten Frameworks, um den Interface-basierten Entwurf
zu unterstützen. Diese Erweiterungen, nämlich die Primitive zur Repräsentation eines
Entwurfs und die Werkzeugblöcke werden genutzt, um ein Programm namens
'IBlaDe' zur Entwurfseingabe zu implementieren, dass die gemeinschaftliche
Erstellung von funktionalen und strukturellen Modellen eines integrierten Systems
ermöglicht. Die dritte Fallstudie betrifft die Möglichkeit einer Integration von
Multimedia-Metadaten in das Datenmodell für den Entwurf. Diese Möglichkeiten
werden im Rahmen einer Online-Ausbildungs- und Trainingsplattform erforscht.

Stichwörter: Mikroelektronik, CAD, verteilte Systeme, rechnergestützter Entwurf
integrierter Systeme, rechnergestützter Kooperation, Java.

20

1 Introduction

1.1 Motivation

The interoperability between design tools has been one of the most
important research topics covered by the design automation area in the last thirty
years. Recently, the interoperability between designers started to get attention:
collaborative design. There is a need for techniques tailored to support the
communication, coordination and data sharing between groups of designers. The
reason is obvious: the complexity of integrated systems design is increasing much
faster than it was predicted [BRW2000]. The market is also shifting slowly from the
PC-based paradigm to a scenario where the computational power one needs is
distributed among several smaller so-called information appliances. While these
smaller information appliances may look simpler than a PC to the user – and this is
what makes the new paradigm better – the complexity of the design of those devices
is still high.

As an additional problem, the shortage of qualified design engineers
obliges the companies to make use of the working force, no matter where they are.
This adds to the complexity of the collaborative design environment, as it must handle
design teams which are geographically dispersed.

Taking such scenario into account, this thesis covers technical issues
that arise on the design and implementation of the infrastructure to support the
collaborative design of integrated systems over a distributed environment.

The research topic called collaborative design can be considered as a
blend of computer-aided design and computer supported collaborative work - usually
associated to the terms CAD and CSCW, respectively. Both fields incorporate already
a significant amount of knowledge, so a complete review is unfeasible. The
interdisciplinary research involving both areas is also well developed, specially in the
areas of CAD for mechanical and civil engineering. In the area of specialization of
this thesis – collaborative design of integrated systems - the research activity is still
incipient, and most of the approaches available in the literature are reviewed in
[IND2002]. The most relevant among them are also covered within this text.

The approaches on collaborative design can be characterized according
to the time-space matrix of CSCW (Table 1). Considering the scenario where
designers are dispersed geographically, we assume that the software infrastructure
should provide support for the two types of collaboration in the second line of the
matrix.

21

TABLE 1.1 - CSCW Time-space Taxonomy

Space/Time Same Time Different Time
Same Space face-to-face interaction asynchronous interaction

Different Space synchronous distributed
interaction

asynchronous distributed
interaction

All the previous approaches on integrated systems collaborative design

reviewed in [IND2002] can be characterized as supporting asynchronous distributed
interaction among designers. Furthermore, many of them – such as WELD [CHA98],
ASTAI(R) [CLA2001] and OmniFlow [LAV2000] - are mainly based on workflow
concepts, thus not very suitable for processes that cannot be modeled as a regular
chain of tasks.

The work presented in this thesis intends to overcome such limitations
by supporting the following features, which could not be found in the currently
available products and research prototypes:

support for both synchronous and asynchronous collaboration, because
we can expect different levels of collaboration in the different parts
of the integrated systems design flow. For instance, it is expected a
high level of collaboration on the first steps of the design - where
product functionality and constraints are defined - because of the
inherent multidisciplinary nature of such activities. Hardware
engineers, software developers, marketing staff and product
management are among the types of professionals that may
participate synchronously in such collaborations. On the other hand,
during the implementation steps - coding, hardware debugging, etc. -
the collaboration level is expected to be low, because developers tend
to work individually and asynchronously;

support for fine-grained collaboration, in order to increase the potential
of concurrent development. Most of the systems found in the
literature are file-based, so the potential of synchronous collaboration
is reduced as the concurrency control is done by the underlying file
system and is based in simple locking;

handle design models in a variety of formats and abstraction levels
without reducing the potential of collaboration and exploration.
When many data formats are available, the common practice found in
the literature is to handle all formats as black boxes, ignoring the
semantics of each model. An ideal solution should be able to handle
design data in different formats, but still recognizing the semantic
constructs which are peculiar to all of them;

support multiple forms of design visualization, because collaboration
can be much more effective if the right visualization technique is
used. The "right" visualization depends on many factors, such as the
background of the designer, the type of data, etc., so the proposed

22

system should be flexible enough to allow a design data block to be
rendered as a diagram, 3D graphic, text, equation, etc.;

support the integration of multimedia metadata in the design data
model, because it can increase the potential of collaboration. In the
current designs, most of the asynchronous collaboration is based on
metadata included as comments by the designers within the design
models. The proposed system should support this feature, and should
also expand the possibilities of learning and collaboration by
allowing multimedia metadata - text, hypertext, graphics, sound,
video, etc.;

allow a variety of functionally-equivalent implementations, in order to
avoid excluding software and hardware platforms from being part of
the design environment. So, the proposed architecture for the design
environment should regard abstract relationships rather than concrete
implementations.

Other requirements, which are fulfilled in some of the design
automation solutions found in the literature, should be also met by the solution
presented in this thesis: extensibility, adaptability, integration of external tools and
services, support execution over Internet and support multiple distributed users in a
scalable way.

Such are ambitious goals, and can only be achieved by a complex
software infrastructure. To build such structure, several engineering techniques were
employed and some original solutions were devised. The core of the proposed
solutions is based in the joint application of two homonymic technologies: CAD
Frameworks and OO frameworks. The former concept comprehends a layered
software environment which aims to support CAD tool developers, CAD
administrators/integrators and designers. The latter, a software architecture model to
build extensible and reusable object-oriented software systems. To avoid
misunderstandings, the former will be always referenced with the first letter
capitalized throughout this text.

The following subsection describes how such techniques and solutions
are organized within this thesis.

1.2 Thesis Organization

The thesis text starts by reviewing the concept of CAD Frameworks in
Section 2, first by providing an overview on the integrated systems design tools and
methods, and then describing the actual CAD Framework services supporting those
tools and methods. This section is followed by a bibliographical review on CAD
Frameworks and similar approaches aiming to support multi-user and/or networked
access to design data and automation tools. The time span of the reviews included in

23

this section starts in the mid-80's and goes up to the early 2000's, highlighting the
most significant contributions and shortcomings of each approach. The original
implementation of the Cave Framework, which is used as starting point of the work
presented in this thesis, is also reviewed.

Section 4 is a transition between the initial part of the thesis, where the
previous related work is reviewed, and the core of the thesis where the actual
contributions of this work are described. It shows the transition between the original
Cave Framework and what became the Cave2 Framework, thus addressing the
techniques that made possible the architectural evolution.

In Section 5, the core of the Cave2 architecture is described: its object-
oriented framework. This framework lays the foundations for two extensible sets of
object classes: design data primitives and design tool building blocks.

Sections 6 and 7 describe in detail all the extensions and services built
on top of the object-oriented framework aiming to support distributed and
collaborative design, respectively. The achieved contributions on design databases,
distributed CAD systems and collaboration support are introduced in those sections.

Section 8 presents three case studies, where the core of the framework
was extended and/or services were added in order to achieve specific goals. The first
case study uses the support for resource distribution to create an online platform for
prototyping in FPGA systems. The second one extends the framework of data
primitives and tool blocks to create a design entry tool tailored to the interface-based
design methodology. The third case study describes an extension of the data
primitives framework to support the reuse of design metadata as learning material.

Section 9 closes this thesis by summarizing the its contributions,
deriving conclusions and pointing out directions for future work.

24

2 Design Automation Frameworks

2.1 Introduction

 Integrated electronic systems are among the most complex artifacts
created by men. Decades ago, when the first integrated circuits were developed, small
groups of engineers could handle the design without sophisticated computer aid.
Nowadays, integrated systems can be seen as a heterogeneous composite of
programmable modules, packaged together in a single device. As important as the
modules themselves, the programming information for each module is also a product
of the design process. Thus, large groups of designers are needed to design such
systems, and they depend heavily on a variety of design automation tools.
Furthermore, a methodology based on abstraction layers is also critical to allow the
modularization of the design activity.

The concept of Electronic CAD Frameworks was crafted from the need
to support the numerous tools which are needed in the design cycle of an integrated
system. Such concept evolved over the years, incorporating new engineering
techniques to better serve its purpose of:

support tool developers by providing tool building blocks (to accelerate
implementation and to grant homogeneity) and tool interfaces (to
grant interoperability with other tools and data repositories);

support tool administrators by providing a platform where tools and
data repositories can be integrated and managed together;

support designers, by providing an integrated environment for the
complete design flow.

In the following subsections, a review on the concepts of integrated
systems and integrated systems design is presented; the classical definition of CAD
Frameworks is given; and an overview on the techniques applied to CAD Frameworks
is included.

2.2 Integrated Systems Design

Integrated systems can be described as heterogeneous composites of
programmable modules, packaged together in a single device. Those modules can be,
for instance, digital or analog circuitry, micromechanical parts, radio frequency (RF),
electro-optical and even electro-biological structures. As important as the modules
themselves, the programming information for each module is also a product of the
design process.

25

Figure 2.1, published by the Semiconductor Industry Association,
shows the technologies which currently can be integrated to the standard CMOS
fabrication process and those which are going to be integrated in the following years.
Such process allows the production of ICs where different types of modules can be
put together in a single die - the so-called System-on-a-Chip (SoC).

FIGURE 2.1- Technologies integrated on SoC in the standard CMOS process [SIA99]

The design of integrated systems of such complexity can only be
achieved by adopting adequate methodologies that allow the decomposition of the
problem in smaller parts. Current practices are often a mixture of a bottom-up
approach, where the system is composed by the integration of previously designed
blocks (IP cores), and a top-down approach, where an initial description is
synthesized into a detailed implementation model. In either case, a layered approach
is necessary, in order to ensure that the design flows across a series of well defined
abstraction layers. The design methodologies define the systematic use of a set of
transformations, from the initial description to the final system. Some of the
transformations add new information to the system description, while others are
aimed to verify the correctness of the description or extract from it information which
wasn't explicitly there. The former type is usually called synthesis while the latter,
analysis. To cope with the increasing productivity requirements, more abstraction
levels, and thus transformations, are added to the design process.

In Figure 2.2, a typical design flow for integrated systems is depicted,
showing the transformations between different kinds of descriptions.

26

Functional Specification

Functional Simulation

Partitioning

Software
Specification

Hardware
Specification

Compilation Synthesis

Co-simulation

Interface Synthesis

System Verification

FIGURE 2.2 - Simplified System Design Flow

2.2.1 Functional Specification and Validation

The design usually starts in a very high level of abstraction, by
describing the intended functionality of the system: - system-level specification
[SAN2000]. This description disregards every implementation detail, focusing only in
the system behavior and its interactions with the external world. The system
description can be done using one or more languages. The SystemC approach
[SWA2001], for instance, advocates for a single specification language, in order to
ease the interoperation of design tools and reduce the costs of the design within the
industry. In other hand, the TIMA research group [JER99] and the Ptolemy Project
[LEE2001] focus in the interoperation of languages and modeling styles. Other
approaches for system level design include Ocapi [DES2000], SpecC [GAJ2000],
SDL [ELL97] and Forge [DAV2001].

Some of the languages used for system specification have formal
semantics, with underlying mathematical structure - e.g., Petri nets, finite state
machines - while others derive from previously developed HDLs or programming
languages. Visual languages and/or visual extensions for textual languages are also
among the alternatives for system modeling.

27

After the modeling step, a functional validation takes place. This is
done by simulating or executing the system model, so that the functionality can be
verified. No performance tests are executed on this phase, because no assumptions
about the implementation were made yet. If the functional requirements of the system
are not met, the model should be reviewed, otherwise the next step of the design flow
- model partitioning - is started.

2.2.2 Partitioning

The partitioning problem can be defined as the mapping of the
expected system functionality to the components which are expected to build the
system. Examples of components in typical hardware/software systems are standard
processors or microcontrollers - and the software to be executed on them -, custom
ASIC chips, memories, busses, configurable logic. So, the partitioning procedure
takes as input a functional model of the system and separates the functions which are
going to be implemented by each one of the components. It is important to notice that
the procedure actually starts by the decision on which components will actually be
part of the implemented system. This decision, obviously, strongly influences the
partition itself.

The concept of platform-based design [SAN2000] was introduced in
order to reduce the complexity of this task. According to this concept, the set of
components which is used to build a system is strongly related to its application
domain. So, by establishing a well defined set of components - a platform - and by
validating it in a particular application type, it could be reused in future designs
within such domain. By relying on already developed and validated platforms, the
partitioning step can be done more easily, by mapping automatically the system
functionality to the platform modules. Companies such as Coware [VAN2001] and
Cadence [CAD2001] are known to support the concept of platforms.

Besides the choice of the system components to which the functionality
will be mapped, other key issues on the partitioning step must be highlighted:
abstraction level of the functional specification (task level, behavioral level, etc.),
granularity (amount and complexity of the functional units resulted by the
decomposition of the functional specification) and the details about the partitioning
algorithm itself (metrics of quality, cost function, solution space covering strategy,
etc.) [BEC97].

28

2.2.3 Software and Hardware Specification, Simulation and
Implementation

Usually, a great amount of the system functionality is mapped into
software during the partitioning step. [ARN2000] states that up to 80% of a system is
software running on a platform of general purpose or custom processors (CPU and/or
DSP) tightly coupled with unique dedicated hardware. While the software part show
more flexibility, allowing simpler error correction and upgrades, the part implemented
in dedicated hardware has superior performance, so it is used for the time-critical
functionality of the system.

The software specification generated from the partitioned system
description is usually programming language source code. When the platform where
the software is going to run is pre-existent, there is usually a compiler available to
generate object code, as well as a set of software drivers, so the software modules can
access the dedicated hardware parts transparently. The use of a RTOS may also be
considered, as it provides commonly needed functionality on the software/hardware
communication layer.

In many cases, a simulation engine is also available, so the software
modules can be tested over a software emulation of the hardware/RTOS platform.
Minor corrections may be done directly in the generated source code, but major
revisions should be done in the system model, so the partitioning can be re-done to
ensure better results.

However, in most of the cases there is a need for customization in the
underlying platform. This customization is defined by the hardware specification
taken from the partitioned system description. It is usually HDL code, which should
be simulated together with the software modules and its underlying platform. This
procedure is called co-simulation. Again, minor corrections can be done directly in
the HDL code, but if major corrections are necessary, it should be done in the system
specification. Once the co-simulation shows the desired results, the synthesis of the
hardware modules can start, as well as the synthesis of the communication structure
that allows the interoperation of the hardware modules and the platform that runs the
software part. Such synthesis is by itself very complex and will be described in details
in the following subsection. Once the customization of the underlying platform is
done, it is necessary to ensure that the software modules would be able to run
optimally over it. New drivers must be implemented, to make the bridge between the
software modules and the customized hardware, and - if the software processing
hardware was also customized - new compilers must be generated.

29

2.2.4 Hardware Synthesis

The synthesis of the hardware modules and the communication
circuitry is a very complex task by itself. After the system partition and
communication generation, those modules are described in a high level of abstraction
using a HDL. In order to translate such abstract description into actual hardware, a set
of model transformations must be done. Such process is based on techniques
developed over more than three decades of research, many of them covered in
[DEM94]. It can be subdivided in sub-processes, regarding the abstraction layers of
the initial and final design models. From the partitioned system model described in
previous subsections, three steps are usually taken in order to reach a physical
implementation of the system: behavioral synthesis, logic synthesis and physical
synthesis.

In the behavioral synthesis, a high level model of the hardware part
decomposed in a three sub-models:

a sequence graph, which defines the operations that must be performed
by the circuitry, as well as the order that the operations should be
executed;

a set of functional resources - usually a library of functional blocks -
which are available for the implementation of the circuitry;

set of design constraints, which specify limits - for size, performance,
power consumption, etc. - that should be respected by the final
implementation.

The behavioral synthesis comprehends three stages. In the first stage,
each operation on the sequence graph is scheduled, respecting the dependencies
among them. Once the schedule is done, each operation must be assigned to a
functional block. To minimize area, each functional block must perform several non-
concurrent operations. So, in the second stage the resource sharing is optimized so
that a minimum number of functional blocks can be found, still respecting the
schedule previously done. Finally, the third stage - resource allocation - can be done,
by explicitly assigning each operation to a functional block.

Following the synthesis flow, the next transformation - called logic
synthesis - has as main goal the generation of a logic description of the circuit. The
logic description - a net of logic gates, which are modeled as a set of Boolean
equations - is necessary for the physical synthesis later on. Furthermore, several
techniques can be applied during the logic synthesis in order to reduce the complexity
of the final circuit, by reducing area and power consumption or even easing the
testability.

30

Finally, the physical synthesis has the responsibility on the generation
of the physical implementation of the circuit. Usually, this is done by mapping logic
blocks - resulting from the logic synthesis - into pre-defined physical constructions,
such as layout cells in an ASIC or configurable logic blocks in an FPGA. In the ASIC
case, the standard cell approach is the most widely used. The layout cells are usually
grouped in a library, possibly with alternatives for each cell - tailored for smaller area,
higher performance, lower power consumption, etc. The libraries are closely related
to the circuit fabrication process, so after this stage it is not possible to change the
circuit fabrication technology. In the FPGA case, the mapping is done regarding the
logic implementation of each configurable block

After the technology mapping, the relative position of the layout cells
or logic blocks is defined. The connections among them - and the external world - are
generated, following the connection between the blocks in the logic netlist in a
procedure called Place-and-Route. Complex algorithms are used in this stage, in order
to minimize the number and the length of the connections, because such factors affect
significantly the circuit performance. Once the cells or blocks are placed and routed,
final verification tasks are performed and the circuit can be implemented.

2.3 Design Automation Tools

As shown in the previous subsection, the design of integrated systems
is complex, requiring a great amount of automation in order to be feasible. The
automation of the design tasks is performed by specialized software running over
general purpose computers. In some specific design automation tasks, however,
specialized hardware can be required, such as high-performance computers used for
simulation or configurable platforms used in emulation. But in most of the design
flow, the design automation comprehends the creation and verification of design
models, as well as the transformation of high level design models into optimized
equivalent lower level design models. In order to assist the designer on each of the
steps, a variety of design tools is needed. According to their functionality, the tools
can be divided in the following groups: design entry and visualization, simulation,
synthesis and verification. Further details and examples within each group can be
found in [IND2002] and [REI2000a].

2.4 CAD Frameworks: the Classical Concept

A CAD Framework is a software environment which aims to support
CAD tool developers, CAD administrators/integrators and designers [BAR92]. It
provides automatic execution to some of the time consuming tasks performed by each
of the three types of users, reducing the complexity of the design and increasing the
productivity. So, a CAD Framework should provide mechanisms to support tool

31

development, tool integration and intercommunication, as well as to allow a simple
and flexible usage of those tools.

Figure 2.3 shows the classic structure of a CAD Framework as
proposed by [BAR92]. As one can easily notice, the system comprehends a number of
abstraction layers built over the operating system of the designer's workstation. It was
designed to hide from the designer the underlying complexity of the design
automation software - only the tool developers and administrators would have access
to the lower layers.

FIGURA 2.3 - CAD Framework architecture [BAR92]

32

In the following subsections, the architecture of a CAD Framework is
analyzed in details. The functionality of each module is reviewed and the most
significant advances obtained from the usage of such module is highlighted.

2.4.1 Operating System Services

The functionality of the CAD Framework is based on the operating
system foundations. Among the services of the operating system which the
Framework relies on are:

File Services, for data organization and management;

Process Services, for concurrent multi-program execution;

Network Services, for communication with processes and systems
executed in different workstations;

User I/O Services, for the communication with the user and other
peripheral devices.

It is not reasonable to expect that every operating system could be able
to provide the same services, so an interface layer between the Framework and the
operating system is needed. Such interface offers to the Framework a set of standard
operations and maps it to the particular services offered by the host operating system.
Basically, such operations involve physical data management and process
management activities. Using such approach, the details of the particular operating
system are hidden from the designers and tool developers, which should be able to
deal with the Framework regardless of the operating system on which it is running.

2.4.2 Process Management Services

The processes which allow the execution multiple tools and data
repositories concurrently in a single machine - and possibly in multiple computers in a
network - should be managed properly within the Framework. Modern operating
systems already offer some of the facilities needed for such management: network file
systems, standard resource locators, support for concurrent process, etc. However,
some services should be customized to the needs of a CAD Framework, for instance a
load balancing system, in order to distribute among the machines of the network the
processing load needed by particularly costly tasks [SCU95].

33

2.4.3 Data Representation and Management

The data representation and management services play a critical role on
supporting design tool integration. Tools can only communicate if they share a
common dialect - the way the design is represented - and a common communication
protocol - the way they exchange design representation.

Due to the low complexity and small amount of the design data, the
first generation of CAD Frameworks didn't have specific services for data
representation and management [BAR92]. As the complexity of the systems to be
designed grew, binary and textual data structures were created - often specific to a
particular tool - in order to represent specific steps on the design flow, such as layout
descriptions and logic schematics. Since many design tools were implemented
separately by different teams or vendors, several data formats were created. To grant
its interoperability, data format conversion tools were widely used and every design
environment integrating a number of design tools was already distributed with a set of
translators.

With the increase of the number of tools needed in the design flow, as
well as the evolution of the data formats, resulting in several versions for each one,
the implementation and maintenance cost of a set of translators become to high. The
first solution to be proposed was the adoption of standardized exchange formats,
which should be understood by every tool - each tool would have its own format
translator internally, performing the conversion of the standard format into its own
internal data representation. Languages such as CIF (Caltech Intermediate Format)
[SHE93], EDIF (Electronic Design Interchange Format) [ELE2000] or even VHDL
and Verilog are examples of widely used tool exchange formats.

Later on, more complex issues arose and the data management for
concurrent designers became one of the main problems to be solved within the design
automation Frameworks. Version management, active references from every design
entity to each one of its instances (if the entity is edited, how to propagate the change
to the instances), data consistency control for forced interruptions in the design
process, access control for concurrent edition over a particular design entity are
among the issues which were being researched more recently in this field.

An evolution can also be noticed when it comes to the data storage
facilities. In the former Frameworks the storage was done completely over file
systems. When the data management issues became critical, database technology was
widely used as foundation for the storage systems within CAD Frameworks. As CAD
applications require support for storage and retrieval of complex data objects and its
relationships, many custom databases and data models were implemented [WAG94].

34

2.4.4 Design and Methodology Management Services

Design and methodology management tools are often called meta-
tools, because they don't deal directly with design data itself but support the designer
interaction with the design data and tools. The multiple tools needed by the designer
during the design process are often organized in a so-called design flow. The tools
that manage the design flow of an integrated circuit are responsible for the correct
sequence of steps taken by the designer while going from the initial specification to
the final implementation. The basic approach was based on sequences of automatic
tool invocation, which were supposed to support each of the tasks performed by the
designer. Besides that, the design flow management should also take care of the
storage of the different visions of the design data, produced and consumed by each
tool.

One of the first problems to arise when design flow management
systems were introduced was the need for flexibility on the flow automation. Such
flexibility is needed because the design steps and tools are constantly being updated,
due to the increase of the complexity of the designs and, as consequence, the
improvement of the CAD techniques. The design flow modeling should be as generic
as possible [KWE95], so it can be adapted easily to face the evolution of the design
methodologies and tools.

The creation of generic design flows was often based on the association
of design tasks and automation tools. Such approach saved the designers from the tool
invocation and the data transfer from one tool to another - format conversions could
be also be done automatically when needed. As advantages, the process of design
would be straightforward and faster. Furthermore, it would be performed in a
standardized way, making easier the communication and design data exchange among
members of a design team (or even the replacement of one of them), once all of them
would be following similar design procedures. In opposition to the benefits, a set of
issues had to be solved or optimized by design flow management tool designers
[JAC95, BOS95, WAG94, BRE95]:

design methodology modeling, so the management of the design flow
can follow pre-defined, well known methodologies and styles;

multi-user design flow, when the design tasks are performed by several
designers, so the interdependencies among tasks should be handled
properly;

facilities for the storage of milestones, from which the design can be
continued in multiple flows, allowing alternative implementations for
the same design, for the sake of comparison;

design metrics evaluation, in order to support the analysis of the project
status, productivity evaluation, quality of the design, etc.

35

The problems which are dealt by process management tools in
integrated systems design are generic, shared by many CAD environments from other
engineering disciplines. In spite of that, few technological advances have been shared
by them, and process management services have been developed individually for each
domain.

2.4.5 Tool Integration and Encapsulation Services

Design tools can be incorporated to the design environment in several
ways. Usually, we can classify them all in two groups: encapsulation and integration.
The main difference is the degree of exposure of the tool internals to the Framework.
In the encapsulation, the Framework has no access to the tool functionality, so it
communicates with it only by data exchange. This approach is also called black-box
integration or foreign tool interface. In the other hand, the integration of a tool
requires direct access by the Framework to its internal structures - i.e. function calls,
APIs, etc. - and is also called white-box integration. While the encapsulation can be
done in nearly any type of tool, the integration assumes that the need for
communication structures was predicted during the implementation of the tool, or that
the source code is available for the implementation of such structures.

The management of the integration and encapsulation of tools
comprehends the characterization and the control of such tools. For a small set of
tools, the designer can manage the characterization herself, but for complex
Frameworks, the amount of information to be managed is very large:

tool name;

tool version;

physical storage of the tools executable and configuration files;

online documentation;

initialization procedure;

runtime environment or shell;

computational resources needed;

input and output data formats;

data repository configuration.

If those features are available to the design environment, it can
automate the execution and data exchange for every incorporated tool, providing the
designer with a single interface to control them all in simple manner. So, both
integrated and encapsulated tools can be accessed transparently by the designer.

36

2.4.6 Data Versioning Services

A design data versioning service can be considered as specialization of
the data management service, because it deals with the management of multiple sets
of design data produced as several alternatives for a design transformation. On the
other hand, it can be considered as a supporting technology to the design management
services, because it supports the design team through its navigation over the design
solution space.

The main functionality expected from a versioning service include:

the maintenance of the multiple views of a design module, generated as
the module is synthesized over the several abstraction layers used in
the design process;

the maintenance of multiple alternative solutions for a particular design
problem, postponing for a later time the decision on which one would
be implemented in the final design;

the possibility to navigate backwards in the design history, so a
previous state of the design can be restored and/or analyzed – such
feature is essential when a wrong design decision was performed, or
when the access to the situation from which the current design was
derived is needed.

Several versioning strategies can be found in the literature. Some of
them organize the versions in a linear fashion, allowing only multiple alternatives on
the most recent versions. Some approaches are more powerful, allowing multiple
alternatives for all of the versions of the design by modeling the version history as a
tree or acyclic graph. Comprehensive reviews on the subject can be found in [KAT86,
KAT91] and [WAG94].

2.4.7 User Interface Services

The study and development of interfaces between user and computer
applications have been done since the early days of computing, because the user
productivity, satisfaction and efficiency often depend on the quality of such interface.
However, the evolution of the services of interface between designers and
Frameworks was much slower than other Framework services describer earlier in this
text, such as data representation and management. This situation is due to the
limitations of the visualization devices available at the time of the introduction of the
CAD Frameworks. In the beginning, the graphical capabilities of the displays were
very limited, so the design process was almost completely done without direct
manipulation of the design data. With the availability of graphical displays, graphic
manipulation of the design data was done by specialized personnel, working only in

37

this particular task, because the costs to provide graphical workstations for the
engineering personnel was too high.

Once the costs were bearable, and the techniques for implementing
graphical user interfaces were refined - pointer devices, windows, menus, buttons, etc.
- the designers started to work directly on the design.

Initially, the ability to interact graphically with the design data was
mainly used to physical layout visualization and edition. Efficient data structures and
algorithms were developed to allow the fast navigation and edition over very large
sets of layout data [SHE93, TRI90]. As the levels of abstraction in the design activity
were raised, the design visualization through interconnected block diagrams was
widely used, both for logic-level schematics and for structural design based in HDLs.

Besides making easier the manipulation of the design data, the
graphical interfaces helped also in design management: documentation, project
management, communication among designers, etc. Furthermore, the use of an
unified GUI "look-and-feel" within the Framework can also contribute on the sense of
tool integration, because all the design tools would use similar UI components for
similar commands.

38

3 Previous Work

 3.1 Introduction

Several approaches already addressed the issue of multi-user
distributed design of integrated systems. Most of them follow partial or totally the
CAD Framework architecture presented in the previous section. Some of them even
offered some kind of support to the collaboration among designers. The following
subsections review the approaches which were more relevant and influential to the
work presented in this thesis. Each subsection is introduced with the techniques the
reviewed system offers as a support to the distributed, multi-user design of integrated
systems. In the last subsection, a comparison among all the reviewed approaches is
presented.

3.2 NELSIS

The NELSIS Framework [VAD90] provides support to distributed,
multi-user design by implementing reusable methodology definitions, data versioning
and supporting design data sharing among the designers. Its version mechanism is
relatively simple, allowing several versions for a single design block. Each version
has a status (working, actual, backup or derived), so a configuration mechanism can
be implemented. NELSIS allows data to be shared between designers, but the
concurrency control is based on the versioning support: each time the system detects a
conflict between designers accessing the same design block, new versions for that
block are created thus separating the conflicting code bases.

The methodology management services in the NELSIS Framework are
performed by a methodology manager [TEN91]. It is responsible for creating flow-
maps, which are sequences of interconnected activities. Each activity abstracts the
(partial) functionality of an automation tool, as well as controls its execution
parameters. Each activity has ports, which denote the data received and generated by
the tool. Each data block has a defined type. The input ports are optional, and the
output ports can be divided in modification and extension ports. By extension is
meant that the produced data is stored in an existing design object. In the case of
modification a new design object is created for storing the produced data. So, the data
dependencies between activities are modeled through the interconnection of the
activity ports. Figure 3.2 shows an example of a flow-map for layout design. The
activities comprehend the layout edition, expansion, check, extraction and simulation.
The activity ports are represented by diamonds. Optional input ports are represented
as a filled circle, and modification output ports are represented as filled squares.

39

FIGURE 3.1 – NELSIS Design Flow Browser

FIGURE 3.2 - A flow-map example [TEN91]

Hierarchical description of activities is also supported by the Nelsis
Framework. The hierarchy can denote either a set of alternatives or a sequence of
tasks. Figure 3.3 shows the same flow depicted in figure 3.2, but using hierarchical
composition.

40

FIGURE 3.3 - An hierarchical flow-map example [TEN91]

3.3 Version Server

 The Version Server provides support to distributed, multi-user design
by implementing design data versioning. Proposed by Katz et al. in [KAT86], the
Version Server is a database scheme, as well as its operational model, for generic
design data. Basically, this approach proposes the inclusion of metadata within the
design database, so special relationships among the data blocks can be modeled.
Targeting multiple application domains, the metadata is neutral regarding the content
of each data block, so the modularization of the design - as well as the granularity of
the modularization - is let to the specific design tools, languages and its underlying
modeling constructs.

In Version Server, three structural relationships were proposed:
version, configuration and equivalence. The three relationships are described as three
orthogonal planes. The version plane comprehends the version history of the data
blocks. A tree-organized data structure is used to implement this scheme,
contemplating both alternative and derivative versions for each design block. The
configuration plane was responsible for the composition of several data instances, in
order to form hierarchical design blocks. The third plane - equivalence - relates
equivalent data blocks, specially in the case that they have different configurations
and/or representations.

Besides the metadata model, the Version Server approach also
proposes an operational model, based in the concept of workspaces. The server
defines workspaces which can be semi-public, private or archive. The first is used to
store and share incomplete and partially verified design blocks. The second allows
access by a single designer, so it is mainly used for refinement. The third include
validated instances, organized according to the three planes described before. A

41

transactional check-in/check-out mechanism is also proposed, in order to grant the
consistency when moving data blocks from one workspace to another.

3.4 STAR

The STAR Framework [WAG94] provides support to distributed,
multi-user design by implementing design data versioning. It is an extension of the
GARDEN Framework [WAG91] and relies on some of the concepts shown
previously in the Version Server, Oct [HAR86] and Damascus [MÜL88]
Frameworks. It is designed to support the three dimensions of design evolution in
such a flexible way that it is possible to incorporate consistently the successive design
refinements into the design model. So, all the design decisions taken successively in
every design step and every abstraction level are inter-related.

The STAR versioning scheme, shown in Figure 3.4, has the design
object as the tree root. This object can have any number of viewgroups and views.
The viewgroups – which are composite objects, aimed to provide n-dimensional
hierarchy – can also have any number of viewgroups and views. Each view can have
many viewstates, which store the actual design data for the design object. It is
important to notice that the interface scheme of the design block - the set of ports used
for connection with the external world – can be distributed all long the tree branch,
because an inheritance mechanism is available within the module, so that the interface
in a particular viewstate inherits the interface scheme from all its parent nodes. The
inheritance of interface schemes is mandatory. Other attributes can also be inherited,
but in this case the inheritance is optional.

ViewGroup 1 ViewGroup n... View
1

View
n

...

Design

ViewGroups
& Views ViewStates

ViewGroup 1 ViewGroup n View
1

View
n

...

ViewStates ViewStates

...

ViewGroups
& Views

ViewGroups
& Views ViewStates

FIGURE 3.4 – Versioning in the STAR Framework [WAG94]

42

3.5 Ulysses and Odyssey

Ulysses and Odyssey are Frameworks which provide support to
distributed, multi-user design by implementing reusable design methodologies.
Relying on concepts developed in the fields of Artificial Intelligence and Expert
Systems, the Ulysses Framework [BUS89] used a a knowledge base to support task
execution and methodology management. Such knowledge base was intended to
behave as an intelligent assistant to the designer, providing information about how to
reach the design goals by supporting the scheduling of design tasks and offering
details on CAD tool operation. Such approach intended to abstract from the designer
the workflow model, in opposition to the approaches where the designer explicitly
defines the workflow model.

The Odyssey Design Environment [BRO92] also offers such guidance
through its Minerva module. It intends to support design planning by offering to the
designer the possibility to state the design constraints in a so-called problem level. At
this level, the designer can carry out design directly in terms of statements such us
“synthesize an operational amplifier to meet a set of specifications” or “verify the
performance of an ALU”, rather than choosing specific tasks to achieve the desired
goals. The plans created by the Minerva module are then modeled as a workflow by
the Hercules and Cyclops modules. In opposition to Ulysses, Odyssey provides full
support to user-defined workflow models [BRO92a].

The workflow model supported by Odyssey is a tree-like flow. For
each desired result to be achieved - a circuit simulation or synthesis step, for example
- both the design data and the automation tools needed for the result achievement
should be included in the flow model. Once the model is ready, the workflow can be
executed by doing instantiation of the automation tools and versioning of the design
data. Such instantiation and versioning activities are included automatically in the
flow model during the workflow execution. The completed flow can be stored and
even re-executed if needed.

3.6 WELD

The WELD system [CHA98] provides support to distributed, multi-
user design by implementing reusable design methodologies. It aims to provide a
reliable, scalable connection and communication mechanisms for distributed users,
tools and services. It proposes a three-tier architecture (Figure 3.5), consisting of:

remote servers, to provide access to either command-line tools
encapsulated by server wrappers or tools with built-in support for
socket connections and WELD communication protocols;

43

network services, such as distributed data manager, proxies and
registry services, allowing the to incorporation of infrastructure
components on demand;

clients applications, which use the WELD infrastructure to access
network resources. Clients are either Java browser clients, or generic
clients, developed in socket-enabled languages such as C, C++, perl,
etc. using WELD protocols.

FIGURE 3.5 - WELD Architecture [CHA98]

An interesting feature should be noticed: the clients and the resources
they access are loosely coupled because of the mid-layer of the WELD architecture.
For instance, each time a client executes a particular task it may check on the registry
for the network location of the service. By doing so, truly transparent distribution of
tasks can be implemented, because the client can perform the same task in different
servers without noticing. Furthermore, task execution servers can be added and
removed without any noticeable effect to the clients.

However, this approach has also some side effects. Although
command-line tools can be easily encapsulated on the remote server by using
wrappers, other tools need to be re-written to conform to WELD communication
protocols. The support for collaboration is also limited, once it does not provide a
synchronous shared environment.

44

3.7 OmniFlow

The OmniFlow System provides support to distributed, multi-user
design by implementing reusable design methodologies. Developed in the
Collaborative Benchmarking Laboratory of the North Carolina State University,
OmniFlow [LAV2000] [BRG2001] merges several engineering techniques - namely
markup languages, hardware description languages and structured programming - to
built a scalable and flexible workflow system.

The workflow model is based on the concept of markup languages,
which became mainstream due to the success of HTML as the main language on
WWW document construction. OmniFlow uses XML to capture the decomposition of
the entire flow into a hierarchy of tasks, each of them associated to a software
component. An XML Schema - named cdtML - was defined to allow the validation of
workflow models which are to be processed by OmniFlow. Based on the scheme, a
workflow model can be parsed and validated, and a GUI can be dynamically created
by rendering the XML description of the workflow, so the user can view, edit and
execute the workflow. Figure 3.6 shows a snapshot of a OmniFlow GUI. Within the
GUI, the user can use structured programming constructs to control sequences of task
synchronization, execution, repetition and abortion.

In order to attach the software components to the workflow system, as
well as control the correct execution, [LAV2000] proposed a scheme based on the
concepts found in HDLs: finite state machines. So, each task instance is controlled by
a special structure which contains a finite state machine ([LAV2000] proposed the use
of a Finite-State-Machine with a Datapath, referred as FSMD), a Control-Join (CJ), a
DataMultiplexor (DM), a Control Fork (CF) and finally the actual software
component, which can be attached either as a black-box or white box. The latter is the
proposed construct to model hierarchies of tasks. This architecture is depicted in
Figure 3.7. The FSMD, CJ, CF and DM jointly work on the following tasks:

receive data from previous tasks;

forward processed data to subsequent tasks;

synchronize the status of predecessor tasks and evaluate workflow/user
defined conditions before invoking the current task instance;

validate the processed data according to user-defined constraints.

