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ABSTRACT

The Dynamic Conditional Execution (DCE) is an alternative to reduce the cost
of mispredicted branches. The basic idea is to fetch all paths produced by a branch
that obey certain restrictions regarding complexity and size. As a consequence, a
smaller number of predictions is performed, and therefore, a lower number branches
is mispredicted.

Nevertheless, as other multipath solutions, DCE requires a more complex control
engine. In a DCE architecture, one may observe that several replicas of the same
instruction are dispatched to the functional units, blocking resources that might be
used by other instructions. Those replicas are produced after the join point of the
paths and are required to guarantee the correct semantic among data dependent
instructions. Moreover, DCE continues producing replicas until the branch that
generated the paths is resolved. Thus, a whole section of code may be replicated,
harming performance. A natural alternative to this problem is the attempt to reuse
those replicated sections, namely the replicated traces.

The goal of this work is to analyze and evaluate the effectiveness of value reuse
in DCE architecture. As it will be presented, the principle of reuse, in different
granularities, can reduce effectively the replica problem and lead to performance
improvements.

Keywords: Superscalar Architecture, Instruction Reuse, Trace Reuse, Multipath
Execution, Dynamic Conditional Execution.



Reusando Valores em uma Arquitetura com Execug¢ao Condicional
Dindmica

RESUMO

A Execugao Condicional Dindmica (DCE) é uma alternativa para redugao dos
custos relacionados a desvios previstos incorretamente. A idéia basica é buscar
todos os fluxos produzidos por um desvio que obedecem algumas restrigoes relativas
a complexidade e tamanho. Como conseqiiéncia, um nimero menor de previsoes é
executado, e assim, um nimero mais baixo de desvios é incorretamente previsto.

Contudo, tal como outras solugoes multi-fluxo, o DCE requer uma estrutura de
controle mais complexa. Na arquitetura DCE, é observado que varias réplicas da
mesma instrucao sao despachadas para as unidades funcionais, bloqueando recursos
que poderiam ser utilizados por outras instrugoes. Essas réplicas sao geradas apo6s
o ponto de convergéncia dos diversos fluxos em execucao e sao necessirias para
garantir a semantica correta entre instrucoes dependentes de dados. Além disso, o
DCE continua produzindo réplicas até que o desvio que gerou os fluxos seja resolvido.
Assim, uma se¢ao completa do c6digo pode ser replicado, reduzindo o desempenho.
Uma alternativa natural para esse problema é reusar essas secoes (ou tragos) que
sao replicadas.

O objetivo desse trabalho é analisar e avaliar a efetividade do reuso de valores
na arquitetura DCE. Como sera apresentado, o principio do reuso, em diferentes
granularidades, pode reduzir efetivamente o problema das réplicas e levar a aumentos
de desempenho.

Palavras-chave: Arquitetura Superescalar, Reuso de Instrucdo, Reuso de Tragos,
Execucao de Multi-fluxos, Execucao Condicional Dinamica.
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1 INTRODUCTION

On the latest years, the increasing demand for performance makes computational
system design more complex and sophisticated. Robust and heavy softwares require
fast processors with the capability to execute hundreds of millions of operations per
second. For general purpose applications, where it is difficult to specialize hardware
architecture and components, the challenge is even larger and it is not an ordinary
task.

In order to supply the market with these high performance requirements, hard-
ware designers have been working over dozens of innovations every year. During the
last generations, however, superscalar microprocessors are dominating the general
purpose microprocessors architectures. The execution stage of those machines has
the potential to execute several instructions per cycle due to the many functional
units available.

The number of functional units in the execution stage may vary according to
the microprocessor design, while 8 or more functional units are commonly found in
commercial processors (KESSLER, 1999; HOREL; LAUTHERBACH, 1999; INTEL,
2001). Even with this potential, the effective number of instructions executed per
cycle (IPC) is low. Typically, state—of-the—art microprocessors do not achieve, in
average, an effective IPC equal or larger than 2 (HENNESSY; PATTERSON, 2003).

There are three major problems related to this performance bottleneck in super-
scalar architectures (JOHNSON, 1991). Data dependencies, resource conflicts and
control dependencies are the greatest limiters found and the effort to effectively deal
with them is the most difficult challenge faced by microprocessor designers.

Data dependencies limit the parallelism extracted from the executed code be-
cause, if one or more instructions depend on previous instructions result, it is not
possible to execute them in parallel. This may cause stalls in the pipeline until those
instructions are executed. However, data dependencies are efficiently treated dynam-
ically by the hardware through mechanisms such as register renaming (TOMASULO,
1967) and scoreboard (THORNTON, 1964).

Resource conflicts can be observed when two or more instructions try to use the
same resource at the same time. Thus, one or more instructions may be pending
until the resource is freed. In general, designers may replicate the hardware re-
sources that most often are demanded and this normally presents an efficient result.
The balance of the architecture has to be carefully reviewed and cost vs. benefit
ratio and trade-offs analyzed, as more area and power are spent to have more par-
allel functional units. However, this is not the main bottleneck in contemporary
superscalar architectures.

On the other hand, control dependencies produce a large penalty due to mispre-
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dicted branches and represent one of the most significant barriers to achieve higher
IPC.

There are several alternatives to reduce the problem caused by branches, but
no definitive solution has been found yet. Branch prediction is the oldest and more
widely used technique. Contemporary mechanisms provide very accurate predictions
but indeed do not predict all branches correctly and the occurrence of a small number
of mispredictions, on the order of 3% to 7% of all predicted branches, can decrease
significantly the performance especially in very deep pipelines.

A misprediction is detected only after the complete execution of a branch. Thus,
all instructions fetched, decoded, dispatched and executed after the mispredicted
branch are squashed. This also includes control independent instructions, because
the misprediction recovery mechanism usually flushes all younger instructions and
restarts the fetch from the correct target.

Besides branch prediction, other mechanisms have been the target of studies,
investigations and developments. Many architectures use sophisticated techniques
to extract Instruction Level Parallelism (ILP) and increase performance (POSTIFF
et al., 1999). Typically, this parallelism may be extracted and explored using one
or more execution paths, depending on the approach adopted by the architecture.

The Dynamic Conditional Execution (DCE) is a wide-issue superscalar processor
that exploits the locality of conditional branches to apply dynamic predication and
multipath speculative execution. The result is a highly aggressive architecture that
can reduce misprediction penalties. The general principle behind DCE is to fetch
both paths of some conditional branches based on a semi-static selection mechanism.
Both paths of selected branches are executed concurrently and the wrong paths are
squashed selectively according to the branch result (SANTOS, 2003).

The major benefit of pursuing such approach is to reduce the number of predicted
branches. As a consequence, the number of mispredictions is also reduced without
requiring a special instruction set.

The problem of dynamically predicating complex branches is the introduction
of a large overhead that hides the potential benefit of applying the technique. The
overhead is introduced by fetching instructions from multiple paths, which will be
later squashed. Moreover, DCE approach also creates multiple replicas of the same
logical instruction in order to guarantee correct data dependency. This issue is
detailed later on this PhD Dissertation.

Despite the overhead introduced, previous studies have shown that predicat-
ing complex branches produces a two-fold misprediction reduction with relation to
predicating simple branches only (SANTOS, 2003). The speed-up obtained by pred-
icating complex branches, however, only pays off for very wide issue machines due
to the overhead.

One alternative to this problem can be found in the principle of reusing instruc-
tions. Instruction reuse, in different granularities, was a widely explored idea in
previous works (GONZALEZ; TUBELLA; MOLINA, 1999; SODANTI, 2000; COSTA;
FRANCA; CHAVES FILHO, 2000; WU; CHEN; FANG, 2001; COSTA, 2001; PILLA
et al., 2002), but none of them were developed specifically for an architecture with
dynamic predication. Most of those studies performed in conventional superscalar
architectures pointed out that a large number of instructions can be reused. In DCE,
this number is potentially greater due to the replicas occurrence. Thus, reducing
the overhead can make resources available to issue other useful instructions.
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The main goal of this work is to analyze the limits and potentials of instruction
and trace reuse mechanisms to reduce overhead and ultimately lead to performance
improvements in DCE architecture.

Chapter 2 addresses the impact of conditional branches on performance, while
Chapter 3 depicts the DCE — Dynamic Conditional Execution architecture as an
alternative to this problem. Chapter 4 presents the DCE main limitations, as a mo-
tivation for this work. Chapter 5 addresses previous works in instructions and trace
reuse, while Chapter 6 presents the mechanisms to reuse values in DCE. Chapter
7 presents the simulation environment, and Chapter 8 shows the results achieved.
Finally, Chapter 9 shows the conclusions, remarks and future work of this research.
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2 CONDITIONAL BRANCHES AS PERFORMANCE
LIMITER

The main function of the fetch stage is to feed the pipeline with new instructions.
Apparently, this is a trivial task, but some restrictions apply to this stage, producing
stalls and reducing the global performance of the architecture.

Figure 2.1 presents a scheme of the instruction fetch stage. The stage, after
fetching an I-cache line, identifies whether there are branches among those instruc-
tions or not. Typically, this task is performed by analyzing the instruction opcode
or by checking the branch prediction tables. If a branch is detected, the fetch stage
forward that instruction to the predictor, which returns the direction to be followed
by the instructions flow as well as the next probable address. When the prediction
outcome is that the branch is taken, the fetch stage flushes all instructions after the
branch and redirects the fetch to the correct PC. In case of not-taken prediction,
the fetch stage keeps on accessing instructions sequentially.

Fetch Unit

47 **************** 11 12 . 14

S N

- >

I-cache

Figure 2.1: Fetch stage

Basically, the fetch stage stalls due to four reasons: I-cache misses, branch in-
structions occurrence, mispredictions and instruction buffer full. Each one of these
implies an additional latency or a penalty to the pipeline.

Cache miss is an old and a difficult problem to be solved. The memory hierarchy
is the most common alternative to reduce this bottleneck, especially because the
gap between memory and processor frequencies is widening. Cache memories have
achieved some success and are essential in current high performance architecture
designs. But even with 128 Kbytes or more in first level on-chip caches, misses are
still a concern. Each miss has a latency that varies, typically, from 2 to 80 cycles,
depending on which hierarchical level the hit occurs. Hits on L2 caches cause the
order of 1015 cycles penalty, if the L2 cache is off chip. If there is a miss in the L2
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cache, a latency of 80 cycles or more may be associated to the main memory access.
During all those cycles, the fetch stage is stalled and none of the pipeline stages get
new instructions.

In order to reduce misses and to minimize the number of cycles wasted by the
fetch stage, the lower levels of the memory hierarchy are getting larger. L1 caches of
up to 128 Kbytes are already available in commercial microprocessors (KESSLER,
1999), against the usual 8 Kbytes to 16 Kbytes used in just a few years back.
The increase in the L1 cache size, however, is not a good solution for the next
generation of high performance processors. The cost of the large capacity increases
not just the die area, but mainly the L1 access delay and the additional logic for
SRAM implementation as well as an efficient addressing scheme to this large on chip
memory. Keeping L1 cache access delay within 1 to 2 pipeline cycles severally limits
the L1 size.

After using L1 caches with large size in previous generations, most microproces-
sors families are integrating one more hierarchy level on chip. The idea is to keep
L1 capacity small and to improve performance through the reduction of L2 access
time by means of L2 integration. Pentium 4, for example, has D-cache and I-cache
with 16 Kbytes each, with L2 on chip (INTEL, 2001). The intention is to make the
L2 deliver data and instructions at the same frequency of the processor, reducing
the 12 cycles typical latency to a few CPU cycles only.

Even with all this effort, new mechanisms are still necessary to decrease cache
miss rates and to hide the access latencies. Data and instruction prefetches appear
as a low cost and good results alternative (SANTOS, 2000).

The branch occurrence may also stall the fetch stage. As mentioned before, the
fetch stage detects branches as soon as the line is fetched from the I-cache. When
a branch is encountered and predicted as taken, the fetch stage stalls in order to
redirect the fetch. Even if the prediction is correct, the fetch width is harmed.

Figure 2.2 presents an example of how the instruction width is harmed due to
branch occurrence.

Fetch Unit

Fetch width=8

_,.13 useful inst.
I-cache,
| n @1 I1s51617 18

Ne\jN PC = Tl- ‘

Flushed instructions after prediction:
14,15, 16, 17,18

Figure 2.2: Fetch width with branch occurrence

It is possible to observe that the fetch width, in the example showed in Figure 2.2,
is reduced to only three instructions, in case of a taken branch is fetched. The
remaining pipeline stages are equally affected and will perform for one cycle with
only three instructions. Thus, even with a correct prediction, the performance of
the architecture is limited by a single occurrence of a branch instruction.

It is also observed that the situation may be worse if the target is located at the
beginning of a cache line. This problem is known as cache alignment.
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The cache port allows only one line to be accessed each time. Normally, an
entire line is fetched and part of it is flushed in a branch occurrence. Thus, it is
not possible to fetch the target followed by its subsequent instructions and, at the
same time, fetch the instructions in the next line necessary to complete the fetch
width. The fetch width is harmed once again and only the instructions located
in the same cache block are used. In the worst case, the fetch width is reduced
to only one instruction. This can occur if the target is at the last position in
the line. The so called target-word-first mechanism treats this problem in cache
accesses (HENNESSY; PATTERSON, 2003), hence optimizing the access time, but
not avoiding the harm to the effective fetch width.

The branch predictors are generally based in tables that store the pattern fol-
lowed by each branch in previous executions. Those tables have a limited size that
do not support all branches found in a program. The prediction tables and caches
are similarly structured, presenting a given associativity and mapping more than
one entry to the same position.

After introducing a branch predictor with several levels, the architecture is sen-
sible to 2 different kinds of mispredictions. The first one occurs when the predictor
returns a target of another branch, mapped onto the same position of the table.
The second type of misprediction is worse and the penalty is even larger. This
penalty applies when the branch prediction mechanism finds the right branch, but
the result of the prediction is wrong. Nevertheless, even with these additional penal-
ties when using more than one prediction table, mechanisms like this achieve good
performance and they are the most widely used in current microprocessors.

In the occurrence of a miss in the addresses table, only the direction is returned
by the prediction. This is yet another problem found in branch predictors. In this
case, the fetch cannot be redirected properly and the subsequent instructions keep
on being fetched. The penalties are also different, depending on the branch. If a
branch with direct addressing causes the miss, it is possible to find the correct target
after the decode stage, in the dispatch. And if the target found in the instruction
is different from the sequential one, the fetch is redirected in the next cycle. On
the other hand, if the branch is register dependent, its result can be just found only
after execution. In this case, the penalty is larger and affects the whole pipeline.
The effect is worse when the pipeline is deep (INTEL, 2001).

Figure 2.3 presents the penalty for the hit of a different target mapped to the
same position of the fetched branch. In Figures 2.3 and 2.4 the fetch width is
assumed to be equal to 4 instructions.

In this example, when a given branch is found among the fetched instructions
the predictor indicates a target to be fetched in the next cycle. This target address
is located in the branch table, at the same position that the right address would be,
if no conflicts had happened. The branch predictor returns this address to the fetch
stage. Then, the fetch stage stalls and redirects to that address. The instruction
incorrectly found as target, as well as its subsequent instructions, are fetched from
the cache and delivered to the decode stage. The decode stage performs normally,
decoding those instructions as usual. Meanwhile, the branch hit the dispatch stage
and it is possible to identify whether the predicted target is the same one found in
the instruction opcode. This, however, applies only for direct branches and does not
happen with register dependent branches, as mentioned before. If the two addresses
are different, the dispatch sends a signal to the fetch stage. The pipeline is then
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flushed, but only up to the dispatch stage. Instructions in the dispatch stage fetched
ahead of the branch do not need to be squashed. In this stage, the instructions are
still in order and it is possible to squash just the instructions from the misfetched
path. The instructions in the dispatch, issue, execution and write back continue
processing normally.
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Figure 2.3: Misfetch occurrence

On the other hand, a much larger penalty applies when the direction predicted is
wrong. Figure 2.4 presents the number of lost cycles due to only one misprediction
in a short, five stage pipeline.

It is possible to see that, after a misprediction, the fetch is incorrectly redirected
and a sequence of useless instructions is brought into the pipeline. The branch is
solved only three cycles after its prediction, at the end of the execution stage. While
this result is not known, the pipeline performs unnecessary operations. And even
knowing the result, the fetch will be redirected again only in the write back, when
the mispredicted branch reaches the top of the Re-order Buffer (RoB). As discussed
before, this is necessary in order to assure that instructions fetched before the branch
will not be flushed. The pipeline is then squashed and re-started in the next cycle.
Additional cycles are needed to re-load all the stages again.

Fetch Dec. Disp./Issue Exec. Write back
[

[
C:lnp B®| |

c: 4 1516 7nn @]

\ [ \
c2:18 19 110 {4 15 16 7)/n 2 13 @) |

| | | | Target 1= A4
C3: 112 13114 15|18 19 110 111)[14 15 16 17]/n 2 13 @) °*flush*

Ca: |116 117118 119”\112 113114 IIS‘HIS 19 110 111”\14 5 16 17”\11 2 1B ®)

| | Fetch, Decode, Dispatch/Tssue, Execution flushed | |
CS: | | | | \‘

Figure 2.4: Misprediction occurrence

Simulations were performed in order to illustrate the issues discussed. The results
are shown in the next Sections.
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2.1 Simulation Environment

In order to quantify the hazards described in the previous Section, simulations
were ran using the SimpleScalar Tool Set (BURGER,; AUSTIN, 1997). The super-
scalar architecture simulator, called sim-outorder, is very detailed and implements
state-of-the-art microprocessor features, such as out-of-order execution and 3-level
memory hierarchy. Also, the simulator is highly configurable, allowing the user to
decide many elements like architecture width, memories capacity, number of Func-
tional Units (UFs) and others.

Figure 2.5 presents the sim-outorder pipeline. The instructions decode is per-
formed in the second stage with the dispatch. The scheduler is responsible for the
instructions issue. The stages basically work according to a conventional superscalar
architecture.

‘ Fetch }—-{ Dispatch ‘—ﬂ Scheduler ‘—" ExecutionH WB ‘—ﬁ Commit ‘

I-cache \ D-cache
L2 cache /

Memory

Figure 2.5: Sim-outorder pipeline

Table 2.1 presents the basic configurations used in the set of experiments. The
fetch, decode, dispatch and issue widths are equal to 8 instructions. The Reorder
Buffer (RoB) has 128 entries, which means that a maximum of 128 instructions may
be waiting to be committed. The load and store instructions are handled differently
in a 64-instruction queue. Ten FUs are available (4 integer ALUs, 2 integer mult/div,
3 FP ALUs, 1 FP mult/div). Cache level 1 is splitted into I-cache and D-cache, both
with 64 Kbytes, 2-way set associative. L2 cache is unified with 512 Kbytes and 4-
way set associative. Hits in L1 caches, L2 cache and main memory are resolved in 1,
12 and 80 cycles, respectively. The misprediction penalty is, at least, 7 clock cycles.

A perfect branch prediction was used in a base architecture. However, a hybrid
predictor was used to analyze the impact of branch occurrence and mispredictions.

The hybrid predictor (MCFARLING, 1993) combines two other predictors, the
2-level adaptative (YEH; PATT, 1991) and the bimodal (SMITH, 1981). Moreover,
there is an additional table responsible to choose which kind of the predictions will
take place in a given moment. In the simulations performed in this part of the
work, this table was configured as a 2048-entries table. The 2-level adaptative is
the global predictor, with a history register (first level) that indexes a 4096-entries
table (second level). On the other hand, the bimodal mechanism has a 2048-entries
table.

A subset of SPEC2000 programs was used as benchmarks for these simulations
(HENNING, 2000). They are: bzip2, ggc, equake, mesa, parser, and vpr. Table 2.2



Table 2.1: Configurations used in experiments

Parameter ‘

Configuration

Fetch width

Decode width
Dispatch width

Issue width

RoB entries
Load/Store queue
Integer FUs

Integer Mult/Div

FP FUs

FP Mult/Div
Memory bus width
L1 I-Cache

L1 D-Cache

L2 unified cache
Misprediction penalty
LL1 latency access

L2 latency access
Main memory latency

8 instructions
8 instructions
8 instructions
8 instructions
128 instructions
64 instructions
4 FUs
2 FUs
3 FUs
1 FUs
128 bytes
64 Kbytes
64 kbytes
512 Kbytes
7 cycles
1 cycle
12 cycles
80 cycles
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shows the benchmarks followed by the inputs and arguments used in the simulations.

Table 2.2: Benchmarks and inputs used in the experiments

Benchmark ‘Inputs
bzip2 (Int)
gee (Int)

input.source 58

-quiet -funroll-loops -fforce-mem -fcse-follow-jumps
-fese-skip-blocks -fexpensive-optimizations
-fstrength-reduce -fpeephole -fschedule-insns
-finline-functions -fschedule-insns2 -O cp-decl.i -0 c¢p-decl.s
equake (FP) | < refin

mesa (FP) -frames 1000 -meshfile mesa.in -ppmfile mesa.ppm
parser (Int) | 2.1.dict -batch < ref.in

vpr (Int) ref.net ref.arch.in place.out dum.out

-nodisp -place only -init_t 5 -exit_t 0.005
-alpha_t 0.9 412 -inner _num 2

For each configuration, 400 million instructions were simulated. The results,
however, were processed after the execution of the first 100 million of instructions.

2.2 The Effect of the Control Dependencies

The fetch stage of the pipeline may stop due to four reasons: I-cache misses,
instruction buffer full, mispredictions and misfetches.

Figure 2.6 presents the number of cycles lost due to each one of those reasons.
The first bar means the number of cycles wasted by I-cache miss occurrence. The
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second bar depicts the number of cycles wasted with mispredicted branches. The
third bar shows the number of cycles lost due to misfetches, while the last bar means
the cycles lost with instruction buffer full. These results were achieved using the
hybrid predictor.

Reasons for Fetch Stalls

60
B Misses
E® Mispredictions
010 Misfeiches
@ Buffer full .
340 : —
5 30
@
3
§ 20 7
Bl By
10
P

Bip2 Eake Gcee Mesa P.arser Vpr

Figure 2.6: Fetch stage stalls

It is possible to see that, for this configuration, which is closer to a typical mod-
ern superscalar architecture, the main problem is relative to mispredicted branches
occurrence. Also, I-cache misses are a concern, but mainly in large applications such
as gec.

Buffer full is the main reason for stalls in benchmarks mesa and bzip2. In fact, for
benchmark mesa, mispredictions are only the third main reason for pipeline stalling.
This is due to the high accuracy rate achieved by the predictor, which reduced the
number of wasted cycles.

Figure 2.7 shows the number of cycles lost in case of mispredictions. The dark
bar shows the percentage of cycles wasted with mispredictions. The most extreme
case is the benchmark parser, with almost 60% of the cycles spent recovering from
mispredicted branches. This means that, in this case, the architecture spent 60% of
its time fetching, decoding, dispatching, issuing and executing instructions from the
wrong path.

Other benchmarks, such as gcc and wvpr, also achieved very negative results. And
even with a high accuracy rate in the prediction, benchmarks bzip2 and equake spent,
respectively, 17% and 18% of the time recovering from mispredictions.