So, for each encapsulated task, the following operations are performed:
(1) evaluate ControlJoin, (2) enable task, (3) execute component and (4) evaluate
ControlFork. Operations (1) and (4) can halt the execution of the task if the pre or pos
execution conditions are not met. Operation (3) depends on the type of the
encapsulated software component: if it is a black-box, it is executed directly; but if it
is a white box componend, it should be expanded and each of the child tasks should
be processed according to the same set of operations.

45

FIGURE 3.6 - OmniFlow Graphical User Interface

FIGURE 3.7 -OmniFlow Task Instance Architecture [BRG01]

The OmniFlow task instance architecture was reported to support all
the workflow patterns reported on [VAE2000], showing its flexibility and
expressiveness regarding workflow constructs. Furthermore, the authors claimed to

46

have modeled workflows with more than 9000 tasks - including a longest path of
1600 tasks - which demonstrates the system's scalability.

3.8 ASTAI(R)

The ASTAI(R) system provides support to distributed, multi-user
design by implementing reusable design methodologies. Developed by the C-LAB
research center in Paderborn, it provides distributed, multi user workflow management
tailored to heterogeneous networks. It is a general purpose workflow management suite, but it
was already used in electronic design automation applications [CLA2001].

The concepts embedded on the ASTAI(R) implementation are not state-of-
the-art, but its production-quality distribution makes it a well documented, stable solution for
EDA workflow modeling. It also integrates a version management module – the RCS system -
as it allows automatic creation of data to allow undo/rollback operations on each workflow
task. Furthermore, the versioning can be used to explicitly keep track on the evolution of any
particular data object. An interesting feature resulting from the integration of a workflow
system and a versioning system is that the evolution of the workflow model itself can be also
managed by the versioning system, so a tree of versions of the workflow can be maintained.

FIGURE 3.8 - ASTAI(R) Workflow Editor

47

3.9 Moscito

 The MOSCITO Framework [SCH2002] was developed to support the
distributed access to test generation tools. It provides facilities for the encapsulation
of design tools and adaptation of the tool-specific control and data input/output to its
internal formats. The encapsulation is done using the MOSCITO agents, which are
interfaces between the tools and the MOSCITO kernel. Each agent must have a
configuration file, defining the particular functionality of the tool it encapsulates. So,
the kernel can invoke and configure the different tools through the agents in a
standard way.

Another facility provided by the Framework is the workflow modeling
interface. It allows user-created flows, as well as provides a set of pre-defined, often
used workflow patterns. Once modeled, the flow is mapped into a chain of agents
communicating via kernel. The Framework also provides facilities for visualization of
messages sent by the executing tools, as well as support for viewers of known data
types.

While not contributing to the state of the art on workflow systems - all
of the features presented in MOSCITO were already implemented elsewhere - the
software architecture was made simple and extensible, so its reuse in other application
domains is probably feasible. The platform-independency granted by the use of the
Java technology also contributes to its reusability potential.

FIGURE 3.8 - MOSCITO Software Architecture [SCH02]

48

3.10 PPP

The PPP system supports the distributed, multi-user design by
providing an abstraction to the distribution of design automation resources over the
network. It was proposed by [BEN96] and presented an approach for the integration
of tools running in different servers, accessible through a single user interface. Such
approach is based on the remote tool execution over the WWW. In PPP, there are no
tools installed in the client machine, so all the data processing is done on the server
side.

The design cycles in PPP are initialized by the designer, which requests
to the web server the desired tool. The server replies with an hyperdocument, where
the designer can input the necessary parameters and design data for the tool
execution. The data is then sent to the server, which executes the tool and send the
results back, also formatted as a hyperdocument.

FIGURE 3.9 - Client-server architecture on PPP [BEN96]

Since the results are displayed in a web browser, some data
representation formats which are used in regular CAD tools - such as schematics,
waveforms, layout masks, etc. - may not be supported. To allow such data to be
visualized, the PPP system includes a conversion tool, which maps the unsupported
formats into data which can be properly handled by the web browser.

49

After the analysis of the results, the designer can repeat the procedure
as many times as needed.

3.11 JavaCAD

The JavaCAD system [DAL2000] supports the distributed, multi-user
design by providing an abstraction to the distribution of design automation resources
over the network. It used Java RMI to implement a distributed system for simulation
of integrated systems composed by Intellectual Property (IP) cores. Java RMI is an
important extension of the Java platform tailored to the development of platform
independent distributed systems. It allows objects running on different machines in a
network to communicate. The mechanism is build over Internet protocols, so it can
work in a heterogeneous network (composed by different kinds of computers).

As shown in Figure 3.10, JavaCAD provides infrastructure for the
distributed simulation of an integrated system, interconnecting the system designer
and the providers of IP cores. This approach has the following advantages:

the IP cores can be evaluated before licensing, because the designer
can simulate his design together with the IP core without purchasing
or even copying the IP content to his computer;

the intellectual property of the provider is not disclosed during the
evaluation procedure, because the evaluating designer can access
only the IP core functionality, not its implementation.

The implementation of the JavaCAD approach is based on the use of
proxy objects, which are installed in the designer's machine. During the simulation,
such proxy objects - implemented using Java RMI - receive all the stimuli that the
actual IP core should receive and forward through the network such stimuli to the
provider's server, where the IP content actually resides. The stimuli processing are
done and the results are sent back to the proxy object, so it can feedback the system
under simulation.

IP Provider IP Provider

50

IP

Core
IP

Core

Designer Workstation

proxy
object proxy

object

FIGURE 3.10 - Platform independent IP simulation

3.12 Ptolemy II

Ptolemy II [LEE2001] is a set of packages supporting the modeling and
design of heterogeneous embedded systems. One of its major goals behind it is the
possibility to design embedded software together with the systems within which it is
embedded. Its software architecture is based on the concepts of entities, relationships,
actors and domains. Its kernel package supports clustered hierarchical graphs, which
are collections of entities and relations between those entities. Its actor package
extends the kernel so that entities have functionality and can communicate via the
relations. Its domains extend the actor package by imposing models of computation
on the interaction between entities.

Ptolemy II does not specifically support the distributed, multi-user
design of integrated systems, but its platform-independent architecture and its
extensible set of modeling constructs influenced the development of the work
presented in this thesis. The object-oriented framework which forms the kernel of the
system provides a well-defined foundation for the extension of its modeling
constructs. Such extensions can be reused by other designers, allowing for a code-
level collaboration among designers and tool developers. Figure 3.11 depicts the
kernel of the Ptolemy II system in an UML class diagram.

51

FIGURE 3.11 – Ptolemy II Kernel class diagram (partial) [LEE01]

3.13 Cave

The Cave Project [IND98] is a research initiative aiming to make
possible a user-transparent distribution of CAD resources over the World Wide Web.
It can be divided in two parts. The first one, a framework of reusable software,
available to design automation tool developers, allows an easier way to produce
Internet-enabled design tools and model design data. The second one, a web based
design environment prototype, validates the framework, and can be used for IC design
and education. The original architecture of the Cave Project is based on the
distribution of the design resources between client and server sides of the network, as
well as on the interfacing of those tools using hyperdocuments. In order to define the
design automation tools distribution over the network, the tools are divided in two
groups, regarding the level of interaction of the designer with each tool. Interactive
tools are attached to hyperdocuments and run inside a web browser on the client side,
while non-interactive tools are executed on the server side, according to inputs from
the designer on a HTML form.

52

Group 1 - High level of interaction: this integration architecture is
easily understood if related to the white box kind of integration. Belong to this group
the tools with intense work of the designer over graphical interfaces, such as
schematic editors and layout editors. These tools must be written (or re-written) using
platform independent solutions, such as Java programming language, and be attached
to a hyperdocument. The execution procedure is described below and is illustrated on
Figure 3.12:

when the designer browser requests the tool hyperdocument through its
URL, the server sends the hyperdocument with the tool attached to it;

the client receives the application and executes it;

the project data can be stored in the client or in the server storage
systems (in the later, it is necessary to open another network
connection).

Group 2 - Low level of interaction: this integration architecture is
easily understood if related to the black box kind of integration. Belong to this group
the tools in which the user interface is based in data providing and analysis, form
filling, simple choices over checkboxes and so on. Tools such as electrical simulators,
rule checkers and automatic layout generators, which require only passing a circuit
description file and some parameters, are typical examples of the low level of
interaction tools. These tools run at a server machine and only exchange data with the
client, using the Common Gateway Interface or Servlets.

The execution procedure is described below and is illustrated on Figure
3.12:

when the user’s browser requests the tool hyperdocument through its
URL, the server sends a HTML form, with the input fields related to
the parameters required by the tool;

the user fills the form and sends it to the server;

the server starts the program, feeding it with the data provided by the
user via form;

after running the program, the server can send the results to the client
and/or store locally.

To avoid keeping network connections alive for a long time, the Group
2 integration architecture must provide methods to handle tools with long processing
time. These methods may deal with push techniques. So, the server machine has to
keep track of the client, while it is processing the data. When the job is finished, it
opens a new connection to send the results. To keep track of the client, the server
machine opens short time connections, by which it sends the current status of the job
and receives acknowledgement from the client.

53

FIGURE 3.12 - Information Flow on Cave System

While achieving valuable results, as shown in [IND98a] and
[FRA2000], such architecture was discontinued, as shown in [IND2000], and a new
model based on object-oriented concepts is currently the underlying technology on the
Cave Framework.

3.14 Comparison of reviewed approaches

A comparison between the reviewed systems is presented in Table 3.1.
The marks determine which features are implemented by each system. The
comparison terms are the following:

methodology management support – whether the system allows the
modeling of tool sequences using workflow concepts;

design data versioning – whether the system supports the storage of
multiple versions for a given design data block;

abstraction of CAD resources distribution – whether the system
supports the abstraction of the network location of distributed design
automation resources;

platform independence – whether the system can be ported to other
operating systems without significant changes in its core
implementation;

extensible design data modeling constructs – whether the system
provides a design data model that can be customized after the system
deployment.

54

TABLE 3.1 – Comparison between CAD systems supporting distributed,
multi-user design of integrated systems

Tool

Supports
methodology

management using
workflow techniques

Supports

design data
versioning

Abstracts the
complexity of the

distribution of CAD
resources over

networks

Platform

independent

Provides
extensible
design data
modeling
constructs

Nelsis X X
Version
Server

 X

STAR X
Ulysses &
Odyssey

X X

WELD X X X
OmniFlow X X X
ASTAI(R) X X X
Moscito X X X
PPP X X
JavaCAD X X
Ptolemy II X X
Cave X X

55

4 Cave2 Foundations

4.1 Introduction

This section covers some of the techniques used to extend the concept
of CAD Frameworks presented in Section 2, in order to accomplish the requirements
stated in subsection 1.1. The need for those techniques is also covered within this
section, as the shortcomings of the original Cave framework are detailed. The outline
of the Cave2 architecture, which is the foundation of this thesis work, will be
presented at the end of the Section.

4.2 Object Orientation

Object-oriented techniques were proposed in the 1980's within the
software engineering and programming language communities [PRS96]. Such
techniques advocated on software reuse through the application of information-hiding
concepts, so a software system can be developed as a set of self-contained modules
interacting among themselves by message passing. Actually, the main concepts which
define the object-oriented paradigm - classes and objects, inheritance, encapsulation,
polymorphism and dynamic binding – were developed since the late 1960's [HOL94].
However, it was during the last decade of the 20th century that it started to boost
general purpose software development productivity [PRS96]. This delay may be
understood if the following facts are taken into account:

general-purpose software development tasks were relatively simple at
the time of the introduction of the OO paradigm, mainly due to the
simplicity of the hardware resources;

software maintenance – which greatly takes advantage on the OO
features – wasn’t a critical task, once the team who built the software
usually was the one to maintain it.

In the second half of the 1980’s, a shortage of software developers was
reported due to the high demand of application software, mainly because
popularization of PCs. In order to increase the productivity, the object-oriented
paradigm was taken of the shelf and started to be introduced in the software industry
environment. This introduction was done based on several methodologies, proposed
by several research groups [PRS94, JAC92, BOO91, RUM91]. Later, the most
important methodologies were adapted and put together under the name of Unified
Modeling Language (UML), standardized by the Object Management Group (OMG)
[KOB99].

56

Within the CAD Frameworks community, there were two main reasons
for the adoption of object-oriented techniques. The first motivation, as stated in
[GUP89], is to accelerate the development process of CAD tools and ensure the
satisfaction of the users. Using object-oriented techniques, it is easier to do
incremental software development, so an early prototype can be provided to the future
users and the feedback about it can be obtained during development time.
Furthermore, the object oriented CAD systems are easier to maintain and upgrade,
because each modification affects only some small, self-contained modules of the
system. While the first motivation is also true for every object-oriented system, the
second one is particularly related to the complex data models needed by CAD
systems. In systems based in simple data models, sometimes the overhead due to the
usage of object-oriented techniques exceeds the granted advantages, but when it
comes to data models with complex relationships, the object-oriented data modeling
and maintenance is much more effective.

In [HEI87], some object-oriented modeling constructs are reviewed
regarding their applicability to CAD data:

relationships - object oriented data models are able to express a wide
range of relationships between data blocks. Relationships such as IS-
A (relating object sub-types to their super-types), COMPONENT-OF
(denoting aggregation of objects) and INSTANCE-OF (relating an
instance to its type) can be found natively in some object oriented
languages. Furthermore, user-defined relationships can be
implemented in order to fulfill CAD-related needs, such as
VERSION-OF and DERIVED-FROM;

customizable constraints - record-oriented data models usually have
very strict rules to ensure consistency, which has as consequence the
rejection of any transaction that is not complying with the rules. In
CAD data models, such policy may be sometimes inadequate,
because in many cases the system should annotate the modifications
and notify the users, rather than rejecting the transactions. By using
customizable consistency rules embedded in the object model,
particular procedures can be used under different conditions, and
particular actions can be taken based on the kind of failure or
restriction violation;

complex data types - objects can be modeled after complex entities
from the application domain. Such entities are well defined by the
encapsulation of their state and behavior. In record-oriented data
models, such entities would be broken in many parts, relying on
aggregation relationships to ensure their integrity, incoming into
higher design and maintenance costs on the data model;

abstraction - the abstraction mechanism relies on the information
hiding concept: an external view of the objects are provided, but their
internal details are not available to the external world. This approach
encourages the decomposition of the modeling problems into
independent sub-problems. Furthermore, it allows the management of

57

multiple views of the design data, because some designers may want
to deal only with higher abstraction levels while others would have to
understand implementation details, and with an object-oriented model
the design of such structure is straightforward.

Several EDA research groups started to turn to object orientation since
the late 1980's to better organize the development of CAD Frameworks and many
advances were reported in the most important design automation conferences. Notable
contributions were achieved by the NELSIS group, in the topics of object oriented
data models [VAD88], concurrent access to object databases and versioning [WID88].

In methodology support, the advances were achieved by Cadweld
group [DAN89], which extended the Ulysses Framework [BUS89] by modeling
design tools as objects in a design flow.

Many HDLs were also extended/created to support object-oriented
constructs. While the analysis of OO HDLs is outside of the scope of this study, some
CAD Frameworks supported such languages, as can be seen in [CHU90], intending to
achieve the same level of code reuse and reliability as reported by software
developers.

4.2.1 Object Oriented Frameworks

In the modern software engineering domain, a framework is an
architecture to build extensible and reusable object-oriented software systems.
According to Johnson and Foote [JOH88], a framework is a set of classes that
embodies an abstract design for solutions to a family of related problems, and
supports reuses at a larger granularity than classes. So a framework defines an
efficient, proven software architecture to solve design problems in a particular
application domain. The framework defines the global structure of the application, its
division in classes and objects, the key responsibilities of each part, how the classes
and objects cooperate and how the control sequence is implemented.

It is important to notice that Johnson and Foote, as well as many other
theorists in object-oriented design, advocate that the strength of a framework lies on
its abstract nature. This means that the architecture of the object-oriented software
system should be expressed in terms of abstract classes (classes which cannot
generate objects). From this set of abstract classes, several implementations can be
derived, by creating concrete subclasses from the abstract ones. So, those classes
would inherit the abstract behavior defined in the framework, as so would do the
objects instantiated from them.

In [PRE94] such structural aspects are specially highlighted, and
special attention is given to the framework usage through specialization in application

58

building. According to the author, a framework comprehends a set of building blocks,
some of them ready to use, some unfinished. The global architecture is pre-defined,
and the construction of a new application usually is done by adapting the framework
components to specific needs by implementing variables and methods in the classes
and subclasses of the framework.

Such scenario is depicted in Figure 4.1, where a framework is shown as
a simplified UML class diagram. The framework extension is built by inheritance, and
the handling of client requests can be done either by the framework core or its its
extensions.

In the design automation field, such frameworks can provide
foundations to the development of data models, as well as primitives for the
construction of design tools. Differently from the classic concept of CAD
Frameworks, such foundations are not executables or libraries, but abstract guidelines,
which must be followed during the implementation of the design models and tools, so
the interoperability is granted.

FIGURE 4.1 - Object-Oriented Frameworks

4.2.2 Design Patterns

Many of the architectural solutions used in the construction of a
particular object-oriented framework can also be used in another one, even if they are
tailored to completely different application domains. According to [GAM95], such
solutions should be documented in a proper way, so their usage could be made
simpler and their reuse stimulated. A design pattern is then a well-documented
solution for a generic problem in software architecture. Such patterns are identified by

59

names and included in catalogs, so they can be searched and referenced easily during
the development process of software systems.

The core of a design pattern includes [GAM95, GOL2002]:

pattern name;

motivation - problems it addresses;

known uses - application scenarios, examples;

structure:

identification of classes and instances involved in the pattern;

roles and responsibilities of each class/instance;

types of collaboration among instances;

expected advantages and costs due to the pattern usage.

We can take as an example the Observer pattern, which is one of the
patterns included in the catalog by [GAM95]. It defines a one-to-many dependency
between objects so that when one object changes state, all its dependents are notified
and updated automatically. It is widely used in graphical user interface toolkits which
separate the presentational aspects of the user interface from the underlying
application data. When the user changes the information in one of the presentations,
the others should reflect the changes immediately, and vice versa. This behavior
implies that each of the views are dependent on the data object and therefore should
be notified of any change in its state. Figure 4.2 depicts such situation.

FIGURE 4.2 - Observers and Subject [GAM95]

60

The design pattern actually describes how to establish the relationships
among the participating objects. The key objects in this pattern are subject and
observer. A subject may have any number of dependent observers. All observers are
notified whenever the subject undergoes a change in state. In response, each observer
will query the subject to synchronize its state with the subject's state. Figure 4.3
shows the relationships in an UML class diagram.

FIGURE 4.3 - UML representation of the Observer design pattern structure [GAM95]

The first and perhaps best-known example of the Observer pattern
appears in the Smalltalk Model/View/Controller (MVC), the user interface framework
in the Smalltalk environment [KRS88]. That framework advocates for the separation
of the software functions: (1) that represent and store data (Model), (2) that allow the
visualization of this data by the user (View) and (3) that capture the interaction of the
user with both the data and its visualization (Controller). MVC's Model class plays
the role of Subject, while View is the base class for observers. Some examples can
also be found in CAD Frameworks as well. In [GIR87], the development of a design
environment built over the Smalltalk MVC framework is reported. The separation
between data and visualization was implemented, so different representation formats
of the design data could be presented to the designer. The design environment
prototype, named STEM, had views for displaying layout information, spice models,
EDIF code, among others, for every cell model in the design library. A controller was
also implemented to allow the edition of the cells. Diva [GIG2002], a framework for
information visualization developed as support within WELD [NEW99] and Ptolemy
II [LEE2001] design environments, also relies on the separation of model and views.

Likewise, many recurrent problems on data modeling within CAD
Frameworks can be addressed by the application of design patterns. Within this work,
wherever a design pattern is used, it will be referenced by its most common name,
according to [GAM95].

61

4.3 Architectural Evolution - from hyperdocuments to OO

The original architecture of the Cave Project, covered in subsection
3.13, is based on the distribution of the design resources between client and server
sides of the network. In order to define the design automation tools distribution over
the network, the tools are divided in two groups, regarding the level of interaction of
the designer with each tool. Interactive tools are attached to hyperdocuments and run
inside a web browser on the client side, while non-interactive tools are executed on
the server side, according to inputs from the designer on a web form.

That architecture – described originally in [IND97, IND98a] - has a
strong bind with the World Wide Web concepts. It takes advantage on the
hyperdocument-centric nature of the WWW, modeling the design flow as a chain of
hyperdocuments. Each one of the hyperdocuments embeds the user interface of each
of the design tools. So, the hyperdocument links connect the tools in the right order,
allowing the user to navigate across the design tasks.

That architecture leads to a file-based design data storage and transfer:
the data is stored in web servers together with the tools and the hyperdocuments that
create the structure of the design flows. Databases can also be used for design data
storage, but as unstructured data. The transmission is done by the WWW standard
protocol, the HTTP.

Several advantages - described in [IND97] - are granted by the use of
that architecture, such as easy implementation and maintenance of the design
environment, platform neutrality, reduced cognitive overhead and possibility of
remote use and collaborative design by distributed teams.

In despite of all the advantages granted by the Cave Project original
architecture, modifications were necessary in order to fulfill the requirements
presented in subsection 3.1. Some of the initial reasons are described below:

some of the tools didn't fit into the proposed model, because they
needed modules to be executed both in the client and server sides of
the network, such as Cadena [IND99], C2VHDL [MAY2000],
CaveJTAG [IND2000] and WTropic [FRA2000];

the file-based design storage is not suitable for multi-user distributed
designs, and requires intense use of format converters. Furthermore,
it is not very efficient on supporting the design navigation;

the support for collaboration is very hard to implement, since there is
no defined data model and the interaction between designer and data
are completely done within the tool. So, the implementation of a
data-driven collaboration would not be possible, and a GUI-driven
collaboration – such as [STE2001] - would probably be the only

62

option if synchronous collaboration is required. The asynchronous
collaboration could be done by using workflow and versioning
techniques, but no domain-specific optimizations would be possible;

the use of HTTP protocol, based on URLs, requires fixed references for
every resource on the network. A more flexible architecture is
needed, in order to allow the dynamic inclusion and exclusion of
resources.

In order to address such shortcomings, a new design data model was
planned as a substitution for the file-based data storage and transfer. Such data model
substitution was already predicted in the Cave Project original proposal [IND98], and
could be done over the existing infrastructure. Furthermore, a new architecture for the
distribution of design automation resources is needed, in order to accommodate the
new modules in a flexible way.

The prototyping methodology [PRS96] was chosen for the design of
the new distribution architecture and of the new data model. Due to its iterative
nature, the methodology can support the progressive refinement on the system
requirements, as well as allow the experimentation of different technological
approaches. Intermediate prototypes are not going to be explicitly described in this
thesis, as further information about them can be found in [IND2000, BRI2002,
SAW2002]. They were used to experiment the new concepts, thus acquiring more
knowledge about the overall functionality of the system and about the potential to
fulfill its requirements. The Cave2 system architecture was devised over the
foundations of those intermediate prototypes, and it is described in the following
subsection.

4.4 Cave2 Architecture

In order to create a distributed system architecture, it is important to
define first the elements of such system, as well as each element's role in the overall
system functionality. The prototyping cycles referenced in the previous subsection
lead to the definition of following elements, which are also depicted in Figure 4.4:

data primitives for design representation: set of design data primitives,
which are instantiated by the designer while interacting with the
design tools. The data model which organize such set of primitives is
described in details in Section 5.3;

building blocks for design tools: set of reusable software blocks, aimed
to simplify the development of design automation tools, detailed in
Section 5.2. Emphasis should be given to the data access modules
dealing with the peculiarities of the data primitives mentioned in the
previous item;

63

design data repository: storage resource, aimed to provide persistence
to the data generated by the designers. Should be designed to support
data-driven collaboration;

system communication channel: infrastructure supporting the data
exchange among the modules of the distributed system. Should allow
flexible inclusion, exclusion and location of design automation
resources;

design cockpit: main user interface, it is responsible for user
authentication, communication with the other modules over the
communication channel, invocation of design tools and inter-user
communication;

service integration interface: each external service is integrated using a
pre-defined API. The access to the external service is done through
procedure calls, and the parameters passed to the external service are
modeled by public fields in the object. Such fields can be used for the
automatic creation of the service's user interface by using reflection
mechanisms. Combination of several services can be done through a
flow editor, such as seen in [CLA2001, LAV2000], modeling task
chains parameterized by the designer. The incorporation of such
automatic flow editor is outside of the scope of this thesis and is let
as future work. Current flow models were defined at source code
level.

64

Communication
Channel

Framework
Server

design tool
block

design
representation

tool
bl k

design
i iti

client download
classes

client instantiate
tool objects

Client 1
tool n

Fram
Serv

ework
er

designer creates
a design by
instantiating

design primitives

data
repositor

y

service
module

s

design

Client n

design is
uploaded to the
data repository,
where it can be

processed and/or
cessed by oth

designers
ac er

inter-designer
communication

tool 1

Service
Space

tool 2tool 1

client
requests
for tools

Cockpit

FIGURE 4.4 - Proposed architecture for resource distribution

Many decisions are left to the implementation step, and the detailed
communication mechanisms are still to be defined, but the main functionality - the
functions expected from a CAD Framework - can be already envisioned through the
proposed architecture. The Service Space is responsible for the external tool interface,
methodology management and data management. The Cockpit and the Design Tool
Block Repository are responsible for tool management and user interfaces, while the
Design Representation Primitive Repository is responsible for the data representation.

A typical usage scenario of the proposed architecture is shown in
Figures 4.4 and 4.5. The designer downloads (or uses a locally installed copy) of the
design cockpit, which searches and connects to an active instance of the Framework
Server. It issues a request for tools and services. Such request can be based on a set of
attributes, so the Framework Server refers to the client only those tools matching the
criteria, otherwise all available tools are referred. Once the client downloads the
reference to the desired tool or service, it queries the Framework Server for required
or desired additional tool modules, which are dynamically linked to the actual running
tools. As the designer creates or updates a design, new instances of design data
primitives are requested to the Framework Server. Such set of interconnected
instances are the actual design model. Designers can work over a model in a
standalone mode, or in collaboration with other designers. In the first case, a design
repository service is available from the Service Space (but optional, as the designer
may want to store the models locally), and in the second case a collaborative service

65

is needed on top of the previously mentioned repository, to control the concurrent
access to the design data. Other design automation tools and resources can be also
available through the Service Space, and should be queried directly via design cockpit
or accessed within other tools.

The proposed architecture is based in two core technologies: CAD
Frameworks and OO frameworks. The first technology was reviewed in details in
Section 2, while the second one was briefly covered in subsection 4.2. It is important
here to reinforce the distinct meanings of the term framework within the fields of
design automation and software engineering. We do so by exemplifying its use on the
intended goals of the proposed work:

in the design automation domain, a Framework is a software
infrastructure that enables the interoperation of design tools. Such
Frameworks should support the design data exchange among tools,
data storage, project management, design edition and visualization,
among other functions reviewed in [IND2002]. In this thesis, the
complete Cave2 design environment can be considered as an example
of such Framework, as it provides most of the services reviewed in
Section 2. Its contributions and advantages over the previous
approaches in this area are covered in following sections;

in the software engineering point of view, a framework is an extensible
set of inter-related objects. Such objects are usually domain-specific,
but many of its relationships are domain-neutral and can be reused
from other frameworks (such relationships are know as design
patterns, reviewed in subsection 4.2.2). Such frameworks should be
extended and used to build applications. In the proposed work, all the
data primitives - as well as primitives for user interface and data
manipulation - are designed and implemented as an object-oriented
framework, described in Section 5.

The combination of the strengths of these two technologies is one of
the major contributions of this thesis, as no other approach exploring such possibility
is known.

66

Use Lookup Mechanism

Request Tool
Building Block

Request Design
Data Primitive

Lauch Design Tool

Input Design Data

Launch External Service
Access Service Space

Access
Framework Server

Designer

Save Design
Data

Share Design Data

FIGURE 4.5 - UML use-case diagram modeling interaction between user and design environment

4.5 Java-based Approach

Initially an implementation decision, the use of Java technology
influenced significantly the development of Cave2. Such influence can be considered
harmful, as it denotes a dependency on a given technology and thus makes it harder
the deployment to a platform which cannot implement the Java Virtual Machine.
However, two points should be considered. The first one regards the portability of the
Java Virtual Machine. It has been ported to most of current hardware/software
platforms, numerous legacy platforms and it is likely to be also ported to platforms
that may appear. Such wide availability of the JVM reduces significantly the odds of
having difficulties to widely deploy Cave2.

The second point to be considered recalls the original definition of a
CAD Framework [BAR92]: a CAD Framework provides an abstraction layer between
the design tools and the underlying operating system. Such layer is responsible for a
standard interface for the tools to access the computational infrastructure without
using platform-specific resources, thus easing the portability among platforms. If we
consider the Java platform a part of such layer, its co-existence with Cave2 is already
justified, as it actually provides a significant share of the functionality a CAD
Framework is expected to provide to its tools:

67

process management - its concurrency library based on the
java.lang.Thread class provides a complete support for implementing
and managing concurrent processes;

file and network services - the java.io package provides stream-based
facilities for data input and output in such a way that most of the
media-related complexities are abstracted from the developer (for
instance, there are few differences when reading a file from the local
file system or from a remote server);

user I/O services – user intervention is modeled within an extensive
event library, so user-system interactions are captured in a standard
way;

user interface – two user interface libraries are available, AWT and
Swing. The first relies on native implementations of GUI elements,
while the second has a fully independent implementation, granting a
cross-platform look-and-feel to the applications;

data modeling – Java was designed to implement all the major concepts
of object orientation, so it provides modeling constructs which are
suitable for the complex CAD data models;

integration of legacy code – through the Java Native Interface, legacy
code written in C/C++ language can be accessed directly by Java
applications. Furthermore, its distributed architecture make it simple
to encapsulate and integrate legacy applications as black-boxes
regardless to their location in a network.

Taking into account the fact that few of the known CAD Framework
implementations were able to provide such a transparency layer between the
application domain and the operating system because of the complexity of such
structure, the decision on relying on Java to do so seems to be appropriate even
though it may reduce slightly the Framework deployment potential.

There is one more issue that should be noticed. The most common
critic against the Java technology is its performance overhead. In order to be
platform-independent, Java code is interpreted during runtime, causing it to run
slower than its natively-compiled counterparts. Many techniques have been used to
reduce such overhead, such as Just-In-Time compilation, runtime optimizations and
integration of native code for critical computation. Thanks to those techniques, in
many cases the Java code execution has a comparable performance with native code,
while in most of cases the performance is 1.5 to 3 times worse, according to the
application domain [WEN2001, BUL2001]. However, in some cases when memory
management issues are not critical, Java performance was reported to be even better
than native code [MAN98].

68

5 Framework Core

5.1 Introduction

The core of the Cave2 Framework is the Framework Server. It is the
part of the architecture which hosts the object-oriented framework of design
representation and tool primitives. As showed in Figure 4.5, the access procedure for
the design representation primitives and for the design tool building blocks is the
same. The Framework Server is responsible for the storage and access control for all
the primitives. The Framework Server provides the primitives to the cockpit as the
primitives are needed. When a designer invokes a particular tool, the cockpit asks the
Framework Server for the primitive building blocks for that tool. From the primitives,
the cockpit creates instances, connect them together and assembles the tool: GUI, data
structures, event listeners, communication channels, etc. Once the tool is assembled,
the designer can starts to interact with it. As he/she interacts, it creates a design model
by instantiating design data primitives requested from the Framework Server.

According to the underlying infrastructure, there is more or less
development work to implement this part of the system. A query mechanism is
needed in the Framework Server, supported by a naming system to guarantee the
existence of an unique index for each primitive. An API should also be defined to
allow the proper communication between the Framework Server and the cockpit. The
Framework Server must support concurrent access, in order to serve many cockpits
simultaneously. We do not expect to provide maintenance on the primitive pools
while the Framework Server is running, so a maintenance mode is not planned. The
reason is that the base primitives which are already included in the object framework
should not change, and the addition of new primitives does not require an explicit
control, once they would be not in use before. The naming system should guarantee
that the new entries are available through the query system, though.

As the Cave2 implementation relies on Java technology, all primitives
can be modeled as Java Classes and a Java Virtual Machine [LIN97] is be provided as
the underlying platform for the cockpit. The naming and the query mechanisms
available in the JVM can be reused within Cave2, because the JVM follows a concept
of name spaces to identify all the Classes according to their URLs, and uses HTTP
servers or file system calls to query and retrieve the Classes when needed. Such
spaces are identified by the codebase parameter of the JVM. The handling of
concurrent accesses can also be taken for granted, as file systems and HTTP servers
implement such functionality.

Regarding the composition of tools, there must be an assembly
procedure definition for each one of the tools. In most of the cases, this composition
should be done at code level - for instance, there will be a primitive which will be the
responsible for assembling the others, so this primitive will be seen by the cockpit as

69

the tool itself. In the proposed implementation, we use the possibilities of dynamic
Class loading and late binding [GOS96], in order to allow the tool assembly during
runtime.

If more than one Framework Server is allowed, a communication API
between them should be defined, as well as a policy for resource duplication and
consistency check. For the proposed implementation, we decide to use unique
Framework Servers. Future research will provide information about the needs for load
distribution, multiple servers optimized for specific application domains, local caches
for faster network access and redundancy for fault tolerance.

In the following subsections, the two major components of the Cave2
object-oriented framework are detailed. We hereby clarify that the term framework is
used within the following subsections with the meaning of the object-oriented
framework which is hosted by the Framework Server. When referring to the whole
Cave2 CAD Framework, we will use its proper name to avoid confusion. Generic
references to the CAD Framework concept will usually mention the complete name of
the concept as well, always with the first letter capitalized. The terms subclass,
superclass and extension refer to the inheritance concept from the object-oriented
paradigm. Object-oriented types – Class and Interface names - are presented
italicized. Furthermore, throughout the current Section all the references to such OO
concepts – Classes and Interfaces - appear with the first letter capitalized.

5.2 Design tool primitives

As stated in [BAR92], a CAD Framework is supposed to provide
support for the design tool developers, so new and existing tools can take advantage
on the Framework infrastructure. Following such guideline, a part of the proposed
CAD Framework is aimed to provide building blocks to make easier the construction
and integration of design tools. As a collaboration-enabled CAD Framework, it is also
necessary to simplify the inclusion of collaboration support in the integrated tools.

Because of its commitment with object orientation, as well as with Java
technologies, the intended implementation will provide only facilities for the
development over Java platform. Platform-dependent solutions should be either
integrated as services (see Section 6) or integrated in the code level using the Java
Native Interface (JNI). The building blocks which are part of the core framework
include:

abstract graphical user interface primitives which provide the support
for dynamic linking of the design tool's GUI with the Cave2 cockpit;

domain-neutral 2D graphical engine, for rendering diagrams,
schematics, layouts, etc. It is built on top of the interface for

70

accessing the data repository and interact with the concurrency
control service, but works as well in standalone mode;

domain-neutral text edition module. It is built on top of the interface
for accessing the data repository and interact with the concurrency
control service, but works as well in standalone mode. This work is
outside of the scope of this thesis, but it is being performed
concurrently with it [HER2001];

sample modules for querying the design repository, aimed to be used
on the development of tools which need to extract particular subsets
of the repository data;

parsers and export tools to allow the data exchange in file formats.

Following the guidelines of framework development, the design tool
primitives are organized as an extensible set of packages, so addition to the elements
mentioned above are possible and encouraged. The foundations to such extensions
can be found within the cave, cave.graphic, cave.text and cave.tool packages of the
framework (see Appendix 3 for detailed description on the framework packages).
Some support to the GUI primitives are also available in packages cave.awt, cave.util
and cave.io. Many of those facilities had their functionality implemented by Java
Foundation Classes (JFC) library after their creation within the Cave packages for
tool primitives. In many cases, the Cave primitives were substituted by JFC Classes,
but in some cases the Cave primitives are still in use by tools implemented before the
introduction of the equivalent functionality in the JFC libraries. The usage of such
Classes in newly developed tools was only accepted when the functionality of the
Cave implementation presents clear advantage over the JFC counterpart.

 The cave package is the root of the complete framework. It includes
the primitives for assembling the Cave2 cockpit – its GUI and the Classes supporting
its connection to the Framework Server and Service Space. The most of the primitives
for tool GUI construction are inside of the cave.graphic package. The CaveGUI Class
is the abstract superclass of the Class every tool must implement to describe the
procedure for the dynamic assembly of its GUI. Such abstract superclass ensures
every new tool which is developed can be dynamically linked to the Cave cockpit –
no further compilation or linking is needed, and the tool inclusion can even be done
within an executing cockpit. The CaveGUI also provides the tool all the necessary
functionality for operating in a windowed GUI, because it inherits from the JFC Class
JFrame. Furthermore, CaveGUI also provides a reference to the Cave cockpit and to
the Framework Server. The first reference is used to provide communication between
the several tools that can be concurrently executing on top of a cockpit, granting the
possibility of a common transfer area to implement copy-paste or similar
functionality. The second reference is implemented as the communication channel
depicted in Figure 4.4. It allows every tool to download design data primitives
(described in the next subsection) and to query and contact the Service Space
(described in Section 6).

71

While one can easily integrate a new tool into the Cave2 Framework
by extending CaveGUI, the effort to build the tool itself is not changed by using that
Class. To address such issue, a set of Classes were created to make the development
of new tools on top of the Cave2 Framework easier. Such facilities were usually
disregarded in many of the CAD Frameworks developed previously, and it is not
difficult to imagine that the lack of facilities for tool development was one of the
reasons such Frameworks had restricted adoption.

In order to decide which facilities should be implemented, we started
the prototyping of typical tool GUIs, such as schematic viewers and editors, layout
editors, simulation and synthesis tool interfaces, etc. Details on the implementation of
such prototypes can be found in [BRN98, IND2000a, IND2001a, OST2001,
BRI2001]. During the first implementation cycles, common functionality among the
several tools was found. Such kind of functionality was then factored out from the
tools and added to the framework as a reusable module.

An important example of such reusable modules is the
CaveGraphicEditor Class, which incorporates and uses several other reusable
modules to built a superclass for all graphic editors. The elements which are viewed
by such editors- visual representation of design objects - should be subclasses of the
abstract Class CaveVisualObject. By following the extension guidelines, one can
easily build a graphic editor which already renders visually a set of objects using a
basic rendering engine with user-driven panning, zooming, object resizing and
positioning. In Figure 5.1, an UML Class diagram shows partially the structure of the
Cave tool primitive packages. A more comprehensive diagram is shown in Appendix
2.

The additional Classes shown in Figure 5.1 can be divided in two
groups:

graphical engine group, which manages the visual objects and the
visualization procedure. The Classes CaveCanvas, Universe and
CaveVisualObjectManager belong to this group.
CaveVisualObjectManager is the main interface to the graphical
engine. It propagates the requests to the CaveCanvas, which manages
the Universe. The CaveCanvas is actually the responsible for the
rendering of the visual objects, so it is a GUI component itself -
derived from the JFC Class JPanel - aggregated to the
CaveGraphicEditor GUI. The Universe is a multidimensional data
structure, which organize the visual objects in layers and manages a
coordinate space for them. It allows for extensions that take
advantage on the coordinate space and layers to provide an optimized
access to the visual objects it stores, such as using a layer index or a
quad-tree;

event handling group, which manages the user interaction. The Classes
CaveGraphicEditorEventHandler, CavePrimitivePalette,

72

SelectMode, CreateMode, GroupMode and ConnectMode belong to
this group. The first Class handles the user interface components of
the CaveGraphicEditor: menus, buttons, etc. The second one handles
the selection of interaction modes, which are actually handled
independently by the other mentioned Classes. For instance, when the
designer uses the palette to set the creation mode, the palette activates
an instance of CreateMode to handle the events generated by the user
over the CaveCanvas, and so forth.

javax.swing.JFrame

CaveGUI
CaveCockpit

0..n 1
CavePrimitivePalette

CaveGraphicEditorEventHandler

CaveVisualObjectManager

CaveCanvas

CaveVisualObject

1 0..n

GroupMode

CreateMode

SelectMode
CaveGraphicEditor

1

1

1

1 1
1

1
1

1..n

11

11 11

1..n

1

1..n

1

1
1

1 1
1

1

ConnectMode 1
1

1
1

1
1

1
1

1
1

0..n

1..n java.util.Vector

javax.swing.JPanel

Universe

FIGURE 5.1 – UML Class diagram of GUI primitives (partial)

The foundations described above are based in a generic, abstract visual
object. In the implementation of the actual tools, such object was extended into
concrete Classes implementing actual representations of design objects. Also in this
case, a set of common functionality was factored out from the prototype tools and
included in the framework. Such structure is depicted in Figure 5.2. It connects to the
diagram shown in Figure 5.1 through the CaveVisualObject and Universe Classes.

The first extension implemented within the framework is the support
for metadata. This feature allows for the inclusion of additional information to each
visual object – for instance name, comments, author, etc. Such support is also
included in abstract Classes. The first concrete Class in the hierarchy of visual
representations is the CaveVisualBox, which define the shape of the visual object as a
rectangle. Such Class is extended to support connection ports
(CaveVisualBoxWithPorts) and hierarchical compositions (CaveVisualBlock). The
connection between objects is modeled by the Interface ConnectionEnabled,
implemented by both CaveVisualPort and CaveVisualConnection. For more details
about each of the Classes and Interfaces, refer to the Appendix 3.

73

CaveVisualObject

CaveVisualBox
WithPorts

CaveVisualBox

java.awt.Shape

java.awt.Rectangle

CaveVisualObject
WithMetadata

CaveVisual
Metadata

0..n
11

0..n

CaveVisualConnection

CaveVisualBlock

Universe

0..n

1..n

0..n

1..n

1

1

1

1
CaveVisualPort

0..n1 0..n1

 CaveVisual
ConnectionEnabled

<<implements>> <<implements>>

0..n

0..n

0..n

0..n

FIGURE 5.2 – UML Class diagram of visual primitives for design representation (partial)

Such foundations were used to build the late prototypes of most of the
tools referenced earlier, namely Jase, Jale, Jale3D and Blade. The particular
extensions within each one of the tools – the building blocks which are not reusable in
other tools – are organized inside the cave.tools package, in a subpackage for each
tool.

5.3 Design data primitives

One of the purposes of any CAD Framework is to support the designers
on creating a design model. Such design model must be represented within the CAD
Framework somehow. Such representation – often referred as design data model – is
critical to the interoperability between tools – and as we will address later, between
designers. Such representation is also critical to the applicability of the CAD
Framework: it would only be applied to a design domain if its design data model is
able to express the constructs which are peculiar to that particular domain.

Thus, to achieve a maximum of applicability and interoperability, the
design data primitives included in the proposed framework are generic, aiming to a
minimum common denominator to the variety of modeling constructs used within the
EDA field. Initially, we restricted the supported modeling constructs to the following:

modularity – the data model should support the definition of
independent, self-contained design modules, so that the concurrent
access to different modules can be done transparently. For instance,
two designers must be able to work in different pieces of the design

74

simultaneously, or one designer may like to further develop one
block while simulating another. In order to make it possible, the data
model should provide well defined primitive objects, with well
defined interfaces, so all the design data modules would be derived
from those;

hierarchy - the data model should support the description of tree-like
hierarchical structures, which are necessary for every type of design
relying in part-whole decompositions (Figure 5.3). For example, a 4-
bit full-adder block can be a composition four single-bit-full-adder
blocks, each of them composed by of NAND gates. In [RUB94], the
hierarchy is described as a feature present in complex objects, as
opposed to primitive ones which contents and functionality can be
considered common sense, for instance again the NAND gate;

X

Y

Y

Z

L
Z N

M

FIGURE 5.3 - Example of hierarchical construct

instances - within a design model, the instances of a particular design
data module are considered as new blocks which mimic the structure
and behavior of the original one. For example, a module which
calculates Hamming distance can be used in many different
implementations of a Viterbi decoder algorithm. It makes no sense to
replicate it in every implementation, so its description is kept unique,
and an instance is used everywhere it is needed. The main advantage
of this modeling construct is to avoid data redundancy, so no storage
resources are wasted, and the updates are done through a single point.
The concept of design libraries also rely on instances, because the
actual design data is stored on the library, and only instances of it are
used on the design domains. The implementation of the instance-of

75

relationship is often integrated with hierarchy, and sometimes both
relationships are considered as one. We differentiate them because
their purpose is distinct. While hierarchy is used to define that a
particular block is composed of parts, instances are used to denote
that a particular block is an exact replication of another, which may
be hierarchical or not;

communication - the connection between design modules should be
also supported by the data model. A connection represents the
possibility of communication between two modules via any medium.
The nature of such communication will depend on the abstraction
level of the blocks and on design domain specific information. Often,
design modules present specific communication structures – ports,
pins or similar structures – which should be supported by the data
model as well.

A classic data model implementing such constructs is the 5-box model
referenced in [WAG94]. In such model, depicted in Figure 5.4, a cell presents pins
and define instances, which also present pins. A cell can be hierarchically composed
by instances and the connections between them. Connections can not only connect
instance pins among themselves, but to the pins of the container cell.

contains

cell

instance

connects

contains

defined
by

instance pin

connects

defined
by

pin

connection

FIGURE 5.4 – 5-box Data Representation Model[WAG94]

 As stated in [WAG94], such model is generic in the sense it does not
assign any semantics to its elements. Cells, instances, pins and connections are black
boxes which can be used to store any domain-specific entity. The data model only
manages the relationships between them.

However, in an object-oriented framework such model can be used as
an abstract foundation for domain-specific extensions. Our implementation takes
advantage on such possibility and provides already some extensions, which were used
as case studies on the extensibility of the framework. Such extensions were used in
some of the design tool prototypes referenced before, and incorporate the following
constructs to the basic model. We introduce one of those extensions below, while

76

others are introduced when the support for collaboration is introduced in Section 7,
and on the case studies shown in Section 8.

The first extension to be introduced to the fundamental data model is
aimed to support the inheritance construct. The data model should support the
factoring of common attributes of design modules through is-a relationships. This
modeling construct was introduced as part of the object-oriented paradigm in
programming languages [PRS94], and can be very useful on the refinement and
specialization of design blocks. Inheritance allows the designer to model extensions –
or specializations – of a design block by adding functionality without modifying its
specification. The block specialization inherits all the functionality of its parent block,
and differentiates from the parent by its own added functionality. Special cases of
inheritance allow the substitution of the parent’s functionality by overriding them
explicitly on the specialization.

For instance, a given functional unit FU1 performs basic logic
operations, addition and subtraction, while another functional unit, performing the
same operations plus multiplication and division, is called FU2. By using inheritance,
the designer can state that FU2 is a FU1 – it inherits all its functionality – and then
implement only the remaining operations. Another example of the application of the
inheritance relationship is when the designer factors out common functionality from
several design blocks, creating a common parent for all of them.

FU1

add()
subtract()
compare()

FU2

multiply()
divide()

FIGURE 5.5 - Example of inheritance construct

In Figure 5.6, an UML Class diagram is presented, depicting the
proposal design data model. Such model already includes the extensions supporting
inheritance.

77

HierarchicalDesignBlock

InstancePort

Transaction

BlockInstance

0..n

1

0..n

1

0..n

1

0..n

1

ExternalPort

TypeDefinition

0..n
0..n

0..n
0..n

DesignBlock

0..n

1

0..n

1

0..n

1

0..n

1

1..n

0..n

1..n

0..n

DesignPort0..n0..n 0..n0..n

FIGURE 5.6 – UML Class diagram of the proposed design data model

The implementation of the 5-box model was straightforward. The
names were changed in order to adapt to a more general nomenclature scheme
adopted in the overall framework. Cell became DesignBlock, pin became
ExternalPort, instance became BlockInstance, instance pin became InstancePort and
connection became Transaction.

Some additional entities were included. The HierarchicalDesignBlock
Class was included in order to model the hierarchical composition of blocks using an
implementation of the Composite design pattern [GAM95]. In such implementation,
we model a hierarchical block as a composition of instances of other blocks, that may
or may not hierarchical, allowing for hierarchical compositions of any depth. The
concept of instances favors the reusability of blocks over the design description - one
block can be instantiated several times and each instances will reflect any update done
to the block definition.

In order to allow loose coupling between instances and their respective
blocks, we use a Flyweight pattern [GAM95], which advocates for the separation of
intrinsic and extrinsic characteristics of an entity. Its definitions on extrinsic and
intrinsic attributes matched well with the relationship between the block – which
handles the instrinsic attributes - and its instances – each one with its own extrinsic
attributes. The concept of the flyweight pool can be seen as a library of design blocks.
With the help of the flyweight pool, each hierarchical level can be manageable
independently, so that designers can work concurrently on them.

78

Another additional entity is the abstract DesignPort Class, which
factors out common functionality from ExternalPort and InstancePort regarding their
communication behavior through transactions. Such approach allows the modeling of
transactions that span different hierarchical levels.

The implementation of the inheritance construct, shown by the classes
and relationships in the left side of the diagram, was very simple as well. For every
DesignBlock, a TypeDefinition instance is associated. Such class has a self-association
to denote the inheritance relationship between types. Notice that the model supports
also multiple inheritance, as the multiplicity of the self-association is many to many.

The classes presented in Figure 5.6 are included in the cave.design
package of the framework.

79

6 Supporting Distributed Design

6.1 Introduction

This section covers the devised techniques to support the distributed
design of integrated systems. As a definition for distributed design, we assume that
the following statements can – and probably will – be true:

designers are not co-located but geographically dispersed, so all the
interaction between them and the design automation environment –
and also among themselves – must be done over a computer network;

design tools are not installed in every computer in the network, so the
design automation environment should make them available to
remote users in a consistent and efficient manner;

design data is stored in many computers over the network – in some
cases redundantly - so the design automation environment should
take such situation into account when retrieving and storing data.

 Most of the previous approaches reviewed in Section 3 addressed such
issues by adapting and applying the client-server model. Such approach defines roles
to be played by service providers and service consumers, as well as their
communication patterns. Such approach is widely adopted for its simplicity, and it is
currently the underlying technology for the Internet network.

However, some of the limitations of the basic client-server model –
which are particularly significant in the case of the HTTP protocol, which was used in
the original Cave architecture - restricted its applicability on the support for
distributed collaborative design. In many cases, the distinction between client and
server is not clear as there are design automation resources that may act either as a
client or a server. Some examples of such tools developed on top of the Cave
Framework are referenced in section 4.3.

Another limitation is its lack of flexibility to freely add and remove
servers in a network: (1) clients are by default unaware of server additions, and there
is usually no mechanism to give them such awareness; (2) clients are also unaware of
server removals, and they notice the removal only when they experience repetitive
problems on trying to connect such servers. This happens because the client-server
communication is always initiated by the client, and there is no default mechanism for
the network elements to inform the clients about changes.

To address such issues, the Cave2 architecture includes a layer
between the client and server side. Such layer – often called middleware -

80

intermediates the communication between network elements, thus blurring the
differences between clients and services: every element in the network can be both
client and server. To do so, every element declares a communication interface to the
middle layer, so it can connect to whatever module which implements a compatible
communication interface. Such approach allows a complex task to be distributed in a
variety of ways over the nodes of a network, as shown in Figure 6.1. The level of
transparency of such distributed processing can be really assessed in the case depicted
in Figure 6.2, where a network node A issues a service requests to another node B,
which triggers the execution of sub-tasks in many nodes, and one of them can even be
the initial service requester A. While A believes it is requesting B a service, such
service is being done in a distributed way, B is only a Façade and part of the service
is being actually performed by A itself.

FIGURE 6.1 – Evolution of distributed systems [SHI02]

B triggers subtasks

C

triggers task

triggers subtask

D

F

A

FIGURE 6.2 – Example on task distribution

81

To address the lack of flexibility to add and remove elements in the
network, we use the middle layer to register such events and to notify other elements
that may be interested on those events. A query mechanism is also needed, as a
network element may need to dynamically request a service provider to perform a
particular computation. Such query must be flexible enough to allow several criteria
for the search, for instance regarding the service's input parameters, name, underlying
platform or even its physical location.

Our approach uses a Jini-based implementation for such middle layer,
detailed on the next subsection. Following, we describe the Service Space, which is
built on top of the middle layer, and the Framework Server, which is where our
object-oriented framework lies.

6.2 Resource Distribution Architecture

Several design decisions were taken in order to implement the
underlying architecture for resource distribution in the Cave2 Framework. The first of
them regarded the underlying network infrastructure over which the Framework
resources should communicate. As TCP/IP networks are nowadays the de facto
standard for the intercommunication of computer systems, and as this was the
protocol used in the original Cave implementation, this was not much of a choice. By
using TCP/IP as underlying infrastructure, the deployment of Framework resources
can be done over any Internet-like network.

However, the WWW service - which was the basis for the original
Cave implementation - is strongly influenced by the client-server model and, as
reviewed previously in this text, present some shortcomings when applied to the
distribution of design automation resources. In a distributed CAD Framework, we
expect to have access to CAD resources no matter where they are located or which
kind of platform they run. We also expect to allow a CAD resource to be included,
moved or excluded dynamically within the distributed system, aiming to more
flexibility and fault tolerance. Such expectations add to the need for a multi-layered
approach, discussed in the previous subsection. There are some middleware solutions
which can fulfill those needs, such as CORBA [OBJ2002], Jini [ARO99] and UPnP
[MIC2000]. All of them work over TCP/IP networks, and share the common
architecture showed on Figure 6.3. In principle, any of them could be used to support
our approach.

Our implementation uses Jini, because it is Java-based, there are freely
available development tools and most of the facilities for service lookup, discovery
and join are already implemented and freely available. Jini also includes a
programming model - built over the Java language framework - covering leases,
events and transactions. The remote method invocation infrastructure also rely on
Java language features, specifically on the JavaRMI package. Such programming
model uses local proxies to reference remote objects, so in the application domain all

82

method calls seem to be local, reducing the overhead usually associated to dealing
with remote subsystems. This is a particularly important feature to overcome some of
the limitations of the original Cave architecture, as we will describe ahead.

service

requester
service
provider

queries for
service

advertises
service

 leased
service
attributes

middleware

FIGURE 6.3 – Middleware architecture

The procedure a client goes through in order to access a CAD resource
is briefly described in the UML sequence diagram in Figure 6.4. First, the CAD
resources must advertise the services they provide to the other network elements. This
procedure is managed by a middleware entity called lookup server. To locate an
available lookup server, the CAD resource uses the Discovery protocol, which is
particular to the middleware architecture being used. In our case, we use the Jini
discovery services: if the network address of a lookup server is known, the CAD
resource can establish a direct connection with it; otherwise, an UDP multicast
request can be sent, which would be replied by the lookup servers reached by the
request.

Once the connection is established, the CAD resource starts negotiating
the publishing of its services. Such protocol is called Join and requires from the CAD
resource some information which is relevant to the lookup server’s functionality:

attributes describing the service to be made available, so potential
clients can check if the service match their criteria;

service interface, so all clients intending to use such services must
comply with;

expected life cycle of the service, so the lookup can publish its service
during a limited period of time only, avoiding allocation of
unavailable services by the clients.

Once the lookup server receives from the CAD resource such
information, it is ready to include it in its registry. It assigns the CAD resource an
unique ID – which is used to keep track of the services even if they leave the lookup
and join later on – and grants it a lease for the service registration. Such lease is based
on the expected life cycle of the service, and the it is part of the lookup functionality
to enforce the removal of services that do not renew their leases before the expiration.

83

In the Jini implementation, the lookup server has a peculiarity which
favors our Java-based approach. In such case, the service interface of the CAD
resources is stored by the lookup server as a proxy object for that resource. Such
models allow several possible implementations, which will be described ahead.
Before, we describe the lookup procedure from the client point of view.

The Discovery protocol for the client is the same as described for the
service providers. Once the connection with the lookup server is established, the
client should perform then the service lookup. Such lookup is based on a key which
provides an identification of the desired CAD resource. Such identification can be an
unique name, when aiming to locate a specific resource, or a generic description,
which would locate all available resources matching it. In the second case, the search
criteria depends on the service attributes declared by the CAD resources when
registering their services during the Join protocol. By using Jini, there is the
possibility of using a Java object as a key, so even more sophisticated and optimized
matching schemes can be implemented.

Lookup Serviceclient CAD Resource

registerService()discoverLookup()

lookupService()

process()

discoverLookup()

 FIGURE 6.4 – Resource lookup protocol

When one or more services match the lookup query submitted by the
client, a reference to each of them is returned by the lookup server, so the client can
contact them. Along with the reference, a specification of the service interface. Such
interface specifies how the client can access the functionality of the service provider,
as well as the functionality the service provider expects from the client, if any (as
explained earlier in the text, in this approach all the parties are usually both client and
server).

84

As mentioned earlier, in the approach implemented in the Cave2
Framework the clients rely on Java object proxies provided by the Jini lookup server
as both a reference and an interface specification for remote CAD resources. Every
time a client looks up for services, a proxy object for each one matching the query is
returned by the lookup server. Such proxy objects can be used by the clients as local
objects, but their interface can hide several possible implementations:

the proxy object encapsulates code which is executed locally in the
client machine. The service provider is only responsible for providing
the right service implementation, but it does not participate in the
service execution;

the proxy object performs some local computation in the client
machine, but it contacts the service provider for performing specific
tasks (i.e. computational intensive tasks, database access, platform
specific tasks or location specific computations such as reading a
value from a sensor). The service provider is responsible for
providing the service implementation and specific computation
resources, but the control flow is executed in the client machine;

the proxy object is only a pipe, and forward all the requests to the
service provider. In this case, which is adequate for clients with
restricted computational resources, the complete service is provided
remotely.

Such possibilities overcome some of the problems found in the original
Cave architecture (see subsection 4.3). While the original approach was able to
provide transparency on the server-side distribution of CAD resources, the current
approach allows for a complete transparency, no matter if resources execute locally,
remotely or both. The client only needs to reckon with the service interface.

As a summary, we can state that by relying on the present approach a
client can access a CAD resource in a completely transparent way. Its location - and
possibly the location of the lookup server - are dynamically obtained during runtime
and are transparent for the client developer. The internal functionality of the CAD
resource is also hidden, since the client access it through a proxy object, so the service
can actually run in the local machine, in the remote machine or in both. The interface
of such proxy object - the API calls it supports - are the only information the client
requires at development time. In Table 6.1, we review the approaches which
supported abstraction of resource distribution from Table 3.1, and this time we
differentiate between server-side abstraction and complete abstraction. We include the
Cave2 approach in the comparison, in order to show that it overcome most of the
limitations of previous approaches in this regard. The WELD system proposed a
similar architecture based on a generic middleware solution [CHA98], so it should
theoretically support the same level of transparency supported by Cave2. However,
due to the lack of reports or availability of an implementation of WELD, such
assumptions could not be checked within the frame of this thesis.

85

TABLE 6.1 – Comparison between CAD systems supporting abstraction of the CAD resource
distribution

Tool

Abstracts the server-side distribution of CAD
resources

Abstracts completely the distribution
of CAD resources

WELD X X
OmniFlow X
ASTAI(R) X
Moscito X
PPP X
JavaCAD X
Cave X
Cave2 X X

6.3 Service Space

The service space is a core component within the architecture
presented in subsection 4.4, supporting a variety of tasks:

integration of external design tools;

providing runtime environment for internal Framework services, such
as repositories, concurrency control, prototyping and authentication
services;

providing service lookup and publish infrastructure, in order to allow
dynamic plug-and-play service inclusion.

As described in the previous subsections, many implementation
possibilities are available, such as CORBA, SOAP-based webservices, Jini, besides
other approaches which are not related to the object-orientation paradigm. Our choice
was based on the features of the Jini technology because of the already mentioned
reasons.

Built over the communication channel, the Service Space is accessible
through the lookup infrastructure. Services plugged into the system use the Join
interface to notify about their network location and service properties. Clients use the
Lookup interface to search for the services they intend to use. Such services include
external design tools as well as internal services which are part of the CAD
Framework, such as the authentication mechanisms, several concurrency control
modules (transactions, locking, etc.), the interface to the data repository and the
prototyping service. Both external and internal services can be included dynamically,
contributing to the scalability of this solution. An overview of such solution is
depicted in Figure 6.5.

86

 P
ro

to
ty

pi
ng

O
th

er
 In

te
rn

al
 S

er
vi

ce

...

O
th

er
 In

te
rn

al
 S

er
vi

ce

D
at

a
R

ep
os

ito
ry

 A
P

I

C
on

cu
rr

en
cy

 C
on

tro
l

C
ol

la
bo

ra
tio

n
S

er
vi

ce

E
xt

er
na

l T
oo

l

A
ut

he
nt

ic
at

io
n

...

E
xt

er
na

l T
oo

l

Service Space

D
at

a
R

ep
os

ito
ry

Cave2 Communication Channel

Jini

FIGURE 6.5 - Service space architecture

As mentioned in the previous section, the proxy-based approach for the
service integration within the Service Space contributes for the resource distribution
transparency. Every client dealing with a given service should interact only with a
local service proxy, which would propagate data and control instructions to the actual
implementation of the service when necessary. This approach is particularly useful for
simplifying tool integration and workflow modeling issues. Because of the clear
separation between the tool implementation and their access interface defined within
the proxy, the tools can be considered “encapsulated” by their service proxies and the
tool integration can be done at the proxy level.

Some implementation work was done to validate the possibility of
proxy-based tool integration, as we will cover in the following subsections. No
specific service was implemented for workflow modeling, as we believe we can rely
on currently available solutions such as TRMS/GTLS [KOS2003], OmniFlow and
MOSCITO. Each of those tools has its own tool encapsulation and activation
strategies, but with little effort they can be adapted to use their workflow modeling
and execution engines on top of Cave2’s proxy-based encapsulation architecture.

6.3.1 Repository Service

In Section 5, we presented the object-oriented framework which is the
foundation of the Cave2 system. In such framework, we could identify design data
primitives and design data visual representations (the latter as part of the primitives
for design tool development). The separation of visualization and the actual data
model follow the motivations reported in [GAM95, KRS88] when detailing the
Model-View-Controller model. In our OO framework, we provide primitives for
modeling both the model and the view, while the logic for the controller should be
provided by the design tools. Such implementation is trivial when dealing with
standalone, single-user tools, but can be rather complex when it comes to multi-user,
distributed usage. If collaborative usage is needed, further complexity arises. In order

87

to save tool developers from such complexity, we provide a Repository Service to
deal with issue of multi-user distributed design, and a Collaborative Service to handle
the possibilities of cooperation among designers. The former is described ahead,
while the latter is covered within the next subsection.

The data repository architecture is a key point on the development
process of a design environment. In previous implementations of CAD Frameworks,
the core of the whole system was the design database. In most of the cases, the
database was customized or implemented specifically to support the Framework data
model. In [WAG94], the following issues are stated as reasons for that:

lack of support for modeling, storing and retrieving complex data
objects;

lack of resources to control multiple representations for a same object;

lack of resources for version and configuration management;

inadequate integrity verification mechanisms;

available transaction models are not adequate as units of consistency,
restoring and synchronization;

lack of resources to support collaboration among designers;

concurrent access control mechanisms - mainly based in locking - are
inadequate.

In the tool interoperability arena, common design repositories
demanded huge research efforts in the past, specially within the frame of the CAD
Framework Initiative (CFI) [CFI94]. Still today, when the concept of a tightly
integrated set of design tools is no longer the mainstream, and the design
environments are composed by a heterogeneous set of best-of-class tools, this issue is
driving the attention from both the technical and strategic sectors of the EDA
industry, as seen in the OpenAccess project [CAD2001], a part of the OpenEDA
initiative [OPE2002]. That project standardizes a set of functions for communication
between the design tools and the design data repository, based on a reference
implementation done by Cadence.

Both the CFI and OpenAccess, as well as many of the approaches
covered in Section 3, try to overcome the limitations described in [WAG94], but are
still built on top of classical database paradigms. Three of those paradigms were
analyzed during the development of the Repository Service: relational database
management systems (RDBMS), object-oriented database management systems
(OODBMS) and shared object spaces. Not only the possibilities for storing design
data were considered, but also the support for the Collaborative Service we intended
to build. The following subsections highlight the analysis results, and derive from
them the proposed approach for the Repository Service.

88

6.3.1.1 RDBMS

Created in the 1970s by Codd [COD70], the relational data model is
being intensively used since then. Most organizations use RDBMSs in their data
repositories, creating a huge market and, as consequence, significative technological
advances in performance and reliability. According to this model, the data is divided
in regular tuples, uniquely identified and grouped together in a relation. A set of
relations - usually called tables, to use a simpler metaphor - makes the data repository.
Tuples from different relations relate to each other through their unique identification
keys.

While this model can be suitable for regular enterprise systems, it
presents limitations on supporting a design environment, mainly due to its data
modeling and data access strategy.

Its tuple-relation-based approach makes it difficult to model more
complex data types. A simple logic schematic would require a complicated relational
data repository schema to be properly stored. For some time, when better options
were not available, such schemas were actually developed [HAY83]. Nowadays,
automated solutions for the creation of relational schemes from complex data types
are available, such as the object-relational mapping detailed in the next section,
making the task of data modeling easier. However, in such cases the data repository
management and maintenance is still very complex.

The data access in relational databases is based on read/write
transactions, so all the tools using the data from the repository must work with local
copies (Figure 6.6a). To insure the consistency between the copies within the tool and
the original data in the repository, concurrency control procedures may be necessary,
restricting the collaboration potential specially in the case of multi-user collaboration
over the same data block.

6.3.1.2 OODBMS

Object-oriented database management systems have been researched
for the last two decades, in order to provide persistence to the objects created by
object-oriented programs - e.g. objects that can be used even after the program that
created them has been terminated. Currently, several OODBMSs are available - some
are commercial products, some are research results - and they can be divided on two
classes, regarding the data access strategy.

The first strategy follows the relational model, so the applications work
with local copies of the data from the repository (Figure 6.6a). This is mainly because
such OODBMSs were built over RDBMSs, or they are actually RDBMSs hidden

89

behind a object-relational mapping interface - the objects are made persistent by
storing its identifications, values and type information as tuples in a relation.

For those OODBMSs, the same advantages and disadvantages found in
the relational model are valid. A possible exception may be the performance, which
can be lower because of the object-relational mapping overhead.

The second data access strategy is defined by the concept of single
instances of data blocks [MUE2000]. It means that the application don't have local
copies of the data stored in the repository, but they have references to the actual
stored object (Figure 4.9b). When the data is needed by the application, a remote
method call is done to the object, which returns the data. This approach has some
advantages on implementing synchronous multi-user collaboration, but in other hand
creates a strong dependency on the reliability of the connection between the design
tool and the repository server.

Regarding the data modeling, both strategies follow the basic concepts
of the object-oriented paradigm, which offers rich semantics to model complex data
types. However, some of the OODBMSs require special features from the objects that
are going to be stored, such as the use of specific superclasses and the explicit
declaration of methods that alter the object state [MUE2000, VER2000]. In most of
the cases, the implementation of such features is simple and straightforward, but it can
restrict the use of some modeling constructs, specially when working with languages
without support to multiple inheritance (e.g. Java).

6.3.1.3 Shared Object Spaces

The concept of shared object spaces was introduced by Gelernter
[GEL85] in the 1980s, and recently extended by the Jini group from Sun
Microsystems [FRE99]. Its goal is to provide persistence services without all the
complexity of RDBMSs or OODBMSs. In order to do that, the query engines - which
are the main interface between application and repository in RDBMSs and
OODBMSs - were substituted by a simpler lookup service. Furthermore, the
mechanisms to grant the uniqueness of each data block are not present in the shared
object spaces, allowing the storage of multiple copies of the same block, as showed in
Figure 6.6c.

The data access strategy in shared object spaces also follows the model
of read/write transactions, as in the relational model. Although, it grants the
consistency of the data copies in the applications through a update/notify mechanism:
every application is notified if the data they have copied from the repository is
updated.

90

Using a different approach, shared object spaces can also be
successfully used as a support for a collaborative design environment. While not
allowing direct collaboration over a single data block, this approach can be easily
used to implement design data versioning. Furthermore, it can be used to support
some synchronous collaboration methodologies, where all except one of the members
of the collaboration group have read-only access to the data block (i.e. eXtreme
Programming [BEK99], Pair Programming [WIL2000]).

remote
method call

query interface

 1

 2

3

4

5

5 3

Repository

tool

5 3

tool

Designer A Designer B

query
interface

 1

 2

3

4

5

Repository

tool tool

Designer A Designer B

 2 4 2

 1 3

5

5 3

Repository

3

tool

5 3

tool

Designer A Designer B

(c) (b)(a)

FIGURE 6.6 - Alternatives on Design Data Repository

6.3.1.4 Proposed Approach

Prototypes were implemented using the approaches described in the
previous subsections, using subsets of the design data primitives framework:

relational database - behind an object-relational interface (MySQL
[WIE2000], using LiDO from LIBeLIS [LIB2002]);

two flavors of object-oriented databases – single instance (Ozone
[MUE2000]) and local copies (Versant [VER2000]);

an ObjectSpace implementation (JavaSpaces [FRE99]).

All of them provided the desired persistence capabilities to the design
objects. All of them were transactional, so a well known consistency approach was
available. The advantages and disadvantages presented in the previous sections were
found, but no disadvantage was significant to make impossible the adoption of any of
the approaches. Perhaps the high costs for model maintenance in the relational model
would put it in disadvantage, but it should be considered feasible anyway.

91

However, the implementation issues on each case were slightly
different, such as the transaction models (some were based on locking, while some
also allowed an optimistic approach) and the way to handle remote access (shown in
figure 6.6). Such implementation issues motivated the inclusion of an intermediate
layer between the database and the design tools. Such intermediate layer – the
Repository Service itself – would hide the implementation differences between the
several repository models. Several implementation possibilities for such service were
studied. One of them was influenced by the classic CAD Framework definition of
Data Management Services – recently revisited by the OpenAccess approach
referenced earlier - and defined a general API for accessing the repository, which was
matched to each implementation-dependent query interface. Such matching procedure
was not visible from the tool domain, so tool developers would not need to deal with
repository implementation.

While such approach was completely acceptable as a Repository
Service – furthermore, it would be rendered perfectly as a remote service within the
Server Space because of its well defined API – it still delegates to the tool developers
all tasks regarding managing data access sessions and transactions. However, this
cannot be considered as a limitation, as session and transaction management are
mainly done in the client side in most application domains.

In order to allow the CAD developers to focus only in the tool
application domain, we extended the API-based approach by introducing an
architecture inspired in the transparent persistency concept. This approach is also
explored within the Java Data Objects architecture [ROO2003]. According to this
technique, the persistence source should be hidden as much as possible, so the client
can have the impression that it is dealing with regular in-memory objects, and not
with database records. Our final implementation of the Repository Service uses such
concept to create a new approach for design databases.

The proposed extension, included in the core of the implemented
object-oriented framework, allows for the direct management of the data objects
through their own API - for instance, calling a method tempblock.addPort(new
CaveVisualPort()) - instead of using a database API to do that - for example insert
into PORT (portkey, blockkey) values ('64', '12').

The inclusion of the transparent persistence features into the
Repository Service - which is a Service Space-compliant service - required specific
implementation strategies. To follow the guidelines for resource distribution defined
within the Service Space, the proposed Repository Service relies on proxy objects.
Such objects are used as pipelines, routing the local method calls to their respective
counterparts in the Repository Service. To grant the consistency between the
repository and the user interface, their interaction follows the Observer pattern
[GAM95].

92

The access to the Repository Service follows exactly the procedure
described in subsection 6.2. For each design tool using the repository, a service proxy
is loaded from the Service Space. However, such service proxy is not used directly as
the complete interface to the repository. It plays its role only in the creation, removal
and location of design objects. All other operations are handled by object proxies
playing the role of each individual repository object. The Observer pattern actually
keeps the consistency between those proxies and their respective visualizations. The
consistency between the proxy and the repository object is done transparently by the
Repository Service.

Tool RepositoryServiceProxy RepositoryService CaveDesignObject CaveDesignObject

Proxy
CaveVisualObject

new CaveVisualObject()

createDesignObject()
createDesignObject()

new CaveDesignObject()

setKey()

newObjectProxy()

doSomething()
propagateOperation()

propagateOperation()
doSomething()

doSomething()

FIGURE 6.7 – Repository ServiceUML Sequence Diagram

In Figure 6.7, the usage procedure of the Repository Service is
exemplified. The example assumes that the service was already looked up, contacted,
and a service proxy has already been loaded. When a visual object is created by the
tool, it should also be created within the Repository Service. This role is played by the
service proxy, which creates the respective design object entry in the repository and
creates a local proxy for the remote design object. Every further operation performed
through that visual object will then be delegated to the design object proxy, which
will notify both its remote counterpart and the visual object itself about the recently
performed operation (denoted in the figure as a call to the method doSomething).

From the point of view of the tool developer, most of the functionality
of the repository is hidden. The tool must only obtain one proxy per visual object, and
deal with the proxies as if it would be dealing with the visual objects. This simplifies

93

significantly the development, because a tool can be first developed standalone,
dealing only with its local visual objects, and then further extended to use the
Repository Service only by changing the method calls from the visual objects to the
design object proxies.

To make this possible, most of the complexity of the object storage is
dealt by the framework. So, the following issues must be addressed:

class matching - the matching between visual objects and design
objects - i. e. when a CaveDesignBlock is created, which design
object should be included in the database;

creation, removal and query of design objects in the repository –
depending on the underlying database, the procedures will be
different;

creation of design object proxies and the implementation of the
communication between the proxies and their respective design
objects in the repository – several implementation alternatives for the
communication are possible;

method matching - the matching between operations in visual objects
and design objects;

key assignment – every design object must have an identification key,
so other objects - such as their proxies - can access them for update
notification purposes;

offline operation - the proper operation should be possible even in case
the communication channel between the service proxy and the
Repository Service is not available.

The first issue is relatively simple to solve, as in most cases we can
expect a 1-to-1 relationship between visual objects and design objects: every time a
visual object representing a port is created, a design object representing a port will be
created, and so on. In the current implementation, the relationships between the
classes that model the pairs visual-design are handled by a specific object within the
Repository Service. The matching procedure is currently hardcoded within that
object. To allow more flexibility, such relationships could be defined in an external
file loaded dynamically every time a match is needed, and future implementations
should provide such facility – the changes are minimal, and not visible from outside
the matching object.

To handle the creation, removal and retrieval of design objects from
the underlying database, implementation-dependent procedures are needed. To hide
such implementation-dependent procedures, we divided the server component of the
Repository Service in two parts and defined a minimal communication interface. The
first part would handle then the interface with the service proxy, while the second part
would match such interface into repository-specific calls. In the case of transactional

94

repositories, the boundaries of the transactions should also be handled, as this is not
explicitly done by the design tools.

The creation of design object proxies and the communication between
them and their respective counterparts in the design repository can be done in a
variety of ways. The proxies can be generic enough so that they just forward to the
Repository Service all the events they receive from the user interface, or they can
encapsulate intelligence so that they can check the semantics of those events, thus
forwarding to the Repository Service only the valid ones. The first strategy can be
used for every kind of user interface and visual object, while the second one must be
based on proxies which are particularly tailored to a given type of tool and visual
object. In other words, the creation of semantics-aware proxy involves an instantiation
of a type, requiring that a class defining the design object proxy interface to be
created in advance for each class of design object.

The proposed implementation includes generic proxy objects, which
can provide capture events from all design visualization primitives of the OO
framework, as well as their possible extensions. Once captured, those events can be
forwarded to the remote Repository Service according to the availability of the
underlying communication channel. As mentioned earlier, such generic proxies do not
perform any analysis regarding the semantic of the captured events. In many cases,
however, a more detailed analysis of the semantics is necessary in order to optimize
the communication: semantically invalid events are not propagated to the remote
server, and semantically correct events can be performed to the visualization at the
same time it is being performed to the remote design objects.