Misprediction is not the only problem caused by branches. Branch occurrence,
even if correctly predicted, may harm the architecture performance. In fact, in-
struction alignment in the I-cache is also a significant problem and these effects can
be visualized in Figure 2.8. The dark bar shows the number of instructions in the
fetch buffer using the hybrid predictor, while the gray bar depicts the same number,
but using perfect prediction. The hybrid predictor combines two different prediction
schemes, alternating their usage according to the branch pattern (local prediction)
or to the recent branch history (global prediction). This hybrid scheme is used in
several state-of-the-art microprocessor and guarantees accurrate prediction rates of
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Cycles Wasted Due to Branches
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Figure 2.7: Percentage of cycles wasted due to branch occurrence

up to 98%. In the simulations performed in this work the hit rates in the prediction
tables ranged between 82% and 93% for the hybrid scheme.

In average, the number of instructions delivered to the dispatch stage is lower
than 5, even for perfect prediction. Ideally, both architectures have the potential
to deliver 8 instructions per cycle. This means that, in average, a little over half
of the fetch resources are used during execution. This number is extremely low, if
compared with the number of instructions that could be fetched. As a consequence,
the number of instructions executed per cycle (IPC) is going to be smaller, reducing
the overall performance.

Average of fetch buffer occupation

I - I
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Number of instructions
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Figure 2.8: Instructions fetched per cycle

Figures 2.9, 2.10 and 2.11 depict this problem, presenting the distribution of
instructions fetched during simulations in each benchmark. All horizontal axis show
the number of instructions fetched, while vertical axis present the percentage of the
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distribution. The dark bars show results with hybrid prediction, while the gray bars
are the results with perfect prediction. In an ideal architecture, all benchmarks
should be spending 100% of the time dispatching 8 instructions, the maximum
number supported by the architecture.
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Figure 2.9: Distribution of instructions in benchmarks (a) bzip2 and (b) equake

Unfortunately, the distribution of instructions fetched is very different from the
ideal. It is possible to observe that, in all cases, there are a significant percentage
of cycles in which no instructions were fetched. This situation is worse when using
hybrid prediction because, in this case, the fetch stage also stalls due to mispredic-
tions. The difference between using perfect and hybrid prediction is significant and,
in some cases, such as benchmark vpr, achieves 60%. However, I-cache misses may
also increase the percentage of cycles in which no instructions were fetched. This
explains the high rates reached by the cases of zero or few instructions fetched per
cycle.

Even using perfect prediction, the number of cycles spent fetching 8 instructions
is small. The best case occurs in benchmark vpr, which could ideally fetch 8 instruc-
tions in 35% of the cycles. In benchmark bzip2, however, 8 instructions were fetched
in just 23% of the cases. These rates are low because perfect prediction solves only
mispredictions. Instruction alignment and I-cache misses are additional problems
preventing a larger fetch bandwidth in the superscalar architecture.

During most of the time, a lower number of instructions is fetched when hybrid
prediction is used. The best case was achieved by benchmark mesa, which fetched
8 instructions during 10% of the time. In general, however, for more than 40% of
the cycles the architecture is fetching 1 to 4 instructions per cycle.
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Fetched instructions distribution (Mesa)
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Table 2.3 shows the effective fetch bandwidth for each benchmark. The first

column presents the benchmarks simulated. The remaining columns mean the av-
erage number of instructions fetched per cycle by the architecture with the hybrid

predictor followed by the one using a perfect predictor. In all cases, the number
of instructions fetched by the architecture with the perfect predictor is significantly

higher. In benchmark vpr, where the larger difference was observed, the architecture
with hybrid predictor fetched only 54% of the instructions usually fetched by the

one with a perfect predictor.

Table 2.3: Effective fetch bandwidth

Benchmark | Hybrid Predictor | Perfect Predictor

Bzip2
Equake
Gcee
Mesa
Parser
Vpr

2.60
2.70
2.18
2.35
2.44
3.02

3.66
4.16
3.34
3.30
4.53
5.42

Finally, the IPC (Instructions Per Cycle) is shown in Figure 2.12. The dark bar

means the performance reached by the architecture with hybrid prediction, while the
gray bar shows IPC achieved by the architecture with perfect prediction. In spite
of problems with alignment and misses, the architecture with perfect prediction is
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Figure 2.11: Distribution of instructions in benchmarks (a) parser and (b) vpr

better in all cases. In benchmark parser the difference between both cases is close
to 100%.
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Figure 2.12: Instructions Per Cycle achieved with hybrid and perfect predictions
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2.3 Summary

The goal of this Chapter was to show how branches limit performance of modern
superscalar architectures.

The simulations presented in this Chapter clearly show how the simple occur-
rence of branch instructions can harm superscalar architectures performance and
prevent the exploitation of the Instruction Level Parallelism (ILP). The mispredic-
tion penalties are getting higher with even deeper pipelines and the occurrence of
a single misprediction may cause the loss of more than 15 cycles, depending on the
architecture.

Mispredictions are the main cause of fetch stalls. In some applications, such as
benchmarks parser and vpr, mispredictions are responsible for almost the totality of
fetch stalls. For these benchmarks and also for gce, more than 40% of the cycles were
lost due to branch occurrence. This, of course, causes a large loss in performance
and, in some cases, there is a two-fold gain in IPC when using a perfect predictor.

In summary, branch occurrence is a real and difficult problem to be solved. Al-
though many efforts have been made over the last 10 years, no definitive solution was
found. In the following Chapters of this work a new approach to reduce this prob-
lem will be discussed. DCE, or Dynamic Conditional Execution, intends to reduce
mispredictions by fetching and executing multiple paths of conditional branches.
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3 DCE-DYNAMIC CONDITIONAL EXECUTION

Several studies are focused in the development of new and aggressive multi-
path mechanisms (KELLER, 1975; NEMIROVISKY, 1990; UHT; SINDAGI, 1995;
SKADRON, 1999; SANTOS; NAVAUX, 1998), which intend to improve the perfor-
mance by increasing the number of executed instructions (AHUJA et al., 1998). All
of them, however, need an efficient fetch stage to feed the wide execution engine.

The Dynamic Conditional Execution model is based on the concept that multiple
paths may be extracted from few cache lines, in a small number of accesses, and
then sent to the execution engine. In other words, multipath execution is performed
conditionally and instructions are committed according to the dynamic behavior of
the branches.

DCE combines dynamic predication and multipath to reduce the complexity and
disruptions of the fetch. This is achieved by fetching sequentially through branches
that qualify for predication.

The first step of the dynamic conditional execution is to determine whether the
branch has to be predicted or predicated. Basically, a branch has to be predi-
cated if both targets are inside a given distance and if there is no other complex
instruction, such as procedure call, inside that structure (branch-then-else-join). All
other cases, i.e., long structures, structures with calls, etc., are supposed to be
normally predicted. The analysis of the code structures is done statically, by the
compiler. Then, when the code begins the execution, the architecture will predicate
all branches marked at compile time, since it is expected that resources are available
to do so. During the predication state of the architecture all instructions are fetched
sequentially up to the join point of the paths. After the join point, the architecture
returns to behave like a conventional superscalar architecture, until the next branch
marked to be predicated is reached.

In order to determine if a branch qualifies for predication, an extension of the
selection mechanism proposed in (KLAUSER et al., 1998) was developed. In that se-
lection mechanism, only simple branches qualify for predication. The model used in
this work also qualifies complex branches, i.e., nested branches and other structures
different from a simple non-nested if-then-else. The classes of complex branches
allowed for predication are presented later in this Chapter.

The selection mechanism used in DCE is static and runs at compilation time,
marking branches that can be predicated according to the target locality. The
compiler does not change the original code, it only marks instructions valid for
predication (SANTOS, 2003). At execution time, the fetch engine decides whether
a selected branch will be predicated or not, based on the availability of resources.

Therefore, DCE is a combination of a static selection mechanism and hardware
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support to execute branches eagerly. In DCE, selected branches are treated as regu-
lar instructions by the fetch engine and they never disrupt the fetch. As no prediction
of control transfer is made at fetch time, they may not cause mispredictions.

The main difference between Klauser et al. (KLAUSER et al., 1998) and DCE
(SANTOS, 2003) is that DCE dynamically predicates both simple and complex
branches and it does not use conditional moves to satisfy data dependences at the
join point of predicated branches.

In Klauser et al., conditional moves are inserted dynamically at the joint point
to block the issue of instructions from the same data chain of the predicated paths.
When the branch resolves, the conditional moves can be issued to copy the data
from the correct physical register to the correct source register of the dependent
instruction. Thus, the original instruction that uses the respective register becomes
ready for issue only after the conditional move instruction executes.

In DCE, aregister renaming technique derived from Chaves et al. (CHAVES FILHO
et al., 1999) generates replicas of instructions at the join point of predicated branches.
Replicas are instructions that use data that is produced in one of the paths of a pred-
icated branch. Therefore, there is one replica for each predicated path. As DCE
does not use conditional moves, it does not block the issue of the dependent instruc-
tions. In DCE, the replicated instructions can be issued as soon as the appropriate
physical registers are ready (i.e. the source data is available).

Resources saturation in DCE is reduced by predicating just part of the branches.
The number of predicated branches is acceptable, but if all paths are fetched into the
pipeline, several instructions may be replicated. This happens because both paths
converge to a single join point and many instances of the same instruction may be
created to assure correctness. However, only one of these instances is committed
and all others are canceled as soon as the outcome of the branch is known. Those
copies are pollution and they must be avoided.

Figure 3.1 shows the example of how DCE fetch stage works. In the upper
left portion of the Figure, there is a very simple example in C, while the upper
right portion presents the code usually generated by the compiler for that example.
The lower part of the Figure shows how this structure is fetched in a conventional
architecture and in DCE. It is possible to see that, for a conventional architecture,
the fetch will be always executed in two cycles, with two accesses to the same cache
line. In DCE, only one access is done and all instructions are fetched at once.

After the fetch stage, the instructions are renamed according to their position in
the tree dynamic path of execution. This control is extremely useful to determine
which instruction comes from which path, and so which instructions have to be
committed later on. The dispatch, issue and execution stages work as conventional
superscalar stages, except for load and store instructions that may be predicated.
The write back and commit stages are designed to identify and complete only in-
structions from the correct paths.

3.1 Hammock Classification

As discussed before, DCE reduces the pipeline saturation by predicating only a
set of branches executed by a given program. In order to identify the best set for
prediction, several applications were profiled according to the branches behavior.
This study, described in (SANTOS et al., 2003), pointed a significant occurrence of
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Original code: Compiled code:
{ S
cee : bne $s3, $s4, THEN # Jump to THEN (D1)
e sub $s0, $s1, $s2 $#F=G-H (I2)
clse ‘ j CONT # Jump to CONT (I3)
F = G-H; THEN:
, Y add $s0, $sl, $s2 #F=G+H (14)
CONT :
add $s5, $s5, $s0 # A += F (I5)
In Cache Line: In conventional superscalar pipelines:
If D1 is predicted as not taken
D1 12|13 14| 15] Fetch (cycle 1) DI I2 I3
Instruction Flow: Fetch (cycle2) 5
Taken 9% Notuken If D1 is predicted as taken
K Fetch (cycle1) D1
If Fetch(cycle2) 14 15
14 3 In DCE pipeline:
L J Predication instead prediction
E Fetch (cycle1l) D112 13 14 15

Figure 3.1: Fetch cycle example in DCE

four different classes of nested structures (hammocks), besides the Simple class of
branches predicated in the work proposed by Klauser et al. The variations of those
complex hammocks are the extended model proposed in DCE, presented bellow.

A conditional forward branch that has no nested branches may have one (if-then)
or two sides (if-then-else). These branches are shown in Figure 3.2 and are called
simple hammocks single sided (a) or double sided (b), respectively. This was the
same subset of branches approached by (KLAUSER et al., 1998).

Conditional forward branches that have other conditional forward branches inside
may be classified as follows and are illustrated in Figure 3.3:

1. one or more nested conditional forward branches totally contained are called
pure complex hammocks (a)

2. one or more conditional forward hammocks whose target address coincide with

the join address of the outer hammock are called multiple join compler ham-
mocks (b)

3. one or more conditional forward branches whose target address is beyond the
join address of the outer hammock are called multiple target complexr hammocks

(c)

4. one or more conditional forward branches whose target address targets the
body of the taken path are called overlap complex hammocks (d)

Figures 3.2 and 3.3 present the six different hammock classifications. The dia-
grams presented are such that each number corresponds to an instruction and each
arrow represents a branch to a given target, i.e. another instruction. The source
of the arrow is the instruction which originated the branch (conditional or uncondi-
tional). The end of the arrow indicates the taken target instruction.
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Figure 3.2: Example of simple hammocks

Figure 3.2 (a) presents the most basic hammock structure. It is a typical if-then,
where a condition is investigated in instruction 7 and, depending on the result, the
instruction flow continues sequentially or is redirected to instruction 8. Note that
instruction 8 is part of any flow path started in 1, taken or not, so it is called join
point. Because in this structure there are no nested branches and there is only one
side (if-then), this category is called One-sided Simple.

v
1 23 46 6 78 9 10 11 12
| — )
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\
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Figure 3.3: Example of complex hammocks

Figure 3.2 (b) shows a two-sided hammock. The example corresponds to an
if-then-else, which has a condition evaluation in instruction 7 and an unconditional
branch in a later instruction, represented by instruction 7. This unconditional
branch is responsible for the flow redirection demanded by the else command. It
is possible to see that the unconditional branch is the instruction right before the
target of 1, i.e. instruction 8. In this example, the join point is given at instruction
10 and the category is called Two-sided Simple. For instance, for a branch to fall
into this category it must have the unconditional jump right before the target of the
first conditional branch (branch delay slots were not considered). If this condition
is not true then the branch falls off this valid category.

If a hammock has any nested hammocks it is then called Complex. An example
of a Complez pattern is shown in Figure 3.3 (a). In this case, there are nested ham-
mocks within the outer hammock. The outer hammock is an if-then-else similar to
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the one presented earlier, where instruction I jumps to 8, if the condition evaluated
is true. Furthermore, there is an unconditional jump in instruction 7, jumping to
the join point, i.e. instruction 70. Inside this hammock, instruction & is a simple
if-then, like the one in the first example of this Section. For this example of nested
hammocks, the target of the second branch is totally contained within the most ex-
ternal hammock, instruction 5. When all nested branches have their targets totally
contained within the boundaries of the most external branch, that branch is called
Complex Pure.

Figure 3.3 (b), presents an if-then-else hammock with multiple join points. This
means that one of the sides of the most external branch (then or else) has a nested
branch whose target is the same as the first, most external branch. In the example,
instruction 8 is the target of two conditional branches (instructions 7 and 3). Then,
the most external branch has the same target as the most internal branch and it is
called Complex with multiple joins. The join point of this hammock is instruction 70
as this instruction is the first instruction common to any path starting in 1. Observe
though that branch & would have a join point at § if it was not a nested branch of
1. When classifying complex hammocks, the join point is considered to be the first
instruction common to all paths starting from the outer hammock.

In other cases, nested branches may not have targets that are coincident with
the target of the external branch. In this cases the target may be inside the else
path while the branch is within the then path or it may be beyond the join point of
the external branch, Figures 3.3 (c) and (d).

When the target of a nested branch, located within the then path, is actually
in the else path of the most external branch, example (c¢), the two branches are
overlapped and the category in each they are included is called Complezr overlapped.
The join point is still the common instruction to all paths, i.e. instruction 10.

Example (d) shows the nested branch & which has a target 12 beyond the join
point of the most external branch 7. In this case, the join point is instruction 12 as
it is the first instruction common to any path that starts in 1. This type of Complex
branch is called Complex with multiple targets.

Other combinations of nested hammocks are also possible. The combinations
showed here are the basic combinations recognized by the preprocessing compiler.
The compiler initially classifies a given branch into one of the classes below. At
last, it looks into the final combination, that is, a combination of one or more of the
classes, and evaluates if it is still a valid combination.

A hammock may not qualify for predication due to the occurrence of any of the
following: backward branches, indirect branches, unconditional jumps that are not
related to one or more conditional branches, subroutine calls or returns and system
calls.

3.2 DCE Pipeline

Although DCE is considered a multipath architecture, its pipeline does not need
much additional support to execute. This Section will describe each one of the
stages.

Figure 3.4 shows the basic stages in DCE pipeline. Although only eight stages are
presented, several others may be introduced at simulation time in order to emulate
deep pipelines. Stages Ren 1 and Ren 2 are responsible for register renaming. In
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DCE this is done in two steps, as renaming is more complex than usual. The other
stages, i.e., fetch, dispatch, issue, execute, write back and commit are similar to the
ones found in regular superscalar architectures, with slight differences. Each stage
is presented in the following Sections.

\ Fetgl > Ren 1] > Ren 2> Dispatch |~ Issue | » Exec -~ WB |- Commit]|

Mem Hierarchy

Figure 3.4: DCE pipeline

3.2.1 Fetch

As in a common superscalar architecture, the fetch stage is responsible for bring-
ing instructions from the I-cache. Additionally, in DCE, the fetch stage decides
whether or not a qualified branch will be predicated.

This stage is implemented as a finite state machine with two states: prediction
and predication. When the fetch stage is under prediction mode, it works exactly
as a common fetch, performing the following tasks:

e Bring in a line from the memory system;
e Predict a conditional branch, if any;
e Determine the predicted address and,

e Redirect the fetch if the branch is predicted as taken.

The prediction is done by a regular branch predictor, such as a hybrid mechanism
(MCFARLING, 1993). The idea, however, is to predict only part of the branches,
while predicating others, as discussed previously. Thus, the processor keeps on
fetching and predicting branches as usual, until a qualified branch is fetched into
the pipeline.

At this point, the architecture changes its state, going to predication. In this
state the fetch will determine the join point, based on the compiler information,
and access the I-cache in order to bring all instructions between the branch and this
address. This means that both paths of the branch will be brought into the pipeline
and delivered to execution. The idea is simply to eliminate the need to predict this
branch.

After the join point is fetched, the architecture automatically returns to the
prediction state until a new qualified branch is brought to the pipeline.

One cans condute that no significant logic is added. In fact, the branch predictor
may be even simplified, because it is performing fewer predictions.
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3.2.2 Register Rename — First Stage

As mentioned before the scheme to rename registers was derived from a previous
work, which is described in (CHAVES FILHO et al., 1999). In that work, another
multipath architecture was defined and a very similar register renaming scheme
implemented.

Register renaming is the most complex stage in DCE architecture and this was
the main motivation to have it divided into two separate stages. This higher com-
plexity is mainly due to the replicas generation. Initially, all replicas are created and
tagged according to their position in the instruction flow. Then, after that, they are
actually renamed.

Thus, this first stage was designed to tag the instructions according to the path
they belong and also to produce all replicas necessary to keep correctness among
different data chains. This is extremely necessary in order to allow the architecture
to keep track of all paths that are executing in the pipeline. At commit stage,
the architecture will retire only instructions from the correct path and they are
identified by their tags (or tagids). So, each path has a single and unique tag and
all instructions from that path are tagged with that same id.

Moreover, after the join point several replicas may be created, each one cor-
responding to a different path. After the join point all instructions are control
independent, but many are data dependent still. So, all these data dependent in-
structions are replicated in order to maintain semantics. There is one replica for each
path available, i. e., DCE will replicate five times all data dependent instructions
after a branch which originated five paths, for example. Replicas will be generated
until the original branch is resolved and the architecture knows the correct sequence
of replicas to choose.

3.2.3 Register Rename — Second Stage

The second part of the register renaming is where occurs the actual renaming.
Each logical register is mapped to a physical register.

The main difference between DCE register renaming and a conventional renam-
ing stage is that there are several mapping tables, one for each active path. This is
done in order to make it easier to identify which registers are being used by which
path. This is especially useful when retiring and flushing correct/incorrect paths.

As discussed earlier, as the number of mapping tables limits the maximum num-
ber of paths, it also limits the maximum number of replicas, because there will be
one replica for each active path.

The register renaming itself is very similar to the original algorithm described
in (TOMASULO, 1967), where logical registers are mapped (and re-mapped) to
physical registers every time a given register is written.

Moreover, these tables do not store large amounts of data and they do not
represent a significant implementation issue.

3.2.4 Dispatch

The dispatch stage in DCE works similarly to a common dispatch stage found
in any superscalar machine. It takes renamed instructions from the previous stage
and moves them (in order) to the ReOrder Buffer (ROB), allocating a new entry to
each instruction dispatched. After this, the instructions are ready to be issued to
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the execution.

3.2.5 Issue

As many others superscalar architectures instructions are issued out-of-order
and the issue stage is responsible for scheduling the instructions. The idea is to
issue instructions as soon as possible, depending on the availability of the operands
and functional units.

Instructions with ready operands are delivered to execution, if there are func-
tional units available. As all WAR (Write After Read or false dependencies) and
WAW (Write After Write or output dependencies) were solved by register renaming,
only RAW (Read After Write) dependencies are to be observed by this stage. So,
an operand is ready when there are no other pendent instructions writing on it.

In DCE, as several paths may be in course, issue stage is also responsible to
assure correctness among load/store instructions. In this stage, addresses of all
load instructions are checked against the addresses of the store instructions not
completed. These store instructions may be located in the same path or in any
other active path that originated the one being issued. In this case, addresses have
to be compared. If addresses match, new values are updated directly in the 1d/store
queue. The idea here is to propagate store values to all loads that came after them.
This process, known as memory disambiguation, is also performed in conventional
superscalar architectures. The difference is that in a conventional superscalar only
the addresses are tested, while in DCE, addresses and tagids are verified. Hence, just
an additional comparison is required by DCE. This comparison is less complex than
the one necessary to the addresses and both of them can be executed in parallel.

3.2.6 Execution

The execution stage has specialized functional units and the execution is per-
formed out—of-order. Also, as soon as the results are ready, they are broadcasted
to any instruction in issue which needs this result.

3.2.7 Write Back

The write back stage in DCE is also very similar to one in any superscalar
architecture. This stage is responsible to mark in ROB all instructions that finished
execution and are ready to commit. This stage is fundamental to assure the correct
commit order. A given instruction is going to be delivered to commit only when all
previous ones were executed and delivered as well. This is especially relevant during
the flush due to mispredictions. When a misprediction is detected, all instructions
after the mispredicted branch are squashed. This order is guaranteed by the ROB.

3.2.8 Commit

Commit stage in DCE is slightly different from a regular commit. In DCE,
this stage is responsible to retire all correct instructions, i. e., all instructions from
correct paths, no matter if branches were predicted or predicated.

As in fetch stage, predicted branches are handled as usual. The branch predictor
is updated according to the result of the branch and if a misprediction occurs the
pipeline is flushed and all instructions squashed. The fetch will be redirected to the
correct path, while all buffers and tables are cleaned as well as physical registers are
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freed. This will affect all instructions executed speculatively after the mispredicted
branch.

A predicated branch may be executed speculatively, as part of a mispredicted
path. This hammock is treated as any other structure and is flushed as well. In
this case, all paths are going to be flushed, because all of them were speculatively
fetched to the pipeline.

However, when a non-speculative predicated branch is ready to commit, the
pipeline follows a different approach. In this case, the pipeline has to squash all
incorrect paths fetched and executed before. This is done using the tagid of each
path as a reference. Basically, all instructions originated by the correct path are
marked to be committed and all others are marked as invalid. The commit stage
has to broadcast this result to avoid that instructions from incorrect paths get issued
and executed. As soon as the branch is resolved, only the correct path is maintained
in the pipeline. All other instructions are invalidated.

Finally, this stage is also responsible to free all physical registers from the com-
mitted instructions.

3.3 DCE Optimizations — the CIDI Approach

As many replicas are created in order to maintain correctness, a large number of
new instructions is created. In some cases, these instructions are exactly the same
and there is no reason to keep all of them in the pipeline. Hence, DCE architecture
features a mechanism to detect and invalidate such instructions. This mechanism is
called CIDI (Control Independent, Data Dependent) and it is very useful to handle
at least some of the pollution produced by DCE replicas.

Figure 3.5 shows an example of code with CIDI instructions.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

if (a==b) {// 11
C

=a+b// 12 |
}d:a—b;//IS
- else {
: cC = a; // 14
| d = b; // 15 |
| e=a+cy/ 16
-} |
- a = b; /7 17 |
 b=c+d; /718 |

Figure 3.5: Code example with CIDI and non—CIDI instructions

It is possible to see that instructions 12, 18, 1, 15 and 16 depend on the result of
the instruction /1. Instructions /7 and I2 are going to be executed just in case the
branch I7 is not taken. Similarly, instruction 14, I5 and 16 are going to be executed
when the branch I7 is taken. Thus, the correspondent registers for variables ¢ and
d are going to be assigned with different values, depending on the branch outcome.
Moreover, the correspondent register of variable e will not be assigned, if the branch
is not taken. These instructions are, then, known as control dependent, i.e., they
directly depend on a given branch.
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Instructions I7 and I8 are not control dependent because they are going to be
executed anyway, i.e., it does not matter if the branch is taken or not. Instruction
18, however, depends on the data which is being generated differently on each path
of the branch. This instruction is control independent, but data dependent as it
belongs to both data chains. On the other hand, instruction /7 is said to be control
independent and data independent, as it is going to be executed either way and it
does not depend on data produced by instructions in one of the branch paths.

Control Independent Data Independent instructions do not need to be executed
eagerly by DCE, as their correctness are not a concern. DCE architecture detects
these instructions and invalidates them during execution. This reduces some of the
pollution, saving resources for non-cidi instructions.
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4 DCE LIMITATIONS

DCE effectively decreased the misprediction occurrence but this was not enough
to improve performance significantly (SANTOS, 2003). The main problem is the
side effects introduced by the predication mechanism.

In this Chapter, the DCE limitations are studied.

4.1 Simulation Environment

The results presented in this Chapter were achieved by simulations using the
sim-dce simulator. Sim-dce, a sim-outorder based simulator, is fully described in
(SANTOS, 2003). This simulator implements the pipeline described in the previous
Chapter, including register renaming and a configurable number of pipeline stages.
In fact the later aspect was the only additional feature added to the sim-dce imple-
mentation in order to run the simulations shown in this Chapter. In the original
DCE simulator the number of stages was restricted to the seven basic ones. In or-
der to simulate deep pipelines, additional cycles for misfetches and mispredictions
could be introduced. In this new version, however, this is not necessary, because
there are actually virtual stages (delays) in between the stages. These delays may
be introduced in two different points of the pipeline: between the register rename
(stage two) and the dispatch, and between the write back and the commit. In all
the simulations five cycles were introduced between the write back and the commit
and three additional ones between the register rename and the dispatch. This means
that a 15-stages deep pipeline was used in all simulations.

This Chapter presents two sets of experiments. The first one, showed in Ta-
ble 4.1, considers an aggressive wide-issue architecture. These configurations are
non—practical and are not to be compared to a state—of-the—art commercial micro-
processor organization. The idea in using such configurations is two verify the results
expected for the next microprocessor generations. The second set is described in
Table 4.2 and it is based on current superscalar architectures.

The benchmarks used in these experiments were: ccl, ijpeg, go, perl and m88ksim,
from SPECint95. These benchmarks were a subset of the ones used in (SANTOS,
2003).

In these simulations 600 million of instructions were executed, but the samples
for statistics were counted only after 300 million of instructions executed. Table 4.3
shows the benchmarks and the inputs simulated.

In order to optimize the DCE hardware, it is necessary to better understand
its hazards. The goal of these simulations is to identify the points where the DCE
architecture shows performance improvement as well as its bottleneck(s).
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Table 4.1: Configurations used in original DCE experiments (large architecture)

Parameter ‘ Configuration
Fetch width 16, 32 and 64 instructions
Decode width 16, 32 and 64 instructions
Issue width 16, 32 and 64 instructions
Load/Store queue 128 instructions
Instruction window 512 instructions
Integer FUs 32 FUs
Integer Mult/Div 32 FUs
FP FUs 32 FUs
FP Mult/Div 32 FUs
Memory bus width 512 bytes; 32 cycles first chunk
L1 I-Cache 512 Kbytes; 1 cycle hit latency
L1 D-Cache 64 Kbytes; 1 cycle hit latency
L2 unified cache 16 Mbytes; 1 cycle hit latency
Branch prediction scheme 2 level adaptative with
2048 history registers and 14 bits history;
BTB with 512 sets, 4-way associative
Return address stack 128 entries
Renaming tables 128, 256, 512, 1024 tables
Maximum branch size to predicate | 64 instructions
Classes of predicated hammocks simple and complex (all)

4.2 The Effect of Replicas in DCE Performance

4.2.1 Effects in a Wide—issue Superscalar Architecture

As stated before, DCE main goal is to increase performance by reducing the mis-
predictions. Thus, the first aspect to be studied in this Chapter is the misprediction
rates.

Figure 4.1 shows the misprediction reduction for the different benchmarks in
DCE. The horizontal axis presents the different configurations simulated varying
the number of mapping tables (M) and the architecture width (W). The number of
mapping tables determines the maximum number of active paths supported and the
width determines the number of instructions that can be renamed, issued, executed
and committed per cycle. Each line in the Figure means a different benchmark
simulated. All percentages were calculated over the baseline architecture, configured
using the same parameters showed in Table 4.1, but with no predication allowed.

The Figure shows that there is really an effective misprediction reduction espe-
cially in benchmarks cc1, go and #jpeg. In benchmark go, for example, the mispre-
diction reduction may achieve 23% in a 64—wide pipeline with 1024 mapping tables.
Benchmark cc1, which is well known by its hard-to—predict branches, can achieve
around 8% of misprediction decrease. Benchmarks m&88ksim and perl, however, have
shown a low misprediction reduction. In these benchmarks, the number of predi-
cated branches was up to 45% lower than in cc1, for example. When a larger number
of branches are predicating, there is also a larger chance to reduce misprediction.

It is also seen that there is no significant change when the number of mapping
tables is increased. This means that the architecture reached its maximum number
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Table 4.2: Configurations used in original DCE experiments (small architecture)

Parameter

‘ Configuration

Fetch width
Decode width
Issue width
Load/Store queue
Instruction window
Integer FUs
Integer Mult/Div
FP FUs

FP Mult/Div
Memory bus width
L1 I-Cache

L1 D-Cache

L2 unified cache
Branch prediction scheme

Return address stack

Renaming tables

Branch size to predicate

Classes of predicated hammocks

4 and 8 instructions

4 and 8 instructions

4 and 8 instructions

64 instructions

128 instructions

2 FUs

1 FUs

2 FUs

1 FUs

16 bytes; 100 cycles first chunk

32 Kbytes; 1 cycle hit latency

32 kbytes; 1 cycle hit latency

512 Kbytes; 5 cycles hit latency

Hybrid with 2048 entries meta-table and
2 level adaptative gshare xor with 13 bits
history and BTB with 512 sets, 4-way associative
128 entries

4, 8, 16, 32 and 64 tables

8 instructions

simple and complex (all)

Table 4.3: Benchmarks inputs used in the simulations

Benchmark ‘ Input

ccl (Int) -quiet -funroll-loops -fforce-mem -fcse-follow-jumps
-fcse-skip-blocks -fexpensive-optimizations
-fstrength-reduce -fpeephole -fschedule-insns
-finline-functions -fschedule-insns2 -O cp-decl.i -o ¢p-decl.s

go (Int) 50 21 9stone2l.in

ijpeg (Int)

m88ksim (Int)
perl (Int)

-image_ file vigo.ppm -compression.quality 90
-compression.optimize _coding 0
-compression.smoothing factor 90 -difference.image 1
-difference.x stride 10 -difference.y stride 10
-verbose 1 -GO.findoptcomp

-c < ctl.raw

primes.pl < primes.in

of spawned paths before 128.

Figure 4.2 shows the speedup achieved by DCE over the reference architecture.
The horizontal axis of the Figure presents the different configurations simulated
varying the number of mapping tables and the architecture width. The vertical axis
presents the percentage of gain/loss in DCE speedup over the baseline architecture.
Each line in the Figure means a different benchmark simulated.

As expected, benchmarks go and #jpeg achieved the best results. In a 64—wide
architecture with 1024 mapping tables, benchmark go achieves up to 12% of speedup
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Figure 4.1: DCE misprediction reduction (large architecture)

increase. Benchmark 7jpeg also presented significant results, achieving around 6% of
improvement for all configurations. Benchmark perl has negative speedup in some
cases, but it also achieves up to 3% of improvement, depending on the architecture
width. Benchmarks ccl and m88ksim did not present results similar to the other
benchmarks. In fact, for these benchmarks there was no speedup, except for 32 and
64-wide issue in m88ksim simulations.

Figures 4.3 and 4.4 shows the overhead produced by the introduction of pred-
ication. The overhead is the number of additional instructions executed by the
architecture when DCE optimizations are turned on. In both Figures the horizontal
axis are the configurations, while the vertical axis shows the percentage of overhead
introduced. Each bar means a different benchmark in Figure 4.3, while 4.4 shows a
single bar meaning the harmonic mean of all benchmarks for a given configuration.

Unfortunately, it is possible to conclude that the overhead has a more direct im-
pact over speedup than the misprediction reduction. Benchmark mé&8ksim achieves
the highest overhead, up to 178% in some cases. This is probably the main reason
for its poor performance. These largest overhead rates correspond to larger width
architectures, the same ones that m88ksim got its smallest speedup performances.

Benchmark ijpeg achieved the lowest rates of overhead (around 16%) and a great
misprediction decrease (around 15%). This resulted in almost 7% of speedup in-
crease over the baseline. And if no overhead were introduced, the speedup would
probably be even better.

In average, even using a mechanism to identify control independent data in-
dependent (CIDI) instructions, the overhead introduced grows linearly with the
architecture width increase. In the worst cases, achieved in 64-wide pipelines, the
overhead can reach more than 70% of the instructions. This means that, in aver-
age, there are 70% more instructions being fetched, decoded, renamed, dispatched,
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Figure 4.3: Overhead produced (large architecture)

M1024W32
M1024 W64

issued, executed and committed in the DCE pipeline. Moreover, this can explain
some of the results achieved in terms of DCE speedup.
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Figure 4.4: Harmonic mean of overhead produced in all benchmarks simulated (large
architecture)

4.2.2 Effects in a Small Superscalar Architecture

This Section evaluates the results achieved by architectures configured to be
similar to the state-of-the—art microprocessors. The number of mapping tables was
also reduced compared to the previously executed experiments. The large number
of tables did not produce a significant gain neither in misprediction reduction nor
in performance.

The detailed description of the configuration used in this set of experiments is
found in Table 4.2. The baseline architectures of this Section were configured using
the same parameters showed in this same Table, but no predications were allowed.

Figure 4.5 shows the misprediction reduction for the small architectures. The
horizontal /vertical axes are similar to the ones presented in the previous Section.
The percentage showed in the vertical axis of the Figure was calculated comparing
the misprediction occurrence of the architectures simulated with and without DCE
optimizations. A misprediction reduction of 20% means that, using DCE, there were
20% less mispredictions, comparing to the conventional superscalar.

It is possible to see that DCE does not affect any configurations with only four
mapping tables. In this case, when there are not enough resources for DCE to spawn
new paths, and the architecture dynamically decides not to do so.

Benchmarks cc1, go and #jpeg have similar behaviors and decrease misprediction
significantly and constantly in a range that varies from 7 to 18%. Benchmark perl
has better results when the architecture width is increased from 4 to 8 instruc-
tions. However, the most peculiar result is reached by benchmark m&88ksim. After
increasing the number of mapping tables from 4 to 8, this benchmark reached a
misprediction reduction of 100% and maintained this rate for all simulations, except
for a 4-wide architecture with 8 mapping tables, where the reduction was around



48

96%.
o DCE Misprediction Reduction
iipeg (Small Architecture)
A—A mssksm
100 ] ¢— pet
80 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
;\a 60 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
H
B
=}
S
oo T
20 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
M N d
< @ ~ e ~
o % | | | | | | | |
= = 2 = g g & & ¢ 2

Figure 4.5: DCE misprediction reduction (small architecture)

Figure 4.6 depicts the speedup achieved by DCE in these simulations. Both axes
are the same ones presented in the previous Section.

Like in previous Section, the best results were achieved by the benchmarks with
largest misprediction reduction. Benchmark m&88ksim, for example, achieves more
than 15% of speedup over the baseline. Nevertheless, benchmarks ccl and go pre-
sented a performance degradation, which achieved up to 3% in cc1. In benchmark go
this degradation was very low less than 1%. This degradations happened even with
significant misprediction reduction, as shown in Figure 4.5. Again, this is due to the
side effects generated by predicating instructions. Even with some low speedups,
these results are better than the ones reached by the wide—issue DCE architectures.

Figure 4.7 shows the overhead produced by the small configurations architecture.
The vertical and horizontal axis are again similar to the previous Section.

It is possible to see that benchmark m88ksim had a great decrease in the number
of executed instructions. This means that the misprediction reduction rate was
large enough to overcome the overhead problem and present a smaller number of
instructions being executed. The overhead, however, is still significant on benchmark
ccl and some cases of benchmark perl. These are the same benchmarks with poor
performance as previously shown in Figure 4.6.

Figure 4.8 shows the harmonic mean of the overhead behavior. Both axis in this
Figure are also similar to the ones showed in the last Section.

It is possible to see that, in general, the number of instructions executed were
smaller in DCE. In general, for these small configurations, CIDI mechanism managed
to reduce the overhead produced by DCE. Also, the misprediction reduction was
enough to show some significant speedup increase.

Despite presenting an interesting potential, predicating branches, specially in
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Figure 4.7: Overhead produced (small architecture)

wide-issue architectures, introduces a large overhead which hides the potential ben-
efits of predicating them.

In DCE, the alternative to the pipeline saturation is to predicate just part of the
branches. It is possible to see through the simulations results showed in this Chapter
that this is not enough, mainly when simulating very wide-issue architectures.
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If all paths are fetched into the pipeline, several instructions may be replicated.
As discussed before, this happens because both paths converge to a single join point
and many instances of the same instruction may be created to assure correctness.
However, only one of these instances is committed and all others are canceled as
soon as the output of the branch is known. Those copies are pollution and they
must be avoided. The alternative is to find the join point of the paths and activate
it just once.

This task can be performed through mechanisms that explore, for example, con-
trol independence (ROTENBERG; SMITH, 1999). Nevertheless, control indepen-
dent instructions may be data dependent and the problem would not be solved.
Each instance of a control independent path belongs to a different data chain.

Value prediction mechanisms could be used, dispatching data with no delays.
In DCE, however, this approach has a great disadvantage: value prediction, as
branch prediction, is a totally speculative mechanism, which can cause loss of cycles
due to mispredictions. DCE architecture was conceived originally to decrease the
number of mispredictions through the reduction of the predictor use. In this specific
case, branch tables tend to be smaller, leaving more room available to resources for
multipath execution.

An alternative to be considered in DCE concept is to reuse the values produced
in previous executions. Previous works have shown that, in some cases, more than
50% of the instructions executed are re-executed later. Those experiments were
performed in conventional superscalar architectures, with no predication (SODANI,
2000).

Figure 4.9 shows a simple example of redundant replicas in DCE. Assuming that
instructions A1 and A2 are the join point of the predicated branch DI and they
read values produced in both paths of D1, DCE will introduce replicas A1°, A2’
A1” and A2” to satisfy the dependences correctly.
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If an instruction at the join point reads a register that is produced logically
before D1, DCE will not introduce multiple replicas of that instruction since the

instruction is control independent and data dependent with relation to the paths of
the predicated branch (SANTOS, 2003).
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Figure 4.9: Redundant instructions introduced by DCE

Reuse values is a natural way to reduce this cases and the present work intention
is to analyze the behavior of such mechanisms in DCE. The next Chapter intro-
duces the topic and discusses how it is done in a Dynamic Conditional Execution
architecture.
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5 PREVIOUS WORKS

The idea of reuse instructions dynamically is not new and it was proposed for
the first time by Sodani and Sohi in (SODANI; SOHI, 1997a), which later originated
(SODANTI; SOHI, 1997b, 1998) and (SODANTI, 2000).

In these works the authors detected that many executed instructions are re—
executed and that in some specific cases more than 50% of the instructions are
fetched again into the pipeline.

In order to take advantage of this behavior, they proposed the introduction of a
new buffer in the microarchitecture. This buffer, called Reuse Buffer or RB, stores
previously executed instructions, which may have output values reused later. They
evaluated three different organizations for the RB: the Sv scheme, the Sn scheme
and the Sn-+d scheme, which are explained later.

In all schemes, the instruction’s PC indexes the RB. Thus, when a given instruc-
tion enters in the pipeline, it has its PC compared to the ones found in the RB. If
they are the same, i.e., if this instruction is stored in RB, the source operands are
investigated, performing what was called a reuse test. If the operands match, the
instruction in the pipeline is reused, while it is executed as usual if their operands
are different. Instructions are introduced in the RB as they are committed. In-
structions with different operands are updated in this stage as well. Each scheme,
however, has a different organization regarding to the operands and what kind of
fields are to be tested.

The first scheme, called Sv, stores directly the value of the operands. When the
instruction fetched is found to be the same as the one in RB, their source operands
are compared and the output value is reused if this comparison is successful.

The second scheme, called Sn, stores the register names, instead their values.
The goal of designing such scheme was to simplify the reuse test. Now, the RB does
not need to have long fields to store the value of the operands. When an instruction
writes in a register, all other entries in RB, which read this register, are invalidated.
The authors, however, did not discuss the overhead caused by the search for these
instructions. And, although the reuse test is based in smaller comparisons, there is
also additional overhead to find the real physical registers mapped to those logical
registers marked in the RB. The authors did not approach this problem.

The third and last scheme proposed was the Sn+d. This scheme is an extension
of the second one and, besides the registers, it establishes and stores the data chains.
The idea behind this scheme is to avoid the invalidation in instructions with destina-
tion registers updated. This is done by storing all physical registers in an additional
table and linking the RB source operands fields to their latest value. When a given
instruction writes in a register, all other entries in RB that read this register are
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then updated, because now they have that link between physical registers.

The results of this work have shown that scheme Sv obtained the best results
using larger tables. In a 1024-entries RB the harmonic mean of the reused instruc-
tions in all benchmarks simulated achieved 25%, against 12.5% in Sn scheme and
20.6% in Sn+d.

Although the speedups did not increase in the same rate as the number of reused
instructions, they are also significant. For the same number of RB entries, Sv scheme
reached almost 15%, Sn achieved 7.5%, while Sn+d achieved more than 10% of
performance increase.

In spite of Sv scheme has reached the best results, its implementation has to be
reviewed carefully. The main concern here is relative to the size of the operand fields
as well as the complexity of the comparison in the reuse test.

After Sodani, several researches were started with the idea of reusing instructions.
Nevertheless, several of these studies are focused in different levels of the reuse
granularity.

Huang and Liljain (HUANG; LILJA, 1998) have proposed block reuse, which was
further studied in (HUANG; CHOIL; LILJA, 1999; HUANG; LILJA, 1999, 2000a,b).

In these works, the authors try to reuse not only a single instruction, but also
a whole basic block. The RB was replaced by a Block History Buffer (BHB), were
previously executed basic blocks are stored. In this case, instructions located in
between branches are stored together and reused in their next executions. This
scheme is useful especially in a misprediction occurrence. Ideally, the mispredicted
path will be stored in BHB and the cost to execute the right path is smaller. The
reuse test is performed using the input registers values and execution is skipped if
they are the same. The output register values are then saved as if they were also
executed. The idea is very similar to instruction reuse, in a different level.

The size of the BHB is an issue, because basic blocks sizes varies depending on
the application, as said before. In this study simulations point that 90% of the basic
blocks have less than four input registers and five output registers. This means that
each entry of the BHB will not have more than ten registers stored to cover 90%
of the basic blocks. They also modified their compiler to reach better results and
save resources. Their compiler was modified in order to mark registers which are
actually part of the basic block, but are not going to be used after its execution,
saving register positions in the BHB.

The authors found that the upper bounds of this technique range between 1%
and 37%, with average around 15%, depending on the benchmark. They concluded
that this kind of technique relies strongly on the value locality of the basic blocks.
Further studies also extended this model to speculate values, which are not ready
when the reuse test is performed.

Trace reuse is other alternative to reuse not just instructions, but part of the
code at once. This was studied by Gonzélez, Tubella and Molina in (GONZALEZ;
TUBELLA; MOLINA, 1998; GONZALEZ; TUBELLA; MOLINA, 1999) and also by
Costa, Franca and Chaves Filho in (COSTA; FRANCA, 1999; COSTA; FRANCA;
CHAVES FILHO, 2000; COSTA; FRANCA; CHAVES FILHO, 2000). The ideas
of those works are similar and they propose to reuse not a single instruction or a
basic block, but a trace. Basically, a trace is a sequence of contiguous instructions
dynamically extracted from a given program.

The study conducted by Gonzélez et al. proposed that the RB would be replaced
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by the Reuse Trace Memory or RT'M. The traces are built on the fly, according to
the execution. To start a trace, a reusable instruction has to be detected and the
trace will end when the first non-reusable instruction is found after that. Reusable
instructions may be detected through input values (or registers) comparisons, just
like a single instruction reuse mechanism. The traces to be reused are identified
at the fetch stage. After that, all output registers are updated and the fetch is
redirected to the next PC after the trace. All these information, i.e., input regis-
ters/values, output register/values as well as the next PC after the trace are stored
in RTM. If input values are different, RT'M is then updated at commit stage.

Typically the trace sizes are in average small and not larger than 8 instructions.
The speedup average produced by this mechanism over instruction reuse itself is
around 4%, but it can reach as high as 20% in some specific benchmarks. Their
study also pointed that larger speedups are achieved in benchmarks which produced
larger traces, such as hydro2d, su2cor, tomcatv and ijpeg.