In order to perform such semantic analysis, proxy objects which are
specific to a given visual object are necessary. Each design object proxy should
implement the same methods implemented by its design object counterpart, allowing
for individual behavior to be executed within each method call. In the current
implementation, such proxy classes are coded manually in a tedious process, but
further automation can be provided in a procedure similar to the enhancement process
described in [ROO2003]. In any case, all such proxies inherit the communication
mechanisms implemented by the generic proxy classes mentioned above, so the
specific methods can handle only the domain-specific semantic analysis and reuse
from the superclasses all generic procedures that handle the communication with the
remote repository. In Appendix 2, a class diagram depicts the class hierarchy of the
proxy objects within the Repository Service.

The communication between proxies and the Repository Service can
also have several implementation possibilities, such as dedicated socket connections,
remote method invocation and distributed events. All three of them are supported by
the Service Space definition. The use of sockets, however, would require the complete
communication protocol to be described from scratch. The use of RMI simplifies the
development, as it provides a higher level interface as a foundation to the
communication protocol. However, the use of RMI communication between each
design object proxy and its design object counterpart may be too costly, as it would

95

require a dedicated RMI connection per proxy, and hundreds of proxies may be
concurrently in use by a given tool. To optimize such procedure, we combined the
RMI approach with a distributed events approach. The proposed implementation is
built on top of a single RMI connection between the service proxy and the repository.
Through this unique RMI connection, all the communication between the tool and the
repository is implemented as a series of events.

Before we cover the issues of method matching, key assignment and
offline operation, let’s take an overview on the functionality of the Repository Service
based on the definitions we already have. Such functionality is depicted in Figure 6.8,
where we can see also its published service interface. As mentioned before, this is the
minimum interface for performing its function. Further extensions can implement a
more complex interface, perhaps externalizing the transaction control or performance-
related options.

As depicted in Figure 6.8, the minimum interface comprehends only
four methods: create, delete, retrieve and trigger. Their actual implemented names,
parameters and return values are shown in Appendix 3. The first three methods are
clearly related to the creation, exclusion and retrieval of design objects from the
repository. Such calls are explicitly done by the design tool and pipelined to the
Repository Service by the service proxy using RMI. The retrieval will take advantage
on the transactional infrastructure of the underlying data repository, when available,
but this is transparent to the service users.

Repository Service
Proxy

Design Tool

Visual
Object

Design
Object
Proxy

Design
Object
Proxy

Repository Service

Service
Interface

create
delete
retrieve
trigger

Repository
dependent
Bridge

RMI

Data
Repository

Visual
Object

FIGURE 6.8 – Overview of the Repository Service implementation

The updates on existing design objects are handled by the design object
proxies. Such updates are triggered by the user interface and propagated to the proxies
as method calls, as mentioned early in this subsection. When its methods are called,
the proxy object instantiates an event object, which encapsulates its identification key,
the name of the called method and passed parameters. The actual parameters are only
included in the event object when they are instances of primitive types, such as strings
of characters or numbers. If a visual object is passed as a parameter, the proxy passes
its key instead, as the serialization of the actual object would be too costly and would
incur on further consistency problems.

96

The event object is passed to the service proxy, which uses the RMI
connection to call the trigger method from the remote service. The event object is
passed as a parameter, so the Repository Service can locate the actual design object
within its repository and call the referenced method with the provided parameters.

Our implementation of the event objects is built on top of Jini remote
event model. It follows the basic event model introduced in Java 1.1. Such model
defines that an event consumer must register with every event producer it intends to
keep track. The event producers should handle such registration procedure and notify
all register consumers in the case of a state change. A producer can produce events
associated to different state changes, so different types of events can be differentiated
by the event ID attribute and by the actual class of the event object. Further
complexity should be handled when the events are required to be sent via network.
The Jini remote event model uses Java RMI to do so, and already implements
facilities to assign sequence numbers and overcome network failure. The former is
needed to grant the correct order in the event processing by the consumer, while the
latter – based on the concept of exceptions – allows the handling of lost events.

Now that we have covered in further detail the way operations are
propagated from the visual representation to the repository service, let’s come back to
the issues that are still opened: method matching, key assignment and offline
operation.

In order to match method names of visual objects and design objects,
we use the simplest possible approach by giving the same name to the related methods
in both visual and design domains. During the current implementation such practice
was sufficient, as we had a 1-to-1 relationship, but if in a particular case this can not
be guaranteed – such as when one method in the visual object must be matched by
more than one method in the related design object (e.g. a method removeAllPorts is
available in a visual object, but must be mapped to many calls to removePort in the
design object) - a mapping scheme in an external object should be implemented (such
as the case of class matching described earlier).

In order to match methods by name, we use the features of reflection
and dynamic binding from Java. With reflection, we can check during runtime
whether a given design object has a method with the name and arguments specified
within the event object by the design tool through the proxy object. If negative, an
exception is thrown, so the proxy object aborts the operation and performs no change
in the visual object. If the method is available, the binding is done and the method is
called.

Regarding the issue on identification key assignment, the major
problem is to grant its global uniqueness. If only one Repository Service is available
in the network, this is a trivial task as an incremental key can be used. If more than
one Repository Service is allowed - and we have no reasons to ignore such possibility
- a mechanism is needed to grant the uniqueness of the keys issued by the several

97

repositories. This is actually a classic problem in distributed systems, and most
approaches fall into variations of the following mechanisms:

a centralized entity external to the repositories manage the key
assignment procedure for all repositories. It has a trivial
implementation, but introduces a single point of failure because the
whole system cannot create new objects if such centralized entity is
unavailable. Furthermore, such centralized entity contributes
negatively to the system scalability;

a complex key can be used, so several entities can issue keys. In the
complex key, the issuing entity is also identified, so the uniqueness
problem is reduced to the local repository;

a key with an extremely high number of possibilities can be used, so
several entities can assign new keys by generating it randomly. While
the uniqueness is not guaranteed, the possibilities of two equal keys
can be made very small.

We adopted the second approach, so each repository can issue keys
which are locally unique, and a repository identification is added to the key in order to
grant its global uniqueness. However, this can be further developed in the framework
extensions. An explicit extension point was included, through the abstract class
CaveID. Its only defined method – equals – allows any possible implementation,
granted that the equality of two IDs can be assessed. An UML class diagram in Figure
6.9 depicts such approach.

CaveSimpleID
identificator
creator

CaveID

equals() 1 11 1

CaveKey

equals()
getKey() 1 11 1

CaveDataObject

FIGURE 6.9 – Design data identification keys

In order to allow for offline mode - when the connection between the
Repository Service and its service proxy is interrupted - we added the following
functionality to the service proxy:

98

assignment of temporary keys - during the period the service proxy is
offline, it is allowed to issue identification keys, so new objects can
be created without the intervention of the Repository Service. Such
keys are temporary and are substituted as soon as the connection is
reestablished;

pooling of events - all the outgoing events are queued, so they can be
sent to the Repository Service as soon as the connection is
reestablished.

Such infrastructure can handle both the cases when the designer needs
to be disconnected from the network and the cases of network or repository failure.
The issues regarding the synchronization of multi-user data access are covered within
the next Section.

As a summary, the proposed approach for the Repository Service
provided to design tool developers a much higher level of abstraction of the design
tool repository by hiding completely the implementation details. Instead of query
languages or transaction management, tool designers can focus on the actual design
data model, because all updates are done through regular method calls, which are
transparently encapsulated into events sent to the remote service.

6.3.2 Collaboration Service

 The Repository Service described in the previous subsection covered
the proposed infrastructure to support the transparent distribution of the design data
storage. However, for the sake of simplicity such infrastructure was presented in a
way that deliberately ignored the possibility of concurrent access to a repository.
During its design and development, however, such possibility was always considered
and played an important role on the design decisions that were taken. This is because
the Repository Service was designed to be extended by the Collaboration Service,
which would deal with all issues related to concurrent access to the design data.

In the Repository Service, the Observer design pattern was used to
implement the consistency between one model and multiple views. The bigger picture
shows us, however, that we have to deal with the possibility of multiple views
running in different nodes of a network. Essentially, this situation can also be handled
using the same pattern, but the implementation of the communication between subject
and observers should handle the distributed nature of the problem.

The Collaboration Service is an extension of the Repository Service in
the sense that it has an inheritance relationship. All Collaborative Services are in fact
Repository Services with some extra functionality, so the behavior we described in
the previous section also applies for the Collaborative Service. It also relies on object
proxies, which use the service proxy to send events to the remote data repository,

99

which is encapsulated by the Collaboration Service itself. The main difference
between them is the fact that the Collaboration Service must deal with conflict
resolution. While the service proxy of the Repository Service could always
create/remove objects and trigger events, some of the operations received by the
service proxy of the Collaboration Service must be analyzed before they can be
executed or aborted. Such cases are domain-specific and are going to be discussed in
the next Section.

6.3.3 Authentication Service

The authentication service is responsible for the identification of users
and groups, as well as defining access permissions to all Service Space services. In
the current implementation of Cave2, a simple authentication based in usernames and
passwords was implemented. Access permissions are only managed within the
Repository Service. Access lists are managed within projects, so each user will have
specific access permissions within every project he/she is currently taking part. A
more detailed description on this topic can be found in [SAW2002].

6.3.4 Prototyping Service

Aiming to support the incremental implementation of integrated
systems, a Prototyping Service was included in the Service Space as an internal
Framework service. Such service would rely on reconfigurable hardware modules,
which can be looked up and leased as a prototyping platform for a designer.

Such service aims to to reduce the integration overhead of
reconfigurable hardware modules and the design environment. We propose to reduce
such overhead by raising the level of abstraction of the integration architecture,
allowing the communication to be done via message passing, as proposed in the
object-oriented paradigm. By using this approach, each reconfigurable hardware
module could be seen by the rest of the Framework system as an object . Thus, it
should be reconfigured and used through method calls. This would make a significant
difference for the system designer, which would abstract the internal details of the
reconfigurable module - a typical result of the encapsulation feature of object-oriented
systems - and would design the whole system communication in the API level. In
such approach, all the subsystems depending on the reconfigurable hardware module
would call a configuration method to set up the desired functionality, and then call
methods to pass the data to be processed and receive the results.

By relying in such infrastructure, the designer can have a simpler path
from the high level design specification to its implementation. A typical design
scenario where the prototyping service could be useful starts by a designer – or group
of designers – instantiating design primitives to model a functional description of a

100

given system. Once that specification fulfills the functional requirements, it should be
submit to successive synthesis steps in order to be implemented as a physical entity.
Reconfigurable platforms are being used as an intermediate stage within such process,
allowing system designers to verify the correctness of their designs prior to the final
implementation. Our approach could provide a simpler way to integrate the functional
specification with the prototyping platform, in such a way that they can inter-operate.
This would allow a mixture of simulation and emulation in the functional level,
because one could synthesize and implement part of the functional specification in
the reconfigurable hardware and still be able to perform the functional simulation, as
the rest of the specification would communicate with the prototype in the same way it
did before with the functional description.

In Figure 6.10, an UML sequence diagram describes the functionality
of the Prototyping Service. The procedure starts by the functional modeling by the
designer, which is done by instanciating tools and design primitives from the
Framework Server, and by storing them in the data repository. Once a functional
model of the target system is ready, the designer starts with the prototyping step. In
such step, the blocks of the functional model should be synthesized in order to be
implemented in a reconfigurable platform. The synthesis tools are technology
dependent, so the designer should integrate the tools supporting the desired type of
synthesis as external services. Once a particular block of the functional specification
is synthesized, it is included in the configuration bank.

The initialization of the Prototyping Service is also shown in Figure
6.10. For every reconfigurable hardware module which is available for prototyping, a
backend module and a reconfigurable hardware service (RHS) are instantiated. The
backend is responsible for handling the platform-dependent features of the
reconfigurable hardware module, thus providing a common interface to the rest of the
system. Typical functions performed by the backend include the configuration of the
platform and the access to its memory modules. The RHS provides the actual
encapsulation of the reconfigurable hardware module, providing a set of methods to
access its functionality. The RHS is also responsible for the registration within the
Service Space.

Once the RHS are active and there are configurations uploaded into the
configuration bank, the prototypation service can be started. The designer substitutes
the functional model block which has been prototyped with a proxy object provided
by the prototyping service. Such proxy has the same interface as the prototyped block,
so the rest of the functional model should operate properly without any updates.

101

lookup serv icedesigner reconf igurable
hardware serv ice

reconf igurable
hardware backend

configuration
bank

sy nthesis tools :
s y nthes is

prot oty ping
serv ice

data repositoryf ramework
serv er

create()

registerServ ice()

getConf iguration()

conf igure()

getTool()

getDataPrim itiv e()

instantiatePrimi tiv es()

storeData()

discov erLookup()

lookupServ ice()

s y nthesize()

addConf iguration()

prototy pe()

conf igure()

process()

FIGURE 6.10 – UML sequence diagram for the prototyping service

 When the functional simulation is started, the proxy object would
communicate with the prototyping service, which will then lookup for a RHS and
assign it to the proxy object. The RHS will then receive the configuration information
from the proxy, and will be able to process in hardware all the functionality expected
from the prototyped object.

Such approach would allow an implementation to be validated together
with the functional specification of the system it will be part of. The Prototyping
Service provides all the communication infrastructure, as well as support for the
mapping of the data formats from the distributed objects domain to the hardware
domain (Figure 6.11).

hardware level object level

bi
t_

ve
ct

or

st
d_

lo
gi

c_
ve

ct
or

m
em

or
y

in
te

rfa
ce

ty

pe
 a

bs
tra

ct
io

n

ha
rd

w
ar

e
de

si
gn

 10101110101
01110101010
1010 0101
0010 0101
0100 0101
01010010010
10100111001
01010101001

101
101
101m

em
or

y

 int[]

 float

ba
ck

en
d

 int

FIGURE 6.11 – Abstraction layers between object domain and hardware domain

102

Further details on the Prototyping Service can be found in [IND2003],
and a case study based on its usage model is presented in Section 8.

6.3.5 Additional Services

The encapsulation of legacy design tools into the Cave2 Framework
should be done in a similar way as the approach reported in the previous subsection.
As every legacy tool has its own peculiarities, a backend module would be needed, in
order to export the desired functionality as an API. On top of the backend module, a
Service Space-compliant service definition should be implemented. Foundations for
the implementation of this definition are available within the framework, so the
legacy tool integrator has its task restricted to:

implement the backend module;

extend the Service Space service definition to implement the interface
defined by the backend module API;

extend the service proxy definition to implement the interface defined
by the service definition;

partition the desired functionality to be done within the Service Space
(authentication, location of additional services, load balancing,
caching, etc.) between the service and its proxy.

If user interface modules are needed for the legacy tool operation, such
models should be made available in the Framework Server or be encapsulated within
the proxy object, so they can be instantiated within the Cave2 cockpit and rendered as
part of its GUI.

103

7 Supporting Collaborative Design

7.1 Introduction

The need for collaborative computer-aided design can be easily
justified, as the complexity of designs continues to increase, demanding larger teams
and higher productivity. Furthermore, the current shortage of qualified design
engineers require companies to search for manpower from different parts of the
world, and in many cases it is more convenient not to relocate them. As a third reason,
there is the need for experience sharing among the members of a team, allowing the
beginner to learn from the more experienced.

Some of the approaches reviewed in Section 3 support some kind of
collaborative work, focusing on asynchronous collaboration by using data versioning
or workflow modeling. Our approach differs from those by providing support to both
synchronous and asynchronous collaboration, and by supporting an explicit separation
of concerns between the design model and its visual representation. Both features are
tailored specifically to the application domain of the Cave2 Framework.

The first feature fits to the application domain of integrated systems
design, where synchronous collaboration is needed in the first steps of the design
process and asynchronous collaboration is used in the late, implementation-related
steps. For example, a high level of collaboration is expected on the first steps of the
design - where product functionality and constraints are defined - because of the
inherent multidisciplinary nature of such activities. Hardware engineers, software
developers, marketing staff and product management are among the types of
professionals that may participate synchronously in such collaborations. On the other
hand, during the implementation steps - coding, hardware debugging, etc. - the
collaboration level is expected to be low, because developers tend to work
individually and asynchronously

The second feature takes into account the variety of possibilities for
design entry and visualization in the area of integrated systems. Graphic schematics,
such as logic netlists, UML diagrams and state charts, are often used concurrently
with HDL and programming language code throughout the typical integrated systems
design flow. To allow the collaboration among designers using different design visual
representations, a flexible design representation should be created, and the
consistency between such representation and its different visualizations should be
kept.

The chosen solution used and extended the infrastructure provided by
the object-oriented framework described in Section 5. The support for collaborative
work was included in the classes within the design data representation framework,

104

and the behavior of the collaborative sessions is controlled by the Collaboration
Service in the Cave2 Service Space. The following subsections detail both parts of the
solution. First, the synchronous collaboration support is covered. In subsection 7.2,
the separation between design model and visual representations is discussed. The
approaches to consistency control are described in subsection 7.3. Then, the
possibilities in asynchronous collaboration and covered. One of them, the inclusion of
versioning support in the Cave2 design data model, is covered in subsection 7.4.
Subsection 7.5 covers the inclusion of metadata in the design model – as comments,
annotations and guidelines, for instance. This is probably the simplest yet the most
used approach for asynchronous collaboration, and its application within the Cave2
environment improved its potential to support design experience exchange.

7.2 Design visualization issues

In order to allow multiple visual representations of a single design data
block, the underlying framework should have facilities to allow the data blocks to
maintain coherent visual representations of its state, even when they are under edition.
For example, if a designer has two visual representations of a design – i.e. two
schematic windows, one with an overview and other with the details of one block –
the changes done in the data model through one of them should be notified to the
other and the proper updates should occur.

In the literature, many successful approaches to define an architecture
to model information and its visual representation consistently are based on the
separation of the information model and its visualization, while providing a
consistency control between them. This architecture was a key concept on the MVC
(Model-View-Controller) framework within the Smalltalk programming language
[KRS88] and was later formalized as the Observer design pattern by Gamma et. al.
[GAM95], reviewed in subsection 4.2.2 of this text.

By decoupling the model and its visualization, it is possible to provide
several different – but equivalent – visual representations for the same design. For
particular representation formats, more efficiency can be achieved by using this
approach, because the consistency between the model and the view must be kept only
when a modification on the visual representation results also in modification in the
model semantics.

In the Cave2 Framework, the design representation primitives - e.g.
logic gates, functional blocks, etc. - are modeled as instances of a concrete class,
which inherits behavior from an abstract class. This is common when it comes to
object-oriented frameworks, because the abstract classes - while not modeling
anything in the application domain - organize the class hierarchy and allow the
assignment of common behavior to a particular set of objects. We use such concept to
include the support for the collaborative methods: that support was included in the
superclasses of all the design primitive classes. So, all the design objects in the Cave2

105

Framework - including the ones which will be integrated in future updates - will
inherit such behavior.

By relying on such concepts, we could achieve complete separation of
concerns regarding the design semantics and its graphical/textual representation, as
they are modeled by different objects. Thus, we can support several visualizations -
by different designers - from a single design block. To grant the consistency between
the design semantics and its representations, as well as between the semantics of
inter-related design blocks, we use update/notify mechanisms. Such mechanisms
capture the interaction between the user and one of the views, update the respective
semantics and notify all views to update themselves to reflect the possible changes.

A framework tailored to provide a flexible notification infrastructure is
presented in [SHN2002]. It supposes a collaboration scenario where several users are
updating a common data set, so the changes in the data state performed by a given
user should be notified to the other ones. It divides the notification in two parts, the
incoming notification and the outgoing notification. For each participant, the
incoming notification denotes the changes performed by other users, while the
outgoing notification propagates to the other users the change performed locally. Each
of the types of notification is characterized by its frequency and its granularity. The
frequency of the notifications can assume one out of three possibilities – instant,
scheduled or user-driven – while granularity defines if a notification should be done
for every state change, or only a defined subset of the changes.

In our implementation, we applied a notification-based approach
similar to the one reported by [SHN2002]. Developed independently in its early steps,
our approach benefit from the systematic view of the problem presented in
[SHN2002] and applied such techniques into an extension of the underlying
Repository Service infrastructure.

Using such features, several designers can work synchronously over a
design. When two or more designers are working over a single design block, the
object representing the design block semantics is stored in the Repository Service,
while a view of that block is instantiated for each one of the designers and stored
locally within the cockpit’s JVM object heap. The interaction between the designer
and the design block occurs through that view: when the view is modified in such way
the design semantics changes, the view object notifies the block object in the
Repository Service, so it can update its state to reflect the change. Once the state is
updated, a notification is done to every view of that block, making the changes visible
to the other users. It is important to note that when the interaction between the
designer and the view is not changing the design semantics - e.g. when the designer
moves a block in the design sheet without changing its interconnection with the other
blocks - the update/notify mechanism may be not activated. This approach is called
visually decoupled (Figure 7.1a), because the view for each user can - and probably
will - be different from the others.

106

While allowing rich collaboration through the concurrent access to
design blocks, this approach has the disadvantage of making impossible the spatial
referencing of design blocks by the designers: one designer would fail to reference a
particular block while communicating with another designer if he/she says e.g. "that
FIFO in the left side of the encoder", because probably the blocks positioning in the
screen of his/her colleague would be different. So, when spatial referencing is desired,
we provide a visually coupled approach, where the update/notify mechanism is
slightly different. Two implementations for this approach were experimented. In the
first case there is only one view, stored together with the block in the Repository
Service. Every designer would have in his/her GUI a reference to that view, so every
update - even the ones which are transparent to the design semantics - would be
noticed by every designer (Figure 7.1b). In the second case, we follow the same
mechanism described for the visually decoupled approach, but updates and
notifications are issued also for the events that change only the visual state.

 (a) (b)

design block
semantics

design block
view

Framework Server

design
block

semantics

design
block
view

Service Space

Collaborative
Service

design
block
view

Designer A

Designer B

Concurrency
Control

References

Instantiation

Access control

Framework Server

Classes

Objects

design block
semantics

design block
view

Collaborative
Service

design
block

semantics

copy

Service Space

design
block
view

Designer A

Designer B
Concurrency
Control

copy

FIGURE 7.1 - Implementation alternatives for the visualization of design data

Taking into account the 1-to-many cardinality in the relationship of the
design blocks with their views, it is easy to realize the need for an data access control
mechanism. The possibilities of deadlock in the update/notify mechanism (i.e. when
two views try to modify the semantics at the same time) and inconsistencies between
the block and its views (i.e. when a view tries an update to the semantics before the
reception of the notification of an update done previously) are some of the problems

107

that may occur. The Collaboration Service performs such control by providing a
common interface for every tool in the Cave2 environment, allowing them to use the
design primitives in a collaborative way. Located in the Cave2 Service Space and
working together with the Authentication and Repository Services, the Collaborative
Service uses their underlying infrastructure to organize the access to the design
objects by the users.

7.3 Concurrency control issues

In order to organize the access to the design objects by multiple users,
a concurrency control system is needed in order to grant the design objects
consistency. Any particular concurrency control system makes assumptions regarding
two basic properties of the application: the semantics of the object being shared and
the consistency requirements of the application [MUN96]. In Cave2, those two
properties are clearly divided respectively between the primitives within the object-
oriented framework, covered in Section 5, and the concurrency control mechanisms of
the Collaboration Service. Let’s take a closer look on the issues stated by [MUN96]
and derive what are the consistency requirements in Cave2.

A major consistency requirement on every data model is derived from
the multiplicity of the its relationships. In the Cave2 design model, the multiplicities
of the object relationships are shown in the UML class diagrams depicted in
subsection 5.3. The most critical cases are the relationship roles that can be taken by
one and only one object. In our implementation, such consistency control is partially
granted by the model itself, as the relationship is modeled as a reference to a single
object so no exceeding references are allowed. However, the possibility of zero
references may arise - for instance if the referenced object is removed - and such
possibility must be dealt by the concurrency control mechanism, as we will cover
ahead.

Another major requirement is a very typical one when dealing with
data models based on the 5-box approach: instance ports must match the external
ports of the instantiated block. This means that if a port is removed or added to the
instance, the same must happen on the respective block. Furthermore, such change
must be propagated to all the instances of such block. In our initial implementation,
this was granted by the model itself, by cross-referencing the model and its instances,
so each instance would be responsible for changing its respective block in the case of
chance, and the block would be responsible for changing all other instances. Some
implementation issues, described ahead in this subsection, motivated us to use another
entity within the design data model to deal with this problem.

Yet other problems may arise, specially when the bi-directionality of
the relationships modeled as a symmetric pair of references cannot be granted. It can
happen, for example, when an instance of ExternalPort references an instance of
DesignBlock, but that block does not have the port in its port list. In Ptolemy II

108

[LEE01], this issue is addressed by introducing a mutual-exclusion mechanism. Every
design block in Ptolemy II model is assigned to a workspace when of its creation, and
every time such block is updated, the complete workspace is locked, so no concurrent
updates are done. Such approach allows consistency in a multi-threaded environment
– a so-called thread-safe approach - and the locking of the complete workspace
avoids the deadlock possibilities that may arise in multi-granular lock.

For our approach, such solution would not be feasible because it would
hamper the collaboration possibilities. An alternative approach is to ensure that such
relationship is atomically established. For instance, there is only a method to assign a
port to a block - in the container - and such method implements the symmetric
references in both container and contained elements. However, if no locking
mechanism is used such implementation may have its consistency violated in an
unsynchronized multi-threaded implementation, as the updates done by two different
threads may overlap. Such issue must also be handled by the concurrency control
mechanism.

Further consistency issues arise when the data model is extended to
represent more specific design entities. Consistency rules such as “attributes
associated to these entities should be kept within a given range of values” or
“connections between ports can only be placed if their data types match” can be often
found in design systems [WAG94]. In a data model specified as an object-oriented
framework, such issues should be handled by the framework extensions alone.
Examples of such rules can be found on the framework extensions implemented as
case studies, detailed in Section 8.

Once we had highlighted the consistency issues that must be handled
by the Cave2 Framework internal services, we should investigate the best mechanism
to address them and yet comply with the main goal of Cave2, which is to support
collaboration in a distribution design environment.

In database systems, concurrency control is usually based on
serializable transactions [ESW 76]. In those cases, concurrent transactions should be
isolated from each other, so the concurrent execution of a set of transactions is strictly
equivalent to its serialized counterpart. For collaborative systems, such approach is
often considered too restrictive [MUN96], because in many cases the interference
between two transactions is actually the collaboration activity the system is supposed
to support.

Several techniques are available on the literature regarding less
conservative concurrency control methods aimed to support collaboration [ELI91].

Turn-taking protocols, such as floor control or pair programming, can
be viewed as a concurrency control mechanism. The main problem with this approach
is that it is limited to those situations in which a single active user fits the dynamics of

109

the session. It is particularly ill-suited for sessions with high parallelism, inhibiting
the free and natural flow of information. Additionally, leaving floor control to a social
protocol can result in conflicting operations: users often err in following the protocol,
or they simply refuse to follow it, and consequently, several people act as though they
have the floor.

Another concurrency control solution is to introduce a centralized
controller process. Assume that data is replicated over all user workstations. The
controller receives user requests for operations and broadcasts these requests to all
users. Since the same operations are performed in the same order for all users, all
copies of the data remain the same. This solution introduces the usual problems
associated with centralized components - a single point of failure, a bottleneck, etc. -
and several other problems also arise. Since operations are performed when they
come back from the controller rather than at the time they are requested,
responsiveness is lost. The interface of a user issuing a request should be locked until
the request has been processed; otherwise, a subsequent request referring to a
particular data state might be performed when the data is in a different state.

The dependency-detection model is another approach to concurrency
control in multi-user systems. Dependency detection uses operation timestamps to
detect conflicting operations, which are then resolved manually. The great advantage
of this method is that no synchronization is necessary: non-conflicting operations are
performed immediately upon receipt, and response is very good. Mechanisms
involving the user are generally valuable in collaborative applications, however, any
method that requires user intervention to assure data integrity is vulnerable to user
error.

Reversible execution is yet another approach to concurrency control in
collaborative systems. Operations are executed immediately, but information is
retained so that the operations can be undone later if necessary. Many promising
concurrency control mechanisms fall within this category. Such mechanisms define a
global time ordering for the operations. When two or more interfering operations have
been executed concurrently, one (or more) of these operations is undone and re-
executed in the correct order. Similar to dependency-detection, this method is very
responsive. The need to globally order operations is a disadvantage, however, as is the
unpleasant possibility that an operation will appear on the user's screen and then,
needing to be undone, disappear.

Another approach to concurrency control is operation transformation.
This technique can be viewed as a dependency-detection solution with automatic,
rather than manual, conflict resolution. Operation transformation allows for high
responsiveness. Taking as an example a multi-user synchronous editor, when an
operation is requested (i.e. a key is typed), the editor locally performs the operation
immediately. It then broadcasts the operation, along with a state vector indicating how
many operations it has recently processed from other workstations. Each editor
instance has its own state vector, with which it compares incoming state vectors. If
the received and local state vectors are equal, the broadcast operation is executed as

110

requested; otherwise it is transformed before execution. The specific transformation is
dependent on operation type (for example, an insert or a delete) and on a log of
operations already performed.

An hybrid concurrency control model called LasCoW was proposed in
[PIE96], based on the different collaboration needs found among the different groups
of users in a collaborative, distributed application. According to their approach, a
hierarchical composition of user groups should be created and assigned a consistency
domain. The consistency control within a domain is expected to be harder, while more
flexible between domains, relying on the assumption that the interaction between
domains is much smaller than intra-domain interactions. Implementation issues
mentioned but not detailed in [PIE96] include the mobility of users across groups and
the substitution of consistency control between domains.

Taking into account the reviewed alternatives on concurrency control
mechanisms, we derived an hybrid approach aimed to match the particular needs of
the Cave2 Framework. This approach is built on top of the Repository Service,
described in subsection 6.3.1. That service provides a simple interface to hide the
complexity of the data repository, which can be anything from a simple file system to
a complex database management system. The Collaboration Service extend that
approach by introducing the concept of a collaborative session. Such session
comprehends a group of designers working together towards a common goal. We can
assume that a repository would host design data for a several designer groups, with
different goals, so concurrent collaboration sessions are likely to happen. It motivated
us to pursue a multithreaded approach to the Collaboration Service, where each
collaboration session is associated to an execution thread within the Collaboration
Service. All the data access done within each collaborative session – thus within each
execution thread of the Collaboration Service – must be performed within transaction
borders, in order to ensure thread safety. However, such approach grants that the
restrictions which are associated to the transaction control are enforced to the groups
only, so the users within a collaboration session are not isolated from each other.

So, the proposed approach allows any designer to access freely the data
from the repository. If the data is not being accessed, his/her tool will open a
collaboration session and retrieve the data within a transaction. If the data is already
under edition, the designer would have to access those data records within a
collaborative session (thus, be handled by the same thread within the Collaboration
Service which is already handling the access of the other designers working in those
records). Figure 7.2 depicts such approach. In the figure, three designers access the
data repository concurrently. Design data objects 1, 2 and 3 are accessed within the
transactional control of collaborative session 1, while objects 9 and 10 are accessed
within the transactional control of collaborative session 2.

The implementation of transaction mechanisms is often available in the
underlying repository and already embedded in the retrieve method of the Repository
Service, which is inherited by the Collaboration Service. However, if the underlying

111

repository does not offer transaction mechanisms, they must be defined within the
service implementation.

6 10

9

 8

 7
5

4

3

 2

 1

Data Repository

Collaboration Service

 2 1

Designer A Designer B

3 1 2

Session 1

 10 9

Session 2

Designer C

FIGURE 7.2 – Collaboration Service Overview

The presented approach insures the consistency between concurrent
multi-user collaborative sessions. However, the concurrency issues within a
collaborative session are still opened. To address such issue, our approach advocates
for an internal concurrency control mechanism for each collaborative session. This
allows flexibility on the collaboration, as each group of collaborating designers can
choose the best collaboration methodology for its task. To validate such proposal, two
internal concurrency control techniques were implemented.

Our first implementation was based on the floor control consistency
control. A floor control methodology called Pair Programming [WIL2000] was
extended to support any number of distributed collaboration partners, and an
implementation was included in tool prototypes for both diagrammatic and textual
design models. The details on the implementation of such prototypes are available in
[HER2001, SAW2002]. The turn-taking is decided by consensus among the current
token holder and the ones requesting it. While appropriate in the cases when one of
the designers is more experienced than the rest – for instance, in training sessions –
the turn-taking allowed a low degree of collaboration as most of the designers would
be most of the time watching and suggesting, rather than actually designing.

To better understand the secondly implemented extension, let’s review
the interaction between a designer, the design data model and its visualization
according to the Repository Service scheme. For every update done by the designer,
the design data proxy object is notified, an event is sent out to the Repository Service
via its service proxy, and the design visualization is updated. Notice that there is no

112

requirement that the event should be acknowledged by the Repository Service before
the visualization is updated. The design object proxies assumes that the event is
received, so it immediately triggers the visualization update. The responsibility of the
event delivery is delegated to the Service Space, which guarantees that it will happen
successfully otherwise an error notification is issued. In our implementation, Jini’s
event model handles that, avoiding the possibilities of lost events or unordered
execution. Taking this into account, and since the Repository Service ignores the
possibility of multi-user access, and since major semantics-related consistency issues
are usually handled by each individual proxy object, the immediate update of the
visualization after the instantiation of the event object can be accepted.

If the possibility of multi-user access to the data is regarded, as it must
be within the Collaborative Service, such procedure can no longer maintain the data
consistency. Event ordering would become impossible, since this procedure will
always execute local events before it executes remote events. To avoid that, the
behavior of design data proxy objects in the Collaborative Service are slightly
different from their Repository Service counterparts. For events which are particularly
sensitive to the execution order, the update of the visualization is postponed until the
event is actually executed in the design data object within the repository. This
approach can be considered a variation of the centralized controller approach
described earlier in the text. The difference is that only some of the events are
resolved by such central control – performed within the collaborative session thread –
while others which are not sensitive to the ordering are propagated immediately to the
visualization.

The discrimination of events which are sensitive to the ordering and
those which are not is domain-dependent. In order to avoid the problem of low
responsiveness of the user interface – a consequence of the central controller – we
should avoid as much as possible the postponed update of the design visualization
objects. In our design data model, we can already discriminate events that can be
executed directly, granting that high responsiveness of the user interface for those
cases:

object creation – in the proposed model, the object creation is not
sensitive to the ordering. A design block creation by one user can
happen either before of after the creation of another block by another,
because the final result would be the same. We can be sure that there
are no relationship between both objects at the moment of their
creation, as one user does not have yet the awareness of the creation
by the other user;

block instantiation – the creation of instances of a block can also be
done by different designers without conflicts or inconsistencies;

port assignment – the order of the port assignments to blocks is not
sensitive to the order, as the ports are identified within a given block
or instance by their object keys, and not by their order;

113

superclass assignment – the proposed data model supports multiple
inheritance, so types can have many parent types. The order the
parent types are specified is not important, though;

connection between ports – the proposed data model represents the
connection between ports by transaction objects. Each transaction
object has a list of ports which are connected, and the order of the
ports within this list is irrelevant. For instance, the results are the
same if port A is connected to port B and then port B is connected to
por C, or vice-versa.

In other types of events, namely object deletion and attribute update –
name change, for instance – the centralized control within the collaborative session
thread should be enforced. As mentioned earlier, it reduces the responsiveness of the
user interface – the event triggered by the user is not perceived immediately. This
issue can be reduced by using tool-specific measures, such as updating the user
interface twice, once when the event is triggered by the user and then when the event
is acknowledged by the Collaboration Service. For instance, when a given block is
deleted, its representation can be rendered in grey right after the user triggered the
deletion, and removed completely when the acknowledge from the Collaborative
Service is received.

For a visually coupled approach, state changes in the visual
representation of the design data should also be propagated to collaboration parties.
Such state changes are also encapsulated in events and propagated to the
Collaboration Service via the service proxy, as the regular events. The order of such
events is also not relevant, so they can be handled in the same way in collaborative
sessions, without the use of a centralized control. For instance, a given block can be
translated 200 points in the positive direction of the x-axis and then be added 20
points in its width, or vice-versa.

To implement the event propagation system, we followed some of the
guidelines proposed by [SHN2002], so an incoming and an outgoing event queue is
integrated into each collaborative session, as well as into each service proxy. Every
event generated by the designers is queued in the outgoing event queue of their tools’
service proxy. The events are then sent to the incoming event queue of the
collaborative session, executed and placed in the outgoing event queue. The events
are then transferred to the incoming event queue of each collaborating designer, and
the events which were not yet reflected into the visual representation (because they
were order-sensitive) are finally consumed. Figure 7.3 depicts this procedure.

114

CollaborativeServiceProxy A CollaborativeService Collabor ativeSer vi cePr oxy B Tool BTool A

triggerEvent()

enqueueOutgoingEvent()

updateVisual Repr esentati on() triggerEvent()

enqueueIncomingEvent()

consumeEvent()

enqueueOutgoingEvent()

if event is not
order sensitive

triggerEvent()

enqueueIncomingEvent()updateVisual Repr esentati on()

if event i s
or der sensi tive

triggerEvent()

enqueueIncomingEvent()

updateVisualRepresentation()

FIGURE 7.3 – Collaborative Service UML Sequence Diagram

Some implementation issues had to be solved in order to achieve the
complete functionality of the Collaboration Service. The first one regarded the
consistency between a block interface and the interface of its instances. As mentioned
earlier, this issue was originally dealt by the data model alone. However, such scheme
using cross-references between the blocks and their instances may create problems
with the boundaries of the transactional control performed by the Collaboration
Service. In the case of the concurrent access of instances of a given block in different
collaborative sessions, the block-instance consistency maintenance will depend on the
particular implementation of the transactional control. As an example, let us consider
the access of an instance I1 within collaborative session S1, and the access of another
instance I2 within collaborative session S2. Both I1 and I2 are instances of the block
B. If the interface of I1 is changed, it must propagate such changes to B, which would
then propagate to I2. If the underlying transactional mechanism is pessimistic, the
collaborative session S1 would lock B once I1 obtains a reference to B in order to
propagates the changes through method calls. This would hinder the access to B by
the session S2, so the possible changes done within I2 would not be propagated until
S1 commits.