Costa, Franca and Chaves Filho proposed a similar mechanism, called the Dy-
namic Trace Memoization (DTM). They replaced the RB by two separate tables, the
Trace Memoization Table and the Global Memoization Table (Memo_ Table G). In
this approach, values may be reused in a trace or, alternatively, as single instructions.
The traces are built according to the input and output contexts of each trace.

The registers used as source operands for the trace form the input contexts. The
reuse test is performed over these registers. Hence, if the values in these registers
are the same encountered in the trace being fetched, it can be reused. Moreover, the
output context is the set of registers that are produced in the trace and their values
may be used by other instructions after the trace. These values are the ones to be
reused and updated in the destination registers. Instructions that are part of the
trace but do not produce an output context, may be eliminated from the pipeline.
Obviously, this cannot be done when reusing single instructions, because destination
registers may be used by any subsequent instructions.

The trace is formed in a conservative way and all instructions have to be reused
first in order to be included in a trace. When a instruction commits it is stored in
the first table, the Global Memoization Table. This table works as a Reuse Buffer
and stores single instructions. After this instruction is reused, the trace starts to be
built and the last instruction in the trace is the last instruction reused or any other
instruction that are not part of the reuse domain. The trace is then stored in the
Trace Memoization Table (Memo_Table_T). Thus, next time the first instruction
of the trace is fetched, DTM will perform the reuse test over the registers in input
context, as discussed before. If the trace cannot be reused, DTM tries to do single
instruction reuse.

This research pointed similar results as the ones found in (GONZALEZ; TUBELLA;
MOLINA, 1999). The harmonic mean of all benchmarks speedups is around 5%
greater than using single instruction reuse. This work later originated (COSTA,
2001).

A later work proposed in (PILLA, 2004) added value prediction to DTM. The
main idea of this research is to speculate values for not ready inputs and therefore
reuse traces that were not being reused in the original D'TM.

Although value prediction is another good alternative to improve performance, it
is not the intention to implement such approach is this research. The main problem
with these mechanisms is the same observed in any branch prediction. Mispredic-
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tions can cause a large number of lost cycles and besides the predictor itself, confi-
dence mechanisms are also necessary in order to avoid that mispredicted values lead
to performance decrease. Moreover, DCE main goal is to decrease mispredictions
by avoiding predicting.

Sastry, Bodik and Smith also studied an approach with an even more aggressive
coarse—grained instruction reuse in (SASTRY; BODIK; SMITH, 2000). In this work,
they tried to increase the reuse granularity to the other extreme, reusing entire
regions. A region is typically much larger than a trace and according to the authors
55% of all dynamic instructions may be reused using this approach. This work,
however, is totally empirical and does not offer simulations results of performance.

Citron and Feitelson in (CITRON; FEITELSON, 2002) revisited the concepts
of reusing instructions. They found that instruction reuse does not offer much
improvement on overall performance, if fine-grain mechanisms are applied. They
compared Sodani and Sohi work with two other schemes for single instruction reuse.
The authors found that all mechanisms studied, which reuse only one instruction
at once, do not achieve more than 1% of improvement in performance, in average.
They suggested that previous works performed in the field abstracted very important
details for a real implementation. They say, for example, that source operands
are ready only at issue stage, which is not considered in previous studies. Thus,
instructions could not be reused before this stage. They also discuss that mechanisms
which employ such approach reach their best results in FP benchmarks due to the
large latency saved by the reused instructions.

This is an interesting work that studied different reuse mechanisms, proposed in
late 90’s, under new perspectives and with new simulation techniques. Nevertheless,
the authors did not consider that source operands may be really ready before issue
stage. This is not true in all cases, of course, but if no dependences are observed
among instructions, their source registers and values are known just after renaming
stage.

Furthermore, the authors did not approach what is maybe the worst problem in
reusing single instructions. When a instruction is reused resources and bandwidth
from dispatch, issue, execution and writeback are saved. This means that a larger
number of instructions maybe fetched into the pipeline and this may be done faster.
However, those reused instructions are maintained in the ROB waiting for instruc-
tions that come before them to be delivered to commit. Even being completed, the
instruction has to wait in the pipeline in order to keep semantic correctness.

Wallace et al. studied instruction recycling in a SM'T architecture with multiple
paths of execution (WALLACE; TULLSEN; CALDER, 1999). Instruction recycling
is yet another technique related to instruction reuse. The idea here is to allow
previously executed instruction to be re—inserted in the pipeline without fetching it.
The recycled instructions may also be reused as usual, if operands are still the same.

Instruction recycling is specially interesting when using a Simultaneous Multi-
Threaded approach or when running programs with a high rate of hard—to—predict
branches.

Typically, architectures that fetch and execute several threads and/or paths al-
ways squash the wrong ones as soon as they process the outcome of the branch that
originated the different paths. In this case, this is not true. A previously executed
thread is not squashed right away, but it is just marked as inactive. Hence, when the
processor detects a new path that has a similar one inactive, it allows recycling. This
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means to eliminate a re—fetch (and a eventual I-cache miss), freeing fetch bandwidth
for other instructions and paths. Also, if the new path and the one being recycled
have identical operands, the reuse is allowed as well. This means to save resources
and dispatch, issue, execution and writeback bandwidth.

The results of this work showed a performance improvement of up to 12%, when
comparing to a conventional SMT architecture.

The experiments performed in that work assumed a very wide and aggressive
SMT architecture. The authors, however, did not discuss in details the impact of
maintaining several old contexts in the resources pool.

As discussed, previous works always proposed value reuse in conventional scalar
and /or superscalar pipelines. This work aims to combine value reuse and dynamic
predication in order to identify the pros and cons of pursuing such approach.
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6 REUSING VALUES IN DCE

There are many advantages of instruction reuse. In DCE model there are three
very significant ones (SANTOS et al., 2003):

e As well as DCE, instruction reuse is a non-speculative mechanism, and thus
there is no need for complex routines of recovery;

e With the large instruction flow from the branch predication, reuse reduces
the utilization of functional units, freeing those resources for non-redundant
instructions;

e The granularity of the instruction reuse may be adjusted and it is possible to
reuse several instructions (traces) in one single cycle, allowing a whole group
of instructions located after a join point to be reused at once.

In DCE, instruction reuse may be speculative in a certain way. Speculation, in
this case, does not regard to the output of a reused instruction, but whether this
instruction is part of a correct path or not. This happens because many instructions
identified as reusable come from different paths that may be flushed later. However,
flush and recovery of a reused instruction is performed normally by the architecture,
because reused instructions are treated as any other one. And even if the reused
instructions are not useful, resources were made available to others and this is really
relevant in a multipath architecture.

While the architecture is in the prediction state, i.e., working as a conven-
tional superscalar architecture, the reuse mechanism presents its normal advan-
tages. Among those advantages, there is one which is especially interesting to DCE.
Depending on how the reuse mechanism is implemented, it is possible to correct
the branch prediction using the reuse table (COSTA; FRANCA; CHAVES FILHO,
2000). Therefore, when a branch is fetched and it has the same inputs as a previous
execution, its output will be available in the reuse table. If the branch prediction
does not match the output from the reuse table, it can be updated and the correct
path may be fetched immediately. This feature is important in DCE context because
DCE intents to reduce the branch prediction support. Now, the use of both predi-
cation and reuse may decrease even more the requirements for that support. Thus,
the branch prediction may be adjusted again due to the side effects produced by
reuse. Also, the execution engine, now overloaded with replicas and other instruc-
tions belonging to wrong paths, can be preserved and used mainly by instructions
that cannot be reused.
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6.1 Instruction Reuse in DCE

As discussed before, DCE is an architecture with support to dynamic predication.
Moreover, instruction reuse mechanism is slight different from the ones proposed in
previous work.

Figure 6.1 shows a superscalar pipeline with a reuse instruction mechanism.

RB

PC‘ Dest‘ Srl‘ Sr2

I'rontend I Backend .
S —{Rename b—{ Reuse e —{ Commit

Figure 6.1: Pipeline with an instruction reuse mechanism

Figure 6.2 shows specifically the Reuse Buffer organization used in this work.
Each field of the Reuse Buffer (RB) is described bellow:

e PC: address of the instruction. The PC indexes the RB;

e OP1, OP2, OP3: all three store the source operand values in order to make
the reuse test. There are three fields due to double precision instructions;

e ADDRI1, ADDR2: both fields store the addresses to be compared in the reuse
test for 1d/st address calculation instructions. There are two fields due to
double precision instructions;

e RES1, RES2: both fields store the instructions results. There are two fields
due to double precision instructions.

PC | OP1 | OP2 | OP3 | ADDR1| ADDR2| RES1 | RES2

Figure 6.2: Reuse Buffer (RB) organization

In DCE, the values of operands are known after register renaming, when the
physical registers are mapped. So, at this point a new pipeline stage is introduced.
In reuse stage, the source registers are accessed in order to identify whether they
are ready or not. If they are ready and their actual input values are stored in one
of the RB positions, the output value stored in the RB is reused. This means that
the output value is written into the physical destination register and it is marked
as ready. All subsequent instructions may read this register normally, as if it was
produced during execution. The reused instruction is then inserted in the Re-Order
Buffer.

The RB is updated according to the execution at the commit stage. If a given
instruction was not reused because the inputs did not match, the RB is updated with
this new data according to a replacement policy, just like a small cache memory. In
DCE, the least recently used way is replaced, when all other positions are already
occupied.
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The most peculiar point of DCE reuse mechanism is that the reuse of branch
instructions is not possible. Normally, instruction reuse would be used to detect
mispredictions earlier in the pipeline, before execution. This is possible because the
branch output may be stored in the Reuse Buffer (RB) and if the target fetched is
different from the one in the RB, a misprediction is observed. The pipeline can flush
the instructions and redirect the fetch. This means that a branch, which would be
regularly mispredicted, is misfetched only.

In DCE this is not done. The problem is when a given branch is a data dependent
instruction from a previously predicated branch. In this case, it has replicas and
each replica has its own path. When the architecture detects that a branch is a
misfetched one, it has to flush and redirect the fetch selectively, according to each
path. This would be hard and very expensive. Thus, a design decision was to not
reuse branch instructions, for simplicity sake.

Figure 6.3 shows an example of this problem. Instruction DI is a predicated
branch, which produced replicas 16°, 16”, D2’ and D2” due to data dependences.
Instructions D2’ and D2” are branches, each one with its own taken and not taken
paths. After their prediction, each one has a flow to follow. If D2” is reused and
detected as misfetched, it would be complex to flush only the instructions on its
path. The pipeline would have to determine which instructions are from which path
and squash only the right ones. This would generate several additional comparisons,
especially if a large number of paths is in flight.
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Figure 6.3: Data dependent branches

As well as branch instructions, system calls are not reused. Memory access
reuse is handled in a different way, described in the following Sections. Address
calculation instructions for load/store are reused as any other common instruction.
Also, instructions that are part of a trace being reused or invalid instructions cannot
be introduced in RB. This issue will be addressed in Section 6.2.

6.1.1 Memory Access Reuse

Reusing a memory access instruction is not a trivial task. First of all, it is clear
that store instructions cannot be reused. These instructions update the memory
and therefore must be processed as usual.
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Load instructions, however, may be reused under special circumstances. The
problem in reusing load instructions is how the architecture can determine whether
or not any store instruction has written in this address since last update. A simple
alternative to that is to invalidate all loads to the address in the buffer. Unfortu-
nately, this would cause a great overhead, since the entire buffer has to be scanned
and invalidated if necessary.

In order to make this practical, there are studies specialized in reuse such instruc-
tions (YANG; GUPTA, 2000; ONDER,; GUPTA, 2001; BODIK; GUPTA; SOFFA,
1999). Nevertheless, it is not the goal of this work to implement such mechanisms.
The intention here is to simplify and make them as simple as possible in order to
reuse at least part of the load instructions, which would be reused if one of those
sophisticated mechanisms were being applied.

As discussed in Chapter 3, in DCE architecture all loads are checked to verify
if there is any store instruction to that address. This is already necessary in the
original DCE to assure semantic among paths.

Hence, if there is a pendent store, it is not possible to reuse because a new value
is ready to update the value of that given address. The load instruction is then
processed as usual, accessing the data cache memory or TLB.

On the other hand, i. e., if there are no store instructions pendent, the Load
Reuse Buffer (LRB) is queried and the value stored is reused if a match is found. The
Load Reuse Buffer is indexed by the load address and holds its previous occurrence.
This Buffer is also updated in commit stage, but stores instructions trigger this
action.

After detect that the load instruction may be reused, the architecture copies the
value stored in LRB to the destination register, marking it as ready and allowing
other dependent instructions to be processed. The instruction is then marked as
completed and waits for commit.

Table 6.1 summarizes the modifications in DCE pipeline stages in order to allow
instruction reuse. It is possible to see that, besides the new stage introduced, only
the issue and commit stages were modified. When memory access reuse is not in
use, the issue stage has no changes comparing to DCE original pipeline.

Table 6.1: Summary of pipeline modifications to support instruction reuse

Modifications

Fetch No changes

Rename (stage 1) | No changes

Rename (stage 2) | No changes

Reuse New stage — performs reuse test,

updates registers with reused values,
forwards reused instructions to ROB
Dispatch No changes

Issue Besides issuing all not-reused instructions,
memory accesses which can be reused are
detected and reused

Stage

Execution No changes
Write Back No changes
Commit Besides committing instructions,

it updates Reuse Buffer (RB)
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6.2 Trace Reuse in DCE

Previous works pointed that an increase in the granularity of the reuse mechanism
can also increase its performance (CITRON; FEITELSON, 2002). The problem with
reusing single instructions is that such instructions are maintained in the ROB, as
any other regular instruction. The instruction is ready to completed just after
rename stage, but it is not allowed to commit before all the previous instructions
have been retired as well. Execution is out of order, but commit is an in order task.

Reusing a trace means to reuse several instructions at once and, in general, the
larger the trace, the larger the number of released resources. In DCE, as discussed
before, it is especially relevant to do so. The trace of replicas created by the ar-
chitecture after a join point makes this approach even more attractive. Moreover,
several traces from different predicated paths, reducing the effect of fetching several
instruction flows.

The largest advantage, however, is that only instructions which produce values
that may be used by others after the trace (output context) are stored in the ROB.

6.2.1 Building and Storing a Trace

Traces are built in the commit stage, as each instruction is being retired from the
pipeline. In a conventional architecture this stage is less complex because only one
path is in course. In DCE, several paths may be in the pipeline and this task more
difficult to be performed. In fact, one may observe that DCE traces grow not just
in the vertical, but also in the horizontal due to the replicas introduced. This means
that besides the regular flow (vertical), there are several instances from the same
instruction (horizontal) as well. As consequence, building a trace may be harder
than the usual.

Before start to discuss how a trace is built it is necessary to understand the
concept of output and input contexts.

The input context of a trace is formed by all the source registers, which are
not being produced in that same trace. The output context of a trace is formed
by all destination registers, which holds values that may be used by subsequent
instructions.

Figure 6.4 shows an example of a trace. This example was extracted from cc1?
benchmark to illustrate these concepts. This Figure shows the PC of the trace,
which is inherited from the first instruction; the next PC after the trace; the input
context size; the output context size; the trace size; the values of the input/output
scopes; as well as all instructions that are part of the trace.

It is possible to see that only registers r2 and r7 are part of the input context.
And although 3 is source register in the third instruction, it is not considered part
of the input context. Register r3 is being produced by the trace itself and it does
not depends on any previous instruction. Moreover, registers 72 and r3 may be used
by instructions that come after the trace and are part of the output context. It
is also seen that only the last instruction producing register 73 is marked. This is
because this instruction holds the last value of r3, and if subsequent instructions
need register r3, this is the value they should get. The trace needs only to store this
last value. As consequence, instructions that produce intermediary values may be
invalidated and retired from the pipeline.

In order to determine the input and output contexts, the architecture uses the
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(TRACE SCOPE): Tag PC: 0x0056c798 : Next PC : 0x0056c7b0

In size 2 : Out size 2 : Trace size 3

In Scope:

R2: 0x00000039

R7: 0x1002eecO

Out Scope:

R2: 0x00000001

R3: 0x1002eec4

Instructions in Trace:

0x0056¢798 : 0000000000 : sra r2,r2,5 *
0x0056c7a0 : 0000000000 : sl1 r3,r2,2
0x0056c7a8 : 0000000000 : addu r3,r3,r7 *

Figure 6.4: Trace example

same algorithm as in (COSTA, 2001). The basic idea is to maintain two bitmaps,
one for each context and update them according to the instructions being introduced
in the trace. In addition, two other bitmaps holding the values of the correspondent
register are required. Each bitmap has 67 positions, which corresponds to all logic
registers available in the architecture. When an instruction is being inserted in trace
the following actions are taken (in this order):

1. If ris a source register and it is not in output context, mark its correspondent
bit in the input context bitmap. Also update its value in the input-values
bitmap;

2. If ris a destination register, mark its correspondent bit in the output context
bitmap. Also, update its value in the output—values bitmap.

Figure 6.5 shows how the bitmaps are formed for the Figure 6.4 example. Input
and output values bitmaps are not showed for simplicity, but they are updated in
conjunction with the input and output registers bitmaps. When instruction 71 is
brought, register 72 is initially marked as input context and then marked as output.
The same thing happens on instruction /2. In this case, r2 is already part of the
input context and only its value is updated. On instruction I3, r7 is then marked
as input context and r2 value is updated. In I3 case, register & is not marked as
an input register, because it is part of the output context already, from I2.

0 1 2 3 45 6 7 66
[0 01 000 0O 0 | input context (11)
‘ 0 01 0 0 0 O O 0 ‘ out put cont ext
(11) sra  r2 r2 5 01 2 3 45 6 7 66
001 000 00O 0 |input context | 2
(12) sii r3, r2, 2 0 01 1. 0 0 00O 0 | output context (12)
addu r3, r3, r7
(13) 0 1 2 3 45 6 7 66
0 0 0 000 1 0 |]input context (13)
0 01 1 0 0 0O 0 | output context

Figure 6.5: Input and output context formation

As in a conventional architecture, it is necessary to keep a temporary buffer
where the trace being built is stored. The traces are permanently stored in the
Trace Buffer (TB) just after the last instruction in the trace is detected.
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There are several heuristics to determine when start to build a trace. Costa in
(COSTA, 2001) decided to build traces only from previously reused instructions.
This work will implement a more aggressive approach, where all instructions part
of the reuse domain are candidates to be part of a new trace. For instance, the
reuse domain considered for this work consists in all instructions part of the target
ISA, except for load/store and branch instructions. Also, traces are not formed with
previously invalidated instructions as well as instructions which are part of another
trace in course.

Therefore, the last instruction in the trace will be the last one belonging to the
trace reuse domain, i.e., the trace will stop if any of the following happens:

e A load/store instruction is found;
e A branch instruction is found;
e An invalid instruction is found;

e An instruction part of another trace being reused is found.

The trace reuse domain is very similar to the instruction reuse domain, as
load /stores and branches cannot be part of a trace.

An invalid instruction is an instruction from a previously predicated hammock,
which was found to be part of the wrong path and was selectively squashed. As
stated above, those instructions are not considered as candidates to be part of a
trace.

An instruction part of another trace in course cannot be included in another
trace because its source operands may not be up to date. This is possible because
instructions, which are in the pipeline and are being reused by a trace, are part of
the output context. If the source operands are also being produced in the trace by
other instruction not in the output context, they may not be correct because that
previous instruction was not executed and those registers were not updated. There-
fore, although the value in the destination register of the output context instruction
is right, its source operands may be wrong. In Figure 6.5, 13 may be a good example
for what may happen. Instruction I2 is going to be invalidated, because it is not
producing the last value of the output context r3. Hence, instruction I3 may have
an old value for its source operand r3, even carrying the right value in its destination
register. Thus, if this instruction is stored either in RB or TB as it is, the reuse
test will be performed over wrong input values, and a wrong output value may be
reused.

Even using the same algorithm to identify input and output contexts, the process
to build a trace cannot be done as in a conventional architecture, as said before.
In DCE, several instruction flows are available to build the traces. If only one
path is active the trace is formed conventionally, i.e., after find all input/output
contexts and reach the last instruction in reuse domain the trace is stored in TB. If
several paths are in course, several traces are going to be formed. And each trace
corresponds to a different path.

As discussed in Chapter 3, the first renaming stage is responsible to create the
necessary number of replicas for each instruction. In DCE, all replicas are located
just after the original instruction and they are all distinguished by their tagids. Reg-
ular traces (vertical traces) are built when two or more instructions with contiguous
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PCs and same tagids are found. Traces from different paths (horizontal traces) are
built when two or more instructions with same PC and different tagids are found.

Figure 6.6 shows an example of how traces from different paths are built. First
and second instructions have the same PC, located in the left part of the Figure.
Nevertheless, they have different tagids, which are located just after the instruction.
When this occurs, the architecture sorts the instructions by their tagids, building
different instances from the same trace. In Figure 6.6 instructions from different
paths are highlighted with different gray scales.

00000000
00000001

0x0056c798 sra r2, r2,
0x0056c798 sra r2, r2,
0x0056c798 sra r2, r2, 00000010
0x0056c7a0 sl r3, r2, 00000000 sra T2 T2 5 00000001

) sra r2, r2, 5 00000000
)
)
)
0x0056c7a0  sll r3, r2, 00000001 % TRACE 2 |sll r3 r2. 2 00000001
)
)
)

TRACE 1 |sll r3, r2, 2 00000000
addu r3, r3, r7 00000000

NN O o1fO1

@x005607a0 sl r3, r2, 2 00000010 addu r3, r3, r7 00000001
©x005607a8 addu r3, r3, r7 00000000
0x0056c7a8 addu r3, r3, r7 00000001
0x0056c7a8 addu r3, r3, r7 00000010

srar2, r2, 5 00000010
TRACE 3 |sll r3, r2, 5 00000010
addu r3, r3, r7 00000010

Figure 6.6: Building a trace

After build the traces and store them temporarily, they are really stored in the
Trace Buffer. Each different instance created is stored in a TB way. If there are
more traces than ways, only the first different ones are going to be stored. The
temporary buffer is then cleared and it is ready to start to build another one. The
TB structure used in this work is showed in Figure 6.7.

e PC: address of the instruction. As in a Reuse Buffer, the PC indexes the TB;
e Next PC: address of the first instruction after the trace;

e Out PCs: addresses of all instructions in output context;

e Input registers: logical registers part of the input context;

e Output registers: logical registers part of the output context;

e Input values: input register values to perform the reuse test;

e Output values: output register values to update the destination registers when
reusing trace.

In previous implementations of trace reuse, the output PCs were not a require-
ment to be stored in TB. In DCE, however, predicated paths are to be squashed
selectively, as it is already known. As a consequence, instructions part of the output
context has to be tagged because they may be part of a predicated hammock and
may be flushed later. This matter will be again discussed in the next Section.

6.2.2 Reusing a Trace

Reusing a trace in DCE architecture is different, specially because there may be
several instances from the same PC in the pipeline. In a conventional architecture,
when a trace is ready to be reused, the fetch is redirected to the next PC after the
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PC | Next PC |Out PCs | Input regs| Output regs | Input vals| Output Vals

PC1 ri ri vl vl
PC2 2 r2 v2 V2
PC3 13 r3 v3 v3
PCn rin m vn vn

Figure 6.7: Trace Buffer (TB) structure

trace. The next PC of each trace is also stored in TB. All instructions between the
beginning and the end of a trace are replaced by entries in the ROB for the output
context only.