In order to address such issue, we introduced an entity called Cave
Design Unit Manager (CDUM), which is in the boundary between the data model and
the Collaboration Service. It has the responsibility to propagate changes from
instances to blocks and vice-versa, and it uses the Collaboration Service to do so. For
every change performed within an instance, a new event is created by the CDUM and
this event is included in the incoming events queue of the collaborative session which
currently has access to the block referenced by the changed instance. If the block is
not being accessed in the moment – thus, no collaborative sessions have it within

115

transactional boundaries – the CDUM updates the block directly within a self-initiated
short-living transaction.

Once the block is updated, all its instances should be updated as well.
If any of the instances is under control of a collaborative session, the CDUM uses the
same procedure mentioned before, adding the event in the sessions’ incoming queue.
If a given instance is not being accessed, the CDUM initiates a short-living
transaction to do the update directly. Notice that the CDUM will only propagate
events which are not order-sensitive, as it does not have any mechanism to
acknowledge the successful event processing. In the current implementation, order-
sensitive events - such as the removal of a port - can only be accepted if the
collaborative session can have the block and all its instances within the boundaries of
its transaction.

Other implementation issues could be solved with the introduction of
the CDUM. First, it can be used to store the visual representation of its respective
design unit, so it can provide it to design tools that access the design unit for the first
time. This feature is not necessary for a visually decoupled approach, as the tools may
be able to create a visualization based on the block model data alone, but it is critical
for the implementation of a visually coupled approach, in order to provide a starting
point for the collaboration between partners.

The CDUM also maintains a log of events consumed by its respective
design unit, its ports and – if hierarchical – its top level contents. Such log can be used
to synchronize visualization objects which were offline (no connection between their
proxies and the Collaboration Service) during periods when there were changes done
through other visualization objects. Such synchronization, however, should be
initiated and performed by the tools themselves. By using together the log of events
and the stored visualization, a design tool can always build the right visualization
when joining either a visually coupled or visually decoupled ongoing collaboration
session.

7.4 Versioning Support

In many cases concurrent access conflicts cannot be solved
automatically, and in some cases there is not even possible to achieve conflict
resolution at all. Furthermore, in some cases the interest of the designers is to keep the
conflicting versions of the design as alternatives. All such scenarios are usually
comported by versioning control systems, for instance some of the approaches
reviewed in Section 3. Some of such approaches are generic enough to be applied to
any kind of data model, so we rely on some of its concepts to implement versioning
support within the Cave2 Framework. However, the integration of those approaches
into the Collaboration Service is not straightforward, because of the differences on the
level of access to the designed data allowed by our approach – based on multiple
proxies – in opposition to the centralized approach behind most of the versioning

116

control systems. A solution must be found, in order to allow the following
functionality to be implemented:

a visual representation object may ask its proxy to create a new version
of its corresponding design object and execute all subsequent changes
in the new version;

a visual representation object may ask its proxy object to navigate back
and forth through the version history of its corresponding design
object;

during synchronization, a service proxy of a Collaboration Service may
need to create new versions of design objects which were updated
while it was offline;

a designer wants to edit freely the design blocks that are currently
controlled by another collaborative session, so he/she can decide to
derive a new version instead;

two designers are asynchronously working in a given design block, and
they reach a point when they should merge their implementations
(this functionality is not supported by all the versioning systems
reviewed in Section 3).

 In order to preserve the independence from design data and design
management data within the framework, our solution for the versioning control is
embedded in the identification key of each design data object. We extended the key -
which was originally used to support the queries over the design data - in order to
include the version information. Thus, each design object proxy is associated to a
given design object through its identification and version. In the repository, each key
references the keys of the previous and next versions of a given object. In order to
support merge operations, references to more than one previous version is necessary.
Such references model a version graph which is similar to some of the versioning
systems reviewed in Section 3. It also supports graphs which are not tree-like,
allowing the possibility of merges.

According to the Cave2 definition of design updates, one version of a
given block would be differentiated from another by the set of events they have on
their update log (maintained by the Cave Design Unit Manager). Thus, subsequent
versions of a given block should store only the events that were issued after its
creation. However, as the previous version may also evolve independently, it is
necessary to the new versions to keep track on the last pertinent event from the
parent’s log, so if a complete event history is needed it can be reconstructed. In our
implementation, a reference to the last pertinent event on the previous version is
included as part of the entry in the previous versions list. If the version is a merge,
each of previous versions will be entered in the list with its last pertinent event tag.

Notice that the described approach of versioning can support the most
immediate need for versioning – the need for managing successive revisions. Other

117

planes of versioning – such as managing different views or different alternatives – are
not supported by the that approach.

To address such shortcoming, we introduce a composite key that
supports multiple planes of versions, such as the STAR Framework approach
[WAG94]. The composite key re-implements the ViewGroup approach from
[WAG94], so it is not assigned to any design object but references a group of other
keys, which may or may not be a composite one. Figure 7.4 depicts the complete
implementation of such functionality within the Cave2 Framework. The composite
key is modeled by the VersionGroupKey class, which implements a Composite
pattern together with the abstract VersionKey class.

CaveID

equals()

CaveSimpleID
identificator
creator

CaveKey

equals()
getKey()

1 1

CaveDataObject

11 111 1

VersionGroupKey

equals()

CaveSimple
VersionID
number

Version
Key

0..n

1

CaveVersionID

equals()

11 11

ConcreteVersionKey

equals()

VersionHistory
previousVersions
nextVers ions

0..n

1

FIGURE 7.4 – Embedding versioning information within identification keys

The same strategie we used to allow further implementations of design
data identification tags was used for the version tags. The procedure of matching both
identification and version tags is denoted by the method overriding shown in the
subclasses of VersionKey. The ConcreteVersionKey actually manages the incoming
and outgoing paths of its node in the version history graph, while the
VersionGroupKey grants the possibility of further levels of versioning within a node.

118

7.5 Metadata Support

The incorporation of metadata is probably the simplest yet the most
used approach for asynchronous collaboration in design. Comments in HDL or
programming code and annotations in schematics and diagrams have been used
successfully for decades, and such practice is unlikely to disappear within designers,
no matter how much the collaboration support is improved in the design tools. In
order to support such practice, the Cave2 Framework should incorporate metadata
into its data model.

Our definition of metadata covers all the meaningful information about
the design included by the designers or tools, but which is not part of the design data
itself: design documentation, design requirements and constraints, design
management information, support for data authentication and security guidelines are
some of the information that may be modeled as metadata.

In order to open new possibilities on design documentation, we
propose the support of metadata in multiple formats: multimedia metadata. Such
approach was already introduced in the first version of Cave, which organized
multimedia metadata inside hyperdocuments. In Cave2 the same functionality is
provided, but additional infrastructure is needed. In the previous version, the metadata
units were available as files inside of a HTTP server, so they could be directly
accessed by the designers through predefined URLs. The search was done using
regular web search engines, and there was no explicit relationship between the
metadata unit and its respective design data unit.

In Cave2, the metadata units are included as part of the design data
model, so their relationship is explicitly maintained by the framework. Thus, each
metadata object stores the metadata contents and a reference to the respective design
data object. In order to allow its access via HTTP, every metadata unit is able to
export itself as a file. To handle the different media types – which should be notified
to the HTTP server by the generated file extension – the metadata objects also store
the MIME type of its content.

In Section 8.4, a case study using extended metadata objects is
presented. Such objects were used as building blocks of web-based training and
educational activities.

119

8 Case Studies

8.1 Introduction

This section of the text describes some of the implemented applications
of the proposed framework. In subsection 8.2, the Prototyping Service is used to
implement a cryptography system based on the DES algorythm. Subsection 8.3
presents IBlaDe, a design tool supporting Interface-based Design methodology. In the
same section, several extensions to the framework are introduced. Such extensions
were necessary for the implementation of the IBlaDe tool and validate the
extensibility of the Cave2 Framework. Finally, subsection 8.4 describes an extension
of the framework supporting the authoring of educational and training material.

8.2 Prototyping Service

In order to validate the proposed approach for the Prototyping Service,
a cryptography system was implemented. It was designed over the proposed
infrastructure, so the system could take advantage on reconfigurable hardware
modules which were available in the network.

The first experiment covered the application scenario where a
developer can incrementally prototype the target system described in the functional
level. The chosen example is a messaging system that sends and receives encrypted
messages using the DES encryption algorithm. We implemented the whole system
functionality using Java language, so that the potential users can evaluate if it fulfill
their functional needs. In the next step, we started the incremental prototyping of the
system by implementing some system modules in reconfigurable hardware. So, the
DES encrypt and decrypt modules had to be converted to HDL in order to be
synthesized and implemented in our FPGA prototyping board. We used an HDL core
for the DES algorithm [FRI2002] in this implementation, but when such possibility is
not available the conversion can be done with design automation tools such as Forge
[DAV2001] or even by hand if the design isn't too complex. We used the type
abstraction and the memory access interfaces depicted in Figure 6.11, so the HDL
core could be integrated easily.

After the configuration was generated, it was stored in a JavaSpaces
repository. A Jini service federation was initialized within the Service Space, and a
service for the FPGA board was registered on it.

In the application side, we replaced the software objects which were
performing the DES encrypting and decrypting by proxy objects with the same
external interface. The rest of the application objects were not changed, because the

120

API they used to communicate with the DES objects was kept. The internal
implementation of the DES objects was changed into proxies, relying on our
implementation of a Jini client, so they contact the FPGA service every time a DES
encryption or decryption was requested by the application. The FPGA service
downloads the configuration from the JavaSpaces, program the FPGA, receives the
data from the proxy objects, maps it into the FPGA memory, starts the FPGA
execution, reads the processed results and returns them to the proxy object.

We successfully implemented such scenario, and the use of such
prototyping strategy was found very convenient. It made possible the functional
validation of the prototyped design block, as it was tested together with the rest of the
functional description. The use of the proposed abstraction layers between the object
domain and the hardware domain allowed a clear separation of concerns, making
easier the development on each of the sides.

After the experimentation of the proposed approach as a support for
incremental prototyping, we decided to test its suitability on the support of distributed
processing. We envisioned a scenario where a particular computational task could be
used remotely by a device with small computational power, like a mobile phone or
PDA (Figure 8.1). In such case, the device would not be interested on simulating the
communication between parts of a system, but actually request a particular data
processing task which would be too costly for it to implement alone. In such cases,
the ubiquitous nature of our approach would be critical, because the small device
could be mobile - perhaps the processing reconfigurable units too - and a greater
variety of tasks to be performed could be available. We used the same DES
implementation described in the previous scenario, but this time its implementation
could be seen by the application system as an ubiquitous reconfigurable co-processor.

FIGURE 8.1 – Case study on reconfigurable computing on demand

The implementation was successfully achieved, and the application
used our infrastructure to request to the Jini service federation for a co-processor for

121

computationally intensive tasks. As expected, the actual execution time of the DES
algorithm in the FPGA implementation is much faster than the implementation is
software, as shown in Table 8.1. The first two lines show the maximum data rates for
the encryption and decryption in the application without the use of the reconfigurable
co-processor. The third line shows the data rate obtained by the co-processor.

TABLE 8.1 - DES algorithm implementation comparison

Processor Clock (MHz) Data rate (Mbits/s)
Sun JVM over Intel Pentium MMX 133 0.162
Sun JVM over AMD Athlon XP-1700 1467 1.295
Xilinx XCV-800 27.23 108.93

However, such gain could not be delivered to the client applications.

The overhead of the FPGA configuration and of the data transfer from the host
computer to the reconfigurable hardware module were too big, hindering the major
goal of providing a significant acceleration compared to the computation that would
be done locally by the client device. Such overhead can be reduced if there is no need
for frequent reconfiguration of the modules - e.g. when there are many reconfigurable
hardware modules in the Jini federation so the client can query for a module already
configured with the needed functionality.

The data transfer overhead can be also minimized, if the host computer
and the reconfigurable hardware module are connected through a faster interface. In
our prototype, the communication between the host computer and the FPGA board
was done via a parallel interface, and the access to the SRAM banks was very slow.
Much better results could be obtained by using a reconfigurable hardware module
connected to the backend through a high speed bus, such as in the Pilchard platform
[LEO2001].

8.3 IBlaDe

In order to validate the extensibility features of the proposed
framework, a new design tool was implemented on top of the framework foundations.
Several tools were already implemented during the Cave2 prototyping cycles, such as
those referenced in subsection 5.2. None of them, however, take advantage on all the
framework features, as some of them were introduced in the latest prototyping cycle.
The IBlaDe tool was developed primarily to validate those features, but it also has its
own merit described in the subsection 8.3.1. The resulting extension on the Cave2
Framework is described in subsection 8.3.2.

122

8.3.1 Interface-based Design

The separation between system functionality and implementation
during design was the key concept behind interface-based design (IBD) [ROW97].
This methodology proposed the successive refinement of the intercommunication
structures between design modules - thus the functionality provided to other modules
- aiming to accelerate the verification procedure on the early phase of the design
process. Relying on the assumption that a lower level of detail of the interconnection
models can be accepted when designing the system functionality, the IBD
methodology proposed the substitution of cycle-accurate simulations by untimed
transaction-based verification, which require less computing power thus reducing the
verification time.

The possibility to successively refine the implementation of a given
functional composition is an appealing idea to the designers. It fits well to the iterative
methodology they are used when designing systems in a lower level of abstraction,
such as RTL-level design, and the functional specification could be seen simply as a
reference all the implementation requirements should comply with. Several
approaches to wrap up IBD concepts in such a way were proposed by industry and
academia.

While no design data model was presented together with the concepts
of IBD, many authors have reported design systems that in one way or another would
support those concepts. The Ptolemy II system [LEE01] separates clearly the
communication between design modules from its internals by relying on the concept
of actors. Each actor encapsulate a particular implementation but through inheritance
it also can be seen as a kernel entity which handles hierarchical compositions and
communication with other entities through ports. Zhu and Malik [ZHU02] brought
from object-oriented design the Façade pattern [GAM95], aiming to have a clear
definition on the externally-visible functionality of on-chip interconnection networks.
The methodology is also available in a commercial verification product from Cadence
Design Systems Inc., taking advantage on the acceleration achieved by raising the
abstraction level from communication signals to transactions.

A slightly different approach has been taken by several groups
[VAR2002] [BRU2002], which advocate for the explicit definition of the interface of
each system module. Most of them use the Unified Modeling Language (UML) to do
so, probably motivated by the its rich and expressive set of modeling constructs, as
well as its success stories in the software design domain.

This case study rely on some of the previous work and oppose to some
others while trying to address the following issues:

123

the functional specification and its implementation should be
completely separated, but the relationships between them should be
well defined;

the functional specification of the system may also be refined during
the design process - designers must be used to moving targets - so the
implementation model should be aware of such changes and keeps its
consistency;

the design is driven by functionality, but its end deliverable is a
structure, so there must be a clear path from functionality to
implementation and the designer should be supported by the design
tools along this path;

there are too many system design languages, but they share a
significant amount of semantic constructs. Since the design tools will
not be able to support many of those languages, a set composed by
the most relevant constructs should be devised.

Before we introduce the implementation of such features as an
extension to the Cave2 Framework, let's take a closer look on the design activity we
intend to support. We assume a design as a set of inter-communicating entities, each
of them providing functionality to the others through well defined access points. The
communication among entities can be seen as the subsequent access of each others
functionality through those access points. We can expect recurrent patterns of calls to
the access points, as we design more complex communication between entities such
as when the computation which is performed jointly involves several steps performed
by each one of entities, or when a complex handshaking protocol between them is
needed. Those patterns can be easily identified, and an experienced designer would
like to use a set of well-known, validated solutions every time such patterns arise. So,
for every communication procedure we can define a transaction: a well defined
sequence of process activations by the communicating entities. Such transaction
defines the roles of the participating entities by formalizing the required functionality
from each of them. This definition can actually be based on the access points to the
functionality rather than to the functionality itself, so that the transactions can be kept
intact in case of entity implementation refinement.

We exemplify this concept using a hypothetical reconfigurable system
inspired on [MIG2002].

Configuration Manager

Reconfigurable Tile

Reconfigurable Tile

Reconfigurable Tile

▀
▀
▀A

pp
lic

at
io

n

Configuration
Repository

FIGURE 8.2 – Exemplifying Interface-based Design

124

The structure of the system we base our example on comprehends a
configuration manager, which controls a set of reconfigurable tiles. According to the
application's needs, the manager allocates reconfigurable tiles to implement a
particular computation. The specification of such computation processes are stored as
configuration information in a repository.

In Figure 8.3, a communication transaction among the system entities
is depicted. Notice that among the several process calls one can outline sub-
transactions that can be considered as standalone, for instance the configuration of a
tile by the configuration manager, or the configuration loading request from the
configuration manager to the configuration repository. In many cases, such sub-
transactions can reuse the communication behavior of previously designed systems,
because even though the actual system functionality differs, the communication
pattern is the same. To be able to reuse the communication patterns regardless on the
actual entity implementation can be considered one of the main contributions of IBD,
and our approach tries to support this feature.

C o n f i g u r a t i o n
M a n a g e r

R e c o n f i g u r a b l e
T i l e

C o n f i g u r a t i o n
R e p o s i to r y

A p p l i c a t i o n

l o a d C o n f i g

l o a d C o n f i g A c k

r e q u e s tC o m p u ta t i o n

i s Id l e

s e t C o n f i g

r e a d C o n f i g

s e tC o n f i g A c k

r e q u e s tC o m p u ta t i o n A c k

FIGURE 8.3 – Communication transaction among system parts

8.3.2 Supporting Interface-based Design

 This case study is based on the corollary that a single design data
model should be able to cover the functional specification and its structural
counterpart, in order to grant the consistency between them. In [LEE2001] and
[ZHU2002] the interface is modeled implicitly within the structural model, so the
consistency is kept but both modeling activities have to be interleaved. In [VAR2002]
and [BRU2002] two distinct models are usually necessary, so the functional and
structural modeling can be done separately but there is the need for an external

125

consistency assurance. To take the best from both worlds, we decided to define a
single design data model which allows for explicit interface definition. To accomplish
the fourth issue presented in the previous subsection, we had to rely as much as
possible in the set of semantic constructs available by most of the system design
languages, so the natural choice for explicit interface definition was UML itself. But
instead to propose yet another UML extension we formalized a set of associations
between the UML constructs and the data model behind the Cave2 Framework, so
the explicit interface definition of a system could be included in the same schema as
the structural information. The resulting model is shown partially in Figure 8.4.

P r ovided R e quir ed

P r oc es s Im plem entation

Inter fac eD efin i tion

E xter nalP or t

Pr oc es s S ig natur e

D es ig nB loc k

C las s D efini tion
0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n0..n 0..n

11

0..n

0..n

0..n

0..n

0..n

1

0..n

10..n

0..n

0..n

0..n

0..n0..n

0..n

FIGURE 8.4 – Modeling structural and functional semantics

 The primitive construct of the extended design data model is the
design block, following the model described in subsection 5.3. It represents a design
entity, such as an actor in [LEE2001] or a PE in [ZHU2002]. Its implementation is
simply modeled as the set of processes it executes. Our model makes no assumption
on how those processes are described, but we cover ahead in the text some strategies
we used to support different description languages.

The rest of the model deals with the design block interface and most of
it can be derived from UML diagrams. The signature of each process - identifier,
activation method, types of the required and generated data - is explicitly defined. A
set of process signatures can be grouped in a class definition or an interface definition.
To demonstrate our rationale for grouping process signatures, we recall the example
introduced in the previous subsection. That example shows that a design block is
expected to provide and require access points to its functionality when taking part in a
given communication transaction. In our model, the access points are modeled as
process signatures, and they are expected to be grouped according to the transactions

126

they intend to participate. In the example, the configuration manager would require
from the reconfigurable tile the access points for isIdle and setConfig and would have
to provide setConfigAck.

This concept is included in our design data model as an interface
definition, which is a set of process signatures that can be either provided or required
by the design block for a given transaction. The assignment of required and provided
interfaces of a given block is done through a port, which denotes one communication
transaction.

In addition to the interface definition, we also support the concept of
class definition. Unlike an interface, which aims to define the requirements for a
particular communication transaction, the classes define a type for the design block.
This type denotes the functionality that can be expected from this block in every
transaction, thus its set of process signatures is added to the provided interfaces of
every port.

For the sake of simplicity, we did not include in Figure 8.4 the
inheritance relationship, which is supported in interface and class definitions,
allowing for a richer functional composition model. Such relationship, however, can
be seen in Figure 5.6 in the class TypeDefinition, which is superclass to both
ClassDefinition and InterfaceDefinition.

At this point we can derive our first consistency rules for the design
data model:

rule 1: for every process implemented by a design block, the respective
process signature must be included either on its class definition or in
the interface definition of at least one of its ports;

rule 2: for every communication transaction, all the process signatures
included in the required interfaces of a participating block should be
matched by a process signatures included in the provided interface of
another participating block;

rule 3: every block should have one port for every communication
transaction it takes part.

 In Figure 8.4, the concept of transaction was not shown within the
model. In the unextended Cave2 data model shown in Figure 5.6, a transaction is
aggregate of ports (both instance and external). It allows a transaction to span
different hierarchical levels. To extend the concept of communication transaction
among hierarchical levels, we introduce the concept of internal ports (Figure 8.5). As
its external counterparts, they exist solely to organize the assignment of required and
provided interfaces to each transaction. The relationship between external and internal
ports has a 1-n multiplicity, so we can have more than one internal port representing a

127

single external port. This is exactly how we can support the concept of transactions
inside of hierarchical blocks.

In Figure 8.6, a hierarchical design block B1 is partially depicted. One
of the external ports of B1 is shown as a white box, and close to it are its
correspondent internal ports shown as box with diagonal stripes. The circles linked to
each port denote the interfaces it implement: white circles are provided interfaces and
gray for required interfaces. We can notice that the second consistency rule derived
previously also applies for the virtual transaction between one external port and its
respective internal ports.

H ie ra rc h ica lD e s ig n B lo ck

B lo c k In s ta n c e

0 ..n
1

0 ..n
1

In te r fa c e D e fin i tio n

In s ta n c e P o r t

0 ..n

1

0 ..n

1

In te rn a lP o r t
0 ..n

1

0 ..n

1

D e s ig n B lo c k

0 .. n

1

0 .. n

1

E xte rn a lP o r t

0 ..n

0 ..n

0 ..n

0 ..n
1 ..n

1
1 ..n

1

0 ..n

1

0 ..n

1

T ra n s a c t io n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

FIGURE 8.5 - Modeling structural hierarchy

Also in Figure 8.6, we can see two instances I1 and I2 which have B1
as container. The instance ports are shown as box with horizontal stripes. The circles
linked to the instance ports denote the interfaces implemented by their respective
external port (instance ports don't store their own interfaces, but reference an external
port of the design block being instantiated). The connection between instance ports
and internal ports define the partitioning of the transactions among the composing
instances of a hierarchical module. In this example, we see that B1 provides the
interfaces A, B and C and requires Y and Z. Its internal ports partition such interface -
and thus the provided functionality - among the instances so that I1 would provide A

128

(through D, which inherits from A) and I2 would provide B and C through each of its
ports.

I1

B1

A

B
C

Z

Y

I2

D KZ

J
A

C

Z

Z

A

Y
B

B

Y

C

FIGURE 8.6 – Interface definitions in hierarchical blocks

The transaction definition should also store the dependency
relationship among the processes called during its execution. Currently, a dependency
graph is used to model such relationships.

We can at this point devise other consistency rules:

rule 4: the required interface of an internal port is an exclusive subset

of the provided interface of its respective external port;

rule 5: the occurrence of transactions follow the table below, where x
denotes the possibility of transactions and s denotes the transactions
subject to rule 4.

TABLE 8.2 - Occurrence of Transactions

ports internal external instance
internal x s x
external s x
instance x x

129

8.3.3 Implementation Issues

The extensions described in the previous subsections were
implemented within the Cave2 Framework, so a design tool supporting IBD can be
constructed. The consistency rules described in the previous subsection were
incorporated into a subclass of the Collaboration Service, so they can be enforced
within collaboration sessions. Such rules provide foundation for static validation on
the communication structures, giving the designers and tools the necessary
information in order to locate and correct discrepancies between the functional and
structural models. This is of particular importance for the case when the functional
and structural design are not being performed by the same team, as well as in the case
of changes on the functional specification.

To allow more efficient collaboration, the consistency rules number 2
and 4 are not enforced at all times, so one designer can include a hierarchical block
which is not completely implemented into the design repository and yet declare the
intended interfaces for the external ports, so that block could be seen as complete
from the outside and would be able to be instantiated by another hierarchical block.

The developed tool supporting Interface-based Design is called IBlaDe,
and it is an extension to the Blade tool reported in [BRI2001, BRI2002], which is
itself an extension of the framework primitive CaveGraphicEditor. IBlaDe inherits
from Blade all its features to deal with hierarchical modeling of the structure of
integrated systems. In order to allow the modeling of the function of such systems, a
second diagram view was included into the tool graphic engine. Such view can be
toggled on or off according to the designer’s intention. When the functional
description is being used, a division in the working area of the tool – called “blade
edge” – is set, so both structural and functional descriptions can be seen. When the
designers focus the structure only, the “blade edge” can be deactivated and IBlaDe
would behave basically in the same way as its superclass. Figures 8.7 and 8.8 show
snapshots of IBlaDe’s GUI.

 Notice that when the “blade edge” is activated, the designer can
assign type definitions to each of the structural ports. Such assignment is represented
by the lines crossing the “blade edge”. When the structural ports are assigned to a
given type definition, they are considered to implement the functionality provided by
that type, granted that they can obtain the functionality required by the type definition
from another port participating the transaction. In order to define the dependency
graph organizing the provided and required functionality for each transaction, IBlaDE
uses a GUI for editing an UML sequence diagram showing the interaction between all
the types taking part in a given transaction.

130

FIGURE 8.7 – IBlaDE GUI snapshot - structural view

FIGURE 8.8 – IBlaDE GUI snapshot - structural and functional view

131

8.4 Educational Metadata

As in every discipline, the authoring of online educational material for
microelectronics design is costly and requires expertise that the educators/authors
may not have. Furthermore, such costs are easily underestimated because it’s not easy
to foresee the wide range of tasks involved in the online content creation activity:
graphics, user interface, navigational structure, data storage and access control,
besides the technical content itself.

This case study presents an approach aimed to reduce such authoring
costs by taking advantage on design documentation content which can be available in
design databases. While one should not expect to find important theoretical concepts
and foundations in a design database, good design practices and real-world solutions
are likely to be found. Such material can be highly valuable when integrated to online
training material.

At this point, it is important to differentiate the definitions of online
learning and online training we use in this case study. Online learning comprehends
the use of a networked system to support students on learning fundamental subjects.
Online training supports the applicability of such concepts – and perhaps some new
concepts derived from the first ones – through practical activities. In the specific case
of microelectronics design, online learning should provide the basics concepts –
algorithms, models of computation, languages, methodologies – while online training
should provide practical design activities performed by students or trainees already
proficient in microelectronic design fundamentals.

Due to the nature of the material we can be reuse from the design
documentation available in design databases, we restrict our approach to online
training only. The expected benefits are still significant, because the online training
can be applied right after the learning activity (either online or in-class) or later on, as
support for continuous education and knowledge recycling.

Design documentation has always been regarded as a critical part of the
design overall activity. Nowadays, the need for reuse of intellectual property has
increased even more the importance of the design documentation, as the reusability of
an IP core depends heavily on the quality and accuracy of its documentation.
However, the design documentation is often done after the correspondent design
activity, with a different set of tools and sometimes even with a different team. In
order to grant the reusability of the design documentation for training purposes, an
architecture for the integration of the design data model and its documentation should
be devised. This case study uses the Cave2 design data model – particularly its
extensions supporting design metadata (subsection 7.5).

The design automation tools which are built over the Cave2
Framework can use the metadata models to store non-structured data that complement

132

the actual design data, such as design constraints, test data and design documentation.
As the metadata model is completely integrated with the design data model, it can be
queried in the same way, so actual parameters from a given design block – such as a
window size of a Viterbi decoder – can be used to query the documentation units
associated to it. To allow the access of such content in an online training course, we
developed a bridge between the Cave2 repository and the WWW environment. Such
bridge allows the metadata information to be extracted from the design repository
through an HTTP request, as it would happen in a WWW server.

While the bridge between the Cave2 design repository and the WWW
environment allowed the access of design documentation material during online
training activities, it didn’t do very much to improve its reusability. The following
issues were still prevented the wide reusability of the design documentation as
training support material:

the Cave2 repository supports queries against its design data model,
but in many cases educational material should be queried against
features which are specific to the educational domain, such as
resource type, typical learning time, language, etc. [LTS2002];

the creation of hierarchical composition of existing metadata blocks
should be supported, in order to allow the reuse of coarse-grained
blocks of content. For instance, an exercise could be defined as the
composition of the documentation of the design blocks it uses, plus
some instantiation guidelines extracted from designs which have used
those blocks before. Such aggregate is likely to be used in more than
a single training session, so the aggregation structure should be
stored somehow.

To address such issues, we adopted the Learning Object Metadata
standard (LOM), proposed by the IEEE Learning Technology Standards Committee
(LTSC) [LTS2002]. Such standard provides guidelines to create metadata information
for learning modules. By including LOM functionality in the Cave2 data model, we
were able to export LOM descriptions – either as Java objects or specially formatted
XML files – describing the documentation content available in Cave2 design data
repository. Furthermore, with LOM we are able to specify the aggregation of
documentation blocks by specifying the relationship among their LOM
representations (there is a specific entry within the standard where such relationships
are defined).

All LOM descriptions files are stored in a different repository, with a
different query interface, so they can be queried against their educational content
according to the LOM standard. Each LOM description has a reference – in the form
of a URL or URI – to its actual learning object. Such information is critical when the
training material is rendered to the trainee/student, because the metadata provide only
the training organization. The actual content is still stored in the Cave2 design data
repository. Our implementation of the reference relies on the HTTP bridge we

133

implemented initially, so a design repository query can be embedded in the URL
which is included in every LOM description.

To validate our approach, we used a LOM-based authoring system to
built training material by reusing design documentation. The validation used the
Course Editor [HÖR2001] (Figure 8.9), an authoring tool designed to construct
multimedia-based hierarchical structures (course modules) from existing learning
objects stored in a database. Such tool was originally built to support the k-MED
environment [KME2003], a knowledge based learning system for medical students,
but it is generic enough to be applied to other LOM-based approaches.

In Course Editor, a course module is represented by a treelike structure
to which a set of components are connected according to a relationship of IsPartOf-
HasPart type, specified in the LOM standard draft. The system uses an extension to
the LOM standard defined in [HÖR2001], which specifies six different aggregation
levels, according to the granularity of the learning object. Only two of those, Atom
and Subatom, describe actual data and point to physical resources, while one,
Collection of Subatoms, is used to organize Subatoms to be presented stand-alone.
The other three levels - course, chapter and collection of atoms, are abstractions
conceived to organize components in a course that can be presented linearly to
learners. Such components have in common their coarse granularity, and are the
actual product of the Course Editor.

The complete subsystem was implemented as shown in Figure 8.10,
providing support from the complete process: content is generated by designers – in
the form of documentation, which is exported through the LOM interface – and
authors; the authors organize the training in modules and sessions using LOM
collections; trainees access the training sessions using a viewer application (e.g. a
web browser), which load the training content using HTTP according to the
definitions in the LOM collections.

With such approach, we contributed to the reduction of training
material authoring costs by allowing the extraction of documentation content from
design databases, as well as its reusability by using the LOM standard. While our
main focus is on training, we foresee the application possibilities in online learning as
well, granted that learning material on fundamental concepts is included.

134

FIGURE 8.9 – Course Editor GUI

Repository

Service

LOM
Interface

HTTP
Bridge Repository Service

Interface

 Course Editor
LOM

Database
Course
Edition
Module

Author

Student/Trainee

Training Viewer

Design Tool

Designer

FIGURE 8.10 – Case Study: Metadata as training material

135

9 Conclusions and Future Work

9.1 Conclusions

The thesis work described in this text is built on top of a heterogeneous
set of disciplines, such as CAD for Microelectronics, Software Engineering, Database
Systems, Distributed Systems and CSCW. Its contributions are also relevant within
the borders of several of those disciplines. The resulting product of this thesis work –
the Cave2 Framework – implemented and validated the new concepts and ideas which
provided the necessary extensions to the state-of-the-art in the forementioned
disciplines, in order to make possible the collaborative design of integrated systems in
a distributed environment. Being an enabling technology, the Cave2 Framework
cannot be completely evaluated alone. Just like a programming language or a
development methodology, the actual contributions of both the CAD Framework and
the OO framework parts of Cave2 can only be fully appreciated on its extensions and
applications.

The following subsections detail the most significant contributions in
their respective technical areas and summarize the presented work with a comparison
with the previous approaches.

9.1.1 CAD Frameworks

The classical approach on CAD Frameworks was based on the
visionary structure of layers of services on top of a well defined data model. The
underlying infrastructure of those Frameworks was also standardized, so that the
upper service layers and the data model could migrate easily from one hardware
platform to another. The approach presented in this text revisited the classical
approach and applied on it the recent techniques developed in software engineering
and platform-independent computing to overcome many of the limitations found in
the past.

The classical CAD Frameworks were built on top of immutable data
models, as the integration between the design tools depended on the strong
standardization of those models. The balance between flexibility and standardization
was not easy to be achieved, and the lack of one or another are often referred as
reason for the commercial failure of the CAD Framework concept.

In the present approach, such problem was solved with the use of the
concept of object-oriented framework. Such concept advocates for the abstract
definition of recurrent patterns on the communication behavior between elements in
the data model. While defined in an abstract level, those patterns are also propagated

136

through inheritance to the concrete extensions of the data model. By using OO
frameworks, we could achieve a significant degree of standardization by defining
semantic dependencies between the data model elements in an abstract level. The
flexibility of the data model is also granted by its extensibility, which allows
successive concretizations of the relations specified in the abstract level. In other
words, the proposed design data model is only a starting point, allowing for extension
and specialization, yet keeping in those extensions all the compatibility with the CAD
Framework services.

Apart from that, the usage of an OO framework also brought other
novelties to the CAD Framework development. This is mainly because of the
application of design patterns - well known architectural solutions validated in other
application domains which were not thoroughly explored in previous implementations
of CAD Frameworks. The proposed implementation of the Observer pattern is one of
such cases, allowing for a clear definition of the design data model and its
visualization possibilities inspired in the classic MVC framework. Unlike previous
approaches which delegated the design visualization techniques to the tool developer,
the proposed framework provides a full set of design visualization primitives, together
with a flexible set of control protocols which manage the consistency between the
design data objects and their respective views. Such feature was critical to the
successful implementation of the support for collaborative design. The usage of the
Proxy pattern is another example, bringing significant advantages to the
implementation of transparent distribution of CAD resources, as implemented in the
Cave2 Service Space (Section 6). Independently from the proposed approach, other
research groups have also concurrently developed proxy-based resource distribution
and reported similar experiences [KOS2003, MUR2003, MUR2003a], which gives
additional hints on the appropriateness of the solution.

A common assumption among framework designers states that the best
way to learn how to build an object-oriented framework is by using a previously built
one. Following that advice, the development of the OO framework in Cave2 was
strongly influenced by the some of the frameworks within JFC. Many elements of the
Cave2 Framework, such as data structures and GUI modules, are extensions of the
JFC classes. In the case of GUI elements, another link can be noticed, as the JFC also
implements the classic MVC framework. Yet, during the development of the
framework extensions – such as the Prototyping Service and IBlaDe, reported in
subsections 8.2 and 8.3 – we could experience the difficulties reported by other OO
framework developers [BOC99] regarding the trade-off between usability and
reusability. In many cases, it is very hard to implement the desired functionality while
constrained by the reusability guidelines. In IBlaDe, for instance, we had to
temporarily bypass some of the framework guidelines by using harmful programming
practices during the tool development stage, and then rework part of the framework in
order to accommodate some peculiarities which were needed by its GUI featuring two
independent-yet-linked views of the design data (“blade edge” activation).

Another contribution of the present approach to the CAD Frameworks
field is its extensive exploration of the platform-independent capabilities of the Java

137

technology. In former Framework implementations, several approaches on the
underlying infrastructure were presented, in order to separate the Framework services
from the underlying hardware and software platforms. None of them had a widely
adopted solution such as the Java Virtual Machine, which has been already ported to
all relevant hardware and software platforms. The issues on performance, which often
arise when it comes to Java criticism, are not so relevant when compared to previous
solutions on platform independence for CAD Frameworks, often based on scripting
languages. Furthermore, the recent advances on JVM performance and the possibility
of native code integration using JNI can make the gap between Java-based solutions
and native code implementations even smaller, as reported in subsection 4.5.

9.1.2 Design Databases

The choice of the design database was a critical issue when developing
a CAD Framework. First of all, the database should be able to support all the
modeling constructs found in the design data model defined by the CAD Framework.
Then, the database should provide all the facilities for consistency control for multi-
user access, meet performance constraints, satisfy compatibility issues with the rest of
the system, etc. All those constraints often led to the development of databases which
were specifically tailored for a given CAD Framework. While such developments
lead to important advances in the database domain, the dependency relationship that
was created between the Framework and the database implementation was not
beneficial. In order to avoid such dependency, several API-based approaches were
proposed, some of them covered within subsection 6.3.1. Those approaches advocated
for the abstraction of the database through a set of externally-accessible operations
which can be mapped to manage different database implementations. API-based
approaches are currently being introduced as industry standards for design databases.