On the other hand, this cannot be done in DCE, as traces from different predi-
cated paths may be reused. The problem is such as, when several paths are active,
there will be more instructions between the beginning and the end of each trace.
This is easily seen in the example in Figure 6.6. If the reuse was performed as in
a conventional architecture, instructions belonging to other paths (different tagids)
were going to be retired from the pipeline as well. And this would probably generate
an inconsistent result for the different data chains.

In order to do this, the test for trace reuse is performed yet in the second rename
stage. This was modified in the instruction reuse mechanism implemented because
the architecture needs to avoid the renaming of registers which are not part of the
output context. If the test was left to the reuse stage, an additional logic would be
necessary to look for those registers and roll back to the previous status.

When a instruction is fetched, the TB is queried and if a match is found, the
reuse test is performed. The reuse test consists in verifying if all input registers from
a given path are ready, i.e., if they are mapped to physical registers and with no
pending reads. Hence, the input registers of the trace are used to query the mapping
table of the same path indicated by the tagid from the instruction in the pipeline.

When the reuse test matches, the trace can be reused. This means that the
output values stored in the TB are going to be written to the physical registers
mapped by the output context registers, also stored in TB. The mapping table used
will be the same one queried during the reuse test, determined by the tagid of the
instruction in the pipeline.

At this point all instructions from the trace are still in the pipeline, some tagged
and some not tagged yet. Again, the trace reuse has to selectively remove all in-
structions not producing an output value. This task can be done only after the
instructions pass the first renaming stage, where they are actually tagged. The in-
structions of a trace are commonly not tagged, being tagged in the current or in the
next cycles.

For already tagged instructions, the architecture just verifies which ones produce
output values. In this case, the instruction is kept, renamed, reused and committed
later on according to the value stored in the TB. Instructions tagged but not pro-
ducing output values are invalidated and removed from the pipeline. This occurs
for instructions like the second one, presented in the example on Figure 6.4.

For not tagged instructions there are two basic alternatives. The first one studied
was to consider just traces with all instructions already tagged. Nevertheless, this
resulted in a very low number of traces reused.
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The second alternative was to introduce a small buffer, called the pendent buffer.
As previously stated, the most common situation is to find instructions in the trace
being tagged in a given cycle or in the next one, at the latest. Thus, it is not
necessary a large buffer. Preliminary simulations have shown that ten positions are
sufficient to keep all instructions not tagged until they complete the tagging process.
Thus, for this work, it was assumed a ten positions buffer.

Figure 6.8 shows the pendent buffer organization. It is possible to see that, only
the PC, the tagid and the results values are the required fields. Additionally a bit
called OC (Output Context) identifies whether the buffered instruction produces an
output value or not. Depending on this bit, the instruction is handled differently. If
an instruction does not produces an output value then is invalidated, like if it was
squashed. On the other hand, if an instruction produces an output value, it will be
maintained in the pipeline. This instruction is going to be renamed normally and
the results in the pendent buffer will be assigned to the destination physical register.

0

| PC [ tagid | resl [ res2 | OC |

Figure 6.8: Pendent buffer

Table 6.2 summarizes the modifications in DCE pipeline stages in order to sup-
port trace reuse.

Table 6.2: Summary of pipeline modifications to support trace reuse

Stage | Modifications

Fetch No changes

Rename (stage 1) | Besides tagging, look for

instructions part of a trace

at the pendent buffer

Rename (stage 2) | Perform the trace reuse test — rename
only instructions part of the

output context and invalidate others

Reuse No changes — keep looking for
instructions to reuse
Dispatch No changes
Issue No changes — besides issuing all not-reused

instructions, memory accesses which can
be reused are detected and reused

Execution No changes
Write Back No changes
Commit Besides committing instructions,

it updates the Trace Reuse Buffer (TRB)
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7 SIMULATION ENVIRONMENT

The goal of this Chapter is to present the new simulator developed for this work
as well as to establish the simulation strategy that was adopted to obtain the results.
The following Sections describe each one of these topics separately.

7.1 The Extended sim-dce Simulator

The simulator developed in this work is an extended version of the DCE ar-
chitecture simulator. As stated before, sim-dce (SANTOS, 2003) was developed
based on the sim-outorder simulator, from the SimpleScalar Tool Set (BURGER;
AUSTIN, 1997). As sim-outorder, sim-dce is a highly detailed MIPS-like simulator
which, besides the basic features, implements tagging and renaming of paths and
instructions, code evaluation to mark instructions to be predicated as well as the
predication itself. The rename stage is very complex and sophisticated with physical
registers and a path control scheme. Sim-dce simulator was modified in two steps,
obeying all the architecture constrains described in the previous Chapter. Moreover,
it was first extended to allow instruction reuse only and after that, trace reuse was
developed.

The modification to allow instruction reuse consists mainly in the implementation
of a buffer, called Reuse Buffer (RB), capable of storing instructions of a given
program. Each instruction may be mapped to a specific set /way in the buffer indexed
by the PC.

In order to effectively reuse the instructions stored in the Reuse Buffer, the
architecture has to lookup, find and ultimately reuse the output values. As discussed
previously, this task is performed by a new stage just after register renaming, where
the values of the operands are physically determined. After this point the RB is
accessed with the instructions PC and the value of the operands are compared to the
ones stored in the RB. If the values are the same, the output stored is reused. This
means that the output register is assigned with the new value and this instruction
is freed from passing in dispatch, issue, operands fetch, execution and write back.

The commit stage was also modified. Besides the retirement of all instructions
from the correct paths, this stage is also responsible to forward instructions to the
Reuse Buffer. The RB is always updated according to the last execution and LRU
policy is used as replacement policy.

The second stage of the development was to implement the trace reuse. Again,
the simulator was designed following the guidelines discussed in Chapter 6.

The implementation of a new table, called Trace Buffer (TB) was necessary
to store all traces formed. The reuse test, however, is performed earlier in the
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if (fetched_ PC == PC_in_TB)
for (I=0; i < input_scope_size; i++)
if (value_in_TB ==vaue_in_bank_of_registersand
register_is ready)
dse ready inputs=TRUE
ready_inputs= FALSE
break
if (ready_inputs)
update least_recently used list in TB
for (i=0; i < trace_size; i++)
if (instructions_in_TB_are _in_rename_buffer)
if (register_produces _output_value)
register = value in_TB
register_is ready = TRUE
else
fetched PC =invalid_instruction
else
update pendent_buffer

Figure 7.1: Simplified algorithm for trace reuse

pipeline, in parallel with the second stage of the rename. The idea is to prevent
the instructions that do not produce output values to get renamed. Moreover,
traces from different paths are selectively reused, i.e., one path may be reused, while
others may not. This is possible because the horizontal traces formed by each path
of replicas are selectively reused.

The development of the extended sim-dce required also to implement a second
buffer to store instructions which were not tagged yet. This ten entries buffer,
called Pendent Buffer, store all non-tagged instructions. This is implemented just
after the tagging, in the first renaming stage, allowing the architecture to mark
the instructions as reused in trace when they are producing output values or to
invalidate the ones that do not produce any useful output value.

Instructions marked as reused in trace are not queried to be reused by the in-
struction reuse mechanism. Thus, trace reuse is always the first choice. The RB is
queried only when the instruction is not part of a trace in course. If an instruction
is not part of a trace, the RB buffer is then queried and if a match is found, the
instruction is reused by itself. Figure 7.1 presents the simplified algorithm for trace
reuse.

The traces are built in the commit stage. A trace is a series of contiguous
instructions contained in the reuse domain. In this work, traces are restricted to
basic blocks due to the limitations described earlier. Also, each path is stored in
a Trace Buffer way and the least recently used one is replaced when new traces
are introduced in the TB. Figure 7.2 presents a simplified algorithm used for trace
construction, while Figure 7.3 shows the algorithm for store the traces in TB.

Another important aspect, which may affect directly the results achieved by the
value reuse mechanisms, is relative to the execution latencies of each instruction



if (committed PC ==last PC + 1) or
(commited _PC == last_PC and committed tagid == last_tagid)
if (first_instruction_on_trace)
update input_context_table
o SLépdate output_context_table

if (source register 1> 0)
if (not_part_of output_context)
update input_context_table
if (source _register 2> 0)
if (not_part_of coutput_context)
update input_context_table
if (destination_register > 0)
update output_context_table
update temporary_TB

if (max_number_of _instructions or
max_number_of _inputs or
max_number_of outputs)
store_trace
last_tagid = committed_tagid
last_PC = committed_PC
else
if (trace_in_course)
store_trace
else
first_instruction_on_trace = TRUE
update temporary_input_output_context

Figure 7.2: Simplified algorithm for trace construction

for (i = 0; i < TB_associativity; i++)
if (trace_in_set == trace_being_stored)
store= FALSE
break

o seStore =TRUE
if (store)
least_recently _used_block_in_TB = trace being_stored

Figure 7.3: Simplified algorithm for trace storage

69
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type. In a reuse event, those cycles are going to be saved, because a reused instruc-
tion will not require a FU to execute. Thus, the following latencies were considered
in the simulations performed in this work:

e Logic and arithmetic instructions (Integer) — 1 cycle;

Multiplication (Integer) — 3 cycles;

Division (Integer) — 20 cycles;

Logic and arithmetic instructions (Float Point) — 2 cycles;

Multiplication (Float Point) — 4 cycles;

Division (Float Point) — 24 cycles;

e Square root (Float Point) — 24 cycles.

7.2 Simulation Strategy

The strategy used in the simulations was to vary the resources in two different
ways. Initially, execution resources were configured according to a state-of-the-art
superscalar architecture. Basically, DCE resources as well as reuse resources were
varied in order to find the best interaction between these two features.

In the first set, DCE resources were limited to 4, 8, 16, 32 and 64 mapping tables.
The distance allowed for predication was fixed and equal to 16 instructions (from
branch to join point).

The RB and the TB were also varied in all experiments. The goal was to study
how the reuse buffer and trace buffer sizes may affect the performance and, above
of all, find the best configuration for such resources. The maximum trace size was
fixed in 4 instructions. This number was chosen because previous studies have
shown that a trace is not larger than 3, in average (COSTA, 2001). Also, even
with the expectation of having larger traces due to traces formed after the join
point of predicated paths, the average size is not expected to be much larger than
4 instructions, as traces do not include branches. However, further investigation to
find the best number for this configuration is still necessary. This discussion is also
true for the maximum number of registers allowed in the input/output contexts.

The L2 unified cache as well as the memory bus, branch prediction, instruc-
tion window, instruction queue and functional units were not varied and they were
configured like a modern superscalar architecture.

The first set of fixed configurations used in the experiments are presented in
Table 7.1. As said before, execution resources were limited.

The variable configurations used in the first set of the experiments are also
showed in 7.1. As stated before, the number of renaming tables was varied from 4
to 64. The simulations on the previous Chapter pointed that more than 128 tables
do not produce a larger number of predications. Hence, the architectures simulated
were configured in a range that is believed to be the most significative.

The second set of simulations defines a very aggressive superscalar architectures
and the goal was to study the impact of reusing instructions in very wide micropro-
cessors, as the ones approached in (SANTOS, 2003). Table 7.2 shows the fixed and
variable configurations used in this second set.
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Table 7.1: Configurations used in extended DCE experiments (first set)

Parameter ‘ Configuration
Decode width 4 and 8 instructions
Dispatch width 4 and 8 instructions
Issue width 4 and 8 instructions
Renaming tables 4, 8, 16, 32, 64 tables
Branch size to predicate 16 instructions
Classes of predicated hammocks simple and complex (all)
DCE optimizations always on
Instruction fetch queue 16 instructions
L1 Caches 128 sets; 64 bytes line; 4 ways; 1 cycle hit latency
L2 unified cache 256 sets; 256 bytes line; 8 ways; 5 cycle hit latency
Memory bus width 16 bytes; 100 cycles first chunk;
10 cycles remaining chunks
Branch prediction scheme Hybrid predictor with

2048 meta-table;
with BTB with 512 sets,
4-way associative

Return address stack 64 entries

Load/Store queue 64 entries

ROB size 128 entries

Integer FUs 2 FUs

Integer Mult/Div 1 FUs

FP FUs 2 FUs

FP Mult/Div 1 FUs

Reuse Buffer size 1024, 2048 and 4096 entries
Reuse Buffer associativity 2 and 4

Trace Buffer 512, 1024, 2048 entries
Trace Buffer associativity 2 and 4

Max number of instructions in trace | 4 instructions
Max number of inputs context regs | 4 registers
Max number of output context regs | 4 registers
Reuse optimizations on and off

As the first one, the second set of simulations varied the architecture width as
well as the DCE and reuse resources. In this set, however, the goal was to evaluate
reuse in future generations of microprocessors.

The benchmarks used in all simulations are shown in Table 7.2. All integer bench-
marks previously simulated in Chapter 4 were used, such as cc1, go, ijpeg, m88ksim,
perl. Moreover, three additional Float Point (FP) benchmarks were simulated. They
are:applu, mgrid, turb3d. The idea is study the impact of reusing instructions in the
presence of float point operations as well. Previous studies (CITRON; FEITELSON,
2002) pointed that reuse mechanisms may be specially attractive to instructions with
high latency execution.

In these simulations 600 million of instructions were executed, but the samples
for statistics were counted only after 300 million of instructions, avoiding the ini-
tialization portion of the benchmarks.

Including all configurations showed in this Chapter, more than 1000 simulations
were performed, which means several billions of instructions committed in the new
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Table 7.2: Configurations used in extended DCE experiments (second set)

Parameter ‘ Configuration
Decode width 16, 32 and 64 instructions
Dispatch width 16, 32 and 64 instructions
Issue width 4 and 8 instructions
Renaming tables 128, 256, 512, 1024 tables
Branch size to predicate 64 instructions
Classes of predicated hammocks simple and complex (all)
DCE optimizations always on
Instruction fetch queue 512 instructions
L1 Caches 256 sets; 512 bytes line; 4 ways; 2 cycle hit latency
L2 unified cache 2048 sets; 1024 bytes line; 8 ways; 4 cycle hit latency
Memory bus width 512 bytes; 32 cycles first chunk;

1 cycles remaining chunks
Branch prediction scheme 2 level adaptative gshare xor with 13 bits

history and BTB with 512 sets, 4-way associative
Return address stack 64 entries
Load/Store queue 128 entries
ROB size 512 entries
Integer FUs 32 FUs
Integer Mult/Div 32 FUs
FP FUs 32 FUs
FP Mult/Div 32 FUs
Reuse Buffer size 1024, 2048 and 4096 entries
Reuse Buffer associativity 2 and 4
Trace Buffer 512, 1024, 2048 entries
Trace Buffer associativity 2 and 4
Max number of instructions in trace | 4 instructions
Max number of inputs context regs | 4 registers
Max number of output context regs | 4 registers
Reuse optimizations on and off

architecture simulations.

In order to display the results in an understandable and significant form, the
results had to be carefully analyzed and evaluated. The summary and conclusions
of the analysis are presented in the next Chapters of this work.

7.3 Summary

The goal of this Chapter was to present the simulator developed during this PhD
Dissertation and also to discuss the strategies used for the simulation experiments
and to achieve the results presented in the next Chapter.

Sim-dce (SANTOS, 2003), a sim-outorder based simulator (BURGER; AUSTIN,
1997), was further extended to support value reuse. First, only instruction reuse,
with one table only was allowed. This first part of the implementation was very
similar to the ones fully presented in Sodani’s work (SODANI, 2000) except that it
was implemented over an architecture with dynamic predication.

As a second step, trace reuse was allowed as well. In order to do this, a second
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Table 7.3: Benchmarks inputs used in the simulations

Benchmark ‘ Input

ccl (Int) -quiet -funroll-loops -fforce-mem -fcse-follow-jumps
-fese-skip-blocks -fexpensive-optimizations
-fstrength-reduce -fpeephole -fschedule-insns
-finline-functions -fschedule-insns2 -O cp-decl.i -o cp-decl.s
go (Int) 50 21 9stone2l.in

ijpeg (Int) -image_file vigo.ppm -compression.quality 90
-compression.optimize _coding 0
-compression.smoothing factor 90 -difference.image 1
-difference.x _stride 10 -difference.y stride 10
-verbose 1 -GO.findoptcomp

m88ksim (Int) | -¢c < ctl.raw

perl (Int) primes.pl < primes.in

applu (FP) < applu.in

mgrid (FP) < mgrid.in

turb3d (FP) < turb3d.in

table was implemented and a scheme to store several traces, from different paths,
was completely developed in this work. The architecture of this scheme is described
in Section 6.2. of this work. The simplified algorithms used are shown in the first
Section of this Chapter.

The simulation strategy used was to simulate two different kinds of architectures.
Initially, the hardware configurations used were similar to the ones found in current
superscalar architectures. These configurations are referenced as small architectures
in the subsequent Chapters. Next, very aggressive architectures were also simulated.
The goal of this second set of simulations was to provide an overview of the impact
of value reuse for future generations of microprocessors. Also, these simulations
were used to find the upper bounds of the architecture with dynamic predication
and value reuse. These configurations are later referenced as large architectures in
this work.

All configurations were run using deep pipelines configurations, with a fixed
number of pipeline stages equal to 18. This is extremely relevant in order to provide
a more realistic analysis of the problems caused by control dependences.

Eight benchmarks of the well known and established SPEC CPU were used, with
the input set shown in Figure 7.3. From those, five of them are basically composed
by integer instructions (ccl, go, ijpeg, m88ksim and perl), while the remaining three
were from the float-point benchmark set (applu, mgrid and turb3d). 600 millions
of instructions were run in each simulation, which means that several billion of
instructions were executed and committed when all benchmarks simulations were
completed.
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8 SIMULATION RESULTS

8.1 Reusing Instructions as an Alternative to DCE overhead

This first Section evaluates the reuse of single instructions only. The goal is to
determine whether the reuse of single instructions is effective in DCE. The analysis
of the results was focused in the most relevant points where the application of reuse
may affect the DCE architecture. These results are shown in the following Sections.

8.1.1 Number of Reused Instructions

Initially, the number of reused instructions was observed. Figure 8.1 shows
the harmonic mean of all benchmarks for each configuration simulated with an
8-instructions wide architecture. The vertical axis depicts the percentage of reused
instructions. This was calculated over all instructions brought to the pipeline, reused
or not. The horizontal axis shows the configurations used in each set of the experi-
ments, like M4 A2 equals to 4 mapping tables and RB associativity equal to 2; M4 A4
equals to 4 mapping tables and RB associativity equal to 4; M8A2 equals to 8 map-
ping tables and RB associativity equal to 2; and so on. Each vertical bar presents
the harmonic mean of all six benchmarks for that configuration.

It is possible to see that, in all cases, the percentage of reused instructions
exceeds 10%. It is also possible to see that the percentage of reused instructions
do not change significantly among the configurations, even with higher numbers of
mapping tables available. In some specific benchmarks, as perl, this rate is extreme
high and achieved more than 50% of instructions. This means that, in all those cases
no resources, such as FUs, were allocated to execute instructions. The difference
between using 1024, 2048 and 4096-entries tables range between 1% and 2% from
each other. Also, the largest differences are between configurations using tables with
1024 and 2048 entries.

A similar behavior is also observed in configurations using a 4-wide architecture.
The percentage of reused instructions, however, is 2 to 5% smaller than the ones
using a 8—wide architecture. Thus, for the next Sections, only configurations with
8—instructions—wide architectures were used to calculate the statistics. This means
that for reuse, increasing the architecture width may bring more improvements than
increasing the number of mapping tables.

8.1.2 Overhead Reduction

Figure 8.2 depicts the reduction in the overhead produced by DCE. The horizon-
tal axis shows the configurations used in the simulations. The vertical axis presents
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Figure 8.1: Percentage of reused instructions (8 wide architecture)

the percentage of the overhead reduction. Each bar shows the harmonic mean of all
benchmarks for a given configuration.

As discussed before, the overhead caused by the fetch of multiple paths and also
by the creation of replicas is one of the major problems in DCE. And this is the
main motivation for this work. In Figure 8.2 this result may be seen. Depending on
the configuration, the harmonic mean may achieve 16% of decrease in the number of
executed instructions. Even for a 1024-entries buffer more than 12% of instructions
are fetched but not executed, because they are reused. This means a great resource
release and it is a direct effect from the instruction reuse.

8.1.3 Owverall Performance

The harmonic mean for the increase in DCE performance using instruction reuse
can be seen in Figure 8.3. The vertical axis shows the percentage of increase in DCE
speedup. The horizontal axis shows the configurations simulated. Each vertical bar
presents the harmonic mean of all benchmarks for that configuration.

The speedup presented here is the relation between the IPC achieved by the
original DCE and the one reached by DCE using the instruction reuse mechanism.

It is possible to see that the final performance does not change significantly,
in average. Benchmark perl presented the most significant rate, achieving almost
10% increase in some specific configurations. Ccl and mgrid benchmarks, however,
were the main responsible for such low rate, in average. These benchmarks did not
achieve more than 0.5% of speedup increase.

Even with similar results in the number of instructions reused among configura-
tions, the speedup did not follow such pattern. In the cases where the speedup is
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higher, reused instructions are being committed faster. This is true when there is a
larger number of tables available, except for configurations with 16 mapping tables
and a 1024-entries, 4-way associative RB. For a 4-instructions-wide architecture
this difference is even larger and the smaller performance (1%) was achieved by
configurations with 4 mapping tables.

The problem with reusing instructions is that even saving resources in the ex-
ecution stages, the instructions are still in the pipeline, in the ROBs. This means
that even decreasing in the order of 15% the number of instructions executed, those
instructions are maintained in the pipeline to assure semantic correctness in the
commit stage.

The simulations executed in this work confirm that resorting to instruction reuse
in conjunction with DCE is a good alternative to reduce the predication overhead
and to increase the resources availability for more useful instructions.

The increase in the number of renaming tables, however, did not produce a
significant increase in the number of reused instructions, as one may expect. When a
instruction is reused, pipeline stages and functional units are released, as it is clearly
observed by the large overhead reduction. However, these reused instructions keep
on using the ROB, to assure that the same logical execution order is observed. These
simulations indicates that in DCE, the ROB size as well as instruction re-ordering
may be now important bottlenecks of the system.

Furthermore, the speedup achieved by the experiments did not increase in the
same proportion as the overhead reduction. In fact, the percentage of increase was
not very significant. These low performance results were also observed in other reuse
studies (CITRON; FEITELSON, 2002) and they may be another side effect from
the ROB occupation.

Finally, it is possible to say that instruction reuse can effectively reduce the
great bottleneck in DCE, i.e., the overhead caused by the fetch of multiple paths
and the replicas generation. The next steps, however, is to solve the problem of ROB
saturation. The alternative pursued by this research was to increase the granularity
of the mechanism and reuse entire traces, extracted mainly from the join point up to
the resolution of the branch as well as from the several instruction flows available. In
the case of trace reuse, a significant number of ROB entries can be released because
only part of the instructions is forwarded to the ReOrder Buffer. This is possible
because the architecture just needs to know the values of the traces output contexts.

The results achieved by reusing whole traces are more deeply studied in the
following Sections.

8.2 Reusing Traces as an Alternative to DCE overhead

Reusing single instructions only did not significantly increased performance. As
discussed before, although instructions are ready in earlier stages, they still have to
wait for all previous instructions to be ready to commit.

Reusing traces naturally reduces this problem. When a trace is reused several
instructions are permanently removed from the pipeline, avoiding commit stage and
ROB. This is possible because only instructions that produce values to be used by
subsequent instructions are kept, as explained in Section 6.2.

In the next Sections the results achieved by reusing traces in DCE are discussed.
The baseline architecture in all cases is the original DCE, configured using the same
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parameters used with trace reuse.

In all Figures, the horizontal axis means the configurations simulated. The
abbreviations follows a similar standard used in previous Sections: M4 W8 equals
to 4 mapping tables in an 8-instruction-wide architecture; M16 W/ equals to 16
mapping tables in a 4-instruction-wide architecture; M64 W4 equals to 64 mapping
tables in a 4-instruction-wide architecture; and so on. The remaining portion of the
abbreviations used in Figures are described in Table 8.1.

Table 8.1: Reuse and Trace Buffers configurations showed in results

Configuration ‘ Description

RB 1 RB: 1024 entries, 2-way associative;
TB: 512 entries, 2-way associative
RB 2 RB: 1024 entries, 4-way associative;
TB: 512 entries, 4-way associative
RB 3 RB: 2048 entries, 2-way associative;
TB: 1024 entries, 2-way associative
RB 4 RB: 2048 entries, 4-way associative;
TB: 1024 entries, 4-way associative
RB 5 RB: 4096 entries, 2-way associative;
TB: 2048 entries, 2-way associative
RB 6 RB: 4096 entries, 4-way associative;
TB: 2048 entries, 4-way associative

As discussed before, although simulations were performed using hundreds con-
figurations, only part of them are showed. In general, the number of mapping tables
was used to limit the visualization of the results. This was necessary in order to
better visualize, analyze and understand all results reached by all simulations per-
formed. The number of mapping tables was chosen as limit because it does not
impact significantly in the results achieved.

The vertical axis, bars and lines differ for each case and they are described in
each following Section.

8.2.1 Traces Characteristics

Initially, the average size of traces produced and reused by DCE architecture
was observed. Traces in DCE tend to be larger than in a regular architecture due
to traces built just after a join point. However, in this study traces are limited to
basic blocks, as stated and discussed before. Even with such constrain, traces have
at least the same average number of instructions as in a conventional architecture
(COSTA, 2001).

Figure 8.4 shows the average size of traces in selected configurations. The upper
portion of the Figure shows the results achieved by simulating configurations with
limited resources, followed by the results reached with extremely wide architectures.
The vertical axis means the harmonic mean of all eight benchmarks for the trace
sizes.

It is possible to see that the size of the traces does not depend strongly on the
architecture configuration. The harmonic mean is very similar among all and it is
around 2.5 instructions for all configurations simulated, even allowing traces with
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up to 4 instructions.

Branches are typically part of traces studied in previous works, but in DCE the
reuse of branches needs to be carefully done, due to predicted branches in the data
dependent piece of code from another previously predicated branch. This issue was
detailed approached in Chapter 6. It is the intention to allow branches to be part
of traces in a future work. Branches in traces may be allowed at least when all data
dependent branches are predicted to the same target.

8.2.2 Overhead Reduction

As discussed before, the overhead reduction in DCE architecture is the main
goal of this work. Thus, the reduction in the number of instructions executed when
reusing traces is approached in this Section.

Basically, when an instruction is marked as reused, it is not executed and the
overhead is decreased. In trace reuse, all instructions part of the trace and also
instructions that are reused singularly are counted as non-executed instructions.
Besides those, there are the ones that were removed from the pipeline, because they
do not produce any outputs for subsequent instructions. Those avoided instructions
are not part of the statistic showed here.

Figure 8.5 presents the overhead reduction for each benchmark in the selected
configurations simulated. The upper part depicts the results achieved when using
limited resources, while the lower portion shows the results reached with extremely
wide architectures. The vertical axis in this case is the percentage of reduction,
while each line in the Figure depicts a benchmark.

It is possible to see that, for the small configurations (upper part of the Figure),
the overhead reduction varies significantly among benchmarks as well as among
the configurations simulated. Also, benchmark turb3d was the one with the most
remarkable results. In some cases, turb3d achieved 95% of reduction in the number
of instructions executed. This means that only 5% of the original instructions were
actually executed by the functional units. This is observed mainly for a small number
of mapping tables. When the number of mapping tables increases, the reduction of
the overhead is less significant and reaches a minimum of 60% of reduction when
simulating an 8-instruction wide architecture, with 64 mapping tables. It is also
observed that the associativity of the reuse buffers is also relevant and, in general,
4-way set associativity tables achieved more satisfactory results. This decrease in
the overhead reduction while increasing the resources of the architecture is also
verified in other benchmarks, such as m&88ksim. In this case, the benchmark has
an initial improvement when the architecture is widen from 4 to 8 instructions,
in configurations with 4 mapping tables. When the number of mapping tables is
increased, benchmark m&8ksim, like turb3d, achieved lower numbers in the overhead
reduction, going from 40% to 18% of reduction.

Benchmarks ccl and go presented a significant growth when resources are in-
creased. After increasing the architecture width, the number of mapping tables and
the reuse tables, benchmark go presented an increase in the overhead reduction rate
from 25% to almost 55%. Benchmark cc1 achieved one of the most irregular results
and even with an improvement in the results when the resources are increased.

Benchmark applu and perl are the most sensitive ones to the associativity of the
reuse tables. In general, it is possible to observe that applu presents a difference of
almost 20% when the associativity is varied from 2 to 4-way. In benchmark perl this
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difference is smaller, around 5%.

Benchmarks ijpeg and mgrid achieved the most constant results reaching around
12% and 13%, respectively, of overhead reduction for all configurations.

On the other hand, for the larger architectures (lower part of the Figure), bench-
mark go was the one with the highest rates of overhead decrease. The rates are very
significant, specially, in 32 and 64 wide architectures. In fact, for 16-wide architec-
tures, the rates decreased from 80% to 20% or less. In wider architectures, there are
more opportunities to reuse as there are more paths in course.

Benchmarks cc1 and turb3d, however, presented a decrease in the overhead re-
duction rates, when compared to the smaller architectures. This trend is already
observed when looking at architectures with fewer resources and 64 mapping ta-
bles. In that case, the decrease in the rates is already verified. This decrease is
even higher in very aggressive architectures and cc! presents a maximum of 22% of
overhead reduction, while turb3d achieves 19% of reduction.

Benchmark applu presented a similar behavior for the wide architecture configu-
rations, as it was for the smaller ones. The rates, however, were less significant, not
exceeding 27%. Benchmarks m88ksim, mgrid and 7jpeg were also very similar, with
mgrid presenting an almost flat rate of 13%, m88ksim varying from 17% to 20%,
while #jpeg varied from 13% to 15% of reduction in the overhead.

Benchmark perl achieved better results in the case of wider architectures, achiev-
ing more than 40% of decrease in the overhead in some cases. This benchmarks is
one of the most sensitive to the RB configurations. In general, increasing the size of
the tables affects greatly the results and 4-way associative tables are better, except
when they change from configuration 3 to 4.

Figure 8.6 shows the harmonic mean of all benchmarks for each configuration.
As the previous Figures, the upper part is the results achieved when using limited
resources, while the lower portion presents results of the large architecture configu-
rations. The vertical axis means the average of the overhead reduction, while each
bar depicts the harmonic mean of all benchmarks for a given configuration.

In general, larger architectures have a smaller reduction in the overhead. This
is a very peculiar behavior and happens, mainly, because all traces, including the
ones from the wrong paths, are formed, stored and reused. This means that in large
architectures specially, the pollution brought by traces formed by paths and replicas
never used again may affect the effectiveness of the mechanism.

It is possible to verify that the configurations with 4-way associative reuse tables
are better in both, in general. This means that up to 4 traces of replicas may be
stored in each way of the tables and they may be reused for several paths in a single
step. Moreover, the difference among configurations are not very significant, not
even when the reuse tables have their sizes doubled. The rates are all in the range
of 15% to 26%.

It is also seem that the average of reduction is significantly greater than the
reduction using single instruction reuse only, as described in Section 8.1.2.

8.2.3 Number of Cycles that an Instruction Remains in the Pipeline

One of the main problems of reusing instructions is such as even if a given
instruction is not executed, it has to wait for all previous instructions before commit.
This is necessary because execution is done out-of-order, but commit is an in-order
task still.
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Even with such problem, the instructions reused tend to spend a smaller number
of cycles in the pipeline.

Furthermore, allowing a reused instruction to be retired earlier also indirectly
affects non-reused instructions retirement. In this case, those instructions will be
allowed to be retired sooner as the previous (and reused) ones are committing as
well.

Figure 8.7 shows the harmonic mean of cycles in which instructions remains
in pipeline. The upper portion of the Figure depicts the results achieved when
using limited resources, while the lower part means the results reached with wide
architectures. Vertical axis means the average of the number of cycles spent between
fetch and commit stages. The black bars depict the harmonic mean of all benchmarks
for the number of cycles that a non-reused instruction remains in pipeline. The gray
bar depicts the same metric, but for reused instructions.

In the case of smaller configurations, it is observed that, even committing in-
order, the number of cycles that reused instructions remains in pipeline is signifi-
cantly smaller than the number of cycles spent in pipeline by non-reused instructions.
In some cases, especially for the larger configurations, the difference between reused
and non-reused instructions is greater than 35%.

On the other hand, for aggressive configurations, there is no significant difference
among the number of cycles used by an instruction reused and one not reused. In
fact, there are some specific cases that not reused instructions are actually commit-
ting faster, in average. This may occur because the reused instructions have to wait
longer for previous instructions to commit. As consequence, they end up committing
later in some cases, if those not reused instructions are also taking long to execute
and commit.

8.2.4 Speedup

One of the most important aspects when studying computer architecture is the
performance reached by the new mechanisms introduced. This Section evaluates the
speedup achieved by reusing traces in conjunction with DCE optimizations.

In this Section the speedup is calculated using the IPC of each configuration,
with and without trace reuse. The baseline IPCs considered are the ones achieved
by the original DCE, i.e., with single instruction and trace reused turned off. Thus,
the speedup is calculated by using the following:

IPC — baseline 1PC

baseline IPC

Where IPC is the number of instructions per cycle achieved. Baseline keyword
means the same statistic in the correspondent base architecture (with value reuse
off).

Figure 8.8 shows the percentage of gain in speedup reached by the benchmarks
with the selected configurations. As before, the upper portion of the Figure shows
the results achieved by simulating configurations with limited resources, followed by
the results reached with extremely wide architectures. The vertical axis means the
percentage of increase in the speedup, when reusing values. Each line depicts the
behavior of a given benchmark.

It is possible to see that the gain in speedup varies significantly according to the
configuration and benchmark used in simulations, especially in the smaller architec-
ture configurations.

Speedup =
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In these cases, i.e., small architectures, benchmark go increases its percentage
gain from 13% to 66%, when the number of mapping tables goes from 4 to 16.
This improvement is kept very high, in the range of 61% to 81%, during all other
experiments. For wide architectures this benchmark did not present such speedup,
not exceeding 7%.

Benchmark cc1 also increased its speedup gain, when the resources were in-
creased. For the architectures with 4 mapping tables only, the speed gain was not
larger than 1%. When the number of mapping tables was increased, ccl achieved
60% of gain in some configurations. Trace reuse, in this case, was crucial to con-
trol the overhead introduced by DCE and increase performance. In case of large
architectures, ccl achieved the highest speedups, exceeding 65% of gain. This is
especially significative because benchmark cc1 is well known to be a hard-to-predict
application.

On the other hand, benchmark m&8ksim, reduces its percentage of gain, when
increasing the number of mapping tables in the smaller configurations. Neverthe-
less, the gains are kept flat for the aggressive architectures configurations. This
benchmark has a sensitive improvement in 8-instructions-wide architectures with 4
mapping tables, achieving almost 45% of gain. However, this rate decreases for a
range between 3% and 11% of improvement. It is possible to observe, as showed in
Section 8.2.2, that the overhead reduction also decreased after DCE resources were
increased. Thus, as there are more instructions executing regularly, speedup tends
to be decreased. For the wide configurations, the gains are mostly constant, varying
from 8.3% and 9.7%.

Benchmark turb3d also had the gain in performance decreased, in more robust
configurations. Even with the highest rates in the overhead reduction, turb3d, did
not reach such impressive results in speedup. In general, it reached very significant
results for architectures with 4 mapping tables, almost 60% in some cases. For the
remaining configurations, it achieved better results mostly in 8-wide-instructions
architecture, with 25% of gain in some cases. In the wide architectures, the gains
are even lower, not achieving 10%.

Benchmark applu behaves exactly as in the overhead reduction, but following a
smaller scale. This happens in both small and large architecture configurations. The
improvements are always more significant in architectures with 4-way associative
reuse tables. In some cases, applu achieves almost 15% of gain in speedup.

For the smaller configurations, benchmarks mgrid, ijpeg and perl are the ones that
presented the lowest performances. Benchmarks mgrid and ijpeg were the bench-
marks with the smaller rates in overhead reduction. Benchmark perl, however, pre-
sented a significant reduction in the number of executed instructions, but this was
not sufficient to increase performance and the gains are, in general, lower than 2%.
Benchmark perl, however, achieved significant results in the wide configurations,
achieving speedups from 8% to 12%.

Tables 8.2 and 8.3 show all speedups gains, in percentage, reached by the bench-
marks in each selected configurations. The last column shows the harmonic mean
of all benchmarks for the given configuration showed in the first column. In general,
value reuse reached better results in very wide architectures, while some configura-
tions even achieved more than 5% of gain. However, for some specific applications,
such as turb3d and mgrid the impact of reusing instructions and traces is more
positive in the smaller architectures.
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Table 8.2: Harmonic Mean (in percentage) for the DCE speedup with trace reuse
(4, 16, 64 mapping tables)
Configuration | applu | ccl | go [ ijpeg | m88ksim | mgrid | perl | turb3d | HM
M4 W4 RB 1 5.60 0.50 2.59 | 291 20.96 037 | 7.18 | 47.01 | 1.37
M4 W4 RB2 | 12.92 | 0.33 2.92 | 2.98 20.67 037 | 1.79 | 48.72 | 1.12
M4 W4 RB 3 5.65 0.33 | 295 | 2.98 10.59 037 | 7.05 | 47.01 | 1.16
M4 W4 RB4 | 13.23 | 0.22 | 3.51 | 3.32 20.68 0.37 | 0.59 | 49.69 | 0.82
M4 W4 RB 5 5.65 0.25 3.43 | 2.96 10.61 037 | 6.07 | 47.01 | 1.03
M4 W4 RB6 | 13.26 | 0.08 4.01 3.43 20.69 037 | 3.87 | 49.12 | 0.52
M4 W8 RB 1 6.99 0.02 3.38 | 3.69 12.31 1.20 | 5.01 | 45.83 | 0.18
M4 W8 RB 2 12.62 | 0.22 3.69 3.66 44.49 1.20 1.53 | 46.95 | 1.21
M4 W8 RB 3 7.13 0.07 3.90 | 3.78 44.46 1.20 | 2.03 | 34.33 | 0.49
M4 W8 RB 4 12.32 | 0.38 4.46 4.06 44.43 1.20 | 3.21 | 45.84 | 1.82
M4 W8 RB 5 7.13 0.25 4.62 3.68 44.49 1.20 2.03 | 59.88 | 1.32
M4 W8 RB 6 13.25 | 0.60 | 13.83 | 4.19 44 .48 1.20 2.94 | 46.84 | 2.45
M16 WA4RB 1| 5.60 | 20.30 | 66.37 | 3.01 11.97 0.36 | 1.52 3.62 1.84
M16 W4 RB 2 | 12.90 | 23.64 | 66.37 | 2.86 11.88 0.36 | 0.63 5.92 1.58
M16 W4 RB 3 | 5.65 | 37.61 | 73.53 | 3.10 6.10 0.36 | 0.76 6.93 1.62
M16 W4 RB 4 | 13.23 | 32.82 | 73.53 | 3.34 8.27 0.36 | 0.75 3.23 1.62
M16 W4 RB 5 | 5.65 | 30.31 | 79.67 | 3.16 7.72 0.36 | 0.61 6.32 1.53
M16 W4 RB 6 | 13.26 | 29.01 | 64.18 | 3.46 7.68 0.36 | 0.11 | 16.75 | 0.64
M16 W8 RB1 | 6.99 | 29.42 | 61.37 | 3.86 8.65 1.20 | 2.10 | 17.20 | 4.13
M16 W8 RB 2 | 12.62 | 29.42 | 61.37 | 3.69 8.67 1.20 | 1.21 | 25.39 | 3.61
M16 W8 RB 3 | 7.13 | 36.96 | 64.56 | 3.89 4.01 1.20 | 0.80 | 11.92 | 2.80
M16 W8 RB 4 | 14.67 | 34.48 | 64.56 | 4.17 3.66 1.20 | 0.39 | 24.75 | 1.98
M16 W8 RB 5 | 7.13 | 25.17 | 62.12 | 3.92 3.82 1.20 | 0.64 | 20.33 | 2.54
M16 W8 RB 6 | 13.25 | 24.35 | 62.12 | 4.25 6.56 1.20 | 1.77 | 22.66 | 4.07
M64 W4RB 1| 5.60 | 44.03 | 66.77 | 3.02 11.98 0.36 | 1.52 6.80 191
M64 W4 RB 2 | 12.92 | 44.03 | 66.77 | 2.83 11.88 0.36 | 0.63 4.08 1.56
M64 W4 RB 3 | 5.65 | 44.03 | 73.57 | 3.11 6.10 0.36 | 0.76 6.80 1.62
M64 W4 RB 4 | 13.23 | 44.03 | 73.57 | 3.32 8.26 0.36 | 0.79 6.80 1.70
M64 W4 RB 5 | 5.65 | 65.21 | 75.90 | 3.09 7.72 0.36 | 0.61 6.80 1.53
M64 W4 RB 6 | 13.26 | 50.71 | 82.23 | 3.42 7.67 0.36 | 0.11 6.80 0.63
M64 W8 RB 1 | 6.99 | 64.90 | 63.10 | 3.86 8.65 1.20 | 2.10 7.42 4.01
M64 W8 RB 2 | 12.62 | 64.90 | 63.10 | 3.74 8.74 1.20 | 1.21 7.42 3.50
M64 W8 RB 3 | 7.13 | 66.90 | 63.10 | 3.94 4.01 1.20 | 0.80 7.42 2.77
M64 W8 RB 4 | 14.67 | 64.78 | 63.10 | 4.12 7.58 1.20 | 0.39 7.42 2.01
M64 W8 RB5 | 7.13 | 55.09 | 78.73 | 3.95 4.01 1.20 | 0.64 7.42 2.50
M64 W8 RB 6 | 13.25 | 55.09 | 82.93 | 4.25 6.56 1.20 | 1.77 7.42 3.94
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Table 8.3: Harmonic Mean (in percentage) for the DCE speedup with trace reuse

(128 and 512 mapping tables)

Configuration | applu | ccl | go | ijpeg | m88ksim | mgrid | perl | turb3d | HM
M128 W16 RB 1 3.08 | 68.10 | 3.60 | 1.36 8.92 1.32 9.43 1.68 2.73
M128 W16 RB 2 7.28 | 68.10 | 3.86 | 1.90 8.92 1.30 9.71 1.11 2.84
M128 W16 RB 3 | 3.38 | 68.10 | 3.89 | 1.37 8.92 1.32 10.33 1.14 2.54
M128 W16 RB 4 | 7.93 | 68.10 | 4.45 | 1.96 8.92 1.31 12.54 1.46 3.18
M128 W16 RB 5 3.38 | 68.10 | 4.22 | 1.39 8.92 1.32 10.33 9.88 3.43
M128 W16 RB 6 | 8.03 | 68.10 | 5.18 | 1.89 8.92 1.31 12.54 13.35 | 4.24
M128 W32 RB 1 3.29 | 63.04 | 4.86 | 1.47 9.76 1.77 9.16 14.34 | 3.90
M128 W32 RB 2 6.98 | 63.04 | 4.83 | 2.19 9.76 1.78 9.60 10.27 | 4.73
M128 W32 RB 3 | 3.539 | 63.04 | 4.88 | 1.50 9.76 1.77 8.86 9.15 3.89
M128 W32 RB 4 7.61 63.04 | 4.86 | 2.10 9.76 1.78 11.51 4.46 4.43
M128 W32 RB 5 3.59 | 63.04 | 490 | 1.51 9.76 1.77 8.86 16.01 3.99
M128 W32 RB 6 7.67 63.04 | 4.88 | 2.11 9.77 1.78 11.51 11.47 4.81
M128 W64 RB 1 | 3.25 | 62.45 | 6.38 | 1.55 8.39 1.80 9.87 16.91 | 4.08
M128 W64 RB 2 7.10 | 62.45 | 4.31 | 2.30 8.39 1.80 10.15 5.04 4.46
M128 W64 RB 3 | 3.55 | 62.45 | 4.29 | 1.57 8.39 1.80 10.02 6.26 3.81
M128 W64 RB 4 | 7.74 | 62.45 | 4.08 | 2.33 8.39 1.80 12.75 11.61 4.83
M128 W64 RB 5 3.55 | 62.45 | 4.35 | 1.59 8.39 1.80 10.02 3.24 3.57
M128 W64 RB 6 | 7.80 | 62.45 | 5.45 | 2.33 8.39 1.80 12.75 4.71 4.65
M512 W16 RB 1 3.08 | 64.50 | 3.64 | 1.37 8.92 1.32 9.43 4.44 3.14
M512 W16 RB 2 7.28 | 64.50 | 3.90 | 1.85 8.92 1.30 9.71 1.12 2.83
M512 W16 RB 3 | 3.38 | 64.50 | 5.28 | 1.39 8.92 1.32 10.33 4.57 3.32
M512 W16 RB4 | 7.93 | 64.50 | 5.35 | 1.97 8.92 1.31 12.54 2.96 3.76
M512 W16 RB 5 | 3.38 | 64.50 | 5.38 | 1.40 8.92 1.32 10.33 | 12.63 | 3.55
M512 W16 RB 6 | 8.03 | 64.50 | 5.57 | 1.91 8.92 1.31 12.54 12.87 | 4.27
M512 W32 RB 1 3.29 | 63.21 | 3.52 | 1.47 9.76 1.77 9.16 8.24 3.66
M512 W32 RB 2 6.98 | 60.80 | 3.68 | 2.19 9.76 1.78 9.60 9.23 4.53
M512 W32 RB 3 | 3.59 | 60.80 | 3.54 | 1.49 9.76 1.77 8.86 11.72 3.79
M512 W32 RB4 | 3.59 | 60.80 | 3.50 | 2.18 9.76 1.78 11.51 11.20 | 4.25
M512 W32 RB 5 | 3.59 | 60.80 | 3.56 | 1.50 9.76 1.77 8.86 11.41 | 3.80
M512 W32 RB 6 | 7.67 | 60.80 | 3.60 | 2.22 9.76 1.78 11.51 13.09 | 4.70
M512 W64 RB 1 | 3.25 | 60.25 | 6.58 | 1.55 8.38 1.80 9.87 11.93 | 4.04
M512 W64 RB 2 7.10 | 60.25 | 3.14 | 2.31 8.38 1.80 10.15 17.94 | 4.61
M512 W64 RB 3 | 3.55 | 60.25 | 3.10 | 1.58 8.38 1.80 10.02 12.59 | 3.79
M512 W64 RB 4 | 7.74 | 60.25 | 2.80 | 2.36 8.38 1.80 12.75 16.79 | 4.60
M512 W64 RB 5 3.55 | 60.25 | 3.16 | 1.59 8.38 1.80 10.02 4.37 3.56
M512 W64 RB 6 | 7.80 | 60.25 | 7.30 | 2.37 8.38 1.80 12.75 10.76 | 5.16
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Although the main goal of this work is to analyze the impact of value reuse in
DCE is also relevant to verify the effects in the original baseline presented in Chapter
4, i.e., a conventional superscalar architecture. Figure 8.9 presents the comparison
between the speedup gains produced by value reuse in the original baseline and also
in DCE. The vertical axis shows the speedup gain. The black bars mean the speedup
over the baseline for each configuration, while the gray ones depict the speedup over
DCE architecture. These gains are the harmonic mean of the benchmarks simulated
in Chapter 4, i.e., ccl, go, ijpeg, m88ksim and perl.