The research work reported on this text included extensive
investigation on databases and their suitability as design data repositories. Several
commercial products, open-source packages and research prototypes were analyzed,
in order to experiment on how much is the Framework influenced by the database
modeling strategy. The results of our experiments showed that a significant amount of
work is required in order to conjugate the data handling within the application domain
with the data management within the database domain. In other words, the CAD tool
developer should be aware of both the data models used within the tool and the query
languages to interact with the persistent data in the database. The API-based approach
reduces the problem but does not eliminate it, as the API can be seen as just another
query language, database-independent though.

In order to allow the CAD developers to focus only in the tool
application domain, we extended the previous approach by introducing an architecture
inspired in the transparent persistency concept. The proposed extension, included in
the core of the implemented object-oriented framework, allows for the direct
management of the data objects through their own API instead of using a database

138

API to do that. This means that the CAD designer can create the complete tool as a
stand-alone application, dealing only with its internal data models in memory, and
then migrate it to the proposed design database architecture with little effort or even
automatically. All the additional functionality regarding management of data keys,
data consistency rules, distributed storage and retrieval is embedded in the
framework.

The advantages of the proposed approach are a superset of the
advantages of the API-based approach, as it provides a higher level of abstraction of
database implementation details while providing the same kind of database-
independence (the proposed approach also uses an API - the Service Interface -
between the transparent persistence layer and the database implementation, as shown
in Figure 6.8). The disadvantages of the proposed approach are the same of the API-
based approach: performance degradation due to the abstraction layers overhead and
because possible implementation-specific performance enhancements are transparent
to the tool developer.

9.1.3 Collaborative Design

Collaboration among designers was always a peripheral concern
among CAD Framework developers, as their major challenge was the integration of
design tools. The work described within this text had collaborative design as a scope,
thus it had to extend the CAD Framework domain until it overlapped with the CSCW
domain. The architectural extensions which made this possible are already
summarized in subsection 9.1.1, but there are some contributions of this thesis that are
also valuable in the collaborative design domain itself.

 Section 7 provided an overview on the proposed support to
collaborative design. An overview on the general issues associated to collaboration in
design was presented, and particular issues on the integrated systems design domain
were derived. From the multi-level nature of the integrated systems design flow, the
need for supporting both synchronous and asynchronous collaboration was derived.
Synchronous collaboration was considered suitable support brainstorming and
conceptual design and initial development steps, where a variety of professionals with
distinct technical background is needed. During the implementation and validation
steps the designers often work asynchronously, so this possibility should be
considered as well.

For the asynchronous collaboration, the proposed framework provides
the same level of support granted by previous approaches, embedding multiple planes
of versioning and design metadata objects into the design data model. The advantages
of the proposed approach in this regard are derived from the advantages of using an
extensible object-oriented framework instead of a static data model, summarized
before.

139

The major contributions are found on the synchronous collaboration
support. Two collaboration methodologies were implemented - visually coupled and
visually decoupled – by exploring the separation between design data model and its
views. The visually coupled methodology defines a single instance of the design data
and a single view of the data which is shared among all designers. The visually
decoupled methodology deals with different visualizations for each user. The
consistency between the data model and its views is enforced by update/notify
mechanisms. All updates to a given data object are notified to all its views. The same
concept is also used to update related data objects, for example the update of the
instances of a given block when that block is updated.

The availability of both collaboration methodologies can be justified by
their qualitative and quantitative differences. The visually coupled approach provides
a very close collaboration between designers, and is particularly suitable for training
sessions, because it allows the actions of a given designer to be watched step by step.
On the other hand, the visually decoupled approach allows designers to work
synchronously and yet with a certain degree of independence, so the burdens of the
collaboration are not so high. Regarding the quantitative aspect, the visually
decoupled approach is by far more efficient. Our experiments showed that more than
80% of the update/notify event traffic in a collaborative session are generated by
visual synchronization, so the visually decoupled methodology should be the
preferred choice when the underlying network infrastructure has low bandwidth.

To keep the consistency of multi-user updates and notifies, we also had
to deal with concurrency control mechanisms. Thus, the update/notify events are
deployed within collaborative sessions, which are isolated from each other by
transactional boundaries. Such consistency control scheme avoid the interference
between non-collaborating groups of designers. Within a collaborative session, the
strictness of the transactional control should be avoided in order to foster
collaboration, so the proposed approach allows for custom extensions for the
concurrency control. Two techniques were implemented, but future extensions
tailored to other collaboration methodologies can be included.

The first technique to be implemented, inspired in the Pair
Programming Technique, was used to validate the visually coupled methodology. It is
based on floor control, so the collaboration potential is reduced as only one designer
can be fully active at a given time. The second technique, used in both visually
coupled and decoupled methodologies - is an original hybrid technique, tailored to the
application domain of integrated systems design. It uses event filtering to extract the
semantics of every update and notifies the generator of the update immediately in the
case of order-insensitive updates. In the case of order-sensitive updates, it uses a
centralized controller. By relying on domain-specific filtering, it improves
significantly the responsiveness of the interface with the designer.

140

9.1.4 Summary

The work presented in this text revisited the CAD Framework concept
to address the need for computational infrastructure supporting collaboration among
designers in a distributed environment. A number of engineering techniques were
employed to accomplish this goal, some of them in novel ways, as reported in the
previous subsection. The validation of those techniques was done during the
implementation steps of the Cave2 Framework and its extensions. Table 9.1 shows the
comparison of the resulting Framework with the previous work reviewed in Section 3.

TABLE 9.1 – Comparison between CAD systems supporting distributed,
multi-user design of integrated systems

Tool

Supports
methodology

management using
workflow techniques

Supports

design data
versioning

Abstracts the
complexity of the

distribution of CAD
resources over

networks

Platform

independent

Provides
extensible
design data
modeling
constructs

Nelsis X X
Version
Server

 X

STAR X
Ulysses &
Odyssey

X X

WELD X X X
OmniFlow X X X
ASTAI(R) X X X
Moscito X X X
PPP X X
JavaCAD X X
Ptolemy II X X
Cave X X
Cave2 * X X X X

Besides the features shown in Table 9.1, the developed framework is
the first of its kind to provide support to synchronous collaboration.

The advances achieved on the development of Cave2 are expected to
support the development of front-end tools tailored to the novel design
methodologies, where the collaboration between designers with different expertises is
needed. The system description used in such tools has a high abstraction level and is
often a mixture of textual and diagramatic representations, matching exactly the target
scenario of Cave2.

However, the developed CAD Framework is not of production quality
and should be considered only a reference implementation. Yet the Framework is

141

suitable to support academic or even industrial prototypes, is the software architecture
validated by Cave2 that should be considered the major contribution of this thesis.

9.2 Future Work

 Among the collaboration support techniques found in CAD
Frameworks, the only on which was not completely implemented within the Cave2
Framework – marked with a star in Table 9.1 – is the support for workflow modeling
and execution. While the Service Space architecture provides for a service
encapsulation strategy, there is no specific workflow modeling and execution engine
within Cave2. This is because of the evident maturity on this research area within
EDA where significant advances were achieved recently, as shown in tools like
TRMS/GTLS [KOS2003], OmniFlow and MOSCITO has shown. Each of those tools
has its own tool encapsulation and activation strategies, but with little effort they can
be adapted to use their workflow modeling and execution engines on top of Cave2
proxy-based encapsulation architecture.

Yet regarding service encapsulation, future research is also needed to
address the integration of the proxy-based encapsulation and reflection techniques
[SUN97]. In such case, both the distribution of the services and their API can be
partly abstracted. We have shown that the first technique allows for locally accessible
modules - the proxies - which can hide the real location of the core of a design tool
that can be installed in a different machine in the network. The second technique
would allow the implementation of service proxies which are self-adaptable, thus able
to inspect during execution time the interface of the proxies of other services in order
to set up an optimized protocol for design data exchange.

Another possible extension would be the inclusion or integration of a
functional simulation environment into the Service Space. Currently, the functional
simulation is performed without a simulation backbone, so the interoperability
between the simulating modules is achieved by ad-hoc agreement between the
designers. No formal definition on models of computation or data abstraction is
provided. A foreseeable starting point would be the Ptolemy II system, which includes
an object-oriented framework for modeling and simulation of embedded systems.
Ptolemy II is also developed on top of the Java technology, so the integration is made
easier both because the conceptual and implementation-level compatibility.

Finally, there are several issues that were addressed only in its surface
during the development work of this thesis, and that should be investigated further in
the future development. For instance, the switching between synchronous and
asynchronous modes of collaboration, or the switching between visually coupled and
visually decoupled collaboration, can be better explored. The major concern in this
case is the synchronization of different views, and many approaches can be offered,
such as automatic view generation, progressive user-driven synchronization through
step-by-step agreement, or even the complete override of one designer's view by the

142

view of a colleague. Another example is on the event propagation between the tool
and the Repository and Collaboration Services. There is plenty room for
optimizations, specially among visual-only events: strongly correlated events can be
combined, such as the creation of a block will usually be followed by the creation of
ports, or the numerous events generated by dragging a given object can be reduced to
a smaller yet equivalent subset.

143

Appendix 1 Cave Development Timeline

1996 Preliminary studies on platform-independent design tools
First implementations on hypermedia support for design environments

Related publications:
INDRUSIAK, L. S., REIS, R. A. L. A World Wide Web Based Microelectronics Tutorial
In: XI UFRGS Microelectronics Seminar, 1996, Porto Alegre.
INDRUSIAK, L. S., REIS, R. A. L. Microelectronics Learning Using WWW and VRML
In: Workshop on Multimedia and Virtual Worlds (IFIP WG 9.5), Intenational IFIP 9.4
Conference, 1997, Florianópolis, SC.
INDRUSIAK, L. S., REIS, R. A. L. Microelectronics Education using WWW
In: 1999 International Conference on Microelectronic Systems Education, 1999,
Arlington.
Proceedings. Los Alamitos: IEEE Computer Society Press, 1999. p.43 - 44
INDRUSIAK, L. S., REIS, R. A. L. Microelectronics Education Using WWW and CAD
Tools In: XI Brazilian Symposium on Integrated Circuits Design, 1998, Armação de
Búzios,RJ. Proceedings. Los Alamitos: IEEE Computer Society, 1998. p.31 - 36

1997 First approach on WWW-based tool integration
Hyperdocument-based user interface adopted
Encapsulation of foreign tools using CGI
Development of an object-oriented library of reusable tool blocks was started
Implementation of CIF2VRML tool - 3D Visualization of layout data using
VRML

Related publications:
INDRUSIAK, L. S., REIS, R. A. L. Visualização 3d do Layout de Circuitos Integrados
Utilizando Vrml In: I Workshop de Realidade Virtual, 1997, São Carlos, SP. p.177 - 186
INDRUSIAK, L. S., REIS, R. A. L., GRALEWSKI, D. D., BRONDANI, C., BRASCO, F.
F. Ambiente de Concepção de Circuitos Integrados Baseado Em Www In: IX Salão de
Iniciação Científica, 1997, Porto Alegre, RS.
INDRUSIAK, L. S. Ambiente de Apoio Ao Projeto de Circuitos Integrados Utilizando
World Wide WebIn: II Semana Acadêmica do CPGCC/UFRGS, 1997, Porto Alegre.
INDRUSIAK, L. S., REIS, R. A. L. A Www Approach For Eda Tool Integration In: X
Brazilian Symposium on Integrated Circuits Design, 1997, Gramado, RS.
INDRUSIAK, L. S., REIS, R. A. L. A Www Approach For Eda Tool Integration In: XII
UFRGS Microelectronics Seminar, 1997, Porto Alegre, RS.
INDRUSIAK, L. S., REIS, R. A. L. 3D Circuit Layout Visualization Using VRML In: XII
UFRGS Microelectronics Seminar, 1997, Porto Alegre, RS. p.77 - 80

1998 Refinement on the WWW-based tool integration architecture
Hyperdocument-based design flow modeling
Implementation of first prototypes of design entry and visualization tools: Jale
(layout) and Jase (schematic)
Encapsulation of foreign tools using Servlets
Designer coordination and communication tool - Cadena - is implemented

Related publications:
INDRUSIAK, L. S., GRALEWSKI, D. D., REIS, R. A. L. Building Server Side
Applications With Java In: XIII SIM - Microelectronics Seminar, 1998, Bento Gonçalves,
RS.
INDRUSIAK, L. S., BRONDANI, C., BRASCO, F. F., REIS, R. A. L. Graphic Schemes
Development To Jale In: XIII SIM - Microelectronics Seminar, 1998, Bento Gonçalves,
RS.
INDRUSIAK, L. S., REIS, R. A. L. A Case Study For The Cave Project In: XI Brazilian
Symposium on Integrated Circuits Design, 1998, Armação de Búzios, RJ. Los Alamitos:
IEEE Computer Society, 1998.
INDRUSIAK, L. S., REIS, R. A. L. Project Management and Design Methodology
Support for the Cave Project: A Hyperdocument-Centric Approach In: XII Brazilian
Symposium on Integrated Circuits Design, 1999, Natal, RN. Los Alamitos: IEEE

144

Computer Society Press, 1999.
INDRUSIAK, L. S., WINCKLER, M. A. A., GRALEWSKI, D. D., REIS, R. A. L.
JALE - JAVA Layout Editor In: XIV SIM Microelectronics Seminar, 1999, Pelotas, RS.
HERNANDEZ, É. B., SAWICKI, S., INDRUSIAK, L. S., REIS, R. A. L.
WWW as an Environment to IC Project: The JASE Tool (Java Schematic Editor) In: XV
Microelectronics Seminar, 2000, Torres, RS, Brasil.

1999 Cave is chosen as infrastructure for the DInCAD Cooperation Project (Brazil-
Germany)
Architectural upgrades were defined, in order to support DInCAD goals
(collaborative design and learning)
Transitional architecture implementation, in order to allow migration from
hyperdocument-based model to a fully object-oriented model
CIF2VRML upgrade to generate 3D models with visual simulation capabilities
A distributed database scheme for VHDL metadata is implemented
Cave is presented in the DATE (Munich) and DAC (New Orleans) University
Booth

Related publications:
INDRUSIAK, L. S., OST, L. C., REIS, R. A. L. Visualização 3D de Circuitos Integrados
usando Modelos VRML In: IV Simpósio Nacional de Informática, 1999, Santa Maria, RS.
INDRUSIAK, L. S., OST, L. C., REIS, R. A. L. Dynamic 3D Models of Integrated
Circuits Using VRML In: II Workshop Brasileiro de Realidade Virtual, 1999, Marília, SP.
Anais. São Carlos, SP: UFSCar, 1999. p.95 - 101
INDRUSIAK, L. S., REIS, R. A. L. 3D Integrated Circuits Layout Visualization using
VRML In: Winter Simulation Conference - International Conference on Web-based
Modeling and Simulation (WEBSIM'99), 1999, San Francisco, CA, USA. Proceedings.
San Diego: Society for Computer Simulation International, 1999. p.177 - 181
INDRUSIAK, L. S., REIS, R. A. L., BECKER, J., GLESNER, M. DInCAD: Distributed
Internet-based CAD Methods for Future Complex Microelectronic Systems In: V
Workshop of the German-Brazilian Bilateral Programme for Scientific and Technological
Cooperation through BMBF and CNPq, 1999, Koenigswinter.
INDRUSIAK, L. S., REIS, R. A. L. From a Hyperdocument-Centric to an Object-Oriented
Approach for the Cave Project In: XIII SYMPOSIUM ON INTEGRATED CIRCUITS
AND SYSTEM DESIGN - SBCCI '2000, 2000, Manaus. Proceedings. Los Alamitos:
IEEE Computer Society, 2000. p.125 - 130
INDRUSIAK, L. S., PALMA, J. C. S., BRUNONI, J. L., MACHADO, P. B. Sistema de
Indexação Distribuída de Descrições VHDL de Circuitos Integrados usando Interface
WWW In: IV Simpósio Nacional de Informática, 1999, Santa Maria, RS.
INDRUSIAK, L. S., REIS, R. A. L. 3D integrated circuit layout visualization using
VRML. Future Generation Computer Systems. Amsterdam: , v.17, n.5, p.503 - 511, 2001.

2000 Implementation of the architectural upgrades - new version of the Cave
environment, fully object-oriented is named Cave2
FPGA platforms are integrated to Cave using the CaveJTAG tool
Tropic layout generation tool is integrated to Cave through the WTropic tool
CIF2VRML and Jale tools are merged into Jale3D, incorporating capabilities for
edition and visualization of MEMS
First implementation of Homero, a tool for textual design entry
Cave2 early prototype is presented in the DAC University Booth (Los Angeles)

Related publications:
INDRUSIAK, L.S. Architectural Evolution for the Cave Design Automation Framework.
Trabalho Individual. Porto Alegre: PPGC UFRGS, 2000. 46 p.
FRAGOSO, J.L.; MORAES, F.; REIS, R. WTROPIC: A WWW-Based Macro-Cell
Generator. In: XIII SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEM
DESIGN - SBCCI '2000, 2000, Manaus. Proceedings. Los Alamitos: IEEE Computer
Society, 2000.
BECKER, J., MAYER, U., GLESNER, M., INDRUSIAK, L. S., REIS, R. A. L. Providing
Flexible Internet Infrastructure for FPGA-Based CAD Courses In: EWME 2000 -
European Workshop on Microelectronics Education, 2000, Aix en Provence.
OST, L. C., MAINARDI, M. L., INDRUSIAK, L. S., REIS, R. A. L. Jale3D - Platform-
independent IC/MEMS Layout Edition Tool In: 14th Symposium on Integrated Circuits

145

and Systems Design, 2001, Pirenopolis. Proceedings. Los Alamitos: IEEE Computer
Society, 2001. p.174 - 179
INDRUSIAK, L. S., REIS, R. A. L. Using Cave Environment for Remote FPGA
Programming In: XV Microelectronics Seminar, 2000, Torres, RS, Brasil.
BECKER, J., GLESNER, M., MAYER, U., HOLLSTEIN, T., INDRUSIAK, L. S., REIS,
R. A. L. An Internet-Capable CAD Suite for the Mulit-Level Design of Complex
Microelectronic Systems In: DATE 2000 - Design, Automation and Test In Europe
Conference, 2000, Paris. Proc. of Design, Automation and Test In Europe Conference -
User Forum. , 2000. p.303
INDRUSIAK, L. S., HERNANDEZ, É. B., SAWICKI, S., REIS, R. A. L. Homero - Um
editor VHDL Cooperativo via Web In: IWS '2001 - VII Workshop Iberchip, 2001,
Montevideo.

2001 Definition of the architecture for collaborative design support
Jase is replaced by BLADE, a tool for hierarchical description using diagrams
Homero is used as a case study for a Pair Programming related collaboration
methodology - preliminary results presented at DAC (Las Vegas) and DATE
(Munich) University Booth
The Cave data model is significantly extended and upgraded, separating visual
and semantic concerns in order to allow efficient synchronous and asynchronous
collaboration
Two modes for synchronous collaboration are defined: visually coupled and
visually decoupled
The first specification of the Service Space was derived
Paper reporting the experiences on collaborative design on top of Cave2 receives
"Outstanding Paper Award" at SBCCI

Related publications:
INDRUSIAK, L. S., REIS, R. A. L., GLESNER, M. Collaborative Learning by Sharing
Design Experience In: 4th European Workshop on Microelectronics Education, 2002,
Vigo.
BRISOLARA, L. B., INDRUSIAK, L. S., REIS, R. A. L. Modelagem Orientada a Objetos
de Primitivas de Projeto de Sistemas Eletronicos voltada para Colaboracao In: IWS 2002 -
VIII Workshop Iberchip, 2002, Guadalajara.
SAWICKI, S., INDRUSIAK, L. S., REIS, R. A. L. Projeto Cooperativo no Ambiente
Cave In: IWS 2002 - VIII Workshop Iberchip, 2002, Guadalajara.
BRISOLARA, L. B., INDRUSIAK, L. S., REIS, R. A. L. Developing an Hierarchical
Schematic Editor to WWW In: XVI Microelectronics Seminar, 2001, Santa Maria.
INDRUSIAK, L. S., BECKER, J., GLESNER, M., REIS, R. A. L. Distributed
Collaborative Design over Cave2 Framework In: 11th IFIP International Conference on
Very Large Integration, 2001, Montpellier.
INDRUSIAK, L. S., GLESNER, M., REIS, R. A. L. Comparative Analysis and
Application of Data Repository Infrastructure for Collaboration-Enabled Distributed
Design Environments In: DATE 2002 - Design Automation and Test in Europe, 2002,
Paris. Proceedings. Los Alamitos: IEEE Computer Society, 2002.
INDRUSIAK, L. S., HERNANDEZ, É. B., SAWICKI, S., REIS, R. A. L., BECKER, J.,
GLESNER, M. Distributed System-Level Design Using Pair-Programming over Cave In:
DATE Conference - Design Automation and Test in Europe, 2001, München.
Demonstrations at the University Booth of the DATE Conference 2001. Tübingen:
Wilhelm-Schickard-Institute for Computer Science, 2001. v.2001. p.26
SAWICKI, S.; BRISOLARA, L.B.; INDRUSIAK, L.S.; REIS, R.A.L. Collaborative
Design using a Shared Object Spaces Infrastructure. In: Symposium of Integrated Circuits
and Systems Design, SBCCI, 17., 2002, Porto Alegre. Proceedings... Los Alamitos: IEEE
Computer Society Press, 2002.
BRISOLARA, L. B., INDRUSIAK, L. S., REIS, R. A. L. Blade: A Hierarchical diagram
editor target to collaboration In: 17th South Microelectronics Seminar, 2002, Gramado.
Proceedings. , 2002.
SAWICKI, S., BRISOLARA, L. B., INDRUSIAK, L. S., REIS, R. A. L. Collaborative
Design based on Shared Object Spaces In: 17th South Microelectronics Seminar, 2002,
Gramado. Proceedings. , 2002.

2002 Definition of the Repository and Collaboration Services
Extensions for educational and research usage of the remote FPGA programming
were implemented, following Service Space guidelines

146

Jini-encapsulated FPGA Board demonstrated at DAC University Booth, New
Orleans
PETRA tool for power estimation of functional models relies on Cave2 data
modeling during its development step
IBlaDe tool was developed, as a case study of the Cave2 data model extension,
supporting interface-based design
Transparent persistency concept is implemented within the Repository Service
Design metadata and versioning support are included in the Cave2 data model
Design metadata is reused as training material using LOM descriptions and
HTTP bridging in the Repository Service

Related publications:
INDRUSIAK, L. S., LUBITZ, F., GLESNER, M., REIS, R. A. L. Ubiquitous Access to
Reconfigurable Hardware: Application Scenarios And Implementation Issues In: Design
Automation and Test in Europe (DATE), 2003, Munich. Proceedings. Los Alamitos:
IEEE Computer Society, 2003. p.940 - 945
INDRUSIAK, L. S., BECKER, J., GLESNER, M., REIS, R. A. L. Distributed
Collaborative Design over Cave2 Framework In: 11th International Conference on Very
Large Scale Integration of Systems-on-Chip, 2001, Montpellier. SOC Design
Methodologies. Boston: Kluwer Academic Publishers, 2002. p.97 - 108
INDRUSIAK, L.S., GLESNER, M., REIS, R., ALCANTARA, G., HOERMANN, S.,
STEINMETZ, R. Reducing Authoring Costs of Online Training in Microelectronics
Design by Reusing Design Documentation Content. In: 2003 International Conference on
Microelectronic Systems Education (MSE), 2003, Anaheim. Proceedings. Los Alamitos:
IEEE Computer Society, 2003.
INDRUSIAK, L.S., GLESNER, M., REIS, R. Supporting Consistency Control on
Functional and Structural Views in Interface-based Design Models. In: Forum on
Specification and Design Languages (FDL), 2003, Frankfurt.
INDRUSIAK, L. S., GLESNER, M., REIS, R. Computational Infrastructure for the
Collaborative Design of Integrated Systems over a Distributed Environment. In: In: E-
Colleg Workshop on Challenges in Collaborative Engineering (CCE), 2003, Poznan. (to
appear)

2003 Cave2 design data model used as foundation in experiments on UML-guided
design space exploration
IBlaDe demonstrated at DAC University Booth, Anaheim
Design metadata reuse as training material is demonstrated at DAC University
Booth, Anaheim

147

Appendix 2 Cave UML Class Diagrams

javax.swing.JFrame

CaveGUI
CaveCockpit

0..n1

CavePrimitivePalette

CaveGraphicEditorEventHandler

CaveVisualObjectManager

CaveCanvas

CaveVisualObject

1 0..n

CaveVisualBox
WithPorts

CaveVisualBox

java.awt.Sha
pe

java.awt.Rectangle

CaveVisualObjectWithMetadata

CaveVisual
Metadata

0..n11 0..n

CaveVisualConnection

CaveVisualBlock

Universe

0..n

1..n

0..n

1..n

1

1

1

1

CaveVisualPort

0..n1 0..n1

CaveVi sualConn
ectionEnabled

<<implements>> << implements>>

0..n

0..n

0..n

0..n

GroupMode

CreateMode

SelectMode

CaveGraphicEditor

1

1

1

1 1
1

1
1

1..n

1

1..n

1

11 11

1..n

1

1..n

1

1
1

1 1

1

1

ConnectMode
1

1

1

1

1

1

1

1

1

1

javax.swing.JPanel

java.util.Vector

<<implements>>

FIGURE A2.1 – Cave2 Design Tool Primitives (partial)

148

Provided Required

DesignObject
name : String

getName()
setName()

TypeDefinition
functionVector : Vector

addFunction()
removeFunction()
getFunctions()

Transaction
portsVector

addPort()
removePort()
typesMatch()
getPorts()

DesignPort

addInterface()
getInterfaces()
removeInterface()

0..n0..n 0..n0..n

java

Transaction
Manager

FunctionImplementation
signature : FunctionSignature
dependencyVector : Vector

ClassDefinition
atributeVector : Vector

FunctionSignature
args : Vector
return : TypeDefinition

1

0..n

1

0..n

0..n

0..n

0..n

0..n

HierarchicalDesignBlock
intPortVector : Vector
instanceVector : Vector

addIntPort()
removeIntPort()
getIntPorts()
addInstance()
removeInstance()
getInstances()

DesignBlock
portVector : Vector
functionVector : Vector
classVector : Vector

addPort()
removePort()
addFunction()
removeFunction()
addClass()
removeClass()
getFunctions()
getClasses()
getPorts()

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

InterfaceDefinition

0..n 0..n0..n 0..n

InternalPort

0..n

1

0..n

1

BlockInstance
designBlock : DesignBlock

0..n
1

0..n
1

0..n1 0..n1

ExternalPort
vectorInterfaces : Vector

0..n

1

0..n

1

0..n

0..n

0..n

0..n

InstancePort
externalPort : ExternalPort

0..n

1

0..n

1

FIGURE A2.2 – Cave2 Design Data Primitives (partial)

149

CaveBasicEve
nt

method
arguments
classes

CaveServiceKey

ServiceSpace

<<instantiates>>

CaveServiceProxyCaveService1 11 1 0..n1 0..n1

CaveCollaborationService CaveCollaboration
ServiceProxy

CaveEvent
semanticarguments
semanticclasses

isOrdered()

CaveInstantiationEvent

getInstantiatedClass()
getInstantiatedObject()

CaveRepositoryServiceCaveRepository
ClassMapper

1 111

CaveRepository
ServiceProxy

CaveKey

CaveProxy
Object

0..n

1

0..n

1

CaveVisual Object

<<instantiates>>

<<instantiates>> 1

11

1

SpecificProxy
Object1

SpecificProxy
Objectn

FIGURE A2.3 – Cave2 Repository and Collaboration Services (partial)

150

Appendix 3 Cave2 Code Statistics

Package Classes Functions NCSS
. 3 18 220
cave.awt 10 79 459
cave.cif 13 314 3249
cave.collaborative.chat 5 35 278
cave.collaborative.connect 2 4 42
cave.collaborative.service 23 149 1677
cave.design 13 95 820
cave.design2 15 70 227
cave.graphic 40 318 2804
cave.graphic.graphic2D 26 266 1783
cave.io 2 6 64
cave.moo 1 7 113
cave.protocol 1 1 8
cave.repository 13 91 528
cave.server 9 16 118
cave.text 1 7 76
cave.tools 37 220 3991
cave.tools.blade 11 63 804
cave.tools.homero 11 71 707
cave.tools.iblade 14 78 953
cave.tools.iblade.seqdiag 1 1 28
cave.util 3 7 31

Total 254 1916 18980

151

Appendix 4 Cave2 Code Documentation

Available online at http://www.inf.ufrgs-br/~cave .

152

Appendix 5 Summary in Portuguese Language

Um Framework de Apoio à Colaboração no Projeto Distribuído de
Sistemas Integrados

Leandro Soares Indrusiak 1,2

Ricardo A. L. Reis 1

Manfred Glesner 2

Resumo: O trabalho de pesquisa apresentado neste artigo tem por objetivo apoiar o
projeto distribuído de sistemas integrados, considerando especificamente a necessidade
de interação colaborativa entre os projetistas. O trabalho enfatiza particularmente alguns
problemas que foram considerados apenas marginalmente em abordagens anteriores,
como a abstração da distribuição em rede dos recursos de automação de projeto, a
possibilidade de interação síncrona e assíncrona entre projetistas e o suporte a modelos
extensíveis de dados de projeto.

Abstract: The work described in this paper aims to support the distributed design of
integrated systems and considers specifically the need for collaborative interaction
among designers. Particular emphasis was given to issues which were only marginally
considered in previous approaches, such as the abstraction of the distribution of design
automation resources over the network, the possibility of both synchronous and
asynchronous interaction among designers and the support for extensible design data
models.

1 Instituto de Informática, UFRGS, Caixa Postal 15064, 91501-970, Porto Alegre, RS, Brasil
{reis@inf.ufrgs.br}
2 Microelectronic Systems Institute, TU Darmstadt, Karlstr. 15, 64283 Darmstadt, Germany
{indrusiak, glesner@mes.tu-darmstadt.de}

153

1 Introdução

O trabalho de pesquisa apresentado neste artigo tem por objetivo apoiar o projeto de sistemas
integrados em ambiente distribuído, considerando especificamente a necessidade de interação
colaborativa entre os projetistas. Esta necessidade é claramente destacada em publicações como o SIA
Roadmap [1] e o Medea+ Roadmap [2], que analisam os principais problemas enfrentados pela
industria de semicondutores e as possíveis soluções advindas de pesquisa nos próximos 10 anos. O
presente trabalho enfatiza particularmente alguns problemas que foram considerados apenas
marginalmente em abordagens anteriores, como a abstração da distribuição em rede dos recursos de
automação de projeto, a possibilidade de interação síncrona e assíncrona entre projetistas e o suporte a
modelos extensíveis de dados de projeto.

Tais problemas requerem uma infra-estrutura de software significativamente complexa, pois
possíveis soluções envolvem diversos módulos, desde interfaces com o usuário (GUIs) até bancos de
dados e middleware. Para construir tal infra-estrutura, várias técnicas de engenharia foram empregadas
e algumas soluções originais foram desenvolvidas. A idéia central da solução proposta é baseada no
emprego conjunto de duas tecnologias homônimas: CAD Frameworks (ambientes integrados de apoio
ao projeto) e frameworks orientados a objeto. O primeiro conceito foi criado no final da década de 80
na área de automação de projeto de sistemas eletrônicos e define uma arquitetura de software em
níveis, voltada ao apoio a desenvolvedores de ferramentas de projeto, administradores de ambientes de
projeto e projetistas. O segundo, desenvolvido na última década na área de engenharia de software, é
um modelo para arquiteturas de software visando o desenvolvimento de sub-sistemas reusáveis de
software orientado a objeto. No presente trabalho, propõe-se a criação de um framework orientado a
objetos que inclui conjuntos extensíveis de primitivas de dados de projeto bem como de blocos para a
construção de ferramentas de CAD. Esse framework orientado a objeto é agregado a um CAD
Framework, onde ele passa a desempenhar funções tipicamente encontradas em tal ambiente, tais como
representação e administração de dados de projeto, versionamento, interface com usuário,
administração de projeto e integração de ferramentas.

2 Comparação com trabalhos anteriores

A interoperabilidade entre ferramentas de projeto foi um dos tópicos mais importantes da
pesquisa cobertos pela área da automatização de projeto de circuitos integrados nos últimos trinta anos.
Recentemente, a interoperabilidade entre projetistas passou a receber atenção, e a necessidade de
técnicas específicas para suportar a comunicação, a coordenação e o compartilhamento de dados entre
grupos de projetistas ficou clara [1,2]. A razão é óbvia: a complexidade do projeto de circuitos
integrados está aumentando mais rápido que o previsto [3]. Observa-se também que o mercado afasta-
se lentamente do paradigma baseado em computadores pessoais, passando a um cenário onde os
recursos computacionais estão distribuídos entre diversos dispositivos de menor porte. Estes
dispositivos oferecem ao usuário possibilidades mais simplificadas de operação – essa é justamente
uma das vantagens do novo paradigma – mas por outro lado a complexidade de projeto de tais
dispositivos é ainda elevada. Essa complexidade – que pode envolver subsistemas digitais, analógicos,
óticos e eletromecânicos, bem como as interfaces de programação de tais subsistemas – só pode ser
dominada por grupos de projetistas trabalhando colaborativamente na busca de soluções dos problemas
de projeto.

A pesquisa na área de projeto colaborativo pode ser considerada uma combinação dos esforços
de pesquisa em CAD (projeto assistido por computador) e CSCW (trabalho colaborativo assistido por
computador). Ambas áreas já incorporam uma quantidade significativa de conhecimento. A pesquisa
inter-disciplinar envolvendo ambas áreas também já atingiu certa maturidade, especialmente nas áreas
de apoio ao projeto de engenharia mecânica e civil. Na área abordada no presente trabalho – projeto de
sistemas integrados de hardware e software, a pesquisa em projeto colaborativo é ainda incipiente, e
boa parte dos trabalhos disponíveis na literatura foram analisados em [4].

As abordagens visando apoiar projeto colaborativo podem ser caracterizadas de acordo com a
taxonomia de tempo e espaço utilizada na área de CSCW [5] (Tabela 1). Considerando o caso onde
equipes de projetistas estão distribuídas geograficamente, assumimos que a infraestrutura de apoio ao
projeto colaborativo deva contemplar os tipos de colaboração mostrados na segunda linha da tabela.

154

Tabela 1. Taxonomia tempo-espaco para sistemas CSCW
 mesmo tempo tempos distintos
Mesmo espaço Interação face-a-face Interação assíncrona
Espaços distintos Interação

Síncrona distribuída
interação
Assíncrona distribuída

Trabalhos anteriores relativos à área de projeto colaborativo contemplavam principalmente

processos de colaboração assíncrona. Contribuições de Katz [6], Harrison [7] e Wagner [8] na pesquisa
e desenvolvimento de modelos de dados de projeto suportando versões possibilitaram um aumento da
eficiência nos casos onde grupos de projetistas trabalham concorrentemente de forma assíncrona.
Contribuições em gerência de metodologias de projeto e modelagem de fluxo de projeto – tais como de
Brglez [9] e Schneider [10] – também são relevantes, uma vez que permitem que os líderes de grupos
de projetistas definam e disponibilizem a suas equipes um conjunto de regras e procedimentos a serem
seguidos durante o processo de projeto.

A abordagem descrita no presente trabalho difere dos trabalhos anteriores por (1) prover suporte
tanto à colaboração síncrona quanto assíncrona, bem como por (2) definir explicitamente uma
separação de domínios entre o modelo da semântica de projeto e sua representação visual.

A primeira característica é de particular importância para a automação de projeto de sistemas
integrados, pois a colaboração síncrona é necessária nas etapas iniciais do projeto enquanto a
colaboração assíncrona ocorre nas etapas finais, durante a implementação e verificação do sistema
sendo projetado. Por exemplo, um alto potencial de colaboração pode ser identificado nos primeiros
passos de processo de projeto, quando a funcionalidade e os requisitos técnicos do produto são
definidos, justamente devido a multi-disciplinaridade de tais atividades. Engenheiros de hardware,
programadores, gerentes de marketing e de produto são alguns dos profissionais que estariam
envolvidos em tais atividades, onde a colaboração síncrona seria indispensável. Por outro lado,
durante as etapas de implementação e verificação – desenvolvimento e integração de componentes de
hardware, programação, debugging, etc. – o potencial de colaboração não deve ser muito elevado, pois
desenvolvedores tendem a trabalhar individualmente e de forma assíncrona.

A segunda característica leva em conta as várias possibilidades de entrada e visualização de
dados de projeto de sistemas integrados. Descrições gráficas, tais como esquemáticos de circuitos,
diagramas de estado e diagramas UML, são usados concorrentemente com descrições textuais na forma
de código de linguagens de descrição de hardware ou linguagens de programação, resultando em um
cenário onde a colaboração pode ser dificultada pela heterogeneidade entre as formas de modelar e
visualizar os dados de projeto. Para minimizar esse problema, o presente trabalho possibilita que
projetistas utilizem diferentes formas de entrada e visualização dos dados de projeto, sempre mantendo
a consistência entre cada visualização e a semântica do projeto.

A solução proposta no presente trabalho utilizou e ampliou o ambiente de projeto Cave [11],
incluindo em sua estrutura um framework orientado a objetos que é responsável pela modelagem de
dados de projeto e pela instanciação de ferramentas de apoio ao projeto. O suporte ao projeto
colaborativo foi incluído nesse framework, de forma que futuras extensões ao modelo de dados de
projeto ou ao conjunto de ferramentas poderão também utilizar tal recurso. A versão ampliada foi
chamada de Cave2, e inclui também um conjunto de serviços que controla o funcionamento das
sessões de projeto colaborativo chamado Service Space.

3 Arquitetura proposta

Nos últimos 20 anos, vários grupos se dedicaram à pesquisa na área de automação de projeto
utilizando os chamados frameworks de CAD. Esses frameworks foram criados para definir uma
camada entre o sistema operacional das estações de trabalho e os demais softwares que são necessários
durante o projeto de um sistema integrado [12]. Dessa forma, toda a atividade de projeto seria realizada
através de um ambiente integrado de software de CAD. A funcionalidade de tais frameworks inclui
gerência de dados, suporte a desenvolvedores de ferramentas, suporte a integração e comunicação entre
ferramentas.