In general, the gains over the baseline architecture exceed the gains produced
by value reuse over DCE. This is not true only for the smaller configurations, with
4 mapping tables. Possibly, this is caused by the pollution brought by traces from
the wrong paths that are never reused. It is important not just to build and store
traces, but to have the useful ones available for reuse. Further investigation is still
necessary in order to verify the real impact of storing those wrong path traces.
Moreover, mechanisms to filter those traces can be developed in order to avoid this
problem.

It is possible to see that, in general, the reduction in overhead affects directly
the speedup reached by the architecture. However, it is also important to analyze
what happens in DCE architecture itself. The side effects in the most important
features in DCE are approached in the next Section.

8.2.5 Side Effects in DCE
8.2.5.1 Number of Predicated Branches

Dynamic predication is the most important feature in DCE. The logic to allow
branches to predicate is the main core of this architecture. Thus, the number of
predicated branches is one of the most relevant aspects to be evaluated.

Figure 8.10 shows the behavior of the number of predicated branches, with and
without trace reuse. As in the previous Figures, the upper portion of the Figure
shows the results achieved by simulating configurations with limited resources, fol-
lowed by the results reached with extremely wide architectures. The vertical axis
means the percentage of increase/decrease in the number of predications performed
by the architecture. Each line depicts a benchmark simulated.

It is seen that the number of predications in all benchmarks was not affected
in configurations with 4 mapping tables only. In fact, benchmarks applu, ijpeg,
m88ksim and perl were not affected significantly at all. This is true for both small
and wide architectures.

Benchmark mgrid had a slight increase in the number of predications, around
5% to 8% in all smaller configurations. For the wide architectures, the number of
predications is increased, especially in 16-wide architectures.

In both types of architectures, benchmarks cc! and go reached the most sug-
gestive results, presenting increases of up to 100% in the number of predications.
In both benchmarks, this means that value reuse allowed the dynamic predication
mechanism to go further in branch spawning. Benchmark go was the benchmark
that presented the best speedups among all the smaller architectures and, as showed
in Section 8.2.2, it did not presented an overhead reduction to support such high
speedup rates. Thus, the increase in the number of predications did affect greatly
the overall performance in those first cases. On the other hand, spawning up to 512
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(4, 16 and 64 mapping tables for DCE configurations)

Value Reuse Speedup over DCE and Conventional Superscalar
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(128 and 512 mapping tables for DCE configurations)
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Figure 8.9: Percentage of gain in speedup of value reuse in DCE and in conventional

superscalar architecture(small and large architectures)
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paths did not bring the same benefits. Although achieving speedups improvements,
there is a significant decrease in the gains.

For the small architectures, benchmark cc! behaves like go, in a lower scale. For
the wide architectures, however, the effects of fetching so many paths are remarkably
good.

Benchmark turb3d was the only benchmark that had a smaller number of branches
being predicated. This may be one of the reasons the benchmark did not reach large
speedup gain, even with a very high number of instructions not executed.

8.2.5.2 Mispredictions

The main goal of DCE is to control and ultimately reduce mispredictions. The
intention is to improve performance avoiding predictions, using predication instead.
As a consequence, a lower number of mispredictions is observed. This Section com-
pares the occurrence of mispredictions with and without trace reuse.

Figure 8.11 shows the misprediction behavior achieved by the selected architec-
ture configurations. The misprediction behavior is calculated using the following:

baseline mispred _number — mispred__number

Misprediction Reduction Rate = - -
baseline mispred _number

Where mispred number is the number of cycles lost with the pipeline stalled
due to mispredictions. Baseline keyword means the same metric achieved by the
architecture with reuse optimizations off. It is possible to see that the reduction (or
increase) of the misprediction is calculated over the absolute number and, therefore,
they do not depict the percentage over the percentage.

The upper part depicts the results achieved when using limited resources, while
the lower portion shows the results reached with extremely wide architectures. The
vertical axis describes the percentage of the misprediction increase/decrease, when
simulating DCE with and without value reuse. Each bar means the harmonic mean
of the misprediction behavior, achieved when comparing original and extended DCE.

It is possible to see that, for the small architectures, reusing values actually in-
crease mispredictions. This is an exception just for 4-wide instructions architectures
with 4 mapping tables. And although the misprediction increase is not very large
ranging, mainly, between 2% and 4%, it is an interesting point.

There is only one way in which a predicated branch may be counted as mispre-
dicted. When a predicated branch is ready to commit and the last replica before the
join point was not renamed, a misprediction is detected and the pipeline is flushed.
This is necessary because when a predicated branch is committed, all tagids are
required in order to retire the correct path from the pipeline. However, if the repli-
cas are not yet in the pipeline this cannot be done. Also, stall just the commit
stage would not work, because this may cause the whole pipeline to stall, prevent-
ing the creation of replicas and generating a deadlock. So, increase the number of
predications is not enough, if they have not enough time to spawn completely.

As in some cases, especially in benchmarks go and cc1, more instructions are
being predicated and many replicas do not have enough time to be generated. In
the other cases, as the reuse actually anticipates the execution of all instructions,
predicated branches reach the commit stage faster, and the event is again verified.
Unfortunately, this reflects negatively in the overall results and certainly harms the
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performance when reusing values. This happens especially in the small configura-
tions, where there is actually some significant rates.

In the case of wide architectures, the mispredictions rates are not significantly
different, ranging from a decrease of 0.2% to an increase of 0.5% in the misprediction
rates.

In general, however, instruction and trace reuse reduce the main problem of DCE,
the fetch of several paths which will be later squashed and the replicas introduced by
the architecture. And even presenting a low harmonic mean for the gain in speedup,
the results are very representative and relevant.

8.3 Summary

The goal of this Chapter was to present the most significant results found in the
simulations using the extended sim-dce, which allowed value reuse.

The first part of the Chapter showed results achieved by instructions reuse only.
It is possible to verify that, even with a large overhead reduction, the speedup gains
are not very significant and it is not more than 3%. The main problem with this
approach is that instructions reused are kept in the ReOrder Buffer. They need
to be kept because, in general, commit is performed in order, even in out-of-order
architectures, such as the ones simulated in this work.

The second part, however, depicted the results using all optimizations, includ-
ing instruction and trace reuse. Trace reuse is always prioritized, i.e., an instruc-
tion will be reused singularly only if there are no traces available (and ready) for
that PC. In this case, the results were better, specially, because many instructions
may be retired from the pipeline yet before the actual register renaming. Instruc-
tions that are part of the trace and do not produce output values used by sub-
sequent instructions are useless and can be retired right the way. This actually
reduces the number of instructions in the pipeline and allows more instructions to
be fetched/decoded /renamed /executed.

It is possible to verify that the overhead reduction rates were all very significa-
tive. Trace reuse really decreases even more the number of instructions executed
by the architecture. Nevertheless, this did not affected strongly and constantly the
performance. The performance varies greatly according to the benchmark as well as
the configuration simulated.

For the small architectures, some specific benchmarks reached impressive gain
in performance, such as m88ksim and turb3d. The later one achieved 60% of im-
provement in a given configuration. On the other hand, some configurations ran in
benchmarks such as mgrid, achieved less than 1% of gain. The large architectures,
however, reached more steady results and, as consequence, reached a better speedup
harmonic mean, achieving more than 5% of gain in some cases.

One may observe that, as in many others sophisticated high performance mech-
anisms, value reuse depends widely in the type of application run as well as in the
architecture balance.

Next Chapter approaches the conclusions and remarks of this work.
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9 CONCLUSIONS

Branch occurrence is still an issue that remains important to extract ILP and
performance in superscalar processors, for which no definitive answer was found.
The alternative to reduce these problems is, in general, to introduce complex and
sophisticated predictions mechanisms. After all, there are no guarantees that the
predicted path is the right one to follow and the pipeline pays a very high penalty
when a misprediction occurs.

Also, this penalty is increasing constantly with deep state-of-the-art pipelines and
even deeper ones scheduled to the next generations. The average of hit rate in current
predictors is over than 90%, but the occurrence of 10% or less in mispredictions is
sufficient to drastically decrease the performance.

The Dynamic Conditional Execution (DCE) is a new approach to reduce mis-
prediction occurrence. The idea is to decrease misprediction by avoiding predicting
branches, predicating some of them instead. The compiler is responsible to qualify
all branch structures (hammocks) that may be predicated. Then, the architecture
decides, in execution time, which ones of the qualified hammocks are really going to
be predicated.

It is clear that only part of the branches may be predicated, otherwise the pipeline
would saturate fast. For this reason, the compiler marks statically the hammocks
that obey some constrains regarding, mainly, to their size and complexity. Typically,
the DCE compiler qualifies five types of hammocks to be predication:

e Simple (one and two sided): branches with no nested structures;

e Complex pure: one or more nested structures totally contained in the most
external one;

e Complex multiple join: one or more nested structures which have their target
coinciding with their join points;

e Complex multiple target: one or more nested structures which have their
targets after the join point;

e Complex overlapped: one or more nested structures which have their targets
located in the taken path of the most external one.

Hammocks with backwards branches, indirect branches, unconditional jumps not
related to the conditional branch flow control, system calls, subroutines call /return
are never qualified for predication.
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When a qualified branch is fetched, the architecture decides, based on resources
availability, if that hammock is going to be predicated. If the architecture decides
not to predicate the qualified branch, then it is predicted normally. On the other
hand, when a branch is predicated, both paths are fetched in order to avoid a
prediction. All paths are going to be fetched and executed and the right path is
ultimately committed and the architecture squashes selectively the remaining paths.

The problem is to maintain the correctness among the different data chains,
from the different paths. This is handled by the creation of several replicas of the
same instruction. So, when the join point of a predicated hammock is found, the
architecture introduces one replica for each path of each new instruction fetched.
The replicas keep being created until the outcome of that branch is known, i.e., after
the execution of the branch which originated the predication is completed.

Simulations have shown that misprediction occurrence was significantly decreased
by DCE architecture (SANTOS, 2003). The speedup over a conventional super-
scalar, however, was not as impressive. In fact, for some cases there was no gain
at all. Even selecting and qualifying just part of the branches, the pipeline still
saturates, specially, after the rename stage when replicas are created.

This work aims to combine value reuse and dynamic predication in order to
evaluate the performance of this approach. Therefore, the following can be pointed
out as the main contributions:

e Evaluate the impact of the overhead in DCE architecture;
e Propose an alternative that effectively reduces this problem (value reuse);

e Validate the idea by the implementation of a detailed microprocessor simula-
tor;

e Analyze all results achieved, identifying the pros and cons of pursuing such
approach.

Among other alternatives considered, value reuse was found as the most suitable
for DCE context. Thus, the main goal of this work was to introduce the idea of value
reuse in DCE. Typically, architectures with multipath and predication require a wide
execution structure. The pipeline stages work close to their limit and stalls due to
the large number of instructions produced from the multiple paths are common.

Initially, only instruction reuse was studied. The idea was to develop a mecha-
nism to store all previously executed instructions and reuse each single instruction
when possible. An instruction may be reused when all its source operands are ready
and match with the ones found in the Reuse Buffer (RB). In this event, the desti-
nation register is assigned with the value stored in RB and marked as ready. This
happens just after the rename, in a new stage created to accommodate the reuse
test and register assignment. The instruction is then forwarded to the ROB in order
to wait for commit.

A simulator based on sim-dce was developed, allowing instruction reuse in DCE
architecture. In this first part of the work, the DCE pipeline was extended to
simulate configurable deep pipelines and also the reuse of single instructions only.
The mechanism follows the same idea discussed above.

Simulations for reuse of single instructions have showed that the average for
all benchmarks of overhead reduction ranges between 13% and 16%, depending on
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the RB size. This means that the architecture is executing 13 to 16% less instruc-
tions. The harmonic mean for the speedups, however, was never greater than 2.5%,
comparing to the original DCE. Also, the most significant rates were achieved by
benchmark perl, around 10%. Benchmarks ccl and mgrid were the worst in perfor-
mance gain and the improvements were in the order of 0.5% only.

Although the reused instructions do not need to execute, they still occupy ROB
entries. Also, they need to wait for all previous instructions to commit because
retirement is performed in-order. This is the largest limitation of this approach, as
it transfers the bottleneck from the execution engine to the commit stage.

The second part of the work, allowed trace reuse. A trace is a sequence of n
contiguous instructions that may be reused at once. This means that, based on
a single reuse test, several instructions may be reused. In this case, a new buffer
is necessary to hold the input and output context of the traces, used to identify
whether a trace may be reused or not. The input context is the set of registers
which all instructions of a given trace uses as source operands. On the other hand,
the output context is the set of registers used as destination by all instructions of
the trace.

The reuse test is performed comparing all registers part of the input context
and not only the source registers of a single instructions, as it was before. Simi-
larly, all registers part of the output context are assigned at once, solving different
instructions at once.

As the Trace Buffer (TB) always stores the last value produced by an output
context register, some instructions may be directly retired from the pipeline, with no
need to wait for commit in the ROBs. An instruction part of a trace will be forwarded
to the ROBs only if it is producing values used by subsequent instructions. Thus, all
instructions which produce values to be consumed by the proper trace are withdraw
from the pipeline. This reduces the problem of ROB saturation, verified when reuse
of single instruction was introduced.

In DCE, as multiples paths are in course, different traces are also being formed
at once, one for each tagid identified. The idea is to reduce even more the overhead
of executed instructions, as several traces are available to reuse.

In order to validate the idea, a trace reuse mechanism was developed over the
already extended sim-dce. The traces are built in commit stage and stored in TB.
When traces of replicas are built, they are stored in the several ways of the same
TB set. The reuse test is performed yet in the rename stage in order to prevent
unnecessary renaming. Logical registers used by instructions which are going to be
directly retired are not supposed to be renamed, otherwise they would be occupying
resources useful for other instructions.

All instructions that are not part of a trace are queried in the Reuse Buffer as
it was done before. Hence, once the instructions are not found to be part of a valid
trace, they can still be reused as single instructions. The reuse test is performed
just after renaming as explained previously.

Simulations showed that the overhead reduction rates were around 8 to 10%
larger than the ones produced by single instruction reuse. Moreover, the instructions
which were removed from the pipeline were not counted in this statistic and it
possible to state that these rates are significantly higher, if those instructions were
also considered.

The average size of the traces reused is also an interesting point. Although the
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actual implementation is not allowing branches to be reused, the average size of the
traces is around 2.5 instructions. This is around the same size reached by other
studies (COSTA, 2001). Probably, when branches are allowed this average is going
to be higher, as thought initially. As DCE has several replicas after the join point
and the architecture keep on generating them up to the outcome of the original
branch is known, the traces of replicas are potentially larger.

The speedup reached by the trace reuse mechanism over the original DCE varies
widely according, specially, to the benchmarks. For benchmark go, for example,
trace reuse reached more than 80% of gain in some configurations. Benchmarks
applu, ccl and turb3d have achieved significant gains of performance as well. Nev-
ertheless, in other cases such as mgrid and perl it was observed a very low or no
gain in performance. The configurations also greatly affect performance. In general,
4-way-associative reuse tables achieve better results. Possibly, in these cases, more
traces of replicas are available to the different data chains, speeding up the overall
performance.

The side effects in the most relevant DCE features were also analyzed. First, the
number of branches dynamically predicated by the architecture was observed. After
increasing the number of mapping tables, only benchmarks cc1 and go presented a
significative increase in the number of branches predicated. For these benchmarks,
value reuse allowed more paths to be spawned by the architectures. It is fair to
say that this affected positively the performance. As stated above, benchmark go
achieved around 82% of gain in some cases. This gain is not exclusively due to
the increase in the number of branches predicated, but this certainly affected the
performance.

On the other hand, benchmark turb3d, incurred a great decrease in the number
of predicated branches. As more branches are being predicted, the misprediction
rates tend to be higher. This explains why turb3d presented the highest rates in the
overhead reduction, but it did not reached the same results in the overall perfor-
mance.

As discussed before, misprediction occurrence is typically smaller when DCE
is used. This happens because a lower number of predictions is being performed.
However, there is a special case in which predication may lead to a misprediction.
A predicated branch is said to be mispredicted when it reaches the top of the ROB
and there are replicas which were not renamed yet. This happens because when the
predicated branch is ready to commit, all wrong paths are supposed to be selectively
squashed. This is possible only when all replicas are created, after the first stage of
renaming. The commit stage is not stalled by itself because this could case the whole
pipeline to stall, generating a deadlock. So, increase the number of predications
and/or anticipating the execution of several instructions are not enough, if they
have not enough time to complete the fetch /rename of all paths.

For benchmarks go and ccl, mainly, more instructions are predicated and, as
consequence, many replicas are not being able to be created. For the remaining
benchmarks a similar effect may be observed, but with a different cause. In those
cases, as value reuse is anticipating the execution of all instructions, predicated
branches reach the top of the ROB faster and, again, there is no time left to replicate
and tag all instructions. Unfortunately, this effect, caused by either reason, may
cause an increase in the misprediction rates, and consequently, a decrease in the
performance gain.
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9.1 Future Work

There are three main paths to explore for the next steps of this work. They are
described in the next Sections.

9.1.1 Reusing Branches

One of the main limitations of this work is that it does not support branch reuse.
It is known that reuse mechanisms may even decrease mispredictions, because it
can detect a mispredicted branch after the reuse test. This happens because the
correct result of a given branch is found when it is reused, just like any other
instruction. This may turn a misprediction into a misfetch only, saving several
cycles and resources.

In DCE architecture this task is more difficult to be performed. When a branch
is data dependent from a previously predicated branch, it has replicas and each
replica belongs to a control flow. When the architecture detects that a branch was
misfetched, it has to flush and redirect the fetch selectively, according to each path.
This would be hard and very expensive.

Nevertheless, there is an optimization that may be done. When all replicas of the
data dependent branch were predicted to the same target, the squash, if necessary,
would be easier to perform. This will be the next step to be developed in this
research.

9.1.2 Trace Reuse Based on a Fixed Stride

The left side of Figure 9.1 shows an example of how outputs are generated in a
certain code. A, B and C are the inputs registers, while X and Y are the outputs
produced by the trace.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 9.1: Outputs generation

Ideally, inputs A, B and C are never going to change and therefore, the outputs
will always be the same. This Figure shows a typical example where trace reuse is
going to be very effective, reusing that trace in its next occurrences. Nevertheless,
it is very common to find a situation such as the one described in the right side
of Figure 9.1. In this case, input A is modified each time that trace is executed,
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producing A’. This means that next time this trace is fetched it will not be reused
because input A will be different from the one previously stored in the reuse table.

This phenomenon may be noticed in smaller granularities, such as instruction
reuse itself. If an instruction modify one of its source registers, it cannot be reused
next time. However, if the difference between the last occurrences is detected, it is
possible to adjust the correct value and reuse the instruction.

Figures 9.2 and 9.3 show examples of traces extracted dynamically from the
execution of cc1 benchmark.

Figure 9.2 shows a trace with two instructions. Register 717 is the input register
for this trace, while 72 and r17 are its output registers. The trace is repeated four
times, meaning that it was fetched and identified as a previously stored trace four
subsequent times. And even though the input registers were the same, their values
got modified in the previous execution and the trace never got reused. Thus, it is
possible to notice that r17is changing constantly, according to the earlier occurrence
of the trace.

The reuse with stride should apply to cases like this, where is easy to define and
adjust the value in the input registers. The idea is to update the reuse table before
the next occurrence of the trace. An alternative for this is to update the table just
after its access, not in commit stage like is performed usually.

So, when a given instruction is accessed in the reuse table and identified as
one which has a stride, the reuse is executed normally but the table is updated
accordingly. In Figure 9.2, each time that the first instruction is accessed in the
reuse table the value of 717 will be reused and updated based on the stride (adding
1, in this case). Therefore, in the following access the value will be correct and the
reuse will take place.

This initial approach, however, has some restrictions relative mainly to the fol-
lowing;:

e The stride must be constant;
e The reuse table is updated according the stride just after its access;

e The input source is modified in previous executions.

The main challenge in this initial approach is to detect the stride correctly and
to find the pattern of its occurrence in the trace. The idea is to perform this
dynamically, but some compiler support may be needed.

Another challenge is to find other cases where this approach may be used. Fig-
ure 9.3 shows an example where there is a constant stride, but none of the input
registers are in the output scope.

9.1.3 Out—of-Order Commit

This work has shown that even being executed several cycles before, the average
number of cycles that a reused instruction remains in the pipeline is just slightly
lower than a conventionally executed instruction.

It is clear that the main problem in reusing instructions only is that even saving
resources, reused instructions have to be maintained in the pipeline waiting for
previous instructions to be completed. As discussed in previous Chapters, only
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(TRACE SCOPE): Tag PC: 0x0056¢820 : Next PC : 0x0056c830
In size 1 : Out size 2 : Trace size 2

In Scope:

R17: 0x00000001

Out Scope:

R2: 0x00000001

R17: 0x00000002

Instructions in Trace:
0x0056¢820 : 0000000000 : addiu ~ r17,xr17,1 =
0x0056¢828 : 0000000000 : slti ~ r2,r17,64 *

(TRACE SCOPE): Tag PC: 0x0056¢820 : Next PC : 0x0056¢830
In size 1 : Out size 2 : Trace size 2

In Scope:

R17: 0x00000002

Out Scope:

R2: 0x0000001

R17: 0x00000003

Instructions in Trace:
0x0056¢820 : 0000000000 : addiu ~ r17,x17,1 =
0x0056¢828 : 0000000000 : slti ~ r2,r17,64 *

(TRACE SCOPE): Tag PC: 0x0056¢820 : Next PC : 0x0056¢830
In size 1 : Out size 2 : Trace size 2

In Scope:

R17: 0x00000003

Out Scope:

R2: 0x00000001

R17: 0x00000004

Instructions in Trace:
0x0056¢820 : 0000000000 : addiu ~ r17,r17,1 =
0x0056¢828 : 0000000000 : slti ~ r2,r17,64 *

(TRACE SCOPE): Tag PC: 0x0056¢820 : Next PC : 0x0056¢830
In size 1 : Out size 2 : Trace size 2

In Scope:

R17: 0x00000004

Out Scope:

R2: 0x00000001

R17: 0x00000005

Instructions in Trace:
0x0056¢820 : 0000000000 : addiu ~ r17,xr17,1 =
0x0056¢828 : 0000000000 : slti ~ r2,r17,64 *

Figure 9.2: Trace not reused due to not ready operands
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(TRACE SCOPE): Tag PC: 0x0056¢780 : Next PC : 0x0056¢7a0
In size 1 : Out size 1 : Trace size 3

In Scope:

R17: 0x00000006

Out Scope:

R2: 0x00000006

Instructions in Trace:

0x0056¢780 : 0000000000 : addiu  r2,r0,r17

0x0056¢788 : 0000000000 : bgez  r17, 0x0056¢798
0x0056¢798 : 0000000000 : sra  12,12,5 *

TRACE SCOPE): Tag PC: 0x0056¢780 : Next PC : 0x0056c7a0
In size 1 : Out size 1 : Trace size 3

In Scope:

R17: 0x00000005

Out Scope:

R2: 0x00000005

Instructions in Trace:

0x0056¢780 : 0000000000 : addiu  r2,r0,r17
0x0056¢788 : 0000000000 : bgez  r17, 0x0056¢798
0x0056¢798 : 0000000000 : sra 12,12, 5

(TRACE SCOPE): Tag PC: 0x0056¢780 : Next PC : 0x0056¢7a0
In size 1 : Out size 1 : Trace size 3

In Scope:

R17: 0x00000004

Out Scope:

R2: 0x00000004

Instructions in Trace:

0x0056¢780 : 0000000000 : addiu  r2,r0,r17

0x0056¢788 : 0000000000 : bgez 117, 0x0056c798
0x0056¢798 : 0000000000 : sra 12,12, 5 *

(TRACE SCOPE): Tag PC: 0x0056¢780 : Next PC : 0x0056¢7a0
In size 1 : Out size 1 : Trace size 3

In Scope:

R17: 0x00000003

Out Scope:

R2: 0x00000003

Instructions in Trace:

0x0056¢780 : 0000000000 : addiu  r2,r0,r17

0x0056¢788 : 0000000000 : bgez  r17, 0x0056¢798
0x0056¢798 : 0000000000 : sra 12,12, 5 *

(TRACE SCOPE): Tag PC: 0x0056¢780 : Next PC : 0x0056¢7a0
In size 1 : Out size 1 : Trace size 3

In Scope:

R17: 0x00000002

Out Scope:

R2: 0x00000002

Instructions in Trace:

0x0056¢780 : 0000000000 : addiu  r2,r0,r17
0x0056¢788 : 0000000000 : bgez 117, 0x0056c798
0x0056¢798 : 0000000000 : sra 12,12, 5

Figure 9.3: Trace not reused with different output and input scopes
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after the completion of these regularly executed preceding instructions is that the
reused ones will be delivered to retirement.

In order to reduce this problem an out—of-order commit mechanisms could be
developed. These mechanisms are being continuously studied later and they basi-
cally allow that instructions are retired from the pipeline earlier, as soon as they
are completed (MARTINEZ et al., 2002; VIJAYAN; RAJENDRAN; VELUSWAMI,
2002; CRISTAL et al., 2004).

The basic idea is to modify the ROB structure, introducing checkpoints in be-
tween instructions committed speculatively. These checkpoints are very similar to
the ones used in any branch mechanism.

Besides helping in the reuse bottleneck, this kind of mechanism will help to
decrease the number of physical registers and ROB positions necessary to support
Dynamic Conditional Execution architecture.
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10 REUSANDO VALORES EM UMA ARQUITE-
TURA COM EXECUCAO CONDICIONAL DINA-
MICA

10.1 Introducao

O custo das dependéncias de controle em arquiteturas superescalares é ainda uma
questao de pesquisa em aberto, e técnicas de atenuacao dos efeitos negativos destas
dependéncias sao o foco de um esfor¢o miituo de pesquisas realizadas tanto na area
académica quanto na industria de microprocessadores superescalares de propoésito
geral. Para pipelines profundos do estado da arte, em especial, o custo de previsoes
incorretas é ainda maior em decorréncia do grande ntimero de estagios existentes. A
execugao condicional dinAmica (DCE — Dynamic Conditional Ezecution) é uma nova
proposta de arquitetura superescalar que busca reduzir esse problema. A idéia ba-
sica é buscar e executar todos os caminhos produzidos por um desvio que obedecem
determinadas restricoes relacionadas a sua complexidade e tamanho. Como con-
seqiiéncia, um nimero menor de previsoes é executado e assim, um nimero menor
de desvios é previsto incorretamente.

Além de buscar multiplos fluxos, a arquitetura DCE necessita produzir diver-
sas réplicas de uma mesma instrucdo de forma a garantir a seméntica correta de
dados provenientes dos varios fluxos de execucao. Essas réplicas sao produzidas
apos o ponto de convergéncia dos vérios fluxos e continuam sendo criadas pela ar-
quitetura até que o desvio que as originou seja resolvido. Desse modo, uma secao
inteira de codigo pode ser replicada, saturando o pipeline e afetando negativamente
o desempenho. Uma alternativa natural para amenizar o overhead causado pela
busca/execucao de miltiplos fluxos e a criagdo de réplicas é o reuso de valores exe-
cutados previamente. Dessa forma, os recursos da arquitetura podem ser liberados
para as demais instrucoes tteis.

O objetivo principal desse trabalho é analisar o impacto do reuso de valores, em
diferentes granularidades, na arquitetura DCE. Esta tese demonstra com extensas
simulacoes e anélises de resultados que a abordagem proposta reduz efetivamente o
overhead produzido pela arquitetura, aumentando o desempenho global.

10.2 O Reuso de Valores na Arquitetura DCE

A ocorréncia de instrugoes de desvio é uma questao cuja solucao ainda é in-
definida e que limita a extragdo de paralelismo em nivel de instrugdo (ILP), bem
como o desempenho de processadores superescalares. A alternativa para reduzir esse
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problema é, em geral, introduzir mecanismos complexos e sofisticados de previsao.
Mesmo assim, ndao hé garantias que o fluxo previsto é o correto a seguir e o pipeline
sofre uma alta penalidade quando uma previsao errada é observada.

Além disso, essa penalidade tem crescido enormemente com pipelines cada vez
mais profundos. A meédia de acerto em preditores do estado-da-arte é maior que
90%, mas a ocorréncia de 10% ou menos em previsoes erradas é suficiente para
reduzir drasticamente o desempenho, medido pelo numero de instrugoes executadas
nas aquiteturas de microprocessadores superescalares.

A Execugdo Condicional Dindmica (DCE) é uma nova abordagem para reducao
de previsoes incorretas. A idéia é diminuir o nimero de previsoes erradas pela redu-
¢ao do nuimero requerido de previsoes, predicando desvios em alguns casos especifi-
cos. O compilador é responséavel em qualificar as estruturas de desvios (hammocks)
que podem ser predicadas. A proposta do DCE é, entao, que o microprocessador
decide, em tempo de execucao, quais dos hammocks qualificados serao realmente
predicados.

E claro que apenas parte dos desvios condicionais existentes em um dado pro-
grama pode ser predicada. De outro modo, o pipeline de instrucoes saturaria ra-
pidamente e a técnica nao apresentaria nenhum ganho de desempenho. Por essa
razao, o compilador marca estaticamente apenas hammocks que obedecem algumas
restricoes relativas, principalmente, ao seu tamanho e complexidade. Tipicamente,
a arquitetura DCE qualifica cinco tipos de hammocks para predicacao:

e Simples (um e dois lados): desvios sem estruturas aninhadas;

e Complexos puros: uma ou mais estruturas de desvio aninhadas totalmente
contidas na mais externa;

e Complexos com maultiplas convergéncias: uma ou mais estruturas de desvio
aninhadas que possuem os alvos coincidentes com o ponto de convergéncia;

e Complexos com miiltiplos alvos: uma ou mais estruturas de desvio aninhadas
que possuem seus alvos depois do ponto de convergéncia;

e Complexos sobrepostos: uma ou mais estruturas de desvio que possuem seus
alvos localizados no caminho tomado da estrutura mais externa.

Estruturas de desvios contendo desvios backward, desvios indiretos, desvios in-
condicionais nao relacionados com o controle de fluxo do préprio desvio, chamadas
de sistema e/ou chamadas/retornos de sub-rotinas desqualificam estes desvios para
predicacao.

Quando um desvio qualificado é buscado, a arquitetura decide, baseada na dis-
ponibilidade de recursos, se aquele hammock sera predicado. Se a arquitetura decide
nao predicar o desvio qualificado, entao o mesmo é previsto normalmente. Por ou-
tro lado, quando um desvio é predicado, ambos os caminhos sao buscados de modo
a evitar uma previsao. Todos os fluxos serao buscados e executados e o caminho
correto é graduado, enquanto a arquitetura descarta seletivamente os fluxos errados.

O problema, nesse caso, € manter a consisténcia entre as diferentes correntes de
dados, provenientes dos diferentes fluxos de execucdo. E com essa finalidade que
a arquitetura cria varias réplicas da mesma instrucao. Assim, quando o ponto de
um hammock predicado é encontrado, a arquitetura introduz uma réplica para cada



107

fluxo de cada nova instrucao buscada. As réplicas continuam sendo criadas até que
o resultado do desvio que originou a predicagdo seja conhecido, ou seja, até que a
execucao do desvio original seja completada.

As simulagoes executadas em trabalhos anteriores mostraram que a ocorrén-
cia de previsoes erradas reduziu significantemente com a utilizagdo da arquitetura
DCE (SANTOS, 2003). O speedup sobre uma arquitetura superescalar convenci-
onal, contudo, nao foi tao significante e em alguns casos nao houve ganho algum.
Mesmo selecionando e qualificando apenas parte dos desvios, o pipeline ainda satura,
especialmente, apds o estagio de renomeacao onde as réplicas sao criadas.

A intencao desse trabalho é combinar reuso de valores e predicagao dindmica de
instrucoes, avaliando o desempenho dessa nova abordagem. Conseqiientemente, os
seguintes pontos podem ser considerados como as maiores contribuigoes dessa tese
de doutorado:

e Avaliar o impacto do overhead causado pela arquitetura DCE;

e Propor uma alternativa que reduza esse problema efetivamente (reuso de va-
lores);

e Validar a idéia através da implementacao de um simulador de microprocessa-
dores detalhado;

e Analisar todos os resultados atingidos, identificando os prés e contras de tal
abordagem.

Dentre outras alternativas consideradas inicialmente, o reuso de valores foi iden-
tificado como o mais adaptavel ao contexto DCE. Assim, o principal objetivo desse
trabalho foi introduzir a idéia de reuso de valores na arquitetura DCE. Tipicamente,
arquiteturas multi-fluxo e predicacao requerem uma grande estrutura de execucao.
Os estagios de pipeline funcionam perto do seu limite e paradas devido ao grande
nimero de instrugoes produzidas a partir dos miltiplos fluxos sao comuns.

Primeiramente, apenas o reuso de instrugoes foi estudado. A idéia foi desenvolver
um mecanismo para armazenar todas as instrucoes previamente graduadas e reusar
cada instrugao unitariamente, quando possivel. Uma instrucao pode ser reusada
quando todos os seus operandos de origem estao prontos e correspondem aos que
estdo armazenados no Buffer de Reuso (RB). Quando isso acontece, o registrador de
destino é assinalado com o valor contido no RB e marcado como pronto. Isso ocorre
imediatamente apds a renomeacao de registradores, em um estagio novo criado para
acomodar o teste de reuso e a atribuicao do valor destino. A instrucao reusada é
entdo encaminhada para o buffer de reordenamento, onde aguarda pela graduagao
de resultados.

Um simulador baseado no simulador sim-dce foi desenvolvido, permitindo reuso
de instrugoes na arquitetura DCE. Nessa primeira parte do trabalho, o pipeline DCE
foi estendido para simular pipelines profundos bem como para reusar instrugoes
singularmente. O mecanismo implementado segue a mesma idéia acima descrita.

As simulagoes do reuso de instrucoes mostraram que a média de reducao de
overhead estd entre 13% e 16%, dependendo do tamanho do RB, para todos os
benchmarks utilizados. Isso significa que a arquitetura estd executando de 13 a
16% menos instrucoes. A média harménica para o speedup, contudo, ndo foi maior
que 2,5%, comparando com a arquitetura DCE original. Além disso, as taxas mais
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significativas foram atingidas pelo benchmark perl, em torno de 10%. Benchmarks
ccl e mgrid obtiveram os piores ganhos de desempenho e a melhora nao foi maior
que 0,5%.

Apesar das instrucoes reusadas nao serem executadas, elas continuam ocupando
entradas no buffer de reordenamento. Além disso, essas instrucdes precisam esperar
por todas as instrugoes antecessoras, pois a graduagao é realizada em ordem. Essa
é a principal limitagao dessa abordagem, ja que o gargalo é apenas transferido da
execucao para a graduacao de instrugoes.

A segunda parte do trabalho permitiu o reuso de tragos. Um trago é a seqiiéncia
de n instrugoes contiguas que podem ser reusadas de uma tnica vez. Isso significa
que, baseado em um t1nico teste de reuso, vérias instrugoes podem ser reusadas.
Nesse caso, um novo buffer é necessario para armazenar os contextos de entrada e
saida dos tracos, usados para identificar quando um trago pode ser reusado ou nao.
O contexto de entrada é o conjunto de registradores utilizado como operandos de
origem por todas as instrugoes de um dado trago. Por outro lado, o contexto de
saida é o conjunto de registradores usado como destino por todas as instrucoes de
um trago.

O teste de reuso é realizado através da comparagao de todos os registradores que
fazem parte do contexto de entrada, e nao apenas dos operandos de origem, como no
caso do reuso de instrugoes original. Similarmente, todos os registradores que fazem
parte do contexto de saida sao assinalados de uma vez, resolvendo varias instrugoes
simultaneamente.

Uma vez que o Buffer de Tragos (TB) sempre armazena o tltimo valor produzido
por um registrador pertencente ao contexto de saida, algumas instrugoes podem ser
diretamente retiradas do pipeline, sem precisar esperar por todas as instrucoes ante-
cessoras no buffer de reordenamento. Uma instrucao que faz parte de um trago sera
encaminhada para o ROB apenas se a mesma produzir um resultado que poderé
ser utilizado pelas instrucoes subseqiientes. Desse modo, todas as instrugoes que
produzem valores que serao consumidos dentro do préprio trago sao tiradas do pi-
peline. Isso reduz o problema de saturacao de entradas do ROB, observado quando
reusando instrucoes unitariamente.

Na arquitetura DCE, vérios tracos podem ser formados paralelamente, ja que
também existem vérios fluxos em curso. A idéia é reduzir ainda mais o overhead de
instrucoes, ja que diferentes tragos de réplicas estao disponiveis para reuso.

Para validar essa idéia, um mecanismo de reuso de tragos foi desenvolvido to-
mando como base 0 ja estendido sim-dce. Os tragos sdo construidos no estigio de
graduacgao e armazenados no TB. Quando tracos de réplicas sao construidos, sao ar-
mazenados nos diversos blocos do mesmo conjunto do Buffer de Tracos. O teste de
reuso ¢ aplicado ainda no estagio de renomeagao de registradores de forma a preve-
nir renomeacoes desnecessarias. Os registradores logicos usados por instrucoes que
serao retiradas nao devem ser renomeados, liberando recursos para outras instrugoes
uteis.

Todas as instrucoes que nao fazem parte de um traco sendo reusado continuam
sendo buscadas no Buffer de Reuso de instrugdes (RB). Entdo, instruc¢oes que néo
sao parte de um traco valido, ainda podem ser reusadas através do mecanismo de
reuso simples. O teste de reuso é realizado imediatamente ap6s a renomeagao, assim
como discutido anteriormente.

As simulacoes realizadas no decorrer desta pesquisa de tese mostraram que a
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reducao de overhead foram entre 8% e 10% maiores, quando comparadas com os
resultados produzidos pelo reuso simples de instrucoes. Além disso, as instrucoes que
foram removidas do pipeline nao foram contabilizadas nessa estatistica e é possivel
afirmar que essas taxas de reducao de overhead sao ainda maiores, considerando tais
instrucoes.

A média de tamanho dos tracos efetivamente reusados é também um dado im-
portante sobre o qual foram realizadas analises. Apesar da implementacao atual nao
permitir reuso de desvios, a média de tamanho é de cerca de 2,5 instrucoes. Essa mé-
dia é similar & atingida em trabalhos anteriores (COSTA, 2001) que incluiam reuso
de desvios. Provavelmente, quando desvios forem reusados junto da arquitetura
DCE, essa média sera ainda maior, como cogitado inicialmente. J& que a arquite-
tura DCE possui varias réplicas sendo geradas apos cada ponto de convergéncia, até
que o desvio original seja resolvido, os tracos sao potencialmente maiores.

O speedup alcangado pelo mecanismo de reuso de tragos sobre o DCE original
varia largamente, sobretudo, de acordo com o benchmark simulado. Para o bench-
mark go, por exemplo, o reuso de tracos atingiu mais de 80% de ganho em algumas
configuragoes. Os benchmarks applu, ccl e turb3d também atingiram ganhos sig-
nificativos de desempenho. Contudo, em outros casos, tais como mgrid e perl, foi
observado um ganho minimo de desempenho. Assim como os benchmarks, as con-
figuracoes simuladas também afetam o desempenho. Em geral, tabelas de reuso de
conjunto associatividade 4 atingem melhores resultados. Possivelmente, nesses ca-
sos, mais tragos de réplicas estao disponiveis para as diferentes correntes de dados,
aumentando o desempenho global.

Os efeitos colaterais nas caracteristicas mais marcantes da arquitetura DCE fo-
ram também analisados. Primeiramente, o nimero de desvios dinamicamente pre-
dicados pela arquitetura foi observado. Apoés aumentar o nimero de tabelas de
mapeamento, apenas os benchmarks ccl e go apresentaram um aumento significa-
tivo no numero de predicacoes. Para esses benchmarks o reuso de valores permitiu
que um nimero maior de fluxos fosse criado. Nesses casos, é possivel afirmar que esse
aumento no nimero de predicacoes afetou positivamente o desempenho final. Como
visto anteriormente, o benchmark go atingiu cerca de 82% de ganho em algumas
configuragoes. Esse ganho nao é conseqiiéncia exclusiva do nimero de predicagoes
realizadas, mas esse indice certamente afetou o desempenho.

Por outro lado, no benchmark turb3d, uma grande redugao no niimero de desvios
predicados foi observada. Ja que mais desvios estao sendo previstos, as taxas de pre-
visoes erradas tendem a ser maiores. Isso explica porque esse benchmark apresentou
as maiores taxas de reducao de overhead, mas nao alcancou os mesmos resultados
no desempenho global.

Como ja discutido anteriormente, a ocorréncia de previsoes erradas é tipicamente
menor na arquitetura DCE, quando comparada a um processador superescalar con-
vencional. Isso acontece porque um nimero menor de previsoes esté sendo realizado.
Contudo, existe um caso especial em que a predicacao pode ser tratada da mesma
forma que uma previsao errada. Um desvio predicado é tratado como previsto in-
corretamente quando o mesmo atinge o topo do buffer de reordenamento e ainda
existem réplicas que nao foram renomeadas. Isso acontece porque, quando um des-
vio predicado esta pronto para ser graduado, todos os fluxos incorretos devem ser
descartados seqiiencialmente. Para que isso aconteca, todas as réplicas ja devem ter
sido criadas e etiquetadas, ou seja, todas as instrucoes relacionadas com a predicacao
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ja devem ter passado pelo primeiro estagio de renomeacgao. O estagio de graduacao
nao para porque isso poderia ocasionar a parada total do pipeline, gerando um dea-
dlock. Desse modo, é possivel afirmar que aumentar o nimero de desvios predicados
e/ou antecipar a execucdo de diversas instrugdes nao é suficiente, caso nao haja
tempo habil para completar busca/renomeagao de todos os fluxos.

No caso dos benchmarks go e ccl, principalmente, um niimero maior de pre-
dicacoes estd sendo realizado e muitas dessas réplicas nao estao sendo criadas a
tempo. Para os demais benchmarks, o mesmo efeito pode ser observado, mas com
uma causa diferente. Nesses casos, o reuso de valores estd antecipando a execu-
¢do de todas as instrucoes e os desvios predicados chegam ao topo do buffer de
reordenamento mais rapidamente, prevenindo o etiquetamento de todas as instru-
coes necessarias. Infelizmente, isso pode causar um aumento na taxa de previsoes

incorretas e, conseqiientemente, um decréscimo no ganho de desempenho.

10.3 Sumario das Conclusoes

Essa tese de doutorado teve como principal objetivo estudar o problema do
overhead ocasionado pela busca/execugao de multiplos fluxos em uma arquitetura
com execucao condicional dinamica, propondo um mecanismo de reuso de instrugoes
e tracos para reduzir esse problema.

A metodologia adotada para atingir esse objetivo foi desenvolver, inicialmente,
um mecanismo de reuso de instrugoes. As simulagoes executadas nessa primeira
fase, no entanto, apontaram um acréscimo muito baixo de desempenho, mesmo com
uma média de cerca de 15% de instrugoes reusadas. O problema é que as instrucgoes
reusadas continuam ocupando recursos no pipeline do microprocessador superescalar
com suporte para execucao fora-de-ordem. Mesmo liberando unidades funcionais,
essas instrucoes sao mantidas no buffer de reordenamento para esperar a graduagao
de resultados em ordem.

Esse problema, porém, tende a ser menor quando a arquitetura realiza o reuso
de tracos, implementado na segunda fase deste trabalho de pesquisa. Instrugoes que
fazem parte do traco, mas nao produzem resultados que serdao usados por instrugoes
subseqiientes, podem ser retiradas imediatamente do pipeline, reduzindo o niimero
efetivo de instrucoes no buffer de reordenamento. Desse modo, os resultados apre-
sentados pelo mecanismo de reuso de tragos foram melhores, se comparados com os
produzidos pelo reuso de instrugoes puramente. Em alguns casos, o reuso de tragos
apresentou ganhos de mais de 80% sobre o DCE original.

Como trabalhos futuros, pode-se destacar, sobretudo, a implementacao de reuso
de desvios, a implementacao da graduacao fora-de-ordem assim como o estudo de
mecanismos para o reuso de stride fixo.
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