Entretanto, as tendências no mercado de automação de projeto de sistemas eletrônicos seguiu o
conceito de "best-tool-of-the-class": projetistas preferiram usar ferramentas individuais, específicas
para determinadas atividades e desenvolvidas por diferentes fornecedores, ao invés de adotar a solução
completa de um único fornecedor. Essa tendência se deve ao fato de que nenhum fornecedor é capaz
de prover a melhor ferramenta para cada etapa do projeto, tal a complexidade de cada uma delas hoje

155

em dia. Essa situação, aliada ao fracasso das iniciativas de padronização de frameworks de CAD
integrando soluções de múltiplos fornecedores, resultou na rejeição do conceito de frameworks de
CAD sob o ponto de vista comercial.

Apesar disso, vários grupos de pesquisa chegaram a resultados significativos, e que podem
ainda ser usados no suporte à colaboração entre projetistas [7,8,13]. A abordagem proposta leva em
conta tais avanços, mas os utiliza dentro de um novo contexto ao fazer uso de técnicas de engenharia
de software que não estavam disponíveis quando do desenvolvimento da primeira geração de
frameworks de CAD.

3.1 Modelagem de dados e de ferramentas usando frameworks orientados a objetos

De acordo com Johnson [14], um framework orientado a objetos é um projeto reutilizável de
software definido por um conjunto de classes abstratas e pela maneira pela qual as instancias dessas
classes colaboram entre si. Levando em conta tal conceito, exploramos neste trabalho a possibilidade
de que um framework de CAD possa incorporar um framework orientado a objetos, aqui definido
como um conjunto de classes abstratas que modelam as primitivas de dados de projeto bem como as
ferramentas de CAD que as manipulam. Esse framework orientado a objetos reutiliza diversos padrões
de projeto, que são soluções já validadas para problemas tipicamente encontrados em arquiteturas
complexas de software. A análise detalhada da arquitetura proposta neste trabalho mostra claramente a
aplicação dos padrões Composite, Observer, Proxy, Chain of Responsibility e Façade [15], entre
outros. Ao incluir um framework orientado a objetos, foi possível atingir um nível mais alto de
abstração no que tange a funcionalidade de frameworks de CAD: gerencia e armazenamento de dados,
padrões de comunicação entre ferramentas e suporte a extensibilidade do ambiente de automação de
projeto.

O ambiente de projeto é implementado pelas sub-classes concretas derivadas do núcleo de
classes abstratas do framework. Esse núcleo é dividido em dois pacotes principais. O primeiro é um
conjunto extensível de primitivas de interface gráfica e de automação de projeto, usados para a
instanciação de ferramentas de CAD que fazem a interface entre o projetista e o ambiente de projeto.
Tais ferramentas são dinamicamente montadas de acordo com as necessidades e objetivos do projetista.
O segundo pacote é um conjunto de primitivas de dados de projeto, que são instanciadas pelos
projetistas à medida em que eles interagem com as ferramentas ao criar um projeto. A Figura 1 mostra
como ambos conjuntos de classes interagem com os projetistas durante o processo de projeto.
Primeiramente, as ferramentas são requisitadas e executadas através da instanciação e integração das
primitivas de interface gráfica e automação de projeto. Uma vez instanciadas, essas ferramentas
passam a construir o projeto instanciando as primitivas de dados de projeto sob o comando do
projetista.

Para armazenar os dados de projeto ao final de cada sessão de projeto, bem como para permitir
acesso multi-usuário aos dados - um requisito para colaboração síncrona - faz-se necessário um
conjunto de serviços de persistência e consistência de dados. Figura 2 ilustra como tais serviços apóiam
o ambiente de projeto ao permitir o acesso multi-usuário às primitivas de dados instanciadas pelos
projetistas.

Ao incluir um framework orientado a objetos no núcleo do ambiente Cave, um grau de
padronização significativo foi atingido uma vez que as dependências semânticas entre os módulos de
ferramentas de CAD e as primitivas de dados de projeto estão definidas no nível abstrato do
framework. Essa padronização, entretanto, não reduziu a flexibilidade do ambiente de projeto, pois sua
inerente extensibilidade permite concretizações sucessivas das relações especificadas no nível abstrato.
Em outras palavras, os módulos de ferramentas de CAD e as primitivas de dados de projeto são apenas
pontos de partida, possibilitando extensões e especializações sem perder a compatibilidade com os
serviços e recursos do ambiente de projeto, descritos na próxima subseção. Na Figura 3, pode-se ver
uma parte do modelo de dados expresso no framework de primitivas de dados de projeto. Já a Figura 4
mostra seu potencial de expansão e atualização ao ilustrar um modelo de dados estendido para atender
as necessidades de implementação de uma ferramenta para projeto baseado em interfaces (Interface-
based design) [16].

156

 Servidor Cave

projetista cria
módulo ao

instanciar e
inter-relacionar

primitivas de
projeto

Projetista A

Repositório
de dados de

projeto

Serviços

módulo
projetado

modulo é enviado ao
repositório de dados,
onde pode ser
processado ou
acessado pelos
demais projetistas

Projetista B

primitiva de
dados de projeto

Service Space

 primitivas de dados
de projeto

módulos de
ferramentas de CAD

 Servidor Cave

módulo de
ferramenta

primitiva de
dados de projeto

carrega classes

instancia objetos

projetista
inicia
execução de
ferramentas

Projetista

app n app 2 app 1

Plataforma de execução de ferramentas

Figura 1. Frameworks de dados de projeto e de
ferramentas no servidor Cave

Figura 2. Compartilhamento de dados de
projeto através do Service Space

HierarchicalDesignBlock

InstancePort

Transaction

BlockInstance

0..n

1

0..n

1

0..n

1

0..n

1

ExternalPort

TypeDefinition

0..n
0..n

0..n
0..n

DesignBlock

0..n

1

0..n

1

0..n

1

0..n

1

1..n

0..n

1..n

0..n

DesignPort0..n0..n 0..n0..n

Figura 3. Diagrama de classes mostrando parcialmente o framework de primitivas de dados de projeto

Pr ovided R e quir ed

Pr oc es s Implementation

Inter fac eD efin i tion

Exter nalP or t

Pr oc es s S ig nature

D es ig nB loc k

C las s D efin i tion
0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n0..n 0..n

11

0..n

0..n

0..n

0..n

0..n

1

0..n

10..n

0..n

0..n

0..n

0..n0..n

0..n

H ie ra rc h ica lD e s ig n B lo ck

B lo c k In s ta n c e

0 ..n
1

0 ..n
1

In te r fa c e D e fin i tio n

In s ta n c e P o r t

0 ..n

1

0 ..n

1

In te rn a lP o r t
0 ..n

1

0 ..n

1

D e s ig n B lo c k

0 .. n

1

0 .. n

1

E xte rn a lP o r t

0 ..n

0 ..n

0 ..n

0 ..n
1 ..n

1
1 ..n

1

0 ..n

1

0 ..n

1

T ra n s a c t io n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

0 ..n

Figura 4. Extensão do framework de primitivas de dados de projeto visando suportar projeto baseado
em interfaces

157

3.2 Integração de serviços

A abordagem aqui proposta inclui um elemento chamado Service Space, mostrado na Figura 2.
A funcionalidade do Service Space inclui (1) a integração de ferramentas de CAD externas; (2) um
ambiente de execução para os serviços internos, como repositórios de dados, controle de consistência e
autenticação de usuários; e (3) a infraestrutura de localização e disponibilização de serviços, visando
possibilitar a inclusão e exclusão dinâmica de serviços.

Existem várias possibilidades para a implementação desse elemento, tais como CORBA,
webservices baseados em SOAP, Jini, além de outras abordagens não relacionadas com o paradigma de
orientação a objetos. A escolha da tecnologia Jini para a implementação do presente protótipo foi
baseada em algumas de suas peculiaridades, como o fato dela ser baseada em Java (assim como a
implementação do framework orientado a objetos incluso no Cave2), de ter ferramentas de
desenvolvimento disponíveis gratuitamente e de incorporar a maioria dos recursos necessários para
localização e disponibilização de serviços. Jini também inclui um modelo de programação –
desenvolvido sobre as fundações da linguagem Java – de forma a prover ao desenvolvedor as
primitivas necessárias para a implementação de cessão de serviços (leases), transações e eventos. A
chamada remota de métodos também depende de recursos da tecnologia Java, mais especificamente do
pacote JavaRMI. Tal modelo de programação usa proxies para permitir referências locais a objetos
remotos, permitindo que no domínio da aplicação todas as chamadas de métodos sejam feitas a objetos
residentes na memória local, abstraindo as dificuldades inerentes à utilização de subsistemas remotos.

O Service Space está acessível através de um protocolo de descoberta (discovery), que permite
aos clientes utilizar o servidor de lookup. Todos os serviços conectados ao Service Space usam a
interface Join para notificar sua localização na rede e suas características de acesso. Já os clientes usam
a interface de Lookup para procurar pelos serviços que pretendem utilizar. Os serviços conectados ao
Service Space incluem ferramentas de CAD externas assim como serviços internos que são parte do
ambiente implementado, como os mecanismos de autenticação de usuários, vários módulos de controle
de acesso concorrente (bloqueios, transações, etc.), a interface de acesso ao repositório de dados e os
serviços de prototipação. Tanto os serviços internos quanto as ferramentas externas podem ser
incluídos dinamicamente, contribuindo assim com a escalabilidade dessa solução. Figura 5 traz uma
visão geral dessa abordagem.

P
ro

to
ty

pi
ng

...

O
th

er

In
te

rn
al

 S
er

vi
ce

O
th

er

In
te

rn
al

 S
er

vi
ce

D
at

a

R
ep

os
ito

ry
 A

P
I

C
on

cu
rr

en
cy

C

on
tro

l

C
ol

la
bo

ra
tio

n
S

er
vi

ce

A
ut

he
nt

ic
at

io
n

...

E
xt

er
na

l T
oo

l

E
xt

er
na

l T
oo

l

Service Space

D
at

a
R

ep
os

ito
ry

System Communication Channel

Jini

Figura 5. Arquitetura de integração de serviços no Service Space

A integração de serviços no Service Space utiliza estruturas de proxy, contribuindo com a
transparência na distribuição de recursos no ambiente de rede. Todo cliente utilizando um dado serviço
interage apenas com um proxy de serviço disponível localmente. O proxy, por sua vez, propaga dados e
instruções de controle para a verdadeira implementação do serviço sempre que necessário. Essa
abordagem é particularmente útil na simplificação da integração de ferramentas externas, bem como na
modelagem e execução de workflows. Devido à clara separação entre a implementação da ferramenta e
sua interface de acesso – definida pelo proxy - as ferramentas podem ser consideradas encapsuladas e
a integração pode ser feita no nível dos proxies.

158

4 Visualização e Semântica de Projeto

Conforme descrito na seção anterior, tanto o modelo de dados de projeto quanto os módulos de
ferramentas de CAD de Cave2 são implementados como frameworks orientados a objetos. Esses
frameworks são inter-relacionados por natureza, pois os módulos de ferramentas de CAD devem poder
instanciar, visualizar e modificar os dados de projeto de acordo com a intenção do projetista. Além
disso, nossa abordagem explora o inter-relacionamento entre ambos frameworks para suportar o acesso
colaborativo aos dados de projeto, fazendo com que a semântica do projeto – representada por
instâncias de primitivas de dados de projeto – mantenha-se consistente com uma ou mais visualizações
do projeto – representadas por módulos de interface gráfica de ferramentas de CAD.

Para permitir múltiplas representações visuais de uma única instância de dados de projeto, o
framework deve incluir recursos para permitir que os blocos de dados mantenham suas representações
visuais coerentes com o seu estado mesmo quando estejam sendo alterados. Por exemplo, se um
projetista mantém duas representações visuais de um bloco de projeto – como no caso de duas janelas
em um editor de esquemáticos, uma com a visão geral do projeto e ouotra com os detalhes de um dos
blocos – as alterações no modelo de dados resultantes da interação do projetista com uma das
representações visuais devem ser notificadas a outra delas, para que ela possa atualizar-se e manter-se
consistente ao estado do modelo.

Várias das abordagens disponíveis na literatura para manter a consistência entre a informação e
suas representações visuais definem a separação explícita entre o modelo da informação e suas
visualizações, e prevêem a existência de um mecanismo de consistência que controla as interações
entre o modelo, suas visualizações e o mundo externo. Essa arquitetura é a base do framework MVC
(Model-View-Controller), incluso na linguagem de programação Smalltalk [17] e posteriormente
formalizado como o padrão de projeto Observer por Gamma et. al. [15].

Desacoplando o modelo e suas visualizações, facilita-se a implementação de várias
visualizações diferentes - porém equivalentes – do mesmo bloco de projeto. Para algumas formas
particulares de representação onde a visualização incorpora elementos adicionais aos definidos pelo
modelo, pode-se ainda flexibilizar o mecanismo de consistência de forma a propagar apenas as
alterações que resultem em modificação no estado do modelo. Neste trabalho, exploramos essa
possibilidade na implementação de duas metodologias para colaboração: visualmente acoplada e
visualmente desacoplada. Tais metodologias, detalhadas em [21], permitem que múltiplos projetistas
compartilhem um modelo de dados de projeto sem que necessariamente compartilhem uma única
visualização. Usando a metodologia visualmente desacoplada, pode-se definir quais alterações feitas
por um projetista devem ser propagadas aos outros projetistas, permitindo maior flexibilidade no
controle de consistência entre visualizações. O único requisito é que as alterações que resultam em
mudanças na semântica do modelo de dados de projeto sejam obrigatoriamente propagadas.

No Framework Cave2, as primitivas de representação de projeto – portas lógicas e blocos
funcionais, por exemplo – são modeladas como instâncias de uma classe concreta, que por sua vez
herda parte de sua interface e comportamento de uma classe abstrata. Essa abordagem é comum em
frameworks orientados a objetos, pois as classes abstratas - mesmo não modelando diretamente
nenhum elemento do domínio da aplicação – tem grande importância na organização da hierarquia de
classes e na atribuição de comportamento comum a uma classe de objetos. Usamos essa abordagem
para incluir em Cave2 o suporte às metodologias colaborativas: as bases do mecanismo de controle de
consistência entre o modelo de dados de projeto e suas múltiplas visualizações estão incluídos nas
superclasses abstratas do framework orientado a objetos – as primitivas de dados de projeto e de
elementos de interface gráfica. Assim, todos os modelos de dados projeto usados no Cave2 – incluindo
aqueles que serão integrados em atualizações futuras – vão herdar tal comportamento.

Ao aplicar tais conceitos, foi possível separar completamente a semântica de projeto de suas
formas de visualização, pois são modeladas por objetos diferentes. Assim, podemos permitir múltiplas
visualizações – por diferentes projetistas – de um único bloco de dados de projeto. É importante ainda
ressaltar a possibilidade de múltiplas formas de visualização – por exemplo um dado bloco de projeto
pode ser visto como um esquemático gráfico ou como uma descrição textual na forma de HDL
(Hardware Description Language).

Para garantir a consistência entre a semântica do projeto e suas visualizações, assim como entre
a semântica de blocos de projeto inter-relacionados, usamos mecanismos de notificação de atualizações
(update/notify). Estes mecanismos capturam a interação entre o usuário e uma das visualizações,
atualizam a respectiva semântica de projeto e então notificam as demais visualizações para que
atualizem-se, a fim de refletir possíveis mudanças.

159

Um framework que implementa a infraestrutura necessária para prover um serviço flexível de
notificação foi apresentado por Shen e Sun [18]. Esse framework considera um cenário onde vários
usuários atualizam simultaneamente um conjunto comum de dados, e as atualizações realizadas por
cada usuário devem ser notificadas aos demais. A notificação é dividida em duas partes, a de saída e a
de chegada. Para cada usuário, a notificação de chegada representa uma alteração realizada por outro
usuário, enquanto a notificação de saída representa a propagação aos outros usuários da alteração
realizada localmente. Cada um desses tipos de notificação é caracterizado por sua freqüência e sua
granularidade. A freqüência pode assumir uma de três possibilidades – instantânea, escalonada ou
definida pelo usuário – enquanto a granularidade define se a notificação deve ser feita para cada
alteração de estado, ou apenas para um sub-conjunto pré-definido de alterações.

Na implementação do sistema aqui descrito, aplicamos um sistema de notificação semelhante ao
de Shen e Sun. Inicialmente desenvolvido de forma independente, nossa abordagem foi beneficiada
pela visão sistemática do problema apresentada por [18]. O mecanismo resultante foi integrado ao
repositório de dados de projeto apresentado a seguir.

5 Repositório de dados de projeto

Um repositório de dados no Cave2 oferece um alto nível de abstração se comparado a bases de
dados de projetos inspiradas em consultas ou API (query-based ou API-based). A fim de permitir que
os desenvolvedores de CAD se concentrassem somente nos domínios de aplicação da ferramenta de
projeto, a abordagem baseada em API foi ampliada com a introdução de uma arquitetura baseada no
conceito de persistência transparente [19]. De acordo com esta técnica, o mecanismo de persistência de
objetos de dados deve ser escondida sempre que possível. Assim, o cliente pode ter a impressão de
estar tratando com objetos regulares em memória, e não com registros em uma base de dados. A
arquitetura proposta, incluída no núcleo do framework Cave2, permite a gerência direta dos dados dos
objetos através de sua própria API - por exemplo, chamando o método tempblock.addPort(new
CaveVisualPort()) ao invés de usar uma API de banco de dados ou uma linguagem de consulta para
fazer isso, como o trecho de código abaixo.

insert into PORT (portid, name, type) values (64, ‘CTRL2’, ‘in’)
insert into PORTBLOCK (portkey, blockkey) values ('64', '12')

O acesso ao repositório é baseado em proxies, assim como cada serviço do Service Space do

Cave2. Para cada ferramenta de projeto que estiver usando o repositório, um proxy de serviço é
carregado do Service Space. Entretanto, tal proxy de serviço não é usado diretamente como uma
interface completa ao repositório. Seu papel restringe-se à criação, remoção e localização de objetos de
projeto. Todas operações restantes são manipuladas pelos proxies de objeto, que representam
individualmente cada objeto do repositório. A consistência entre o proxy de objeto e o respectivo
objeto de projeto armazenado no repositório é feita de forma transparente, e está descrita a seguir.

O diagrama de seqüência UML, ilustrado na Figura 6, descreve o procedimento usado no
repositório de dados do Cave2. O exemplo descrito supõe que o serviço de repositório já foi
encontrado, contatado, e que um proxy de serviço já foi carregado. Quando um objeto visual é criado
pela ferramenta de projeto, deve ser também criado dentro do repositório. Este papel é desempenhado
pelo proxy de serviço, que cria a respectiva entrada do objeto de projeto no repositório, criando
também um proxy local para o objeto de projeto remoto. Cada operação adicional executada através
desse objeto visual será delegada ao proxy do objeto de projeto, que notificará sua contraparte remota e
o seu próprio objeto visual sobre a operação recentemente executada (denotado na figura como uma
chamada ao método doSomething).

Do ponto de vista do desenvolvedor da ferramenta, grande parte da funcionalidade desse
repositório é transparente. A ferramenta deve obter somente um proxy por objeto visual, e lidar com os
proxies como se estivesse tratando de objetos visuais. Isso simplifica significativamente o
desenvolvimento, porque uma ferramenta pode ser desenvolvida primeiramente standalone, tratando
somente de seus objetos visuais locais, e, adicionalmente, pode ter sua funcionalidade ampliada para
utilizar o repositório, mudando somente as chamadas de método dos objetos visuais para os proxies do
objeto de projeto.

160

Tool RepositoryServiceProxy RepositoryService CaveDesignObject CaveDesignObject

Proxy
CaveVisualObject

new CaveVisualObject()

createDesignObject()
createDesignObject()

new CaveDesignObject()

setKey()

newObjectProxy()

doSomething()
propagateOperation()

propagateOperation()
doSomething()

doSomething()

Figura 6. Acesso ao repositório de dados de projeto

A arquitetura Cave2 reduz o problema de manter a consistência dos dados dentro das sessões

colaborativas de projeto no que tange a consistência entre a visualização e os objetos do projeto. Em
outras palavras, as visões de projeto de cada um dos projetistas devem ser sincronizadas com os dados
de projeto no repositório. Como descrito nas seções anteriores, tal consistência é reforçada com a
interação entre os objetos visuais e objetos de projeto através dos proxies. Nossa abordagem para a
sincronização entre os objetos visuais e os objetos de projeto é baseada nas técnicas de
atualização/notificação (update/notify), enviadas através dos objetos proxies (Figura 7). Tais
atualizações são iniciadas pela interface gráfica da ferramenta de projeto e propagadas para os objetos
proxies como chamadas de método. Quando seus métodos forem chamados, o objeto proxy instancia
um objeto evento, o qual encapsula sua chave de identificação, o nome do método chamado e os
parâmetros passados. Os parâmetros reais são incluídos somente no objeto de evento quando eles são
instâncias de tipos primitivos, tal como strings de caracteres ou números. Se um objeto visual for
passado como parâmetro, o objeto proxy passa sua chave de identificação, pois a serialização do objeto
real seria demasiadamente custosa.

O objeto de evento é passado ao proxy de serviço, que usa uma conexão RMI para chamar o
método que irá disparar o serviço remoto. O objeto de evento é passado como um parâmetro, de tal
forma que o repositório pode encontrar o objeto de projeto real dentro de seu índice e chamar o método
referenciado através dos parâmetros fornecidos.

 Nossa implementação dos objetos de evento foi construída através da tecnologia Jini [20]. Ela
segue o modelo básico de eventos introduzido na versão 1.1 da linguagem Java. Tal modelo define que
um evento consumidor deve se registrar com cada evento produtor com o qual pretenda manter
contato. Os eventos produtores devem executar tal procedimento de registro e notificar todos os
consumidores caso um de seus estados mude. Um produtor pode produzir os eventos associados a
diferentes mudanças de estado. Com isso, os diferentes tipos de eventos podem ser diferenciados pelo
atributo eventID e pela classe real do objeto do evento. Uma complexidade adicional deve ser
manipulada quando os eventos precisam ser enviados através da rede. O modelo de eventos remotos
Jini usa Java RMI, que implementa recursos para re-seqüenciamento de eventos e tolerância a falhas na
rede. O primeiro é necessário para determinar a ordem correta que os eventos recebidos serão
processados pelo consumidor, enquanto o último - baseado no conceito de exceções - permite a
recuperação de eventos perdidos.

Como descrito na Figura 7, a comunicação entre os proxies de objeto e suas respectivas
contrapartes localizadas no repositório de projeto são baseadas na propagação dos eventos. Entretanto,
a implementação de tal comunicação oferece várias alternativas. Os proxies podem ser genéricos o
bastante para que possam enviar ao repositório todos os eventos recebidos da GUI da ferramenta de
projeto, ou ainda encapsular alguma inteligência de forma a verificar a semântica dos eventos,
encaminhando somente os válidos ao repositório. A primeira estratégia pode ser utilizada para qualquer
tipo de interface com usuário e objeto visual, enquanto a segunda dever ser particularmente

161

implementada a um tipo específico de ferramenta e objeto visual. Em outras palavras, a criação de
proxies que possam compreender a semântica de eventos envolve a criação de uma instância de um
tipo, requerendo a criação prévia - para cada objeto de projeto - de uma classe que defina a interface do
proxy.

A implementação proposta inclui os proxies genéricos, que podem capturar eventos de todas as
primitivas de visualização do framework Cave2, bem como as suas possíveis extensões. Uma vez
capturados, esses eventos podem ser enviados ao repositório remoto de acordo com a disponibilidade
do canal de comunicação. Como mencionado anteriormente, tais proxies genéricos não executam
nenhuma análise semântica dos eventos capturados. Em muitos casos, entretanto, uma análise mais
detalhada da semântica é necessária a fim de otimizar a comunicação: os eventos semanticamente
inválidos não são propagados ao servidor remoto, e os eventos semanticamente corretos podem ser
executados na visualização ao mesmo tempo que estão sendo executados aos objetos remotos do
projeto.

A fim executar tal análise semântica, são necessários proxies de objetos específicos para cada
objeto visual. Cada proxy de objeto de projeto deve executar os mesmos métodos executados por seu
respectivo objeto de projeto, permitindo que o comportamento individual seja executado dentro de
cada chamada de método. Na implementação atual, tais classes do proxy são codificadas manualmente
em um processo tedioso, mas uma automatização adicional pode ser fornecida em um procedimento
similar ao processo descrito em [19]. Nesses casos, todos os proxies herdam os mecanismos de
comunicação implementados pelas classes de proxy genérico mencionadas acima, reutilizando assim
todos os procedimentos genéricos implementados nas superclasses para a comunicação com o
repositório remoto. Somente os métodos específicos à análise semântica devem ser implementados.

database API

events

method calls

Repository
Service Proxy

Design Tool

Visual
Object

Design
Object
Proxy

Visual
Object

Design
Object
Proxy

Repository Service

Service
Interface

create
delete
retrieve
trigger

Repository
dependent
Bridge

Data
Repository

 RMI Design
Object

Design
Object

Figura 7. Sincronização entre visualização e semântica de projeto usando proxies

A comunicação entre os proxies e o repositório pode também ter várias possibilidades de

implementação, tais como, conexões dedicadas usando sockets, invocação remota de métodos ou
eventos distribuídos. Todas as três implementações são suportadas pelo Cave2 e definidas no Service
Space. O uso de sockets, entretanto, requereria a descrição de um protocolo de comunicação completo.
O uso de RMI simplifica o desenvolvimento, pois fornece uma interface de alto nível que serve de
fundação ao protocolo de comunicação. Entretanto, o uso de uma comunicação RMI entre cada proxy
de objeto de projeto e suas contrapartes pode ser muito custoso, requerendo uma conexão RMI
dedicada por proxy, sendo que centenas de proxies poderiam estar sendo usados simultaneamente por
uma dada ferramenta. Para otimizar tal procedimento, combinamos a abordagem RMI com uma
abordagem de eventos distribuídos. A implementação proposta foi construída com uma única conexão
RMI entre o proxy de serviço e o repositório. Através desta única conexão RMI, toda a comunicação
entre a ferramenta e o repositório foi implementada como uma série de eventos.

6 Considerações Finais

O CAD Framework implementado neste trabalho foi chamado Cave2 e seguiu a clássica
arquitetura em níveis apresentada por Barnes, Harrison, Newton e Spickelmier [12]. Durante o projeto

162

e a implementação do Cave2, uma série de avanços em relação às abordagens anteriores foi obtida com
a exploração das vantagens advindas do uso de um framework orientado a objetos:

- uma vez que frameworks orientados a objetos são extensíveis por definição, o mesmo pode ser
dito a respeito da implementação no Cave2 dos conjuntos de primitivas de dados de projeto, bem como
de blocos para a construção de ferramentas de CAD. Isso implica que tanto o modelo de representação
de projeto quanto os módulos de software processando tal modelo podem ser atualizados ou adaptados
para uma metodologia de projeto específica, e que essas atualizações e adaptações ainda herdarão os
aspectos arquiteturais e funcionais implementados nos elementos básicos do framework orientado a
objetos;

- ambos os aspectos relativos à semântica do projeto e à visualização do projeto são partes do
framework orientado a objetos, mas em modelos claramente separados. Isso possibilita o uso de várias
estratégias para a visualização de um conjunto de dados de projeto, o que dá aos participantes de uma
sessão de projeto colaborativo a flexibilidade de escolha individual de estratégia de visualização;

- o controle de consistência entre semântica e visualização - uma questão particularmente
importante em um ambiente de projeto onde coexistem múltiplas visualizações de cada projeto -
também está incluído nas fundações do framework orientado a objetos implementado. Esse mecanismo
é genérico o bastante para ser usado também pelas possíveis extensões do modelo de dados de projeto,
uma vez que ele é baseado na inversão de controle entre a visualização e a semântica. A visualização
recebe a intenção do usuário e propaga esse evento ao modelo da semântica, o qual avalia a
possibilidade de uma mudança de estado. Se positivo, ele dispara a mudança de estado em ambos os
modelos de visualização e semântica. A abordagem proposta nesta tese usa tal inversão de controle
para incluir um nível adicional de processamento entre a semântica e a visualização, visando o controle
de consistência nos casos de múltiplas visualizações;

- para otimizar o mecanismo de controle de consistência entre semântica e visualização, uma
abordagem baseada em eventos foi proposta, buscando discretizar cada interação entre o projetista e
suas visualizações do projeto. A informação sobre cada uma das interações é encapsulada em um
objeto-evento, que pode ser propagado para o modelo da semântica do projeto - e então para as demais
possíveis visualizações - de acordo com a política de consistência que esteja sendo usada. Além disso,
o uso de eventos permite que as interações do usuário com a visualização sejam acumuladas para uma
posterior sincronização com a semântica do projeto, caso haja indisponibilidade de conexão entre elas;

- o uso de objetos de proxy aumentou significativamente o nível de abstração da integração de
recursos de automação de projeto, pois tanto ferramentas e serviços remotos quanto os instalados
localmente são acessados através de chamadas de métodos em um objeto local. A conexão aos serviços
e ferramentas remotos é obtida através de um protocolo de look-up, abstraíndo completamente a
localização de tais recursos na rede e permitindo a adição e remoção em tempo de execução;

- o CAD Framework foi implementato completamente usando a tecnologia Java, usando dessa
forma a Java Virtual Machine como intermediário entre o sistema operacional e o CAD Framework,
garantindo dessa forma a independência de plataforma.

Todas as contribuições listadas anteriormente contribuiram com o aumento do nível de
abstração da distribuição de recursos de automação de projeto e também apresentaram um novo
paradigma para a interação remota entre projetistas. O CAD Framework no qual tais contribuições
foram aplicadas é capaz de suportar colaboração de granularidade fina baseada em eventos, onde cada
atualização feita por um projetista pode ser propagada para o restante da equipe, mesmo que estejam
todos geograficamente distribuídos. Isto pode aumentar a sinergia de grupo entre os projetistas e
permitir uma troca mais rica de experiências entre eles, aumentando significativamente o potencial de
colaboração quando comparado com abordages baseadas em acesso a arquivos e registros propostas
anteriormente.

Três estudos de caso diferentes foram realizados para validar a abordagem proposta, cada um
deles envolvendo um sub-conjunto das contribuições do presente trabalho. O primeiro utiliza a
arquitetura de distribuição de recursos baseada em proxies para implementar uma plataforma de
prototipação usando módulos de hardware reconfigurável [22]. O segundo estende as fundações do
framework orientado a objetos visando suportar projeto baseado em interfaces [23]. Essas extensões -
primitivas de representação de projeto e partes de ferramentas - são usadas na implementação de uma
ferramenta chamada IBlaDe, que permite a criação colaborativa de modelos funcionais e estruturais de
sistemas integrados. O terceiro estudo de caso aborda a possibilidade de integração de metadados

163

multimídia ao modelo de dados de projeto [24]. Essa possibilidade é explorada no contexto de uma
plataforma online de educação e treinamento.

Referências

[1] SEMICONDUCTOR INDUSTRY ASSOCIATION. International Technology Roadmap for
Semiconductors: 1999 edition. Austin: International SEMATECH, 1999.

[2] BOREL, J. et al.The MEDEA+ Design Automation Roadmap. Paris: MEDEA+ Office, 2002.
[3] BROWN, S.. Law of accelerating returns. Midyear Forecast, EE Times Special Report, 2000.
[4] INDRUSIAK, L. S. A Review on the Framework Technology Supporting Collaborative

Design of Integrated Systems. Exame de Qualificação. Porto Alegre: PPGC UFRGS, 2002.
108 p.

[5] JOHANSEN, R. “Groupware: Computer support for business teams”. New York: The Free
Press, 1988.

[6] KATZ, R. H. Towards a unified framework for version modeling in engineering databases. In:
ACM Computing Surveys. Vol. 22, No. 4, December 1990. p. 375-408.

[7] HARRISON, D. S. et al. Data management and graphics editing in the Berkeley Design
Environment. In: Proceedings of the IEEE International Conference in Caputer Aided Design,
1986.

[8] WAGNER, F. R.; LIMA, A.H.V. Design Version Management in the GARDEN Framework.
In : Proceedings of the 28th Design Automation Conference, ACM/IEEE, June 1991. p. 704-
710.

[9] BRGLEZ, F.; LAVANA, H. A Universal Client for Distributed Networked Design and
Computing. In: Proceedings of the 38th Design Automation Conference, 2001. Los Alamitos:
IEEE Computer Society, 2001.

[10] SCHNEIDER, A. et al. Internet-Based Collaborative Test Generation with MOSCITO. In:
Proceedings of Design, Automation and Test in Europe, Paris, 2002. p. 221- 226.

[11] INDRUSIAK, L. S.; REIS, R. A. L. From a Hyperdocument-Centric to an Object-Oriented
Approach for the Cave Project In: XIII Symposium on Integrated Circuits and System Design,
2000, Manaus. Proceedings. Los Alamitos: IEEE Computer Society, 2000. p.125 – 130.

[12] BARNES, T.J.; HARRISON, D.; NEWTON, A.R.; SPICKELMIER, R.L. Electronic CAD
Frameworks. Boston: Kluwer Academic Publishers, 1992. 196 p.

[13] VAN DER WOLF, P.; BINGLEY, P.; DEWILDE, P. On the Architecture of a CAD
Framework: The NELSIS Approach. In: Proceedings of the European Design Automation
Conference, 1990. p. 29-33.

[14] JOHNSON, R.; FOOTE, B. Designing Reusable Classes. Journal of Object-Oriented
Programming, Vol 1 (2), 1988, pp. 22-35.

[15] GAMMA, E. et al. "Design Patterns: elements of reusable object-oriented software". Reading:
Addison Wesley, 1995.

[16] INDRUSIAK, L. S., REIS, R. A. L., GLESNER, M. Supporting Consistency Control between
Functional and Structural Views in Interface-based Design Models In: Proceedings of the
Forum on Design Languages, 2003, Frankfurt.

[17] KRASNER, G. E.; POPE, S.T. A cookbook for using the model-view controller user interface
paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3):26–49, Aug./Sep.
1988.

[18] SHEN, H.; SUN, C. Flexible notification for collaborative systems. In: Proc. of ACM
Conference on Computer Supported Cooperative Work, 2002. p. 77-86.

[19] ROOS, R. M. “Java Data Objects”. London: Addison-Wesley, 2003. 264 p.
[20] LI, S. “Professional Jini”. Birmingham: Wrox Press, 2000. 886 p.
[21] INDRUSIAK, L. S.; BECKER, J.; GLESNER, M.; REIS, R. A. L. Distributed Collaborative

Design over Cave2 Framework. In: 11th International Conference on Very Large Scale
Integration of Systems-on-Chip, 2002, Montpellier. SOC Design Methodologies. Boston :
Kluwer Academic Publishers, 2001. p. 97-108.

[22] INDRUSIAK, L. S.; LUBITZ, F.; GLESNER, M.; REIS, R. A. L. Ubiquitous Access to
Reconfigurable Hardware: Application Scenarios And Implementation Issues. In: Design
Automation and Test in Europe (DATE), 2003, Munich. Proceedings. Los Alamitos: IEEE
Computer Society, 2003. p.940 – 945.

164

[23] INDRUSIAK, L. S.; REIS, R. A. L.; GLESNER, M. Supporting Consistency Control between
Functional and Structural Views in Interface-based Design Models. In: Forum on Design
Languages, 2003, Frankfurt. Proceedings. Gières: ECSI, 2003. CDROM.

[24] INDRUSIAK, L. S.; GLESNER, M.; REIS, R. A. L.; ALCÁNTARA, G. P.; HOERMANN,
S.; STEINMETZ, R.Reducing Authoring Costs of Online Training in Microelectronics Design
by Reusing Design Documentation Content. In: 2003 International Conference on
Microelectronic Systems Education, 2003, Anaheim. Proceedings. Los Alamitos: IEEE
Computer Society, 2003. p.57 – 58.

165

References

[ARN2000] ARNOUT, G. C for System Level Design. Available at:
<http://www.systemc.org/papers/coWare.pdf>. Visited on 2000.

[ARO00] ARNOLD, K. et al. The Jini specification. Reading: Addison-Wesley,
1999.

[BAR92] BARNES, T.J. et al. Electronic CAD Frameworks. Dordrecht:
Kluwer Academic Publishers, 1992. 196 p.

[BEC97] BECKER, J. A Partitioning Compiler for Computers with Xputer-
based Accelerators. 1997. Doctoral Thesis - Fachbereich Informatik
der Universität Kaiserslautern, Kaiserslautern.

[BEC99] BECKER, J. et al. DInCAD: Distributed Internet-based CAD Methods
for Future Complex Microelectronic Systems. In: WORKSHOP OF
THE GERMAN-BRAZILIAN BILATERAL PROGRAMME FOR
SCIENTIFIC AND TECHNOLOGICAL COOPERATION
THROUGH BMBF AND CNPq, 1999, Koenigswinter. Proceedings…
Koenigswinter, 1999. [S.l.: s.n.], 1999.

[BEK99] BECK, K. Extreme Programming Explained. Reading: Addison
Wesley, 1999.

[BEN96] BENINI, L.; BOGLIOLO, A.; DE MICHELI, G. Distributed EDA tool
integration: the PPP paradigm. In: INTERNATIONAL
CONFERENCE ON COMPUTER DESIGN. Proceedings… [S.l.:
s.n.], 1996. p. 448-453.

[BOC99] BOSCH, J.; MOLIN, P.; MATTSSON, M.; BENGTSSON, P.O.
Object-Oriented Frameworks - Problems & Experiences. In: FAYAD,
M.; SCHMIDT, D.; JOHNSON, R. (Ed.). Object-Oriented
Application Frameworks. New Jersey: John Wiley, 1999. p. 55-82.

[BOO91] BOOCH, G. Object-Oriented Design With Applications. [S.l.]:
Benjamin Cummings, 1991.

[BOS95] BOSCH, O.; WOLF, P.; HOEVEN, A. Design Flow Management:
more than convenient tool invocation. In: RAMMIG, F.J.; WAGNER,
F. R. (Ed.). Electronic Design Automation Frameworks. London:
Chapman & Hall, 1995. p. 149-158.

166

[BRE95] BREDENFELD, A. Cooperative Concurrency Control for Design
Environments. In: EUROPEAN DESIGN AUTOMATION
CONFERENCE, 1995, Brighton. Proceedings... Los Alamitos: IEEE
Computer Society, 1995.

[BRG2001] BRGLEZ, F.; LAVANA, H. A Universal Client for Distributed
Networked Design and Computing. In: DESIGN AUTOMATION
CONFERENCE, 2001. Proceedings… Los Alamitos: IEEE Computer
Society, 2001.

[BRI2001] BRISOLARA, L. B.; INDRUSIAK, L. S.; REIS, R. A. L. An
Hierarchical Schematic Editor to WWW. In: MICROELECTRONIC
STUDENTS FORUM, 2001, Pirenopolis. Proceedings… [S.l.: s.n.],
2001.

[BRI2002] BRISOLARA, L. B.; INDRUSIAK, L. S.; REIS, R. A. L. Modelagem
Orientada a Objetos de Primitivas de Projeto de Sistemas Eletrônicos
voltada para Colaboração In: WORKSHOP IBERCHIP, 2002,
Guadalajara. Proceedings… [S.l.: s.n.], 2002.

[BRN98] BRONDANI, C.; BRASCO,F.F.; INDRUSIAK, L.S.; REIS, R.A.L.
Graphic Schemes Development to Jale. In: MICROELECTRONICS
SEMINAR, 13., 1998, Bento Gonçalves. Proceedings... Porto Alegre:
CPGCC da UFRGS, 1998.

[BRO92] BROCKMAN, J.B.; COBOURN, T.F.; JACOME, M.F.; DIRECTOR,
S.W. The Odyssey CAD Framework. IEEE DATC Newsletter on
Design Automation, Spring 1992.

[BRO92a] BROCKMAN, J.B.; DIRECTOR, S.W. A Schema-Based Approach to
CAD Task Management. IFIP WG 10.2 WORKSHOP ON
ELECTRONIC DESIGN AUTOMATION FRAMEWORKS, 1992.
Proceedings...Amsterdam: North-Holland, 1992.

[BRU2002] BRUSCHI, F.; DI NITTO, E.; SCIUTO, D. SystemC Code Generation
from UML Models. In: FORUM ON SPECIFICATION AND DESIGN
LANGUAGES, FDL, 2002, Marseille. Proceedings… [S.l.]: ECSI,
2002.

[BRW2000] BROWN, S. Law of accelerating returns. EE Times Special Report,
Midyear Forecast, 2000.

167

[BUL2001] BULL, J. M. et al. Performance evaluation of Java against C and
Fortran for Scientific Applications. Available at:
<http://aspen.ucs.indiana.edu/CandCPandE/jg2001/C564bull/jgflangco
mp_ccpe.pdf>. Visited on Aug. 9, 2002.

[BUS89] BUSHNELL, M.; DIRECTOR, S.W. Automated Design Tool
Execution in the Ulysses Design Environment. IEEE Transactions on
Computer-Aided Design, Piscataway, v.8, n.3, p. 279-287, Mar. 1989.

[CAD2001] CADENCE DESIGN SYSTEMS, INC. OpenAccess C-Level API
Reference, Austin, Version 1.1.02, 2001.

[CAD2001a] CADENCE DESIGN SYSTEMS, INC. Datasheet: Cadence Virtual
Component Co-Design. Available at:
<http://www.cadence.com/datasheets/vcc_environment.html>. Visited
on Nov. 15, 2002.

[CAR99] CARBALLO, J.A; DIRECTOR, S.W. Constraint Management for
Collaborative Electronic Design. In: DESIGN AUTOMATION
CONFERENCE, 1999. Proceedings… Los Alamitos: IEEE Computer
Society, 1999. p.395-400.

[CFI94] CAD FRAMEWORK INITIATIVE INC. Design Representation
Programming Interface. Austin, Document No. dit-92-S-1, 1994.

[CHA98] CHAN, F.; SPILLER, M.; NEWTON, R. WELD - An Environment for
Web-Based Electronic Design. In: DESIGN AUTOMATION
CONFERENCE, 1998. Proceedings… Los Alamitos: IEEE Computer
Society, 1998. p. 146-152.

[CHU90] CHUNG, M.J.; KIM, S. An Object-Oriented VHDL Design
Environment. In: DESIGN AUTOMATION CONFERENCE, 1990.
Proceedings… Los Alamitos: IEEE Computer Society, 1990. p. 431-
436.

[CLA2001] C-LAB. Astai(R). Available at : <http://www.c-lab.de/astair/>. Visited
on Feb. 14, 2002.

[COD70] CODD, E.F. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, New York, v. 13, n.6, p. 377-387,
1970.

168

[DAL2000] DALPASSO, M. et al. JavaCAD Project. Available at:
<http://www.javacad.eu.org>. Visited on Dec. 5, 2001.

[DAN89] DANIELL, J.; DIRECTOR, S.W. An Object Oriented Approach to
CAD Tool Control Within a Design Framework. In: DESIGN
AUTOMATION CONFERENCE, 1989. Proceedings… Los Alamitos:
IEEE Computer Society, 1989. p. 197-202.

[DAV2001] DAVIS, D. et al. Forge-J: High Performance Hardware from Java.
Available at: <http://www.xilinx.com/forge/forge.htm>. Visited on Jan.
3, 2002.

[DEM94] DE MICHELI, G. Synthesis and Optimization of Digital Circuits.
New York: McGraw-Hill, 1999. 576 p.

[DES2000] DESICS DIVISION. Ocapi-xl. Available at:
<http://www.imec.br/ocapi>. Visited on Nov. 26, 2001.

[ELE2000] ELECTRONIC INDUSTRIES ALLIANCE. Electronic Design
Interchange Format. Available at: <http://www.edif.org>. Visited on
July 26, 2001.

[ELI91] ELLIS, C.A.; GIBBS, S.J.; REIN, G. L. Groupware: Some issues and
experiences. Communications of the ACM, New York, v.34, n.1,
p.38-58, Jan. 1991.

[ELL97] ELLSBERGER, J.; HOGREFE, D.; SARMA, A. SDL - Formal
Object-Oriented Language for Communication Systems. [S.l.]:
Prentice Hall, 1997.

[ESW76] ESWARAN, K.P.; GRAY, J.; LORIE, R.; TRAIGER, I.L. The notions
of consistency and predicate locks in a database system.
Communications of the ACM, New York, v.19, n.11, p. 624–633,
Nov. 1976.

[FID90] FIDUK, K.W. et al. Design Methodology Management - A CAD
Framework Initiative Perspective. In: DESIGN AUTOMATION
CONFERENCE, 1990. Proceedings… Los Alamitos: IEEE Computer
Society, 1990. p. 278-283.

169

[FRA2000] FRAGOSO,J.L.; MORAES, F.; REIS, R. WTROPIC: A Macro-Cell
Generator on Internet. In: SIM, 15. ,2000, Torres. Proceedings... Porto
Alegre: Instituto de Informática da UFRGS, 2000.

[FRE99] FREEMAN, E.; HUPFER, S.; ARNOLD, K. JavaSpaces: principles,
patterns, and pratice. Reading: Addison Wesley, 1999.

[FRI2002] FREE-IP PROJECT. Free-DES. Available at: <http://www.free-
ip.com/DES>. Visited on Sept. 7, 2002.

[GAJ00] GAJSKI, D. et al. The SpecC Methodology. Available at:
<http://www.ics.uci.edu/~specc>. Visited on May 28, 2001.

[GAM95] GAMMA, E. et al. Design Patterns: elements of reusable object-
oriented software. Reading: Addison Wesley, 1995.

[GED88] GEDYE, D.; KATZ, R. Browsing the Chip Design Database. In:
DESIGN AUTOMATION CONFERENCE, 1988. Proceedings… Los
Alamitos: IEEE Computer Society, 1988. p. 269-274.

[GEL85] GELERNTER, D. Generative Communication in Linda. ACM
Transactions on Programming Languages and Systems, New York,
v. 7, n. 1, p. 80-112, 1985.

[GIG2002] GIGASCALE SILICON RESEARCH CENTER. Diva. Available at:
<http://www.gigascale.org/diva/>. Visited on Oct. 12, 2002.

[GIR87] GIRCZYC, E.F.; LY, T. STEM: an IC design environment based on
the Smalltalk model-view-controller construct. In: DESIGN
AUTOMATION CONFERENCE, 1987. Proceedings… Los Alamitos:
IEEE Computer Society, 1987. p. 757-763.

[GOL2002] GOLDFEDDER, B. The Joy of Patterns. Boston: Addison Wesley,
2002.

[GOS96] GOSLING, J.; JOY, B.; STEELE,G. The Java Language
Specification. Available at:
<http://java.sun.com/doc/language_specification.html>. Visited on
Dec. 5, 1996.

170

[GUP89] GUPTA, R. et al. An Object-Oriented VLSI CAD Framework. IEEE
Computer, Los Alamitos, p. 28-37, May 1989.

[HAR86] HARRISON, D.S. et al. Data management and graphics editing in the
Berkeley Design Environment. In: IEEE INTERNATIONAL
CONFERENCE IN COMPUTER AIDED DESIGN, 1986.
Proceedings… [S.l.: s.n.], 1986. p. 24-27.

[HAR90] HARRISON, D.S. et al. Electronic CAD Frameworks. Proceedings of
the IEEE, Piscataway, v. 78, n. 2, p. 393-417, February 1990.

[HAY83] HAYNIE, M.N. The Relational Data Model for Design Automation.
In: DESIGN AUTOMATION CONFERENCE, 1983. Proceedings…
Los Alamitos: IEEE Computer Society, 1983. p. 599-607.

[HEI87] HEILER, S. et al. An Object-Oriented Approach to Data Management:
Why Design Databases Need It. In: DESIGN AUTOMATION
CONFERENCE, 1987. Proceedings… Los Alamitos: IEEE Computer
Society, 1987. p. 335-340.

[HER2001] HERNANDEZ, É. B.; SAWICKI, S.; INDRUSIAK, L. S.; REIS, R. A.
L. Homero - Um Editor VHDL Cooperativo via Web. In:
WORKSHOP IBERCHIP, 7., 2001, Montevideo. Proceedings… [S.l.
s.n.], 2001.

[HÖR2001] HÖRMANN, S. et al. Ein Kurseditor für modularisierte Lernressourcen
auf der Basis von Learning Objects Metadata zur Erstellung von
adaptierbaren Kursen. In: LLWA, 2001. Proceedings… [S.l.: s.n.],
2001. p. 315-323.

[HOL94] HOLMEVIK, J.R. Compiling SIMULA: A Historical Study of
Technological Genesis. Annals of the History of Computing, Los
Alamitos, v.16, n.4, p. 25-37, 1994.

[IFIP 91] IFIP 10.2 WORKSHOP ON ELECTRONIC DESIGN AUTOMATION
FRAMEWORKS, 2., 1990, Charlottesville, USA. Proceedings...
Amsterdam: North-Holland, 1991.

[IND97] INDRUSIAK, L. S.; REIS, R. A. L. A WWW Approach For EDA Tool
Integration In: BRAZILIAN SYMPOSIUM ON INTEGRATED
CIRCUITS DESIGN, 10., 1997, Gramado, RS. Proceedings… Porto
Alegre: CPGCC UFRGS, 1997.

171

[IND98] INDRUSIAK, L. S.; REIS, R. A. L. A Case Study For The Cave
Project. In: BRAZILIAN SYMPOSIUM ON INTEGRATED
CIRCUITS DESIGN, 11., 1998, Armação de Búzios, RJ.
Proceedings… Los Alamitos: IEEE Computer Society, 1998.

[IND98a] INDRUSIAK, L. S. Ambiente de Apoio Ao Projeto de Circuitos
Integrados Utilizando World Wide Web. 1998. Dissertação
(Mestrado em Ciência da Computação) – Instituto de Informática,
UFRGS, Porto Alegre.

[IND99] INDRUSIAK, L. S.; REIS, R. A. L. Project Management and Design
Methodology Support for the Cave Project: A Hyperdocument-Centric
Approach In: BRAZILIAN SYMPOSIUM ON INTEGRATED
CIRCUITS DESIGN, 12., 1999, Natal, RN. Proceedings… Los
Alamitos: IEEE Computer Society Press, 1999.

[IND2000] INDRUSIAK, L. S.; REIS, R.A.L. From a Hyperdocument-Centric to
an Object-Oriented Approach for the Cave Project. In: SYMPOSIUM
OF INTEGRATED CIRCUITS AND SYSTEMS DESIGN, 2000,
Manaus. Proceedings... Los Alamitos: IEEE Computer Society Press,
2000.

[IND2000a] INDRUSIAK, L. S. Architectural Evolution for the Cave Design
Automation Framework. Trabalho Individual. 2000. (Doutorado em
Ciência da Computação) – Instituto de Informática, UFRGS, Porto
Alegre.

[IND2001] INDRUSIAK, L. S. et al. Distributed Collaborative Design over Cave2
Framework. In: ROBERT, M. et al. (Ed.). SOC Design
Methodologies. Dordrecht: Kluwer Academic Publishers, 2002. p. 97-
108.

[IND2001a] INDRUSIAK, L.S.; REIS, R.A.L. 3D integrated circuit layout
visualization using VRML. Future Generation Computer Systems,
Amsterdam, v.17, n. 5, p. 503–511, Mar. 2001.

[IND2002] INDRUSIAK, L. S. A Review on the Framework Technology
Supporting Collaborative Design of Integrated Systems. Exame de
Qualificação. 2002. (Doutorado em Ciência da Computação) – Instituto
de Informática, UFRGS, Porto Alegre.

[IND2003] INDRUSIAK, L. S.; LUBITZ, F.; GLESNER, M.; REIS, R. A. L.
Ubiquitous Access to Reconfigurable Hardware: Application Scenarios

172

And Implementation Issues. In: DATE 2003 – DESIGN
AUTOMATION AND TEST IN EUROPE, DATE, 2003, München.
Proceedings... Los Alamitos: IEEE Computer Society, 2003.

[JAC95] JACOME, M.F.; DIRECTOR, S.W. Planning and Managing Multi-
disciplinary and Concurrent Design Processes. In: RAMMIG, F.J.;
WAGNER, F. R. (Ed.). Electronic Design Automation Frameworks.
London: Chapman & Hall, 1995. p. 159-168.

[JAO92] JACOBSON, I. et al. Object-Oriented Software Engineering - A Use
Case Driven Approach. [S.l.]: ACM Press/Addison Wesley, 1992.

[JER99] JERRAYA, A.A. et al. Multilanguage Specification for System Design
and Codesign. In: JERRAYA, A.; MERMET, J. (Ed.). System-level
Synthesis. Dordrecht: Kluwer Academic Publishers, 1999.

[JOH88] JOHNSON, R.; FOOTE, B. Designing Reusable Classes. Journal of
Object-Oriented Programming, Chatsworth, v.1, n. 2, p. 22-35,
1988.

[KAT86] KATZ, R. H. A Version Server for Computer-Aided Design Data. In:
DESIGN AUTOMATION CONFERENCE, 1986. Proceedings… Los
Alamitos: IEEE Computer Society, 1986. p. 27-33.

[KAT91] KATZ, R. H. Towards a unified framework for version modeling in
engineering databases. ACM Computing Surveys, New York, v. 22,
n. 4, p. 375-408, Dec. 1990.

[KME2003] K-MED. Knowledge-Based Multimedia Medical Education.
Available at: <http://www.k-med.org>. Visited on Jan. 27, 2003.

[KOB99] KOBRYN, C. UML 2001: A Standardization Odyssey.
Communications of the ACM, New York, v. 42, n. 10, p. 29-37,
1999.

[KOS2003] KOSTIENKO, T. et al. Development of TRMS/GTLS - Global Tool
Lookup Services. In: CHALLENGES IN COLLABORATIVE
ENGINEERING, Poznan, 2003. Proceedings… Poznan: Publishing
House of Poznan University of Technology, 2003. p. 18-19.

[KRA91] KRAFT, N. Embedded Tool Encapsulation. Electronic Design
Automation Frameworks, Amsterdam, v. 2, p. 9-20, 1991.

173

[KRS88] KRASNER, G. E.; POPE, S.T. A cookbook for using the model-view
controller user interface paradigm in Smalltalk-80. Journal of Object-
Oriented Programming, Chatsworth, v. 1, n. 3, p. 26–49,
August/September 1988.

[KWE95] KWEE-CHRISTOPH, E.; FELDBUSCH, F.; KUMAR, R.;
KUNZMANN, A. Generic Design Flows for Project Management in a
Framework Environment. In: EUROPEAN DESIGN AND TEST
CONFERENCE, 1995, Paris. Proceedings... Los Alamitos: IEEE
Computer Society, 1995.

[LAV2000] LAVANA, H. A Universally Configurable Architecture for
Taskflow-Oriented Design of a Distributed Collaborative
Computing Environment. 2000. PhD Thesis - Electrical and
Computer Engineering, North Carolina State University, Raleigh.

[LEE2001] LEE, E.A. et al. Overview of the Ptolemy Project. Berkeley: UC
Berkeley, 2001. (Technical Memorandum UCB/ERL M01/11).

[LEO2001] LEONG, P. H. W. et al. Pilchard - A Reconfigurable Computing
Platform with Memory Slot Interface. In: IEEE SYMPOSIUM ON
FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES,
2001. Proceedings… Los Alamitos: IEEE Computer Society, 2001.

[LIB2002] LIBELIS. Universal Java Objects/Data Mapping. Available at:
<http://www.libelis.com>. Visited on Dec. 8, 2002.

[LIN97] LINDHOLM, T.; YELLIN, F. The Java Virtual Machine
Specification. Reading: Addison-Wesley, 1997.

[LIS2000] LI, SING. Professional Jini. Birmingham: Wrox Press, 2000.

[LTS2002] LTSC - LEARNING TECHNOLOGY STANDARDIZATION
COMMITTEE OF THE IEEE. IEEE P1484.12/D6.1 Draft Standard
for Learning Object Metadata. Available at:
<http://ltsc.ieee.org/doc>. Visited on May 12, 2003.

[MAN98] MANGIONE, C. Performance Tests Show Java as Fast as C++.
JavaWorld, [S.l.], v. 3, n. 2, Feb. 1998. Available at:
<http://www.javaworld.com/javaworld/jw-02-1998/jw-02-
jperf_p.html>. Visited on Dec. 14, 2001.

174

[MAY2000] MAYER, U.; BECKER, J.; GLESNER, M.; HOLLSTEIN, T.;
INDRUSIAK, L. S.; REIS, R. A. L. An Internet-Capable CAD Suite
for the Mulit-Level Design of Complex Microelectronic Systems. In:
DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE,
2000, Paris. Proceedings… Los Alamitos: IEEE Computer Society,
2000. p.303.

[MIC2000] MICROSOFT CORPORATION. Universal Plug and Play Device
Architecture. v. 1.0. 2000. Available at:
<http://www.upnp.org/download/UPnPDA10_20000613.htm>. Visited
on June 24, 2002.

[MIG2002] MIGNOLET, J-Y.; VERNALDE, S.; VERKEST, D.; LAUWEREINS,
R. Enabling hardware-software multitasking on a reconfigurable
computing platform for networked portable multimedia appliances. In:
ERSA, 2002, Las Vegas. Proceedings… [S.l. s.n.], 2002.

[MUE2000] MUELLER, G.; BRAEUTIGAM, F. Tutorial: Getting started with
ozone. The Ozone Database Project, 2000. Available at:
<http://www.ozone-db.org>. Visited on July 8, 2001.

[MUL88] MULLE, J. A.; DITTRICH, K. R.; KOTZ, A. M. Design management
support by advanced database facilities. IFIP WORKSHOP ON TOOL
INTEGRATION AND DESIGN ENVIRONMENTS, 1987, Paderborn,
Germany. Proceedings... Amsterdam: North-Holland, 1988.

[MUN96] MUNSON, J.; DEWAN, P. A concurrency control framework for
collaborative systems. In: ACM CONFERENCE ON COMPUTER
SUPPORTED COOPERATIVE WORK, 1996. Proceedings…
[S.l.: s.n.], 1996. p. 278-287. Available at:
<http://citeseer.nj.nec.com/munson96concurrency.html>. Visited on
Dec. 14, 2002.

[MUR2003] MUELLER, W.; SCHATTKOWSKY, T.; EIKERLING, H.J.;
WEGNER, J. Dynamic Tool Integration in Heterogeneous Computer
Networks. In: DESIGN AUTOMATION AND TEST IN EUROPE,
2003, München. Proceedings... Los Alamitos: IEEE Computer
Society, 2003.

[MUR2003a] MUELLER, W.; SCHATTKOWSKY, T. Distributed Engineering
Environment for the Design of Electronic Systems. In: CHALLENGES
IN COLLABORATIVE ENGINEERING, Poznan, 2003.
Proceedings... Poznan: Publishing House of Poznan University of
Technology, 2003. p. 16-17.

175

[NEW99] NEWTON, A.R. WELD Project - Web-based Electronic Design, 1999.
Available at: <http://www-
cad.eecs.berkeley.edu/Respep/Research/weld/>. Visited on July 26,
1999.

[OBJ2002] OBJECT MANAGEMENT GROUP. Common Object Request
Broker Architecture (CORBA). v. 3.0. 2002. Available at:
<http://www.omg.org>. Visited on Nov. 26, 2002.

[OPE2002] OPENEDA. EDA Open Source Community. Available at:
<http://openeda.org>. Visited on Dec. 5, 2002.

[OST2001] OST, L. C.; MAINARDI, M. L.; INDRUSIAK, L. S.; REIS, R. A. L.
Jale3D - Platform-independent IC/MEMS Layout Edition Tool In:
SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS
DESIGN, 14., 2001, Pirenopolis. Proceedings... Los Alamitos: IEEE
Computer Society, 2001. p.174 – 179.

[PIE96] PIERRE, G.; MAKPANGOU, M. A Flexible Hybrid Concurrency
Control Model for Collaborative Applications in Large Scale Settings.
In: ACM SIGOPS EUROPEAN WORKSHOP, Connemara, 1996.
Proceedings… [S.l.: s.n.], 1996.

[PRE94] PREE, W. Metapatterns: A Means for Capturing the Essentials of
Object-Oriented Design. In: EUROPEAN CONFERENCE ON
OBJECT-ORIENTED PROGRAMMING, 10., 1994, Bologna, Italia.
Proceedings... Berlin: Springer-Verlag, 1994. p.150-164.

[PRS96] PRESSMAN, R. S. Software Engineering: A Practitioner’s Approach.
[S.l.]: McGraw-Hill, 1996.

[REI2000] REIS, R. et al. Sistemas Digitales: Síntese Física de Circuitos
Integrados. Bogotá: Uniandes, 2000. 374 p.

[REI2000a] REIS, R. Concepção de Circuitos Integrados. Porto Alegre: Sagra
Luzzato, 2000. 252 p.

[ROO2003] ROOS, R. M. Java Data Objects. London: Addison-Wesley, 2003.
264 p.

[ROW97] ROWSON, J. A. SANGIOVANNI-VICENTELLI, A. Interface-based
Design. In: DESIGN AUTOMATION CONFERENCE, Anaheim,

176

1997. Proceedings… Los Alamitos: IEEE Computer Society, 1997. p.
178-183.

[RUB94] RUBIN, S. M. Computer Aids for VLSI Design. 2nd ed. [S.l.]: Static
Free Software, 1994. Available at:
<http://www.rulabinsky.com/cavd/>. Visited on May 28, 2001.

[RUM91] RUMBAUGH, J. et al. Object-Oriented Modeling and Design.
[S.l..]: Prentice Hall, 1991.

[SAN2000] SANGIOVANNI-VICENTELLI, A. et al. System Level Design:
Orthogonalization of Concerns and Platform-Based Design. IEEE
Transactions on Computer-Aided Design of Circuits and Systems,
v. 19, n. 12, December 2000.

[SAT2000] SATZINGER, J.W.; JACKSON, R.; BURD, S.D. Systems Analysis
and Design in a Changing World. [S.l.]: Course Technology, 2000.

[SAW2002] SAWICKI, S.; BRISOLARA, L.B.; INDRUSIAK, L.S.; REIS, R.A.L.
Collaborative Design using a Shared Object Spaces Infrastructure. In:
SYMPOSIUM OF INTEGRATED CIRCUITS AND SYSTEMS
DESIGN, 2002, Porto Alegre. Proceedings... Los Alamitos: IEEE
Computer Society, 2002.

[SAW2002a] SAWICKI, S. Projeto Cooperativo no Ambiente Cave Baseado em
Espaço Compartilhado de Objetos. Dissertacao de Mestrado. 2002.
Dissertação (Mestrado em Ciência da Computação) – Instituto de
Informática, UFRGS, Porto Alegre.

[SCH2002] SCHNEIDER, A.; IVASK, E.; MIKLOS, P.; RAIK, J.; DIENER, K.H.;
UBAR, R.; CIBÁKOVÁ, T.; GRAMATOVÁ, E. Internet-Based
Collaborative Test Generation with MOSCITO. In: DESIGN,
AUTOMATION AND TEST IN EUROPE, Paris, 2002.
Proceedings… Los Alamitos: IEEE Computer Society, 2002. p. 221-
226.

[SCU95] SCHUBERT, J.; KUNZMANN, A.; ROSENTIEL, W. Reduced Design
Time by Load Distribution with CAD Framework Methodology
Information. In: EUROPEAN DESIGN AUTOMATION
CONFERENCE, 1995, Brighton. Proceedings... Los Alamitos: IEEE
Computer Society, 1995.

177

[SHE93] SHERWANI, N.A. Algorithms for VLSI physical design
automation. [S.l.]: Kluwer Academic Publishers, 1993.

[SHI2002] SHIN, S. Jini(tm) Network Technology. Available at:
<http://www.plurb.com/misc/jini>. Visited on Sept. 7, 2002.

[SHN2002] SHEN, H.; SUN, C. Flexible notification for collaborative systems. In:
ACM CONFERENCE ON COMPUTER SUPPORTED
COOPERATIVE WORK, 2002. Proceedings… [S.l.: s.n.], 2002. p.
77-86.

[SIA99] SEMICONDUCTOR INDUSTRY ASSOCIATION. International
Technology Roadmap for Semiconductors: 1999 edition. Austin:
International SEMATECH, 1999.

[SII2002] SILICON INTEGRATION INITIATIVE INC. Available at:
<http://www.si2.org/>. Visited on Oct. 3, 2002.

[STE2001] STEINMETZ, R. et al. Ein Java-basiertes Werkzeug für transparente
Kollaboration über das Internet. thema Forschung, Darmstadt, v. 1, p.
56-61, Mar. 2001.

[SUN97] SUN MICROSYSTEMS INC. Java(TM) Core Reflection - API and
Specification. 1997. Available at: <http://java.sun.com>. Visited on
Apr. 21, 1999.

[SWA2001] SWAN, S. et al. Functional Specification for SystemC 2.0. 2001.
Available at: <http://www.systemc.org>. Visited on Jan. 3, 2002.

[TEN91] TEN BOSCH, K.O.; BINGLEY, P.; VAN DER WOLF, P. Design
Flow Management in the NELSIS CAD Framework. In: DESIGN
AUTOMATION CONFERENCE, 1991. Proceedings… Los Alamitos:
IEEE Computer Society, 1991. p.711-716.

[TRI90] TRIMBERGER, S.M. An Introduction to CAD for VLSI. San José:
Domencloud Publishers, 1990.

[VAD88] VAN DER WOLF, P.; VAN LEUKEN, T.G.R. Object Type Oriented
Data Modeling for VLSI Data Management. In: DESIGN
AUTOMATION CONFERENCE, 1988. Proceedings… Los Alamitos:
IEEE Computer Society, 1988. p. 351-356.

178

[VAD90] VAN DER WOLF, P.; BINGLEY, P. DEWILDE, P. On the
Architecture of a CAD Framework: The NELSIS Approach. In:
EUROPEAN DESIGN AUTOMATION CONFERENCE, 1990.
Proceedings… [S.l.: s.n.], 1990. p. 29-33.

[VAE2000] VAN DER AALST, W.M.P. et al. Advanced Workflow Patterns. In:
IFCIS INTERNATIONAL CONFERENCE ON COOPERATIVE
INFORMATION SYSTEMS, 7., 2000. Proceedings… [S.l.: s.n.],
2000.

[VAN2001] VANBEKBERGEN, P. CoDesign Strategies For SoC. Available at
<http://www.coware.com/ppt/ESC2001/sld001.htm>. Visited on Aug.
9, 2002.

[VAR2002] VANDERPERREN, Y. et al. A Design Methodology for the
Development of a Complex System-on-Chip Using UML and
Executable System Models. In: EUROPEAN SYSTEMC USERS
GROUP MEETING, 6., 2002, Lago Maggiore. Proceedings…
Available at: <http://www-ti.informatik.uni-tuebingen.de/~systemc/>.
Visited on Dec. 5, 2002.

[VER2000] VERSANT CORPORATION. Getting Started with Versant - From
UML to DBMS Using Java. White Paper. 2000. Available at:
<http://www.versant.com>. Visited on Oct. 15, 2000.

[WAG91] WAGNER, F.R.; LIMA, A.H.V. Design Version Management in the
GARDEN Framework. In : DESIGN AUTOMATION
CONFERENCE, 1991. Proceedings… Los Alamitos: IEEE Computer
Society, 1991. p. 704-710.

[WAG94] WAGNER, F.R. Ambientes de Projeto de Sistemas Eletrônicos. [S.
l.. s.n.], 1994.

[WEN2001] WENTWORTH, S; LANGAN, D. D. Performance Evaluation: Java vs.
C++. In: ANNUAL ACM SOUTHEAST CONFERENCE, 39., 2001,
Athens, Georgia, 2001. Proceedings… [S.l.: s.n.], 2001. Available at
<http://webster.cs.uga.edu/~jam/acm-se/review/referee/spw98.doc>.
Visited on Aug. 13, 2002.

[WID88] WIDYA, I.; VAN LEUKEN, T.G.R.; VAN DER WOLF, P.
Concurrency Control in a VLSI Design Database. In: DESIGN
AUTOMATION CONFERENCE, 1988. Proceedings… Los Alamitos:
IEEE Computer Society, 1988. p. 357-362.

179

[WIE2000] WIDENIUS, M.; AXMARK, D. MySQL Reference Manual. MySQL
AB, 2000. Available at: <http://www.mysql.com/documentation>.
Visited on July 26, 2000.

[WIL2000] WILLIAMS, L.; KESSLER, R. R. All I Really Need to Know about
Pair Programming I Learned In Kindergarten. Communications of the
ACM, New York, v. 43, n. 5, p. 108-114, 2000.

[ZHU2002] ZHU, X.; MALIK, S. A Hierarchical Modeling Framework for On-
Chip Communication Architectures. In: IEEE/ACM
INTERNATIONAL CONFERENCE ON CAD, 20., 2002, San Jose.
Proceedings… Los Alamitos: IEEE Computer Society, 2002. p. 663-
671.

	List of Abbreviations
	List of Figures
	List of Tables
	Abstract
	Resumo
	Kurzfassung
	1 Introduction
	1.1 Motivation
	TABLE 1.1 - CSCW Time-space Taxonomy

	1.2 Thesis Organization

	2 Design Automation Frameworks
	2.1 Introduction
	2.2 Integrated Systems Design
	FIGURE 2.1- Technologies integrated on SoC in the standard C
	FIGURE 2.2 - Simplified System Design Flow

	2.2.1 Functional Specification and Validation
	2.2.2 Partitioning
	2.2.3 Software and Hardware Specification, Simulation and Im
	2.2.4 Hardware Synthesis

	2.3 Design Automation Tools
	2.4 CAD Frameworks: the Classical Concept
	FIGURA 2.3 - CAD Framework architecture [BAR92]
	2.4.1 Operating System Services
	2.4.2 Process Management Services
	2.4.3 Data Representation and Management
	2.4.4 Design and Methodology Management Services
	2.4.5 Tool Integration and Encapsulation Services
	2.4.6 Data Versioning Services
	2.4.7 User Interface Services

	3 Previous Work
	3.1 Introduction
	3.2 NELSIS
	FIGURE 3.1 – NELSIS Design Flow Browser
	FIGURE 3.2 - A flow-map example [TEN91]
	FIGURE 3.3 - An hierarchical flow-map example [TEN91]

	3.3 Version Server
	3.4 STAR
	FIGURE 3.4 – Versioning in the STAR Framework [WAG94]

	3.5 Ulysses and Odyssey
	3.6 WELD
	FIGURE 3.5 - WELD Architecture [CHA98]

	3.7 OmniFlow
	FIGURE 3.6 - OmniFlow Graphical User Interface
	FIGURE 3.7 -OmniFlow Task Instance Architecture [BRG01]

	3.8 ASTAI(R)
	FIGURE 3.8 - ASTAI(R) Workflow Editor

	3.9 Moscito
	FIGURE 3.8 - MOSCITO Software Architecture [SCH02]

	3.10 PPP
	FIGURE 3.9 - Client-server architecture on PPP [BEN96]

	3.11 JavaCAD
	FIGURE 3.10 - Platform independent IP simulation

	3.12 Ptolemy II
	FIGURE 3.11 – Ptolemy II Kernel class diagram (partial) [LEE

	3.13 Cave
	FIGURE 3.12 - Information Flow on Cave System

	3.14 Comparison of reviewed approaches
	TABLE 3.1 – Comparison between CAD systems supporting distri

	4 Cave2 Foundations
	4.1 Introduction
	4.2 Object Orientation
	4.2.1 Object Oriented Frameworks
	FIGURE 4.1 - Object-Oriented Frameworks

	4.2.2 Design Patterns
	FIGURE 4.2 - Observers and Subject [GAM95]
	FIGURE 4.3 - UML representation of the Observer design patte

	4.3 Architectural Evolution - from hyperdocuments to OO
	4.4 Cave2 Architecture
	FIGURE 4.4 - Proposed architecture for resource distribution
	FIGURE 4.5 - UML use-case diagram modeling interaction betwe

	4.5 Java-based Approach

	5 Framework Core
	5.1 Introduction
	5.2 Design tool primitives
	FIGURE 5.1 – UML Class diagram of GUI primitives (partial)
	FIGURE 5.2 – UML Class diagram of visual primitives for desi

	5.3 Design data primitives
	FIGURE 5.3 - Example of hierarchical construct
	FIGURE 5.4 – 5-box Data Representation Model[WAG94]
	FIGURE 5.5 - Example of inheritance construct
	FIGURE 5.6 – UML Class diagram of the proposed design data m

	6 Supporting Distributed Design
	6.1 Introduction
	FIGURE 6.1 – Evolution of distributed systems [SHI02]
	FIGURE 6.2 – Example on task distribution

	6.2 Resource Distribution Architecture
	FIGURE 6.3 – Middleware architecture
	FIGURE 6.4 – Resource lookup protocol
	TABLE 6.1 – Comparison between CAD systems supporting abstra

	6.3 Service Space
	FIGURE 6.5 - Service space architecture
	6.3.1 Repository Service
	6.3.1.1 RDBMS
	6.3.1.2 OODBMS
	6.3.1.3 Shared Object Spaces
	FIGURE 6.6 - Alternatives on Design Data Repository

	6.3.1.4 Proposed Approach
	FIGURE 6.7 – Repository ServiceUML Sequence Diagram
	FIGURE 6.8 – Overview of the Repository Service implementati
	FIGURE 6.9 – Design data identification keys

	6.3.2 Collaboration Service
	6.3.3 Authentication Service
	6.3.4 Prototyping Service
	FIGURE 6.10 – UML sequence diagram for the prototyping servi
	FIGURE 6.11 – Abstraction layers between object domain and h

	6.3.5 Additional Services

	7 Supporting Collaborative Design
	7.1 Introduction
	7.2 Design visualization issues
	FIGURE 7.1 - Implementation alternatives for the visualizati

	7.3 Concurrency control issues
	FIGURE 7.2 – Collaboration Service Overview
	FIGURE 7.3 – Collaborative Service UML Sequence Diagram

	7.4 Versioning Support
	FIGURE 7.4 – Embedding versioning information within identif

	7.5 Metadata Support

	8 Case Studies
	8.1 Introduction
	8.2 Prototyping Service
	FIGURE 8.1 – Case study on reconfigurable computing on deman
	TABLE 8.1 - DES algorithm implementation comparison

	8.3 IBlaDe
	8.3.1 Interface-based Design
	FIGURE 8.2 – Exemplifying Interface-based Design
	FIGURE 8.3 – Communication transaction among system parts

	8.3.2 Supporting Interface-based Design
	FIGURE 8.4 – Modeling structural and functional semantics
	FIGURE 8.5 - Modeling structural hierarchy
	FIGURE 8.6 – Interface definitions in hierarchical blocks
	TABLE 8.2 - Occurrence of Transactions

	8.3.3 Implementation Issues
	FIGURE 8.7 – IBlaDE GUI snapshot - structural view
	FIGURE 8.8 – IBlaDE GUI snapshot - structural and functional

	8.4 Educational Metadata
	FIGURE 8.9 – Course Editor GUI
	FIGURE 8.10 – Case Study: Metadata as training material

	9 Conclusions and Future Work
	9.1 Conclusions
	9.1.1 CAD Frameworks
	9.1.2 Design Databases
	9.1.3 Collaborative Design
	9.1.4 Summary
	TABLE 9.1 – Comparison between CAD systems supporting distri

	9.2 Future Work

	Appendix 1 Cave Development Timeline
	Appendix 2 Cave UML Class Diagrams
	FIGURE A2.1 – Cave2 Design Tool Primitives (partial)
	FIGURE A2.2 – Cave2 Design Data Primitives (partial)
	FIGURE A2.3 – Cave2 Repository and Collaboration Services (p

	Appendix 3 Cave2 Code Statistics
	Appendix 4 Cave2 Code Documentation
	Appendix 5 Summary in Portuguese Language
	References

